Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[cascardo/linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109                   unsigned int line, const char *fmt, ...)
110 {
111         struct va_format vaf;
112         va_list args;
113
114         if (level > jbd2_journal_enable_debug)
115                 return;
116         va_start(args, fmt);
117         vaf.fmt = fmt;
118         vaf.va = &args;
119         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120         va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128         if (!jbd2_journal_has_csum_v2or3_feature(j))
129                 return 1;
130
131         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136         __u32 csum;
137         __be32 old_csum;
138
139         old_csum = sb->s_checksum;
140         sb->s_checksum = 0;
141         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142         sb->s_checksum = old_csum;
143
144         return cpu_to_be32(csum);
145 }
146
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149         if (!jbd2_journal_has_csum_v2or3(j))
150                 return 1;
151
152         return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157         if (!jbd2_journal_has_csum_v2or3(j))
158                 return;
159
160         sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164  * Helper function used to manage commit timeouts
165  */
166
167 static void commit_timeout(unsigned long __data)
168 {
169         struct task_struct * p = (struct task_struct *) __data;
170
171         wake_up_process(p);
172 }
173
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189
190 static int kjournald2(void *arg)
191 {
192         journal_t *journal = arg;
193         transaction_t *transaction;
194
195         /*
196          * Set up an interval timer which can be used to trigger a commit wakeup
197          * after the commit interval expires
198          */
199         setup_timer(&journal->j_commit_timer, commit_timeout,
200                         (unsigned long)current);
201
202         set_freezable();
203
204         /* Record that the journal thread is running */
205         journal->j_task = current;
206         wake_up(&journal->j_wait_done_commit);
207
208         /*
209          * And now, wait forever for commit wakeup events.
210          */
211         write_lock(&journal->j_state_lock);
212
213 loop:
214         if (journal->j_flags & JBD2_UNMOUNT)
215                 goto end_loop;
216
217         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218                 journal->j_commit_sequence, journal->j_commit_request);
219
220         if (journal->j_commit_sequence != journal->j_commit_request) {
221                 jbd_debug(1, "OK, requests differ\n");
222                 write_unlock(&journal->j_state_lock);
223                 del_timer_sync(&journal->j_commit_timer);
224                 jbd2_journal_commit_transaction(journal);
225                 write_lock(&journal->j_state_lock);
226                 goto loop;
227         }
228
229         wake_up(&journal->j_wait_done_commit);
230         if (freezing(current)) {
231                 /*
232                  * The simpler the better. Flushing journal isn't a
233                  * good idea, because that depends on threads that may
234                  * be already stopped.
235                  */
236                 jbd_debug(1, "Now suspending kjournald2\n");
237                 write_unlock(&journal->j_state_lock);
238                 try_to_freeze();
239                 write_lock(&journal->j_state_lock);
240         } else {
241                 /*
242                  * We assume on resume that commits are already there,
243                  * so we don't sleep
244                  */
245                 DEFINE_WAIT(wait);
246                 int should_sleep = 1;
247
248                 prepare_to_wait(&journal->j_wait_commit, &wait,
249                                 TASK_INTERRUPTIBLE);
250                 if (journal->j_commit_sequence != journal->j_commit_request)
251                         should_sleep = 0;
252                 transaction = journal->j_running_transaction;
253                 if (transaction && time_after_eq(jiffies,
254                                                 transaction->t_expires))
255                         should_sleep = 0;
256                 if (journal->j_flags & JBD2_UNMOUNT)
257                         should_sleep = 0;
258                 if (should_sleep) {
259                         write_unlock(&journal->j_state_lock);
260                         schedule();
261                         write_lock(&journal->j_state_lock);
262                 }
263                 finish_wait(&journal->j_wait_commit, &wait);
264         }
265
266         jbd_debug(1, "kjournald2 wakes\n");
267
268         /*
269          * Were we woken up by a commit wakeup event?
270          */
271         transaction = journal->j_running_transaction;
272         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273                 journal->j_commit_request = transaction->t_tid;
274                 jbd_debug(1, "woke because of timeout\n");
275         }
276         goto loop;
277
278 end_loop:
279         write_unlock(&journal->j_state_lock);
280         del_timer_sync(&journal->j_commit_timer);
281         journal->j_task = NULL;
282         wake_up(&journal->j_wait_done_commit);
283         jbd_debug(1, "Journal thread exiting.\n");
284         return 0;
285 }
286
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289         struct task_struct *t;
290
291         t = kthread_run(kjournald2, journal, "jbd2/%s",
292                         journal->j_devname);
293         if (IS_ERR(t))
294                 return PTR_ERR(t);
295
296         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297         return 0;
298 }
299
300 static void journal_kill_thread(journal_t *journal)
301 {
302         write_lock(&journal->j_state_lock);
303         journal->j_flags |= JBD2_UNMOUNT;
304
305         while (journal->j_task) {
306                 write_unlock(&journal->j_state_lock);
307                 wake_up(&journal->j_wait_commit);
308                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309                 write_lock(&journal->j_state_lock);
310         }
311         write_unlock(&journal->j_state_lock);
312 }
313
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  * 
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350                                   struct journal_head  *jh_in,
351                                   struct buffer_head **bh_out,
352                                   sector_t blocknr)
353 {
354         int need_copy_out = 0;
355         int done_copy_out = 0;
356         int do_escape = 0;
357         char *mapped_data;
358         struct buffer_head *new_bh;
359         struct page *new_page;
360         unsigned int new_offset;
361         struct buffer_head *bh_in = jh2bh(jh_in);
362         journal_t *journal = transaction->t_journal;
363
364         /*
365          * The buffer really shouldn't be locked: only the current committing
366          * transaction is allowed to write it, so nobody else is allowed
367          * to do any IO.
368          *
369          * akpm: except if we're journalling data, and write() output is
370          * also part of a shared mapping, and another thread has
371          * decided to launch a writepage() against this buffer.
372          */
373         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374
375         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376
377         /* keep subsequent assertions sane */
378         atomic_set(&new_bh->b_count, 1);
379
380         jbd_lock_bh_state(bh_in);
381 repeat:
382         /*
383          * If a new transaction has already done a buffer copy-out, then
384          * we use that version of the data for the commit.
385          */
386         if (jh_in->b_frozen_data) {
387                 done_copy_out = 1;
388                 new_page = virt_to_page(jh_in->b_frozen_data);
389                 new_offset = offset_in_page(jh_in->b_frozen_data);
390         } else {
391                 new_page = jh2bh(jh_in)->b_page;
392                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393         }
394
395         mapped_data = kmap_atomic(new_page);
396         /*
397          * Fire data frozen trigger if data already wasn't frozen.  Do this
398          * before checking for escaping, as the trigger may modify the magic
399          * offset.  If a copy-out happens afterwards, it will have the correct
400          * data in the buffer.
401          */
402         if (!done_copy_out)
403                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404                                            jh_in->b_triggers);
405
406         /*
407          * Check for escaping
408          */
409         if (*((__be32 *)(mapped_data + new_offset)) ==
410                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411                 need_copy_out = 1;
412                 do_escape = 1;
413         }
414         kunmap_atomic(mapped_data);
415
416         /*
417          * Do we need to do a data copy?
418          */
419         if (need_copy_out && !done_copy_out) {
420                 char *tmp;
421
422                 jbd_unlock_bh_state(bh_in);
423                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424                 if (!tmp) {
425                         brelse(new_bh);
426                         return -ENOMEM;
427                 }
428                 jbd_lock_bh_state(bh_in);
429                 if (jh_in->b_frozen_data) {
430                         jbd2_free(tmp, bh_in->b_size);
431                         goto repeat;
432                 }
433
434                 jh_in->b_frozen_data = tmp;
435                 mapped_data = kmap_atomic(new_page);
436                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437                 kunmap_atomic(mapped_data);
438
439                 new_page = virt_to_page(tmp);
440                 new_offset = offset_in_page(tmp);
441                 done_copy_out = 1;
442
443                 /*
444                  * This isn't strictly necessary, as we're using frozen
445                  * data for the escaping, but it keeps consistency with
446                  * b_frozen_data usage.
447                  */
448                 jh_in->b_frozen_triggers = jh_in->b_triggers;
449         }
450
451         /*
452          * Did we need to do an escaping?  Now we've done all the
453          * copying, we can finally do so.
454          */
455         if (do_escape) {
456                 mapped_data = kmap_atomic(new_page);
457                 *((unsigned int *)(mapped_data + new_offset)) = 0;
458                 kunmap_atomic(mapped_data);
459         }
460
461         set_bh_page(new_bh, new_page, new_offset);
462         new_bh->b_size = bh_in->b_size;
463         new_bh->b_bdev = journal->j_dev;
464         new_bh->b_blocknr = blocknr;
465         new_bh->b_private = bh_in;
466         set_buffer_mapped(new_bh);
467         set_buffer_dirty(new_bh);
468
469         *bh_out = new_bh;
470
471         /*
472          * The to-be-written buffer needs to get moved to the io queue,
473          * and the original buffer whose contents we are shadowing or
474          * copying is moved to the transaction's shadow queue.
475          */
476         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477         spin_lock(&journal->j_list_lock);
478         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479         spin_unlock(&journal->j_list_lock);
480         set_buffer_shadow(bh_in);
481         jbd_unlock_bh_state(bh_in);
482
483         return do_escape | (done_copy_out << 1);
484 }
485
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497         /* Return if the txn has already requested to be committed */
498         if (journal->j_commit_request == target)
499                 return 0;
500
501         /*
502          * The only transaction we can possibly wait upon is the
503          * currently running transaction (if it exists).  Otherwise,
504          * the target tid must be an old one.
505          */
506         if (journal->j_running_transaction &&
507             journal->j_running_transaction->t_tid == target) {
508                 /*
509                  * We want a new commit: OK, mark the request and wakeup the
510                  * commit thread.  We do _not_ do the commit ourselves.
511                  */
512
513                 journal->j_commit_request = target;
514                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515                           journal->j_commit_request,
516                           journal->j_commit_sequence);
517                 journal->j_running_transaction->t_requested = jiffies;
518                 wake_up(&journal->j_wait_commit);
519                 return 1;
520         } else if (!tid_geq(journal->j_commit_request, target))
521                 /* This should never happen, but if it does, preserve
522                    the evidence before kjournald goes into a loop and
523                    increments j_commit_sequence beyond all recognition. */
524                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525                           journal->j_commit_request,
526                           journal->j_commit_sequence,
527                           target, journal->j_running_transaction ? 
528                           journal->j_running_transaction->t_tid : 0);
529         return 0;
530 }
531
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534         int ret;
535
536         write_lock(&journal->j_state_lock);
537         ret = __jbd2_log_start_commit(journal, tid);
538         write_unlock(&journal->j_state_lock);
539         return ret;
540 }
541
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551         transaction_t *transaction = NULL;
552         tid_t tid;
553         int need_to_start = 0, ret = 0;
554
555         read_lock(&journal->j_state_lock);
556         if (journal->j_running_transaction && !current->journal_info) {
557                 transaction = journal->j_running_transaction;
558                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559                         need_to_start = 1;
560         } else if (journal->j_committing_transaction)
561                 transaction = journal->j_committing_transaction;
562
563         if (!transaction) {
564                 /* Nothing to commit */
565                 read_unlock(&journal->j_state_lock);
566                 return 0;
567         }
568         tid = transaction->t_tid;
569         read_unlock(&journal->j_state_lock);
570         if (need_to_start)
571                 jbd2_log_start_commit(journal, tid);
572         ret = jbd2_log_wait_commit(journal, tid);
573         if (!ret)
574                 ret = 1;
575
576         return ret;
577 }
578
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589         int ret;
590
591         ret = __jbd2_journal_force_commit(journal);
592         return ret > 0;
593 }
594
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604         int ret;
605
606         J_ASSERT(!current->journal_info);
607         ret = __jbd2_journal_force_commit(journal);
608         if (ret > 0)
609                 ret = 0;
610         return ret;
611 }
612
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620         int ret = 0;
621
622         write_lock(&journal->j_state_lock);
623         if (journal->j_running_transaction) {
624                 tid_t tid = journal->j_running_transaction->t_tid;
625
626                 __jbd2_log_start_commit(journal, tid);
627                 /* There's a running transaction and we've just made sure
628                  * it's commit has been scheduled. */
629                 if (ptid)
630                         *ptid = tid;
631                 ret = 1;
632         } else if (journal->j_committing_transaction) {
633                 /*
634                  * If commit has been started, then we have to wait for
635                  * completion of that transaction.
636                  */
637                 if (ptid)
638                         *ptid = journal->j_committing_transaction->t_tid;
639                 ret = 1;
640         }
641         write_unlock(&journal->j_state_lock);
642         return ret;
643 }
644
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653         int ret = 0;
654         transaction_t *commit_trans;
655
656         if (!(journal->j_flags & JBD2_BARRIER))
657                 return 0;
658         read_lock(&journal->j_state_lock);
659         /* Transaction already committed? */
660         if (tid_geq(journal->j_commit_sequence, tid))
661                 goto out;
662         commit_trans = journal->j_committing_transaction;
663         if (!commit_trans || commit_trans->t_tid != tid) {
664                 ret = 1;
665                 goto out;
666         }
667         /*
668          * Transaction is being committed and we already proceeded to
669          * submitting a flush to fs partition?
670          */
671         if (journal->j_fs_dev != journal->j_dev) {
672                 if (!commit_trans->t_need_data_flush ||
673                     commit_trans->t_state >= T_COMMIT_DFLUSH)
674                         goto out;
675         } else {
676                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677                         goto out;
678         }
679         ret = 1;
680 out:
681         read_unlock(&journal->j_state_lock);
682         return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692         int err = 0;
693
694         jbd2_might_wait_for_commit(journal);
695         read_lock(&journal->j_state_lock);
696 #ifdef CONFIG_JBD2_DEBUG
697         if (!tid_geq(journal->j_commit_request, tid)) {
698                 printk(KERN_ERR
699                        "%s: error: j_commit_request=%d, tid=%d\n",
700                        __func__, journal->j_commit_request, tid);
701         }
702 #endif
703         while (tid_gt(tid, journal->j_commit_sequence)) {
704                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
705                                   tid, journal->j_commit_sequence);
706                 read_unlock(&journal->j_state_lock);
707                 wake_up(&journal->j_wait_commit);
708                 wait_event(journal->j_wait_done_commit,
709                                 !tid_gt(tid, journal->j_commit_sequence));
710                 read_lock(&journal->j_state_lock);
711         }
712         read_unlock(&journal->j_state_lock);
713
714         if (unlikely(is_journal_aborted(journal)))
715                 err = -EIO;
716         return err;
717 }
718
719 /*
720  * When this function returns the transaction corresponding to tid
721  * will be completed.  If the transaction has currently running, start
722  * committing that transaction before waiting for it to complete.  If
723  * the transaction id is stale, it is by definition already completed,
724  * so just return SUCCESS.
725  */
726 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
727 {
728         int     need_to_wait = 1;
729
730         read_lock(&journal->j_state_lock);
731         if (journal->j_running_transaction &&
732             journal->j_running_transaction->t_tid == tid) {
733                 if (journal->j_commit_request != tid) {
734                         /* transaction not yet started, so request it */
735                         read_unlock(&journal->j_state_lock);
736                         jbd2_log_start_commit(journal, tid);
737                         goto wait_commit;
738                 }
739         } else if (!(journal->j_committing_transaction &&
740                      journal->j_committing_transaction->t_tid == tid))
741                 need_to_wait = 0;
742         read_unlock(&journal->j_state_lock);
743         if (!need_to_wait)
744                 return 0;
745 wait_commit:
746         return jbd2_log_wait_commit(journal, tid);
747 }
748 EXPORT_SYMBOL(jbd2_complete_transaction);
749
750 /*
751  * Log buffer allocation routines:
752  */
753
754 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
755 {
756         unsigned long blocknr;
757
758         write_lock(&journal->j_state_lock);
759         J_ASSERT(journal->j_free > 1);
760
761         blocknr = journal->j_head;
762         journal->j_head++;
763         journal->j_free--;
764         if (journal->j_head == journal->j_last)
765                 journal->j_head = journal->j_first;
766         write_unlock(&journal->j_state_lock);
767         return jbd2_journal_bmap(journal, blocknr, retp);
768 }
769
770 /*
771  * Conversion of logical to physical block numbers for the journal
772  *
773  * On external journals the journal blocks are identity-mapped, so
774  * this is a no-op.  If needed, we can use j_blk_offset - everything is
775  * ready.
776  */
777 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
778                  unsigned long long *retp)
779 {
780         int err = 0;
781         unsigned long long ret;
782
783         if (journal->j_inode) {
784                 ret = bmap(journal->j_inode, blocknr);
785                 if (ret)
786                         *retp = ret;
787                 else {
788                         printk(KERN_ALERT "%s: journal block not found "
789                                         "at offset %lu on %s\n",
790                                __func__, blocknr, journal->j_devname);
791                         err = -EIO;
792                         __journal_abort_soft(journal, err);
793                 }
794         } else {
795                 *retp = blocknr; /* +journal->j_blk_offset */
796         }
797         return err;
798 }
799
800 /*
801  * We play buffer_head aliasing tricks to write data/metadata blocks to
802  * the journal without copying their contents, but for journal
803  * descriptor blocks we do need to generate bona fide buffers.
804  *
805  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
806  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
807  * But we don't bother doing that, so there will be coherency problems with
808  * mmaps of blockdevs which hold live JBD-controlled filesystems.
809  */
810 struct buffer_head *
811 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
812 {
813         journal_t *journal = transaction->t_journal;
814         struct buffer_head *bh;
815         unsigned long long blocknr;
816         journal_header_t *header;
817         int err;
818
819         err = jbd2_journal_next_log_block(journal, &blocknr);
820
821         if (err)
822                 return NULL;
823
824         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
825         if (!bh)
826                 return NULL;
827         lock_buffer(bh);
828         memset(bh->b_data, 0, journal->j_blocksize);
829         header = (journal_header_t *)bh->b_data;
830         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
831         header->h_blocktype = cpu_to_be32(type);
832         header->h_sequence = cpu_to_be32(transaction->t_tid);
833         set_buffer_uptodate(bh);
834         unlock_buffer(bh);
835         BUFFER_TRACE(bh, "return this buffer");
836         return bh;
837 }
838
839 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
840 {
841         struct jbd2_journal_block_tail *tail;
842         __u32 csum;
843
844         if (!jbd2_journal_has_csum_v2or3(j))
845                 return;
846
847         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
848                         sizeof(struct jbd2_journal_block_tail));
849         tail->t_checksum = 0;
850         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
851         tail->t_checksum = cpu_to_be32(csum);
852 }
853
854 /*
855  * Return tid of the oldest transaction in the journal and block in the journal
856  * where the transaction starts.
857  *
858  * If the journal is now empty, return which will be the next transaction ID
859  * we will write and where will that transaction start.
860  *
861  * The return value is 0 if journal tail cannot be pushed any further, 1 if
862  * it can.
863  */
864 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
865                               unsigned long *block)
866 {
867         transaction_t *transaction;
868         int ret;
869
870         read_lock(&journal->j_state_lock);
871         spin_lock(&journal->j_list_lock);
872         transaction = journal->j_checkpoint_transactions;
873         if (transaction) {
874                 *tid = transaction->t_tid;
875                 *block = transaction->t_log_start;
876         } else if ((transaction = journal->j_committing_transaction) != NULL) {
877                 *tid = transaction->t_tid;
878                 *block = transaction->t_log_start;
879         } else if ((transaction = journal->j_running_transaction) != NULL) {
880                 *tid = transaction->t_tid;
881                 *block = journal->j_head;
882         } else {
883                 *tid = journal->j_transaction_sequence;
884                 *block = journal->j_head;
885         }
886         ret = tid_gt(*tid, journal->j_tail_sequence);
887         spin_unlock(&journal->j_list_lock);
888         read_unlock(&journal->j_state_lock);
889
890         return ret;
891 }
892
893 /*
894  * Update information in journal structure and in on disk journal superblock
895  * about log tail. This function does not check whether information passed in
896  * really pushes log tail further. It's responsibility of the caller to make
897  * sure provided log tail information is valid (e.g. by holding
898  * j_checkpoint_mutex all the time between computing log tail and calling this
899  * function as is the case with jbd2_cleanup_journal_tail()).
900  *
901  * Requires j_checkpoint_mutex
902  */
903 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
904 {
905         unsigned long freed;
906         int ret;
907
908         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
909
910         /*
911          * We cannot afford for write to remain in drive's caches since as
912          * soon as we update j_tail, next transaction can start reusing journal
913          * space and if we lose sb update during power failure we'd replay
914          * old transaction with possibly newly overwritten data.
915          */
916         ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
917         if (ret)
918                 goto out;
919
920         write_lock(&journal->j_state_lock);
921         freed = block - journal->j_tail;
922         if (block < journal->j_tail)
923                 freed += journal->j_last - journal->j_first;
924
925         trace_jbd2_update_log_tail(journal, tid, block, freed);
926         jbd_debug(1,
927                   "Cleaning journal tail from %d to %d (offset %lu), "
928                   "freeing %lu\n",
929                   journal->j_tail_sequence, tid, block, freed);
930
931         journal->j_free += freed;
932         journal->j_tail_sequence = tid;
933         journal->j_tail = block;
934         write_unlock(&journal->j_state_lock);
935
936 out:
937         return ret;
938 }
939
940 /*
941  * This is a variaon of __jbd2_update_log_tail which checks for validity of
942  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
943  * with other threads updating log tail.
944  */
945 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
946 {
947         mutex_lock(&journal->j_checkpoint_mutex);
948         if (tid_gt(tid, journal->j_tail_sequence))
949                 __jbd2_update_log_tail(journal, tid, block);
950         mutex_unlock(&journal->j_checkpoint_mutex);
951 }
952
953 struct jbd2_stats_proc_session {
954         journal_t *journal;
955         struct transaction_stats_s *stats;
956         int start;
957         int max;
958 };
959
960 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
961 {
962         return *pos ? NULL : SEQ_START_TOKEN;
963 }
964
965 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
966 {
967         return NULL;
968 }
969
970 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
971 {
972         struct jbd2_stats_proc_session *s = seq->private;
973
974         if (v != SEQ_START_TOKEN)
975                 return 0;
976         seq_printf(seq, "%lu transactions (%lu requested), "
977                    "each up to %u blocks\n",
978                    s->stats->ts_tid, s->stats->ts_requested,
979                    s->journal->j_max_transaction_buffers);
980         if (s->stats->ts_tid == 0)
981                 return 0;
982         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
983             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
984         seq_printf(seq, "  %ums request delay\n",
985             (s->stats->ts_requested == 0) ? 0 :
986             jiffies_to_msecs(s->stats->run.rs_request_delay /
987                              s->stats->ts_requested));
988         seq_printf(seq, "  %ums running transaction\n",
989             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
990         seq_printf(seq, "  %ums transaction was being locked\n",
991             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
992         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
993             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
994         seq_printf(seq, "  %ums logging transaction\n",
995             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
996         seq_printf(seq, "  %lluus average transaction commit time\n",
997                    div_u64(s->journal->j_average_commit_time, 1000));
998         seq_printf(seq, "  %lu handles per transaction\n",
999             s->stats->run.rs_handle_count / s->stats->ts_tid);
1000         seq_printf(seq, "  %lu blocks per transaction\n",
1001             s->stats->run.rs_blocks / s->stats->ts_tid);
1002         seq_printf(seq, "  %lu logged blocks per transaction\n",
1003             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1004         return 0;
1005 }
1006
1007 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1008 {
1009 }
1010
1011 static const struct seq_operations jbd2_seq_info_ops = {
1012         .start  = jbd2_seq_info_start,
1013         .next   = jbd2_seq_info_next,
1014         .stop   = jbd2_seq_info_stop,
1015         .show   = jbd2_seq_info_show,
1016 };
1017
1018 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1019 {
1020         journal_t *journal = PDE_DATA(inode);
1021         struct jbd2_stats_proc_session *s;
1022         int rc, size;
1023
1024         s = kmalloc(sizeof(*s), GFP_KERNEL);
1025         if (s == NULL)
1026                 return -ENOMEM;
1027         size = sizeof(struct transaction_stats_s);
1028         s->stats = kmalloc(size, GFP_KERNEL);
1029         if (s->stats == NULL) {
1030                 kfree(s);
1031                 return -ENOMEM;
1032         }
1033         spin_lock(&journal->j_history_lock);
1034         memcpy(s->stats, &journal->j_stats, size);
1035         s->journal = journal;
1036         spin_unlock(&journal->j_history_lock);
1037
1038         rc = seq_open(file, &jbd2_seq_info_ops);
1039         if (rc == 0) {
1040                 struct seq_file *m = file->private_data;
1041                 m->private = s;
1042         } else {
1043                 kfree(s->stats);
1044                 kfree(s);
1045         }
1046         return rc;
1047
1048 }
1049
1050 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1051 {
1052         struct seq_file *seq = file->private_data;
1053         struct jbd2_stats_proc_session *s = seq->private;
1054         kfree(s->stats);
1055         kfree(s);
1056         return seq_release(inode, file);
1057 }
1058
1059 static const struct file_operations jbd2_seq_info_fops = {
1060         .owner          = THIS_MODULE,
1061         .open           = jbd2_seq_info_open,
1062         .read           = seq_read,
1063         .llseek         = seq_lseek,
1064         .release        = jbd2_seq_info_release,
1065 };
1066
1067 static struct proc_dir_entry *proc_jbd2_stats;
1068
1069 static void jbd2_stats_proc_init(journal_t *journal)
1070 {
1071         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1072         if (journal->j_proc_entry) {
1073                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1074                                  &jbd2_seq_info_fops, journal);
1075         }
1076 }
1077
1078 static void jbd2_stats_proc_exit(journal_t *journal)
1079 {
1080         remove_proc_entry("info", journal->j_proc_entry);
1081         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1082 }
1083
1084 /*
1085  * Management for journal control blocks: functions to create and
1086  * destroy journal_t structures, and to initialise and read existing
1087  * journal blocks from disk.  */
1088
1089 /* First: create and setup a journal_t object in memory.  We initialise
1090  * very few fields yet: that has to wait until we have created the
1091  * journal structures from from scratch, or loaded them from disk. */
1092
1093 static journal_t * journal_init_common (void)
1094 {
1095         static struct lock_class_key jbd2_trans_commit_key;
1096         journal_t *journal;
1097         int err;
1098
1099         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1100         if (!journal)
1101                 return NULL;
1102
1103         init_waitqueue_head(&journal->j_wait_transaction_locked);
1104         init_waitqueue_head(&journal->j_wait_done_commit);
1105         init_waitqueue_head(&journal->j_wait_commit);
1106         init_waitqueue_head(&journal->j_wait_updates);
1107         init_waitqueue_head(&journal->j_wait_reserved);
1108         mutex_init(&journal->j_barrier);
1109         mutex_init(&journal->j_checkpoint_mutex);
1110         spin_lock_init(&journal->j_revoke_lock);
1111         spin_lock_init(&journal->j_list_lock);
1112         rwlock_init(&journal->j_state_lock);
1113
1114         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1115         journal->j_min_batch_time = 0;
1116         journal->j_max_batch_time = 15000; /* 15ms */
1117         atomic_set(&journal->j_reserved_credits, 0);
1118
1119         /* The journal is marked for error until we succeed with recovery! */
1120         journal->j_flags = JBD2_ABORT;
1121
1122         /* Set up a default-sized revoke table for the new mount. */
1123         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1124         if (err) {
1125                 kfree(journal);
1126                 return NULL;
1127         }
1128
1129         spin_lock_init(&journal->j_history_lock);
1130
1131         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1132                          &jbd2_trans_commit_key, 0);
1133
1134         return journal;
1135 }
1136
1137 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1138  *
1139  * Create a journal structure assigned some fixed set of disk blocks to
1140  * the journal.  We don't actually touch those disk blocks yet, but we
1141  * need to set up all of the mapping information to tell the journaling
1142  * system where the journal blocks are.
1143  *
1144  */
1145
1146 /**
1147  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1148  *  @bdev: Block device on which to create the journal
1149  *  @fs_dev: Device which hold journalled filesystem for this journal.
1150  *  @start: Block nr Start of journal.
1151  *  @len:  Length of the journal in blocks.
1152  *  @blocksize: blocksize of journalling device
1153  *
1154  *  Returns: a newly created journal_t *
1155  *
1156  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1157  *  range of blocks on an arbitrary block device.
1158  *
1159  */
1160 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1161                         struct block_device *fs_dev,
1162                         unsigned long long start, int len, int blocksize)
1163 {
1164         journal_t *journal = journal_init_common();
1165         struct buffer_head *bh;
1166         int n;
1167
1168         if (!journal)
1169                 return NULL;
1170
1171         /* journal descriptor can store up to n blocks -bzzz */
1172         journal->j_blocksize = blocksize;
1173         journal->j_dev = bdev;
1174         journal->j_fs_dev = fs_dev;
1175         journal->j_blk_offset = start;
1176         journal->j_maxlen = len;
1177         bdevname(journal->j_dev, journal->j_devname);
1178         strreplace(journal->j_devname, '/', '!');
1179         jbd2_stats_proc_init(journal);
1180         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1181         journal->j_wbufsize = n;
1182         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1183         if (!journal->j_wbuf) {
1184                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1185                         __func__);
1186                 goto out_err;
1187         }
1188
1189         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1190         if (!bh) {
1191                 printk(KERN_ERR
1192                        "%s: Cannot get buffer for journal superblock\n",
1193                        __func__);
1194                 goto out_err;
1195         }
1196         journal->j_sb_buffer = bh;
1197         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1198
1199         return journal;
1200 out_err:
1201         kfree(journal->j_wbuf);
1202         jbd2_stats_proc_exit(journal);
1203         kfree(journal);
1204         return NULL;
1205 }
1206
1207 /**
1208  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1209  *  @inode: An inode to create the journal in
1210  *
1211  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1212  * the journal.  The inode must exist already, must support bmap() and
1213  * must have all data blocks preallocated.
1214  */
1215 journal_t * jbd2_journal_init_inode (struct inode *inode)
1216 {
1217         struct buffer_head *bh;
1218         journal_t *journal = journal_init_common();
1219         char *p;
1220         int err;
1221         int n;
1222         unsigned long long blocknr;
1223
1224         if (!journal)
1225                 return NULL;
1226
1227         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1228         journal->j_inode = inode;
1229         bdevname(journal->j_dev, journal->j_devname);
1230         p = strreplace(journal->j_devname, '/', '!');
1231         sprintf(p, "-%lu", journal->j_inode->i_ino);
1232         jbd_debug(1,
1233                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1234                   journal, inode->i_sb->s_id, inode->i_ino,
1235                   (long long) inode->i_size,
1236                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1237
1238         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1239         journal->j_blocksize = inode->i_sb->s_blocksize;
1240         jbd2_stats_proc_init(journal);
1241
1242         /* journal descriptor can store up to n blocks -bzzz */
1243         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1244         journal->j_wbufsize = n;
1245         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1246         if (!journal->j_wbuf) {
1247                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1248                         __func__);
1249                 goto out_err;
1250         }
1251
1252         err = jbd2_journal_bmap(journal, 0, &blocknr);
1253         /* If that failed, give up */
1254         if (err) {
1255                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1256                        __func__);
1257                 goto out_err;
1258         }
1259
1260         bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1261         if (!bh) {
1262                 printk(KERN_ERR
1263                        "%s: Cannot get buffer for journal superblock\n",
1264                        __func__);
1265                 goto out_err;
1266         }
1267         journal->j_sb_buffer = bh;
1268         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1269
1270         return journal;
1271 out_err:
1272         kfree(journal->j_wbuf);
1273         jbd2_stats_proc_exit(journal);
1274         kfree(journal);
1275         return NULL;
1276 }
1277
1278 /*
1279  * If the journal init or create aborts, we need to mark the journal
1280  * superblock as being NULL to prevent the journal destroy from writing
1281  * back a bogus superblock.
1282  */
1283 static void journal_fail_superblock (journal_t *journal)
1284 {
1285         struct buffer_head *bh = journal->j_sb_buffer;
1286         brelse(bh);
1287         journal->j_sb_buffer = NULL;
1288 }
1289
1290 /*
1291  * Given a journal_t structure, initialise the various fields for
1292  * startup of a new journaling session.  We use this both when creating
1293  * a journal, and after recovering an old journal to reset it for
1294  * subsequent use.
1295  */
1296
1297 static int journal_reset(journal_t *journal)
1298 {
1299         journal_superblock_t *sb = journal->j_superblock;
1300         unsigned long long first, last;
1301
1302         first = be32_to_cpu(sb->s_first);
1303         last = be32_to_cpu(sb->s_maxlen);
1304         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1305                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1306                        first, last);
1307                 journal_fail_superblock(journal);
1308                 return -EINVAL;
1309         }
1310
1311         journal->j_first = first;
1312         journal->j_last = last;
1313
1314         journal->j_head = first;
1315         journal->j_tail = first;
1316         journal->j_free = last - first;
1317
1318         journal->j_tail_sequence = journal->j_transaction_sequence;
1319         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1320         journal->j_commit_request = journal->j_commit_sequence;
1321
1322         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1323
1324         /*
1325          * As a special case, if the on-disk copy is already marked as needing
1326          * no recovery (s_start == 0), then we can safely defer the superblock
1327          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1328          * attempting a write to a potential-readonly device.
1329          */
1330         if (sb->s_start == 0) {
1331                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1332                         "(start %ld, seq %d, errno %d)\n",
1333                         journal->j_tail, journal->j_tail_sequence,
1334                         journal->j_errno);
1335                 journal->j_flags |= JBD2_FLUSHED;
1336         } else {
1337                 /* Lock here to make assertions happy... */
1338                 mutex_lock(&journal->j_checkpoint_mutex);
1339                 /*
1340                  * Update log tail information. We use WRITE_FUA since new
1341                  * transaction will start reusing journal space and so we
1342                  * must make sure information about current log tail is on
1343                  * disk before that.
1344                  */
1345                 jbd2_journal_update_sb_log_tail(journal,
1346                                                 journal->j_tail_sequence,
1347                                                 journal->j_tail,
1348                                                 WRITE_FUA);
1349                 mutex_unlock(&journal->j_checkpoint_mutex);
1350         }
1351         return jbd2_journal_start_thread(journal);
1352 }
1353
1354 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1355 {
1356         struct buffer_head *bh = journal->j_sb_buffer;
1357         journal_superblock_t *sb = journal->j_superblock;
1358         int ret;
1359
1360         trace_jbd2_write_superblock(journal, write_flags);
1361         if (!(journal->j_flags & JBD2_BARRIER))
1362                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1363         lock_buffer(bh);
1364         if (buffer_write_io_error(bh)) {
1365                 /*
1366                  * Oh, dear.  A previous attempt to write the journal
1367                  * superblock failed.  This could happen because the
1368                  * USB device was yanked out.  Or it could happen to
1369                  * be a transient write error and maybe the block will
1370                  * be remapped.  Nothing we can do but to retry the
1371                  * write and hope for the best.
1372                  */
1373                 printk(KERN_ERR "JBD2: previous I/O error detected "
1374                        "for journal superblock update for %s.\n",
1375                        journal->j_devname);
1376                 clear_buffer_write_io_error(bh);
1377                 set_buffer_uptodate(bh);
1378         }
1379         jbd2_superblock_csum_set(journal, sb);
1380         get_bh(bh);
1381         bh->b_end_io = end_buffer_write_sync;
1382         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1383         wait_on_buffer(bh);
1384         if (buffer_write_io_error(bh)) {
1385                 clear_buffer_write_io_error(bh);
1386                 set_buffer_uptodate(bh);
1387                 ret = -EIO;
1388         }
1389         if (ret) {
1390                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1391                        "journal superblock for %s.\n", ret,
1392                        journal->j_devname);
1393                 jbd2_journal_abort(journal, ret);
1394         }
1395
1396         return ret;
1397 }
1398
1399 /**
1400  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1401  * @journal: The journal to update.
1402  * @tail_tid: TID of the new transaction at the tail of the log
1403  * @tail_block: The first block of the transaction at the tail of the log
1404  * @write_op: With which operation should we write the journal sb
1405  *
1406  * Update a journal's superblock information about log tail and write it to
1407  * disk, waiting for the IO to complete.
1408  */
1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1410                                      unsigned long tail_block, int write_op)
1411 {
1412         journal_superblock_t *sb = journal->j_superblock;
1413         int ret;
1414
1415         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417                   tail_block, tail_tid);
1418
1419         sb->s_sequence = cpu_to_be32(tail_tid);
1420         sb->s_start    = cpu_to_be32(tail_block);
1421
1422         ret = jbd2_write_superblock(journal, write_op);
1423         if (ret)
1424                 goto out;
1425
1426         /* Log is no longer empty */
1427         write_lock(&journal->j_state_lock);
1428         WARN_ON(!sb->s_sequence);
1429         journal->j_flags &= ~JBD2_FLUSHED;
1430         write_unlock(&journal->j_state_lock);
1431
1432 out:
1433         return ret;
1434 }
1435
1436 /**
1437  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438  * @journal: The journal to update.
1439  * @write_op: With which operation should we write the journal sb
1440  *
1441  * Update a journal's dynamic superblock fields to show that journal is empty.
1442  * Write updated superblock to disk waiting for IO to complete.
1443  */
1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 {
1446         journal_superblock_t *sb = journal->j_superblock;
1447
1448         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449         read_lock(&journal->j_state_lock);
1450         /* Is it already empty? */
1451         if (sb->s_start == 0) {
1452                 read_unlock(&journal->j_state_lock);
1453                 return;
1454         }
1455         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1456                   journal->j_tail_sequence);
1457
1458         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459         sb->s_start    = cpu_to_be32(0);
1460         read_unlock(&journal->j_state_lock);
1461
1462         jbd2_write_superblock(journal, write_op);
1463
1464         /* Log is no longer empty */
1465         write_lock(&journal->j_state_lock);
1466         journal->j_flags |= JBD2_FLUSHED;
1467         write_unlock(&journal->j_state_lock);
1468 }
1469
1470
1471 /**
1472  * jbd2_journal_update_sb_errno() - Update error in the journal.
1473  * @journal: The journal to update.
1474  *
1475  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1476  * to complete.
1477  */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480         journal_superblock_t *sb = journal->j_superblock;
1481
1482         read_lock(&journal->j_state_lock);
1483         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1484                   journal->j_errno);
1485         sb->s_errno    = cpu_to_be32(journal->j_errno);
1486         read_unlock(&journal->j_state_lock);
1487
1488         jbd2_write_superblock(journal, WRITE_FUA);
1489 }
1490 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1491
1492 /*
1493  * Read the superblock for a given journal, performing initial
1494  * validation of the format.
1495  */
1496 static int journal_get_superblock(journal_t *journal)
1497 {
1498         struct buffer_head *bh;
1499         journal_superblock_t *sb;
1500         int err = -EIO;
1501
1502         bh = journal->j_sb_buffer;
1503
1504         J_ASSERT(bh != NULL);
1505         if (!buffer_uptodate(bh)) {
1506                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1507                 wait_on_buffer(bh);
1508                 if (!buffer_uptodate(bh)) {
1509                         printk(KERN_ERR
1510                                 "JBD2: IO error reading journal superblock\n");
1511                         goto out;
1512                 }
1513         }
1514
1515         if (buffer_verified(bh))
1516                 return 0;
1517
1518         sb = journal->j_superblock;
1519
1520         err = -EINVAL;
1521
1522         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1523             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1524                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1525                 goto out;
1526         }
1527
1528         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1529         case JBD2_SUPERBLOCK_V1:
1530                 journal->j_format_version = 1;
1531                 break;
1532         case JBD2_SUPERBLOCK_V2:
1533                 journal->j_format_version = 2;
1534                 break;
1535         default:
1536                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1537                 goto out;
1538         }
1539
1540         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1541                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1542         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1543                 printk(KERN_WARNING "JBD2: journal file too short\n");
1544                 goto out;
1545         }
1546
1547         if (be32_to_cpu(sb->s_first) == 0 ||
1548             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1549                 printk(KERN_WARNING
1550                         "JBD2: Invalid start block of journal: %u\n",
1551                         be32_to_cpu(sb->s_first));
1552                 goto out;
1553         }
1554
1555         if (jbd2_has_feature_csum2(journal) &&
1556             jbd2_has_feature_csum3(journal)) {
1557                 /* Can't have checksum v2 and v3 at the same time! */
1558                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1559                        "at the same time!\n");
1560                 goto out;
1561         }
1562
1563         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1564             jbd2_has_feature_checksum(journal)) {
1565                 /* Can't have checksum v1 and v2 on at the same time! */
1566                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1567                        "at the same time!\n");
1568                 goto out;
1569         }
1570
1571         if (!jbd2_verify_csum_type(journal, sb)) {
1572                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1573                 goto out;
1574         }
1575
1576         /* Load the checksum driver */
1577         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1578                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1579                 if (IS_ERR(journal->j_chksum_driver)) {
1580                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1581                         err = PTR_ERR(journal->j_chksum_driver);
1582                         journal->j_chksum_driver = NULL;
1583                         goto out;
1584                 }
1585         }
1586
1587         /* Check superblock checksum */
1588         if (!jbd2_superblock_csum_verify(journal, sb)) {
1589                 printk(KERN_ERR "JBD2: journal checksum error\n");
1590                 err = -EFSBADCRC;
1591                 goto out;
1592         }
1593
1594         /* Precompute checksum seed for all metadata */
1595         if (jbd2_journal_has_csum_v2or3(journal))
1596                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1597                                                    sizeof(sb->s_uuid));
1598
1599         set_buffer_verified(bh);
1600
1601         return 0;
1602
1603 out:
1604         journal_fail_superblock(journal);
1605         return err;
1606 }
1607
1608 /*
1609  * Load the on-disk journal superblock and read the key fields into the
1610  * journal_t.
1611  */
1612
1613 static int load_superblock(journal_t *journal)
1614 {
1615         int err;
1616         journal_superblock_t *sb;
1617
1618         err = journal_get_superblock(journal);
1619         if (err)
1620                 return err;
1621
1622         sb = journal->j_superblock;
1623
1624         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625         journal->j_tail = be32_to_cpu(sb->s_start);
1626         journal->j_first = be32_to_cpu(sb->s_first);
1627         journal->j_last = be32_to_cpu(sb->s_maxlen);
1628         journal->j_errno = be32_to_cpu(sb->s_errno);
1629
1630         return 0;
1631 }
1632
1633
1634 /**
1635  * int jbd2_journal_load() - Read journal from disk.
1636  * @journal: Journal to act on.
1637  *
1638  * Given a journal_t structure which tells us which disk blocks contain
1639  * a journal, read the journal from disk to initialise the in-memory
1640  * structures.
1641  */
1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644         int err;
1645         journal_superblock_t *sb;
1646
1647         err = load_superblock(journal);
1648         if (err)
1649                 return err;
1650
1651         sb = journal->j_superblock;
1652         /* If this is a V2 superblock, then we have to check the
1653          * features flags on it. */
1654
1655         if (journal->j_format_version >= 2) {
1656                 if ((sb->s_feature_ro_compat &
1657                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658                     (sb->s_feature_incompat &
1659                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660                         printk(KERN_WARNING
1661                                 "JBD2: Unrecognised features on journal\n");
1662                         return -EINVAL;
1663                 }
1664         }
1665
1666         /*
1667          * Create a slab for this blocksize
1668          */
1669         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670         if (err)
1671                 return err;
1672
1673         /* Let the recovery code check whether it needs to recover any
1674          * data from the journal. */
1675         if (jbd2_journal_recover(journal))
1676                 goto recovery_error;
1677
1678         if (journal->j_failed_commit) {
1679                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680                        "is corrupt.\n", journal->j_failed_commit,
1681                        journal->j_devname);
1682                 return -EFSCORRUPTED;
1683         }
1684
1685         /* OK, we've finished with the dynamic journal bits:
1686          * reinitialise the dynamic contents of the superblock in memory
1687          * and reset them on disk. */
1688         if (journal_reset(journal))
1689                 goto recovery_error;
1690
1691         journal->j_flags &= ~JBD2_ABORT;
1692         journal->j_flags |= JBD2_LOADED;
1693         return 0;
1694
1695 recovery_error:
1696         printk(KERN_WARNING "JBD2: recovery failed\n");
1697         return -EIO;
1698 }
1699
1700 /**
1701  * void jbd2_journal_destroy() - Release a journal_t structure.
1702  * @journal: Journal to act on.
1703  *
1704  * Release a journal_t structure once it is no longer in use by the
1705  * journaled object.
1706  * Return <0 if we couldn't clean up the journal.
1707  */
1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710         int err = 0;
1711
1712         /* Wait for the commit thread to wake up and die. */
1713         journal_kill_thread(journal);
1714
1715         /* Force a final log commit */
1716         if (journal->j_running_transaction)
1717                 jbd2_journal_commit_transaction(journal);
1718
1719         /* Force any old transactions to disk */
1720
1721         /* Totally anal locking here... */
1722         spin_lock(&journal->j_list_lock);
1723         while (journal->j_checkpoint_transactions != NULL) {
1724                 spin_unlock(&journal->j_list_lock);
1725                 mutex_lock(&journal->j_checkpoint_mutex);
1726                 err = jbd2_log_do_checkpoint(journal);
1727                 mutex_unlock(&journal->j_checkpoint_mutex);
1728                 /*
1729                  * If checkpointing failed, just free the buffers to avoid
1730                  * looping forever
1731                  */
1732                 if (err) {
1733                         jbd2_journal_destroy_checkpoint(journal);
1734                         spin_lock(&journal->j_list_lock);
1735                         break;
1736                 }
1737                 spin_lock(&journal->j_list_lock);
1738         }
1739
1740         J_ASSERT(journal->j_running_transaction == NULL);
1741         J_ASSERT(journal->j_committing_transaction == NULL);
1742         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743         spin_unlock(&journal->j_list_lock);
1744
1745         if (journal->j_sb_buffer) {
1746                 if (!is_journal_aborted(journal)) {
1747                         mutex_lock(&journal->j_checkpoint_mutex);
1748
1749                         write_lock(&journal->j_state_lock);
1750                         journal->j_tail_sequence =
1751                                 ++journal->j_transaction_sequence;
1752                         write_unlock(&journal->j_state_lock);
1753
1754                         jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1755                         mutex_unlock(&journal->j_checkpoint_mutex);
1756                 } else
1757                         err = -EIO;
1758                 brelse(journal->j_sb_buffer);
1759         }
1760
1761         if (journal->j_proc_entry)
1762                 jbd2_stats_proc_exit(journal);
1763         iput(journal->j_inode);
1764         if (journal->j_revoke)
1765                 jbd2_journal_destroy_revoke(journal);
1766         if (journal->j_chksum_driver)
1767                 crypto_free_shash(journal->j_chksum_driver);
1768         kfree(journal->j_wbuf);
1769         kfree(journal);
1770
1771         return err;
1772 }
1773
1774
1775 /**
1776  *int jbd2_journal_check_used_features () - Check if features specified are used.
1777  * @journal: Journal to check.
1778  * @compat: bitmask of compatible features
1779  * @ro: bitmask of features that force read-only mount
1780  * @incompat: bitmask of incompatible features
1781  *
1782  * Check whether the journal uses all of a given set of
1783  * features.  Return true (non-zero) if it does.
1784  **/
1785
1786 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1787                                  unsigned long ro, unsigned long incompat)
1788 {
1789         journal_superblock_t *sb;
1790
1791         if (!compat && !ro && !incompat)
1792                 return 1;
1793         /* Load journal superblock if it is not loaded yet. */
1794         if (journal->j_format_version == 0 &&
1795             journal_get_superblock(journal) != 0)
1796                 return 0;
1797         if (journal->j_format_version == 1)
1798                 return 0;
1799
1800         sb = journal->j_superblock;
1801
1802         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1803             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1804             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1805                 return 1;
1806
1807         return 0;
1808 }
1809
1810 /**
1811  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1812  * @journal: Journal to check.
1813  * @compat: bitmask of compatible features
1814  * @ro: bitmask of features that force read-only mount
1815  * @incompat: bitmask of incompatible features
1816  *
1817  * Check whether the journaling code supports the use of
1818  * all of a given set of features on this journal.  Return true
1819  * (non-zero) if it can. */
1820
1821 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1822                                       unsigned long ro, unsigned long incompat)
1823 {
1824         if (!compat && !ro && !incompat)
1825                 return 1;
1826
1827         /* We can support any known requested features iff the
1828          * superblock is in version 2.  Otherwise we fail to support any
1829          * extended sb features. */
1830
1831         if (journal->j_format_version != 2)
1832                 return 0;
1833
1834         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1835             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1836             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1837                 return 1;
1838
1839         return 0;
1840 }
1841
1842 /**
1843  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1844  * @journal: Journal to act on.
1845  * @compat: bitmask of compatible features
1846  * @ro: bitmask of features that force read-only mount
1847  * @incompat: bitmask of incompatible features
1848  *
1849  * Mark a given journal feature as present on the
1850  * superblock.  Returns true if the requested features could be set.
1851  *
1852  */
1853
1854 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1855                           unsigned long ro, unsigned long incompat)
1856 {
1857 #define INCOMPAT_FEATURE_ON(f) \
1858                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1859 #define COMPAT_FEATURE_ON(f) \
1860                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1861         journal_superblock_t *sb;
1862
1863         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1864                 return 1;
1865
1866         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1867                 return 0;
1868
1869         /* If enabling v2 checksums, turn on v3 instead */
1870         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1871                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1872                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1873         }
1874
1875         /* Asking for checksumming v3 and v1?  Only give them v3. */
1876         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1877             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1878                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1879
1880         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1881                   compat, ro, incompat);
1882
1883         sb = journal->j_superblock;
1884
1885         /* If enabling v3 checksums, update superblock */
1886         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1887                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1888                 sb->s_feature_compat &=
1889                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1890
1891                 /* Load the checksum driver */
1892                 if (journal->j_chksum_driver == NULL) {
1893                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1894                                                                       0, 0);
1895                         if (IS_ERR(journal->j_chksum_driver)) {
1896                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1897                                        "driver.\n");
1898                                 journal->j_chksum_driver = NULL;
1899                                 return 0;
1900                         }
1901
1902                         /* Precompute checksum seed for all metadata */
1903                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1904                                                            sb->s_uuid,
1905                                                            sizeof(sb->s_uuid));
1906                 }
1907         }
1908
1909         /* If enabling v1 checksums, downgrade superblock */
1910         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911                 sb->s_feature_incompat &=
1912                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914
1915         sb->s_feature_compat    |= cpu_to_be32(compat);
1916         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1918
1919         return 1;
1920 #undef COMPAT_FEATURE_ON
1921 #undef INCOMPAT_FEATURE_ON
1922 }
1923
1924 /*
1925  * jbd2_journal_clear_features () - Clear a given journal feature in the
1926  *                                  superblock
1927  * @journal: Journal to act on.
1928  * @compat: bitmask of compatible features
1929  * @ro: bitmask of features that force read-only mount
1930  * @incompat: bitmask of incompatible features
1931  *
1932  * Clear a given journal feature as present on the
1933  * superblock.
1934  */
1935 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1936                                 unsigned long ro, unsigned long incompat)
1937 {
1938         journal_superblock_t *sb;
1939
1940         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1941                   compat, ro, incompat);
1942
1943         sb = journal->j_superblock;
1944
1945         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1946         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1947         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1948 }
1949 EXPORT_SYMBOL(jbd2_journal_clear_features);
1950
1951 /**
1952  * int jbd2_journal_flush () - Flush journal
1953  * @journal: Journal to act on.
1954  *
1955  * Flush all data for a given journal to disk and empty the journal.
1956  * Filesystems can use this when remounting readonly to ensure that
1957  * recovery does not need to happen on remount.
1958  */
1959
1960 int jbd2_journal_flush(journal_t *journal)
1961 {
1962         int err = 0;
1963         transaction_t *transaction = NULL;
1964
1965         write_lock(&journal->j_state_lock);
1966
1967         /* Force everything buffered to the log... */
1968         if (journal->j_running_transaction) {
1969                 transaction = journal->j_running_transaction;
1970                 __jbd2_log_start_commit(journal, transaction->t_tid);
1971         } else if (journal->j_committing_transaction)
1972                 transaction = journal->j_committing_transaction;
1973
1974         /* Wait for the log commit to complete... */
1975         if (transaction) {
1976                 tid_t tid = transaction->t_tid;
1977
1978                 write_unlock(&journal->j_state_lock);
1979                 jbd2_log_wait_commit(journal, tid);
1980         } else {
1981                 write_unlock(&journal->j_state_lock);
1982         }
1983
1984         /* ...and flush everything in the log out to disk. */
1985         spin_lock(&journal->j_list_lock);
1986         while (!err && journal->j_checkpoint_transactions != NULL) {
1987                 spin_unlock(&journal->j_list_lock);
1988                 mutex_lock(&journal->j_checkpoint_mutex);
1989                 err = jbd2_log_do_checkpoint(journal);
1990                 mutex_unlock(&journal->j_checkpoint_mutex);
1991                 spin_lock(&journal->j_list_lock);
1992         }
1993         spin_unlock(&journal->j_list_lock);
1994
1995         if (is_journal_aborted(journal))
1996                 return -EIO;
1997
1998         mutex_lock(&journal->j_checkpoint_mutex);
1999         if (!err) {
2000                 err = jbd2_cleanup_journal_tail(journal);
2001                 if (err < 0) {
2002                         mutex_unlock(&journal->j_checkpoint_mutex);
2003                         goto out;
2004                 }
2005                 err = 0;
2006         }
2007
2008         /* Finally, mark the journal as really needing no recovery.
2009          * This sets s_start==0 in the underlying superblock, which is
2010          * the magic code for a fully-recovered superblock.  Any future
2011          * commits of data to the journal will restore the current
2012          * s_start value. */
2013         jbd2_mark_journal_empty(journal, WRITE_FUA);
2014         mutex_unlock(&journal->j_checkpoint_mutex);
2015         write_lock(&journal->j_state_lock);
2016         J_ASSERT(!journal->j_running_transaction);
2017         J_ASSERT(!journal->j_committing_transaction);
2018         J_ASSERT(!journal->j_checkpoint_transactions);
2019         J_ASSERT(journal->j_head == journal->j_tail);
2020         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2021         write_unlock(&journal->j_state_lock);
2022 out:
2023         return err;
2024 }
2025
2026 /**
2027  * int jbd2_journal_wipe() - Wipe journal contents
2028  * @journal: Journal to act on.
2029  * @write: flag (see below)
2030  *
2031  * Wipe out all of the contents of a journal, safely.  This will produce
2032  * a warning if the journal contains any valid recovery information.
2033  * Must be called between journal_init_*() and jbd2_journal_load().
2034  *
2035  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2036  * we merely suppress recovery.
2037  */
2038
2039 int jbd2_journal_wipe(journal_t *journal, int write)
2040 {
2041         int err = 0;
2042
2043         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2044
2045         err = load_superblock(journal);
2046         if (err)
2047                 return err;
2048
2049         if (!journal->j_tail)
2050                 goto no_recovery;
2051
2052         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2053                 write ? "Clearing" : "Ignoring");
2054
2055         err = jbd2_journal_skip_recovery(journal);
2056         if (write) {
2057                 /* Lock to make assertions happy... */
2058                 mutex_lock(&journal->j_checkpoint_mutex);
2059                 jbd2_mark_journal_empty(journal, WRITE_FUA);
2060                 mutex_unlock(&journal->j_checkpoint_mutex);
2061         }
2062
2063  no_recovery:
2064         return err;
2065 }
2066
2067 /*
2068  * Journal abort has very specific semantics, which we describe
2069  * for journal abort.
2070  *
2071  * Two internal functions, which provide abort to the jbd layer
2072  * itself are here.
2073  */
2074
2075 /*
2076  * Quick version for internal journal use (doesn't lock the journal).
2077  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2078  * and don't attempt to make any other journal updates.
2079  */
2080 void __jbd2_journal_abort_hard(journal_t *journal)
2081 {
2082         transaction_t *transaction;
2083
2084         if (journal->j_flags & JBD2_ABORT)
2085                 return;
2086
2087         printk(KERN_ERR "Aborting journal on device %s.\n",
2088                journal->j_devname);
2089
2090         write_lock(&journal->j_state_lock);
2091         journal->j_flags |= JBD2_ABORT;
2092         transaction = journal->j_running_transaction;
2093         if (transaction)
2094                 __jbd2_log_start_commit(journal, transaction->t_tid);
2095         write_unlock(&journal->j_state_lock);
2096 }
2097
2098 /* Soft abort: record the abort error status in the journal superblock,
2099  * but don't do any other IO. */
2100 static void __journal_abort_soft (journal_t *journal, int errno)
2101 {
2102         if (journal->j_flags & JBD2_ABORT)
2103                 return;
2104
2105         if (!journal->j_errno)
2106                 journal->j_errno = errno;
2107
2108         __jbd2_journal_abort_hard(journal);
2109
2110         if (errno) {
2111                 jbd2_journal_update_sb_errno(journal);
2112                 write_lock(&journal->j_state_lock);
2113                 journal->j_flags |= JBD2_REC_ERR;
2114                 write_unlock(&journal->j_state_lock);
2115         }
2116 }
2117
2118 /**
2119  * void jbd2_journal_abort () - Shutdown the journal immediately.
2120  * @journal: the journal to shutdown.
2121  * @errno:   an error number to record in the journal indicating
2122  *           the reason for the shutdown.
2123  *
2124  * Perform a complete, immediate shutdown of the ENTIRE
2125  * journal (not of a single transaction).  This operation cannot be
2126  * undone without closing and reopening the journal.
2127  *
2128  * The jbd2_journal_abort function is intended to support higher level error
2129  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2130  * mode.
2131  *
2132  * Journal abort has very specific semantics.  Any existing dirty,
2133  * unjournaled buffers in the main filesystem will still be written to
2134  * disk by bdflush, but the journaling mechanism will be suspended
2135  * immediately and no further transaction commits will be honoured.
2136  *
2137  * Any dirty, journaled buffers will be written back to disk without
2138  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2139  * filesystem, but we _do_ attempt to leave as much data as possible
2140  * behind for fsck to use for cleanup.
2141  *
2142  * Any attempt to get a new transaction handle on a journal which is in
2143  * ABORT state will just result in an -EROFS error return.  A
2144  * jbd2_journal_stop on an existing handle will return -EIO if we have
2145  * entered abort state during the update.
2146  *
2147  * Recursive transactions are not disturbed by journal abort until the
2148  * final jbd2_journal_stop, which will receive the -EIO error.
2149  *
2150  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2151  * which will be recorded (if possible) in the journal superblock.  This
2152  * allows a client to record failure conditions in the middle of a
2153  * transaction without having to complete the transaction to record the
2154  * failure to disk.  ext3_error, for example, now uses this
2155  * functionality.
2156  *
2157  * Errors which originate from within the journaling layer will NOT
2158  * supply an errno; a null errno implies that absolutely no further
2159  * writes are done to the journal (unless there are any already in
2160  * progress).
2161  *
2162  */
2163
2164 void jbd2_journal_abort(journal_t *journal, int errno)
2165 {
2166         __journal_abort_soft(journal, errno);
2167 }
2168
2169 /**
2170  * int jbd2_journal_errno () - returns the journal's error state.
2171  * @journal: journal to examine.
2172  *
2173  * This is the errno number set with jbd2_journal_abort(), the last
2174  * time the journal was mounted - if the journal was stopped
2175  * without calling abort this will be 0.
2176  *
2177  * If the journal has been aborted on this mount time -EROFS will
2178  * be returned.
2179  */
2180 int jbd2_journal_errno(journal_t *journal)
2181 {
2182         int err;
2183
2184         read_lock(&journal->j_state_lock);
2185         if (journal->j_flags & JBD2_ABORT)
2186                 err = -EROFS;
2187         else
2188                 err = journal->j_errno;
2189         read_unlock(&journal->j_state_lock);
2190         return err;
2191 }
2192
2193 /**
2194  * int jbd2_journal_clear_err () - clears the journal's error state
2195  * @journal: journal to act on.
2196  *
2197  * An error must be cleared or acked to take a FS out of readonly
2198  * mode.
2199  */
2200 int jbd2_journal_clear_err(journal_t *journal)
2201 {
2202         int err = 0;
2203
2204         write_lock(&journal->j_state_lock);
2205         if (journal->j_flags & JBD2_ABORT)
2206                 err = -EROFS;
2207         else
2208                 journal->j_errno = 0;
2209         write_unlock(&journal->j_state_lock);
2210         return err;
2211 }
2212
2213 /**
2214  * void jbd2_journal_ack_err() - Ack journal err.
2215  * @journal: journal to act on.
2216  *
2217  * An error must be cleared or acked to take a FS out of readonly
2218  * mode.
2219  */
2220 void jbd2_journal_ack_err(journal_t *journal)
2221 {
2222         write_lock(&journal->j_state_lock);
2223         if (journal->j_errno)
2224                 journal->j_flags |= JBD2_ACK_ERR;
2225         write_unlock(&journal->j_state_lock);
2226 }
2227
2228 int jbd2_journal_blocks_per_page(struct inode *inode)
2229 {
2230         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2231 }
2232
2233 /*
2234  * helper functions to deal with 32 or 64bit block numbers.
2235  */
2236 size_t journal_tag_bytes(journal_t *journal)
2237 {
2238         size_t sz;
2239
2240         if (jbd2_has_feature_csum3(journal))
2241                 return sizeof(journal_block_tag3_t);
2242
2243         sz = sizeof(journal_block_tag_t);
2244
2245         if (jbd2_has_feature_csum2(journal))
2246                 sz += sizeof(__u16);
2247
2248         if (jbd2_has_feature_64bit(journal))
2249                 return sz;
2250         else
2251                 return sz - sizeof(__u32);
2252 }
2253
2254 /*
2255  * JBD memory management
2256  *
2257  * These functions are used to allocate block-sized chunks of memory
2258  * used for making copies of buffer_head data.  Very often it will be
2259  * page-sized chunks of data, but sometimes it will be in
2260  * sub-page-size chunks.  (For example, 16k pages on Power systems
2261  * with a 4k block file system.)  For blocks smaller than a page, we
2262  * use a SLAB allocator.  There are slab caches for each block size,
2263  * which are allocated at mount time, if necessary, and we only free
2264  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2265  * this reason we don't need to a mutex to protect access to
2266  * jbd2_slab[] allocating or releasing memory; only in
2267  * jbd2_journal_create_slab().
2268  */
2269 #define JBD2_MAX_SLABS 8
2270 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2271
2272 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2273         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2274         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2275 };
2276
2277
2278 static void jbd2_journal_destroy_slabs(void)
2279 {
2280         int i;
2281
2282         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2283                 if (jbd2_slab[i])
2284                         kmem_cache_destroy(jbd2_slab[i]);
2285                 jbd2_slab[i] = NULL;
2286         }
2287 }
2288
2289 static int jbd2_journal_create_slab(size_t size)
2290 {
2291         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2292         int i = order_base_2(size) - 10;
2293         size_t slab_size;
2294
2295         if (size == PAGE_SIZE)
2296                 return 0;
2297
2298         if (i >= JBD2_MAX_SLABS)
2299                 return -EINVAL;
2300
2301         if (unlikely(i < 0))
2302                 i = 0;
2303         mutex_lock(&jbd2_slab_create_mutex);
2304         if (jbd2_slab[i]) {
2305                 mutex_unlock(&jbd2_slab_create_mutex);
2306                 return 0;       /* Already created */
2307         }
2308
2309         slab_size = 1 << (i+10);
2310         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2311                                          slab_size, 0, NULL);
2312         mutex_unlock(&jbd2_slab_create_mutex);
2313         if (!jbd2_slab[i]) {
2314                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2315                 return -ENOMEM;
2316         }
2317         return 0;
2318 }
2319
2320 static struct kmem_cache *get_slab(size_t size)
2321 {
2322         int i = order_base_2(size) - 10;
2323
2324         BUG_ON(i >= JBD2_MAX_SLABS);
2325         if (unlikely(i < 0))
2326                 i = 0;
2327         BUG_ON(jbd2_slab[i] == NULL);
2328         return jbd2_slab[i];
2329 }
2330
2331 void *jbd2_alloc(size_t size, gfp_t flags)
2332 {
2333         void *ptr;
2334
2335         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2336
2337         if (size < PAGE_SIZE)
2338                 ptr = kmem_cache_alloc(get_slab(size), flags);
2339         else
2340                 ptr = (void *)__get_free_pages(flags, get_order(size));
2341
2342         /* Check alignment; SLUB has gotten this wrong in the past,
2343          * and this can lead to user data corruption! */
2344         BUG_ON(((unsigned long) ptr) & (size-1));
2345
2346         return ptr;
2347 }
2348
2349 void jbd2_free(void *ptr, size_t size)
2350 {
2351         if (size < PAGE_SIZE)
2352                 kmem_cache_free(get_slab(size), ptr);
2353         else
2354                 free_pages((unsigned long)ptr, get_order(size));
2355 };
2356
2357 /*
2358  * Journal_head storage management
2359  */
2360 static struct kmem_cache *jbd2_journal_head_cache;
2361 #ifdef CONFIG_JBD2_DEBUG
2362 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2363 #endif
2364
2365 static int jbd2_journal_init_journal_head_cache(void)
2366 {
2367         int retval;
2368
2369         J_ASSERT(jbd2_journal_head_cache == NULL);
2370         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2371                                 sizeof(struct journal_head),
2372                                 0,              /* offset */
2373                                 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2374                                 NULL);          /* ctor */
2375         retval = 0;
2376         if (!jbd2_journal_head_cache) {
2377                 retval = -ENOMEM;
2378                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2379         }
2380         return retval;
2381 }
2382
2383 static void jbd2_journal_destroy_journal_head_cache(void)
2384 {
2385         if (jbd2_journal_head_cache) {
2386                 kmem_cache_destroy(jbd2_journal_head_cache);
2387                 jbd2_journal_head_cache = NULL;
2388         }
2389 }
2390
2391 /*
2392  * journal_head splicing and dicing
2393  */
2394 static struct journal_head *journal_alloc_journal_head(void)
2395 {
2396         struct journal_head *ret;
2397
2398 #ifdef CONFIG_JBD2_DEBUG
2399         atomic_inc(&nr_journal_heads);
2400 #endif
2401         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2402         if (!ret) {
2403                 jbd_debug(1, "out of memory for journal_head\n");
2404                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2405                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2406                                 GFP_NOFS | __GFP_NOFAIL);
2407         }
2408         return ret;
2409 }
2410
2411 static void journal_free_journal_head(struct journal_head *jh)
2412 {
2413 #ifdef CONFIG_JBD2_DEBUG
2414         atomic_dec(&nr_journal_heads);
2415         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2416 #endif
2417         kmem_cache_free(jbd2_journal_head_cache, jh);
2418 }
2419
2420 /*
2421  * A journal_head is attached to a buffer_head whenever JBD has an
2422  * interest in the buffer.
2423  *
2424  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2425  * is set.  This bit is tested in core kernel code where we need to take
2426  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2427  * there.
2428  *
2429  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2430  *
2431  * When a buffer has its BH_JBD bit set it is immune from being released by
2432  * core kernel code, mainly via ->b_count.
2433  *
2434  * A journal_head is detached from its buffer_head when the journal_head's
2435  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2436  * transaction (b_cp_transaction) hold their references to b_jcount.
2437  *
2438  * Various places in the kernel want to attach a journal_head to a buffer_head
2439  * _before_ attaching the journal_head to a transaction.  To protect the
2440  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2441  * journal_head's b_jcount refcount by one.  The caller must call
2442  * jbd2_journal_put_journal_head() to undo this.
2443  *
2444  * So the typical usage would be:
2445  *
2446  *      (Attach a journal_head if needed.  Increments b_jcount)
2447  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2448  *      ...
2449  *      (Get another reference for transaction)
2450  *      jbd2_journal_grab_journal_head(bh);
2451  *      jh->b_transaction = xxx;
2452  *      (Put original reference)
2453  *      jbd2_journal_put_journal_head(jh);
2454  */
2455
2456 /*
2457  * Give a buffer_head a journal_head.
2458  *
2459  * May sleep.
2460  */
2461 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2462 {
2463         struct journal_head *jh;
2464         struct journal_head *new_jh = NULL;
2465
2466 repeat:
2467         if (!buffer_jbd(bh))
2468                 new_jh = journal_alloc_journal_head();
2469
2470         jbd_lock_bh_journal_head(bh);
2471         if (buffer_jbd(bh)) {
2472                 jh = bh2jh(bh);
2473         } else {
2474                 J_ASSERT_BH(bh,
2475                         (atomic_read(&bh->b_count) > 0) ||
2476                         (bh->b_page && bh->b_page->mapping));
2477
2478                 if (!new_jh) {
2479                         jbd_unlock_bh_journal_head(bh);
2480                         goto repeat;
2481                 }
2482
2483                 jh = new_jh;
2484                 new_jh = NULL;          /* We consumed it */
2485                 set_buffer_jbd(bh);
2486                 bh->b_private = jh;
2487                 jh->b_bh = bh;
2488                 get_bh(bh);
2489                 BUFFER_TRACE(bh, "added journal_head");
2490         }
2491         jh->b_jcount++;
2492         jbd_unlock_bh_journal_head(bh);
2493         if (new_jh)
2494                 journal_free_journal_head(new_jh);
2495         return bh->b_private;
2496 }
2497
2498 /*
2499  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2500  * having a journal_head, return NULL
2501  */
2502 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2503 {
2504         struct journal_head *jh = NULL;
2505
2506         jbd_lock_bh_journal_head(bh);
2507         if (buffer_jbd(bh)) {
2508                 jh = bh2jh(bh);
2509                 jh->b_jcount++;
2510         }
2511         jbd_unlock_bh_journal_head(bh);
2512         return jh;
2513 }
2514
2515 static void __journal_remove_journal_head(struct buffer_head *bh)
2516 {
2517         struct journal_head *jh = bh2jh(bh);
2518
2519         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2520         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2521         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2522         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2523         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2524         J_ASSERT_BH(bh, buffer_jbd(bh));
2525         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2526         BUFFER_TRACE(bh, "remove journal_head");
2527         if (jh->b_frozen_data) {
2528                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2529                 jbd2_free(jh->b_frozen_data, bh->b_size);
2530         }
2531         if (jh->b_committed_data) {
2532                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2533                 jbd2_free(jh->b_committed_data, bh->b_size);
2534         }
2535         bh->b_private = NULL;
2536         jh->b_bh = NULL;        /* debug, really */
2537         clear_buffer_jbd(bh);
2538         journal_free_journal_head(jh);
2539 }
2540
2541 /*
2542  * Drop a reference on the passed journal_head.  If it fell to zero then
2543  * release the journal_head from the buffer_head.
2544  */
2545 void jbd2_journal_put_journal_head(struct journal_head *jh)
2546 {
2547         struct buffer_head *bh = jh2bh(jh);
2548
2549         jbd_lock_bh_journal_head(bh);
2550         J_ASSERT_JH(jh, jh->b_jcount > 0);
2551         --jh->b_jcount;
2552         if (!jh->b_jcount) {
2553                 __journal_remove_journal_head(bh);
2554                 jbd_unlock_bh_journal_head(bh);
2555                 __brelse(bh);
2556         } else
2557                 jbd_unlock_bh_journal_head(bh);
2558 }
2559
2560 /*
2561  * Initialize jbd inode head
2562  */
2563 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2564 {
2565         jinode->i_transaction = NULL;
2566         jinode->i_next_transaction = NULL;
2567         jinode->i_vfs_inode = inode;
2568         jinode->i_flags = 0;
2569         INIT_LIST_HEAD(&jinode->i_list);
2570 }
2571
2572 /*
2573  * Function to be called before we start removing inode from memory (i.e.,
2574  * clear_inode() is a fine place to be called from). It removes inode from
2575  * transaction's lists.
2576  */
2577 void jbd2_journal_release_jbd_inode(journal_t *journal,
2578                                     struct jbd2_inode *jinode)
2579 {
2580         if (!journal)
2581                 return;
2582 restart:
2583         spin_lock(&journal->j_list_lock);
2584         /* Is commit writing out inode - we have to wait */
2585         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2586                 wait_queue_head_t *wq;
2587                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2588                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2589                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2590                 spin_unlock(&journal->j_list_lock);
2591                 schedule();
2592                 finish_wait(wq, &wait.wait);
2593                 goto restart;
2594         }
2595
2596         if (jinode->i_transaction) {
2597                 list_del(&jinode->i_list);
2598                 jinode->i_transaction = NULL;
2599         }
2600         spin_unlock(&journal->j_list_lock);
2601 }
2602
2603
2604 #ifdef CONFIG_PROC_FS
2605
2606 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2607
2608 static void __init jbd2_create_jbd_stats_proc_entry(void)
2609 {
2610         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2611 }
2612
2613 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2614 {
2615         if (proc_jbd2_stats)
2616                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2617 }
2618
2619 #else
2620
2621 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2622 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2623
2624 #endif
2625
2626 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2627
2628 static int __init jbd2_journal_init_handle_cache(void)
2629 {
2630         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2631         if (jbd2_handle_cache == NULL) {
2632                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2633                 return -ENOMEM;
2634         }
2635         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2636         if (jbd2_inode_cache == NULL) {
2637                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2638                 kmem_cache_destroy(jbd2_handle_cache);
2639                 return -ENOMEM;
2640         }
2641         return 0;
2642 }
2643
2644 static void jbd2_journal_destroy_handle_cache(void)
2645 {
2646         if (jbd2_handle_cache)
2647                 kmem_cache_destroy(jbd2_handle_cache);
2648         if (jbd2_inode_cache)
2649                 kmem_cache_destroy(jbd2_inode_cache);
2650
2651 }
2652
2653 /*
2654  * Module startup and shutdown
2655  */
2656
2657 static int __init journal_init_caches(void)
2658 {
2659         int ret;
2660
2661         ret = jbd2_journal_init_revoke_caches();
2662         if (ret == 0)
2663                 ret = jbd2_journal_init_journal_head_cache();
2664         if (ret == 0)
2665                 ret = jbd2_journal_init_handle_cache();
2666         if (ret == 0)
2667                 ret = jbd2_journal_init_transaction_cache();
2668         return ret;
2669 }
2670
2671 static void jbd2_journal_destroy_caches(void)
2672 {
2673         jbd2_journal_destroy_revoke_caches();
2674         jbd2_journal_destroy_journal_head_cache();
2675         jbd2_journal_destroy_handle_cache();
2676         jbd2_journal_destroy_transaction_cache();
2677         jbd2_journal_destroy_slabs();
2678 }
2679
2680 static int __init journal_init(void)
2681 {
2682         int ret;
2683
2684         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2685
2686         ret = journal_init_caches();
2687         if (ret == 0) {
2688                 jbd2_create_jbd_stats_proc_entry();
2689         } else {
2690                 jbd2_journal_destroy_caches();
2691         }
2692         return ret;
2693 }
2694
2695 static void __exit journal_exit(void)
2696 {
2697 #ifdef CONFIG_JBD2_DEBUG
2698         int n = atomic_read(&nr_journal_heads);
2699         if (n)
2700                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2701 #endif
2702         jbd2_remove_jbd_stats_proc_entry();
2703         jbd2_journal_destroy_caches();
2704 }
2705
2706 MODULE_LICENSE("GPL");
2707 module_init(journal_init);
2708 module_exit(journal_exit);
2709