5185fad48b62d825cd12961eff191556f9eb5930
[cascardo/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int tagged_writepages:1;
40         unsigned int for_kupdate:1;
41         unsigned int range_cyclic:1;
42         unsigned int for_background:1;
43
44         struct list_head list;          /* pending work list */
45         struct completion *done;        /* set if the caller waits */
46 };
47
48 /*
49  * Include the creation of the trace points after defining the
50  * wb_writeback_work structure so that the definition remains local to this
51  * file.
52  */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57  * We don't actually have pdflush, but this one is exported though /proc...
58  */
59 int nr_pdflush_threads;
60
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70         return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75         struct super_block *sb = inode->i_sb;
76
77         if (strcmp(sb->s_type->name, "bdev") == 0)
78                 return inode->i_mapping->backing_dev_info;
79
80         return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85         return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91         if (bdi->wb.task) {
92                 wake_up_process(bdi->wb.task);
93         } else {
94                 /*
95                  * The bdi thread isn't there, wake up the forker thread which
96                  * will create and run it.
97                  */
98                 wake_up_process(default_backing_dev_info.wb.task);
99         }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103                            struct wb_writeback_work *work)
104 {
105         trace_writeback_queue(bdi, work);
106
107         spin_lock_bh(&bdi->wb_lock);
108         list_add_tail(&work->list, &bdi->work_list);
109         if (!bdi->wb.task)
110                 trace_writeback_nothread(bdi, work);
111         bdi_wakeup_flusher(bdi);
112         spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117                       bool range_cyclic)
118 {
119         struct wb_writeback_work *work;
120
121         /*
122          * This is WB_SYNC_NONE writeback, so if allocation fails just
123          * wakeup the thread for old dirty data writeback
124          */
125         work = kzalloc(sizeof(*work), GFP_ATOMIC);
126         if (!work) {
127                 if (bdi->wb.task) {
128                         trace_writeback_nowork(bdi);
129                         wake_up_process(bdi->wb.task);
130                 }
131                 return;
132         }
133
134         work->sync_mode = WB_SYNC_NONE;
135         work->nr_pages  = nr_pages;
136         work->range_cyclic = range_cyclic;
137
138         bdi_queue_work(bdi, work);
139 }
140
141 /**
142  * bdi_start_writeback - start writeback
143  * @bdi: the backing device to write from
144  * @nr_pages: the number of pages to write
145  *
146  * Description:
147  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
148  *   started when this function returns, we make no guarantees on
149  *   completion. Caller need not hold sb s_umount semaphore.
150  *
151  */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154         __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158  * bdi_start_background_writeback - start background writeback
159  * @bdi: the backing device to write from
160  *
161  * Description:
162  *   This makes sure WB_SYNC_NONE background writeback happens. When
163  *   this function returns, it is only guaranteed that for given BDI
164  *   some IO is happening if we are over background dirty threshold.
165  *   Caller need not hold sb s_umount semaphore.
166  */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169         /*
170          * We just wake up the flusher thread. It will perform background
171          * writeback as soon as there is no other work to do.
172          */
173         trace_writeback_wake_background(bdi);
174         spin_lock_bh(&bdi->wb_lock);
175         bdi_wakeup_flusher(bdi);
176         spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180  * Remove the inode from the writeback list it is on.
181  */
182 void inode_wb_list_del(struct inode *inode)
183 {
184         struct backing_dev_info *bdi = inode_to_bdi(inode);
185
186         spin_lock(&bdi->wb.list_lock);
187         list_del_init(&inode->i_wb_list);
188         spin_unlock(&bdi->wb.list_lock);
189 }
190
191 /*
192  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
193  * furthest end of its superblock's dirty-inode list.
194  *
195  * Before stamping the inode's ->dirtied_when, we check to see whether it is
196  * already the most-recently-dirtied inode on the b_dirty list.  If that is
197  * the case then the inode must have been redirtied while it was being written
198  * out and we don't reset its dirtied_when.
199  */
200 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
201 {
202         assert_spin_locked(&wb->list_lock);
203         if (!list_empty(&wb->b_dirty)) {
204                 struct inode *tail;
205
206                 tail = wb_inode(wb->b_dirty.next);
207                 if (time_before(inode->dirtied_when, tail->dirtied_when))
208                         inode->dirtied_when = jiffies;
209         }
210         list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212
213 /*
214  * requeue inode for re-scanning after bdi->b_io list is exhausted.
215  */
216 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
217 {
218         assert_spin_locked(&wb->list_lock);
219         list_move(&inode->i_wb_list, &wb->b_more_io);
220 }
221
222 static void inode_sync_complete(struct inode *inode)
223 {
224         /*
225          * Prevent speculative execution through
226          * spin_unlock(&wb->list_lock);
227          */
228
229         smp_mb();
230         wake_up_bit(&inode->i_state, __I_SYNC);
231 }
232
233 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 {
235         bool ret = time_after(inode->dirtied_when, t);
236 #ifndef CONFIG_64BIT
237         /*
238          * For inodes being constantly redirtied, dirtied_when can get stuck.
239          * It _appears_ to be in the future, but is actually in distant past.
240          * This test is necessary to prevent such wrapped-around relative times
241          * from permanently stopping the whole bdi writeback.
242          */
243         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
244 #endif
245         return ret;
246 }
247
248 /*
249  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
250  */
251 static void move_expired_inodes(struct list_head *delaying_queue,
252                                struct list_head *dispatch_queue,
253                                 unsigned long *older_than_this)
254 {
255         LIST_HEAD(tmp);
256         struct list_head *pos, *node;
257         struct super_block *sb = NULL;
258         struct inode *inode;
259         int do_sb_sort = 0;
260
261         while (!list_empty(delaying_queue)) {
262                 inode = wb_inode(delaying_queue->prev);
263                 if (older_than_this &&
264                     inode_dirtied_after(inode, *older_than_this))
265                         break;
266                 if (sb && sb != inode->i_sb)
267                         do_sb_sort = 1;
268                 sb = inode->i_sb;
269                 list_move(&inode->i_wb_list, &tmp);
270         }
271
272         /* just one sb in list, splice to dispatch_queue and we're done */
273         if (!do_sb_sort) {
274                 list_splice(&tmp, dispatch_queue);
275                 return;
276         }
277
278         /* Move inodes from one superblock together */
279         while (!list_empty(&tmp)) {
280                 sb = wb_inode(tmp.prev)->i_sb;
281                 list_for_each_prev_safe(pos, node, &tmp) {
282                         inode = wb_inode(pos);
283                         if (inode->i_sb == sb)
284                                 list_move(&inode->i_wb_list, dispatch_queue);
285                 }
286         }
287 }
288
289 /*
290  * Queue all expired dirty inodes for io, eldest first.
291  * Before
292  *         newly dirtied     b_dirty    b_io    b_more_io
293  *         =============>    gf         edc     BA
294  * After
295  *         newly dirtied     b_dirty    b_io    b_more_io
296  *         =============>    g          fBAedc
297  *                                           |
298  *                                           +--> dequeue for IO
299  */
300 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
301 {
302         assert_spin_locked(&wb->list_lock);
303         list_splice_init(&wb->b_more_io, &wb->b_io);
304         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
305 }
306
307 static int write_inode(struct inode *inode, struct writeback_control *wbc)
308 {
309         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
310                 return inode->i_sb->s_op->write_inode(inode, wbc);
311         return 0;
312 }
313
314 /*
315  * Wait for writeback on an inode to complete.
316  */
317 static void inode_wait_for_writeback(struct inode *inode,
318                                      struct bdi_writeback *wb)
319 {
320         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
321         wait_queue_head_t *wqh;
322
323         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
324         while (inode->i_state & I_SYNC) {
325                 spin_unlock(&inode->i_lock);
326                 spin_unlock(&wb->list_lock);
327                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
328                 spin_lock(&wb->list_lock);
329                 spin_lock(&inode->i_lock);
330         }
331 }
332
333 /*
334  * Write out an inode's dirty pages.  Called under wb->list_lock and
335  * inode->i_lock.  Either the caller has an active reference on the inode or
336  * the inode has I_WILL_FREE set.
337  *
338  * If `wait' is set, wait on the writeout.
339  *
340  * The whole writeout design is quite complex and fragile.  We want to avoid
341  * starvation of particular inodes when others are being redirtied, prevent
342  * livelocks, etc.
343  */
344 static int
345 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
346                        struct writeback_control *wbc)
347 {
348         struct address_space *mapping = inode->i_mapping;
349         long nr_to_write = wbc->nr_to_write;
350         unsigned dirty;
351         int ret;
352
353         assert_spin_locked(&wb->list_lock);
354         assert_spin_locked(&inode->i_lock);
355
356         if (!atomic_read(&inode->i_count))
357                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
358         else
359                 WARN_ON(inode->i_state & I_WILL_FREE);
360
361         if (inode->i_state & I_SYNC) {
362                 /*
363                  * If this inode is locked for writeback and we are not doing
364                  * writeback-for-data-integrity, move it to b_more_io so that
365                  * writeback can proceed with the other inodes on s_io.
366                  *
367                  * We'll have another go at writing back this inode when we
368                  * completed a full scan of b_io.
369                  */
370                 if (wbc->sync_mode != WB_SYNC_ALL) {
371                         requeue_io(inode, wb);
372                         trace_writeback_single_inode_requeue(inode, wbc,
373                                                              nr_to_write);
374                         return 0;
375                 }
376
377                 /*
378                  * It's a data-integrity sync.  We must wait.
379                  */
380                 inode_wait_for_writeback(inode, wb);
381         }
382
383         BUG_ON(inode->i_state & I_SYNC);
384
385         /* Set I_SYNC, reset I_DIRTY_PAGES */
386         inode->i_state |= I_SYNC;
387         inode->i_state &= ~I_DIRTY_PAGES;
388         spin_unlock(&inode->i_lock);
389         spin_unlock(&wb->list_lock);
390
391         ret = do_writepages(mapping, wbc);
392
393         /*
394          * Make sure to wait on the data before writing out the metadata.
395          * This is important for filesystems that modify metadata on data
396          * I/O completion.
397          */
398         if (wbc->sync_mode == WB_SYNC_ALL) {
399                 int err = filemap_fdatawait(mapping);
400                 if (ret == 0)
401                         ret = err;
402         }
403
404         /*
405          * Some filesystems may redirty the inode during the writeback
406          * due to delalloc, clear dirty metadata flags right before
407          * write_inode()
408          */
409         spin_lock(&inode->i_lock);
410         dirty = inode->i_state & I_DIRTY;
411         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
412         spin_unlock(&inode->i_lock);
413         /* Don't write the inode if only I_DIRTY_PAGES was set */
414         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
415                 int err = write_inode(inode, wbc);
416                 if (ret == 0)
417                         ret = err;
418         }
419
420         spin_lock(&wb->list_lock);
421         spin_lock(&inode->i_lock);
422         inode->i_state &= ~I_SYNC;
423         if (!(inode->i_state & I_FREEING)) {
424                 /*
425                  * Sync livelock prevention. Each inode is tagged and synced in
426                  * one shot. If still dirty, it will be redirty_tail()'ed below.
427                  * Update the dirty time to prevent enqueue and sync it again.
428                  */
429                 if ((inode->i_state & I_DIRTY) &&
430                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
431                         inode->dirtied_when = jiffies;
432
433                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
434                         /*
435                          * We didn't write back all the pages.  nfs_writepages()
436                          * sometimes bales out without doing anything.
437                          */
438                         inode->i_state |= I_DIRTY_PAGES;
439                         if (wbc->nr_to_write <= 0) {
440                                 /*
441                                  * slice used up: queue for next turn
442                                  */
443                                 requeue_io(inode, wb);
444                         } else {
445                                 /*
446                                  * Writeback blocked by something other than
447                                  * congestion. Delay the inode for some time to
448                                  * avoid spinning on the CPU (100% iowait)
449                                  * retrying writeback of the dirty page/inode
450                                  * that cannot be performed immediately.
451                                  */
452                                 redirty_tail(inode, wb);
453                         }
454                 } else if (inode->i_state & I_DIRTY) {
455                         /*
456                          * Filesystems can dirty the inode during writeback
457                          * operations, such as delayed allocation during
458                          * submission or metadata updates after data IO
459                          * completion.
460                          */
461                         redirty_tail(inode, wb);
462                 } else {
463                         /*
464                          * The inode is clean.  At this point we either have
465                          * a reference to the inode or it's on it's way out.
466                          * No need to add it back to the LRU.
467                          */
468                         list_del_init(&inode->i_wb_list);
469                         wbc->inodes_written++;
470                 }
471         }
472         inode_sync_complete(inode);
473         trace_writeback_single_inode(inode, wbc, nr_to_write);
474         return ret;
475 }
476
477 /*
478  * For background writeback the caller does not have the sb pinned
479  * before calling writeback. So make sure that we do pin it, so it doesn't
480  * go away while we are writing inodes from it.
481  */
482 static bool pin_sb_for_writeback(struct super_block *sb)
483 {
484         spin_lock(&sb_lock);
485         if (list_empty(&sb->s_instances)) {
486                 spin_unlock(&sb_lock);
487                 return false;
488         }
489
490         sb->s_count++;
491         spin_unlock(&sb_lock);
492
493         if (down_read_trylock(&sb->s_umount)) {
494                 if (sb->s_root)
495                         return true;
496                 up_read(&sb->s_umount);
497         }
498
499         put_super(sb);
500         return false;
501 }
502
503 /*
504  * Write a portion of b_io inodes which belong to @sb.
505  *
506  * If @only_this_sb is true, then find and write all such
507  * inodes. Otherwise write only ones which go sequentially
508  * in reverse order.
509  *
510  * Return 1, if the caller writeback routine should be
511  * interrupted. Otherwise return 0.
512  */
513 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
514                 struct writeback_control *wbc, bool only_this_sb)
515 {
516         while (!list_empty(&wb->b_io)) {
517                 long pages_skipped;
518                 struct inode *inode = wb_inode(wb->b_io.prev);
519
520                 if (inode->i_sb != sb) {
521                         if (only_this_sb) {
522                                 /*
523                                  * We only want to write back data for this
524                                  * superblock, move all inodes not belonging
525                                  * to it back onto the dirty list.
526                                  */
527                                 redirty_tail(inode, wb);
528                                 continue;
529                         }
530
531                         /*
532                          * The inode belongs to a different superblock.
533                          * Bounce back to the caller to unpin this and
534                          * pin the next superblock.
535                          */
536                         return 0;
537                 }
538
539                 /*
540                  * Don't bother with new inodes or inodes beeing freed, first
541                  * kind does not need peridic writeout yet, and for the latter
542                  * kind writeout is handled by the freer.
543                  */
544                 spin_lock(&inode->i_lock);
545                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
546                         spin_unlock(&inode->i_lock);
547                         requeue_io(inode, wb);
548                         continue;
549                 }
550
551                 __iget(inode);
552
553                 pages_skipped = wbc->pages_skipped;
554                 writeback_single_inode(inode, wb, wbc);
555                 if (wbc->pages_skipped != pages_skipped) {
556                         /*
557                          * writeback is not making progress due to locked
558                          * buffers.  Skip this inode for now.
559                          */
560                         redirty_tail(inode, wb);
561                 }
562                 spin_unlock(&inode->i_lock);
563                 spin_unlock(&wb->list_lock);
564                 iput(inode);
565                 cond_resched();
566                 spin_lock(&wb->list_lock);
567                 if (wbc->nr_to_write <= 0)
568                         return 1;
569         }
570         /* b_io is empty */
571         return 1;
572 }
573
574 static void __writeback_inodes_wb(struct bdi_writeback *wb,
575                                   struct writeback_control *wbc)
576 {
577         int ret = 0;
578
579         while (!list_empty(&wb->b_io)) {
580                 struct inode *inode = wb_inode(wb->b_io.prev);
581                 struct super_block *sb = inode->i_sb;
582
583                 if (!pin_sb_for_writeback(sb)) {
584                         requeue_io(inode, wb);
585                         continue;
586                 }
587                 ret = writeback_sb_inodes(sb, wb, wbc, false);
588                 drop_super(sb);
589
590                 if (ret)
591                         break;
592         }
593         /* Leave any unwritten inodes on b_io */
594 }
595
596 void writeback_inodes_wb(struct bdi_writeback *wb,
597                 struct writeback_control *wbc)
598 {
599         spin_lock(&wb->list_lock);
600         if (list_empty(&wb->b_io))
601                 queue_io(wb, wbc->older_than_this);
602         __writeback_inodes_wb(wb, wbc);
603         spin_unlock(&wb->list_lock);
604 }
605
606 /*
607  * The maximum number of pages to writeout in a single bdi flush/kupdate
608  * operation.  We do this so we don't hold I_SYNC against an inode for
609  * enormous amounts of time, which would block a userspace task which has
610  * been forced to throttle against that inode.  Also, the code reevaluates
611  * the dirty each time it has written this many pages.
612  */
613 #define MAX_WRITEBACK_PAGES     1024
614
615 static inline bool over_bground_thresh(void)
616 {
617         unsigned long background_thresh, dirty_thresh;
618
619         global_dirty_limits(&background_thresh, &dirty_thresh);
620
621         return (global_page_state(NR_FILE_DIRTY) +
622                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
623 }
624
625 /*
626  * Explicit flushing or periodic writeback of "old" data.
627  *
628  * Define "old": the first time one of an inode's pages is dirtied, we mark the
629  * dirtying-time in the inode's address_space.  So this periodic writeback code
630  * just walks the superblock inode list, writing back any inodes which are
631  * older than a specific point in time.
632  *
633  * Try to run once per dirty_writeback_interval.  But if a writeback event
634  * takes longer than a dirty_writeback_interval interval, then leave a
635  * one-second gap.
636  *
637  * older_than_this takes precedence over nr_to_write.  So we'll only write back
638  * all dirty pages if they are all attached to "old" mappings.
639  */
640 static long wb_writeback(struct bdi_writeback *wb,
641                          struct wb_writeback_work *work)
642 {
643         struct writeback_control wbc = {
644                 .sync_mode              = work->sync_mode,
645                 .tagged_writepages      = work->tagged_writepages,
646                 .older_than_this        = NULL,
647                 .for_kupdate            = work->for_kupdate,
648                 .for_background         = work->for_background,
649                 .range_cyclic           = work->range_cyclic,
650         };
651         unsigned long oldest_jif;
652         long wrote = 0;
653         long write_chunk = MAX_WRITEBACK_PAGES;
654         struct inode *inode;
655
656         if (!wbc.range_cyclic) {
657                 wbc.range_start = 0;
658                 wbc.range_end = LLONG_MAX;
659         }
660
661         /*
662          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
663          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
664          * here avoids calling into writeback_inodes_wb() more than once.
665          *
666          * The intended call sequence for WB_SYNC_ALL writeback is:
667          *
668          *      wb_writeback()
669          *          writeback_sb_inodes()       <== called only once
670          *              write_cache_pages()     <== called once for each inode
671          *                   (quickly) tag currently dirty pages
672          *                   (maybe slowly) sync all tagged pages
673          */
674         if (wbc.sync_mode == WB_SYNC_ALL || wbc.tagged_writepages)
675                 write_chunk = LONG_MAX;
676
677         oldest_jif = jiffies;
678         wbc.older_than_this = &oldest_jif;
679
680         spin_lock(&wb->list_lock);
681         for (;;) {
682                 /*
683                  * Stop writeback when nr_pages has been consumed
684                  */
685                 if (work->nr_pages <= 0)
686                         break;
687
688                 /*
689                  * Background writeout and kupdate-style writeback may
690                  * run forever. Stop them if there is other work to do
691                  * so that e.g. sync can proceed. They'll be restarted
692                  * after the other works are all done.
693                  */
694                 if ((work->for_background || work->for_kupdate) &&
695                     !list_empty(&wb->bdi->work_list))
696                         break;
697
698                 /*
699                  * For background writeout, stop when we are below the
700                  * background dirty threshold
701                  */
702                 if (work->for_background && !over_bground_thresh())
703                         break;
704
705                 if (work->for_kupdate) {
706                         oldest_jif = jiffies -
707                                 msecs_to_jiffies(dirty_expire_interval * 10);
708                         wbc.older_than_this = &oldest_jif;
709                 }
710
711                 wbc.nr_to_write = write_chunk;
712                 wbc.pages_skipped = 0;
713                 wbc.inodes_written = 0;
714
715                 trace_wbc_writeback_start(&wbc, wb->bdi);
716                 if (list_empty(&wb->b_io))
717                         queue_io(wb, wbc.older_than_this);
718                 if (work->sb)
719                         writeback_sb_inodes(work->sb, wb, &wbc, true);
720                 else
721                         __writeback_inodes_wb(wb, &wbc);
722                 trace_wbc_writeback_written(&wbc, wb->bdi);
723
724                 work->nr_pages -= write_chunk - wbc.nr_to_write;
725                 wrote += write_chunk - wbc.nr_to_write;
726
727                 /*
728                  * Did we write something? Try for more
729                  *
730                  * Dirty inodes are moved to b_io for writeback in batches.
731                  * The completion of the current batch does not necessarily
732                  * mean the overall work is done. So we keep looping as long
733                  * as made some progress on cleaning pages or inodes.
734                  */
735                 if (wbc.nr_to_write < write_chunk)
736                         continue;
737                 if (wbc.inodes_written)
738                         continue;
739                 /*
740                  * No more inodes for IO, bail
741                  */
742                 if (list_empty(&wb->b_more_io))
743                         break;
744                 /*
745                  * Nothing written. Wait for some inode to
746                  * become available for writeback. Otherwise
747                  * we'll just busyloop.
748                  */
749                 if (!list_empty(&wb->b_more_io))  {
750                         inode = wb_inode(wb->b_more_io.prev);
751                         trace_wbc_writeback_wait(&wbc, wb->bdi);
752                         spin_lock(&inode->i_lock);
753                         inode_wait_for_writeback(inode, wb);
754                         spin_unlock(&inode->i_lock);
755                 }
756         }
757         spin_unlock(&wb->list_lock);
758
759         return wrote;
760 }
761
762 /*
763  * Return the next wb_writeback_work struct that hasn't been processed yet.
764  */
765 static struct wb_writeback_work *
766 get_next_work_item(struct backing_dev_info *bdi)
767 {
768         struct wb_writeback_work *work = NULL;
769
770         spin_lock_bh(&bdi->wb_lock);
771         if (!list_empty(&bdi->work_list)) {
772                 work = list_entry(bdi->work_list.next,
773                                   struct wb_writeback_work, list);
774                 list_del_init(&work->list);
775         }
776         spin_unlock_bh(&bdi->wb_lock);
777         return work;
778 }
779
780 /*
781  * Add in the number of potentially dirty inodes, because each inode
782  * write can dirty pagecache in the underlying blockdev.
783  */
784 static unsigned long get_nr_dirty_pages(void)
785 {
786         return global_page_state(NR_FILE_DIRTY) +
787                 global_page_state(NR_UNSTABLE_NFS) +
788                 get_nr_dirty_inodes();
789 }
790
791 static long wb_check_background_flush(struct bdi_writeback *wb)
792 {
793         if (over_bground_thresh()) {
794
795                 struct wb_writeback_work work = {
796                         .nr_pages       = LONG_MAX,
797                         .sync_mode      = WB_SYNC_NONE,
798                         .for_background = 1,
799                         .range_cyclic   = 1,
800                 };
801
802                 return wb_writeback(wb, &work);
803         }
804
805         return 0;
806 }
807
808 static long wb_check_old_data_flush(struct bdi_writeback *wb)
809 {
810         unsigned long expired;
811         long nr_pages;
812
813         /*
814          * When set to zero, disable periodic writeback
815          */
816         if (!dirty_writeback_interval)
817                 return 0;
818
819         expired = wb->last_old_flush +
820                         msecs_to_jiffies(dirty_writeback_interval * 10);
821         if (time_before(jiffies, expired))
822                 return 0;
823
824         wb->last_old_flush = jiffies;
825         nr_pages = get_nr_dirty_pages();
826
827         if (nr_pages) {
828                 struct wb_writeback_work work = {
829                         .nr_pages       = nr_pages,
830                         .sync_mode      = WB_SYNC_NONE,
831                         .for_kupdate    = 1,
832                         .range_cyclic   = 1,
833                 };
834
835                 return wb_writeback(wb, &work);
836         }
837
838         return 0;
839 }
840
841 /*
842  * Retrieve work items and do the writeback they describe
843  */
844 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
845 {
846         struct backing_dev_info *bdi = wb->bdi;
847         struct wb_writeback_work *work;
848         long wrote = 0;
849
850         set_bit(BDI_writeback_running, &wb->bdi->state);
851         while ((work = get_next_work_item(bdi)) != NULL) {
852                 /*
853                  * Override sync mode, in case we must wait for completion
854                  * because this thread is exiting now.
855                  */
856                 if (force_wait)
857                         work->sync_mode = WB_SYNC_ALL;
858
859                 trace_writeback_exec(bdi, work);
860
861                 wrote += wb_writeback(wb, work);
862
863                 /*
864                  * Notify the caller of completion if this is a synchronous
865                  * work item, otherwise just free it.
866                  */
867                 if (work->done)
868                         complete(work->done);
869                 else
870                         kfree(work);
871         }
872
873         /*
874          * Check for periodic writeback, kupdated() style
875          */
876         wrote += wb_check_old_data_flush(wb);
877         wrote += wb_check_background_flush(wb);
878         clear_bit(BDI_writeback_running, &wb->bdi->state);
879
880         return wrote;
881 }
882
883 /*
884  * Handle writeback of dirty data for the device backed by this bdi. Also
885  * wakes up periodically and does kupdated style flushing.
886  */
887 int bdi_writeback_thread(void *data)
888 {
889         struct bdi_writeback *wb = data;
890         struct backing_dev_info *bdi = wb->bdi;
891         long pages_written;
892
893         current->flags |= PF_SWAPWRITE;
894         set_freezable();
895         wb->last_active = jiffies;
896
897         /*
898          * Our parent may run at a different priority, just set us to normal
899          */
900         set_user_nice(current, 0);
901
902         trace_writeback_thread_start(bdi);
903
904         while (!kthread_should_stop()) {
905                 /*
906                  * Remove own delayed wake-up timer, since we are already awake
907                  * and we'll take care of the preriodic write-back.
908                  */
909                 del_timer(&wb->wakeup_timer);
910
911                 pages_written = wb_do_writeback(wb, 0);
912
913                 trace_writeback_pages_written(pages_written);
914
915                 if (pages_written)
916                         wb->last_active = jiffies;
917
918                 set_current_state(TASK_INTERRUPTIBLE);
919                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
920                         __set_current_state(TASK_RUNNING);
921                         continue;
922                 }
923
924                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
925                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
926                 else {
927                         /*
928                          * We have nothing to do, so can go sleep without any
929                          * timeout and save power. When a work is queued or
930                          * something is made dirty - we will be woken up.
931                          */
932                         schedule();
933                 }
934
935                 try_to_freeze();
936         }
937
938         /* Flush any work that raced with us exiting */
939         if (!list_empty(&bdi->work_list))
940                 wb_do_writeback(wb, 1);
941
942         trace_writeback_thread_stop(bdi);
943         return 0;
944 }
945
946
947 /*
948  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
949  * the whole world.
950  */
951 void wakeup_flusher_threads(long nr_pages)
952 {
953         struct backing_dev_info *bdi;
954
955         if (!nr_pages) {
956                 nr_pages = global_page_state(NR_FILE_DIRTY) +
957                                 global_page_state(NR_UNSTABLE_NFS);
958         }
959
960         rcu_read_lock();
961         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
962                 if (!bdi_has_dirty_io(bdi))
963                         continue;
964                 __bdi_start_writeback(bdi, nr_pages, false);
965         }
966         rcu_read_unlock();
967 }
968
969 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
970 {
971         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
972                 struct dentry *dentry;
973                 const char *name = "?";
974
975                 dentry = d_find_alias(inode);
976                 if (dentry) {
977                         spin_lock(&dentry->d_lock);
978                         name = (const char *) dentry->d_name.name;
979                 }
980                 printk(KERN_DEBUG
981                        "%s(%d): dirtied inode %lu (%s) on %s\n",
982                        current->comm, task_pid_nr(current), inode->i_ino,
983                        name, inode->i_sb->s_id);
984                 if (dentry) {
985                         spin_unlock(&dentry->d_lock);
986                         dput(dentry);
987                 }
988         }
989 }
990
991 /**
992  *      __mark_inode_dirty -    internal function
993  *      @inode: inode to mark
994  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
995  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
996  *      mark_inode_dirty_sync.
997  *
998  * Put the inode on the super block's dirty list.
999  *
1000  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1001  * dirty list only if it is hashed or if it refers to a blockdev.
1002  * If it was not hashed, it will never be added to the dirty list
1003  * even if it is later hashed, as it will have been marked dirty already.
1004  *
1005  * In short, make sure you hash any inodes _before_ you start marking
1006  * them dirty.
1007  *
1008  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1009  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1010  * the kernel-internal blockdev inode represents the dirtying time of the
1011  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1012  * page->mapping->host, so the page-dirtying time is recorded in the internal
1013  * blockdev inode.
1014  */
1015 void __mark_inode_dirty(struct inode *inode, int flags)
1016 {
1017         struct super_block *sb = inode->i_sb;
1018         struct backing_dev_info *bdi = NULL;
1019
1020         /*
1021          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1022          * dirty the inode itself
1023          */
1024         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1025                 if (sb->s_op->dirty_inode)
1026                         sb->s_op->dirty_inode(inode, flags);
1027         }
1028
1029         /*
1030          * make sure that changes are seen by all cpus before we test i_state
1031          * -- mikulas
1032          */
1033         smp_mb();
1034
1035         /* avoid the locking if we can */
1036         if ((inode->i_state & flags) == flags)
1037                 return;
1038
1039         if (unlikely(block_dump))
1040                 block_dump___mark_inode_dirty(inode);
1041
1042         spin_lock(&inode->i_lock);
1043         if ((inode->i_state & flags) != flags) {
1044                 const int was_dirty = inode->i_state & I_DIRTY;
1045
1046                 inode->i_state |= flags;
1047
1048                 /*
1049                  * If the inode is being synced, just update its dirty state.
1050                  * The unlocker will place the inode on the appropriate
1051                  * superblock list, based upon its state.
1052                  */
1053                 if (inode->i_state & I_SYNC)
1054                         goto out_unlock_inode;
1055
1056                 /*
1057                  * Only add valid (hashed) inodes to the superblock's
1058                  * dirty list.  Add blockdev inodes as well.
1059                  */
1060                 if (!S_ISBLK(inode->i_mode)) {
1061                         if (inode_unhashed(inode))
1062                                 goto out_unlock_inode;
1063                 }
1064                 if (inode->i_state & I_FREEING)
1065                         goto out_unlock_inode;
1066
1067                 /*
1068                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1069                  * reposition it (that would break b_dirty time-ordering).
1070                  */
1071                 if (!was_dirty) {
1072                         bool wakeup_bdi = false;
1073                         bdi = inode_to_bdi(inode);
1074
1075                         if (bdi_cap_writeback_dirty(bdi)) {
1076                                 WARN(!test_bit(BDI_registered, &bdi->state),
1077                                      "bdi-%s not registered\n", bdi->name);
1078
1079                                 /*
1080                                  * If this is the first dirty inode for this
1081                                  * bdi, we have to wake-up the corresponding
1082                                  * bdi thread to make sure background
1083                                  * write-back happens later.
1084                                  */
1085                                 if (!wb_has_dirty_io(&bdi->wb))
1086                                         wakeup_bdi = true;
1087                         }
1088
1089                         spin_unlock(&inode->i_lock);
1090                         spin_lock(&bdi->wb.list_lock);
1091                         inode->dirtied_when = jiffies;
1092                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1093                         spin_unlock(&bdi->wb.list_lock);
1094
1095                         if (wakeup_bdi)
1096                                 bdi_wakeup_thread_delayed(bdi);
1097                         return;
1098                 }
1099         }
1100 out_unlock_inode:
1101         spin_unlock(&inode->i_lock);
1102
1103 }
1104 EXPORT_SYMBOL(__mark_inode_dirty);
1105
1106 /*
1107  * Write out a superblock's list of dirty inodes.  A wait will be performed
1108  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1109  *
1110  * If older_than_this is non-NULL, then only write out inodes which
1111  * had their first dirtying at a time earlier than *older_than_this.
1112  *
1113  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1114  * This function assumes that the blockdev superblock's inodes are backed by
1115  * a variety of queues, so all inodes are searched.  For other superblocks,
1116  * assume that all inodes are backed by the same queue.
1117  *
1118  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1119  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1120  * on the writer throttling path, and we get decent balancing between many
1121  * throttled threads: we don't want them all piling up on inode_sync_wait.
1122  */
1123 static void wait_sb_inodes(struct super_block *sb)
1124 {
1125         struct inode *inode, *old_inode = NULL;
1126
1127         /*
1128          * We need to be protected against the filesystem going from
1129          * r/o to r/w or vice versa.
1130          */
1131         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1132
1133         spin_lock(&inode_sb_list_lock);
1134
1135         /*
1136          * Data integrity sync. Must wait for all pages under writeback,
1137          * because there may have been pages dirtied before our sync
1138          * call, but which had writeout started before we write it out.
1139          * In which case, the inode may not be on the dirty list, but
1140          * we still have to wait for that writeout.
1141          */
1142         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1143                 struct address_space *mapping = inode->i_mapping;
1144
1145                 spin_lock(&inode->i_lock);
1146                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1147                     (mapping->nrpages == 0)) {
1148                         spin_unlock(&inode->i_lock);
1149                         continue;
1150                 }
1151                 __iget(inode);
1152                 spin_unlock(&inode->i_lock);
1153                 spin_unlock(&inode_sb_list_lock);
1154
1155                 /*
1156                  * We hold a reference to 'inode' so it couldn't have been
1157                  * removed from s_inodes list while we dropped the
1158                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1159                  * be holding the last reference and we cannot iput it under
1160                  * inode_sb_list_lock. So we keep the reference and iput it
1161                  * later.
1162                  */
1163                 iput(old_inode);
1164                 old_inode = inode;
1165
1166                 filemap_fdatawait(mapping);
1167
1168                 cond_resched();
1169
1170                 spin_lock(&inode_sb_list_lock);
1171         }
1172         spin_unlock(&inode_sb_list_lock);
1173         iput(old_inode);
1174 }
1175
1176 /**
1177  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1178  * @sb: the superblock
1179  * @nr: the number of pages to write
1180  *
1181  * Start writeback on some inodes on this super_block. No guarantees are made
1182  * on how many (if any) will be written, and this function does not wait
1183  * for IO completion of submitted IO.
1184  */
1185 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1186 {
1187         DECLARE_COMPLETION_ONSTACK(done);
1188         struct wb_writeback_work work = {
1189                 .sb                     = sb,
1190                 .sync_mode              = WB_SYNC_NONE,
1191                 .tagged_writepages      = 1,
1192                 .done                   = &done,
1193                 .nr_pages               = nr,
1194         };
1195
1196         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1197         bdi_queue_work(sb->s_bdi, &work);
1198         wait_for_completion(&done);
1199 }
1200 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1201
1202 /**
1203  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1204  * @sb: the superblock
1205  *
1206  * Start writeback on some inodes on this super_block. No guarantees are made
1207  * on how many (if any) will be written, and this function does not wait
1208  * for IO completion of submitted IO.
1209  */
1210 void writeback_inodes_sb(struct super_block *sb)
1211 {
1212         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1213 }
1214 EXPORT_SYMBOL(writeback_inodes_sb);
1215
1216 /**
1217  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1218  * @sb: the superblock
1219  *
1220  * Invoke writeback_inodes_sb if no writeback is currently underway.
1221  * Returns 1 if writeback was started, 0 if not.
1222  */
1223 int writeback_inodes_sb_if_idle(struct super_block *sb)
1224 {
1225         if (!writeback_in_progress(sb->s_bdi)) {
1226                 down_read(&sb->s_umount);
1227                 writeback_inodes_sb(sb);
1228                 up_read(&sb->s_umount);
1229                 return 1;
1230         } else
1231                 return 0;
1232 }
1233 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1234
1235 /**
1236  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1237  * @sb: the superblock
1238  * @nr: the number of pages to write
1239  *
1240  * Invoke writeback_inodes_sb if no writeback is currently underway.
1241  * Returns 1 if writeback was started, 0 if not.
1242  */
1243 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1244                                    unsigned long nr)
1245 {
1246         if (!writeback_in_progress(sb->s_bdi)) {
1247                 down_read(&sb->s_umount);
1248                 writeback_inodes_sb_nr(sb, nr);
1249                 up_read(&sb->s_umount);
1250                 return 1;
1251         } else
1252                 return 0;
1253 }
1254 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1255
1256 /**
1257  * sync_inodes_sb       -       sync sb inode pages
1258  * @sb: the superblock
1259  *
1260  * This function writes and waits on any dirty inode belonging to this
1261  * super_block.
1262  */
1263 void sync_inodes_sb(struct super_block *sb)
1264 {
1265         DECLARE_COMPLETION_ONSTACK(done);
1266         struct wb_writeback_work work = {
1267                 .sb             = sb,
1268                 .sync_mode      = WB_SYNC_ALL,
1269                 .nr_pages       = LONG_MAX,
1270                 .range_cyclic   = 0,
1271                 .done           = &done,
1272         };
1273
1274         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1275
1276         bdi_queue_work(sb->s_bdi, &work);
1277         wait_for_completion(&done);
1278
1279         wait_sb_inodes(sb);
1280 }
1281 EXPORT_SYMBOL(sync_inodes_sb);
1282
1283 /**
1284  * write_inode_now      -       write an inode to disk
1285  * @inode: inode to write to disk
1286  * @sync: whether the write should be synchronous or not
1287  *
1288  * This function commits an inode to disk immediately if it is dirty. This is
1289  * primarily needed by knfsd.
1290  *
1291  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1292  */
1293 int write_inode_now(struct inode *inode, int sync)
1294 {
1295         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1296         int ret;
1297         struct writeback_control wbc = {
1298                 .nr_to_write = LONG_MAX,
1299                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1300                 .range_start = 0,
1301                 .range_end = LLONG_MAX,
1302         };
1303
1304         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1305                 wbc.nr_to_write = 0;
1306
1307         might_sleep();
1308         spin_lock(&wb->list_lock);
1309         spin_lock(&inode->i_lock);
1310         ret = writeback_single_inode(inode, wb, &wbc);
1311         spin_unlock(&inode->i_lock);
1312         spin_unlock(&wb->list_lock);
1313         if (sync)
1314                 inode_sync_wait(inode);
1315         return ret;
1316 }
1317 EXPORT_SYMBOL(write_inode_now);
1318
1319 /**
1320  * sync_inode - write an inode and its pages to disk.
1321  * @inode: the inode to sync
1322  * @wbc: controls the writeback mode
1323  *
1324  * sync_inode() will write an inode and its pages to disk.  It will also
1325  * correctly update the inode on its superblock's dirty inode lists and will
1326  * update inode->i_state.
1327  *
1328  * The caller must have a ref on the inode.
1329  */
1330 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1331 {
1332         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1333         int ret;
1334
1335         spin_lock(&wb->list_lock);
1336         spin_lock(&inode->i_lock);
1337         ret = writeback_single_inode(inode, wb, wbc);
1338         spin_unlock(&inode->i_lock);
1339         spin_unlock(&wb->list_lock);
1340         return ret;
1341 }
1342 EXPORT_SYMBOL(sync_inode);
1343
1344 /**
1345  * sync_inode_metadata - write an inode to disk
1346  * @inode: the inode to sync
1347  * @wait: wait for I/O to complete.
1348  *
1349  * Write an inode to disk and adjust its dirty state after completion.
1350  *
1351  * Note: only writes the actual inode, no associated data or other metadata.
1352  */
1353 int sync_inode_metadata(struct inode *inode, int wait)
1354 {
1355         struct writeback_control wbc = {
1356                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1357                 .nr_to_write = 0, /* metadata-only */
1358         };
1359
1360         return sync_inode(inode, &wbc);
1361 }
1362 EXPORT_SYMBOL(sync_inode_metadata);