Merge tag 'platform-drivers-x86-v4.7-1' of git://git.infradead.org/users/dvhart/linux...
[cascardo/linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46         [FAULT_KMALLOC]         = "kmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56         if (rate) {
57                 atomic_set(&f2fs_fault.inject_ops, 0);
58                 f2fs_fault.inject_rate = rate;
59                 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60         } else {
61                 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62         }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68         .scan_objects = f2fs_shrink_scan,
69         .count_objects = f2fs_shrink_count,
70         .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74         Opt_gc_background,
75         Opt_disable_roll_forward,
76         Opt_norecovery,
77         Opt_discard,
78         Opt_noheap,
79         Opt_user_xattr,
80         Opt_nouser_xattr,
81         Opt_acl,
82         Opt_noacl,
83         Opt_active_logs,
84         Opt_disable_ext_identify,
85         Opt_inline_xattr,
86         Opt_inline_data,
87         Opt_inline_dentry,
88         Opt_flush_merge,
89         Opt_nobarrier,
90         Opt_fastboot,
91         Opt_extent_cache,
92         Opt_noextent_cache,
93         Opt_noinline_data,
94         Opt_data_flush,
95         Opt_fault_injection,
96         Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100         {Opt_gc_background, "background_gc=%s"},
101         {Opt_disable_roll_forward, "disable_roll_forward"},
102         {Opt_norecovery, "norecovery"},
103         {Opt_discard, "discard"},
104         {Opt_noheap, "no_heap"},
105         {Opt_user_xattr, "user_xattr"},
106         {Opt_nouser_xattr, "nouser_xattr"},
107         {Opt_acl, "acl"},
108         {Opt_noacl, "noacl"},
109         {Opt_active_logs, "active_logs=%u"},
110         {Opt_disable_ext_identify, "disable_ext_identify"},
111         {Opt_inline_xattr, "inline_xattr"},
112         {Opt_inline_data, "inline_data"},
113         {Opt_inline_dentry, "inline_dentry"},
114         {Opt_flush_merge, "flush_merge"},
115         {Opt_nobarrier, "nobarrier"},
116         {Opt_fastboot, "fastboot"},
117         {Opt_extent_cache, "extent_cache"},
118         {Opt_noextent_cache, "noextent_cache"},
119         {Opt_noinline_data, "noinline_data"},
120         {Opt_data_flush, "data_flush"},
121         {Opt_fault_injection, "fault_injection=%u"},
122         {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127         GC_THREAD,      /* struct f2fs_gc_thread */
128         SM_INFO,        /* struct f2fs_sm_info */
129         NM_INFO,        /* struct f2fs_nm_info */
130         F2FS_SBI,       /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132         FAULT_INFO_RATE,        /* struct f2fs_fault_info */
133         FAULT_INFO_TYPE,        /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138         struct attribute attr;
139         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141                          const char *, size_t);
142         int struct_type;
143         int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148         if (struct_type == GC_THREAD)
149                 return (unsigned char *)sbi->gc_thread;
150         else if (struct_type == SM_INFO)
151                 return (unsigned char *)SM_I(sbi);
152         else if (struct_type == NM_INFO)
153                 return (unsigned char *)NM_I(sbi);
154         else if (struct_type == F2FS_SBI)
155                 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157         else if (struct_type == FAULT_INFO_RATE ||
158                                         struct_type == FAULT_INFO_TYPE)
159                 return (unsigned char *)&f2fs_fault;
160 #endif
161         return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165                 struct f2fs_sb_info *sbi, char *buf)
166 {
167         struct super_block *sb = sbi->sb;
168
169         if (!sb->s_bdev->bd_part)
170                 return snprintf(buf, PAGE_SIZE, "0\n");
171
172         return snprintf(buf, PAGE_SIZE, "%llu\n",
173                 (unsigned long long)(sbi->kbytes_written +
174                         BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178                         struct f2fs_sb_info *sbi, char *buf)
179 {
180         unsigned char *ptr = NULL;
181         unsigned int *ui;
182
183         ptr = __struct_ptr(sbi, a->struct_type);
184         if (!ptr)
185                 return -EINVAL;
186
187         ui = (unsigned int *)(ptr + a->offset);
188
189         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193                         struct f2fs_sb_info *sbi,
194                         const char *buf, size_t count)
195 {
196         unsigned char *ptr;
197         unsigned long t;
198         unsigned int *ui;
199         ssize_t ret;
200
201         ptr = __struct_ptr(sbi, a->struct_type);
202         if (!ptr)
203                 return -EINVAL;
204
205         ui = (unsigned int *)(ptr + a->offset);
206
207         ret = kstrtoul(skip_spaces(buf), 0, &t);
208         if (ret < 0)
209                 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211         if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212                 return -EINVAL;
213 #endif
214         *ui = t;
215         return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219                                 struct attribute *attr, char *buf)
220 {
221         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222                                                                 s_kobj);
223         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225         return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229                                                 const char *buf, size_t len)
230 {
231         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232                                                                         s_kobj);
233         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235         return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241                                                                 s_kobj);
242         complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = {                   \
247         .attr = {.name = __stringify(_name), .mode = _mode },   \
248         .show   = _show,                                        \
249         .store  = _store,                                       \
250         .struct_type = _struct_type,                            \
251         .offset = _offset                                       \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
255         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
256                 f2fs_sbi_show, f2fs_sbi_store,                  \
257                 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287         ATTR_LIST(gc_min_sleep_time),
288         ATTR_LIST(gc_max_sleep_time),
289         ATTR_LIST(gc_no_gc_sleep_time),
290         ATTR_LIST(gc_idle),
291         ATTR_LIST(reclaim_segments),
292         ATTR_LIST(max_small_discards),
293         ATTR_LIST(batched_trim_sections),
294         ATTR_LIST(ipu_policy),
295         ATTR_LIST(min_ipu_util),
296         ATTR_LIST(min_fsync_blocks),
297         ATTR_LIST(max_victim_search),
298         ATTR_LIST(dir_level),
299         ATTR_LIST(ram_thresh),
300         ATTR_LIST(ra_nid_pages),
301         ATTR_LIST(dirty_nats_ratio),
302         ATTR_LIST(cp_interval),
303         ATTR_LIST(idle_interval),
304         ATTR_LIST(lifetime_write_kbytes),
305         NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309         .show   = f2fs_attr_show,
310         .store  = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314         .default_attrs  = f2fs_attrs,
315         .sysfs_ops      = &f2fs_attr_ops,
316         .release        = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324         ATTR_LIST(inject_rate),
325         ATTR_LIST(inject_type),
326         NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330         .default_attrs  = f2fs_fault_attrs,
331         .sysfs_ops      = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337         struct va_format vaf;
338         va_list args;
339
340         va_start(args, fmt);
341         vaf.fmt = fmt;
342         vaf.va = &args;
343         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344         va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351         inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356         struct f2fs_sb_info *sbi = F2FS_SB(sb);
357         struct request_queue *q;
358         substring_t args[MAX_OPT_ARGS];
359         char *p, *name;
360         int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363         f2fs_build_fault_attr(0);
364 #endif
365
366         if (!options)
367                 return 0;
368
369         while ((p = strsep(&options, ",")) != NULL) {
370                 int token;
371                 if (!*p)
372                         continue;
373                 /*
374                  * Initialize args struct so we know whether arg was
375                  * found; some options take optional arguments.
376                  */
377                 args[0].to = args[0].from = NULL;
378                 token = match_token(p, f2fs_tokens, args);
379
380                 switch (token) {
381                 case Opt_gc_background:
382                         name = match_strdup(&args[0]);
383
384                         if (!name)
385                                 return -ENOMEM;
386                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387                                 set_opt(sbi, BG_GC);
388                                 clear_opt(sbi, FORCE_FG_GC);
389                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390                                 clear_opt(sbi, BG_GC);
391                                 clear_opt(sbi, FORCE_FG_GC);
392                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393                                 set_opt(sbi, BG_GC);
394                                 set_opt(sbi, FORCE_FG_GC);
395                         } else {
396                                 kfree(name);
397                                 return -EINVAL;
398                         }
399                         kfree(name);
400                         break;
401                 case Opt_disable_roll_forward:
402                         set_opt(sbi, DISABLE_ROLL_FORWARD);
403                         break;
404                 case Opt_norecovery:
405                         /* this option mounts f2fs with ro */
406                         set_opt(sbi, DISABLE_ROLL_FORWARD);
407                         if (!f2fs_readonly(sb))
408                                 return -EINVAL;
409                         break;
410                 case Opt_discard:
411                         q = bdev_get_queue(sb->s_bdev);
412                         if (blk_queue_discard(q)) {
413                                 set_opt(sbi, DISCARD);
414                         } else {
415                                 f2fs_msg(sb, KERN_WARNING,
416                                         "mounting with \"discard\" option, but "
417                                         "the device does not support discard");
418                         }
419                         break;
420                 case Opt_noheap:
421                         set_opt(sbi, NOHEAP);
422                         break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424                 case Opt_user_xattr:
425                         set_opt(sbi, XATTR_USER);
426                         break;
427                 case Opt_nouser_xattr:
428                         clear_opt(sbi, XATTR_USER);
429                         break;
430                 case Opt_inline_xattr:
431                         set_opt(sbi, INLINE_XATTR);
432                         break;
433 #else
434                 case Opt_user_xattr:
435                         f2fs_msg(sb, KERN_INFO,
436                                 "user_xattr options not supported");
437                         break;
438                 case Opt_nouser_xattr:
439                         f2fs_msg(sb, KERN_INFO,
440                                 "nouser_xattr options not supported");
441                         break;
442                 case Opt_inline_xattr:
443                         f2fs_msg(sb, KERN_INFO,
444                                 "inline_xattr options not supported");
445                         break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448                 case Opt_acl:
449                         set_opt(sbi, POSIX_ACL);
450                         break;
451                 case Opt_noacl:
452                         clear_opt(sbi, POSIX_ACL);
453                         break;
454 #else
455                 case Opt_acl:
456                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
457                         break;
458                 case Opt_noacl:
459                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460                         break;
461 #endif
462                 case Opt_active_logs:
463                         if (args->from && match_int(args, &arg))
464                                 return -EINVAL;
465                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466                                 return -EINVAL;
467                         sbi->active_logs = arg;
468                         break;
469                 case Opt_disable_ext_identify:
470                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
471                         break;
472                 case Opt_inline_data:
473                         set_opt(sbi, INLINE_DATA);
474                         break;
475                 case Opt_inline_dentry:
476                         set_opt(sbi, INLINE_DENTRY);
477                         break;
478                 case Opt_flush_merge:
479                         set_opt(sbi, FLUSH_MERGE);
480                         break;
481                 case Opt_nobarrier:
482                         set_opt(sbi, NOBARRIER);
483                         break;
484                 case Opt_fastboot:
485                         set_opt(sbi, FASTBOOT);
486                         break;
487                 case Opt_extent_cache:
488                         set_opt(sbi, EXTENT_CACHE);
489                         break;
490                 case Opt_noextent_cache:
491                         clear_opt(sbi, EXTENT_CACHE);
492                         break;
493                 case Opt_noinline_data:
494                         clear_opt(sbi, INLINE_DATA);
495                         break;
496                 case Opt_data_flush:
497                         set_opt(sbi, DATA_FLUSH);
498                         break;
499                 case Opt_fault_injection:
500                         if (args->from && match_int(args, &arg))
501                                 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503                         f2fs_build_fault_attr(arg);
504 #else
505                         f2fs_msg(sb, KERN_INFO,
506                                 "FAULT_INJECTION was not selected");
507 #endif
508                         break;
509                 default:
510                         f2fs_msg(sb, KERN_ERR,
511                                 "Unrecognized mount option \"%s\" or missing value",
512                                 p);
513                         return -EINVAL;
514                 }
515         }
516         return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521         struct f2fs_inode_info *fi;
522
523         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524         if (!fi)
525                 return NULL;
526
527         init_once((void *) fi);
528
529         if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530                 kmem_cache_free(f2fs_inode_cachep, fi);
531                 return NULL;
532         }
533
534         /* Initialize f2fs-specific inode info */
535         fi->vfs_inode.i_version = 1;
536         fi->i_current_depth = 1;
537         fi->i_advise = 0;
538         init_rwsem(&fi->i_sem);
539         INIT_LIST_HEAD(&fi->dirty_list);
540         INIT_LIST_HEAD(&fi->inmem_pages);
541         mutex_init(&fi->inmem_lock);
542
543         set_inode_flag(fi, FI_NEW_INODE);
544
545         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
546                 set_inode_flag(fi, FI_INLINE_XATTR);
547
548         /* Will be used by directory only */
549         fi->i_dir_level = F2FS_SB(sb)->dir_level;
550         return &fi->vfs_inode;
551 }
552
553 static int f2fs_drop_inode(struct inode *inode)
554 {
555         /*
556          * This is to avoid a deadlock condition like below.
557          * writeback_single_inode(inode)
558          *  - f2fs_write_data_page
559          *    - f2fs_gc -> iput -> evict
560          *       - inode_wait_for_writeback(inode)
561          */
562         if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
563                 if (!inode->i_nlink && !is_bad_inode(inode)) {
564                         /* to avoid evict_inode call simultaneously */
565                         atomic_inc(&inode->i_count);
566                         spin_unlock(&inode->i_lock);
567
568                         /* some remained atomic pages should discarded */
569                         if (f2fs_is_atomic_file(inode))
570                                 drop_inmem_pages(inode);
571
572                         /* should remain fi->extent_tree for writepage */
573                         f2fs_destroy_extent_node(inode);
574
575                         sb_start_intwrite(inode->i_sb);
576                         i_size_write(inode, 0);
577
578                         if (F2FS_HAS_BLOCKS(inode))
579                                 f2fs_truncate(inode, true);
580
581                         sb_end_intwrite(inode->i_sb);
582
583                         fscrypt_put_encryption_info(inode, NULL);
584                         spin_lock(&inode->i_lock);
585                         atomic_dec(&inode->i_count);
586                 }
587                 return 0;
588         }
589         return generic_drop_inode(inode);
590 }
591
592 /*
593  * f2fs_dirty_inode() is called from __mark_inode_dirty()
594  *
595  * We should call set_dirty_inode to write the dirty inode through write_inode.
596  */
597 static void f2fs_dirty_inode(struct inode *inode, int flags)
598 {
599         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
600 }
601
602 static void f2fs_i_callback(struct rcu_head *head)
603 {
604         struct inode *inode = container_of(head, struct inode, i_rcu);
605         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
606 }
607
608 static void f2fs_destroy_inode(struct inode *inode)
609 {
610         percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
611         call_rcu(&inode->i_rcu, f2fs_i_callback);
612 }
613
614 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
615 {
616         int i;
617
618         for (i = 0; i < NR_COUNT_TYPE; i++)
619                 percpu_counter_destroy(&sbi->nr_pages[i]);
620         percpu_counter_destroy(&sbi->alloc_valid_block_count);
621         percpu_counter_destroy(&sbi->total_valid_inode_count);
622 }
623
624 static void f2fs_put_super(struct super_block *sb)
625 {
626         struct f2fs_sb_info *sbi = F2FS_SB(sb);
627
628         if (sbi->s_proc) {
629                 remove_proc_entry("segment_info", sbi->s_proc);
630                 remove_proc_entry("segment_bits", sbi->s_proc);
631                 remove_proc_entry(sb->s_id, f2fs_proc_root);
632         }
633         kobject_del(&sbi->s_kobj);
634
635         stop_gc_thread(sbi);
636
637         /* prevent remaining shrinker jobs */
638         mutex_lock(&sbi->umount_mutex);
639
640         /*
641          * We don't need to do checkpoint when superblock is clean.
642          * But, the previous checkpoint was not done by umount, it needs to do
643          * clean checkpoint again.
644          */
645         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
646                         !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
647                 struct cp_control cpc = {
648                         .reason = CP_UMOUNT,
649                 };
650                 write_checkpoint(sbi, &cpc);
651         }
652
653         /* write_checkpoint can update stat informaion */
654         f2fs_destroy_stats(sbi);
655
656         /*
657          * normally superblock is clean, so we need to release this.
658          * In addition, EIO will skip do checkpoint, we need this as well.
659          */
660         release_ino_entry(sbi, true);
661         release_discard_addrs(sbi);
662
663         f2fs_leave_shrinker(sbi);
664         mutex_unlock(&sbi->umount_mutex);
665
666         /* our cp_error case, we can wait for any writeback page */
667         f2fs_flush_merged_bios(sbi);
668
669         iput(sbi->node_inode);
670         iput(sbi->meta_inode);
671
672         /* destroy f2fs internal modules */
673         destroy_node_manager(sbi);
674         destroy_segment_manager(sbi);
675
676         kfree(sbi->ckpt);
677         kobject_put(&sbi->s_kobj);
678         wait_for_completion(&sbi->s_kobj_unregister);
679
680         sb->s_fs_info = NULL;
681         if (sbi->s_chksum_driver)
682                 crypto_free_shash(sbi->s_chksum_driver);
683         kfree(sbi->raw_super);
684
685         destroy_percpu_info(sbi);
686         kfree(sbi);
687 }
688
689 int f2fs_sync_fs(struct super_block *sb, int sync)
690 {
691         struct f2fs_sb_info *sbi = F2FS_SB(sb);
692         int err = 0;
693
694         trace_f2fs_sync_fs(sb, sync);
695
696         if (sync) {
697                 struct cp_control cpc;
698
699                 cpc.reason = __get_cp_reason(sbi);
700
701                 mutex_lock(&sbi->gc_mutex);
702                 err = write_checkpoint(sbi, &cpc);
703                 mutex_unlock(&sbi->gc_mutex);
704         }
705         f2fs_trace_ios(NULL, 1);
706
707         return err;
708 }
709
710 static int f2fs_freeze(struct super_block *sb)
711 {
712         int err;
713
714         if (f2fs_readonly(sb))
715                 return 0;
716
717         err = f2fs_sync_fs(sb, 1);
718         return err;
719 }
720
721 static int f2fs_unfreeze(struct super_block *sb)
722 {
723         return 0;
724 }
725
726 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
727 {
728         struct super_block *sb = dentry->d_sb;
729         struct f2fs_sb_info *sbi = F2FS_SB(sb);
730         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
731         block_t total_count, user_block_count, start_count, ovp_count;
732
733         total_count = le64_to_cpu(sbi->raw_super->block_count);
734         user_block_count = sbi->user_block_count;
735         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
736         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
737         buf->f_type = F2FS_SUPER_MAGIC;
738         buf->f_bsize = sbi->blocksize;
739
740         buf->f_blocks = total_count - start_count;
741         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
742         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
743
744         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
745         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
746
747         buf->f_namelen = F2FS_NAME_LEN;
748         buf->f_fsid.val[0] = (u32)id;
749         buf->f_fsid.val[1] = (u32)(id >> 32);
750
751         return 0;
752 }
753
754 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
755 {
756         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
757
758         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
759                 if (test_opt(sbi, FORCE_FG_GC))
760                         seq_printf(seq, ",background_gc=%s", "sync");
761                 else
762                         seq_printf(seq, ",background_gc=%s", "on");
763         } else {
764                 seq_printf(seq, ",background_gc=%s", "off");
765         }
766         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
767                 seq_puts(seq, ",disable_roll_forward");
768         if (test_opt(sbi, DISCARD))
769                 seq_puts(seq, ",discard");
770         if (test_opt(sbi, NOHEAP))
771                 seq_puts(seq, ",no_heap_alloc");
772 #ifdef CONFIG_F2FS_FS_XATTR
773         if (test_opt(sbi, XATTR_USER))
774                 seq_puts(seq, ",user_xattr");
775         else
776                 seq_puts(seq, ",nouser_xattr");
777         if (test_opt(sbi, INLINE_XATTR))
778                 seq_puts(seq, ",inline_xattr");
779 #endif
780 #ifdef CONFIG_F2FS_FS_POSIX_ACL
781         if (test_opt(sbi, POSIX_ACL))
782                 seq_puts(seq, ",acl");
783         else
784                 seq_puts(seq, ",noacl");
785 #endif
786         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
787                 seq_puts(seq, ",disable_ext_identify");
788         if (test_opt(sbi, INLINE_DATA))
789                 seq_puts(seq, ",inline_data");
790         else
791                 seq_puts(seq, ",noinline_data");
792         if (test_opt(sbi, INLINE_DENTRY))
793                 seq_puts(seq, ",inline_dentry");
794         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
795                 seq_puts(seq, ",flush_merge");
796         if (test_opt(sbi, NOBARRIER))
797                 seq_puts(seq, ",nobarrier");
798         if (test_opt(sbi, FASTBOOT))
799                 seq_puts(seq, ",fastboot");
800         if (test_opt(sbi, EXTENT_CACHE))
801                 seq_puts(seq, ",extent_cache");
802         else
803                 seq_puts(seq, ",noextent_cache");
804         if (test_opt(sbi, DATA_FLUSH))
805                 seq_puts(seq, ",data_flush");
806         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
807
808         return 0;
809 }
810
811 static int segment_info_seq_show(struct seq_file *seq, void *offset)
812 {
813         struct super_block *sb = seq->private;
814         struct f2fs_sb_info *sbi = F2FS_SB(sb);
815         unsigned int total_segs =
816                         le32_to_cpu(sbi->raw_super->segment_count_main);
817         int i;
818
819         seq_puts(seq, "format: segment_type|valid_blocks\n"
820                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
821
822         for (i = 0; i < total_segs; i++) {
823                 struct seg_entry *se = get_seg_entry(sbi, i);
824
825                 if ((i % 10) == 0)
826                         seq_printf(seq, "%-10d", i);
827                 seq_printf(seq, "%d|%-3u", se->type,
828                                         get_valid_blocks(sbi, i, 1));
829                 if ((i % 10) == 9 || i == (total_segs - 1))
830                         seq_putc(seq, '\n');
831                 else
832                         seq_putc(seq, ' ');
833         }
834
835         return 0;
836 }
837
838 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
839 {
840         struct super_block *sb = seq->private;
841         struct f2fs_sb_info *sbi = F2FS_SB(sb);
842         unsigned int total_segs =
843                         le32_to_cpu(sbi->raw_super->segment_count_main);
844         int i, j;
845
846         seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
847                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
848
849         for (i = 0; i < total_segs; i++) {
850                 struct seg_entry *se = get_seg_entry(sbi, i);
851
852                 seq_printf(seq, "%-10d", i);
853                 seq_printf(seq, "%d|%-3u|", se->type,
854                                         get_valid_blocks(sbi, i, 1));
855                 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
856                         seq_printf(seq, "%x ", se->cur_valid_map[j]);
857                 seq_putc(seq, '\n');
858         }
859         return 0;
860 }
861
862 #define F2FS_PROC_FILE_DEF(_name)                                       \
863 static int _name##_open_fs(struct inode *inode, struct file *file)      \
864 {                                                                       \
865         return single_open(file, _name##_seq_show, PDE_DATA(inode));    \
866 }                                                                       \
867                                                                         \
868 static const struct file_operations f2fs_seq_##_name##_fops = {         \
869         .owner = THIS_MODULE,                                           \
870         .open = _name##_open_fs,                                        \
871         .read = seq_read,                                               \
872         .llseek = seq_lseek,                                            \
873         .release = single_release,                                      \
874 };
875
876 F2FS_PROC_FILE_DEF(segment_info);
877 F2FS_PROC_FILE_DEF(segment_bits);
878
879 static void default_options(struct f2fs_sb_info *sbi)
880 {
881         /* init some FS parameters */
882         sbi->active_logs = NR_CURSEG_TYPE;
883
884         set_opt(sbi, BG_GC);
885         set_opt(sbi, INLINE_DATA);
886         set_opt(sbi, EXTENT_CACHE);
887
888 #ifdef CONFIG_F2FS_FS_XATTR
889         set_opt(sbi, XATTR_USER);
890 #endif
891 #ifdef CONFIG_F2FS_FS_POSIX_ACL
892         set_opt(sbi, POSIX_ACL);
893 #endif
894 }
895
896 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
897 {
898         struct f2fs_sb_info *sbi = F2FS_SB(sb);
899         struct f2fs_mount_info org_mount_opt;
900         int err, active_logs;
901         bool need_restart_gc = false;
902         bool need_stop_gc = false;
903         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
904
905         /*
906          * Save the old mount options in case we
907          * need to restore them.
908          */
909         org_mount_opt = sbi->mount_opt;
910         active_logs = sbi->active_logs;
911
912         /* recover superblocks we couldn't write due to previous RO mount */
913         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
914                 err = f2fs_commit_super(sbi, false);
915                 f2fs_msg(sb, KERN_INFO,
916                         "Try to recover all the superblocks, ret: %d", err);
917                 if (!err)
918                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
919         }
920
921         sbi->mount_opt.opt = 0;
922         default_options(sbi);
923
924         /* parse mount options */
925         err = parse_options(sb, data);
926         if (err)
927                 goto restore_opts;
928
929         /*
930          * Previous and new state of filesystem is RO,
931          * so skip checking GC and FLUSH_MERGE conditions.
932          */
933         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
934                 goto skip;
935
936         /* disallow enable/disable extent_cache dynamically */
937         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
938                 err = -EINVAL;
939                 f2fs_msg(sbi->sb, KERN_WARNING,
940                                 "switch extent_cache option is not allowed");
941                 goto restore_opts;
942         }
943
944         /*
945          * We stop the GC thread if FS is mounted as RO
946          * or if background_gc = off is passed in mount
947          * option. Also sync the filesystem.
948          */
949         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
950                 if (sbi->gc_thread) {
951                         stop_gc_thread(sbi);
952                         need_restart_gc = true;
953                 }
954         } else if (!sbi->gc_thread) {
955                 err = start_gc_thread(sbi);
956                 if (err)
957                         goto restore_opts;
958                 need_stop_gc = true;
959         }
960
961         if (*flags & MS_RDONLY) {
962                 writeback_inodes_sb(sb, WB_REASON_SYNC);
963                 sync_inodes_sb(sb);
964
965                 set_sbi_flag(sbi, SBI_IS_DIRTY);
966                 set_sbi_flag(sbi, SBI_IS_CLOSE);
967                 f2fs_sync_fs(sb, 1);
968                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
969         }
970
971         /*
972          * We stop issue flush thread if FS is mounted as RO
973          * or if flush_merge is not passed in mount option.
974          */
975         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
976                 destroy_flush_cmd_control(sbi);
977         } else if (!SM_I(sbi)->cmd_control_info) {
978                 err = create_flush_cmd_control(sbi);
979                 if (err)
980                         goto restore_gc;
981         }
982 skip:
983         /* Update the POSIXACL Flag */
984         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
985                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
986
987         return 0;
988 restore_gc:
989         if (need_restart_gc) {
990                 if (start_gc_thread(sbi))
991                         f2fs_msg(sbi->sb, KERN_WARNING,
992                                 "background gc thread has stopped");
993         } else if (need_stop_gc) {
994                 stop_gc_thread(sbi);
995         }
996 restore_opts:
997         sbi->mount_opt = org_mount_opt;
998         sbi->active_logs = active_logs;
999         return err;
1000 }
1001
1002 static struct super_operations f2fs_sops = {
1003         .alloc_inode    = f2fs_alloc_inode,
1004         .drop_inode     = f2fs_drop_inode,
1005         .destroy_inode  = f2fs_destroy_inode,
1006         .write_inode    = f2fs_write_inode,
1007         .dirty_inode    = f2fs_dirty_inode,
1008         .show_options   = f2fs_show_options,
1009         .evict_inode    = f2fs_evict_inode,
1010         .put_super      = f2fs_put_super,
1011         .sync_fs        = f2fs_sync_fs,
1012         .freeze_fs      = f2fs_freeze,
1013         .unfreeze_fs    = f2fs_unfreeze,
1014         .statfs         = f2fs_statfs,
1015         .remount_fs     = f2fs_remount,
1016 };
1017
1018 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1019 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1020 {
1021         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1022                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1023                                 ctx, len, NULL);
1024 }
1025
1026 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1027 {
1028         *key = F2FS_I_SB(inode)->key_prefix;
1029         return F2FS_I_SB(inode)->key_prefix_size;
1030 }
1031
1032 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1033                                                         void *fs_data)
1034 {
1035         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1036                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1037                                 ctx, len, fs_data, XATTR_CREATE);
1038 }
1039
1040 static unsigned f2fs_max_namelen(struct inode *inode)
1041 {
1042         return S_ISLNK(inode->i_mode) ?
1043                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1044 }
1045
1046 static struct fscrypt_operations f2fs_cryptops = {
1047         .get_context    = f2fs_get_context,
1048         .key_prefix     = f2fs_key_prefix,
1049         .set_context    = f2fs_set_context,
1050         .is_encrypted   = f2fs_encrypted_inode,
1051         .empty_dir      = f2fs_empty_dir,
1052         .max_namelen    = f2fs_max_namelen,
1053 };
1054 #else
1055 static struct fscrypt_operations f2fs_cryptops = {
1056         .is_encrypted   = f2fs_encrypted_inode,
1057 };
1058 #endif
1059
1060 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1061                 u64 ino, u32 generation)
1062 {
1063         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064         struct inode *inode;
1065
1066         if (check_nid_range(sbi, ino))
1067                 return ERR_PTR(-ESTALE);
1068
1069         /*
1070          * f2fs_iget isn't quite right if the inode is currently unallocated!
1071          * However f2fs_iget currently does appropriate checks to handle stale
1072          * inodes so everything is OK.
1073          */
1074         inode = f2fs_iget(sb, ino);
1075         if (IS_ERR(inode))
1076                 return ERR_CAST(inode);
1077         if (unlikely(generation && inode->i_generation != generation)) {
1078                 /* we didn't find the right inode.. */
1079                 iput(inode);
1080                 return ERR_PTR(-ESTALE);
1081         }
1082         return inode;
1083 }
1084
1085 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1086                 int fh_len, int fh_type)
1087 {
1088         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1089                                     f2fs_nfs_get_inode);
1090 }
1091
1092 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1093                 int fh_len, int fh_type)
1094 {
1095         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1096                                     f2fs_nfs_get_inode);
1097 }
1098
1099 static const struct export_operations f2fs_export_ops = {
1100         .fh_to_dentry = f2fs_fh_to_dentry,
1101         .fh_to_parent = f2fs_fh_to_parent,
1102         .get_parent = f2fs_get_parent,
1103 };
1104
1105 static loff_t max_file_blocks(void)
1106 {
1107         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1108         loff_t leaf_count = ADDRS_PER_BLOCK;
1109
1110         /* two direct node blocks */
1111         result += (leaf_count * 2);
1112
1113         /* two indirect node blocks */
1114         leaf_count *= NIDS_PER_BLOCK;
1115         result += (leaf_count * 2);
1116
1117         /* one double indirect node block */
1118         leaf_count *= NIDS_PER_BLOCK;
1119         result += leaf_count;
1120
1121         return result;
1122 }
1123
1124 static int __f2fs_commit_super(struct buffer_head *bh,
1125                         struct f2fs_super_block *super)
1126 {
1127         lock_buffer(bh);
1128         if (super)
1129                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1130         set_buffer_uptodate(bh);
1131         set_buffer_dirty(bh);
1132         unlock_buffer(bh);
1133
1134         /* it's rare case, we can do fua all the time */
1135         return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1136 }
1137
1138 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1139                                         struct buffer_head *bh)
1140 {
1141         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1142                                         (bh->b_data + F2FS_SUPER_OFFSET);
1143         struct super_block *sb = sbi->sb;
1144         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1145         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1146         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1147         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1148         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1149         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1150         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1151         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1152         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1153         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1154         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1155         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1156         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1157         u64 main_end_blkaddr = main_blkaddr +
1158                                 (segment_count_main << log_blocks_per_seg);
1159         u64 seg_end_blkaddr = segment0_blkaddr +
1160                                 (segment_count << log_blocks_per_seg);
1161
1162         if (segment0_blkaddr != cp_blkaddr) {
1163                 f2fs_msg(sb, KERN_INFO,
1164                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1165                         segment0_blkaddr, cp_blkaddr);
1166                 return true;
1167         }
1168
1169         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1170                                                         sit_blkaddr) {
1171                 f2fs_msg(sb, KERN_INFO,
1172                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1173                         cp_blkaddr, sit_blkaddr,
1174                         segment_count_ckpt << log_blocks_per_seg);
1175                 return true;
1176         }
1177
1178         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1179                                                         nat_blkaddr) {
1180                 f2fs_msg(sb, KERN_INFO,
1181                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1182                         sit_blkaddr, nat_blkaddr,
1183                         segment_count_sit << log_blocks_per_seg);
1184                 return true;
1185         }
1186
1187         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1188                                                         ssa_blkaddr) {
1189                 f2fs_msg(sb, KERN_INFO,
1190                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1191                         nat_blkaddr, ssa_blkaddr,
1192                         segment_count_nat << log_blocks_per_seg);
1193                 return true;
1194         }
1195
1196         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1197                                                         main_blkaddr) {
1198                 f2fs_msg(sb, KERN_INFO,
1199                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1200                         ssa_blkaddr, main_blkaddr,
1201                         segment_count_ssa << log_blocks_per_seg);
1202                 return true;
1203         }
1204
1205         if (main_end_blkaddr > seg_end_blkaddr) {
1206                 f2fs_msg(sb, KERN_INFO,
1207                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1208                         main_blkaddr,
1209                         segment0_blkaddr +
1210                                 (segment_count << log_blocks_per_seg),
1211                         segment_count_main << log_blocks_per_seg);
1212                 return true;
1213         } else if (main_end_blkaddr < seg_end_blkaddr) {
1214                 int err = 0;
1215                 char *res;
1216
1217                 /* fix in-memory information all the time */
1218                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1219                                 segment0_blkaddr) >> log_blocks_per_seg);
1220
1221                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1222                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1223                         res = "internally";
1224                 } else {
1225                         err = __f2fs_commit_super(bh, NULL);
1226                         res = err ? "failed" : "done";
1227                 }
1228                 f2fs_msg(sb, KERN_INFO,
1229                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1230                         res, main_blkaddr,
1231                         segment0_blkaddr +
1232                                 (segment_count << log_blocks_per_seg),
1233                         segment_count_main << log_blocks_per_seg);
1234                 if (err)
1235                         return true;
1236         }
1237         return false;
1238 }
1239
1240 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1241                                 struct buffer_head *bh)
1242 {
1243         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1244                                         (bh->b_data + F2FS_SUPER_OFFSET);
1245         struct super_block *sb = sbi->sb;
1246         unsigned int blocksize;
1247
1248         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1249                 f2fs_msg(sb, KERN_INFO,
1250                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1251                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1252                 return 1;
1253         }
1254
1255         /* Currently, support only 4KB page cache size */
1256         if (F2FS_BLKSIZE != PAGE_SIZE) {
1257                 f2fs_msg(sb, KERN_INFO,
1258                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1259                         PAGE_SIZE);
1260                 return 1;
1261         }
1262
1263         /* Currently, support only 4KB block size */
1264         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1265         if (blocksize != F2FS_BLKSIZE) {
1266                 f2fs_msg(sb, KERN_INFO,
1267                         "Invalid blocksize (%u), supports only 4KB\n",
1268                         blocksize);
1269                 return 1;
1270         }
1271
1272         /* check log blocks per segment */
1273         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1274                 f2fs_msg(sb, KERN_INFO,
1275                         "Invalid log blocks per segment (%u)\n",
1276                         le32_to_cpu(raw_super->log_blocks_per_seg));
1277                 return 1;
1278         }
1279
1280         /* Currently, support 512/1024/2048/4096 bytes sector size */
1281         if (le32_to_cpu(raw_super->log_sectorsize) >
1282                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1283                 le32_to_cpu(raw_super->log_sectorsize) <
1284                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1285                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1286                         le32_to_cpu(raw_super->log_sectorsize));
1287                 return 1;
1288         }
1289         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1290                 le32_to_cpu(raw_super->log_sectorsize) !=
1291                         F2FS_MAX_LOG_SECTOR_SIZE) {
1292                 f2fs_msg(sb, KERN_INFO,
1293                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1294                         le32_to_cpu(raw_super->log_sectors_per_block),
1295                         le32_to_cpu(raw_super->log_sectorsize));
1296                 return 1;
1297         }
1298
1299         /* check reserved ino info */
1300         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1301                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1302                 le32_to_cpu(raw_super->root_ino) != 3) {
1303                 f2fs_msg(sb, KERN_INFO,
1304                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1305                         le32_to_cpu(raw_super->node_ino),
1306                         le32_to_cpu(raw_super->meta_ino),
1307                         le32_to_cpu(raw_super->root_ino));
1308                 return 1;
1309         }
1310
1311         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1312         if (sanity_check_area_boundary(sbi, bh))
1313                 return 1;
1314
1315         return 0;
1316 }
1317
1318 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1319 {
1320         unsigned int total, fsmeta;
1321         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1322         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323
1324         total = le32_to_cpu(raw_super->segment_count);
1325         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1326         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1327         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1328         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1329         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1330
1331         if (unlikely(fsmeta >= total))
1332                 return 1;
1333
1334         if (unlikely(f2fs_cp_error(sbi))) {
1335                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1336                 return 1;
1337         }
1338         return 0;
1339 }
1340
1341 static void init_sb_info(struct f2fs_sb_info *sbi)
1342 {
1343         struct f2fs_super_block *raw_super = sbi->raw_super;
1344
1345         sbi->log_sectors_per_block =
1346                 le32_to_cpu(raw_super->log_sectors_per_block);
1347         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1348         sbi->blocksize = 1 << sbi->log_blocksize;
1349         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1350         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1351         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1352         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1353         sbi->total_sections = le32_to_cpu(raw_super->section_count);
1354         sbi->total_node_count =
1355                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1356                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1357         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1358         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1359         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1360         sbi->cur_victim_sec = NULL_SECNO;
1361         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1362
1363         sbi->dir_level = DEF_DIR_LEVEL;
1364         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1365         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1366         clear_sbi_flag(sbi, SBI_NEED_FSCK);
1367
1368         INIT_LIST_HEAD(&sbi->s_list);
1369         mutex_init(&sbi->umount_mutex);
1370
1371 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1372         memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1373                                 F2FS_KEY_DESC_PREFIX_SIZE);
1374         sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1375 #endif
1376 }
1377
1378 static int init_percpu_info(struct f2fs_sb_info *sbi)
1379 {
1380         int i, err;
1381
1382         for (i = 0; i < NR_COUNT_TYPE; i++) {
1383                 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1384                 if (err)
1385                         return err;
1386         }
1387
1388         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1389         if (err)
1390                 return err;
1391
1392         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1393                                                                 GFP_KERNEL);
1394 }
1395
1396 /*
1397  * Read f2fs raw super block.
1398  * Because we have two copies of super block, so read both of them
1399  * to get the first valid one. If any one of them is broken, we pass
1400  * them recovery flag back to the caller.
1401  */
1402 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1403                         struct f2fs_super_block **raw_super,
1404                         int *valid_super_block, int *recovery)
1405 {
1406         struct super_block *sb = sbi->sb;
1407         int block;
1408         struct buffer_head *bh;
1409         struct f2fs_super_block *super;
1410         int err = 0;
1411
1412         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1413         if (!super)
1414                 return -ENOMEM;
1415
1416         for (block = 0; block < 2; block++) {
1417                 bh = sb_bread(sb, block);
1418                 if (!bh) {
1419                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1420                                 block + 1);
1421                         err = -EIO;
1422                         continue;
1423                 }
1424
1425                 /* sanity checking of raw super */
1426                 if (sanity_check_raw_super(sbi, bh)) {
1427                         f2fs_msg(sb, KERN_ERR,
1428                                 "Can't find valid F2FS filesystem in %dth superblock",
1429                                 block + 1);
1430                         err = -EINVAL;
1431                         brelse(bh);
1432                         continue;
1433                 }
1434
1435                 if (!*raw_super) {
1436                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1437                                                         sizeof(*super));
1438                         *valid_super_block = block;
1439                         *raw_super = super;
1440                 }
1441                 brelse(bh);
1442         }
1443
1444         /* Fail to read any one of the superblocks*/
1445         if (err < 0)
1446                 *recovery = 1;
1447
1448         /* No valid superblock */
1449         if (!*raw_super)
1450                 kfree(super);
1451         else
1452                 err = 0;
1453
1454         return err;
1455 }
1456
1457 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1458 {
1459         struct buffer_head *bh;
1460         int err;
1461
1462         if ((recover && f2fs_readonly(sbi->sb)) ||
1463                                 bdev_read_only(sbi->sb->s_bdev)) {
1464                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1465                 return -EROFS;
1466         }
1467
1468         /* write back-up superblock first */
1469         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1470         if (!bh)
1471                 return -EIO;
1472         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1473         brelse(bh);
1474
1475         /* if we are in recovery path, skip writing valid superblock */
1476         if (recover || err)
1477                 return err;
1478
1479         /* write current valid superblock */
1480         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1481         if (!bh)
1482                 return -EIO;
1483         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1484         brelse(bh);
1485         return err;
1486 }
1487
1488 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1489 {
1490         struct f2fs_sb_info *sbi;
1491         struct f2fs_super_block *raw_super;
1492         struct inode *root;
1493         int err;
1494         bool retry = true, need_fsck = false;
1495         char *options = NULL;
1496         int recovery, i, valid_super_block;
1497         struct curseg_info *seg_i;
1498
1499 try_onemore:
1500         err = -EINVAL;
1501         raw_super = NULL;
1502         valid_super_block = -1;
1503         recovery = 0;
1504
1505         /* allocate memory for f2fs-specific super block info */
1506         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1507         if (!sbi)
1508                 return -ENOMEM;
1509
1510         sbi->sb = sb;
1511
1512         /* Load the checksum driver */
1513         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1514         if (IS_ERR(sbi->s_chksum_driver)) {
1515                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1516                 err = PTR_ERR(sbi->s_chksum_driver);
1517                 sbi->s_chksum_driver = NULL;
1518                 goto free_sbi;
1519         }
1520
1521         /* set a block size */
1522         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1523                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1524                 goto free_sbi;
1525         }
1526
1527         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1528                                                                 &recovery);
1529         if (err)
1530                 goto free_sbi;
1531
1532         sb->s_fs_info = sbi;
1533         default_options(sbi);
1534         /* parse mount options */
1535         options = kstrdup((const char *)data, GFP_KERNEL);
1536         if (data && !options) {
1537                 err = -ENOMEM;
1538                 goto free_sb_buf;
1539         }
1540
1541         err = parse_options(sb, options);
1542         if (err)
1543                 goto free_options;
1544
1545         sbi->max_file_blocks = max_file_blocks();
1546         sb->s_maxbytes = sbi->max_file_blocks <<
1547                                 le32_to_cpu(raw_super->log_blocksize);
1548         sb->s_max_links = F2FS_LINK_MAX;
1549         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1550
1551         sb->s_op = &f2fs_sops;
1552         sb->s_cop = &f2fs_cryptops;
1553         sb->s_xattr = f2fs_xattr_handlers;
1554         sb->s_export_op = &f2fs_export_ops;
1555         sb->s_magic = F2FS_SUPER_MAGIC;
1556         sb->s_time_gran = 1;
1557         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1558                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1559         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1560
1561         /* init f2fs-specific super block info */
1562         sbi->raw_super = raw_super;
1563         sbi->valid_super_block = valid_super_block;
1564         mutex_init(&sbi->gc_mutex);
1565         mutex_init(&sbi->writepages);
1566         mutex_init(&sbi->cp_mutex);
1567         init_rwsem(&sbi->node_write);
1568
1569         /* disallow all the data/node/meta page writes */
1570         set_sbi_flag(sbi, SBI_POR_DOING);
1571         spin_lock_init(&sbi->stat_lock);
1572
1573         init_rwsem(&sbi->read_io.io_rwsem);
1574         sbi->read_io.sbi = sbi;
1575         sbi->read_io.bio = NULL;
1576         for (i = 0; i < NR_PAGE_TYPE; i++) {
1577                 init_rwsem(&sbi->write_io[i].io_rwsem);
1578                 sbi->write_io[i].sbi = sbi;
1579                 sbi->write_io[i].bio = NULL;
1580         }
1581
1582         init_rwsem(&sbi->cp_rwsem);
1583         init_waitqueue_head(&sbi->cp_wait);
1584         init_sb_info(sbi);
1585
1586         err = init_percpu_info(sbi);
1587         if (err)
1588                 goto free_options;
1589
1590         /* get an inode for meta space */
1591         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1592         if (IS_ERR(sbi->meta_inode)) {
1593                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1594                 err = PTR_ERR(sbi->meta_inode);
1595                 goto free_options;
1596         }
1597
1598         err = get_valid_checkpoint(sbi);
1599         if (err) {
1600                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1601                 goto free_meta_inode;
1602         }
1603
1604         sbi->total_valid_node_count =
1605                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1606         percpu_counter_set(&sbi->total_valid_inode_count,
1607                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
1608         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1609         sbi->total_valid_block_count =
1610                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1611         sbi->last_valid_block_count = sbi->total_valid_block_count;
1612
1613         for (i = 0; i < NR_INODE_TYPE; i++) {
1614                 INIT_LIST_HEAD(&sbi->inode_list[i]);
1615                 spin_lock_init(&sbi->inode_lock[i]);
1616         }
1617
1618         init_extent_cache_info(sbi);
1619
1620         init_ino_entry_info(sbi);
1621
1622         /* setup f2fs internal modules */
1623         err = build_segment_manager(sbi);
1624         if (err) {
1625                 f2fs_msg(sb, KERN_ERR,
1626                         "Failed to initialize F2FS segment manager");
1627                 goto free_sm;
1628         }
1629         err = build_node_manager(sbi);
1630         if (err) {
1631                 f2fs_msg(sb, KERN_ERR,
1632                         "Failed to initialize F2FS node manager");
1633                 goto free_nm;
1634         }
1635
1636         /* For write statistics */
1637         if (sb->s_bdev->bd_part)
1638                 sbi->sectors_written_start =
1639                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1640
1641         /* Read accumulated write IO statistics if exists */
1642         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1643         if (__exist_node_summaries(sbi))
1644                 sbi->kbytes_written =
1645                         le64_to_cpu(seg_i->journal->info.kbytes_written);
1646
1647         build_gc_manager(sbi);
1648
1649         /* get an inode for node space */
1650         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1651         if (IS_ERR(sbi->node_inode)) {
1652                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1653                 err = PTR_ERR(sbi->node_inode);
1654                 goto free_nm;
1655         }
1656
1657         f2fs_join_shrinker(sbi);
1658
1659         /* if there are nt orphan nodes free them */
1660         err = recover_orphan_inodes(sbi);
1661         if (err)
1662                 goto free_node_inode;
1663
1664         /* read root inode and dentry */
1665         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1666         if (IS_ERR(root)) {
1667                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1668                 err = PTR_ERR(root);
1669                 goto free_node_inode;
1670         }
1671         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1672                 iput(root);
1673                 err = -EINVAL;
1674                 goto free_node_inode;
1675         }
1676
1677         sb->s_root = d_make_root(root); /* allocate root dentry */
1678         if (!sb->s_root) {
1679                 err = -ENOMEM;
1680                 goto free_root_inode;
1681         }
1682
1683         err = f2fs_build_stats(sbi);
1684         if (err)
1685                 goto free_root_inode;
1686
1687         if (f2fs_proc_root)
1688                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1689
1690         if (sbi->s_proc) {
1691                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1692                                  &f2fs_seq_segment_info_fops, sb);
1693                 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1694                                  &f2fs_seq_segment_bits_fops, sb);
1695         }
1696
1697         sbi->s_kobj.kset = f2fs_kset;
1698         init_completion(&sbi->s_kobj_unregister);
1699         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1700                                                         "%s", sb->s_id);
1701         if (err)
1702                 goto free_proc;
1703
1704         /* recover fsynced data */
1705         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1706                 /*
1707                  * mount should be failed, when device has readonly mode, and
1708                  * previous checkpoint was not done by clean system shutdown.
1709                  */
1710                 if (bdev_read_only(sb->s_bdev) &&
1711                                 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1712                         err = -EROFS;
1713                         goto free_kobj;
1714                 }
1715
1716                 if (need_fsck)
1717                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1718
1719                 err = recover_fsync_data(sbi, false);
1720                 if (err < 0) {
1721                         need_fsck = true;
1722                         f2fs_msg(sb, KERN_ERR,
1723                                 "Cannot recover all fsync data errno=%d", err);
1724                         goto free_kobj;
1725                 }
1726         } else {
1727                 err = recover_fsync_data(sbi, true);
1728
1729                 if (!f2fs_readonly(sb) && err > 0) {
1730                         err = -EINVAL;
1731                         f2fs_msg(sb, KERN_ERR,
1732                                 "Need to recover fsync data");
1733                         goto free_kobj;
1734                 }
1735         }
1736
1737         /* recover_fsync_data() cleared this already */
1738         clear_sbi_flag(sbi, SBI_POR_DOING);
1739
1740         /*
1741          * If filesystem is not mounted as read-only then
1742          * do start the gc_thread.
1743          */
1744         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1745                 /* After POR, we can run background GC thread.*/
1746                 err = start_gc_thread(sbi);
1747                 if (err)
1748                         goto free_kobj;
1749         }
1750         kfree(options);
1751
1752         /* recover broken superblock */
1753         if (recovery) {
1754                 err = f2fs_commit_super(sbi, true);
1755                 f2fs_msg(sb, KERN_INFO,
1756                         "Try to recover %dth superblock, ret: %d",
1757                         sbi->valid_super_block ? 1 : 2, err);
1758         }
1759
1760         f2fs_update_time(sbi, CP_TIME);
1761         f2fs_update_time(sbi, REQ_TIME);
1762         return 0;
1763
1764 free_kobj:
1765         kobject_del(&sbi->s_kobj);
1766         kobject_put(&sbi->s_kobj);
1767         wait_for_completion(&sbi->s_kobj_unregister);
1768 free_proc:
1769         if (sbi->s_proc) {
1770                 remove_proc_entry("segment_info", sbi->s_proc);
1771                 remove_proc_entry("segment_bits", sbi->s_proc);
1772                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1773         }
1774         f2fs_destroy_stats(sbi);
1775 free_root_inode:
1776         dput(sb->s_root);
1777         sb->s_root = NULL;
1778 free_node_inode:
1779         mutex_lock(&sbi->umount_mutex);
1780         f2fs_leave_shrinker(sbi);
1781         iput(sbi->node_inode);
1782         mutex_unlock(&sbi->umount_mutex);
1783 free_nm:
1784         destroy_node_manager(sbi);
1785 free_sm:
1786         destroy_segment_manager(sbi);
1787         kfree(sbi->ckpt);
1788 free_meta_inode:
1789         make_bad_inode(sbi->meta_inode);
1790         iput(sbi->meta_inode);
1791 free_options:
1792         destroy_percpu_info(sbi);
1793         kfree(options);
1794 free_sb_buf:
1795         kfree(raw_super);
1796 free_sbi:
1797         if (sbi->s_chksum_driver)
1798                 crypto_free_shash(sbi->s_chksum_driver);
1799         kfree(sbi);
1800
1801         /* give only one another chance */
1802         if (retry) {
1803                 retry = false;
1804                 shrink_dcache_sb(sb);
1805                 goto try_onemore;
1806         }
1807         return err;
1808 }
1809
1810 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1811                         const char *dev_name, void *data)
1812 {
1813         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1814 }
1815
1816 static void kill_f2fs_super(struct super_block *sb)
1817 {
1818         if (sb->s_root)
1819                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1820         kill_block_super(sb);
1821 }
1822
1823 static struct file_system_type f2fs_fs_type = {
1824         .owner          = THIS_MODULE,
1825         .name           = "f2fs",
1826         .mount          = f2fs_mount,
1827         .kill_sb        = kill_f2fs_super,
1828         .fs_flags       = FS_REQUIRES_DEV,
1829 };
1830 MODULE_ALIAS_FS("f2fs");
1831
1832 static int __init init_inodecache(void)
1833 {
1834         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1835                         sizeof(struct f2fs_inode_info), 0,
1836                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1837         if (!f2fs_inode_cachep)
1838                 return -ENOMEM;
1839         return 0;
1840 }
1841
1842 static void destroy_inodecache(void)
1843 {
1844         /*
1845          * Make sure all delayed rcu free inodes are flushed before we
1846          * destroy cache.
1847          */
1848         rcu_barrier();
1849         kmem_cache_destroy(f2fs_inode_cachep);
1850 }
1851
1852 static int __init init_f2fs_fs(void)
1853 {
1854         int err;
1855
1856         f2fs_build_trace_ios();
1857
1858         err = init_inodecache();
1859         if (err)
1860                 goto fail;
1861         err = create_node_manager_caches();
1862         if (err)
1863                 goto free_inodecache;
1864         err = create_segment_manager_caches();
1865         if (err)
1866                 goto free_node_manager_caches;
1867         err = create_checkpoint_caches();
1868         if (err)
1869                 goto free_segment_manager_caches;
1870         err = create_extent_cache();
1871         if (err)
1872                 goto free_checkpoint_caches;
1873         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1874         if (!f2fs_kset) {
1875                 err = -ENOMEM;
1876                 goto free_extent_cache;
1877         }
1878 #ifdef CONFIG_F2FS_FAULT_INJECTION
1879         f2fs_fault_inject.kset = f2fs_kset;
1880         f2fs_build_fault_attr(0);
1881         err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1882                                 NULL, "fault_injection");
1883         if (err) {
1884                 f2fs_fault_inject.kset = NULL;
1885                 goto free_kset;
1886         }
1887 #endif
1888         err = register_shrinker(&f2fs_shrinker_info);
1889         if (err)
1890                 goto free_kset;
1891
1892         err = register_filesystem(&f2fs_fs_type);
1893         if (err)
1894                 goto free_shrinker;
1895         err = f2fs_create_root_stats();
1896         if (err)
1897                 goto free_filesystem;
1898         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1899         return 0;
1900
1901 free_filesystem:
1902         unregister_filesystem(&f2fs_fs_type);
1903 free_shrinker:
1904         unregister_shrinker(&f2fs_shrinker_info);
1905 free_kset:
1906 #ifdef CONFIG_F2FS_FAULT_INJECTION
1907         if (f2fs_fault_inject.kset)
1908                 kobject_put(&f2fs_fault_inject);
1909 #endif
1910         kset_unregister(f2fs_kset);
1911 free_extent_cache:
1912         destroy_extent_cache();
1913 free_checkpoint_caches:
1914         destroy_checkpoint_caches();
1915 free_segment_manager_caches:
1916         destroy_segment_manager_caches();
1917 free_node_manager_caches:
1918         destroy_node_manager_caches();
1919 free_inodecache:
1920         destroy_inodecache();
1921 fail:
1922         return err;
1923 }
1924
1925 static void __exit exit_f2fs_fs(void)
1926 {
1927         remove_proc_entry("fs/f2fs", NULL);
1928         f2fs_destroy_root_stats();
1929         unregister_filesystem(&f2fs_fs_type);
1930         unregister_shrinker(&f2fs_shrinker_info);
1931 #ifdef CONFIG_F2FS_FAULT_INJECTION
1932         kobject_put(&f2fs_fault_inject);
1933 #endif
1934         kset_unregister(f2fs_kset);
1935         destroy_extent_cache();
1936         destroy_checkpoint_caches();
1937         destroy_segment_manager_caches();
1938         destroy_node_manager_caches();
1939         destroy_inodecache();
1940         f2fs_destroy_trace_ios();
1941 }
1942
1943 module_init(init_f2fs_fs)
1944 module_exit(exit_f2fs_fs)
1945
1946 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1947 MODULE_DESCRIPTION("Flash Friendly File System");
1948 MODULE_LICENSE("GPL");