Merge tag 'tegra-for-3.17-xusb-padctl' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207                 wait_transaction_locked(journal);
208                 return 1;
209         }
210
211         /*
212          * The commit code assumes that it can get enough log space
213          * without forcing a checkpoint.  This is *critical* for
214          * correctness: a checkpoint of a buffer which is also
215          * associated with a committing transaction creates a deadlock,
216          * so commit simply cannot force through checkpoints.
217          *
218          * We must therefore ensure the necessary space in the journal
219          * *before* starting to dirty potentially checkpointed buffers
220          * in the new transaction.
221          */
222         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223                 atomic_sub(total, &t->t_outstanding_credits);
224                 read_unlock(&journal->j_state_lock);
225                 write_lock(&journal->j_state_lock);
226                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227                         __jbd2_log_wait_for_space(journal);
228                 write_unlock(&journal->j_state_lock);
229                 return 1;
230         }
231
232         /* No reservation? We are done... */
233         if (!rsv_blocks)
234                 return 0;
235
236         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237         /* We allow at most half of a transaction to be reserved */
238         if (needed > journal->j_max_transaction_buffers / 2) {
239                 sub_reserved_credits(journal, rsv_blocks);
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 wait_event(journal->j_wait_reserved,
243                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
244                          <= journal->j_max_transaction_buffers / 2);
245                 return 1;
246         }
247         return 0;
248 }
249
250 /*
251  * start_this_handle: Given a handle, deal with any locking or stalling
252  * needed to make sure that there is enough journal space for the handle
253  * to begin.  Attach the handle to a transaction and set up the
254  * transaction's buffer credits.
255  */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258                              gfp_t gfp_mask)
259 {
260         transaction_t   *transaction, *new_transaction = NULL;
261         int             blocks = handle->h_buffer_credits;
262         int             rsv_blocks = 0;
263         unsigned long ts = jiffies;
264
265         /*
266          * 1/2 of transaction can be reserved so we can practically handle
267          * only 1/2 of maximum transaction size per operation
268          */
269         if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271                        current->comm, blocks,
272                        journal->j_max_transaction_buffers / 2);
273                 return -ENOSPC;
274         }
275
276         if (handle->h_rsv_handle)
277                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280         if (!journal->j_running_transaction) {
281                 new_transaction = kmem_cache_zalloc(transaction_cache,
282                                                     gfp_mask);
283                 if (!new_transaction) {
284                         /*
285                          * If __GFP_FS is not present, then we may be
286                          * being called from inside the fs writeback
287                          * layer, so we MUST NOT fail.  Since
288                          * __GFP_NOFAIL is going away, we will arrange
289                          * to retry the allocation ourselves.
290                          */
291                         if ((gfp_mask & __GFP_FS) == 0) {
292                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
293                                 goto alloc_transaction;
294                         }
295                         return -ENOMEM;
296                 }
297         }
298
299         jbd_debug(3, "New handle %p going live.\n", handle);
300
301         /*
302          * We need to hold j_state_lock until t_updates has been incremented,
303          * for proper journal barrier handling
304          */
305 repeat:
306         read_lock(&journal->j_state_lock);
307         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308         if (is_journal_aborted(journal) ||
309             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310                 read_unlock(&journal->j_state_lock);
311                 jbd2_journal_free_transaction(new_transaction);
312                 return -EROFS;
313         }
314
315         /*
316          * Wait on the journal's transaction barrier if necessary. Specifically
317          * we allow reserved handles to proceed because otherwise commit could
318          * deadlock on page writeback not being able to complete.
319          */
320         if (!handle->h_reserved && journal->j_barrier_count) {
321                 read_unlock(&journal->j_state_lock);
322                 wait_event(journal->j_wait_transaction_locked,
323                                 journal->j_barrier_count == 0);
324                 goto repeat;
325         }
326
327         if (!journal->j_running_transaction) {
328                 read_unlock(&journal->j_state_lock);
329                 if (!new_transaction)
330                         goto alloc_transaction;
331                 write_lock(&journal->j_state_lock);
332                 if (!journal->j_running_transaction &&
333                     (handle->h_reserved || !journal->j_barrier_count)) {
334                         jbd2_get_transaction(journal, new_transaction);
335                         new_transaction = NULL;
336                 }
337                 write_unlock(&journal->j_state_lock);
338                 goto repeat;
339         }
340
341         transaction = journal->j_running_transaction;
342
343         if (!handle->h_reserved) {
344                 /* We may have dropped j_state_lock - restart in that case */
345                 if (add_transaction_credits(journal, blocks, rsv_blocks))
346                         goto repeat;
347         } else {
348                 /*
349                  * We have handle reserved so we are allowed to join T_LOCKED
350                  * transaction and we don't have to check for transaction size
351                  * and journal space.
352                  */
353                 sub_reserved_credits(journal, blocks);
354                 handle->h_reserved = 0;
355         }
356
357         /* OK, account for the buffers that this operation expects to
358          * use and add the handle to the running transaction. 
359          */
360         update_t_max_wait(transaction, ts);
361         handle->h_transaction = transaction;
362         handle->h_requested_credits = blocks;
363         handle->h_start_jiffies = jiffies;
364         atomic_inc(&transaction->t_updates);
365         atomic_inc(&transaction->t_handle_count);
366         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367                   handle, blocks,
368                   atomic_read(&transaction->t_outstanding_credits),
369                   jbd2_log_space_left(journal));
370         read_unlock(&journal->j_state_lock);
371         current->journal_info = handle;
372
373         lock_map_acquire(&handle->h_lockdep_map);
374         jbd2_journal_free_transaction(new_transaction);
375         return 0;
376 }
377
378 static struct lock_class_key jbd2_handle_key;
379
380 /* Allocate a new handle.  This should probably be in a slab... */
381 static handle_t *new_handle(int nblocks)
382 {
383         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384         if (!handle)
385                 return NULL;
386         handle->h_buffer_credits = nblocks;
387         handle->h_ref = 1;
388
389         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390                                                 &jbd2_handle_key, 0);
391
392         return handle;
393 }
394
395 /**
396  * handle_t *jbd2_journal_start() - Obtain a new handle.
397  * @journal: Journal to start transaction on.
398  * @nblocks: number of block buffer we might modify
399  *
400  * We make sure that the transaction can guarantee at least nblocks of
401  * modified buffers in the log.  We block until the log can guarantee
402  * that much space. Additionally, if rsv_blocks > 0, we also create another
403  * handle with rsv_blocks reserved blocks in the journal. This handle is
404  * is stored in h_rsv_handle. It is not attached to any particular transaction
405  * and thus doesn't block transaction commit. If the caller uses this reserved
406  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407  * on the parent handle will dispose the reserved one. Reserved handle has to
408  * be converted to a normal handle using jbd2_journal_start_reserved() before
409  * it can be used.
410  *
411  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412  * on failure.
413  */
414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415                               gfp_t gfp_mask, unsigned int type,
416                               unsigned int line_no)
417 {
418         handle_t *handle = journal_current_handle();
419         int err;
420
421         if (!journal)
422                 return ERR_PTR(-EROFS);
423
424         if (handle) {
425                 J_ASSERT(handle->h_transaction->t_journal == journal);
426                 handle->h_ref++;
427                 return handle;
428         }
429
430         handle = new_handle(nblocks);
431         if (!handle)
432                 return ERR_PTR(-ENOMEM);
433         if (rsv_blocks) {
434                 handle_t *rsv_handle;
435
436                 rsv_handle = new_handle(rsv_blocks);
437                 if (!rsv_handle) {
438                         jbd2_free_handle(handle);
439                         return ERR_PTR(-ENOMEM);
440                 }
441                 rsv_handle->h_reserved = 1;
442                 rsv_handle->h_journal = journal;
443                 handle->h_rsv_handle = rsv_handle;
444         }
445
446         err = start_this_handle(journal, handle, gfp_mask);
447         if (err < 0) {
448                 if (handle->h_rsv_handle)
449                         jbd2_free_handle(handle->h_rsv_handle);
450                 jbd2_free_handle(handle);
451                 return ERR_PTR(err);
452         }
453         handle->h_type = type;
454         handle->h_line_no = line_no;
455         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456                                 handle->h_transaction->t_tid, type,
457                                 line_no, nblocks);
458         return handle;
459 }
460 EXPORT_SYMBOL(jbd2__journal_start);
461
462
463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464 {
465         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466 }
467 EXPORT_SYMBOL(jbd2_journal_start);
468
469 void jbd2_journal_free_reserved(handle_t *handle)
470 {
471         journal_t *journal = handle->h_journal;
472
473         WARN_ON(!handle->h_reserved);
474         sub_reserved_credits(journal, handle->h_buffer_credits);
475         jbd2_free_handle(handle);
476 }
477 EXPORT_SYMBOL(jbd2_journal_free_reserved);
478
479 /**
480  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481  * @handle: handle to start
482  *
483  * Start handle that has been previously reserved with jbd2_journal_reserve().
484  * This attaches @handle to the running transaction (or creates one if there's
485  * not transaction running). Unlike jbd2_journal_start() this function cannot
486  * block on journal commit, checkpointing, or similar stuff. It can block on
487  * memory allocation or frozen journal though.
488  *
489  * Return 0 on success, non-zero on error - handle is freed in that case.
490  */
491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492                                 unsigned int line_no)
493 {
494         journal_t *journal = handle->h_journal;
495         int ret = -EIO;
496
497         if (WARN_ON(!handle->h_reserved)) {
498                 /* Someone passed in normal handle? Just stop it. */
499                 jbd2_journal_stop(handle);
500                 return ret;
501         }
502         /*
503          * Usefulness of mixing of reserved and unreserved handles is
504          * questionable. So far nobody seems to need it so just error out.
505          */
506         if (WARN_ON(current->journal_info)) {
507                 jbd2_journal_free_reserved(handle);
508                 return ret;
509         }
510
511         handle->h_journal = NULL;
512         /*
513          * GFP_NOFS is here because callers are likely from writeback or
514          * similarly constrained call sites
515          */
516         ret = start_this_handle(journal, handle, GFP_NOFS);
517         if (ret < 0) {
518                 jbd2_journal_free_reserved(handle);
519                 return ret;
520         }
521         handle->h_type = type;
522         handle->h_line_no = line_no;
523         return 0;
524 }
525 EXPORT_SYMBOL(jbd2_journal_start_reserved);
526
527 /**
528  * int jbd2_journal_extend() - extend buffer credits.
529  * @handle:  handle to 'extend'
530  * @nblocks: nr blocks to try to extend by.
531  *
532  * Some transactions, such as large extends and truncates, can be done
533  * atomically all at once or in several stages.  The operation requests
534  * a credit for a number of buffer modications in advance, but can
535  * extend its credit if it needs more.
536  *
537  * jbd2_journal_extend tries to give the running handle more buffer credits.
538  * It does not guarantee that allocation - this is a best-effort only.
539  * The calling process MUST be able to deal cleanly with a failure to
540  * extend here.
541  *
542  * Return 0 on success, non-zero on failure.
543  *
544  * return code < 0 implies an error
545  * return code > 0 implies normal transaction-full status.
546  */
547 int jbd2_journal_extend(handle_t *handle, int nblocks)
548 {
549         transaction_t *transaction = handle->h_transaction;
550         journal_t *journal;
551         int result;
552         int wanted;
553
554         WARN_ON(!transaction);
555         if (is_handle_aborted(handle))
556                 return -EROFS;
557         journal = transaction->t_journal;
558
559         result = 1;
560
561         read_lock(&journal->j_state_lock);
562
563         /* Don't extend a locked-down transaction! */
564         if (transaction->t_state != T_RUNNING) {
565                 jbd_debug(3, "denied handle %p %d blocks: "
566                           "transaction not running\n", handle, nblocks);
567                 goto error_out;
568         }
569
570         spin_lock(&transaction->t_handle_lock);
571         wanted = atomic_add_return(nblocks,
572                                    &transaction->t_outstanding_credits);
573
574         if (wanted > journal->j_max_transaction_buffers) {
575                 jbd_debug(3, "denied handle %p %d blocks: "
576                           "transaction too large\n", handle, nblocks);
577                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
578                 goto unlock;
579         }
580
581         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
582             jbd2_log_space_left(journal)) {
583                 jbd_debug(3, "denied handle %p %d blocks: "
584                           "insufficient log space\n", handle, nblocks);
585                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
586                 goto unlock;
587         }
588
589         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
590                                  transaction->t_tid,
591                                  handle->h_type, handle->h_line_no,
592                                  handle->h_buffer_credits,
593                                  nblocks);
594
595         handle->h_buffer_credits += nblocks;
596         handle->h_requested_credits += nblocks;
597         result = 0;
598
599         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
600 unlock:
601         spin_unlock(&transaction->t_handle_lock);
602 error_out:
603         read_unlock(&journal->j_state_lock);
604         return result;
605 }
606
607
608 /**
609  * int jbd2_journal_restart() - restart a handle .
610  * @handle:  handle to restart
611  * @nblocks: nr credits requested
612  *
613  * Restart a handle for a multi-transaction filesystem
614  * operation.
615  *
616  * If the jbd2_journal_extend() call above fails to grant new buffer credits
617  * to a running handle, a call to jbd2_journal_restart will commit the
618  * handle's transaction so far and reattach the handle to a new
619  * transaction capabable of guaranteeing the requested number of
620  * credits. We preserve reserved handle if there's any attached to the
621  * passed in handle.
622  */
623 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
624 {
625         transaction_t *transaction = handle->h_transaction;
626         journal_t *journal;
627         tid_t           tid;
628         int             need_to_start, ret;
629
630         WARN_ON(!transaction);
631         /* If we've had an abort of any type, don't even think about
632          * actually doing the restart! */
633         if (is_handle_aborted(handle))
634                 return 0;
635         journal = transaction->t_journal;
636
637         /*
638          * First unlink the handle from its current transaction, and start the
639          * commit on that.
640          */
641         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
642         J_ASSERT(journal_current_handle() == handle);
643
644         read_lock(&journal->j_state_lock);
645         spin_lock(&transaction->t_handle_lock);
646         atomic_sub(handle->h_buffer_credits,
647                    &transaction->t_outstanding_credits);
648         if (handle->h_rsv_handle) {
649                 sub_reserved_credits(journal,
650                                      handle->h_rsv_handle->h_buffer_credits);
651         }
652         if (atomic_dec_and_test(&transaction->t_updates))
653                 wake_up(&journal->j_wait_updates);
654         tid = transaction->t_tid;
655         spin_unlock(&transaction->t_handle_lock);
656         handle->h_transaction = NULL;
657         current->journal_info = NULL;
658
659         jbd_debug(2, "restarting handle %p\n", handle);
660         need_to_start = !tid_geq(journal->j_commit_request, tid);
661         read_unlock(&journal->j_state_lock);
662         if (need_to_start)
663                 jbd2_log_start_commit(journal, tid);
664
665         lock_map_release(&handle->h_lockdep_map);
666         handle->h_buffer_credits = nblocks;
667         ret = start_this_handle(journal, handle, gfp_mask);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2__journal_restart);
671
672
673 int jbd2_journal_restart(handle_t *handle, int nblocks)
674 {
675         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
676 }
677 EXPORT_SYMBOL(jbd2_journal_restart);
678
679 /**
680  * void jbd2_journal_lock_updates () - establish a transaction barrier.
681  * @journal:  Journal to establish a barrier on.
682  *
683  * This locks out any further updates from being started, and blocks
684  * until all existing updates have completed, returning only once the
685  * journal is in a quiescent state with no updates running.
686  *
687  * The journal lock should not be held on entry.
688  */
689 void jbd2_journal_lock_updates(journal_t *journal)
690 {
691         DEFINE_WAIT(wait);
692
693         write_lock(&journal->j_state_lock);
694         ++journal->j_barrier_count;
695
696         /* Wait until there are no reserved handles */
697         if (atomic_read(&journal->j_reserved_credits)) {
698                 write_unlock(&journal->j_state_lock);
699                 wait_event(journal->j_wait_reserved,
700                            atomic_read(&journal->j_reserved_credits) == 0);
701                 write_lock(&journal->j_state_lock);
702         }
703
704         /* Wait until there are no running updates */
705         while (1) {
706                 transaction_t *transaction = journal->j_running_transaction;
707
708                 if (!transaction)
709                         break;
710
711                 spin_lock(&transaction->t_handle_lock);
712                 prepare_to_wait(&journal->j_wait_updates, &wait,
713                                 TASK_UNINTERRUPTIBLE);
714                 if (!atomic_read(&transaction->t_updates)) {
715                         spin_unlock(&transaction->t_handle_lock);
716                         finish_wait(&journal->j_wait_updates, &wait);
717                         break;
718                 }
719                 spin_unlock(&transaction->t_handle_lock);
720                 write_unlock(&journal->j_state_lock);
721                 schedule();
722                 finish_wait(&journal->j_wait_updates, &wait);
723                 write_lock(&journal->j_state_lock);
724         }
725         write_unlock(&journal->j_state_lock);
726
727         /*
728          * We have now established a barrier against other normal updates, but
729          * we also need to barrier against other jbd2_journal_lock_updates() calls
730          * to make sure that we serialise special journal-locked operations
731          * too.
732          */
733         mutex_lock(&journal->j_barrier);
734 }
735
736 /**
737  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
738  * @journal:  Journal to release the barrier on.
739  *
740  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
741  *
742  * Should be called without the journal lock held.
743  */
744 void jbd2_journal_unlock_updates (journal_t *journal)
745 {
746         J_ASSERT(journal->j_barrier_count != 0);
747
748         mutex_unlock(&journal->j_barrier);
749         write_lock(&journal->j_state_lock);
750         --journal->j_barrier_count;
751         write_unlock(&journal->j_state_lock);
752         wake_up(&journal->j_wait_transaction_locked);
753 }
754
755 static void warn_dirty_buffer(struct buffer_head *bh)
756 {
757         char b[BDEVNAME_SIZE];
758
759         printk(KERN_WARNING
760                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
761                "There's a risk of filesystem corruption in case of system "
762                "crash.\n",
763                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
764 }
765
766 static int sleep_on_shadow_bh(void *word)
767 {
768         io_schedule();
769         return 0;
770 }
771
772 /*
773  * If the buffer is already part of the current transaction, then there
774  * is nothing we need to do.  If it is already part of a prior
775  * transaction which we are still committing to disk, then we need to
776  * make sure that we do not overwrite the old copy: we do copy-out to
777  * preserve the copy going to disk.  We also account the buffer against
778  * the handle's metadata buffer credits (unless the buffer is already
779  * part of the transaction, that is).
780  *
781  */
782 static int
783 do_get_write_access(handle_t *handle, struct journal_head *jh,
784                         int force_copy)
785 {
786         struct buffer_head *bh;
787         transaction_t *transaction = handle->h_transaction;
788         journal_t *journal;
789         int error;
790         char *frozen_buffer = NULL;
791         int need_copy = 0;
792         unsigned long start_lock, time_lock;
793
794         WARN_ON(!transaction);
795         if (is_handle_aborted(handle))
796                 return -EROFS;
797         journal = transaction->t_journal;
798
799         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
800
801         JBUFFER_TRACE(jh, "entry");
802 repeat:
803         bh = jh2bh(jh);
804
805         /* @@@ Need to check for errors here at some point. */
806
807         start_lock = jiffies;
808         lock_buffer(bh);
809         jbd_lock_bh_state(bh);
810
811         /* If it takes too long to lock the buffer, trace it */
812         time_lock = jbd2_time_diff(start_lock, jiffies);
813         if (time_lock > HZ/10)
814                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
815                         jiffies_to_msecs(time_lock));
816
817         /* We now hold the buffer lock so it is safe to query the buffer
818          * state.  Is the buffer dirty?
819          *
820          * If so, there are two possibilities.  The buffer may be
821          * non-journaled, and undergoing a quite legitimate writeback.
822          * Otherwise, it is journaled, and we don't expect dirty buffers
823          * in that state (the buffers should be marked JBD_Dirty
824          * instead.)  So either the IO is being done under our own
825          * control and this is a bug, or it's a third party IO such as
826          * dump(8) (which may leave the buffer scheduled for read ---
827          * ie. locked but not dirty) or tune2fs (which may actually have
828          * the buffer dirtied, ugh.)  */
829
830         if (buffer_dirty(bh)) {
831                 /*
832                  * First question: is this buffer already part of the current
833                  * transaction or the existing committing transaction?
834                  */
835                 if (jh->b_transaction) {
836                         J_ASSERT_JH(jh,
837                                 jh->b_transaction == transaction ||
838                                 jh->b_transaction ==
839                                         journal->j_committing_transaction);
840                         if (jh->b_next_transaction)
841                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
842                                                         transaction);
843                         warn_dirty_buffer(bh);
844                 }
845                 /*
846                  * In any case we need to clean the dirty flag and we must
847                  * do it under the buffer lock to be sure we don't race
848                  * with running write-out.
849                  */
850                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
851                 clear_buffer_dirty(bh);
852                 set_buffer_jbddirty(bh);
853         }
854
855         unlock_buffer(bh);
856
857         error = -EROFS;
858         if (is_handle_aborted(handle)) {
859                 jbd_unlock_bh_state(bh);
860                 goto out;
861         }
862         error = 0;
863
864         /*
865          * The buffer is already part of this transaction if b_transaction or
866          * b_next_transaction points to it
867          */
868         if (jh->b_transaction == transaction ||
869             jh->b_next_transaction == transaction)
870                 goto done;
871
872         /*
873          * this is the first time this transaction is touching this buffer,
874          * reset the modified flag
875          */
876        jh->b_modified = 0;
877
878         /*
879          * If there is already a copy-out version of this buffer, then we don't
880          * need to make another one
881          */
882         if (jh->b_frozen_data) {
883                 JBUFFER_TRACE(jh, "has frozen data");
884                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885                 jh->b_next_transaction = transaction;
886                 goto done;
887         }
888
889         /* Is there data here we need to preserve? */
890
891         if (jh->b_transaction && jh->b_transaction != transaction) {
892                 JBUFFER_TRACE(jh, "owned by older transaction");
893                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
894                 J_ASSERT_JH(jh, jh->b_transaction ==
895                                         journal->j_committing_transaction);
896
897                 /* There is one case we have to be very careful about.
898                  * If the committing transaction is currently writing
899                  * this buffer out to disk and has NOT made a copy-out,
900                  * then we cannot modify the buffer contents at all
901                  * right now.  The essence of copy-out is that it is the
902                  * extra copy, not the primary copy, which gets
903                  * journaled.  If the primary copy is already going to
904                  * disk then we cannot do copy-out here. */
905
906                 if (buffer_shadow(bh)) {
907                         JBUFFER_TRACE(jh, "on shadow: sleep");
908                         jbd_unlock_bh_state(bh);
909                         wait_on_bit(&bh->b_state, BH_Shadow,
910                                     sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
911                         goto repeat;
912                 }
913
914                 /*
915                  * Only do the copy if the currently-owning transaction still
916                  * needs it. If buffer isn't on BJ_Metadata list, the
917                  * committing transaction is past that stage (here we use the
918                  * fact that BH_Shadow is set under bh_state lock together with
919                  * refiling to BJ_Shadow list and at this point we know the
920                  * buffer doesn't have BH_Shadow set).
921                  *
922                  * Subtle point, though: if this is a get_undo_access,
923                  * then we will be relying on the frozen_data to contain
924                  * the new value of the committed_data record after the
925                  * transaction, so we HAVE to force the frozen_data copy
926                  * in that case.
927                  */
928                 if (jh->b_jlist == BJ_Metadata || force_copy) {
929                         JBUFFER_TRACE(jh, "generate frozen data");
930                         if (!frozen_buffer) {
931                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
932                                 jbd_unlock_bh_state(bh);
933                                 frozen_buffer =
934                                         jbd2_alloc(jh2bh(jh)->b_size,
935                                                          GFP_NOFS);
936                                 if (!frozen_buffer) {
937                                         printk(KERN_ERR
938                                                "%s: OOM for frozen_buffer\n",
939                                                __func__);
940                                         JBUFFER_TRACE(jh, "oom!");
941                                         error = -ENOMEM;
942                                         jbd_lock_bh_state(bh);
943                                         goto done;
944                                 }
945                                 goto repeat;
946                         }
947                         jh->b_frozen_data = frozen_buffer;
948                         frozen_buffer = NULL;
949                         need_copy = 1;
950                 }
951                 jh->b_next_transaction = transaction;
952         }
953
954
955         /*
956          * Finally, if the buffer is not journaled right now, we need to make
957          * sure it doesn't get written to disk before the caller actually
958          * commits the new data
959          */
960         if (!jh->b_transaction) {
961                 JBUFFER_TRACE(jh, "no transaction");
962                 J_ASSERT_JH(jh, !jh->b_next_transaction);
963                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
964                 spin_lock(&journal->j_list_lock);
965                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
966                 spin_unlock(&journal->j_list_lock);
967         }
968
969 done:
970         if (need_copy) {
971                 struct page *page;
972                 int offset;
973                 char *source;
974
975                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
976                             "Possible IO failure.\n");
977                 page = jh2bh(jh)->b_page;
978                 offset = offset_in_page(jh2bh(jh)->b_data);
979                 source = kmap_atomic(page);
980                 /* Fire data frozen trigger just before we copy the data */
981                 jbd2_buffer_frozen_trigger(jh, source + offset,
982                                            jh->b_triggers);
983                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
984                 kunmap_atomic(source);
985
986                 /*
987                  * Now that the frozen data is saved off, we need to store
988                  * any matching triggers.
989                  */
990                 jh->b_frozen_triggers = jh->b_triggers;
991         }
992         jbd_unlock_bh_state(bh);
993
994         /*
995          * If we are about to journal a buffer, then any revoke pending on it is
996          * no longer valid
997          */
998         jbd2_journal_cancel_revoke(handle, jh);
999
1000 out:
1001         if (unlikely(frozen_buffer))    /* It's usually NULL */
1002                 jbd2_free(frozen_buffer, bh->b_size);
1003
1004         JBUFFER_TRACE(jh, "exit");
1005         return error;
1006 }
1007
1008 /**
1009  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1010  * @handle: transaction to add buffer modifications to
1011  * @bh:     bh to be used for metadata writes
1012  *
1013  * Returns an error code or 0 on success.
1014  *
1015  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1016  * because we're write()ing a buffer which is also part of a shared mapping.
1017  */
1018
1019 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1020 {
1021         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1022         int rc;
1023
1024         /* We do not want to get caught playing with fields which the
1025          * log thread also manipulates.  Make sure that the buffer
1026          * completes any outstanding IO before proceeding. */
1027         rc = do_get_write_access(handle, jh, 0);
1028         jbd2_journal_put_journal_head(jh);
1029         return rc;
1030 }
1031
1032
1033 /*
1034  * When the user wants to journal a newly created buffer_head
1035  * (ie. getblk() returned a new buffer and we are going to populate it
1036  * manually rather than reading off disk), then we need to keep the
1037  * buffer_head locked until it has been completely filled with new
1038  * data.  In this case, we should be able to make the assertion that
1039  * the bh is not already part of an existing transaction.
1040  *
1041  * The buffer should already be locked by the caller by this point.
1042  * There is no lock ranking violation: it was a newly created,
1043  * unlocked buffer beforehand. */
1044
1045 /**
1046  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1047  * @handle: transaction to new buffer to
1048  * @bh: new buffer.
1049  *
1050  * Call this if you create a new bh.
1051  */
1052 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1053 {
1054         transaction_t *transaction = handle->h_transaction;
1055         journal_t *journal;
1056         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1057         int err;
1058
1059         jbd_debug(5, "journal_head %p\n", jh);
1060         WARN_ON(!transaction);
1061         err = -EROFS;
1062         if (is_handle_aborted(handle))
1063                 goto out;
1064         journal = transaction->t_journal;
1065         err = 0;
1066
1067         JBUFFER_TRACE(jh, "entry");
1068         /*
1069          * The buffer may already belong to this transaction due to pre-zeroing
1070          * in the filesystem's new_block code.  It may also be on the previous,
1071          * committing transaction's lists, but it HAS to be in Forget state in
1072          * that case: the transaction must have deleted the buffer for it to be
1073          * reused here.
1074          */
1075         jbd_lock_bh_state(bh);
1076         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1077                 jh->b_transaction == NULL ||
1078                 (jh->b_transaction == journal->j_committing_transaction &&
1079                           jh->b_jlist == BJ_Forget)));
1080
1081         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1083
1084         if (jh->b_transaction == NULL) {
1085                 /*
1086                  * Previous jbd2_journal_forget() could have left the buffer
1087                  * with jbddirty bit set because it was being committed. When
1088                  * the commit finished, we've filed the buffer for
1089                  * checkpointing and marked it dirty. Now we are reallocating
1090                  * the buffer so the transaction freeing it must have
1091                  * committed and so it's safe to clear the dirty bit.
1092                  */
1093                 clear_buffer_dirty(jh2bh(jh));
1094                 /* first access by this transaction */
1095                 jh->b_modified = 0;
1096
1097                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1098                 spin_lock(&journal->j_list_lock);
1099                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1100         } else if (jh->b_transaction == journal->j_committing_transaction) {
1101                 /* first access by this transaction */
1102                 jh->b_modified = 0;
1103
1104                 JBUFFER_TRACE(jh, "set next transaction");
1105                 spin_lock(&journal->j_list_lock);
1106                 jh->b_next_transaction = transaction;
1107         }
1108         spin_unlock(&journal->j_list_lock);
1109         jbd_unlock_bh_state(bh);
1110
1111         /*
1112          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1113          * blocks which contain freed but then revoked metadata.  We need
1114          * to cancel the revoke in case we end up freeing it yet again
1115          * and the reallocating as data - this would cause a second revoke,
1116          * which hits an assertion error.
1117          */
1118         JBUFFER_TRACE(jh, "cancelling revoke");
1119         jbd2_journal_cancel_revoke(handle, jh);
1120 out:
1121         jbd2_journal_put_journal_head(jh);
1122         return err;
1123 }
1124
1125 /**
1126  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1127  *     non-rewindable consequences
1128  * @handle: transaction
1129  * @bh: buffer to undo
1130  *
1131  * Sometimes there is a need to distinguish between metadata which has
1132  * been committed to disk and that which has not.  The ext3fs code uses
1133  * this for freeing and allocating space, we have to make sure that we
1134  * do not reuse freed space until the deallocation has been committed,
1135  * since if we overwrote that space we would make the delete
1136  * un-rewindable in case of a crash.
1137  *
1138  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1139  * buffer for parts of non-rewindable operations such as delete
1140  * operations on the bitmaps.  The journaling code must keep a copy of
1141  * the buffer's contents prior to the undo_access call until such time
1142  * as we know that the buffer has definitely been committed to disk.
1143  *
1144  * We never need to know which transaction the committed data is part
1145  * of, buffers touched here are guaranteed to be dirtied later and so
1146  * will be committed to a new transaction in due course, at which point
1147  * we can discard the old committed data pointer.
1148  *
1149  * Returns error number or 0 on success.
1150  */
1151 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1152 {
1153         int err;
1154         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155         char *committed_data = NULL;
1156
1157         JBUFFER_TRACE(jh, "entry");
1158
1159         /*
1160          * Do this first --- it can drop the journal lock, so we want to
1161          * make sure that obtaining the committed_data is done
1162          * atomically wrt. completion of any outstanding commits.
1163          */
1164         err = do_get_write_access(handle, jh, 1);
1165         if (err)
1166                 goto out;
1167
1168 repeat:
1169         if (!jh->b_committed_data) {
1170                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1171                 if (!committed_data) {
1172                         printk(KERN_ERR "%s: No memory for committed data\n",
1173                                 __func__);
1174                         err = -ENOMEM;
1175                         goto out;
1176                 }
1177         }
1178
1179         jbd_lock_bh_state(bh);
1180         if (!jh->b_committed_data) {
1181                 /* Copy out the current buffer contents into the
1182                  * preserved, committed copy. */
1183                 JBUFFER_TRACE(jh, "generate b_committed data");
1184                 if (!committed_data) {
1185                         jbd_unlock_bh_state(bh);
1186                         goto repeat;
1187                 }
1188
1189                 jh->b_committed_data = committed_data;
1190                 committed_data = NULL;
1191                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1192         }
1193         jbd_unlock_bh_state(bh);
1194 out:
1195         jbd2_journal_put_journal_head(jh);
1196         if (unlikely(committed_data))
1197                 jbd2_free(committed_data, bh->b_size);
1198         return err;
1199 }
1200
1201 /**
1202  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1203  * @bh: buffer to trigger on
1204  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1205  *
1206  * Set any triggers on this journal_head.  This is always safe, because
1207  * triggers for a committing buffer will be saved off, and triggers for
1208  * a running transaction will match the buffer in that transaction.
1209  *
1210  * Call with NULL to clear the triggers.
1211  */
1212 void jbd2_journal_set_triggers(struct buffer_head *bh,
1213                                struct jbd2_buffer_trigger_type *type)
1214 {
1215         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1216
1217         if (WARN_ON(!jh))
1218                 return;
1219         jh->b_triggers = type;
1220         jbd2_journal_put_journal_head(jh);
1221 }
1222
1223 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1224                                 struct jbd2_buffer_trigger_type *triggers)
1225 {
1226         struct buffer_head *bh = jh2bh(jh);
1227
1228         if (!triggers || !triggers->t_frozen)
1229                 return;
1230
1231         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1232 }
1233
1234 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1235                                struct jbd2_buffer_trigger_type *triggers)
1236 {
1237         if (!triggers || !triggers->t_abort)
1238                 return;
1239
1240         triggers->t_abort(triggers, jh2bh(jh));
1241 }
1242
1243
1244
1245 /**
1246  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1247  * @handle: transaction to add buffer to.
1248  * @bh: buffer to mark
1249  *
1250  * mark dirty metadata which needs to be journaled as part of the current
1251  * transaction.
1252  *
1253  * The buffer must have previously had jbd2_journal_get_write_access()
1254  * called so that it has a valid journal_head attached to the buffer
1255  * head.
1256  *
1257  * The buffer is placed on the transaction's metadata list and is marked
1258  * as belonging to the transaction.
1259  *
1260  * Returns error number or 0 on success.
1261  *
1262  * Special care needs to be taken if the buffer already belongs to the
1263  * current committing transaction (in which case we should have frozen
1264  * data present for that commit).  In that case, we don't relink the
1265  * buffer: that only gets done when the old transaction finally
1266  * completes its commit.
1267  */
1268 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1269 {
1270         transaction_t *transaction = handle->h_transaction;
1271         journal_t *journal;
1272         struct journal_head *jh;
1273         int ret = 0;
1274
1275         WARN_ON(!transaction);
1276         if (is_handle_aborted(handle))
1277                 return -EROFS;
1278         journal = transaction->t_journal;
1279         jh = jbd2_journal_grab_journal_head(bh);
1280         if (!jh) {
1281                 ret = -EUCLEAN;
1282                 goto out;
1283         }
1284         jbd_debug(5, "journal_head %p\n", jh);
1285         JBUFFER_TRACE(jh, "entry");
1286
1287         jbd_lock_bh_state(bh);
1288
1289         if (jh->b_modified == 0) {
1290                 /*
1291                  * This buffer's got modified and becoming part
1292                  * of the transaction. This needs to be done
1293                  * once a transaction -bzzz
1294                  */
1295                 jh->b_modified = 1;
1296                 if (handle->h_buffer_credits <= 0) {
1297                         ret = -ENOSPC;
1298                         goto out_unlock_bh;
1299                 }
1300                 handle->h_buffer_credits--;
1301         }
1302
1303         /*
1304          * fastpath, to avoid expensive locking.  If this buffer is already
1305          * on the running transaction's metadata list there is nothing to do.
1306          * Nobody can take it off again because there is a handle open.
1307          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1308          * result in this test being false, so we go in and take the locks.
1309          */
1310         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1311                 JBUFFER_TRACE(jh, "fastpath");
1312                 if (unlikely(jh->b_transaction !=
1313                              journal->j_running_transaction)) {
1314                         printk(KERN_ERR "JBD2: %s: "
1315                                "jh->b_transaction (%llu, %p, %u) != "
1316                                "journal->j_running_transaction (%p, %u)\n",
1317                                journal->j_devname,
1318                                (unsigned long long) bh->b_blocknr,
1319                                jh->b_transaction,
1320                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1321                                journal->j_running_transaction,
1322                                journal->j_running_transaction ?
1323                                journal->j_running_transaction->t_tid : 0);
1324                         ret = -EINVAL;
1325                 }
1326                 goto out_unlock_bh;
1327         }
1328
1329         set_buffer_jbddirty(bh);
1330
1331         /*
1332          * Metadata already on the current transaction list doesn't
1333          * need to be filed.  Metadata on another transaction's list must
1334          * be committing, and will be refiled once the commit completes:
1335          * leave it alone for now.
1336          */
1337         if (jh->b_transaction != transaction) {
1338                 JBUFFER_TRACE(jh, "already on other transaction");
1339                 if (unlikely(((jh->b_transaction !=
1340                                journal->j_committing_transaction)) ||
1341                              (jh->b_next_transaction != transaction))) {
1342                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1343                                "bad jh for block %llu: "
1344                                "transaction (%p, %u), "
1345                                "jh->b_transaction (%p, %u), "
1346                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1347                                journal->j_devname,
1348                                (unsigned long long) bh->b_blocknr,
1349                                transaction, transaction->t_tid,
1350                                jh->b_transaction,
1351                                jh->b_transaction ?
1352                                jh->b_transaction->t_tid : 0,
1353                                jh->b_next_transaction,
1354                                jh->b_next_transaction ?
1355                                jh->b_next_transaction->t_tid : 0,
1356                                jh->b_jlist);
1357                         WARN_ON(1);
1358                         ret = -EINVAL;
1359                 }
1360                 /* And this case is illegal: we can't reuse another
1361                  * transaction's data buffer, ever. */
1362                 goto out_unlock_bh;
1363         }
1364
1365         /* That test should have eliminated the following case: */
1366         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1367
1368         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1369         spin_lock(&journal->j_list_lock);
1370         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1371         spin_unlock(&journal->j_list_lock);
1372 out_unlock_bh:
1373         jbd_unlock_bh_state(bh);
1374         jbd2_journal_put_journal_head(jh);
1375 out:
1376         JBUFFER_TRACE(jh, "exit");
1377         return ret;
1378 }
1379
1380 /**
1381  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1382  * @handle: transaction handle
1383  * @bh:     bh to 'forget'
1384  *
1385  * We can only do the bforget if there are no commits pending against the
1386  * buffer.  If the buffer is dirty in the current running transaction we
1387  * can safely unlink it.
1388  *
1389  * bh may not be a journalled buffer at all - it may be a non-JBD
1390  * buffer which came off the hashtable.  Check for this.
1391  *
1392  * Decrements bh->b_count by one.
1393  *
1394  * Allow this call even if the handle has aborted --- it may be part of
1395  * the caller's cleanup after an abort.
1396  */
1397 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1398 {
1399         transaction_t *transaction = handle->h_transaction;
1400         journal_t *journal;
1401         struct journal_head *jh;
1402         int drop_reserve = 0;
1403         int err = 0;
1404         int was_modified = 0;
1405
1406         WARN_ON(!transaction);
1407         if (is_handle_aborted(handle))
1408                 return -EROFS;
1409         journal = transaction->t_journal;
1410
1411         BUFFER_TRACE(bh, "entry");
1412
1413         jbd_lock_bh_state(bh);
1414
1415         if (!buffer_jbd(bh))
1416                 goto not_jbd;
1417         jh = bh2jh(bh);
1418
1419         /* Critical error: attempting to delete a bitmap buffer, maybe?
1420          * Don't do any jbd operations, and return an error. */
1421         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1422                          "inconsistent data on disk")) {
1423                 err = -EIO;
1424                 goto not_jbd;
1425         }
1426
1427         /* keep track of whether or not this transaction modified us */
1428         was_modified = jh->b_modified;
1429
1430         /*
1431          * The buffer's going from the transaction, we must drop
1432          * all references -bzzz
1433          */
1434         jh->b_modified = 0;
1435
1436         if (jh->b_transaction == transaction) {
1437                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1438
1439                 /* If we are forgetting a buffer which is already part
1440                  * of this transaction, then we can just drop it from
1441                  * the transaction immediately. */
1442                 clear_buffer_dirty(bh);
1443                 clear_buffer_jbddirty(bh);
1444
1445                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1446
1447                 /*
1448                  * we only want to drop a reference if this transaction
1449                  * modified the buffer
1450                  */
1451                 if (was_modified)
1452                         drop_reserve = 1;
1453
1454                 /*
1455                  * We are no longer going to journal this buffer.
1456                  * However, the commit of this transaction is still
1457                  * important to the buffer: the delete that we are now
1458                  * processing might obsolete an old log entry, so by
1459                  * committing, we can satisfy the buffer's checkpoint.
1460                  *
1461                  * So, if we have a checkpoint on the buffer, we should
1462                  * now refile the buffer on our BJ_Forget list so that
1463                  * we know to remove the checkpoint after we commit.
1464                  */
1465
1466                 spin_lock(&journal->j_list_lock);
1467                 if (jh->b_cp_transaction) {
1468                         __jbd2_journal_temp_unlink_buffer(jh);
1469                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1470                 } else {
1471                         __jbd2_journal_unfile_buffer(jh);
1472                         if (!buffer_jbd(bh)) {
1473                                 spin_unlock(&journal->j_list_lock);
1474                                 jbd_unlock_bh_state(bh);
1475                                 __bforget(bh);
1476                                 goto drop;
1477                         }
1478                 }
1479                 spin_unlock(&journal->j_list_lock);
1480         } else if (jh->b_transaction) {
1481                 J_ASSERT_JH(jh, (jh->b_transaction ==
1482                                  journal->j_committing_transaction));
1483                 /* However, if the buffer is still owned by a prior
1484                  * (committing) transaction, we can't drop it yet... */
1485                 JBUFFER_TRACE(jh, "belongs to older transaction");
1486                 /* ... but we CAN drop it from the new transaction if we
1487                  * have also modified it since the original commit. */
1488
1489                 if (jh->b_next_transaction) {
1490                         J_ASSERT(jh->b_next_transaction == transaction);
1491                         spin_lock(&journal->j_list_lock);
1492                         jh->b_next_transaction = NULL;
1493                         spin_unlock(&journal->j_list_lock);
1494
1495                         /*
1496                          * only drop a reference if this transaction modified
1497                          * the buffer
1498                          */
1499                         if (was_modified)
1500                                 drop_reserve = 1;
1501                 }
1502         }
1503
1504 not_jbd:
1505         jbd_unlock_bh_state(bh);
1506         __brelse(bh);
1507 drop:
1508         if (drop_reserve) {
1509                 /* no need to reserve log space for this block -bzzz */
1510                 handle->h_buffer_credits++;
1511         }
1512         return err;
1513 }
1514
1515 /**
1516  * int jbd2_journal_stop() - complete a transaction
1517  * @handle: tranaction to complete.
1518  *
1519  * All done for a particular handle.
1520  *
1521  * There is not much action needed here.  We just return any remaining
1522  * buffer credits to the transaction and remove the handle.  The only
1523  * complication is that we need to start a commit operation if the
1524  * filesystem is marked for synchronous update.
1525  *
1526  * jbd2_journal_stop itself will not usually return an error, but it may
1527  * do so in unusual circumstances.  In particular, expect it to
1528  * return -EIO if a jbd2_journal_abort has been executed since the
1529  * transaction began.
1530  */
1531 int jbd2_journal_stop(handle_t *handle)
1532 {
1533         transaction_t *transaction = handle->h_transaction;
1534         journal_t *journal;
1535         int err = 0, wait_for_commit = 0;
1536         tid_t tid;
1537         pid_t pid;
1538
1539         if (!transaction)
1540                 goto free_and_exit;
1541         journal = transaction->t_journal;
1542
1543         J_ASSERT(journal_current_handle() == handle);
1544
1545         if (is_handle_aborted(handle))
1546                 err = -EIO;
1547         else
1548                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1549
1550         if (--handle->h_ref > 0) {
1551                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1552                           handle->h_ref);
1553                 return err;
1554         }
1555
1556         jbd_debug(4, "Handle %p going down\n", handle);
1557         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1558                                 transaction->t_tid,
1559                                 handle->h_type, handle->h_line_no,
1560                                 jiffies - handle->h_start_jiffies,
1561                                 handle->h_sync, handle->h_requested_credits,
1562                                 (handle->h_requested_credits -
1563                                  handle->h_buffer_credits));
1564
1565         /*
1566          * Implement synchronous transaction batching.  If the handle
1567          * was synchronous, don't force a commit immediately.  Let's
1568          * yield and let another thread piggyback onto this
1569          * transaction.  Keep doing that while new threads continue to
1570          * arrive.  It doesn't cost much - we're about to run a commit
1571          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1572          * operations by 30x or more...
1573          *
1574          * We try and optimize the sleep time against what the
1575          * underlying disk can do, instead of having a static sleep
1576          * time.  This is useful for the case where our storage is so
1577          * fast that it is more optimal to go ahead and force a flush
1578          * and wait for the transaction to be committed than it is to
1579          * wait for an arbitrary amount of time for new writers to
1580          * join the transaction.  We achieve this by measuring how
1581          * long it takes to commit a transaction, and compare it with
1582          * how long this transaction has been running, and if run time
1583          * < commit time then we sleep for the delta and commit.  This
1584          * greatly helps super fast disks that would see slowdowns as
1585          * more threads started doing fsyncs.
1586          *
1587          * But don't do this if this process was the most recent one
1588          * to perform a synchronous write.  We do this to detect the
1589          * case where a single process is doing a stream of sync
1590          * writes.  No point in waiting for joiners in that case.
1591          *
1592          * Setting max_batch_time to 0 disables this completely.
1593          */
1594         pid = current->pid;
1595         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1596             journal->j_max_batch_time) {
1597                 u64 commit_time, trans_time;
1598
1599                 journal->j_last_sync_writer = pid;
1600
1601                 read_lock(&journal->j_state_lock);
1602                 commit_time = journal->j_average_commit_time;
1603                 read_unlock(&journal->j_state_lock);
1604
1605                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1606                                                    transaction->t_start_time));
1607
1608                 commit_time = max_t(u64, commit_time,
1609                                     1000*journal->j_min_batch_time);
1610                 commit_time = min_t(u64, commit_time,
1611                                     1000*journal->j_max_batch_time);
1612
1613                 if (trans_time < commit_time) {
1614                         ktime_t expires = ktime_add_ns(ktime_get(),
1615                                                        commit_time);
1616                         set_current_state(TASK_UNINTERRUPTIBLE);
1617                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1618                 }
1619         }
1620
1621         if (handle->h_sync)
1622                 transaction->t_synchronous_commit = 1;
1623         current->journal_info = NULL;
1624         atomic_sub(handle->h_buffer_credits,
1625                    &transaction->t_outstanding_credits);
1626
1627         /*
1628          * If the handle is marked SYNC, we need to set another commit
1629          * going!  We also want to force a commit if the current
1630          * transaction is occupying too much of the log, or if the
1631          * transaction is too old now.
1632          */
1633         if (handle->h_sync ||
1634             (atomic_read(&transaction->t_outstanding_credits) >
1635              journal->j_max_transaction_buffers) ||
1636             time_after_eq(jiffies, transaction->t_expires)) {
1637                 /* Do this even for aborted journals: an abort still
1638                  * completes the commit thread, it just doesn't write
1639                  * anything to disk. */
1640
1641                 jbd_debug(2, "transaction too old, requesting commit for "
1642                                         "handle %p\n", handle);
1643                 /* This is non-blocking */
1644                 jbd2_log_start_commit(journal, transaction->t_tid);
1645
1646                 /*
1647                  * Special case: JBD2_SYNC synchronous updates require us
1648                  * to wait for the commit to complete.
1649                  */
1650                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1651                         wait_for_commit = 1;
1652         }
1653
1654         /*
1655          * Once we drop t_updates, if it goes to zero the transaction
1656          * could start committing on us and eventually disappear.  So
1657          * once we do this, we must not dereference transaction
1658          * pointer again.
1659          */
1660         tid = transaction->t_tid;
1661         if (atomic_dec_and_test(&transaction->t_updates)) {
1662                 wake_up(&journal->j_wait_updates);
1663                 if (journal->j_barrier_count)
1664                         wake_up(&journal->j_wait_transaction_locked);
1665         }
1666
1667         if (wait_for_commit)
1668                 err = jbd2_log_wait_commit(journal, tid);
1669
1670         lock_map_release(&handle->h_lockdep_map);
1671
1672         if (handle->h_rsv_handle)
1673                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1674 free_and_exit:
1675         jbd2_free_handle(handle);
1676         return err;
1677 }
1678
1679 /*
1680  *
1681  * List management code snippets: various functions for manipulating the
1682  * transaction buffer lists.
1683  *
1684  */
1685
1686 /*
1687  * Append a buffer to a transaction list, given the transaction's list head
1688  * pointer.
1689  *
1690  * j_list_lock is held.
1691  *
1692  * jbd_lock_bh_state(jh2bh(jh)) is held.
1693  */
1694
1695 static inline void
1696 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1697 {
1698         if (!*list) {
1699                 jh->b_tnext = jh->b_tprev = jh;
1700                 *list = jh;
1701         } else {
1702                 /* Insert at the tail of the list to preserve order */
1703                 struct journal_head *first = *list, *last = first->b_tprev;
1704                 jh->b_tprev = last;
1705                 jh->b_tnext = first;
1706                 last->b_tnext = first->b_tprev = jh;
1707         }
1708 }
1709
1710 /*
1711  * Remove a buffer from a transaction list, given the transaction's list
1712  * head pointer.
1713  *
1714  * Called with j_list_lock held, and the journal may not be locked.
1715  *
1716  * jbd_lock_bh_state(jh2bh(jh)) is held.
1717  */
1718
1719 static inline void
1720 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1721 {
1722         if (*list == jh) {
1723                 *list = jh->b_tnext;
1724                 if (*list == jh)
1725                         *list = NULL;
1726         }
1727         jh->b_tprev->b_tnext = jh->b_tnext;
1728         jh->b_tnext->b_tprev = jh->b_tprev;
1729 }
1730
1731 /*
1732  * Remove a buffer from the appropriate transaction list.
1733  *
1734  * Note that this function can *change* the value of
1735  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1736  * t_reserved_list.  If the caller is holding onto a copy of one of these
1737  * pointers, it could go bad.  Generally the caller needs to re-read the
1738  * pointer from the transaction_t.
1739  *
1740  * Called under j_list_lock.
1741  */
1742 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1743 {
1744         struct journal_head **list = NULL;
1745         transaction_t *transaction;
1746         struct buffer_head *bh = jh2bh(jh);
1747
1748         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1749         transaction = jh->b_transaction;
1750         if (transaction)
1751                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1752
1753         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1754         if (jh->b_jlist != BJ_None)
1755                 J_ASSERT_JH(jh, transaction != NULL);
1756
1757         switch (jh->b_jlist) {
1758         case BJ_None:
1759                 return;
1760         case BJ_Metadata:
1761                 transaction->t_nr_buffers--;
1762                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1763                 list = &transaction->t_buffers;
1764                 break;
1765         case BJ_Forget:
1766                 list = &transaction->t_forget;
1767                 break;
1768         case BJ_Shadow:
1769                 list = &transaction->t_shadow_list;
1770                 break;
1771         case BJ_Reserved:
1772                 list = &transaction->t_reserved_list;
1773                 break;
1774         }
1775
1776         __blist_del_buffer(list, jh);
1777         jh->b_jlist = BJ_None;
1778         if (test_clear_buffer_jbddirty(bh))
1779                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1780 }
1781
1782 /*
1783  * Remove buffer from all transactions.
1784  *
1785  * Called with bh_state lock and j_list_lock
1786  *
1787  * jh and bh may be already freed when this function returns.
1788  */
1789 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1790 {
1791         __jbd2_journal_temp_unlink_buffer(jh);
1792         jh->b_transaction = NULL;
1793         jbd2_journal_put_journal_head(jh);
1794 }
1795
1796 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1797 {
1798         struct buffer_head *bh = jh2bh(jh);
1799
1800         /* Get reference so that buffer cannot be freed before we unlock it */
1801         get_bh(bh);
1802         jbd_lock_bh_state(bh);
1803         spin_lock(&journal->j_list_lock);
1804         __jbd2_journal_unfile_buffer(jh);
1805         spin_unlock(&journal->j_list_lock);
1806         jbd_unlock_bh_state(bh);
1807         __brelse(bh);
1808 }
1809
1810 /*
1811  * Called from jbd2_journal_try_to_free_buffers().
1812  *
1813  * Called under jbd_lock_bh_state(bh)
1814  */
1815 static void
1816 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1817 {
1818         struct journal_head *jh;
1819
1820         jh = bh2jh(bh);
1821
1822         if (buffer_locked(bh) || buffer_dirty(bh))
1823                 goto out;
1824
1825         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1826                 goto out;
1827
1828         spin_lock(&journal->j_list_lock);
1829         if (jh->b_cp_transaction != NULL) {
1830                 /* written-back checkpointed metadata buffer */
1831                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1832                 __jbd2_journal_remove_checkpoint(jh);
1833         }
1834         spin_unlock(&journal->j_list_lock);
1835 out:
1836         return;
1837 }
1838
1839 /**
1840  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1841  * @journal: journal for operation
1842  * @page: to try and free
1843  * @gfp_mask: we use the mask to detect how hard should we try to release
1844  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1845  * release the buffers.
1846  *
1847  *
1848  * For all the buffers on this page,
1849  * if they are fully written out ordered data, move them onto BUF_CLEAN
1850  * so try_to_free_buffers() can reap them.
1851  *
1852  * This function returns non-zero if we wish try_to_free_buffers()
1853  * to be called. We do this if the page is releasable by try_to_free_buffers().
1854  * We also do it if the page has locked or dirty buffers and the caller wants
1855  * us to perform sync or async writeout.
1856  *
1857  * This complicates JBD locking somewhat.  We aren't protected by the
1858  * BKL here.  We wish to remove the buffer from its committing or
1859  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1860  *
1861  * This may *change* the value of transaction_t->t_datalist, so anyone
1862  * who looks at t_datalist needs to lock against this function.
1863  *
1864  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1865  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1866  * will come out of the lock with the buffer dirty, which makes it
1867  * ineligible for release here.
1868  *
1869  * Who else is affected by this?  hmm...  Really the only contender
1870  * is do_get_write_access() - it could be looking at the buffer while
1871  * journal_try_to_free_buffer() is changing its state.  But that
1872  * cannot happen because we never reallocate freed data as metadata
1873  * while the data is part of a transaction.  Yes?
1874  *
1875  * Return 0 on failure, 1 on success
1876  */
1877 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1878                                 struct page *page, gfp_t gfp_mask)
1879 {
1880         struct buffer_head *head;
1881         struct buffer_head *bh;
1882         int ret = 0;
1883
1884         J_ASSERT(PageLocked(page));
1885
1886         head = page_buffers(page);
1887         bh = head;
1888         do {
1889                 struct journal_head *jh;
1890
1891                 /*
1892                  * We take our own ref against the journal_head here to avoid
1893                  * having to add tons of locking around each instance of
1894                  * jbd2_journal_put_journal_head().
1895                  */
1896                 jh = jbd2_journal_grab_journal_head(bh);
1897                 if (!jh)
1898                         continue;
1899
1900                 jbd_lock_bh_state(bh);
1901                 __journal_try_to_free_buffer(journal, bh);
1902                 jbd2_journal_put_journal_head(jh);
1903                 jbd_unlock_bh_state(bh);
1904                 if (buffer_jbd(bh))
1905                         goto busy;
1906         } while ((bh = bh->b_this_page) != head);
1907
1908         ret = try_to_free_buffers(page);
1909
1910 busy:
1911         return ret;
1912 }
1913
1914 /*
1915  * This buffer is no longer needed.  If it is on an older transaction's
1916  * checkpoint list we need to record it on this transaction's forget list
1917  * to pin this buffer (and hence its checkpointing transaction) down until
1918  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1919  * release it.
1920  * Returns non-zero if JBD no longer has an interest in the buffer.
1921  *
1922  * Called under j_list_lock.
1923  *
1924  * Called under jbd_lock_bh_state(bh).
1925  */
1926 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1927 {
1928         int may_free = 1;
1929         struct buffer_head *bh = jh2bh(jh);
1930
1931         if (jh->b_cp_transaction) {
1932                 JBUFFER_TRACE(jh, "on running+cp transaction");
1933                 __jbd2_journal_temp_unlink_buffer(jh);
1934                 /*
1935                  * We don't want to write the buffer anymore, clear the
1936                  * bit so that we don't confuse checks in
1937                  * __journal_file_buffer
1938                  */
1939                 clear_buffer_dirty(bh);
1940                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1941                 may_free = 0;
1942         } else {
1943                 JBUFFER_TRACE(jh, "on running transaction");
1944                 __jbd2_journal_unfile_buffer(jh);
1945         }
1946         return may_free;
1947 }
1948
1949 /*
1950  * jbd2_journal_invalidatepage
1951  *
1952  * This code is tricky.  It has a number of cases to deal with.
1953  *
1954  * There are two invariants which this code relies on:
1955  *
1956  * i_size must be updated on disk before we start calling invalidatepage on the
1957  * data.
1958  *
1959  *  This is done in ext3 by defining an ext3_setattr method which
1960  *  updates i_size before truncate gets going.  By maintaining this
1961  *  invariant, we can be sure that it is safe to throw away any buffers
1962  *  attached to the current transaction: once the transaction commits,
1963  *  we know that the data will not be needed.
1964  *
1965  *  Note however that we can *not* throw away data belonging to the
1966  *  previous, committing transaction!
1967  *
1968  * Any disk blocks which *are* part of the previous, committing
1969  * transaction (and which therefore cannot be discarded immediately) are
1970  * not going to be reused in the new running transaction
1971  *
1972  *  The bitmap committed_data images guarantee this: any block which is
1973  *  allocated in one transaction and removed in the next will be marked
1974  *  as in-use in the committed_data bitmap, so cannot be reused until
1975  *  the next transaction to delete the block commits.  This means that
1976  *  leaving committing buffers dirty is quite safe: the disk blocks
1977  *  cannot be reallocated to a different file and so buffer aliasing is
1978  *  not possible.
1979  *
1980  *
1981  * The above applies mainly to ordered data mode.  In writeback mode we
1982  * don't make guarantees about the order in which data hits disk --- in
1983  * particular we don't guarantee that new dirty data is flushed before
1984  * transaction commit --- so it is always safe just to discard data
1985  * immediately in that mode.  --sct
1986  */
1987
1988 /*
1989  * The journal_unmap_buffer helper function returns zero if the buffer
1990  * concerned remains pinned as an anonymous buffer belonging to an older
1991  * transaction.
1992  *
1993  * We're outside-transaction here.  Either or both of j_running_transaction
1994  * and j_committing_transaction may be NULL.
1995  */
1996 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1997                                 int partial_page)
1998 {
1999         transaction_t *transaction;
2000         struct journal_head *jh;
2001         int may_free = 1;
2002
2003         BUFFER_TRACE(bh, "entry");
2004
2005         /*
2006          * It is safe to proceed here without the j_list_lock because the
2007          * buffers cannot be stolen by try_to_free_buffers as long as we are
2008          * holding the page lock. --sct
2009          */
2010
2011         if (!buffer_jbd(bh))
2012                 goto zap_buffer_unlocked;
2013
2014         /* OK, we have data buffer in journaled mode */
2015         write_lock(&journal->j_state_lock);
2016         jbd_lock_bh_state(bh);
2017         spin_lock(&journal->j_list_lock);
2018
2019         jh = jbd2_journal_grab_journal_head(bh);
2020         if (!jh)
2021                 goto zap_buffer_no_jh;
2022
2023         /*
2024          * We cannot remove the buffer from checkpoint lists until the
2025          * transaction adding inode to orphan list (let's call it T)
2026          * is committed.  Otherwise if the transaction changing the
2027          * buffer would be cleaned from the journal before T is
2028          * committed, a crash will cause that the correct contents of
2029          * the buffer will be lost.  On the other hand we have to
2030          * clear the buffer dirty bit at latest at the moment when the
2031          * transaction marking the buffer as freed in the filesystem
2032          * structures is committed because from that moment on the
2033          * block can be reallocated and used by a different page.
2034          * Since the block hasn't been freed yet but the inode has
2035          * already been added to orphan list, it is safe for us to add
2036          * the buffer to BJ_Forget list of the newest transaction.
2037          *
2038          * Also we have to clear buffer_mapped flag of a truncated buffer
2039          * because the buffer_head may be attached to the page straddling
2040          * i_size (can happen only when blocksize < pagesize) and thus the
2041          * buffer_head can be reused when the file is extended again. So we end
2042          * up keeping around invalidated buffers attached to transactions'
2043          * BJ_Forget list just to stop checkpointing code from cleaning up
2044          * the transaction this buffer was modified in.
2045          */
2046         transaction = jh->b_transaction;
2047         if (transaction == NULL) {
2048                 /* First case: not on any transaction.  If it
2049                  * has no checkpoint link, then we can zap it:
2050                  * it's a writeback-mode buffer so we don't care
2051                  * if it hits disk safely. */
2052                 if (!jh->b_cp_transaction) {
2053                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2054                         goto zap_buffer;
2055                 }
2056
2057                 if (!buffer_dirty(bh)) {
2058                         /* bdflush has written it.  We can drop it now */
2059                         goto zap_buffer;
2060                 }
2061
2062                 /* OK, it must be in the journal but still not
2063                  * written fully to disk: it's metadata or
2064                  * journaled data... */
2065
2066                 if (journal->j_running_transaction) {
2067                         /* ... and once the current transaction has
2068                          * committed, the buffer won't be needed any
2069                          * longer. */
2070                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2071                         may_free = __dispose_buffer(jh,
2072                                         journal->j_running_transaction);
2073                         goto zap_buffer;
2074                 } else {
2075                         /* There is no currently-running transaction. So the
2076                          * orphan record which we wrote for this file must have
2077                          * passed into commit.  We must attach this buffer to
2078                          * the committing transaction, if it exists. */
2079                         if (journal->j_committing_transaction) {
2080                                 JBUFFER_TRACE(jh, "give to committing trans");
2081                                 may_free = __dispose_buffer(jh,
2082                                         journal->j_committing_transaction);
2083                                 goto zap_buffer;
2084                         } else {
2085                                 /* The orphan record's transaction has
2086                                  * committed.  We can cleanse this buffer */
2087                                 clear_buffer_jbddirty(bh);
2088                                 goto zap_buffer;
2089                         }
2090                 }
2091         } else if (transaction == journal->j_committing_transaction) {
2092                 JBUFFER_TRACE(jh, "on committing transaction");
2093                 /*
2094                  * The buffer is committing, we simply cannot touch
2095                  * it. If the page is straddling i_size we have to wait
2096                  * for commit and try again.
2097                  */
2098                 if (partial_page) {
2099                         jbd2_journal_put_journal_head(jh);
2100                         spin_unlock(&journal->j_list_lock);
2101                         jbd_unlock_bh_state(bh);
2102                         write_unlock(&journal->j_state_lock);
2103                         return -EBUSY;
2104                 }
2105                 /*
2106                  * OK, buffer won't be reachable after truncate. We just set
2107                  * j_next_transaction to the running transaction (if there is
2108                  * one) and mark buffer as freed so that commit code knows it
2109                  * should clear dirty bits when it is done with the buffer.
2110                  */
2111                 set_buffer_freed(bh);
2112                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2113                         jh->b_next_transaction = journal->j_running_transaction;
2114                 jbd2_journal_put_journal_head(jh);
2115                 spin_unlock(&journal->j_list_lock);
2116                 jbd_unlock_bh_state(bh);
2117                 write_unlock(&journal->j_state_lock);
2118                 return 0;
2119         } else {
2120                 /* Good, the buffer belongs to the running transaction.
2121                  * We are writing our own transaction's data, not any
2122                  * previous one's, so it is safe to throw it away
2123                  * (remember that we expect the filesystem to have set
2124                  * i_size already for this truncate so recovery will not
2125                  * expose the disk blocks we are discarding here.) */
2126                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2127                 JBUFFER_TRACE(jh, "on running transaction");
2128                 may_free = __dispose_buffer(jh, transaction);
2129         }
2130
2131 zap_buffer:
2132         /*
2133          * This is tricky. Although the buffer is truncated, it may be reused
2134          * if blocksize < pagesize and it is attached to the page straddling
2135          * EOF. Since the buffer might have been added to BJ_Forget list of the
2136          * running transaction, journal_get_write_access() won't clear
2137          * b_modified and credit accounting gets confused. So clear b_modified
2138          * here.
2139          */
2140         jh->b_modified = 0;
2141         jbd2_journal_put_journal_head(jh);
2142 zap_buffer_no_jh:
2143         spin_unlock(&journal->j_list_lock);
2144         jbd_unlock_bh_state(bh);
2145         write_unlock(&journal->j_state_lock);
2146 zap_buffer_unlocked:
2147         clear_buffer_dirty(bh);
2148         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2149         clear_buffer_mapped(bh);
2150         clear_buffer_req(bh);
2151         clear_buffer_new(bh);
2152         clear_buffer_delay(bh);
2153         clear_buffer_unwritten(bh);
2154         bh->b_bdev = NULL;
2155         return may_free;
2156 }
2157
2158 /**
2159  * void jbd2_journal_invalidatepage()
2160  * @journal: journal to use for flush...
2161  * @page:    page to flush
2162  * @offset:  start of the range to invalidate
2163  * @length:  length of the range to invalidate
2164  *
2165  * Reap page buffers containing data after in the specified range in page.
2166  * Can return -EBUSY if buffers are part of the committing transaction and
2167  * the page is straddling i_size. Caller then has to wait for current commit
2168  * and try again.
2169  */
2170 int jbd2_journal_invalidatepage(journal_t *journal,
2171                                 struct page *page,
2172                                 unsigned int offset,
2173                                 unsigned int length)
2174 {
2175         struct buffer_head *head, *bh, *next;
2176         unsigned int stop = offset + length;
2177         unsigned int curr_off = 0;
2178         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2179         int may_free = 1;
2180         int ret = 0;
2181
2182         if (!PageLocked(page))
2183                 BUG();
2184         if (!page_has_buffers(page))
2185                 return 0;
2186
2187         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2188
2189         /* We will potentially be playing with lists other than just the
2190          * data lists (especially for journaled data mode), so be
2191          * cautious in our locking. */
2192
2193         head = bh = page_buffers(page);
2194         do {
2195                 unsigned int next_off = curr_off + bh->b_size;
2196                 next = bh->b_this_page;
2197
2198                 if (next_off > stop)
2199                         return 0;
2200
2201                 if (offset <= curr_off) {
2202                         /* This block is wholly outside the truncation point */
2203                         lock_buffer(bh);
2204                         ret = journal_unmap_buffer(journal, bh, partial_page);
2205                         unlock_buffer(bh);
2206                         if (ret < 0)
2207                                 return ret;
2208                         may_free &= ret;
2209                 }
2210                 curr_off = next_off;
2211                 bh = next;
2212
2213         } while (bh != head);
2214
2215         if (!partial_page) {
2216                 if (may_free && try_to_free_buffers(page))
2217                         J_ASSERT(!page_has_buffers(page));
2218         }
2219         return 0;
2220 }
2221
2222 /*
2223  * File a buffer on the given transaction list.
2224  */
2225 void __jbd2_journal_file_buffer(struct journal_head *jh,
2226                         transaction_t *transaction, int jlist)
2227 {
2228         struct journal_head **list = NULL;
2229         int was_dirty = 0;
2230         struct buffer_head *bh = jh2bh(jh);
2231
2232         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2233         assert_spin_locked(&transaction->t_journal->j_list_lock);
2234
2235         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2236         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2237                                 jh->b_transaction == NULL);
2238
2239         if (jh->b_transaction && jh->b_jlist == jlist)
2240                 return;
2241
2242         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2243             jlist == BJ_Shadow || jlist == BJ_Forget) {
2244                 /*
2245                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2246                  * instead of buffer_dirty. We should not see a dirty bit set
2247                  * here because we clear it in do_get_write_access but e.g.
2248                  * tune2fs can modify the sb and set the dirty bit at any time
2249                  * so we try to gracefully handle that.
2250                  */
2251                 if (buffer_dirty(bh))
2252                         warn_dirty_buffer(bh);
2253                 if (test_clear_buffer_dirty(bh) ||
2254                     test_clear_buffer_jbddirty(bh))
2255                         was_dirty = 1;
2256         }
2257
2258         if (jh->b_transaction)
2259                 __jbd2_journal_temp_unlink_buffer(jh);
2260         else
2261                 jbd2_journal_grab_journal_head(bh);
2262         jh->b_transaction = transaction;
2263
2264         switch (jlist) {
2265         case BJ_None:
2266                 J_ASSERT_JH(jh, !jh->b_committed_data);
2267                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2268                 return;
2269         case BJ_Metadata:
2270                 transaction->t_nr_buffers++;
2271                 list = &transaction->t_buffers;
2272                 break;
2273         case BJ_Forget:
2274                 list = &transaction->t_forget;
2275                 break;
2276         case BJ_Shadow:
2277                 list = &transaction->t_shadow_list;
2278                 break;
2279         case BJ_Reserved:
2280                 list = &transaction->t_reserved_list;
2281                 break;
2282         }
2283
2284         __blist_add_buffer(list, jh);
2285         jh->b_jlist = jlist;
2286
2287         if (was_dirty)
2288                 set_buffer_jbddirty(bh);
2289 }
2290
2291 void jbd2_journal_file_buffer(struct journal_head *jh,
2292                                 transaction_t *transaction, int jlist)
2293 {
2294         jbd_lock_bh_state(jh2bh(jh));
2295         spin_lock(&transaction->t_journal->j_list_lock);
2296         __jbd2_journal_file_buffer(jh, transaction, jlist);
2297         spin_unlock(&transaction->t_journal->j_list_lock);
2298         jbd_unlock_bh_state(jh2bh(jh));
2299 }
2300
2301 /*
2302  * Remove a buffer from its current buffer list in preparation for
2303  * dropping it from its current transaction entirely.  If the buffer has
2304  * already started to be used by a subsequent transaction, refile the
2305  * buffer on that transaction's metadata list.
2306  *
2307  * Called under j_list_lock
2308  * Called under jbd_lock_bh_state(jh2bh(jh))
2309  *
2310  * jh and bh may be already free when this function returns
2311  */
2312 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2313 {
2314         int was_dirty, jlist;
2315         struct buffer_head *bh = jh2bh(jh);
2316
2317         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2318         if (jh->b_transaction)
2319                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2320
2321         /* If the buffer is now unused, just drop it. */
2322         if (jh->b_next_transaction == NULL) {
2323                 __jbd2_journal_unfile_buffer(jh);
2324                 return;
2325         }
2326
2327         /*
2328          * It has been modified by a later transaction: add it to the new
2329          * transaction's metadata list.
2330          */
2331
2332         was_dirty = test_clear_buffer_jbddirty(bh);
2333         __jbd2_journal_temp_unlink_buffer(jh);
2334         /*
2335          * We set b_transaction here because b_next_transaction will inherit
2336          * our jh reference and thus __jbd2_journal_file_buffer() must not
2337          * take a new one.
2338          */
2339         jh->b_transaction = jh->b_next_transaction;
2340         jh->b_next_transaction = NULL;
2341         if (buffer_freed(bh))
2342                 jlist = BJ_Forget;
2343         else if (jh->b_modified)
2344                 jlist = BJ_Metadata;
2345         else
2346                 jlist = BJ_Reserved;
2347         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2348         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2349
2350         if (was_dirty)
2351                 set_buffer_jbddirty(bh);
2352 }
2353
2354 /*
2355  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2356  * bh reference so that we can safely unlock bh.
2357  *
2358  * The jh and bh may be freed by this call.
2359  */
2360 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2361 {
2362         struct buffer_head *bh = jh2bh(jh);
2363
2364         /* Get reference so that buffer cannot be freed before we unlock it */
2365         get_bh(bh);
2366         jbd_lock_bh_state(bh);
2367         spin_lock(&journal->j_list_lock);
2368         __jbd2_journal_refile_buffer(jh);
2369         jbd_unlock_bh_state(bh);
2370         spin_unlock(&journal->j_list_lock);
2371         __brelse(bh);
2372 }
2373
2374 /*
2375  * File inode in the inode list of the handle's transaction
2376  */
2377 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2378 {
2379         transaction_t *transaction = handle->h_transaction;
2380         journal_t *journal;
2381
2382         WARN_ON(!transaction);
2383         if (is_handle_aborted(handle))
2384                 return -EROFS;
2385         journal = transaction->t_journal;
2386
2387         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2388                         transaction->t_tid);
2389
2390         /*
2391          * First check whether inode isn't already on the transaction's
2392          * lists without taking the lock. Note that this check is safe
2393          * without the lock as we cannot race with somebody removing inode
2394          * from the transaction. The reason is that we remove inode from the
2395          * transaction only in journal_release_jbd_inode() and when we commit
2396          * the transaction. We are guarded from the first case by holding
2397          * a reference to the inode. We are safe against the second case
2398          * because if jinode->i_transaction == transaction, commit code
2399          * cannot touch the transaction because we hold reference to it,
2400          * and if jinode->i_next_transaction == transaction, commit code
2401          * will only file the inode where we want it.
2402          */
2403         if (jinode->i_transaction == transaction ||
2404             jinode->i_next_transaction == transaction)
2405                 return 0;
2406
2407         spin_lock(&journal->j_list_lock);
2408
2409         if (jinode->i_transaction == transaction ||
2410             jinode->i_next_transaction == transaction)
2411                 goto done;
2412
2413         /*
2414          * We only ever set this variable to 1 so the test is safe. Since
2415          * t_need_data_flush is likely to be set, we do the test to save some
2416          * cacheline bouncing
2417          */
2418         if (!transaction->t_need_data_flush)
2419                 transaction->t_need_data_flush = 1;
2420         /* On some different transaction's list - should be
2421          * the committing one */
2422         if (jinode->i_transaction) {
2423                 J_ASSERT(jinode->i_next_transaction == NULL);
2424                 J_ASSERT(jinode->i_transaction ==
2425                                         journal->j_committing_transaction);
2426                 jinode->i_next_transaction = transaction;
2427                 goto done;
2428         }
2429         /* Not on any transaction list... */
2430         J_ASSERT(!jinode->i_next_transaction);
2431         jinode->i_transaction = transaction;
2432         list_add(&jinode->i_list, &transaction->t_inode_list);
2433 done:
2434         spin_unlock(&journal->j_list_lock);
2435
2436         return 0;
2437 }
2438
2439 /*
2440  * File truncate and transaction commit interact with each other in a
2441  * non-trivial way.  If a transaction writing data block A is
2442  * committing, we cannot discard the data by truncate until we have
2443  * written them.  Otherwise if we crashed after the transaction with
2444  * write has committed but before the transaction with truncate has
2445  * committed, we could see stale data in block A.  This function is a
2446  * helper to solve this problem.  It starts writeout of the truncated
2447  * part in case it is in the committing transaction.
2448  *
2449  * Filesystem code must call this function when inode is journaled in
2450  * ordered mode before truncation happens and after the inode has been
2451  * placed on orphan list with the new inode size. The second condition
2452  * avoids the race that someone writes new data and we start
2453  * committing the transaction after this function has been called but
2454  * before a transaction for truncate is started (and furthermore it
2455  * allows us to optimize the case where the addition to orphan list
2456  * happens in the same transaction as write --- we don't have to write
2457  * any data in such case).
2458  */
2459 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2460                                         struct jbd2_inode *jinode,
2461                                         loff_t new_size)
2462 {
2463         transaction_t *inode_trans, *commit_trans;
2464         int ret = 0;
2465
2466         /* This is a quick check to avoid locking if not necessary */
2467         if (!jinode->i_transaction)
2468                 goto out;
2469         /* Locks are here just to force reading of recent values, it is
2470          * enough that the transaction was not committing before we started
2471          * a transaction adding the inode to orphan list */
2472         read_lock(&journal->j_state_lock);
2473         commit_trans = journal->j_committing_transaction;
2474         read_unlock(&journal->j_state_lock);
2475         spin_lock(&journal->j_list_lock);
2476         inode_trans = jinode->i_transaction;
2477         spin_unlock(&journal->j_list_lock);
2478         if (inode_trans == commit_trans) {
2479                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2480                         new_size, LLONG_MAX);
2481                 if (ret)
2482                         jbd2_journal_abort(journal, ret);
2483         }
2484 out:
2485         return ret;
2486 }