GFS2: Fix address space from page function
[cascardo/linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         /*
44          * Write only inodes dirtied before this time. Don't forget to set
45          * older_than_this_is_set when you set this.
46          */
47         unsigned long older_than_this;
48         enum writeback_sync_modes sync_mode;
49         unsigned int tagged_writepages:1;
50         unsigned int for_kupdate:1;
51         unsigned int range_cyclic:1;
52         unsigned int for_background:1;
53         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
54         unsigned int older_than_this_is_set:1;
55         enum wb_reason reason;          /* why was writeback initiated? */
56
57         struct list_head list;          /* pending work list */
58         struct completion *done;        /* set if the caller waits */
59 };
60
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70         return test_bit(BDI_writeback_running, &bdi->state);
71 }
72 EXPORT_SYMBOL(writeback_in_progress);
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76         struct super_block *sb = inode->i_sb;
77
78         if (sb_is_blkdev_sb(sb))
79                 return inode->i_mapping->backing_dev_info;
80
81         return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86         return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /*
90  * Include the creation of the trace points after defining the
91  * wb_writeback_work structure and inline functions so that the definition
92  * remains local to this file.
93  */
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/writeback.h>
96
97 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
98
99 static void bdi_queue_work(struct backing_dev_info *bdi,
100                            struct wb_writeback_work *work)
101 {
102         trace_writeback_queue(bdi, work);
103
104         spin_lock_bh(&bdi->wb_lock);
105         list_add_tail(&work->list, &bdi->work_list);
106         spin_unlock_bh(&bdi->wb_lock);
107
108         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
109 }
110
111 static void
112 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
113                       bool range_cyclic, enum wb_reason reason)
114 {
115         struct wb_writeback_work *work;
116
117         /*
118          * This is WB_SYNC_NONE writeback, so if allocation fails just
119          * wakeup the thread for old dirty data writeback
120          */
121         work = kzalloc(sizeof(*work), GFP_ATOMIC);
122         if (!work) {
123                 trace_writeback_nowork(bdi);
124                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
125                 return;
126         }
127
128         work->sync_mode = WB_SYNC_NONE;
129         work->nr_pages  = nr_pages;
130         work->range_cyclic = range_cyclic;
131         work->reason    = reason;
132
133         bdi_queue_work(bdi, work);
134 }
135
136 /**
137  * bdi_start_writeback - start writeback
138  * @bdi: the backing device to write from
139  * @nr_pages: the number of pages to write
140  * @reason: reason why some writeback work was initiated
141  *
142  * Description:
143  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
144  *   started when this function returns, we make no guarantees on
145  *   completion. Caller need not hold sb s_umount semaphore.
146  *
147  */
148 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
149                         enum wb_reason reason)
150 {
151         __bdi_start_writeback(bdi, nr_pages, true, reason);
152 }
153
154 /**
155  * bdi_start_background_writeback - start background writeback
156  * @bdi: the backing device to write from
157  *
158  * Description:
159  *   This makes sure WB_SYNC_NONE background writeback happens. When
160  *   this function returns, it is only guaranteed that for given BDI
161  *   some IO is happening if we are over background dirty threshold.
162  *   Caller need not hold sb s_umount semaphore.
163  */
164 void bdi_start_background_writeback(struct backing_dev_info *bdi)
165 {
166         /*
167          * We just wake up the flusher thread. It will perform background
168          * writeback as soon as there is no other work to do.
169          */
170         trace_writeback_wake_background(bdi);
171         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
172 }
173
174 /*
175  * Remove the inode from the writeback list it is on.
176  */
177 void inode_wb_list_del(struct inode *inode)
178 {
179         struct backing_dev_info *bdi = inode_to_bdi(inode);
180
181         spin_lock(&bdi->wb.list_lock);
182         list_del_init(&inode->i_wb_list);
183         spin_unlock(&bdi->wb.list_lock);
184 }
185
186 /*
187  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
188  * furthest end of its superblock's dirty-inode list.
189  *
190  * Before stamping the inode's ->dirtied_when, we check to see whether it is
191  * already the most-recently-dirtied inode on the b_dirty list.  If that is
192  * the case then the inode must have been redirtied while it was being written
193  * out and we don't reset its dirtied_when.
194  */
195 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
196 {
197         assert_spin_locked(&wb->list_lock);
198         if (!list_empty(&wb->b_dirty)) {
199                 struct inode *tail;
200
201                 tail = wb_inode(wb->b_dirty.next);
202                 if (time_before(inode->dirtied_when, tail->dirtied_when))
203                         inode->dirtied_when = jiffies;
204         }
205         list_move(&inode->i_wb_list, &wb->b_dirty);
206 }
207
208 /*
209  * requeue inode for re-scanning after bdi->b_io list is exhausted.
210  */
211 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
212 {
213         assert_spin_locked(&wb->list_lock);
214         list_move(&inode->i_wb_list, &wb->b_more_io);
215 }
216
217 static void inode_sync_complete(struct inode *inode)
218 {
219         inode->i_state &= ~I_SYNC;
220         /* If inode is clean an unused, put it into LRU now... */
221         inode_add_lru(inode);
222         /* Waiters must see I_SYNC cleared before being woken up */
223         smp_mb();
224         wake_up_bit(&inode->i_state, __I_SYNC);
225 }
226
227 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
228 {
229         bool ret = time_after(inode->dirtied_when, t);
230 #ifndef CONFIG_64BIT
231         /*
232          * For inodes being constantly redirtied, dirtied_when can get stuck.
233          * It _appears_ to be in the future, but is actually in distant past.
234          * This test is necessary to prevent such wrapped-around relative times
235          * from permanently stopping the whole bdi writeback.
236          */
237         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
238 #endif
239         return ret;
240 }
241
242 /*
243  * Move expired (dirtied before work->older_than_this) dirty inodes from
244  * @delaying_queue to @dispatch_queue.
245  */
246 static int move_expired_inodes(struct list_head *delaying_queue,
247                                struct list_head *dispatch_queue,
248                                struct wb_writeback_work *work)
249 {
250         LIST_HEAD(tmp);
251         struct list_head *pos, *node;
252         struct super_block *sb = NULL;
253         struct inode *inode;
254         int do_sb_sort = 0;
255         int moved = 0;
256
257         WARN_ON_ONCE(!work->older_than_this_is_set);
258         while (!list_empty(delaying_queue)) {
259                 inode = wb_inode(delaying_queue->prev);
260                 if (inode_dirtied_after(inode, work->older_than_this))
261                         break;
262                 list_move(&inode->i_wb_list, &tmp);
263                 moved++;
264                 if (sb_is_blkdev_sb(inode->i_sb))
265                         continue;
266                 if (sb && sb != inode->i_sb)
267                         do_sb_sort = 1;
268                 sb = inode->i_sb;
269         }
270
271         /* just one sb in list, splice to dispatch_queue and we're done */
272         if (!do_sb_sort) {
273                 list_splice(&tmp, dispatch_queue);
274                 goto out;
275         }
276
277         /* Move inodes from one superblock together */
278         while (!list_empty(&tmp)) {
279                 sb = wb_inode(tmp.prev)->i_sb;
280                 list_for_each_prev_safe(pos, node, &tmp) {
281                         inode = wb_inode(pos);
282                         if (inode->i_sb == sb)
283                                 list_move(&inode->i_wb_list, dispatch_queue);
284                 }
285         }
286 out:
287         return moved;
288 }
289
290 /*
291  * Queue all expired dirty inodes for io, eldest first.
292  * Before
293  *         newly dirtied     b_dirty    b_io    b_more_io
294  *         =============>    gf         edc     BA
295  * After
296  *         newly dirtied     b_dirty    b_io    b_more_io
297  *         =============>    g          fBAedc
298  *                                           |
299  *                                           +--> dequeue for IO
300  */
301 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
302 {
303         int moved;
304         assert_spin_locked(&wb->list_lock);
305         list_splice_init(&wb->b_more_io, &wb->b_io);
306         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
307         trace_writeback_queue_io(wb, work, moved);
308 }
309
310 static int write_inode(struct inode *inode, struct writeback_control *wbc)
311 {
312         int ret;
313
314         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
315                 trace_writeback_write_inode_start(inode, wbc);
316                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
317                 trace_writeback_write_inode(inode, wbc);
318                 return ret;
319         }
320         return 0;
321 }
322
323 /*
324  * Wait for writeback on an inode to complete. Called with i_lock held.
325  * Caller must make sure inode cannot go away when we drop i_lock.
326  */
327 static void __inode_wait_for_writeback(struct inode *inode)
328         __releases(inode->i_lock)
329         __acquires(inode->i_lock)
330 {
331         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332         wait_queue_head_t *wqh;
333
334         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335         while (inode->i_state & I_SYNC) {
336                 spin_unlock(&inode->i_lock);
337                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338                 spin_lock(&inode->i_lock);
339         }
340 }
341
342 /*
343  * Wait for writeback on an inode to complete. Caller must have inode pinned.
344  */
345 void inode_wait_for_writeback(struct inode *inode)
346 {
347         spin_lock(&inode->i_lock);
348         __inode_wait_for_writeback(inode);
349         spin_unlock(&inode->i_lock);
350 }
351
352 /*
353  * Sleep until I_SYNC is cleared. This function must be called with i_lock
354  * held and drops it. It is aimed for callers not holding any inode reference
355  * so once i_lock is dropped, inode can go away.
356  */
357 static void inode_sleep_on_writeback(struct inode *inode)
358         __releases(inode->i_lock)
359 {
360         DEFINE_WAIT(wait);
361         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
362         int sleep;
363
364         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
365         sleep = inode->i_state & I_SYNC;
366         spin_unlock(&inode->i_lock);
367         if (sleep)
368                 schedule();
369         finish_wait(wqh, &wait);
370 }
371
372 /*
373  * Find proper writeback list for the inode depending on its current state and
374  * possibly also change of its state while we were doing writeback.  Here we
375  * handle things such as livelock prevention or fairness of writeback among
376  * inodes. This function can be called only by flusher thread - noone else
377  * processes all inodes in writeback lists and requeueing inodes behind flusher
378  * thread's back can have unexpected consequences.
379  */
380 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
381                           struct writeback_control *wbc)
382 {
383         if (inode->i_state & I_FREEING)
384                 return;
385
386         /*
387          * Sync livelock prevention. Each inode is tagged and synced in one
388          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
389          * the dirty time to prevent enqueue and sync it again.
390          */
391         if ((inode->i_state & I_DIRTY) &&
392             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
393                 inode->dirtied_when = jiffies;
394
395         if (wbc->pages_skipped) {
396                 /*
397                  * writeback is not making progress due to locked
398                  * buffers. Skip this inode for now.
399                  */
400                 redirty_tail(inode, wb);
401                 return;
402         }
403
404         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
405                 /*
406                  * We didn't write back all the pages.  nfs_writepages()
407                  * sometimes bales out without doing anything.
408                  */
409                 if (wbc->nr_to_write <= 0) {
410                         /* Slice used up. Queue for next turn. */
411                         requeue_io(inode, wb);
412                 } else {
413                         /*
414                          * Writeback blocked by something other than
415                          * congestion. Delay the inode for some time to
416                          * avoid spinning on the CPU (100% iowait)
417                          * retrying writeback of the dirty page/inode
418                          * that cannot be performed immediately.
419                          */
420                         redirty_tail(inode, wb);
421                 }
422         } else if (inode->i_state & I_DIRTY) {
423                 /*
424                  * Filesystems can dirty the inode during writeback operations,
425                  * such as delayed allocation during submission or metadata
426                  * updates after data IO completion.
427                  */
428                 redirty_tail(inode, wb);
429         } else {
430                 /* The inode is clean. Remove from writeback lists. */
431                 list_del_init(&inode->i_wb_list);
432         }
433 }
434
435 /*
436  * Write out an inode and its dirty pages. Do not update the writeback list
437  * linkage. That is left to the caller. The caller is also responsible for
438  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
439  */
440 static int
441 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
442 {
443         struct address_space *mapping = inode->i_mapping;
444         long nr_to_write = wbc->nr_to_write;
445         unsigned dirty;
446         int ret;
447
448         WARN_ON(!(inode->i_state & I_SYNC));
449
450         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
451
452         ret = do_writepages(mapping, wbc);
453
454         /*
455          * Make sure to wait on the data before writing out the metadata.
456          * This is important for filesystems that modify metadata on data
457          * I/O completion. We don't do it for sync(2) writeback because it has a
458          * separate, external IO completion path and ->sync_fs for guaranteeing
459          * inode metadata is written back correctly.
460          */
461         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
462                 int err = filemap_fdatawait(mapping);
463                 if (ret == 0)
464                         ret = err;
465         }
466
467         /*
468          * Some filesystems may redirty the inode during the writeback
469          * due to delalloc, clear dirty metadata flags right before
470          * write_inode()
471          */
472         spin_lock(&inode->i_lock);
473         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
474         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
475                 inode->i_state &= ~I_DIRTY_PAGES;
476         dirty = inode->i_state & I_DIRTY;
477         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
478         spin_unlock(&inode->i_lock);
479         /* Don't write the inode if only I_DIRTY_PAGES was set */
480         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
481                 int err = write_inode(inode, wbc);
482                 if (ret == 0)
483                         ret = err;
484         }
485         trace_writeback_single_inode(inode, wbc, nr_to_write);
486         return ret;
487 }
488
489 /*
490  * Write out an inode's dirty pages. Either the caller has an active reference
491  * on the inode or the inode has I_WILL_FREE set.
492  *
493  * This function is designed to be called for writing back one inode which
494  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
495  * and does more profound writeback list handling in writeback_sb_inodes().
496  */
497 static int
498 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
499                        struct writeback_control *wbc)
500 {
501         int ret = 0;
502
503         spin_lock(&inode->i_lock);
504         if (!atomic_read(&inode->i_count))
505                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
506         else
507                 WARN_ON(inode->i_state & I_WILL_FREE);
508
509         if (inode->i_state & I_SYNC) {
510                 if (wbc->sync_mode != WB_SYNC_ALL)
511                         goto out;
512                 /*
513                  * It's a data-integrity sync. We must wait. Since callers hold
514                  * inode reference or inode has I_WILL_FREE set, it cannot go
515                  * away under us.
516                  */
517                 __inode_wait_for_writeback(inode);
518         }
519         WARN_ON(inode->i_state & I_SYNC);
520         /*
521          * Skip inode if it is clean and we have no outstanding writeback in
522          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
523          * function since flusher thread may be doing for example sync in
524          * parallel and if we move the inode, it could get skipped. So here we
525          * make sure inode is on some writeback list and leave it there unless
526          * we have completely cleaned the inode.
527          */
528         if (!(inode->i_state & I_DIRTY) &&
529             (wbc->sync_mode != WB_SYNC_ALL ||
530              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
531                 goto out;
532         inode->i_state |= I_SYNC;
533         spin_unlock(&inode->i_lock);
534
535         ret = __writeback_single_inode(inode, wbc);
536
537         spin_lock(&wb->list_lock);
538         spin_lock(&inode->i_lock);
539         /*
540          * If inode is clean, remove it from writeback lists. Otherwise don't
541          * touch it. See comment above for explanation.
542          */
543         if (!(inode->i_state & I_DIRTY))
544                 list_del_init(&inode->i_wb_list);
545         spin_unlock(&wb->list_lock);
546         inode_sync_complete(inode);
547 out:
548         spin_unlock(&inode->i_lock);
549         return ret;
550 }
551
552 static long writeback_chunk_size(struct backing_dev_info *bdi,
553                                  struct wb_writeback_work *work)
554 {
555         long pages;
556
557         /*
558          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
559          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
560          * here avoids calling into writeback_inodes_wb() more than once.
561          *
562          * The intended call sequence for WB_SYNC_ALL writeback is:
563          *
564          *      wb_writeback()
565          *          writeback_sb_inodes()       <== called only once
566          *              write_cache_pages()     <== called once for each inode
567          *                   (quickly) tag currently dirty pages
568          *                   (maybe slowly) sync all tagged pages
569          */
570         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
571                 pages = LONG_MAX;
572         else {
573                 pages = min(bdi->avg_write_bandwidth / 2,
574                             global_dirty_limit / DIRTY_SCOPE);
575                 pages = min(pages, work->nr_pages);
576                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
577                                    MIN_WRITEBACK_PAGES);
578         }
579
580         return pages;
581 }
582
583 /*
584  * Write a portion of b_io inodes which belong to @sb.
585  *
586  * Return the number of pages and/or inodes written.
587  */
588 static long writeback_sb_inodes(struct super_block *sb,
589                                 struct bdi_writeback *wb,
590                                 struct wb_writeback_work *work)
591 {
592         struct writeback_control wbc = {
593                 .sync_mode              = work->sync_mode,
594                 .tagged_writepages      = work->tagged_writepages,
595                 .for_kupdate            = work->for_kupdate,
596                 .for_background         = work->for_background,
597                 .for_sync               = work->for_sync,
598                 .range_cyclic           = work->range_cyclic,
599                 .range_start            = 0,
600                 .range_end              = LLONG_MAX,
601         };
602         unsigned long start_time = jiffies;
603         long write_chunk;
604         long wrote = 0;  /* count both pages and inodes */
605
606         while (!list_empty(&wb->b_io)) {
607                 struct inode *inode = wb_inode(wb->b_io.prev);
608
609                 if (inode->i_sb != sb) {
610                         if (work->sb) {
611                                 /*
612                                  * We only want to write back data for this
613                                  * superblock, move all inodes not belonging
614                                  * to it back onto the dirty list.
615                                  */
616                                 redirty_tail(inode, wb);
617                                 continue;
618                         }
619
620                         /*
621                          * The inode belongs to a different superblock.
622                          * Bounce back to the caller to unpin this and
623                          * pin the next superblock.
624                          */
625                         break;
626                 }
627
628                 /*
629                  * Don't bother with new inodes or inodes being freed, first
630                  * kind does not need periodic writeout yet, and for the latter
631                  * kind writeout is handled by the freer.
632                  */
633                 spin_lock(&inode->i_lock);
634                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
635                         spin_unlock(&inode->i_lock);
636                         redirty_tail(inode, wb);
637                         continue;
638                 }
639                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
640                         /*
641                          * If this inode is locked for writeback and we are not
642                          * doing writeback-for-data-integrity, move it to
643                          * b_more_io so that writeback can proceed with the
644                          * other inodes on s_io.
645                          *
646                          * We'll have another go at writing back this inode
647                          * when we completed a full scan of b_io.
648                          */
649                         spin_unlock(&inode->i_lock);
650                         requeue_io(inode, wb);
651                         trace_writeback_sb_inodes_requeue(inode);
652                         continue;
653                 }
654                 spin_unlock(&wb->list_lock);
655
656                 /*
657                  * We already requeued the inode if it had I_SYNC set and we
658                  * are doing WB_SYNC_NONE writeback. So this catches only the
659                  * WB_SYNC_ALL case.
660                  */
661                 if (inode->i_state & I_SYNC) {
662                         /* Wait for I_SYNC. This function drops i_lock... */
663                         inode_sleep_on_writeback(inode);
664                         /* Inode may be gone, start again */
665                         spin_lock(&wb->list_lock);
666                         continue;
667                 }
668                 inode->i_state |= I_SYNC;
669                 spin_unlock(&inode->i_lock);
670
671                 write_chunk = writeback_chunk_size(wb->bdi, work);
672                 wbc.nr_to_write = write_chunk;
673                 wbc.pages_skipped = 0;
674
675                 /*
676                  * We use I_SYNC to pin the inode in memory. While it is set
677                  * evict_inode() will wait so the inode cannot be freed.
678                  */
679                 __writeback_single_inode(inode, &wbc);
680
681                 work->nr_pages -= write_chunk - wbc.nr_to_write;
682                 wrote += write_chunk - wbc.nr_to_write;
683                 spin_lock(&wb->list_lock);
684                 spin_lock(&inode->i_lock);
685                 if (!(inode->i_state & I_DIRTY))
686                         wrote++;
687                 requeue_inode(inode, wb, &wbc);
688                 inode_sync_complete(inode);
689                 spin_unlock(&inode->i_lock);
690                 cond_resched_lock(&wb->list_lock);
691                 /*
692                  * bail out to wb_writeback() often enough to check
693                  * background threshold and other termination conditions.
694                  */
695                 if (wrote) {
696                         if (time_is_before_jiffies(start_time + HZ / 10UL))
697                                 break;
698                         if (work->nr_pages <= 0)
699                                 break;
700                 }
701         }
702         return wrote;
703 }
704
705 static long __writeback_inodes_wb(struct bdi_writeback *wb,
706                                   struct wb_writeback_work *work)
707 {
708         unsigned long start_time = jiffies;
709         long wrote = 0;
710
711         while (!list_empty(&wb->b_io)) {
712                 struct inode *inode = wb_inode(wb->b_io.prev);
713                 struct super_block *sb = inode->i_sb;
714
715                 if (!grab_super_passive(sb)) {
716                         /*
717                          * grab_super_passive() may fail consistently due to
718                          * s_umount being grabbed by someone else. Don't use
719                          * requeue_io() to avoid busy retrying the inode/sb.
720                          */
721                         redirty_tail(inode, wb);
722                         continue;
723                 }
724                 wrote += writeback_sb_inodes(sb, wb, work);
725                 drop_super(sb);
726
727                 /* refer to the same tests at the end of writeback_sb_inodes */
728                 if (wrote) {
729                         if (time_is_before_jiffies(start_time + HZ / 10UL))
730                                 break;
731                         if (work->nr_pages <= 0)
732                                 break;
733                 }
734         }
735         /* Leave any unwritten inodes on b_io */
736         return wrote;
737 }
738
739 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
740                                 enum wb_reason reason)
741 {
742         struct wb_writeback_work work = {
743                 .nr_pages       = nr_pages,
744                 .sync_mode      = WB_SYNC_NONE,
745                 .range_cyclic   = 1,
746                 .reason         = reason,
747                 .older_than_this = jiffies,
748                 .older_than_this_is_set = 1,
749         };
750
751         spin_lock(&wb->list_lock);
752         if (list_empty(&wb->b_io))
753                 queue_io(wb, &work);
754         __writeback_inodes_wb(wb, &work);
755         spin_unlock(&wb->list_lock);
756
757         return nr_pages - work.nr_pages;
758 }
759
760 static bool over_bground_thresh(struct backing_dev_info *bdi)
761 {
762         unsigned long background_thresh, dirty_thresh;
763
764         global_dirty_limits(&background_thresh, &dirty_thresh);
765
766         if (global_page_state(NR_FILE_DIRTY) +
767             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
768                 return true;
769
770         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
771                                 bdi_dirty_limit(bdi, background_thresh))
772                 return true;
773
774         return false;
775 }
776
777 /*
778  * Called under wb->list_lock. If there are multiple wb per bdi,
779  * only the flusher working on the first wb should do it.
780  */
781 static void wb_update_bandwidth(struct bdi_writeback *wb,
782                                 unsigned long start_time)
783 {
784         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
785 }
786
787 /*
788  * Explicit flushing or periodic writeback of "old" data.
789  *
790  * Define "old": the first time one of an inode's pages is dirtied, we mark the
791  * dirtying-time in the inode's address_space.  So this periodic writeback code
792  * just walks the superblock inode list, writing back any inodes which are
793  * older than a specific point in time.
794  *
795  * Try to run once per dirty_writeback_interval.  But if a writeback event
796  * takes longer than a dirty_writeback_interval interval, then leave a
797  * one-second gap.
798  *
799  * older_than_this takes precedence over nr_to_write.  So we'll only write back
800  * all dirty pages if they are all attached to "old" mappings.
801  */
802 static long wb_writeback(struct bdi_writeback *wb,
803                          struct wb_writeback_work *work)
804 {
805         unsigned long wb_start = jiffies;
806         long nr_pages = work->nr_pages;
807         struct inode *inode;
808         long progress;
809
810         if (!work->older_than_this_is_set) {
811                 work->older_than_this = jiffies;
812                 work->older_than_this_is_set = 1;
813         }
814
815         spin_lock(&wb->list_lock);
816         for (;;) {
817                 /*
818                  * Stop writeback when nr_pages has been consumed
819                  */
820                 if (work->nr_pages <= 0)
821                         break;
822
823                 /*
824                  * Background writeout and kupdate-style writeback may
825                  * run forever. Stop them if there is other work to do
826                  * so that e.g. sync can proceed. They'll be restarted
827                  * after the other works are all done.
828                  */
829                 if ((work->for_background || work->for_kupdate) &&
830                     !list_empty(&wb->bdi->work_list))
831                         break;
832
833                 /*
834                  * For background writeout, stop when we are below the
835                  * background dirty threshold
836                  */
837                 if (work->for_background && !over_bground_thresh(wb->bdi))
838                         break;
839
840                 /*
841                  * Kupdate and background works are special and we want to
842                  * include all inodes that need writing. Livelock avoidance is
843                  * handled by these works yielding to any other work so we are
844                  * safe.
845                  */
846                 if (work->for_kupdate) {
847                         work->older_than_this = jiffies -
848                                 msecs_to_jiffies(dirty_expire_interval * 10);
849                 } else if (work->for_background)
850                         work->older_than_this = jiffies;
851
852                 trace_writeback_start(wb->bdi, work);
853                 if (list_empty(&wb->b_io))
854                         queue_io(wb, work);
855                 if (work->sb)
856                         progress = writeback_sb_inodes(work->sb, wb, work);
857                 else
858                         progress = __writeback_inodes_wb(wb, work);
859                 trace_writeback_written(wb->bdi, work);
860
861                 wb_update_bandwidth(wb, wb_start);
862
863                 /*
864                  * Did we write something? Try for more
865                  *
866                  * Dirty inodes are moved to b_io for writeback in batches.
867                  * The completion of the current batch does not necessarily
868                  * mean the overall work is done. So we keep looping as long
869                  * as made some progress on cleaning pages or inodes.
870                  */
871                 if (progress)
872                         continue;
873                 /*
874                  * No more inodes for IO, bail
875                  */
876                 if (list_empty(&wb->b_more_io))
877                         break;
878                 /*
879                  * Nothing written. Wait for some inode to
880                  * become available for writeback. Otherwise
881                  * we'll just busyloop.
882                  */
883                 if (!list_empty(&wb->b_more_io))  {
884                         trace_writeback_wait(wb->bdi, work);
885                         inode = wb_inode(wb->b_more_io.prev);
886                         spin_lock(&inode->i_lock);
887                         spin_unlock(&wb->list_lock);
888                         /* This function drops i_lock... */
889                         inode_sleep_on_writeback(inode);
890                         spin_lock(&wb->list_lock);
891                 }
892         }
893         spin_unlock(&wb->list_lock);
894
895         return nr_pages - work->nr_pages;
896 }
897
898 /*
899  * Return the next wb_writeback_work struct that hasn't been processed yet.
900  */
901 static struct wb_writeback_work *
902 get_next_work_item(struct backing_dev_info *bdi)
903 {
904         struct wb_writeback_work *work = NULL;
905
906         spin_lock_bh(&bdi->wb_lock);
907         if (!list_empty(&bdi->work_list)) {
908                 work = list_entry(bdi->work_list.next,
909                                   struct wb_writeback_work, list);
910                 list_del_init(&work->list);
911         }
912         spin_unlock_bh(&bdi->wb_lock);
913         return work;
914 }
915
916 /*
917  * Add in the number of potentially dirty inodes, because each inode
918  * write can dirty pagecache in the underlying blockdev.
919  */
920 static unsigned long get_nr_dirty_pages(void)
921 {
922         return global_page_state(NR_FILE_DIRTY) +
923                 global_page_state(NR_UNSTABLE_NFS) +
924                 get_nr_dirty_inodes();
925 }
926
927 static long wb_check_background_flush(struct bdi_writeback *wb)
928 {
929         if (over_bground_thresh(wb->bdi)) {
930
931                 struct wb_writeback_work work = {
932                         .nr_pages       = LONG_MAX,
933                         .sync_mode      = WB_SYNC_NONE,
934                         .for_background = 1,
935                         .range_cyclic   = 1,
936                         .reason         = WB_REASON_BACKGROUND,
937                 };
938
939                 return wb_writeback(wb, &work);
940         }
941
942         return 0;
943 }
944
945 static long wb_check_old_data_flush(struct bdi_writeback *wb)
946 {
947         unsigned long expired;
948         long nr_pages;
949
950         /*
951          * When set to zero, disable periodic writeback
952          */
953         if (!dirty_writeback_interval)
954                 return 0;
955
956         expired = wb->last_old_flush +
957                         msecs_to_jiffies(dirty_writeback_interval * 10);
958         if (time_before(jiffies, expired))
959                 return 0;
960
961         wb->last_old_flush = jiffies;
962         nr_pages = get_nr_dirty_pages();
963
964         if (nr_pages) {
965                 struct wb_writeback_work work = {
966                         .nr_pages       = nr_pages,
967                         .sync_mode      = WB_SYNC_NONE,
968                         .for_kupdate    = 1,
969                         .range_cyclic   = 1,
970                         .reason         = WB_REASON_PERIODIC,
971                 };
972
973                 return wb_writeback(wb, &work);
974         }
975
976         return 0;
977 }
978
979 /*
980  * Retrieve work items and do the writeback they describe
981  */
982 static long wb_do_writeback(struct bdi_writeback *wb)
983 {
984         struct backing_dev_info *bdi = wb->bdi;
985         struct wb_writeback_work *work;
986         long wrote = 0;
987
988         set_bit(BDI_writeback_running, &wb->bdi->state);
989         while ((work = get_next_work_item(bdi)) != NULL) {
990
991                 trace_writeback_exec(bdi, work);
992
993                 wrote += wb_writeback(wb, work);
994
995                 /*
996                  * Notify the caller of completion if this is a synchronous
997                  * work item, otherwise just free it.
998                  */
999                 if (work->done)
1000                         complete(work->done);
1001                 else
1002                         kfree(work);
1003         }
1004
1005         /*
1006          * Check for periodic writeback, kupdated() style
1007          */
1008         wrote += wb_check_old_data_flush(wb);
1009         wrote += wb_check_background_flush(wb);
1010         clear_bit(BDI_writeback_running, &wb->bdi->state);
1011
1012         return wrote;
1013 }
1014
1015 /*
1016  * Handle writeback of dirty data for the device backed by this bdi. Also
1017  * reschedules periodically and does kupdated style flushing.
1018  */
1019 void bdi_writeback_workfn(struct work_struct *work)
1020 {
1021         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1022                                                 struct bdi_writeback, dwork);
1023         struct backing_dev_info *bdi = wb->bdi;
1024         long pages_written;
1025
1026         set_worker_desc("flush-%s", dev_name(bdi->dev));
1027         current->flags |= PF_SWAPWRITE;
1028
1029         if (likely(!current_is_workqueue_rescuer() ||
1030                    list_empty(&bdi->bdi_list))) {
1031                 /*
1032                  * The normal path.  Keep writing back @bdi until its
1033                  * work_list is empty.  Note that this path is also taken
1034                  * if @bdi is shutting down even when we're running off the
1035                  * rescuer as work_list needs to be drained.
1036                  */
1037                 do {
1038                         pages_written = wb_do_writeback(wb);
1039                         trace_writeback_pages_written(pages_written);
1040                 } while (!list_empty(&bdi->work_list));
1041         } else {
1042                 /*
1043                  * bdi_wq can't get enough workers and we're running off
1044                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1045                  * enough for efficient IO.
1046                  */
1047                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1048                                                     WB_REASON_FORKER_THREAD);
1049                 trace_writeback_pages_written(pages_written);
1050         }
1051
1052         if (!list_empty(&bdi->work_list) ||
1053             (wb_has_dirty_io(wb) && dirty_writeback_interval))
1054                 queue_delayed_work(bdi_wq, &wb->dwork,
1055                         msecs_to_jiffies(dirty_writeback_interval * 10));
1056
1057         current->flags &= ~PF_SWAPWRITE;
1058 }
1059
1060 /*
1061  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1062  * the whole world.
1063  */
1064 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1065 {
1066         struct backing_dev_info *bdi;
1067
1068         if (!nr_pages)
1069                 nr_pages = get_nr_dirty_pages();
1070
1071         rcu_read_lock();
1072         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1073                 if (!bdi_has_dirty_io(bdi))
1074                         continue;
1075                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1076         }
1077         rcu_read_unlock();
1078 }
1079
1080 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1081 {
1082         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1083                 struct dentry *dentry;
1084                 const char *name = "?";
1085
1086                 dentry = d_find_alias(inode);
1087                 if (dentry) {
1088                         spin_lock(&dentry->d_lock);
1089                         name = (const char *) dentry->d_name.name;
1090                 }
1091                 printk(KERN_DEBUG
1092                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1093                        current->comm, task_pid_nr(current), inode->i_ino,
1094                        name, inode->i_sb->s_id);
1095                 if (dentry) {
1096                         spin_unlock(&dentry->d_lock);
1097                         dput(dentry);
1098                 }
1099         }
1100 }
1101
1102 /**
1103  *      __mark_inode_dirty -    internal function
1104  *      @inode: inode to mark
1105  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1106  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1107  *      mark_inode_dirty_sync.
1108  *
1109  * Put the inode on the super block's dirty list.
1110  *
1111  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1112  * dirty list only if it is hashed or if it refers to a blockdev.
1113  * If it was not hashed, it will never be added to the dirty list
1114  * even if it is later hashed, as it will have been marked dirty already.
1115  *
1116  * In short, make sure you hash any inodes _before_ you start marking
1117  * them dirty.
1118  *
1119  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1120  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1121  * the kernel-internal blockdev inode represents the dirtying time of the
1122  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1123  * page->mapping->host, so the page-dirtying time is recorded in the internal
1124  * blockdev inode.
1125  */
1126 void __mark_inode_dirty(struct inode *inode, int flags)
1127 {
1128         struct super_block *sb = inode->i_sb;
1129         struct backing_dev_info *bdi = NULL;
1130
1131         /*
1132          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1133          * dirty the inode itself
1134          */
1135         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1136                 trace_writeback_dirty_inode_start(inode, flags);
1137
1138                 if (sb->s_op->dirty_inode)
1139                         sb->s_op->dirty_inode(inode, flags);
1140
1141                 trace_writeback_dirty_inode(inode, flags);
1142         }
1143
1144         /*
1145          * make sure that changes are seen by all cpus before we test i_state
1146          * -- mikulas
1147          */
1148         smp_mb();
1149
1150         /* avoid the locking if we can */
1151         if ((inode->i_state & flags) == flags)
1152                 return;
1153
1154         if (unlikely(block_dump))
1155                 block_dump___mark_inode_dirty(inode);
1156
1157         spin_lock(&inode->i_lock);
1158         if ((inode->i_state & flags) != flags) {
1159                 const int was_dirty = inode->i_state & I_DIRTY;
1160
1161                 inode->i_state |= flags;
1162
1163                 /*
1164                  * If the inode is being synced, just update its dirty state.
1165                  * The unlocker will place the inode on the appropriate
1166                  * superblock list, based upon its state.
1167                  */
1168                 if (inode->i_state & I_SYNC)
1169                         goto out_unlock_inode;
1170
1171                 /*
1172                  * Only add valid (hashed) inodes to the superblock's
1173                  * dirty list.  Add blockdev inodes as well.
1174                  */
1175                 if (!S_ISBLK(inode->i_mode)) {
1176                         if (inode_unhashed(inode))
1177                                 goto out_unlock_inode;
1178                 }
1179                 if (inode->i_state & I_FREEING)
1180                         goto out_unlock_inode;
1181
1182                 /*
1183                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1184                  * reposition it (that would break b_dirty time-ordering).
1185                  */
1186                 if (!was_dirty) {
1187                         bool wakeup_bdi = false;
1188                         bdi = inode_to_bdi(inode);
1189
1190                         spin_unlock(&inode->i_lock);
1191                         spin_lock(&bdi->wb.list_lock);
1192                         if (bdi_cap_writeback_dirty(bdi)) {
1193                                 WARN(!test_bit(BDI_registered, &bdi->state),
1194                                      "bdi-%s not registered\n", bdi->name);
1195
1196                                 /*
1197                                  * If this is the first dirty inode for this
1198                                  * bdi, we have to wake-up the corresponding
1199                                  * bdi thread to make sure background
1200                                  * write-back happens later.
1201                                  */
1202                                 if (!wb_has_dirty_io(&bdi->wb))
1203                                         wakeup_bdi = true;
1204                         }
1205
1206                         inode->dirtied_when = jiffies;
1207                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1208                         spin_unlock(&bdi->wb.list_lock);
1209
1210                         if (wakeup_bdi)
1211                                 bdi_wakeup_thread_delayed(bdi);
1212                         return;
1213                 }
1214         }
1215 out_unlock_inode:
1216         spin_unlock(&inode->i_lock);
1217
1218 }
1219 EXPORT_SYMBOL(__mark_inode_dirty);
1220
1221 static void wait_sb_inodes(struct super_block *sb)
1222 {
1223         struct inode *inode, *old_inode = NULL;
1224
1225         /*
1226          * We need to be protected against the filesystem going from
1227          * r/o to r/w or vice versa.
1228          */
1229         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1230
1231         spin_lock(&inode_sb_list_lock);
1232
1233         /*
1234          * Data integrity sync. Must wait for all pages under writeback,
1235          * because there may have been pages dirtied before our sync
1236          * call, but which had writeout started before we write it out.
1237          * In which case, the inode may not be on the dirty list, but
1238          * we still have to wait for that writeout.
1239          */
1240         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1241                 struct address_space *mapping = inode->i_mapping;
1242
1243                 spin_lock(&inode->i_lock);
1244                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1245                     (mapping->nrpages == 0)) {
1246                         spin_unlock(&inode->i_lock);
1247                         continue;
1248                 }
1249                 __iget(inode);
1250                 spin_unlock(&inode->i_lock);
1251                 spin_unlock(&inode_sb_list_lock);
1252
1253                 /*
1254                  * We hold a reference to 'inode' so it couldn't have been
1255                  * removed from s_inodes list while we dropped the
1256                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1257                  * be holding the last reference and we cannot iput it under
1258                  * inode_sb_list_lock. So we keep the reference and iput it
1259                  * later.
1260                  */
1261                 iput(old_inode);
1262                 old_inode = inode;
1263
1264                 filemap_fdatawait(mapping);
1265
1266                 cond_resched();
1267
1268                 spin_lock(&inode_sb_list_lock);
1269         }
1270         spin_unlock(&inode_sb_list_lock);
1271         iput(old_inode);
1272 }
1273
1274 /**
1275  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1276  * @sb: the superblock
1277  * @nr: the number of pages to write
1278  * @reason: reason why some writeback work initiated
1279  *
1280  * Start writeback on some inodes on this super_block. No guarantees are made
1281  * on how many (if any) will be written, and this function does not wait
1282  * for IO completion of submitted IO.
1283  */
1284 void writeback_inodes_sb_nr(struct super_block *sb,
1285                             unsigned long nr,
1286                             enum wb_reason reason)
1287 {
1288         DECLARE_COMPLETION_ONSTACK(done);
1289         struct wb_writeback_work work = {
1290                 .sb                     = sb,
1291                 .sync_mode              = WB_SYNC_NONE,
1292                 .tagged_writepages      = 1,
1293                 .done                   = &done,
1294                 .nr_pages               = nr,
1295                 .reason                 = reason,
1296         };
1297
1298         if (sb->s_bdi == &noop_backing_dev_info)
1299                 return;
1300         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1301         bdi_queue_work(sb->s_bdi, &work);
1302         wait_for_completion(&done);
1303 }
1304 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1305
1306 /**
1307  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1308  * @sb: the superblock
1309  * @reason: reason why some writeback work was initiated
1310  *
1311  * Start writeback on some inodes on this super_block. No guarantees are made
1312  * on how many (if any) will be written, and this function does not wait
1313  * for IO completion of submitted IO.
1314  */
1315 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1316 {
1317         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1318 }
1319 EXPORT_SYMBOL(writeback_inodes_sb);
1320
1321 /**
1322  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1323  * @sb: the superblock
1324  * @nr: the number of pages to write
1325  * @reason: the reason of writeback
1326  *
1327  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1328  * Returns 1 if writeback was started, 0 if not.
1329  */
1330 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1331                                   unsigned long nr,
1332                                   enum wb_reason reason)
1333 {
1334         if (writeback_in_progress(sb->s_bdi))
1335                 return 1;
1336
1337         if (!down_read_trylock(&sb->s_umount))
1338                 return 0;
1339
1340         writeback_inodes_sb_nr(sb, nr, reason);
1341         up_read(&sb->s_umount);
1342         return 1;
1343 }
1344 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1345
1346 /**
1347  * try_to_writeback_inodes_sb - try to start writeback if none underway
1348  * @sb: the superblock
1349  * @reason: reason why some writeback work was initiated
1350  *
1351  * Implement by try_to_writeback_inodes_sb_nr()
1352  * Returns 1 if writeback was started, 0 if not.
1353  */
1354 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1355 {
1356         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1357 }
1358 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1359
1360 /**
1361  * sync_inodes_sb       -       sync sb inode pages
1362  * @sb:                 the superblock
1363  * @older_than_this:    timestamp
1364  *
1365  * This function writes and waits on any dirty inode belonging to this
1366  * superblock that has been dirtied before given timestamp.
1367  */
1368 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this)
1369 {
1370         DECLARE_COMPLETION_ONSTACK(done);
1371         struct wb_writeback_work work = {
1372                 .sb             = sb,
1373                 .sync_mode      = WB_SYNC_ALL,
1374                 .nr_pages       = LONG_MAX,
1375                 .older_than_this = older_than_this,
1376                 .older_than_this_is_set = 1,
1377                 .range_cyclic   = 0,
1378                 .done           = &done,
1379                 .reason         = WB_REASON_SYNC,
1380                 .for_sync       = 1,
1381         };
1382
1383         /* Nothing to do? */
1384         if (sb->s_bdi == &noop_backing_dev_info)
1385                 return;
1386         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1387
1388         bdi_queue_work(sb->s_bdi, &work);
1389         wait_for_completion(&done);
1390
1391         wait_sb_inodes(sb);
1392 }
1393 EXPORT_SYMBOL(sync_inodes_sb);
1394
1395 /**
1396  * write_inode_now      -       write an inode to disk
1397  * @inode: inode to write to disk
1398  * @sync: whether the write should be synchronous or not
1399  *
1400  * This function commits an inode to disk immediately if it is dirty. This is
1401  * primarily needed by knfsd.
1402  *
1403  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1404  */
1405 int write_inode_now(struct inode *inode, int sync)
1406 {
1407         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1408         struct writeback_control wbc = {
1409                 .nr_to_write = LONG_MAX,
1410                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1411                 .range_start = 0,
1412                 .range_end = LLONG_MAX,
1413         };
1414
1415         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1416                 wbc.nr_to_write = 0;
1417
1418         might_sleep();
1419         return writeback_single_inode(inode, wb, &wbc);
1420 }
1421 EXPORT_SYMBOL(write_inode_now);
1422
1423 /**
1424  * sync_inode - write an inode and its pages to disk.
1425  * @inode: the inode to sync
1426  * @wbc: controls the writeback mode
1427  *
1428  * sync_inode() will write an inode and its pages to disk.  It will also
1429  * correctly update the inode on its superblock's dirty inode lists and will
1430  * update inode->i_state.
1431  *
1432  * The caller must have a ref on the inode.
1433  */
1434 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1437 }
1438 EXPORT_SYMBOL(sync_inode);
1439
1440 /**
1441  * sync_inode_metadata - write an inode to disk
1442  * @inode: the inode to sync
1443  * @wait: wait for I/O to complete.
1444  *
1445  * Write an inode to disk and adjust its dirty state after completion.
1446  *
1447  * Note: only writes the actual inode, no associated data or other metadata.
1448  */
1449 int sync_inode_metadata(struct inode *inode, int wait)
1450 {
1451         struct writeback_control wbc = {
1452                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1453                 .nr_to_write = 0, /* metadata-only */
1454         };
1455
1456         return sync_inode(inode, &wbc);
1457 }
1458 EXPORT_SYMBOL(sync_inode_metadata);