net/mlx4: Fix firmware command timeout during interrupt test
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         jbd2_might_wait_for_commit(journal);
163         schedule();
164         finish_wait(&journal->j_wait_transaction_locked, &wait);
165 }
166
167 static void sub_reserved_credits(journal_t *journal, int blocks)
168 {
169         atomic_sub(blocks, &journal->j_reserved_credits);
170         wake_up(&journal->j_wait_reserved);
171 }
172
173 /*
174  * Wait until we can add credits for handle to the running transaction.  Called
175  * with j_state_lock held for reading. Returns 0 if handle joined the running
176  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177  * caller must retry.
178  */
179 static int add_transaction_credits(journal_t *journal, int blocks,
180                                    int rsv_blocks)
181 {
182         transaction_t *t = journal->j_running_transaction;
183         int needed;
184         int total = blocks + rsv_blocks;
185
186         /*
187          * If the current transaction is locked down for commit, wait
188          * for the lock to be released.
189          */
190         if (t->t_state == T_LOCKED) {
191                 wait_transaction_locked(journal);
192                 return 1;
193         }
194
195         /*
196          * If there is not enough space left in the log to write all
197          * potential buffers requested by this operation, we need to
198          * stall pending a log checkpoint to free some more log space.
199          */
200         needed = atomic_add_return(total, &t->t_outstanding_credits);
201         if (needed > journal->j_max_transaction_buffers) {
202                 /*
203                  * If the current transaction is already too large,
204                  * then start to commit it: we can then go back and
205                  * attach this handle to a new transaction.
206                  */
207                 atomic_sub(total, &t->t_outstanding_credits);
208
209                 /*
210                  * Is the number of reserved credits in the current transaction too
211                  * big to fit this handle? Wait until reserved credits are freed.
212                  */
213                 if (atomic_read(&journal->j_reserved_credits) + total >
214                     journal->j_max_transaction_buffers) {
215                         read_unlock(&journal->j_state_lock);
216                         jbd2_might_wait_for_commit(journal);
217                         wait_event(journal->j_wait_reserved,
218                                    atomic_read(&journal->j_reserved_credits) + total <=
219                                    journal->j_max_transaction_buffers);
220                         return 1;
221                 }
222
223                 wait_transaction_locked(journal);
224                 return 1;
225         }
226
227         /*
228          * The commit code assumes that it can get enough log space
229          * without forcing a checkpoint.  This is *critical* for
230          * correctness: a checkpoint of a buffer which is also
231          * associated with a committing transaction creates a deadlock,
232          * so commit simply cannot force through checkpoints.
233          *
234          * We must therefore ensure the necessary space in the journal
235          * *before* starting to dirty potentially checkpointed buffers
236          * in the new transaction.
237          */
238         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239                 atomic_sub(total, &t->t_outstanding_credits);
240                 read_unlock(&journal->j_state_lock);
241                 jbd2_might_wait_for_commit(journal);
242                 write_lock(&journal->j_state_lock);
243                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244                         __jbd2_log_wait_for_space(journal);
245                 write_unlock(&journal->j_state_lock);
246                 return 1;
247         }
248
249         /* No reservation? We are done... */
250         if (!rsv_blocks)
251                 return 0;
252
253         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254         /* We allow at most half of a transaction to be reserved */
255         if (needed > journal->j_max_transaction_buffers / 2) {
256                 sub_reserved_credits(journal, rsv_blocks);
257                 atomic_sub(total, &t->t_outstanding_credits);
258                 read_unlock(&journal->j_state_lock);
259                 jbd2_might_wait_for_commit(journal);
260                 wait_event(journal->j_wait_reserved,
261                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
262                          <= journal->j_max_transaction_buffers / 2);
263                 return 1;
264         }
265         return 0;
266 }
267
268 /*
269  * start_this_handle: Given a handle, deal with any locking or stalling
270  * needed to make sure that there is enough journal space for the handle
271  * to begin.  Attach the handle to a transaction and set up the
272  * transaction's buffer credits.
273  */
274
275 static int start_this_handle(journal_t *journal, handle_t *handle,
276                              gfp_t gfp_mask)
277 {
278         transaction_t   *transaction, *new_transaction = NULL;
279         int             blocks = handle->h_buffer_credits;
280         int             rsv_blocks = 0;
281         unsigned long ts = jiffies;
282
283         if (handle->h_rsv_handle)
284                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285
286         /*
287          * Limit the number of reserved credits to 1/2 of maximum transaction
288          * size and limit the number of total credits to not exceed maximum
289          * transaction size per operation.
290          */
291         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293                 printk(KERN_ERR "JBD2: %s wants too many credits "
294                        "credits:%d rsv_credits:%d max:%d\n",
295                        current->comm, blocks, rsv_blocks,
296                        journal->j_max_transaction_buffers);
297                 WARN_ON(1);
298                 return -ENOSPC;
299         }
300
301 alloc_transaction:
302         if (!journal->j_running_transaction) {
303                 /*
304                  * If __GFP_FS is not present, then we may be being called from
305                  * inside the fs writeback layer, so we MUST NOT fail.
306                  */
307                 if ((gfp_mask & __GFP_FS) == 0)
308                         gfp_mask |= __GFP_NOFAIL;
309                 new_transaction = kmem_cache_zalloc(transaction_cache,
310                                                     gfp_mask);
311                 if (!new_transaction)
312                         return -ENOMEM;
313         }
314
315         jbd_debug(3, "New handle %p going live.\n", handle);
316
317         /*
318          * We need to hold j_state_lock until t_updates has been incremented,
319          * for proper journal barrier handling
320          */
321 repeat:
322         read_lock(&journal->j_state_lock);
323         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
324         if (is_journal_aborted(journal) ||
325             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
326                 read_unlock(&journal->j_state_lock);
327                 jbd2_journal_free_transaction(new_transaction);
328                 return -EROFS;
329         }
330
331         /*
332          * Wait on the journal's transaction barrier if necessary. Specifically
333          * we allow reserved handles to proceed because otherwise commit could
334          * deadlock on page writeback not being able to complete.
335          */
336         if (!handle->h_reserved && journal->j_barrier_count) {
337                 read_unlock(&journal->j_state_lock);
338                 wait_event(journal->j_wait_transaction_locked,
339                                 journal->j_barrier_count == 0);
340                 goto repeat;
341         }
342
343         if (!journal->j_running_transaction) {
344                 read_unlock(&journal->j_state_lock);
345                 if (!new_transaction)
346                         goto alloc_transaction;
347                 write_lock(&journal->j_state_lock);
348                 if (!journal->j_running_transaction &&
349                     (handle->h_reserved || !journal->j_barrier_count)) {
350                         jbd2_get_transaction(journal, new_transaction);
351                         new_transaction = NULL;
352                 }
353                 write_unlock(&journal->j_state_lock);
354                 goto repeat;
355         }
356
357         transaction = journal->j_running_transaction;
358
359         if (!handle->h_reserved) {
360                 /* We may have dropped j_state_lock - restart in that case */
361                 if (add_transaction_credits(journal, blocks, rsv_blocks))
362                         goto repeat;
363         } else {
364                 /*
365                  * We have handle reserved so we are allowed to join T_LOCKED
366                  * transaction and we don't have to check for transaction size
367                  * and journal space.
368                  */
369                 sub_reserved_credits(journal, blocks);
370                 handle->h_reserved = 0;
371         }
372
373         /* OK, account for the buffers that this operation expects to
374          * use and add the handle to the running transaction. 
375          */
376         update_t_max_wait(transaction, ts);
377         handle->h_transaction = transaction;
378         handle->h_requested_credits = blocks;
379         handle->h_start_jiffies = jiffies;
380         atomic_inc(&transaction->t_updates);
381         atomic_inc(&transaction->t_handle_count);
382         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383                   handle, blocks,
384                   atomic_read(&transaction->t_outstanding_credits),
385                   jbd2_log_space_left(journal));
386         read_unlock(&journal->j_state_lock);
387         current->journal_info = handle;
388
389         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
390         jbd2_journal_free_transaction(new_transaction);
391         return 0;
392 }
393
394 /* Allocate a new handle.  This should probably be in a slab... */
395 static handle_t *new_handle(int nblocks)
396 {
397         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
398         if (!handle)
399                 return NULL;
400         handle->h_buffer_credits = nblocks;
401         handle->h_ref = 1;
402
403         return handle;
404 }
405
406 /**
407  * handle_t *jbd2_journal_start() - Obtain a new handle.
408  * @journal: Journal to start transaction on.
409  * @nblocks: number of block buffer we might modify
410  *
411  * We make sure that the transaction can guarantee at least nblocks of
412  * modified buffers in the log.  We block until the log can guarantee
413  * that much space. Additionally, if rsv_blocks > 0, we also create another
414  * handle with rsv_blocks reserved blocks in the journal. This handle is
415  * is stored in h_rsv_handle. It is not attached to any particular transaction
416  * and thus doesn't block transaction commit. If the caller uses this reserved
417  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418  * on the parent handle will dispose the reserved one. Reserved handle has to
419  * be converted to a normal handle using jbd2_journal_start_reserved() before
420  * it can be used.
421  *
422  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423  * on failure.
424  */
425 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426                               gfp_t gfp_mask, unsigned int type,
427                               unsigned int line_no)
428 {
429         handle_t *handle = journal_current_handle();
430         int err;
431
432         if (!journal)
433                 return ERR_PTR(-EROFS);
434
435         if (handle) {
436                 J_ASSERT(handle->h_transaction->t_journal == journal);
437                 handle->h_ref++;
438                 return handle;
439         }
440
441         handle = new_handle(nblocks);
442         if (!handle)
443                 return ERR_PTR(-ENOMEM);
444         if (rsv_blocks) {
445                 handle_t *rsv_handle;
446
447                 rsv_handle = new_handle(rsv_blocks);
448                 if (!rsv_handle) {
449                         jbd2_free_handle(handle);
450                         return ERR_PTR(-ENOMEM);
451                 }
452                 rsv_handle->h_reserved = 1;
453                 rsv_handle->h_journal = journal;
454                 handle->h_rsv_handle = rsv_handle;
455         }
456
457         err = start_this_handle(journal, handle, gfp_mask);
458         if (err < 0) {
459                 if (handle->h_rsv_handle)
460                         jbd2_free_handle(handle->h_rsv_handle);
461                 jbd2_free_handle(handle);
462                 return ERR_PTR(err);
463         }
464         handle->h_type = type;
465         handle->h_line_no = line_no;
466         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467                                 handle->h_transaction->t_tid, type,
468                                 line_no, nblocks);
469         return handle;
470 }
471 EXPORT_SYMBOL(jbd2__journal_start);
472
473
474 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475 {
476         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
477 }
478 EXPORT_SYMBOL(jbd2_journal_start);
479
480 void jbd2_journal_free_reserved(handle_t *handle)
481 {
482         journal_t *journal = handle->h_journal;
483
484         WARN_ON(!handle->h_reserved);
485         sub_reserved_credits(journal, handle->h_buffer_credits);
486         jbd2_free_handle(handle);
487 }
488 EXPORT_SYMBOL(jbd2_journal_free_reserved);
489
490 /**
491  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
492  * @handle: handle to start
493  *
494  * Start handle that has been previously reserved with jbd2_journal_reserve().
495  * This attaches @handle to the running transaction (or creates one if there's
496  * not transaction running). Unlike jbd2_journal_start() this function cannot
497  * block on journal commit, checkpointing, or similar stuff. It can block on
498  * memory allocation or frozen journal though.
499  *
500  * Return 0 on success, non-zero on error - handle is freed in that case.
501  */
502 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
503                                 unsigned int line_no)
504 {
505         journal_t *journal = handle->h_journal;
506         int ret = -EIO;
507
508         if (WARN_ON(!handle->h_reserved)) {
509                 /* Someone passed in normal handle? Just stop it. */
510                 jbd2_journal_stop(handle);
511                 return ret;
512         }
513         /*
514          * Usefulness of mixing of reserved and unreserved handles is
515          * questionable. So far nobody seems to need it so just error out.
516          */
517         if (WARN_ON(current->journal_info)) {
518                 jbd2_journal_free_reserved(handle);
519                 return ret;
520         }
521
522         handle->h_journal = NULL;
523         /*
524          * GFP_NOFS is here because callers are likely from writeback or
525          * similarly constrained call sites
526          */
527         ret = start_this_handle(journal, handle, GFP_NOFS);
528         if (ret < 0) {
529                 jbd2_journal_free_reserved(handle);
530                 return ret;
531         }
532         handle->h_type = type;
533         handle->h_line_no = line_no;
534         return 0;
535 }
536 EXPORT_SYMBOL(jbd2_journal_start_reserved);
537
538 /**
539  * int jbd2_journal_extend() - extend buffer credits.
540  * @handle:  handle to 'extend'
541  * @nblocks: nr blocks to try to extend by.
542  *
543  * Some transactions, such as large extends and truncates, can be done
544  * atomically all at once or in several stages.  The operation requests
545  * a credit for a number of buffer modifications in advance, but can
546  * extend its credit if it needs more.
547  *
548  * jbd2_journal_extend tries to give the running handle more buffer credits.
549  * It does not guarantee that allocation - this is a best-effort only.
550  * The calling process MUST be able to deal cleanly with a failure to
551  * extend here.
552  *
553  * Return 0 on success, non-zero on failure.
554  *
555  * return code < 0 implies an error
556  * return code > 0 implies normal transaction-full status.
557  */
558 int jbd2_journal_extend(handle_t *handle, int nblocks)
559 {
560         transaction_t *transaction = handle->h_transaction;
561         journal_t *journal;
562         int result;
563         int wanted;
564
565         if (is_handle_aborted(handle))
566                 return -EROFS;
567         journal = transaction->t_journal;
568
569         result = 1;
570
571         read_lock(&journal->j_state_lock);
572
573         /* Don't extend a locked-down transaction! */
574         if (transaction->t_state != T_RUNNING) {
575                 jbd_debug(3, "denied handle %p %d blocks: "
576                           "transaction not running\n", handle, nblocks);
577                 goto error_out;
578         }
579
580         spin_lock(&transaction->t_handle_lock);
581         wanted = atomic_add_return(nblocks,
582                                    &transaction->t_outstanding_credits);
583
584         if (wanted > journal->j_max_transaction_buffers) {
585                 jbd_debug(3, "denied handle %p %d blocks: "
586                           "transaction too large\n", handle, nblocks);
587                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
588                 goto unlock;
589         }
590
591         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
592             jbd2_log_space_left(journal)) {
593                 jbd_debug(3, "denied handle %p %d blocks: "
594                           "insufficient log space\n", handle, nblocks);
595                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
596                 goto unlock;
597         }
598
599         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
600                                  transaction->t_tid,
601                                  handle->h_type, handle->h_line_no,
602                                  handle->h_buffer_credits,
603                                  nblocks);
604
605         handle->h_buffer_credits += nblocks;
606         handle->h_requested_credits += nblocks;
607         result = 0;
608
609         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
610 unlock:
611         spin_unlock(&transaction->t_handle_lock);
612 error_out:
613         read_unlock(&journal->j_state_lock);
614         return result;
615 }
616
617
618 /**
619  * int jbd2_journal_restart() - restart a handle .
620  * @handle:  handle to restart
621  * @nblocks: nr credits requested
622  *
623  * Restart a handle for a multi-transaction filesystem
624  * operation.
625  *
626  * If the jbd2_journal_extend() call above fails to grant new buffer credits
627  * to a running handle, a call to jbd2_journal_restart will commit the
628  * handle's transaction so far and reattach the handle to a new
629  * transaction capable of guaranteeing the requested number of
630  * credits. We preserve reserved handle if there's any attached to the
631  * passed in handle.
632  */
633 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
634 {
635         transaction_t *transaction = handle->h_transaction;
636         journal_t *journal;
637         tid_t           tid;
638         int             need_to_start, ret;
639
640         /* If we've had an abort of any type, don't even think about
641          * actually doing the restart! */
642         if (is_handle_aborted(handle))
643                 return 0;
644         journal = transaction->t_journal;
645
646         /*
647          * First unlink the handle from its current transaction, and start the
648          * commit on that.
649          */
650         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
651         J_ASSERT(journal_current_handle() == handle);
652
653         read_lock(&journal->j_state_lock);
654         spin_lock(&transaction->t_handle_lock);
655         atomic_sub(handle->h_buffer_credits,
656                    &transaction->t_outstanding_credits);
657         if (handle->h_rsv_handle) {
658                 sub_reserved_credits(journal,
659                                      handle->h_rsv_handle->h_buffer_credits);
660         }
661         if (atomic_dec_and_test(&transaction->t_updates))
662                 wake_up(&journal->j_wait_updates);
663         tid = transaction->t_tid;
664         spin_unlock(&transaction->t_handle_lock);
665         handle->h_transaction = NULL;
666         current->journal_info = NULL;
667
668         jbd_debug(2, "restarting handle %p\n", handle);
669         need_to_start = !tid_geq(journal->j_commit_request, tid);
670         read_unlock(&journal->j_state_lock);
671         if (need_to_start)
672                 jbd2_log_start_commit(journal, tid);
673
674         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
675         handle->h_buffer_credits = nblocks;
676         ret = start_this_handle(journal, handle, gfp_mask);
677         return ret;
678 }
679 EXPORT_SYMBOL(jbd2__journal_restart);
680
681
682 int jbd2_journal_restart(handle_t *handle, int nblocks)
683 {
684         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
685 }
686 EXPORT_SYMBOL(jbd2_journal_restart);
687
688 /**
689  * void jbd2_journal_lock_updates () - establish a transaction barrier.
690  * @journal:  Journal to establish a barrier on.
691  *
692  * This locks out any further updates from being started, and blocks
693  * until all existing updates have completed, returning only once the
694  * journal is in a quiescent state with no updates running.
695  *
696  * The journal lock should not be held on entry.
697  */
698 void jbd2_journal_lock_updates(journal_t *journal)
699 {
700         DEFINE_WAIT(wait);
701
702         jbd2_might_wait_for_commit(journal);
703
704         write_lock(&journal->j_state_lock);
705         ++journal->j_barrier_count;
706
707         /* Wait until there are no reserved handles */
708         if (atomic_read(&journal->j_reserved_credits)) {
709                 write_unlock(&journal->j_state_lock);
710                 wait_event(journal->j_wait_reserved,
711                            atomic_read(&journal->j_reserved_credits) == 0);
712                 write_lock(&journal->j_state_lock);
713         }
714
715         /* Wait until there are no running updates */
716         while (1) {
717                 transaction_t *transaction = journal->j_running_transaction;
718
719                 if (!transaction)
720                         break;
721
722                 spin_lock(&transaction->t_handle_lock);
723                 prepare_to_wait(&journal->j_wait_updates, &wait,
724                                 TASK_UNINTERRUPTIBLE);
725                 if (!atomic_read(&transaction->t_updates)) {
726                         spin_unlock(&transaction->t_handle_lock);
727                         finish_wait(&journal->j_wait_updates, &wait);
728                         break;
729                 }
730                 spin_unlock(&transaction->t_handle_lock);
731                 write_unlock(&journal->j_state_lock);
732                 schedule();
733                 finish_wait(&journal->j_wait_updates, &wait);
734                 write_lock(&journal->j_state_lock);
735         }
736         write_unlock(&journal->j_state_lock);
737
738         /*
739          * We have now established a barrier against other normal updates, but
740          * we also need to barrier against other jbd2_journal_lock_updates() calls
741          * to make sure that we serialise special journal-locked operations
742          * too.
743          */
744         mutex_lock(&journal->j_barrier);
745 }
746
747 /**
748  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
749  * @journal:  Journal to release the barrier on.
750  *
751  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
752  *
753  * Should be called without the journal lock held.
754  */
755 void jbd2_journal_unlock_updates (journal_t *journal)
756 {
757         J_ASSERT(journal->j_barrier_count != 0);
758
759         mutex_unlock(&journal->j_barrier);
760         write_lock(&journal->j_state_lock);
761         --journal->j_barrier_count;
762         write_unlock(&journal->j_state_lock);
763         wake_up(&journal->j_wait_transaction_locked);
764 }
765
766 static void warn_dirty_buffer(struct buffer_head *bh)
767 {
768         printk(KERN_WARNING
769                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
770                "There's a risk of filesystem corruption in case of system "
771                "crash.\n",
772                bh->b_bdev, (unsigned long long)bh->b_blocknr);
773 }
774
775 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
776 static void jbd2_freeze_jh_data(struct journal_head *jh)
777 {
778         struct page *page;
779         int offset;
780         char *source;
781         struct buffer_head *bh = jh2bh(jh);
782
783         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
784         page = bh->b_page;
785         offset = offset_in_page(bh->b_data);
786         source = kmap_atomic(page);
787         /* Fire data frozen trigger just before we copy the data */
788         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
789         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
790         kunmap_atomic(source);
791
792         /*
793          * Now that the frozen data is saved off, we need to store any matching
794          * triggers.
795          */
796         jh->b_frozen_triggers = jh->b_triggers;
797 }
798
799 /*
800  * If the buffer is already part of the current transaction, then there
801  * is nothing we need to do.  If it is already part of a prior
802  * transaction which we are still committing to disk, then we need to
803  * make sure that we do not overwrite the old copy: we do copy-out to
804  * preserve the copy going to disk.  We also account the buffer against
805  * the handle's metadata buffer credits (unless the buffer is already
806  * part of the transaction, that is).
807  *
808  */
809 static int
810 do_get_write_access(handle_t *handle, struct journal_head *jh,
811                         int force_copy)
812 {
813         struct buffer_head *bh;
814         transaction_t *transaction = handle->h_transaction;
815         journal_t *journal;
816         int error;
817         char *frozen_buffer = NULL;
818         unsigned long start_lock, time_lock;
819
820         if (is_handle_aborted(handle))
821                 return -EROFS;
822         journal = transaction->t_journal;
823
824         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
825
826         JBUFFER_TRACE(jh, "entry");
827 repeat:
828         bh = jh2bh(jh);
829
830         /* @@@ Need to check for errors here at some point. */
831
832         start_lock = jiffies;
833         lock_buffer(bh);
834         jbd_lock_bh_state(bh);
835
836         /* If it takes too long to lock the buffer, trace it */
837         time_lock = jbd2_time_diff(start_lock, jiffies);
838         if (time_lock > HZ/10)
839                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
840                         jiffies_to_msecs(time_lock));
841
842         /* We now hold the buffer lock so it is safe to query the buffer
843          * state.  Is the buffer dirty?
844          *
845          * If so, there are two possibilities.  The buffer may be
846          * non-journaled, and undergoing a quite legitimate writeback.
847          * Otherwise, it is journaled, and we don't expect dirty buffers
848          * in that state (the buffers should be marked JBD_Dirty
849          * instead.)  So either the IO is being done under our own
850          * control and this is a bug, or it's a third party IO such as
851          * dump(8) (which may leave the buffer scheduled for read ---
852          * ie. locked but not dirty) or tune2fs (which may actually have
853          * the buffer dirtied, ugh.)  */
854
855         if (buffer_dirty(bh)) {
856                 /*
857                  * First question: is this buffer already part of the current
858                  * transaction or the existing committing transaction?
859                  */
860                 if (jh->b_transaction) {
861                         J_ASSERT_JH(jh,
862                                 jh->b_transaction == transaction ||
863                                 jh->b_transaction ==
864                                         journal->j_committing_transaction);
865                         if (jh->b_next_transaction)
866                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
867                                                         transaction);
868                         warn_dirty_buffer(bh);
869                 }
870                 /*
871                  * In any case we need to clean the dirty flag and we must
872                  * do it under the buffer lock to be sure we don't race
873                  * with running write-out.
874                  */
875                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
876                 clear_buffer_dirty(bh);
877                 set_buffer_jbddirty(bh);
878         }
879
880         unlock_buffer(bh);
881
882         error = -EROFS;
883         if (is_handle_aborted(handle)) {
884                 jbd_unlock_bh_state(bh);
885                 goto out;
886         }
887         error = 0;
888
889         /*
890          * The buffer is already part of this transaction if b_transaction or
891          * b_next_transaction points to it
892          */
893         if (jh->b_transaction == transaction ||
894             jh->b_next_transaction == transaction)
895                 goto done;
896
897         /*
898          * this is the first time this transaction is touching this buffer,
899          * reset the modified flag
900          */
901        jh->b_modified = 0;
902
903         /*
904          * If the buffer is not journaled right now, we need to make sure it
905          * doesn't get written to disk before the caller actually commits the
906          * new data
907          */
908         if (!jh->b_transaction) {
909                 JBUFFER_TRACE(jh, "no transaction");
910                 J_ASSERT_JH(jh, !jh->b_next_transaction);
911                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
912                 /*
913                  * Make sure all stores to jh (b_modified, b_frozen_data) are
914                  * visible before attaching it to the running transaction.
915                  * Paired with barrier in jbd2_write_access_granted()
916                  */
917                 smp_wmb();
918                 spin_lock(&journal->j_list_lock);
919                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
920                 spin_unlock(&journal->j_list_lock);
921                 goto done;
922         }
923         /*
924          * If there is already a copy-out version of this buffer, then we don't
925          * need to make another one
926          */
927         if (jh->b_frozen_data) {
928                 JBUFFER_TRACE(jh, "has frozen data");
929                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
930                 goto attach_next;
931         }
932
933         JBUFFER_TRACE(jh, "owned by older transaction");
934         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
935         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
936
937         /*
938          * There is one case we have to be very careful about.  If the
939          * committing transaction is currently writing this buffer out to disk
940          * and has NOT made a copy-out, then we cannot modify the buffer
941          * contents at all right now.  The essence of copy-out is that it is
942          * the extra copy, not the primary copy, which gets journaled.  If the
943          * primary copy is already going to disk then we cannot do copy-out
944          * here.
945          */
946         if (buffer_shadow(bh)) {
947                 JBUFFER_TRACE(jh, "on shadow: sleep");
948                 jbd_unlock_bh_state(bh);
949                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
950                 goto repeat;
951         }
952
953         /*
954          * Only do the copy if the currently-owning transaction still needs it.
955          * If buffer isn't on BJ_Metadata list, the committing transaction is
956          * past that stage (here we use the fact that BH_Shadow is set under
957          * bh_state lock together with refiling to BJ_Shadow list and at this
958          * point we know the buffer doesn't have BH_Shadow set).
959          *
960          * Subtle point, though: if this is a get_undo_access, then we will be
961          * relying on the frozen_data to contain the new value of the
962          * committed_data record after the transaction, so we HAVE to force the
963          * frozen_data copy in that case.
964          */
965         if (jh->b_jlist == BJ_Metadata || force_copy) {
966                 JBUFFER_TRACE(jh, "generate frozen data");
967                 if (!frozen_buffer) {
968                         JBUFFER_TRACE(jh, "allocate memory for buffer");
969                         jbd_unlock_bh_state(bh);
970                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
971                                                    GFP_NOFS | __GFP_NOFAIL);
972                         goto repeat;
973                 }
974                 jh->b_frozen_data = frozen_buffer;
975                 frozen_buffer = NULL;
976                 jbd2_freeze_jh_data(jh);
977         }
978 attach_next:
979         /*
980          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
981          * before attaching it to the running transaction. Paired with barrier
982          * in jbd2_write_access_granted()
983          */
984         smp_wmb();
985         jh->b_next_transaction = transaction;
986
987 done:
988         jbd_unlock_bh_state(bh);
989
990         /*
991          * If we are about to journal a buffer, then any revoke pending on it is
992          * no longer valid
993          */
994         jbd2_journal_cancel_revoke(handle, jh);
995
996 out:
997         if (unlikely(frozen_buffer))    /* It's usually NULL */
998                 jbd2_free(frozen_buffer, bh->b_size);
999
1000         JBUFFER_TRACE(jh, "exit");
1001         return error;
1002 }
1003
1004 /* Fast check whether buffer is already attached to the required transaction */
1005 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1006                                                         bool undo)
1007 {
1008         struct journal_head *jh;
1009         bool ret = false;
1010
1011         /* Dirty buffers require special handling... */
1012         if (buffer_dirty(bh))
1013                 return false;
1014
1015         /*
1016          * RCU protects us from dereferencing freed pages. So the checks we do
1017          * are guaranteed not to oops. However the jh slab object can get freed
1018          * & reallocated while we work with it. So we have to be careful. When
1019          * we see jh attached to the running transaction, we know it must stay
1020          * so until the transaction is committed. Thus jh won't be freed and
1021          * will be attached to the same bh while we run.  However it can
1022          * happen jh gets freed, reallocated, and attached to the transaction
1023          * just after we get pointer to it from bh. So we have to be careful
1024          * and recheck jh still belongs to our bh before we return success.
1025          */
1026         rcu_read_lock();
1027         if (!buffer_jbd(bh))
1028                 goto out;
1029         /* This should be bh2jh() but that doesn't work with inline functions */
1030         jh = READ_ONCE(bh->b_private);
1031         if (!jh)
1032                 goto out;
1033         /* For undo access buffer must have data copied */
1034         if (undo && !jh->b_committed_data)
1035                 goto out;
1036         if (jh->b_transaction != handle->h_transaction &&
1037             jh->b_next_transaction != handle->h_transaction)
1038                 goto out;
1039         /*
1040          * There are two reasons for the barrier here:
1041          * 1) Make sure to fetch b_bh after we did previous checks so that we
1042          * detect when jh went through free, realloc, attach to transaction
1043          * while we were checking. Paired with implicit barrier in that path.
1044          * 2) So that access to bh done after jbd2_write_access_granted()
1045          * doesn't get reordered and see inconsistent state of concurrent
1046          * do_get_write_access().
1047          */
1048         smp_mb();
1049         if (unlikely(jh->b_bh != bh))
1050                 goto out;
1051         ret = true;
1052 out:
1053         rcu_read_unlock();
1054         return ret;
1055 }
1056
1057 /**
1058  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1059  * @handle: transaction to add buffer modifications to
1060  * @bh:     bh to be used for metadata writes
1061  *
1062  * Returns an error code or 0 on success.
1063  *
1064  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1065  * because we're write()ing a buffer which is also part of a shared mapping.
1066  */
1067
1068 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1069 {
1070         struct journal_head *jh;
1071         int rc;
1072
1073         if (jbd2_write_access_granted(handle, bh, false))
1074                 return 0;
1075
1076         jh = jbd2_journal_add_journal_head(bh);
1077         /* We do not want to get caught playing with fields which the
1078          * log thread also manipulates.  Make sure that the buffer
1079          * completes any outstanding IO before proceeding. */
1080         rc = do_get_write_access(handle, jh, 0);
1081         jbd2_journal_put_journal_head(jh);
1082         return rc;
1083 }
1084
1085
1086 /*
1087  * When the user wants to journal a newly created buffer_head
1088  * (ie. getblk() returned a new buffer and we are going to populate it
1089  * manually rather than reading off disk), then we need to keep the
1090  * buffer_head locked until it has been completely filled with new
1091  * data.  In this case, we should be able to make the assertion that
1092  * the bh is not already part of an existing transaction.
1093  *
1094  * The buffer should already be locked by the caller by this point.
1095  * There is no lock ranking violation: it was a newly created,
1096  * unlocked buffer beforehand. */
1097
1098 /**
1099  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1100  * @handle: transaction to new buffer to
1101  * @bh: new buffer.
1102  *
1103  * Call this if you create a new bh.
1104  */
1105 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1106 {
1107         transaction_t *transaction = handle->h_transaction;
1108         journal_t *journal;
1109         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1110         int err;
1111
1112         jbd_debug(5, "journal_head %p\n", jh);
1113         err = -EROFS;
1114         if (is_handle_aborted(handle))
1115                 goto out;
1116         journal = transaction->t_journal;
1117         err = 0;
1118
1119         JBUFFER_TRACE(jh, "entry");
1120         /*
1121          * The buffer may already belong to this transaction due to pre-zeroing
1122          * in the filesystem's new_block code.  It may also be on the previous,
1123          * committing transaction's lists, but it HAS to be in Forget state in
1124          * that case: the transaction must have deleted the buffer for it to be
1125          * reused here.
1126          */
1127         jbd_lock_bh_state(bh);
1128         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1129                 jh->b_transaction == NULL ||
1130                 (jh->b_transaction == journal->j_committing_transaction &&
1131                           jh->b_jlist == BJ_Forget)));
1132
1133         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1134         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1135
1136         if (jh->b_transaction == NULL) {
1137                 /*
1138                  * Previous jbd2_journal_forget() could have left the buffer
1139                  * with jbddirty bit set because it was being committed. When
1140                  * the commit finished, we've filed the buffer for
1141                  * checkpointing and marked it dirty. Now we are reallocating
1142                  * the buffer so the transaction freeing it must have
1143                  * committed and so it's safe to clear the dirty bit.
1144                  */
1145                 clear_buffer_dirty(jh2bh(jh));
1146                 /* first access by this transaction */
1147                 jh->b_modified = 0;
1148
1149                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1150                 spin_lock(&journal->j_list_lock);
1151                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1152         } else if (jh->b_transaction == journal->j_committing_transaction) {
1153                 /* first access by this transaction */
1154                 jh->b_modified = 0;
1155
1156                 JBUFFER_TRACE(jh, "set next transaction");
1157                 spin_lock(&journal->j_list_lock);
1158                 jh->b_next_transaction = transaction;
1159         }
1160         spin_unlock(&journal->j_list_lock);
1161         jbd_unlock_bh_state(bh);
1162
1163         /*
1164          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1165          * blocks which contain freed but then revoked metadata.  We need
1166          * to cancel the revoke in case we end up freeing it yet again
1167          * and the reallocating as data - this would cause a second revoke,
1168          * which hits an assertion error.
1169          */
1170         JBUFFER_TRACE(jh, "cancelling revoke");
1171         jbd2_journal_cancel_revoke(handle, jh);
1172 out:
1173         jbd2_journal_put_journal_head(jh);
1174         return err;
1175 }
1176
1177 /**
1178  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1179  *     non-rewindable consequences
1180  * @handle: transaction
1181  * @bh: buffer to undo
1182  *
1183  * Sometimes there is a need to distinguish between metadata which has
1184  * been committed to disk and that which has not.  The ext3fs code uses
1185  * this for freeing and allocating space, we have to make sure that we
1186  * do not reuse freed space until the deallocation has been committed,
1187  * since if we overwrote that space we would make the delete
1188  * un-rewindable in case of a crash.
1189  *
1190  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1191  * buffer for parts of non-rewindable operations such as delete
1192  * operations on the bitmaps.  The journaling code must keep a copy of
1193  * the buffer's contents prior to the undo_access call until such time
1194  * as we know that the buffer has definitely been committed to disk.
1195  *
1196  * We never need to know which transaction the committed data is part
1197  * of, buffers touched here are guaranteed to be dirtied later and so
1198  * will be committed to a new transaction in due course, at which point
1199  * we can discard the old committed data pointer.
1200  *
1201  * Returns error number or 0 on success.
1202  */
1203 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1204 {
1205         int err;
1206         struct journal_head *jh;
1207         char *committed_data = NULL;
1208
1209         JBUFFER_TRACE(jh, "entry");
1210         if (jbd2_write_access_granted(handle, bh, true))
1211                 return 0;
1212
1213         jh = jbd2_journal_add_journal_head(bh);
1214         /*
1215          * Do this first --- it can drop the journal lock, so we want to
1216          * make sure that obtaining the committed_data is done
1217          * atomically wrt. completion of any outstanding commits.
1218          */
1219         err = do_get_write_access(handle, jh, 1);
1220         if (err)
1221                 goto out;
1222
1223 repeat:
1224         if (!jh->b_committed_data)
1225                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1226                                             GFP_NOFS|__GFP_NOFAIL);
1227
1228         jbd_lock_bh_state(bh);
1229         if (!jh->b_committed_data) {
1230                 /* Copy out the current buffer contents into the
1231                  * preserved, committed copy. */
1232                 JBUFFER_TRACE(jh, "generate b_committed data");
1233                 if (!committed_data) {
1234                         jbd_unlock_bh_state(bh);
1235                         goto repeat;
1236                 }
1237
1238                 jh->b_committed_data = committed_data;
1239                 committed_data = NULL;
1240                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1241         }
1242         jbd_unlock_bh_state(bh);
1243 out:
1244         jbd2_journal_put_journal_head(jh);
1245         if (unlikely(committed_data))
1246                 jbd2_free(committed_data, bh->b_size);
1247         return err;
1248 }
1249
1250 /**
1251  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1252  * @bh: buffer to trigger on
1253  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1254  *
1255  * Set any triggers on this journal_head.  This is always safe, because
1256  * triggers for a committing buffer will be saved off, and triggers for
1257  * a running transaction will match the buffer in that transaction.
1258  *
1259  * Call with NULL to clear the triggers.
1260  */
1261 void jbd2_journal_set_triggers(struct buffer_head *bh,
1262                                struct jbd2_buffer_trigger_type *type)
1263 {
1264         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1265
1266         if (WARN_ON(!jh))
1267                 return;
1268         jh->b_triggers = type;
1269         jbd2_journal_put_journal_head(jh);
1270 }
1271
1272 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1273                                 struct jbd2_buffer_trigger_type *triggers)
1274 {
1275         struct buffer_head *bh = jh2bh(jh);
1276
1277         if (!triggers || !triggers->t_frozen)
1278                 return;
1279
1280         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1281 }
1282
1283 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1284                                struct jbd2_buffer_trigger_type *triggers)
1285 {
1286         if (!triggers || !triggers->t_abort)
1287                 return;
1288
1289         triggers->t_abort(triggers, jh2bh(jh));
1290 }
1291
1292 /**
1293  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1294  * @handle: transaction to add buffer to.
1295  * @bh: buffer to mark
1296  *
1297  * mark dirty metadata which needs to be journaled as part of the current
1298  * transaction.
1299  *
1300  * The buffer must have previously had jbd2_journal_get_write_access()
1301  * called so that it has a valid journal_head attached to the buffer
1302  * head.
1303  *
1304  * The buffer is placed on the transaction's metadata list and is marked
1305  * as belonging to the transaction.
1306  *
1307  * Returns error number or 0 on success.
1308  *
1309  * Special care needs to be taken if the buffer already belongs to the
1310  * current committing transaction (in which case we should have frozen
1311  * data present for that commit).  In that case, we don't relink the
1312  * buffer: that only gets done when the old transaction finally
1313  * completes its commit.
1314  */
1315 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1316 {
1317         transaction_t *transaction = handle->h_transaction;
1318         journal_t *journal;
1319         struct journal_head *jh;
1320         int ret = 0;
1321
1322         if (is_handle_aborted(handle))
1323                 return -EROFS;
1324         if (!buffer_jbd(bh)) {
1325                 ret = -EUCLEAN;
1326                 goto out;
1327         }
1328         /*
1329          * We don't grab jh reference here since the buffer must be part
1330          * of the running transaction.
1331          */
1332         jh = bh2jh(bh);
1333         /*
1334          * This and the following assertions are unreliable since we may see jh
1335          * in inconsistent state unless we grab bh_state lock. But this is
1336          * crucial to catch bugs so let's do a reliable check until the
1337          * lockless handling is fully proven.
1338          */
1339         if (jh->b_transaction != transaction &&
1340             jh->b_next_transaction != transaction) {
1341                 jbd_lock_bh_state(bh);
1342                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1343                                 jh->b_next_transaction == transaction);
1344                 jbd_unlock_bh_state(bh);
1345         }
1346         if (jh->b_modified == 1) {
1347                 /* If it's in our transaction it must be in BJ_Metadata list. */
1348                 if (jh->b_transaction == transaction &&
1349                     jh->b_jlist != BJ_Metadata) {
1350                         jbd_lock_bh_state(bh);
1351                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1352                                         jh->b_jlist == BJ_Metadata);
1353                         jbd_unlock_bh_state(bh);
1354                 }
1355                 goto out;
1356         }
1357
1358         journal = transaction->t_journal;
1359         jbd_debug(5, "journal_head %p\n", jh);
1360         JBUFFER_TRACE(jh, "entry");
1361
1362         jbd_lock_bh_state(bh);
1363
1364         if (jh->b_modified == 0) {
1365                 /*
1366                  * This buffer's got modified and becoming part
1367                  * of the transaction. This needs to be done
1368                  * once a transaction -bzzz
1369                  */
1370                 jh->b_modified = 1;
1371                 if (handle->h_buffer_credits <= 0) {
1372                         ret = -ENOSPC;
1373                         goto out_unlock_bh;
1374                 }
1375                 handle->h_buffer_credits--;
1376         }
1377
1378         /*
1379          * fastpath, to avoid expensive locking.  If this buffer is already
1380          * on the running transaction's metadata list there is nothing to do.
1381          * Nobody can take it off again because there is a handle open.
1382          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1383          * result in this test being false, so we go in and take the locks.
1384          */
1385         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1386                 JBUFFER_TRACE(jh, "fastpath");
1387                 if (unlikely(jh->b_transaction !=
1388                              journal->j_running_transaction)) {
1389                         printk(KERN_ERR "JBD2: %s: "
1390                                "jh->b_transaction (%llu, %p, %u) != "
1391                                "journal->j_running_transaction (%p, %u)\n",
1392                                journal->j_devname,
1393                                (unsigned long long) bh->b_blocknr,
1394                                jh->b_transaction,
1395                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1396                                journal->j_running_transaction,
1397                                journal->j_running_transaction ?
1398                                journal->j_running_transaction->t_tid : 0);
1399                         ret = -EINVAL;
1400                 }
1401                 goto out_unlock_bh;
1402         }
1403
1404         set_buffer_jbddirty(bh);
1405
1406         /*
1407          * Metadata already on the current transaction list doesn't
1408          * need to be filed.  Metadata on another transaction's list must
1409          * be committing, and will be refiled once the commit completes:
1410          * leave it alone for now.
1411          */
1412         if (jh->b_transaction != transaction) {
1413                 JBUFFER_TRACE(jh, "already on other transaction");
1414                 if (unlikely(((jh->b_transaction !=
1415                                journal->j_committing_transaction)) ||
1416                              (jh->b_next_transaction != transaction))) {
1417                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1418                                "bad jh for block %llu: "
1419                                "transaction (%p, %u), "
1420                                "jh->b_transaction (%p, %u), "
1421                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1422                                journal->j_devname,
1423                                (unsigned long long) bh->b_blocknr,
1424                                transaction, transaction->t_tid,
1425                                jh->b_transaction,
1426                                jh->b_transaction ?
1427                                jh->b_transaction->t_tid : 0,
1428                                jh->b_next_transaction,
1429                                jh->b_next_transaction ?
1430                                jh->b_next_transaction->t_tid : 0,
1431                                jh->b_jlist);
1432                         WARN_ON(1);
1433                         ret = -EINVAL;
1434                 }
1435                 /* And this case is illegal: we can't reuse another
1436                  * transaction's data buffer, ever. */
1437                 goto out_unlock_bh;
1438         }
1439
1440         /* That test should have eliminated the following case: */
1441         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1442
1443         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1444         spin_lock(&journal->j_list_lock);
1445         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1446         spin_unlock(&journal->j_list_lock);
1447 out_unlock_bh:
1448         jbd_unlock_bh_state(bh);
1449 out:
1450         JBUFFER_TRACE(jh, "exit");
1451         return ret;
1452 }
1453
1454 /**
1455  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1456  * @handle: transaction handle
1457  * @bh:     bh to 'forget'
1458  *
1459  * We can only do the bforget if there are no commits pending against the
1460  * buffer.  If the buffer is dirty in the current running transaction we
1461  * can safely unlink it.
1462  *
1463  * bh may not be a journalled buffer at all - it may be a non-JBD
1464  * buffer which came off the hashtable.  Check for this.
1465  *
1466  * Decrements bh->b_count by one.
1467  *
1468  * Allow this call even if the handle has aborted --- it may be part of
1469  * the caller's cleanup after an abort.
1470  */
1471 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1472 {
1473         transaction_t *transaction = handle->h_transaction;
1474         journal_t *journal;
1475         struct journal_head *jh;
1476         int drop_reserve = 0;
1477         int err = 0;
1478         int was_modified = 0;
1479
1480         if (is_handle_aborted(handle))
1481                 return -EROFS;
1482         journal = transaction->t_journal;
1483
1484         BUFFER_TRACE(bh, "entry");
1485
1486         jbd_lock_bh_state(bh);
1487
1488         if (!buffer_jbd(bh))
1489                 goto not_jbd;
1490         jh = bh2jh(bh);
1491
1492         /* Critical error: attempting to delete a bitmap buffer, maybe?
1493          * Don't do any jbd operations, and return an error. */
1494         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1495                          "inconsistent data on disk")) {
1496                 err = -EIO;
1497                 goto not_jbd;
1498         }
1499
1500         /* keep track of whether or not this transaction modified us */
1501         was_modified = jh->b_modified;
1502
1503         /*
1504          * The buffer's going from the transaction, we must drop
1505          * all references -bzzz
1506          */
1507         jh->b_modified = 0;
1508
1509         if (jh->b_transaction == transaction) {
1510                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1511
1512                 /* If we are forgetting a buffer which is already part
1513                  * of this transaction, then we can just drop it from
1514                  * the transaction immediately. */
1515                 clear_buffer_dirty(bh);
1516                 clear_buffer_jbddirty(bh);
1517
1518                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1519
1520                 /*
1521                  * we only want to drop a reference if this transaction
1522                  * modified the buffer
1523                  */
1524                 if (was_modified)
1525                         drop_reserve = 1;
1526
1527                 /*
1528                  * We are no longer going to journal this buffer.
1529                  * However, the commit of this transaction is still
1530                  * important to the buffer: the delete that we are now
1531                  * processing might obsolete an old log entry, so by
1532                  * committing, we can satisfy the buffer's checkpoint.
1533                  *
1534                  * So, if we have a checkpoint on the buffer, we should
1535                  * now refile the buffer on our BJ_Forget list so that
1536                  * we know to remove the checkpoint after we commit.
1537                  */
1538
1539                 spin_lock(&journal->j_list_lock);
1540                 if (jh->b_cp_transaction) {
1541                         __jbd2_journal_temp_unlink_buffer(jh);
1542                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1543                 } else {
1544                         __jbd2_journal_unfile_buffer(jh);
1545                         if (!buffer_jbd(bh)) {
1546                                 spin_unlock(&journal->j_list_lock);
1547                                 jbd_unlock_bh_state(bh);
1548                                 __bforget(bh);
1549                                 goto drop;
1550                         }
1551                 }
1552                 spin_unlock(&journal->j_list_lock);
1553         } else if (jh->b_transaction) {
1554                 J_ASSERT_JH(jh, (jh->b_transaction ==
1555                                  journal->j_committing_transaction));
1556                 /* However, if the buffer is still owned by a prior
1557                  * (committing) transaction, we can't drop it yet... */
1558                 JBUFFER_TRACE(jh, "belongs to older transaction");
1559                 /* ... but we CAN drop it from the new transaction if we
1560                  * have also modified it since the original commit. */
1561
1562                 if (jh->b_next_transaction) {
1563                         J_ASSERT(jh->b_next_transaction == transaction);
1564                         spin_lock(&journal->j_list_lock);
1565                         jh->b_next_transaction = NULL;
1566                         spin_unlock(&journal->j_list_lock);
1567
1568                         /*
1569                          * only drop a reference if this transaction modified
1570                          * the buffer
1571                          */
1572                         if (was_modified)
1573                                 drop_reserve = 1;
1574                 }
1575         }
1576
1577 not_jbd:
1578         jbd_unlock_bh_state(bh);
1579         __brelse(bh);
1580 drop:
1581         if (drop_reserve) {
1582                 /* no need to reserve log space for this block -bzzz */
1583                 handle->h_buffer_credits++;
1584         }
1585         return err;
1586 }
1587
1588 /**
1589  * int jbd2_journal_stop() - complete a transaction
1590  * @handle: transaction to complete.
1591  *
1592  * All done for a particular handle.
1593  *
1594  * There is not much action needed here.  We just return any remaining
1595  * buffer credits to the transaction and remove the handle.  The only
1596  * complication is that we need to start a commit operation if the
1597  * filesystem is marked for synchronous update.
1598  *
1599  * jbd2_journal_stop itself will not usually return an error, but it may
1600  * do so in unusual circumstances.  In particular, expect it to
1601  * return -EIO if a jbd2_journal_abort has been executed since the
1602  * transaction began.
1603  */
1604 int jbd2_journal_stop(handle_t *handle)
1605 {
1606         transaction_t *transaction = handle->h_transaction;
1607         journal_t *journal;
1608         int err = 0, wait_for_commit = 0;
1609         tid_t tid;
1610         pid_t pid;
1611
1612         if (!transaction) {
1613                 /*
1614                  * Handle is already detached from the transaction so
1615                  * there is nothing to do other than decrease a refcount,
1616                  * or free the handle if refcount drops to zero
1617                  */
1618                 if (--handle->h_ref > 0) {
1619                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1620                                                          handle->h_ref);
1621                         return err;
1622                 } else {
1623                         if (handle->h_rsv_handle)
1624                                 jbd2_free_handle(handle->h_rsv_handle);
1625                         goto free_and_exit;
1626                 }
1627         }
1628         journal = transaction->t_journal;
1629
1630         J_ASSERT(journal_current_handle() == handle);
1631
1632         if (is_handle_aborted(handle))
1633                 err = -EIO;
1634         else
1635                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1636
1637         if (--handle->h_ref > 0) {
1638                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1639                           handle->h_ref);
1640                 return err;
1641         }
1642
1643         jbd_debug(4, "Handle %p going down\n", handle);
1644         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1645                                 transaction->t_tid,
1646                                 handle->h_type, handle->h_line_no,
1647                                 jiffies - handle->h_start_jiffies,
1648                                 handle->h_sync, handle->h_requested_credits,
1649                                 (handle->h_requested_credits -
1650                                  handle->h_buffer_credits));
1651
1652         /*
1653          * Implement synchronous transaction batching.  If the handle
1654          * was synchronous, don't force a commit immediately.  Let's
1655          * yield and let another thread piggyback onto this
1656          * transaction.  Keep doing that while new threads continue to
1657          * arrive.  It doesn't cost much - we're about to run a commit
1658          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1659          * operations by 30x or more...
1660          *
1661          * We try and optimize the sleep time against what the
1662          * underlying disk can do, instead of having a static sleep
1663          * time.  This is useful for the case where our storage is so
1664          * fast that it is more optimal to go ahead and force a flush
1665          * and wait for the transaction to be committed than it is to
1666          * wait for an arbitrary amount of time for new writers to
1667          * join the transaction.  We achieve this by measuring how
1668          * long it takes to commit a transaction, and compare it with
1669          * how long this transaction has been running, and if run time
1670          * < commit time then we sleep for the delta and commit.  This
1671          * greatly helps super fast disks that would see slowdowns as
1672          * more threads started doing fsyncs.
1673          *
1674          * But don't do this if this process was the most recent one
1675          * to perform a synchronous write.  We do this to detect the
1676          * case where a single process is doing a stream of sync
1677          * writes.  No point in waiting for joiners in that case.
1678          *
1679          * Setting max_batch_time to 0 disables this completely.
1680          */
1681         pid = current->pid;
1682         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1683             journal->j_max_batch_time) {
1684                 u64 commit_time, trans_time;
1685
1686                 journal->j_last_sync_writer = pid;
1687
1688                 read_lock(&journal->j_state_lock);
1689                 commit_time = journal->j_average_commit_time;
1690                 read_unlock(&journal->j_state_lock);
1691
1692                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1693                                                    transaction->t_start_time));
1694
1695                 commit_time = max_t(u64, commit_time,
1696                                     1000*journal->j_min_batch_time);
1697                 commit_time = min_t(u64, commit_time,
1698                                     1000*journal->j_max_batch_time);
1699
1700                 if (trans_time < commit_time) {
1701                         ktime_t expires = ktime_add_ns(ktime_get(),
1702                                                        commit_time);
1703                         set_current_state(TASK_UNINTERRUPTIBLE);
1704                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1705                 }
1706         }
1707
1708         if (handle->h_sync)
1709                 transaction->t_synchronous_commit = 1;
1710         current->journal_info = NULL;
1711         atomic_sub(handle->h_buffer_credits,
1712                    &transaction->t_outstanding_credits);
1713
1714         /*
1715          * If the handle is marked SYNC, we need to set another commit
1716          * going!  We also want to force a commit if the current
1717          * transaction is occupying too much of the log, or if the
1718          * transaction is too old now.
1719          */
1720         if (handle->h_sync ||
1721             (atomic_read(&transaction->t_outstanding_credits) >
1722              journal->j_max_transaction_buffers) ||
1723             time_after_eq(jiffies, transaction->t_expires)) {
1724                 /* Do this even for aborted journals: an abort still
1725                  * completes the commit thread, it just doesn't write
1726                  * anything to disk. */
1727
1728                 jbd_debug(2, "transaction too old, requesting commit for "
1729                                         "handle %p\n", handle);
1730                 /* This is non-blocking */
1731                 jbd2_log_start_commit(journal, transaction->t_tid);
1732
1733                 /*
1734                  * Special case: JBD2_SYNC synchronous updates require us
1735                  * to wait for the commit to complete.
1736                  */
1737                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1738                         wait_for_commit = 1;
1739         }
1740
1741         /*
1742          * Once we drop t_updates, if it goes to zero the transaction
1743          * could start committing on us and eventually disappear.  So
1744          * once we do this, we must not dereference transaction
1745          * pointer again.
1746          */
1747         tid = transaction->t_tid;
1748         if (atomic_dec_and_test(&transaction->t_updates)) {
1749                 wake_up(&journal->j_wait_updates);
1750                 if (journal->j_barrier_count)
1751                         wake_up(&journal->j_wait_transaction_locked);
1752         }
1753
1754         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1755
1756         if (wait_for_commit)
1757                 err = jbd2_log_wait_commit(journal, tid);
1758
1759         if (handle->h_rsv_handle)
1760                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1761 free_and_exit:
1762         jbd2_free_handle(handle);
1763         return err;
1764 }
1765
1766 /*
1767  *
1768  * List management code snippets: various functions for manipulating the
1769  * transaction buffer lists.
1770  *
1771  */
1772
1773 /*
1774  * Append a buffer to a transaction list, given the transaction's list head
1775  * pointer.
1776  *
1777  * j_list_lock is held.
1778  *
1779  * jbd_lock_bh_state(jh2bh(jh)) is held.
1780  */
1781
1782 static inline void
1783 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1784 {
1785         if (!*list) {
1786                 jh->b_tnext = jh->b_tprev = jh;
1787                 *list = jh;
1788         } else {
1789                 /* Insert at the tail of the list to preserve order */
1790                 struct journal_head *first = *list, *last = first->b_tprev;
1791                 jh->b_tprev = last;
1792                 jh->b_tnext = first;
1793                 last->b_tnext = first->b_tprev = jh;
1794         }
1795 }
1796
1797 /*
1798  * Remove a buffer from a transaction list, given the transaction's list
1799  * head pointer.
1800  *
1801  * Called with j_list_lock held, and the journal may not be locked.
1802  *
1803  * jbd_lock_bh_state(jh2bh(jh)) is held.
1804  */
1805
1806 static inline void
1807 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1808 {
1809         if (*list == jh) {
1810                 *list = jh->b_tnext;
1811                 if (*list == jh)
1812                         *list = NULL;
1813         }
1814         jh->b_tprev->b_tnext = jh->b_tnext;
1815         jh->b_tnext->b_tprev = jh->b_tprev;
1816 }
1817
1818 /*
1819  * Remove a buffer from the appropriate transaction list.
1820  *
1821  * Note that this function can *change* the value of
1822  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1823  * t_reserved_list.  If the caller is holding onto a copy of one of these
1824  * pointers, it could go bad.  Generally the caller needs to re-read the
1825  * pointer from the transaction_t.
1826  *
1827  * Called under j_list_lock.
1828  */
1829 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1830 {
1831         struct journal_head **list = NULL;
1832         transaction_t *transaction;
1833         struct buffer_head *bh = jh2bh(jh);
1834
1835         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1836         transaction = jh->b_transaction;
1837         if (transaction)
1838                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1839
1840         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1841         if (jh->b_jlist != BJ_None)
1842                 J_ASSERT_JH(jh, transaction != NULL);
1843
1844         switch (jh->b_jlist) {
1845         case BJ_None:
1846                 return;
1847         case BJ_Metadata:
1848                 transaction->t_nr_buffers--;
1849                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1850                 list = &transaction->t_buffers;
1851                 break;
1852         case BJ_Forget:
1853                 list = &transaction->t_forget;
1854                 break;
1855         case BJ_Shadow:
1856                 list = &transaction->t_shadow_list;
1857                 break;
1858         case BJ_Reserved:
1859                 list = &transaction->t_reserved_list;
1860                 break;
1861         }
1862
1863         __blist_del_buffer(list, jh);
1864         jh->b_jlist = BJ_None;
1865         if (test_clear_buffer_jbddirty(bh))
1866                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1867 }
1868
1869 /*
1870  * Remove buffer from all transactions.
1871  *
1872  * Called with bh_state lock and j_list_lock
1873  *
1874  * jh and bh may be already freed when this function returns.
1875  */
1876 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1877 {
1878         __jbd2_journal_temp_unlink_buffer(jh);
1879         jh->b_transaction = NULL;
1880         jbd2_journal_put_journal_head(jh);
1881 }
1882
1883 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1884 {
1885         struct buffer_head *bh = jh2bh(jh);
1886
1887         /* Get reference so that buffer cannot be freed before we unlock it */
1888         get_bh(bh);
1889         jbd_lock_bh_state(bh);
1890         spin_lock(&journal->j_list_lock);
1891         __jbd2_journal_unfile_buffer(jh);
1892         spin_unlock(&journal->j_list_lock);
1893         jbd_unlock_bh_state(bh);
1894         __brelse(bh);
1895 }
1896
1897 /*
1898  * Called from jbd2_journal_try_to_free_buffers().
1899  *
1900  * Called under jbd_lock_bh_state(bh)
1901  */
1902 static void
1903 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1904 {
1905         struct journal_head *jh;
1906
1907         jh = bh2jh(bh);
1908
1909         if (buffer_locked(bh) || buffer_dirty(bh))
1910                 goto out;
1911
1912         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1913                 goto out;
1914
1915         spin_lock(&journal->j_list_lock);
1916         if (jh->b_cp_transaction != NULL) {
1917                 /* written-back checkpointed metadata buffer */
1918                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1919                 __jbd2_journal_remove_checkpoint(jh);
1920         }
1921         spin_unlock(&journal->j_list_lock);
1922 out:
1923         return;
1924 }
1925
1926 /**
1927  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1928  * @journal: journal for operation
1929  * @page: to try and free
1930  * @gfp_mask: we use the mask to detect how hard should we try to release
1931  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1932  * code to release the buffers.
1933  *
1934  *
1935  * For all the buffers on this page,
1936  * if they are fully written out ordered data, move them onto BUF_CLEAN
1937  * so try_to_free_buffers() can reap them.
1938  *
1939  * This function returns non-zero if we wish try_to_free_buffers()
1940  * to be called. We do this if the page is releasable by try_to_free_buffers().
1941  * We also do it if the page has locked or dirty buffers and the caller wants
1942  * us to perform sync or async writeout.
1943  *
1944  * This complicates JBD locking somewhat.  We aren't protected by the
1945  * BKL here.  We wish to remove the buffer from its committing or
1946  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1947  *
1948  * This may *change* the value of transaction_t->t_datalist, so anyone
1949  * who looks at t_datalist needs to lock against this function.
1950  *
1951  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1952  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1953  * will come out of the lock with the buffer dirty, which makes it
1954  * ineligible for release here.
1955  *
1956  * Who else is affected by this?  hmm...  Really the only contender
1957  * is do_get_write_access() - it could be looking at the buffer while
1958  * journal_try_to_free_buffer() is changing its state.  But that
1959  * cannot happen because we never reallocate freed data as metadata
1960  * while the data is part of a transaction.  Yes?
1961  *
1962  * Return 0 on failure, 1 on success
1963  */
1964 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1965                                 struct page *page, gfp_t gfp_mask)
1966 {
1967         struct buffer_head *head;
1968         struct buffer_head *bh;
1969         int ret = 0;
1970
1971         J_ASSERT(PageLocked(page));
1972
1973         head = page_buffers(page);
1974         bh = head;
1975         do {
1976                 struct journal_head *jh;
1977
1978                 /*
1979                  * We take our own ref against the journal_head here to avoid
1980                  * having to add tons of locking around each instance of
1981                  * jbd2_journal_put_journal_head().
1982                  */
1983                 jh = jbd2_journal_grab_journal_head(bh);
1984                 if (!jh)
1985                         continue;
1986
1987                 jbd_lock_bh_state(bh);
1988                 __journal_try_to_free_buffer(journal, bh);
1989                 jbd2_journal_put_journal_head(jh);
1990                 jbd_unlock_bh_state(bh);
1991                 if (buffer_jbd(bh))
1992                         goto busy;
1993         } while ((bh = bh->b_this_page) != head);
1994
1995         ret = try_to_free_buffers(page);
1996
1997 busy:
1998         return ret;
1999 }
2000
2001 /*
2002  * This buffer is no longer needed.  If it is on an older transaction's
2003  * checkpoint list we need to record it on this transaction's forget list
2004  * to pin this buffer (and hence its checkpointing transaction) down until
2005  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2006  * release it.
2007  * Returns non-zero if JBD no longer has an interest in the buffer.
2008  *
2009  * Called under j_list_lock.
2010  *
2011  * Called under jbd_lock_bh_state(bh).
2012  */
2013 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2014 {
2015         int may_free = 1;
2016         struct buffer_head *bh = jh2bh(jh);
2017
2018         if (jh->b_cp_transaction) {
2019                 JBUFFER_TRACE(jh, "on running+cp transaction");
2020                 __jbd2_journal_temp_unlink_buffer(jh);
2021                 /*
2022                  * We don't want to write the buffer anymore, clear the
2023                  * bit so that we don't confuse checks in
2024                  * __journal_file_buffer
2025                  */
2026                 clear_buffer_dirty(bh);
2027                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2028                 may_free = 0;
2029         } else {
2030                 JBUFFER_TRACE(jh, "on running transaction");
2031                 __jbd2_journal_unfile_buffer(jh);
2032         }
2033         return may_free;
2034 }
2035
2036 /*
2037  * jbd2_journal_invalidatepage
2038  *
2039  * This code is tricky.  It has a number of cases to deal with.
2040  *
2041  * There are two invariants which this code relies on:
2042  *
2043  * i_size must be updated on disk before we start calling invalidatepage on the
2044  * data.
2045  *
2046  *  This is done in ext3 by defining an ext3_setattr method which
2047  *  updates i_size before truncate gets going.  By maintaining this
2048  *  invariant, we can be sure that it is safe to throw away any buffers
2049  *  attached to the current transaction: once the transaction commits,
2050  *  we know that the data will not be needed.
2051  *
2052  *  Note however that we can *not* throw away data belonging to the
2053  *  previous, committing transaction!
2054  *
2055  * Any disk blocks which *are* part of the previous, committing
2056  * transaction (and which therefore cannot be discarded immediately) are
2057  * not going to be reused in the new running transaction
2058  *
2059  *  The bitmap committed_data images guarantee this: any block which is
2060  *  allocated in one transaction and removed in the next will be marked
2061  *  as in-use in the committed_data bitmap, so cannot be reused until
2062  *  the next transaction to delete the block commits.  This means that
2063  *  leaving committing buffers dirty is quite safe: the disk blocks
2064  *  cannot be reallocated to a different file and so buffer aliasing is
2065  *  not possible.
2066  *
2067  *
2068  * The above applies mainly to ordered data mode.  In writeback mode we
2069  * don't make guarantees about the order in which data hits disk --- in
2070  * particular we don't guarantee that new dirty data is flushed before
2071  * transaction commit --- so it is always safe just to discard data
2072  * immediately in that mode.  --sct
2073  */
2074
2075 /*
2076  * The journal_unmap_buffer helper function returns zero if the buffer
2077  * concerned remains pinned as an anonymous buffer belonging to an older
2078  * transaction.
2079  *
2080  * We're outside-transaction here.  Either or both of j_running_transaction
2081  * and j_committing_transaction may be NULL.
2082  */
2083 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2084                                 int partial_page)
2085 {
2086         transaction_t *transaction;
2087         struct journal_head *jh;
2088         int may_free = 1;
2089
2090         BUFFER_TRACE(bh, "entry");
2091
2092         /*
2093          * It is safe to proceed here without the j_list_lock because the
2094          * buffers cannot be stolen by try_to_free_buffers as long as we are
2095          * holding the page lock. --sct
2096          */
2097
2098         if (!buffer_jbd(bh))
2099                 goto zap_buffer_unlocked;
2100
2101         /* OK, we have data buffer in journaled mode */
2102         write_lock(&journal->j_state_lock);
2103         jbd_lock_bh_state(bh);
2104         spin_lock(&journal->j_list_lock);
2105
2106         jh = jbd2_journal_grab_journal_head(bh);
2107         if (!jh)
2108                 goto zap_buffer_no_jh;
2109
2110         /*
2111          * We cannot remove the buffer from checkpoint lists until the
2112          * transaction adding inode to orphan list (let's call it T)
2113          * is committed.  Otherwise if the transaction changing the
2114          * buffer would be cleaned from the journal before T is
2115          * committed, a crash will cause that the correct contents of
2116          * the buffer will be lost.  On the other hand we have to
2117          * clear the buffer dirty bit at latest at the moment when the
2118          * transaction marking the buffer as freed in the filesystem
2119          * structures is committed because from that moment on the
2120          * block can be reallocated and used by a different page.
2121          * Since the block hasn't been freed yet but the inode has
2122          * already been added to orphan list, it is safe for us to add
2123          * the buffer to BJ_Forget list of the newest transaction.
2124          *
2125          * Also we have to clear buffer_mapped flag of a truncated buffer
2126          * because the buffer_head may be attached to the page straddling
2127          * i_size (can happen only when blocksize < pagesize) and thus the
2128          * buffer_head can be reused when the file is extended again. So we end
2129          * up keeping around invalidated buffers attached to transactions'
2130          * BJ_Forget list just to stop checkpointing code from cleaning up
2131          * the transaction this buffer was modified in.
2132          */
2133         transaction = jh->b_transaction;
2134         if (transaction == NULL) {
2135                 /* First case: not on any transaction.  If it
2136                  * has no checkpoint link, then we can zap it:
2137                  * it's a writeback-mode buffer so we don't care
2138                  * if it hits disk safely. */
2139                 if (!jh->b_cp_transaction) {
2140                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2141                         goto zap_buffer;
2142                 }
2143
2144                 if (!buffer_dirty(bh)) {
2145                         /* bdflush has written it.  We can drop it now */
2146                         __jbd2_journal_remove_checkpoint(jh);
2147                         goto zap_buffer;
2148                 }
2149
2150                 /* OK, it must be in the journal but still not
2151                  * written fully to disk: it's metadata or
2152                  * journaled data... */
2153
2154                 if (journal->j_running_transaction) {
2155                         /* ... and once the current transaction has
2156                          * committed, the buffer won't be needed any
2157                          * longer. */
2158                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2159                         may_free = __dispose_buffer(jh,
2160                                         journal->j_running_transaction);
2161                         goto zap_buffer;
2162                 } else {
2163                         /* There is no currently-running transaction. So the
2164                          * orphan record which we wrote for this file must have
2165                          * passed into commit.  We must attach this buffer to
2166                          * the committing transaction, if it exists. */
2167                         if (journal->j_committing_transaction) {
2168                                 JBUFFER_TRACE(jh, "give to committing trans");
2169                                 may_free = __dispose_buffer(jh,
2170                                         journal->j_committing_transaction);
2171                                 goto zap_buffer;
2172                         } else {
2173                                 /* The orphan record's transaction has
2174                                  * committed.  We can cleanse this buffer */
2175                                 clear_buffer_jbddirty(bh);
2176                                 __jbd2_journal_remove_checkpoint(jh);
2177                                 goto zap_buffer;
2178                         }
2179                 }
2180         } else if (transaction == journal->j_committing_transaction) {
2181                 JBUFFER_TRACE(jh, "on committing transaction");
2182                 /*
2183                  * The buffer is committing, we simply cannot touch
2184                  * it. If the page is straddling i_size we have to wait
2185                  * for commit and try again.
2186                  */
2187                 if (partial_page) {
2188                         jbd2_journal_put_journal_head(jh);
2189                         spin_unlock(&journal->j_list_lock);
2190                         jbd_unlock_bh_state(bh);
2191                         write_unlock(&journal->j_state_lock);
2192                         return -EBUSY;
2193                 }
2194                 /*
2195                  * OK, buffer won't be reachable after truncate. We just set
2196                  * j_next_transaction to the running transaction (if there is
2197                  * one) and mark buffer as freed so that commit code knows it
2198                  * should clear dirty bits when it is done with the buffer.
2199                  */
2200                 set_buffer_freed(bh);
2201                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2202                         jh->b_next_transaction = journal->j_running_transaction;
2203                 jbd2_journal_put_journal_head(jh);
2204                 spin_unlock(&journal->j_list_lock);
2205                 jbd_unlock_bh_state(bh);
2206                 write_unlock(&journal->j_state_lock);
2207                 return 0;
2208         } else {
2209                 /* Good, the buffer belongs to the running transaction.
2210                  * We are writing our own transaction's data, not any
2211                  * previous one's, so it is safe to throw it away
2212                  * (remember that we expect the filesystem to have set
2213                  * i_size already for this truncate so recovery will not
2214                  * expose the disk blocks we are discarding here.) */
2215                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2216                 JBUFFER_TRACE(jh, "on running transaction");
2217                 may_free = __dispose_buffer(jh, transaction);
2218         }
2219
2220 zap_buffer:
2221         /*
2222          * This is tricky. Although the buffer is truncated, it may be reused
2223          * if blocksize < pagesize and it is attached to the page straddling
2224          * EOF. Since the buffer might have been added to BJ_Forget list of the
2225          * running transaction, journal_get_write_access() won't clear
2226          * b_modified and credit accounting gets confused. So clear b_modified
2227          * here.
2228          */
2229         jh->b_modified = 0;
2230         jbd2_journal_put_journal_head(jh);
2231 zap_buffer_no_jh:
2232         spin_unlock(&journal->j_list_lock);
2233         jbd_unlock_bh_state(bh);
2234         write_unlock(&journal->j_state_lock);
2235 zap_buffer_unlocked:
2236         clear_buffer_dirty(bh);
2237         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2238         clear_buffer_mapped(bh);
2239         clear_buffer_req(bh);
2240         clear_buffer_new(bh);
2241         clear_buffer_delay(bh);
2242         clear_buffer_unwritten(bh);
2243         bh->b_bdev = NULL;
2244         return may_free;
2245 }
2246
2247 /**
2248  * void jbd2_journal_invalidatepage()
2249  * @journal: journal to use for flush...
2250  * @page:    page to flush
2251  * @offset:  start of the range to invalidate
2252  * @length:  length of the range to invalidate
2253  *
2254  * Reap page buffers containing data after in the specified range in page.
2255  * Can return -EBUSY if buffers are part of the committing transaction and
2256  * the page is straddling i_size. Caller then has to wait for current commit
2257  * and try again.
2258  */
2259 int jbd2_journal_invalidatepage(journal_t *journal,
2260                                 struct page *page,
2261                                 unsigned int offset,
2262                                 unsigned int length)
2263 {
2264         struct buffer_head *head, *bh, *next;
2265         unsigned int stop = offset + length;
2266         unsigned int curr_off = 0;
2267         int partial_page = (offset || length < PAGE_SIZE);
2268         int may_free = 1;
2269         int ret = 0;
2270
2271         if (!PageLocked(page))
2272                 BUG();
2273         if (!page_has_buffers(page))
2274                 return 0;
2275
2276         BUG_ON(stop > PAGE_SIZE || stop < length);
2277
2278         /* We will potentially be playing with lists other than just the
2279          * data lists (especially for journaled data mode), so be
2280          * cautious in our locking. */
2281
2282         head = bh = page_buffers(page);
2283         do {
2284                 unsigned int next_off = curr_off + bh->b_size;
2285                 next = bh->b_this_page;
2286
2287                 if (next_off > stop)
2288                         return 0;
2289
2290                 if (offset <= curr_off) {
2291                         /* This block is wholly outside the truncation point */
2292                         lock_buffer(bh);
2293                         ret = journal_unmap_buffer(journal, bh, partial_page);
2294                         unlock_buffer(bh);
2295                         if (ret < 0)
2296                                 return ret;
2297                         may_free &= ret;
2298                 }
2299                 curr_off = next_off;
2300                 bh = next;
2301
2302         } while (bh != head);
2303
2304         if (!partial_page) {
2305                 if (may_free && try_to_free_buffers(page))
2306                         J_ASSERT(!page_has_buffers(page));
2307         }
2308         return 0;
2309 }
2310
2311 /*
2312  * File a buffer on the given transaction list.
2313  */
2314 void __jbd2_journal_file_buffer(struct journal_head *jh,
2315                         transaction_t *transaction, int jlist)
2316 {
2317         struct journal_head **list = NULL;
2318         int was_dirty = 0;
2319         struct buffer_head *bh = jh2bh(jh);
2320
2321         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2322         assert_spin_locked(&transaction->t_journal->j_list_lock);
2323
2324         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2325         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2326                                 jh->b_transaction == NULL);
2327
2328         if (jh->b_transaction && jh->b_jlist == jlist)
2329                 return;
2330
2331         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2332             jlist == BJ_Shadow || jlist == BJ_Forget) {
2333                 /*
2334                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2335                  * instead of buffer_dirty. We should not see a dirty bit set
2336                  * here because we clear it in do_get_write_access but e.g.
2337                  * tune2fs can modify the sb and set the dirty bit at any time
2338                  * so we try to gracefully handle that.
2339                  */
2340                 if (buffer_dirty(bh))
2341                         warn_dirty_buffer(bh);
2342                 if (test_clear_buffer_dirty(bh) ||
2343                     test_clear_buffer_jbddirty(bh))
2344                         was_dirty = 1;
2345         }
2346
2347         if (jh->b_transaction)
2348                 __jbd2_journal_temp_unlink_buffer(jh);
2349         else
2350                 jbd2_journal_grab_journal_head(bh);
2351         jh->b_transaction = transaction;
2352
2353         switch (jlist) {
2354         case BJ_None:
2355                 J_ASSERT_JH(jh, !jh->b_committed_data);
2356                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2357                 return;
2358         case BJ_Metadata:
2359                 transaction->t_nr_buffers++;
2360                 list = &transaction->t_buffers;
2361                 break;
2362         case BJ_Forget:
2363                 list = &transaction->t_forget;
2364                 break;
2365         case BJ_Shadow:
2366                 list = &transaction->t_shadow_list;
2367                 break;
2368         case BJ_Reserved:
2369                 list = &transaction->t_reserved_list;
2370                 break;
2371         }
2372
2373         __blist_add_buffer(list, jh);
2374         jh->b_jlist = jlist;
2375
2376         if (was_dirty)
2377                 set_buffer_jbddirty(bh);
2378 }
2379
2380 void jbd2_journal_file_buffer(struct journal_head *jh,
2381                                 transaction_t *transaction, int jlist)
2382 {
2383         jbd_lock_bh_state(jh2bh(jh));
2384         spin_lock(&transaction->t_journal->j_list_lock);
2385         __jbd2_journal_file_buffer(jh, transaction, jlist);
2386         spin_unlock(&transaction->t_journal->j_list_lock);
2387         jbd_unlock_bh_state(jh2bh(jh));
2388 }
2389
2390 /*
2391  * Remove a buffer from its current buffer list in preparation for
2392  * dropping it from its current transaction entirely.  If the buffer has
2393  * already started to be used by a subsequent transaction, refile the
2394  * buffer on that transaction's metadata list.
2395  *
2396  * Called under j_list_lock
2397  * Called under jbd_lock_bh_state(jh2bh(jh))
2398  *
2399  * jh and bh may be already free when this function returns
2400  */
2401 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2402 {
2403         int was_dirty, jlist;
2404         struct buffer_head *bh = jh2bh(jh);
2405
2406         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2407         if (jh->b_transaction)
2408                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2409
2410         /* If the buffer is now unused, just drop it. */
2411         if (jh->b_next_transaction == NULL) {
2412                 __jbd2_journal_unfile_buffer(jh);
2413                 return;
2414         }
2415
2416         /*
2417          * It has been modified by a later transaction: add it to the new
2418          * transaction's metadata list.
2419          */
2420
2421         was_dirty = test_clear_buffer_jbddirty(bh);
2422         __jbd2_journal_temp_unlink_buffer(jh);
2423         /*
2424          * We set b_transaction here because b_next_transaction will inherit
2425          * our jh reference and thus __jbd2_journal_file_buffer() must not
2426          * take a new one.
2427          */
2428         jh->b_transaction = jh->b_next_transaction;
2429         jh->b_next_transaction = NULL;
2430         if (buffer_freed(bh))
2431                 jlist = BJ_Forget;
2432         else if (jh->b_modified)
2433                 jlist = BJ_Metadata;
2434         else
2435                 jlist = BJ_Reserved;
2436         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2437         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2438
2439         if (was_dirty)
2440                 set_buffer_jbddirty(bh);
2441 }
2442
2443 /*
2444  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2445  * bh reference so that we can safely unlock bh.
2446  *
2447  * The jh and bh may be freed by this call.
2448  */
2449 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2450 {
2451         struct buffer_head *bh = jh2bh(jh);
2452
2453         /* Get reference so that buffer cannot be freed before we unlock it */
2454         get_bh(bh);
2455         jbd_lock_bh_state(bh);
2456         spin_lock(&journal->j_list_lock);
2457         __jbd2_journal_refile_buffer(jh);
2458         jbd_unlock_bh_state(bh);
2459         spin_unlock(&journal->j_list_lock);
2460         __brelse(bh);
2461 }
2462
2463 /*
2464  * File inode in the inode list of the handle's transaction
2465  */
2466 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2467                                    unsigned long flags)
2468 {
2469         transaction_t *transaction = handle->h_transaction;
2470         journal_t *journal;
2471
2472         if (is_handle_aborted(handle))
2473                 return -EROFS;
2474         journal = transaction->t_journal;
2475
2476         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2477                         transaction->t_tid);
2478
2479         /*
2480          * First check whether inode isn't already on the transaction's
2481          * lists without taking the lock. Note that this check is safe
2482          * without the lock as we cannot race with somebody removing inode
2483          * from the transaction. The reason is that we remove inode from the
2484          * transaction only in journal_release_jbd_inode() and when we commit
2485          * the transaction. We are guarded from the first case by holding
2486          * a reference to the inode. We are safe against the second case
2487          * because if jinode->i_transaction == transaction, commit code
2488          * cannot touch the transaction because we hold reference to it,
2489          * and if jinode->i_next_transaction == transaction, commit code
2490          * will only file the inode where we want it.
2491          */
2492         if ((jinode->i_transaction == transaction ||
2493             jinode->i_next_transaction == transaction) &&
2494             (jinode->i_flags & flags) == flags)
2495                 return 0;
2496
2497         spin_lock(&journal->j_list_lock);
2498         jinode->i_flags |= flags;
2499         /* Is inode already attached where we need it? */
2500         if (jinode->i_transaction == transaction ||
2501             jinode->i_next_transaction == transaction)
2502                 goto done;
2503
2504         /*
2505          * We only ever set this variable to 1 so the test is safe. Since
2506          * t_need_data_flush is likely to be set, we do the test to save some
2507          * cacheline bouncing
2508          */
2509         if (!transaction->t_need_data_flush)
2510                 transaction->t_need_data_flush = 1;
2511         /* On some different transaction's list - should be
2512          * the committing one */
2513         if (jinode->i_transaction) {
2514                 J_ASSERT(jinode->i_next_transaction == NULL);
2515                 J_ASSERT(jinode->i_transaction ==
2516                                         journal->j_committing_transaction);
2517                 jinode->i_next_transaction = transaction;
2518                 goto done;
2519         }
2520         /* Not on any transaction list... */
2521         J_ASSERT(!jinode->i_next_transaction);
2522         jinode->i_transaction = transaction;
2523         list_add(&jinode->i_list, &transaction->t_inode_list);
2524 done:
2525         spin_unlock(&journal->j_list_lock);
2526
2527         return 0;
2528 }
2529
2530 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2531 {
2532         return jbd2_journal_file_inode(handle, jinode,
2533                                        JI_WRITE_DATA | JI_WAIT_DATA);
2534 }
2535
2536 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2537 {
2538         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2539 }
2540
2541 /*
2542  * File truncate and transaction commit interact with each other in a
2543  * non-trivial way.  If a transaction writing data block A is
2544  * committing, we cannot discard the data by truncate until we have
2545  * written them.  Otherwise if we crashed after the transaction with
2546  * write has committed but before the transaction with truncate has
2547  * committed, we could see stale data in block A.  This function is a
2548  * helper to solve this problem.  It starts writeout of the truncated
2549  * part in case it is in the committing transaction.
2550  *
2551  * Filesystem code must call this function when inode is journaled in
2552  * ordered mode before truncation happens and after the inode has been
2553  * placed on orphan list with the new inode size. The second condition
2554  * avoids the race that someone writes new data and we start
2555  * committing the transaction after this function has been called but
2556  * before a transaction for truncate is started (and furthermore it
2557  * allows us to optimize the case where the addition to orphan list
2558  * happens in the same transaction as write --- we don't have to write
2559  * any data in such case).
2560  */
2561 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2562                                         struct jbd2_inode *jinode,
2563                                         loff_t new_size)
2564 {
2565         transaction_t *inode_trans, *commit_trans;
2566         int ret = 0;
2567
2568         /* This is a quick check to avoid locking if not necessary */
2569         if (!jinode->i_transaction)
2570                 goto out;
2571         /* Locks are here just to force reading of recent values, it is
2572          * enough that the transaction was not committing before we started
2573          * a transaction adding the inode to orphan list */
2574         read_lock(&journal->j_state_lock);
2575         commit_trans = journal->j_committing_transaction;
2576         read_unlock(&journal->j_state_lock);
2577         spin_lock(&journal->j_list_lock);
2578         inode_trans = jinode->i_transaction;
2579         spin_unlock(&journal->j_list_lock);
2580         if (inode_trans == commit_trans) {
2581                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2582                         new_size, LLONG_MAX);
2583                 if (ret)
2584                         jbd2_journal_abort(journal, ret);
2585         }
2586 out:
2587         return ret;
2588 }