iommu/s390: Fix sparse warnings
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207
208                 /*
209                  * Is the number of reserved credits in the current transaction too
210                  * big to fit this handle? Wait until reserved credits are freed.
211                  */
212                 if (atomic_read(&journal->j_reserved_credits) + total >
213                     journal->j_max_transaction_buffers) {
214                         read_unlock(&journal->j_state_lock);
215                         wait_event(journal->j_wait_reserved,
216                                    atomic_read(&journal->j_reserved_credits) + total <=
217                                    journal->j_max_transaction_buffers);
218                         return 1;
219                 }
220
221                 wait_transaction_locked(journal);
222                 return 1;
223         }
224
225         /*
226          * The commit code assumes that it can get enough log space
227          * without forcing a checkpoint.  This is *critical* for
228          * correctness: a checkpoint of a buffer which is also
229          * associated with a committing transaction creates a deadlock,
230          * so commit simply cannot force through checkpoints.
231          *
232          * We must therefore ensure the necessary space in the journal
233          * *before* starting to dirty potentially checkpointed buffers
234          * in the new transaction.
235          */
236         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237                 atomic_sub(total, &t->t_outstanding_credits);
238                 read_unlock(&journal->j_state_lock);
239                 write_lock(&journal->j_state_lock);
240                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241                         __jbd2_log_wait_for_space(journal);
242                 write_unlock(&journal->j_state_lock);
243                 return 1;
244         }
245
246         /* No reservation? We are done... */
247         if (!rsv_blocks)
248                 return 0;
249
250         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251         /* We allow at most half of a transaction to be reserved */
252         if (needed > journal->j_max_transaction_buffers / 2) {
253                 sub_reserved_credits(journal, rsv_blocks);
254                 atomic_sub(total, &t->t_outstanding_credits);
255                 read_unlock(&journal->j_state_lock);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         lock_map_acquire(&handle->h_lockdep_map);
386         jbd2_journal_free_transaction(new_transaction);
387         return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402                                                 &jbd2_handle_key, 0);
403
404         return handle;
405 }
406
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427                               gfp_t gfp_mask, unsigned int type,
428                               unsigned int line_no)
429 {
430         handle_t *handle = journal_current_handle();
431         int err;
432
433         if (!journal)
434                 return ERR_PTR(-EROFS);
435
436         if (handle) {
437                 J_ASSERT(handle->h_transaction->t_journal == journal);
438                 handle->h_ref++;
439                 return handle;
440         }
441
442         handle = new_handle(nblocks);
443         if (!handle)
444                 return ERR_PTR(-ENOMEM);
445         if (rsv_blocks) {
446                 handle_t *rsv_handle;
447
448                 rsv_handle = new_handle(rsv_blocks);
449                 if (!rsv_handle) {
450                         jbd2_free_handle(handle);
451                         return ERR_PTR(-ENOMEM);
452                 }
453                 rsv_handle->h_reserved = 1;
454                 rsv_handle->h_journal = journal;
455                 handle->h_rsv_handle = rsv_handle;
456         }
457
458         err = start_this_handle(journal, handle, gfp_mask);
459         if (err < 0) {
460                 if (handle->h_rsv_handle)
461                         jbd2_free_handle(handle->h_rsv_handle);
462                 jbd2_free_handle(handle);
463                 return ERR_PTR(err);
464         }
465         handle->h_type = type;
466         handle->h_line_no = line_no;
467         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468                                 handle->h_transaction->t_tid, type,
469                                 line_no, nblocks);
470         return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483         journal_t *journal = handle->h_journal;
484
485         WARN_ON(!handle->h_reserved);
486         sub_reserved_credits(journal, handle->h_buffer_credits);
487         jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504                                 unsigned int line_no)
505 {
506         journal_t *journal = handle->h_journal;
507         int ret = -EIO;
508
509         if (WARN_ON(!handle->h_reserved)) {
510                 /* Someone passed in normal handle? Just stop it. */
511                 jbd2_journal_stop(handle);
512                 return ret;
513         }
514         /*
515          * Usefulness of mixing of reserved and unreserved handles is
516          * questionable. So far nobody seems to need it so just error out.
517          */
518         if (WARN_ON(current->journal_info)) {
519                 jbd2_journal_free_reserved(handle);
520                 return ret;
521         }
522
523         handle->h_journal = NULL;
524         /*
525          * GFP_NOFS is here because callers are likely from writeback or
526          * similarly constrained call sites
527          */
528         ret = start_this_handle(journal, handle, GFP_NOFS);
529         if (ret < 0) {
530                 jbd2_journal_free_reserved(handle);
531                 return ret;
532         }
533         handle->h_type = type;
534         handle->h_line_no = line_no;
535         return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561         transaction_t *transaction = handle->h_transaction;
562         journal_t *journal;
563         int result;
564         int wanted;
565
566         if (is_handle_aborted(handle))
567                 return -EROFS;
568         journal = transaction->t_journal;
569
570         result = 1;
571
572         read_lock(&journal->j_state_lock);
573
574         /* Don't extend a locked-down transaction! */
575         if (transaction->t_state != T_RUNNING) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "transaction not running\n", handle, nblocks);
578                 goto error_out;
579         }
580
581         spin_lock(&transaction->t_handle_lock);
582         wanted = atomic_add_return(nblocks,
583                                    &transaction->t_outstanding_credits);
584
585         if (wanted > journal->j_max_transaction_buffers) {
586                 jbd_debug(3, "denied handle %p %d blocks: "
587                           "transaction too large\n", handle, nblocks);
588                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589                 goto unlock;
590         }
591
592         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593             jbd2_log_space_left(journal)) {
594                 jbd_debug(3, "denied handle %p %d blocks: "
595                           "insufficient log space\n", handle, nblocks);
596                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597                 goto unlock;
598         }
599
600         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601                                  transaction->t_tid,
602                                  handle->h_type, handle->h_line_no,
603                                  handle->h_buffer_credits,
604                                  nblocks);
605
606         handle->h_buffer_credits += nblocks;
607         handle->h_requested_credits += nblocks;
608         result = 0;
609
610         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612         spin_unlock(&transaction->t_handle_lock);
613 error_out:
614         read_unlock(&journal->j_state_lock);
615         return result;
616 }
617
618
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capabable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         tid_t           tid;
639         int             need_to_start, ret;
640
641         /* If we've had an abort of any type, don't even think about
642          * actually doing the restart! */
643         if (is_handle_aborted(handle))
644                 return 0;
645         journal = transaction->t_journal;
646
647         /*
648          * First unlink the handle from its current transaction, and start the
649          * commit on that.
650          */
651         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652         J_ASSERT(journal_current_handle() == handle);
653
654         read_lock(&journal->j_state_lock);
655         spin_lock(&transaction->t_handle_lock);
656         atomic_sub(handle->h_buffer_credits,
657                    &transaction->t_outstanding_credits);
658         if (handle->h_rsv_handle) {
659                 sub_reserved_credits(journal,
660                                      handle->h_rsv_handle->h_buffer_credits);
661         }
662         if (atomic_dec_and_test(&transaction->t_updates))
663                 wake_up(&journal->j_wait_updates);
664         tid = transaction->t_tid;
665         spin_unlock(&transaction->t_handle_lock);
666         handle->h_transaction = NULL;
667         current->journal_info = NULL;
668
669         jbd_debug(2, "restarting handle %p\n", handle);
670         need_to_start = !tid_geq(journal->j_commit_request, tid);
671         read_unlock(&journal->j_state_lock);
672         if (need_to_start)
673                 jbd2_log_start_commit(journal, tid);
674
675         lock_map_release(&handle->h_lockdep_map);
676         handle->h_buffer_credits = nblocks;
677         ret = start_this_handle(journal, handle, gfp_mask);
678         return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701         DEFINE_WAIT(wait);
702
703         write_lock(&journal->j_state_lock);
704         ++journal->j_barrier_count;
705
706         /* Wait until there are no reserved handles */
707         if (atomic_read(&journal->j_reserved_credits)) {
708                 write_unlock(&journal->j_state_lock);
709                 wait_event(journal->j_wait_reserved,
710                            atomic_read(&journal->j_reserved_credits) == 0);
711                 write_lock(&journal->j_state_lock);
712         }
713
714         /* Wait until there are no running updates */
715         while (1) {
716                 transaction_t *transaction = journal->j_running_transaction;
717
718                 if (!transaction)
719                         break;
720
721                 spin_lock(&transaction->t_handle_lock);
722                 prepare_to_wait(&journal->j_wait_updates, &wait,
723                                 TASK_UNINTERRUPTIBLE);
724                 if (!atomic_read(&transaction->t_updates)) {
725                         spin_unlock(&transaction->t_handle_lock);
726                         finish_wait(&journal->j_wait_updates, &wait);
727                         break;
728                 }
729                 spin_unlock(&transaction->t_handle_lock);
730                 write_unlock(&journal->j_state_lock);
731                 schedule();
732                 finish_wait(&journal->j_wait_updates, &wait);
733                 write_lock(&journal->j_state_lock);
734         }
735         write_unlock(&journal->j_state_lock);
736
737         /*
738          * We have now established a barrier against other normal updates, but
739          * we also need to barrier against other jbd2_journal_lock_updates() calls
740          * to make sure that we serialise special journal-locked operations
741          * too.
742          */
743         mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756         J_ASSERT(journal->j_barrier_count != 0);
757
758         mutex_unlock(&journal->j_barrier);
759         write_lock(&journal->j_state_lock);
760         --journal->j_barrier_count;
761         write_unlock(&journal->j_state_lock);
762         wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767         char b[BDEVNAME_SIZE];
768
769         printk(KERN_WARNING
770                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
771                "There's a risk of filesystem corruption in case of system "
772                "crash.\n",
773                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
774 }
775
776 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
777 static void jbd2_freeze_jh_data(struct journal_head *jh)
778 {
779         struct page *page;
780         int offset;
781         char *source;
782         struct buffer_head *bh = jh2bh(jh);
783
784         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
785         page = bh->b_page;
786         offset = offset_in_page(bh->b_data);
787         source = kmap_atomic(page);
788         /* Fire data frozen trigger just before we copy the data */
789         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
790         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
791         kunmap_atomic(source);
792
793         /*
794          * Now that the frozen data is saved off, we need to store any matching
795          * triggers.
796          */
797         jh->b_frozen_triggers = jh->b_triggers;
798 }
799
800 /*
801  * If the buffer is already part of the current transaction, then there
802  * is nothing we need to do.  If it is already part of a prior
803  * transaction which we are still committing to disk, then we need to
804  * make sure that we do not overwrite the old copy: we do copy-out to
805  * preserve the copy going to disk.  We also account the buffer against
806  * the handle's metadata buffer credits (unless the buffer is already
807  * part of the transaction, that is).
808  *
809  */
810 static int
811 do_get_write_access(handle_t *handle, struct journal_head *jh,
812                         int force_copy)
813 {
814         struct buffer_head *bh;
815         transaction_t *transaction = handle->h_transaction;
816         journal_t *journal;
817         int error;
818         char *frozen_buffer = NULL;
819         unsigned long start_lock, time_lock;
820
821         if (is_handle_aborted(handle))
822                 return -EROFS;
823         journal = transaction->t_journal;
824
825         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
826
827         JBUFFER_TRACE(jh, "entry");
828 repeat:
829         bh = jh2bh(jh);
830
831         /* @@@ Need to check for errors here at some point. */
832
833         start_lock = jiffies;
834         lock_buffer(bh);
835         jbd_lock_bh_state(bh);
836
837         /* If it takes too long to lock the buffer, trace it */
838         time_lock = jbd2_time_diff(start_lock, jiffies);
839         if (time_lock > HZ/10)
840                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
841                         jiffies_to_msecs(time_lock));
842
843         /* We now hold the buffer lock so it is safe to query the buffer
844          * state.  Is the buffer dirty?
845          *
846          * If so, there are two possibilities.  The buffer may be
847          * non-journaled, and undergoing a quite legitimate writeback.
848          * Otherwise, it is journaled, and we don't expect dirty buffers
849          * in that state (the buffers should be marked JBD_Dirty
850          * instead.)  So either the IO is being done under our own
851          * control and this is a bug, or it's a third party IO such as
852          * dump(8) (which may leave the buffer scheduled for read ---
853          * ie. locked but not dirty) or tune2fs (which may actually have
854          * the buffer dirtied, ugh.)  */
855
856         if (buffer_dirty(bh)) {
857                 /*
858                  * First question: is this buffer already part of the current
859                  * transaction or the existing committing transaction?
860                  */
861                 if (jh->b_transaction) {
862                         J_ASSERT_JH(jh,
863                                 jh->b_transaction == transaction ||
864                                 jh->b_transaction ==
865                                         journal->j_committing_transaction);
866                         if (jh->b_next_transaction)
867                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
868                                                         transaction);
869                         warn_dirty_buffer(bh);
870                 }
871                 /*
872                  * In any case we need to clean the dirty flag and we must
873                  * do it under the buffer lock to be sure we don't race
874                  * with running write-out.
875                  */
876                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
877                 clear_buffer_dirty(bh);
878                 set_buffer_jbddirty(bh);
879         }
880
881         unlock_buffer(bh);
882
883         error = -EROFS;
884         if (is_handle_aborted(handle)) {
885                 jbd_unlock_bh_state(bh);
886                 goto out;
887         }
888         error = 0;
889
890         /*
891          * The buffer is already part of this transaction if b_transaction or
892          * b_next_transaction points to it
893          */
894         if (jh->b_transaction == transaction ||
895             jh->b_next_transaction == transaction)
896                 goto done;
897
898         /*
899          * this is the first time this transaction is touching this buffer,
900          * reset the modified flag
901          */
902        jh->b_modified = 0;
903
904         /*
905          * If the buffer is not journaled right now, we need to make sure it
906          * doesn't get written to disk before the caller actually commits the
907          * new data
908          */
909         if (!jh->b_transaction) {
910                 JBUFFER_TRACE(jh, "no transaction");
911                 J_ASSERT_JH(jh, !jh->b_next_transaction);
912                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
913                 /*
914                  * Make sure all stores to jh (b_modified, b_frozen_data) are
915                  * visible before attaching it to the running transaction.
916                  * Paired with barrier in jbd2_write_access_granted()
917                  */
918                 smp_wmb();
919                 spin_lock(&journal->j_list_lock);
920                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
921                 spin_unlock(&journal->j_list_lock);
922                 goto done;
923         }
924         /*
925          * If there is already a copy-out version of this buffer, then we don't
926          * need to make another one
927          */
928         if (jh->b_frozen_data) {
929                 JBUFFER_TRACE(jh, "has frozen data");
930                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
931                 goto attach_next;
932         }
933
934         JBUFFER_TRACE(jh, "owned by older transaction");
935         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
936         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
937
938         /*
939          * There is one case we have to be very careful about.  If the
940          * committing transaction is currently writing this buffer out to disk
941          * and has NOT made a copy-out, then we cannot modify the buffer
942          * contents at all right now.  The essence of copy-out is that it is
943          * the extra copy, not the primary copy, which gets journaled.  If the
944          * primary copy is already going to disk then we cannot do copy-out
945          * here.
946          */
947         if (buffer_shadow(bh)) {
948                 JBUFFER_TRACE(jh, "on shadow: sleep");
949                 jbd_unlock_bh_state(bh);
950                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
951                 goto repeat;
952         }
953
954         /*
955          * Only do the copy if the currently-owning transaction still needs it.
956          * If buffer isn't on BJ_Metadata list, the committing transaction is
957          * past that stage (here we use the fact that BH_Shadow is set under
958          * bh_state lock together with refiling to BJ_Shadow list and at this
959          * point we know the buffer doesn't have BH_Shadow set).
960          *
961          * Subtle point, though: if this is a get_undo_access, then we will be
962          * relying on the frozen_data to contain the new value of the
963          * committed_data record after the transaction, so we HAVE to force the
964          * frozen_data copy in that case.
965          */
966         if (jh->b_jlist == BJ_Metadata || force_copy) {
967                 JBUFFER_TRACE(jh, "generate frozen data");
968                 if (!frozen_buffer) {
969                         JBUFFER_TRACE(jh, "allocate memory for buffer");
970                         jbd_unlock_bh_state(bh);
971                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
972                         if (!frozen_buffer) {
973                                 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
974                                        __func__);
975                                 JBUFFER_TRACE(jh, "oom!");
976                                 error = -ENOMEM;
977                                 goto out;
978                         }
979                         goto repeat;
980                 }
981                 jh->b_frozen_data = frozen_buffer;
982                 frozen_buffer = NULL;
983                 jbd2_freeze_jh_data(jh);
984         }
985 attach_next:
986         /*
987          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
988          * before attaching it to the running transaction. Paired with barrier
989          * in jbd2_write_access_granted()
990          */
991         smp_wmb();
992         jh->b_next_transaction = transaction;
993
994 done:
995         jbd_unlock_bh_state(bh);
996
997         /*
998          * If we are about to journal a buffer, then any revoke pending on it is
999          * no longer valid
1000          */
1001         jbd2_journal_cancel_revoke(handle, jh);
1002
1003 out:
1004         if (unlikely(frozen_buffer))    /* It's usually NULL */
1005                 jbd2_free(frozen_buffer, bh->b_size);
1006
1007         JBUFFER_TRACE(jh, "exit");
1008         return error;
1009 }
1010
1011 /* Fast check whether buffer is already attached to the required transaction */
1012 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh)
1013 {
1014         struct journal_head *jh;
1015         bool ret = false;
1016
1017         /* Dirty buffers require special handling... */
1018         if (buffer_dirty(bh))
1019                 return false;
1020
1021         /*
1022          * RCU protects us from dereferencing freed pages. So the checks we do
1023          * are guaranteed not to oops. However the jh slab object can get freed
1024          * & reallocated while we work with it. So we have to be careful. When
1025          * we see jh attached to the running transaction, we know it must stay
1026          * so until the transaction is committed. Thus jh won't be freed and
1027          * will be attached to the same bh while we run.  However it can
1028          * happen jh gets freed, reallocated, and attached to the transaction
1029          * just after we get pointer to it from bh. So we have to be careful
1030          * and recheck jh still belongs to our bh before we return success.
1031          */
1032         rcu_read_lock();
1033         if (!buffer_jbd(bh))
1034                 goto out;
1035         /* This should be bh2jh() but that doesn't work with inline functions */
1036         jh = READ_ONCE(bh->b_private);
1037         if (!jh)
1038                 goto out;
1039         if (jh->b_transaction != handle->h_transaction &&
1040             jh->b_next_transaction != handle->h_transaction)
1041                 goto out;
1042         /*
1043          * There are two reasons for the barrier here:
1044          * 1) Make sure to fetch b_bh after we did previous checks so that we
1045          * detect when jh went through free, realloc, attach to transaction
1046          * while we were checking. Paired with implicit barrier in that path.
1047          * 2) So that access to bh done after jbd2_write_access_granted()
1048          * doesn't get reordered and see inconsistent state of concurrent
1049          * do_get_write_access().
1050          */
1051         smp_mb();
1052         if (unlikely(jh->b_bh != bh))
1053                 goto out;
1054         ret = true;
1055 out:
1056         rcu_read_unlock();
1057         return ret;
1058 }
1059
1060 /**
1061  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1062  * @handle: transaction to add buffer modifications to
1063  * @bh:     bh to be used for metadata writes
1064  *
1065  * Returns an error code or 0 on success.
1066  *
1067  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1068  * because we're write()ing a buffer which is also part of a shared mapping.
1069  */
1070
1071 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1072 {
1073         struct journal_head *jh;
1074         int rc;
1075
1076         if (jbd2_write_access_granted(handle, bh))
1077                 return 0;
1078
1079         jh = jbd2_journal_add_journal_head(bh);
1080         /* We do not want to get caught playing with fields which the
1081          * log thread also manipulates.  Make sure that the buffer
1082          * completes any outstanding IO before proceeding. */
1083         rc = do_get_write_access(handle, jh, 0);
1084         jbd2_journal_put_journal_head(jh);
1085         return rc;
1086 }
1087
1088
1089 /*
1090  * When the user wants to journal a newly created buffer_head
1091  * (ie. getblk() returned a new buffer and we are going to populate it
1092  * manually rather than reading off disk), then we need to keep the
1093  * buffer_head locked until it has been completely filled with new
1094  * data.  In this case, we should be able to make the assertion that
1095  * the bh is not already part of an existing transaction.
1096  *
1097  * The buffer should already be locked by the caller by this point.
1098  * There is no lock ranking violation: it was a newly created,
1099  * unlocked buffer beforehand. */
1100
1101 /**
1102  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1103  * @handle: transaction to new buffer to
1104  * @bh: new buffer.
1105  *
1106  * Call this if you create a new bh.
1107  */
1108 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1109 {
1110         transaction_t *transaction = handle->h_transaction;
1111         journal_t *journal;
1112         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1113         int err;
1114
1115         jbd_debug(5, "journal_head %p\n", jh);
1116         err = -EROFS;
1117         if (is_handle_aborted(handle))
1118                 goto out;
1119         journal = transaction->t_journal;
1120         err = 0;
1121
1122         JBUFFER_TRACE(jh, "entry");
1123         /*
1124          * The buffer may already belong to this transaction due to pre-zeroing
1125          * in the filesystem's new_block code.  It may also be on the previous,
1126          * committing transaction's lists, but it HAS to be in Forget state in
1127          * that case: the transaction must have deleted the buffer for it to be
1128          * reused here.
1129          */
1130         jbd_lock_bh_state(bh);
1131         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1132                 jh->b_transaction == NULL ||
1133                 (jh->b_transaction == journal->j_committing_transaction &&
1134                           jh->b_jlist == BJ_Forget)));
1135
1136         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1137         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1138
1139         if (jh->b_transaction == NULL) {
1140                 /*
1141                  * Previous jbd2_journal_forget() could have left the buffer
1142                  * with jbddirty bit set because it was being committed. When
1143                  * the commit finished, we've filed the buffer for
1144                  * checkpointing and marked it dirty. Now we are reallocating
1145                  * the buffer so the transaction freeing it must have
1146                  * committed and so it's safe to clear the dirty bit.
1147                  */
1148                 clear_buffer_dirty(jh2bh(jh));
1149                 /* first access by this transaction */
1150                 jh->b_modified = 0;
1151
1152                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1153                 spin_lock(&journal->j_list_lock);
1154                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1155         } else if (jh->b_transaction == journal->j_committing_transaction) {
1156                 /* first access by this transaction */
1157                 jh->b_modified = 0;
1158
1159                 JBUFFER_TRACE(jh, "set next transaction");
1160                 spin_lock(&journal->j_list_lock);
1161                 jh->b_next_transaction = transaction;
1162         }
1163         spin_unlock(&journal->j_list_lock);
1164         jbd_unlock_bh_state(bh);
1165
1166         /*
1167          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1168          * blocks which contain freed but then revoked metadata.  We need
1169          * to cancel the revoke in case we end up freeing it yet again
1170          * and the reallocating as data - this would cause a second revoke,
1171          * which hits an assertion error.
1172          */
1173         JBUFFER_TRACE(jh, "cancelling revoke");
1174         jbd2_journal_cancel_revoke(handle, jh);
1175 out:
1176         jbd2_journal_put_journal_head(jh);
1177         return err;
1178 }
1179
1180 /**
1181  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1182  *     non-rewindable consequences
1183  * @handle: transaction
1184  * @bh: buffer to undo
1185  *
1186  * Sometimes there is a need to distinguish between metadata which has
1187  * been committed to disk and that which has not.  The ext3fs code uses
1188  * this for freeing and allocating space, we have to make sure that we
1189  * do not reuse freed space until the deallocation has been committed,
1190  * since if we overwrote that space we would make the delete
1191  * un-rewindable in case of a crash.
1192  *
1193  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1194  * buffer for parts of non-rewindable operations such as delete
1195  * operations on the bitmaps.  The journaling code must keep a copy of
1196  * the buffer's contents prior to the undo_access call until such time
1197  * as we know that the buffer has definitely been committed to disk.
1198  *
1199  * We never need to know which transaction the committed data is part
1200  * of, buffers touched here are guaranteed to be dirtied later and so
1201  * will be committed to a new transaction in due course, at which point
1202  * we can discard the old committed data pointer.
1203  *
1204  * Returns error number or 0 on success.
1205  */
1206 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1207 {
1208         int err;
1209         struct journal_head *jh;
1210         char *committed_data = NULL;
1211
1212         JBUFFER_TRACE(jh, "entry");
1213         if (jbd2_write_access_granted(handle, bh))
1214                 return 0;
1215
1216         jh = jbd2_journal_add_journal_head(bh);
1217         /*
1218          * Do this first --- it can drop the journal lock, so we want to
1219          * make sure that obtaining the committed_data is done
1220          * atomically wrt. completion of any outstanding commits.
1221          */
1222         err = do_get_write_access(handle, jh, 1);
1223         if (err)
1224                 goto out;
1225
1226 repeat:
1227         if (!jh->b_committed_data) {
1228                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1229                 if (!committed_data) {
1230                         printk(KERN_ERR "%s: No memory for committed data\n",
1231                                 __func__);
1232                         err = -ENOMEM;
1233                         goto out;
1234                 }
1235         }
1236
1237         jbd_lock_bh_state(bh);
1238         if (!jh->b_committed_data) {
1239                 /* Copy out the current buffer contents into the
1240                  * preserved, committed copy. */
1241                 JBUFFER_TRACE(jh, "generate b_committed data");
1242                 if (!committed_data) {
1243                         jbd_unlock_bh_state(bh);
1244                         goto repeat;
1245                 }
1246
1247                 jh->b_committed_data = committed_data;
1248                 committed_data = NULL;
1249                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1250         }
1251         jbd_unlock_bh_state(bh);
1252 out:
1253         jbd2_journal_put_journal_head(jh);
1254         if (unlikely(committed_data))
1255                 jbd2_free(committed_data, bh->b_size);
1256         return err;
1257 }
1258
1259 /**
1260  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1261  * @bh: buffer to trigger on
1262  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1263  *
1264  * Set any triggers on this journal_head.  This is always safe, because
1265  * triggers for a committing buffer will be saved off, and triggers for
1266  * a running transaction will match the buffer in that transaction.
1267  *
1268  * Call with NULL to clear the triggers.
1269  */
1270 void jbd2_journal_set_triggers(struct buffer_head *bh,
1271                                struct jbd2_buffer_trigger_type *type)
1272 {
1273         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1274
1275         if (WARN_ON(!jh))
1276                 return;
1277         jh->b_triggers = type;
1278         jbd2_journal_put_journal_head(jh);
1279 }
1280
1281 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1282                                 struct jbd2_buffer_trigger_type *triggers)
1283 {
1284         struct buffer_head *bh = jh2bh(jh);
1285
1286         if (!triggers || !triggers->t_frozen)
1287                 return;
1288
1289         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1290 }
1291
1292 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1293                                struct jbd2_buffer_trigger_type *triggers)
1294 {
1295         if (!triggers || !triggers->t_abort)
1296                 return;
1297
1298         triggers->t_abort(triggers, jh2bh(jh));
1299 }
1300
1301 /**
1302  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1303  * @handle: transaction to add buffer to.
1304  * @bh: buffer to mark
1305  *
1306  * mark dirty metadata which needs to be journaled as part of the current
1307  * transaction.
1308  *
1309  * The buffer must have previously had jbd2_journal_get_write_access()
1310  * called so that it has a valid journal_head attached to the buffer
1311  * head.
1312  *
1313  * The buffer is placed on the transaction's metadata list and is marked
1314  * as belonging to the transaction.
1315  *
1316  * Returns error number or 0 on success.
1317  *
1318  * Special care needs to be taken if the buffer already belongs to the
1319  * current committing transaction (in which case we should have frozen
1320  * data present for that commit).  In that case, we don't relink the
1321  * buffer: that only gets done when the old transaction finally
1322  * completes its commit.
1323  */
1324 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1325 {
1326         transaction_t *transaction = handle->h_transaction;
1327         journal_t *journal;
1328         struct journal_head *jh;
1329         int ret = 0;
1330
1331         if (is_handle_aborted(handle))
1332                 return -EROFS;
1333         if (!buffer_jbd(bh)) {
1334                 ret = -EUCLEAN;
1335                 goto out;
1336         }
1337         /*
1338          * We don't grab jh reference here since the buffer must be part
1339          * of the running transaction.
1340          */
1341         jh = bh2jh(bh);
1342         /*
1343          * This and the following assertions are unreliable since we may see jh
1344          * in inconsistent state unless we grab bh_state lock. But this is
1345          * crucial to catch bugs so let's do a reliable check until the
1346          * lockless handling is fully proven.
1347          */
1348         if (jh->b_transaction != transaction &&
1349             jh->b_next_transaction != transaction) {
1350                 jbd_lock_bh_state(bh);
1351                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1352                                 jh->b_next_transaction == transaction);
1353                 jbd_unlock_bh_state(bh);
1354         }
1355         if (jh->b_modified == 1) {
1356                 /* If it's in our transaction it must be in BJ_Metadata list. */
1357                 if (jh->b_transaction == transaction &&
1358                     jh->b_jlist != BJ_Metadata) {
1359                         jbd_lock_bh_state(bh);
1360                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1361                                         jh->b_jlist == BJ_Metadata);
1362                         jbd_unlock_bh_state(bh);
1363                 }
1364                 goto out;
1365         }
1366
1367         journal = transaction->t_journal;
1368         jbd_debug(5, "journal_head %p\n", jh);
1369         JBUFFER_TRACE(jh, "entry");
1370
1371         jbd_lock_bh_state(bh);
1372
1373         if (jh->b_modified == 0) {
1374                 /*
1375                  * This buffer's got modified and becoming part
1376                  * of the transaction. This needs to be done
1377                  * once a transaction -bzzz
1378                  */
1379                 jh->b_modified = 1;
1380                 if (handle->h_buffer_credits <= 0) {
1381                         ret = -ENOSPC;
1382                         goto out_unlock_bh;
1383                 }
1384                 handle->h_buffer_credits--;
1385         }
1386
1387         /*
1388          * fastpath, to avoid expensive locking.  If this buffer is already
1389          * on the running transaction's metadata list there is nothing to do.
1390          * Nobody can take it off again because there is a handle open.
1391          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1392          * result in this test being false, so we go in and take the locks.
1393          */
1394         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1395                 JBUFFER_TRACE(jh, "fastpath");
1396                 if (unlikely(jh->b_transaction !=
1397                              journal->j_running_transaction)) {
1398                         printk(KERN_ERR "JBD2: %s: "
1399                                "jh->b_transaction (%llu, %p, %u) != "
1400                                "journal->j_running_transaction (%p, %u)\n",
1401                                journal->j_devname,
1402                                (unsigned long long) bh->b_blocknr,
1403                                jh->b_transaction,
1404                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1405                                journal->j_running_transaction,
1406                                journal->j_running_transaction ?
1407                                journal->j_running_transaction->t_tid : 0);
1408                         ret = -EINVAL;
1409                 }
1410                 goto out_unlock_bh;
1411         }
1412
1413         set_buffer_jbddirty(bh);
1414
1415         /*
1416          * Metadata already on the current transaction list doesn't
1417          * need to be filed.  Metadata on another transaction's list must
1418          * be committing, and will be refiled once the commit completes:
1419          * leave it alone for now.
1420          */
1421         if (jh->b_transaction != transaction) {
1422                 JBUFFER_TRACE(jh, "already on other transaction");
1423                 if (unlikely(((jh->b_transaction !=
1424                                journal->j_committing_transaction)) ||
1425                              (jh->b_next_transaction != transaction))) {
1426                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1427                                "bad jh for block %llu: "
1428                                "transaction (%p, %u), "
1429                                "jh->b_transaction (%p, %u), "
1430                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1431                                journal->j_devname,
1432                                (unsigned long long) bh->b_blocknr,
1433                                transaction, transaction->t_tid,
1434                                jh->b_transaction,
1435                                jh->b_transaction ?
1436                                jh->b_transaction->t_tid : 0,
1437                                jh->b_next_transaction,
1438                                jh->b_next_transaction ?
1439                                jh->b_next_transaction->t_tid : 0,
1440                                jh->b_jlist);
1441                         WARN_ON(1);
1442                         ret = -EINVAL;
1443                 }
1444                 /* And this case is illegal: we can't reuse another
1445                  * transaction's data buffer, ever. */
1446                 goto out_unlock_bh;
1447         }
1448
1449         /* That test should have eliminated the following case: */
1450         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1451
1452         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1453         spin_lock(&journal->j_list_lock);
1454         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1455         spin_unlock(&journal->j_list_lock);
1456 out_unlock_bh:
1457         jbd_unlock_bh_state(bh);
1458 out:
1459         JBUFFER_TRACE(jh, "exit");
1460         return ret;
1461 }
1462
1463 /**
1464  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1465  * @handle: transaction handle
1466  * @bh:     bh to 'forget'
1467  *
1468  * We can only do the bforget if there are no commits pending against the
1469  * buffer.  If the buffer is dirty in the current running transaction we
1470  * can safely unlink it.
1471  *
1472  * bh may not be a journalled buffer at all - it may be a non-JBD
1473  * buffer which came off the hashtable.  Check for this.
1474  *
1475  * Decrements bh->b_count by one.
1476  *
1477  * Allow this call even if the handle has aborted --- it may be part of
1478  * the caller's cleanup after an abort.
1479  */
1480 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1481 {
1482         transaction_t *transaction = handle->h_transaction;
1483         journal_t *journal;
1484         struct journal_head *jh;
1485         int drop_reserve = 0;
1486         int err = 0;
1487         int was_modified = 0;
1488
1489         if (is_handle_aborted(handle))
1490                 return -EROFS;
1491         journal = transaction->t_journal;
1492
1493         BUFFER_TRACE(bh, "entry");
1494
1495         jbd_lock_bh_state(bh);
1496
1497         if (!buffer_jbd(bh))
1498                 goto not_jbd;
1499         jh = bh2jh(bh);
1500
1501         /* Critical error: attempting to delete a bitmap buffer, maybe?
1502          * Don't do any jbd operations, and return an error. */
1503         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1504                          "inconsistent data on disk")) {
1505                 err = -EIO;
1506                 goto not_jbd;
1507         }
1508
1509         /* keep track of whether or not this transaction modified us */
1510         was_modified = jh->b_modified;
1511
1512         /*
1513          * The buffer's going from the transaction, we must drop
1514          * all references -bzzz
1515          */
1516         jh->b_modified = 0;
1517
1518         if (jh->b_transaction == transaction) {
1519                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1520
1521                 /* If we are forgetting a buffer which is already part
1522                  * of this transaction, then we can just drop it from
1523                  * the transaction immediately. */
1524                 clear_buffer_dirty(bh);
1525                 clear_buffer_jbddirty(bh);
1526
1527                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1528
1529                 /*
1530                  * we only want to drop a reference if this transaction
1531                  * modified the buffer
1532                  */
1533                 if (was_modified)
1534                         drop_reserve = 1;
1535
1536                 /*
1537                  * We are no longer going to journal this buffer.
1538                  * However, the commit of this transaction is still
1539                  * important to the buffer: the delete that we are now
1540                  * processing might obsolete an old log entry, so by
1541                  * committing, we can satisfy the buffer's checkpoint.
1542                  *
1543                  * So, if we have a checkpoint on the buffer, we should
1544                  * now refile the buffer on our BJ_Forget list so that
1545                  * we know to remove the checkpoint after we commit.
1546                  */
1547
1548                 spin_lock(&journal->j_list_lock);
1549                 if (jh->b_cp_transaction) {
1550                         __jbd2_journal_temp_unlink_buffer(jh);
1551                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1552                 } else {
1553                         __jbd2_journal_unfile_buffer(jh);
1554                         if (!buffer_jbd(bh)) {
1555                                 spin_unlock(&journal->j_list_lock);
1556                                 jbd_unlock_bh_state(bh);
1557                                 __bforget(bh);
1558                                 goto drop;
1559                         }
1560                 }
1561                 spin_unlock(&journal->j_list_lock);
1562         } else if (jh->b_transaction) {
1563                 J_ASSERT_JH(jh, (jh->b_transaction ==
1564                                  journal->j_committing_transaction));
1565                 /* However, if the buffer is still owned by a prior
1566                  * (committing) transaction, we can't drop it yet... */
1567                 JBUFFER_TRACE(jh, "belongs to older transaction");
1568                 /* ... but we CAN drop it from the new transaction if we
1569                  * have also modified it since the original commit. */
1570
1571                 if (jh->b_next_transaction) {
1572                         J_ASSERT(jh->b_next_transaction == transaction);
1573                         spin_lock(&journal->j_list_lock);
1574                         jh->b_next_transaction = NULL;
1575                         spin_unlock(&journal->j_list_lock);
1576
1577                         /*
1578                          * only drop a reference if this transaction modified
1579                          * the buffer
1580                          */
1581                         if (was_modified)
1582                                 drop_reserve = 1;
1583                 }
1584         }
1585
1586 not_jbd:
1587         jbd_unlock_bh_state(bh);
1588         __brelse(bh);
1589 drop:
1590         if (drop_reserve) {
1591                 /* no need to reserve log space for this block -bzzz */
1592                 handle->h_buffer_credits++;
1593         }
1594         return err;
1595 }
1596
1597 /**
1598  * int jbd2_journal_stop() - complete a transaction
1599  * @handle: tranaction to complete.
1600  *
1601  * All done for a particular handle.
1602  *
1603  * There is not much action needed here.  We just return any remaining
1604  * buffer credits to the transaction and remove the handle.  The only
1605  * complication is that we need to start a commit operation if the
1606  * filesystem is marked for synchronous update.
1607  *
1608  * jbd2_journal_stop itself will not usually return an error, but it may
1609  * do so in unusual circumstances.  In particular, expect it to
1610  * return -EIO if a jbd2_journal_abort has been executed since the
1611  * transaction began.
1612  */
1613 int jbd2_journal_stop(handle_t *handle)
1614 {
1615         transaction_t *transaction = handle->h_transaction;
1616         journal_t *journal;
1617         int err = 0, wait_for_commit = 0;
1618         tid_t tid;
1619         pid_t pid;
1620
1621         if (!transaction) {
1622                 /*
1623                  * Handle is already detached from the transaction so
1624                  * there is nothing to do other than decrease a refcount,
1625                  * or free the handle if refcount drops to zero
1626                  */
1627                 if (--handle->h_ref > 0) {
1628                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1629                                                          handle->h_ref);
1630                         return err;
1631                 } else {
1632                         if (handle->h_rsv_handle)
1633                                 jbd2_free_handle(handle->h_rsv_handle);
1634                         goto free_and_exit;
1635                 }
1636         }
1637         journal = transaction->t_journal;
1638
1639         J_ASSERT(journal_current_handle() == handle);
1640
1641         if (is_handle_aborted(handle))
1642                 err = -EIO;
1643         else
1644                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1645
1646         if (--handle->h_ref > 0) {
1647                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1648                           handle->h_ref);
1649                 return err;
1650         }
1651
1652         jbd_debug(4, "Handle %p going down\n", handle);
1653         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1654                                 transaction->t_tid,
1655                                 handle->h_type, handle->h_line_no,
1656                                 jiffies - handle->h_start_jiffies,
1657                                 handle->h_sync, handle->h_requested_credits,
1658                                 (handle->h_requested_credits -
1659                                  handle->h_buffer_credits));
1660
1661         /*
1662          * Implement synchronous transaction batching.  If the handle
1663          * was synchronous, don't force a commit immediately.  Let's
1664          * yield and let another thread piggyback onto this
1665          * transaction.  Keep doing that while new threads continue to
1666          * arrive.  It doesn't cost much - we're about to run a commit
1667          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1668          * operations by 30x or more...
1669          *
1670          * We try and optimize the sleep time against what the
1671          * underlying disk can do, instead of having a static sleep
1672          * time.  This is useful for the case where our storage is so
1673          * fast that it is more optimal to go ahead and force a flush
1674          * and wait for the transaction to be committed than it is to
1675          * wait for an arbitrary amount of time for new writers to
1676          * join the transaction.  We achieve this by measuring how
1677          * long it takes to commit a transaction, and compare it with
1678          * how long this transaction has been running, and if run time
1679          * < commit time then we sleep for the delta and commit.  This
1680          * greatly helps super fast disks that would see slowdowns as
1681          * more threads started doing fsyncs.
1682          *
1683          * But don't do this if this process was the most recent one
1684          * to perform a synchronous write.  We do this to detect the
1685          * case where a single process is doing a stream of sync
1686          * writes.  No point in waiting for joiners in that case.
1687          *
1688          * Setting max_batch_time to 0 disables this completely.
1689          */
1690         pid = current->pid;
1691         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1692             journal->j_max_batch_time) {
1693                 u64 commit_time, trans_time;
1694
1695                 journal->j_last_sync_writer = pid;
1696
1697                 read_lock(&journal->j_state_lock);
1698                 commit_time = journal->j_average_commit_time;
1699                 read_unlock(&journal->j_state_lock);
1700
1701                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1702                                                    transaction->t_start_time));
1703
1704                 commit_time = max_t(u64, commit_time,
1705                                     1000*journal->j_min_batch_time);
1706                 commit_time = min_t(u64, commit_time,
1707                                     1000*journal->j_max_batch_time);
1708
1709                 if (trans_time < commit_time) {
1710                         ktime_t expires = ktime_add_ns(ktime_get(),
1711                                                        commit_time);
1712                         set_current_state(TASK_UNINTERRUPTIBLE);
1713                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1714                 }
1715         }
1716
1717         if (handle->h_sync)
1718                 transaction->t_synchronous_commit = 1;
1719         current->journal_info = NULL;
1720         atomic_sub(handle->h_buffer_credits,
1721                    &transaction->t_outstanding_credits);
1722
1723         /*
1724          * If the handle is marked SYNC, we need to set another commit
1725          * going!  We also want to force a commit if the current
1726          * transaction is occupying too much of the log, or if the
1727          * transaction is too old now.
1728          */
1729         if (handle->h_sync ||
1730             (atomic_read(&transaction->t_outstanding_credits) >
1731              journal->j_max_transaction_buffers) ||
1732             time_after_eq(jiffies, transaction->t_expires)) {
1733                 /* Do this even for aborted journals: an abort still
1734                  * completes the commit thread, it just doesn't write
1735                  * anything to disk. */
1736
1737                 jbd_debug(2, "transaction too old, requesting commit for "
1738                                         "handle %p\n", handle);
1739                 /* This is non-blocking */
1740                 jbd2_log_start_commit(journal, transaction->t_tid);
1741
1742                 /*
1743                  * Special case: JBD2_SYNC synchronous updates require us
1744                  * to wait for the commit to complete.
1745                  */
1746                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1747                         wait_for_commit = 1;
1748         }
1749
1750         /*
1751          * Once we drop t_updates, if it goes to zero the transaction
1752          * could start committing on us and eventually disappear.  So
1753          * once we do this, we must not dereference transaction
1754          * pointer again.
1755          */
1756         tid = transaction->t_tid;
1757         if (atomic_dec_and_test(&transaction->t_updates)) {
1758                 wake_up(&journal->j_wait_updates);
1759                 if (journal->j_barrier_count)
1760                         wake_up(&journal->j_wait_transaction_locked);
1761         }
1762
1763         if (wait_for_commit)
1764                 err = jbd2_log_wait_commit(journal, tid);
1765
1766         lock_map_release(&handle->h_lockdep_map);
1767
1768         if (handle->h_rsv_handle)
1769                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1770 free_and_exit:
1771         jbd2_free_handle(handle);
1772         return err;
1773 }
1774
1775 /*
1776  *
1777  * List management code snippets: various functions for manipulating the
1778  * transaction buffer lists.
1779  *
1780  */
1781
1782 /*
1783  * Append a buffer to a transaction list, given the transaction's list head
1784  * pointer.
1785  *
1786  * j_list_lock is held.
1787  *
1788  * jbd_lock_bh_state(jh2bh(jh)) is held.
1789  */
1790
1791 static inline void
1792 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1793 {
1794         if (!*list) {
1795                 jh->b_tnext = jh->b_tprev = jh;
1796                 *list = jh;
1797         } else {
1798                 /* Insert at the tail of the list to preserve order */
1799                 struct journal_head *first = *list, *last = first->b_tprev;
1800                 jh->b_tprev = last;
1801                 jh->b_tnext = first;
1802                 last->b_tnext = first->b_tprev = jh;
1803         }
1804 }
1805
1806 /*
1807  * Remove a buffer from a transaction list, given the transaction's list
1808  * head pointer.
1809  *
1810  * Called with j_list_lock held, and the journal may not be locked.
1811  *
1812  * jbd_lock_bh_state(jh2bh(jh)) is held.
1813  */
1814
1815 static inline void
1816 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1817 {
1818         if (*list == jh) {
1819                 *list = jh->b_tnext;
1820                 if (*list == jh)
1821                         *list = NULL;
1822         }
1823         jh->b_tprev->b_tnext = jh->b_tnext;
1824         jh->b_tnext->b_tprev = jh->b_tprev;
1825 }
1826
1827 /*
1828  * Remove a buffer from the appropriate transaction list.
1829  *
1830  * Note that this function can *change* the value of
1831  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1832  * t_reserved_list.  If the caller is holding onto a copy of one of these
1833  * pointers, it could go bad.  Generally the caller needs to re-read the
1834  * pointer from the transaction_t.
1835  *
1836  * Called under j_list_lock.
1837  */
1838 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1839 {
1840         struct journal_head **list = NULL;
1841         transaction_t *transaction;
1842         struct buffer_head *bh = jh2bh(jh);
1843
1844         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1845         transaction = jh->b_transaction;
1846         if (transaction)
1847                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1848
1849         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1850         if (jh->b_jlist != BJ_None)
1851                 J_ASSERT_JH(jh, transaction != NULL);
1852
1853         switch (jh->b_jlist) {
1854         case BJ_None:
1855                 return;
1856         case BJ_Metadata:
1857                 transaction->t_nr_buffers--;
1858                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1859                 list = &transaction->t_buffers;
1860                 break;
1861         case BJ_Forget:
1862                 list = &transaction->t_forget;
1863                 break;
1864         case BJ_Shadow:
1865                 list = &transaction->t_shadow_list;
1866                 break;
1867         case BJ_Reserved:
1868                 list = &transaction->t_reserved_list;
1869                 break;
1870         }
1871
1872         __blist_del_buffer(list, jh);
1873         jh->b_jlist = BJ_None;
1874         if (test_clear_buffer_jbddirty(bh))
1875                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1876 }
1877
1878 /*
1879  * Remove buffer from all transactions.
1880  *
1881  * Called with bh_state lock and j_list_lock
1882  *
1883  * jh and bh may be already freed when this function returns.
1884  */
1885 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1886 {
1887         __jbd2_journal_temp_unlink_buffer(jh);
1888         jh->b_transaction = NULL;
1889         jbd2_journal_put_journal_head(jh);
1890 }
1891
1892 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1893 {
1894         struct buffer_head *bh = jh2bh(jh);
1895
1896         /* Get reference so that buffer cannot be freed before we unlock it */
1897         get_bh(bh);
1898         jbd_lock_bh_state(bh);
1899         spin_lock(&journal->j_list_lock);
1900         __jbd2_journal_unfile_buffer(jh);
1901         spin_unlock(&journal->j_list_lock);
1902         jbd_unlock_bh_state(bh);
1903         __brelse(bh);
1904 }
1905
1906 /*
1907  * Called from jbd2_journal_try_to_free_buffers().
1908  *
1909  * Called under jbd_lock_bh_state(bh)
1910  */
1911 static void
1912 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1913 {
1914         struct journal_head *jh;
1915
1916         jh = bh2jh(bh);
1917
1918         if (buffer_locked(bh) || buffer_dirty(bh))
1919                 goto out;
1920
1921         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1922                 goto out;
1923
1924         spin_lock(&journal->j_list_lock);
1925         if (jh->b_cp_transaction != NULL) {
1926                 /* written-back checkpointed metadata buffer */
1927                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1928                 __jbd2_journal_remove_checkpoint(jh);
1929         }
1930         spin_unlock(&journal->j_list_lock);
1931 out:
1932         return;
1933 }
1934
1935 /**
1936  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1937  * @journal: journal for operation
1938  * @page: to try and free
1939  * @gfp_mask: we use the mask to detect how hard should we try to release
1940  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1941  * code to release the buffers.
1942  *
1943  *
1944  * For all the buffers on this page,
1945  * if they are fully written out ordered data, move them onto BUF_CLEAN
1946  * so try_to_free_buffers() can reap them.
1947  *
1948  * This function returns non-zero if we wish try_to_free_buffers()
1949  * to be called. We do this if the page is releasable by try_to_free_buffers().
1950  * We also do it if the page has locked or dirty buffers and the caller wants
1951  * us to perform sync or async writeout.
1952  *
1953  * This complicates JBD locking somewhat.  We aren't protected by the
1954  * BKL here.  We wish to remove the buffer from its committing or
1955  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1956  *
1957  * This may *change* the value of transaction_t->t_datalist, so anyone
1958  * who looks at t_datalist needs to lock against this function.
1959  *
1960  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1961  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1962  * will come out of the lock with the buffer dirty, which makes it
1963  * ineligible for release here.
1964  *
1965  * Who else is affected by this?  hmm...  Really the only contender
1966  * is do_get_write_access() - it could be looking at the buffer while
1967  * journal_try_to_free_buffer() is changing its state.  But that
1968  * cannot happen because we never reallocate freed data as metadata
1969  * while the data is part of a transaction.  Yes?
1970  *
1971  * Return 0 on failure, 1 on success
1972  */
1973 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1974                                 struct page *page, gfp_t gfp_mask)
1975 {
1976         struct buffer_head *head;
1977         struct buffer_head *bh;
1978         int ret = 0;
1979
1980         J_ASSERT(PageLocked(page));
1981
1982         head = page_buffers(page);
1983         bh = head;
1984         do {
1985                 struct journal_head *jh;
1986
1987                 /*
1988                  * We take our own ref against the journal_head here to avoid
1989                  * having to add tons of locking around each instance of
1990                  * jbd2_journal_put_journal_head().
1991                  */
1992                 jh = jbd2_journal_grab_journal_head(bh);
1993                 if (!jh)
1994                         continue;
1995
1996                 jbd_lock_bh_state(bh);
1997                 __journal_try_to_free_buffer(journal, bh);
1998                 jbd2_journal_put_journal_head(jh);
1999                 jbd_unlock_bh_state(bh);
2000                 if (buffer_jbd(bh))
2001                         goto busy;
2002         } while ((bh = bh->b_this_page) != head);
2003
2004         ret = try_to_free_buffers(page);
2005
2006 busy:
2007         return ret;
2008 }
2009
2010 /*
2011  * This buffer is no longer needed.  If it is on an older transaction's
2012  * checkpoint list we need to record it on this transaction's forget list
2013  * to pin this buffer (and hence its checkpointing transaction) down until
2014  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2015  * release it.
2016  * Returns non-zero if JBD no longer has an interest in the buffer.
2017  *
2018  * Called under j_list_lock.
2019  *
2020  * Called under jbd_lock_bh_state(bh).
2021  */
2022 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2023 {
2024         int may_free = 1;
2025         struct buffer_head *bh = jh2bh(jh);
2026
2027         if (jh->b_cp_transaction) {
2028                 JBUFFER_TRACE(jh, "on running+cp transaction");
2029                 __jbd2_journal_temp_unlink_buffer(jh);
2030                 /*
2031                  * We don't want to write the buffer anymore, clear the
2032                  * bit so that we don't confuse checks in
2033                  * __journal_file_buffer
2034                  */
2035                 clear_buffer_dirty(bh);
2036                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2037                 may_free = 0;
2038         } else {
2039                 JBUFFER_TRACE(jh, "on running transaction");
2040                 __jbd2_journal_unfile_buffer(jh);
2041         }
2042         return may_free;
2043 }
2044
2045 /*
2046  * jbd2_journal_invalidatepage
2047  *
2048  * This code is tricky.  It has a number of cases to deal with.
2049  *
2050  * There are two invariants which this code relies on:
2051  *
2052  * i_size must be updated on disk before we start calling invalidatepage on the
2053  * data.
2054  *
2055  *  This is done in ext3 by defining an ext3_setattr method which
2056  *  updates i_size before truncate gets going.  By maintaining this
2057  *  invariant, we can be sure that it is safe to throw away any buffers
2058  *  attached to the current transaction: once the transaction commits,
2059  *  we know that the data will not be needed.
2060  *
2061  *  Note however that we can *not* throw away data belonging to the
2062  *  previous, committing transaction!
2063  *
2064  * Any disk blocks which *are* part of the previous, committing
2065  * transaction (and which therefore cannot be discarded immediately) are
2066  * not going to be reused in the new running transaction
2067  *
2068  *  The bitmap committed_data images guarantee this: any block which is
2069  *  allocated in one transaction and removed in the next will be marked
2070  *  as in-use in the committed_data bitmap, so cannot be reused until
2071  *  the next transaction to delete the block commits.  This means that
2072  *  leaving committing buffers dirty is quite safe: the disk blocks
2073  *  cannot be reallocated to a different file and so buffer aliasing is
2074  *  not possible.
2075  *
2076  *
2077  * The above applies mainly to ordered data mode.  In writeback mode we
2078  * don't make guarantees about the order in which data hits disk --- in
2079  * particular we don't guarantee that new dirty data is flushed before
2080  * transaction commit --- so it is always safe just to discard data
2081  * immediately in that mode.  --sct
2082  */
2083
2084 /*
2085  * The journal_unmap_buffer helper function returns zero if the buffer
2086  * concerned remains pinned as an anonymous buffer belonging to an older
2087  * transaction.
2088  *
2089  * We're outside-transaction here.  Either or both of j_running_transaction
2090  * and j_committing_transaction may be NULL.
2091  */
2092 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2093                                 int partial_page)
2094 {
2095         transaction_t *transaction;
2096         struct journal_head *jh;
2097         int may_free = 1;
2098
2099         BUFFER_TRACE(bh, "entry");
2100
2101         /*
2102          * It is safe to proceed here without the j_list_lock because the
2103          * buffers cannot be stolen by try_to_free_buffers as long as we are
2104          * holding the page lock. --sct
2105          */
2106
2107         if (!buffer_jbd(bh))
2108                 goto zap_buffer_unlocked;
2109
2110         /* OK, we have data buffer in journaled mode */
2111         write_lock(&journal->j_state_lock);
2112         jbd_lock_bh_state(bh);
2113         spin_lock(&journal->j_list_lock);
2114
2115         jh = jbd2_journal_grab_journal_head(bh);
2116         if (!jh)
2117                 goto zap_buffer_no_jh;
2118
2119         /*
2120          * We cannot remove the buffer from checkpoint lists until the
2121          * transaction adding inode to orphan list (let's call it T)
2122          * is committed.  Otherwise if the transaction changing the
2123          * buffer would be cleaned from the journal before T is
2124          * committed, a crash will cause that the correct contents of
2125          * the buffer will be lost.  On the other hand we have to
2126          * clear the buffer dirty bit at latest at the moment when the
2127          * transaction marking the buffer as freed in the filesystem
2128          * structures is committed because from that moment on the
2129          * block can be reallocated and used by a different page.
2130          * Since the block hasn't been freed yet but the inode has
2131          * already been added to orphan list, it is safe for us to add
2132          * the buffer to BJ_Forget list of the newest transaction.
2133          *
2134          * Also we have to clear buffer_mapped flag of a truncated buffer
2135          * because the buffer_head may be attached to the page straddling
2136          * i_size (can happen only when blocksize < pagesize) and thus the
2137          * buffer_head can be reused when the file is extended again. So we end
2138          * up keeping around invalidated buffers attached to transactions'
2139          * BJ_Forget list just to stop checkpointing code from cleaning up
2140          * the transaction this buffer was modified in.
2141          */
2142         transaction = jh->b_transaction;
2143         if (transaction == NULL) {
2144                 /* First case: not on any transaction.  If it
2145                  * has no checkpoint link, then we can zap it:
2146                  * it's a writeback-mode buffer so we don't care
2147                  * if it hits disk safely. */
2148                 if (!jh->b_cp_transaction) {
2149                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2150                         goto zap_buffer;
2151                 }
2152
2153                 if (!buffer_dirty(bh)) {
2154                         /* bdflush has written it.  We can drop it now */
2155                         goto zap_buffer;
2156                 }
2157
2158                 /* OK, it must be in the journal but still not
2159                  * written fully to disk: it's metadata or
2160                  * journaled data... */
2161
2162                 if (journal->j_running_transaction) {
2163                         /* ... and once the current transaction has
2164                          * committed, the buffer won't be needed any
2165                          * longer. */
2166                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2167                         may_free = __dispose_buffer(jh,
2168                                         journal->j_running_transaction);
2169                         goto zap_buffer;
2170                 } else {
2171                         /* There is no currently-running transaction. So the
2172                          * orphan record which we wrote for this file must have
2173                          * passed into commit.  We must attach this buffer to
2174                          * the committing transaction, if it exists. */
2175                         if (journal->j_committing_transaction) {
2176                                 JBUFFER_TRACE(jh, "give to committing trans");
2177                                 may_free = __dispose_buffer(jh,
2178                                         journal->j_committing_transaction);
2179                                 goto zap_buffer;
2180                         } else {
2181                                 /* The orphan record's transaction has
2182                                  * committed.  We can cleanse this buffer */
2183                                 clear_buffer_jbddirty(bh);
2184                                 goto zap_buffer;
2185                         }
2186                 }
2187         } else if (transaction == journal->j_committing_transaction) {
2188                 JBUFFER_TRACE(jh, "on committing transaction");
2189                 /*
2190                  * The buffer is committing, we simply cannot touch
2191                  * it. If the page is straddling i_size we have to wait
2192                  * for commit and try again.
2193                  */
2194                 if (partial_page) {
2195                         jbd2_journal_put_journal_head(jh);
2196                         spin_unlock(&journal->j_list_lock);
2197                         jbd_unlock_bh_state(bh);
2198                         write_unlock(&journal->j_state_lock);
2199                         return -EBUSY;
2200                 }
2201                 /*
2202                  * OK, buffer won't be reachable after truncate. We just set
2203                  * j_next_transaction to the running transaction (if there is
2204                  * one) and mark buffer as freed so that commit code knows it
2205                  * should clear dirty bits when it is done with the buffer.
2206                  */
2207                 set_buffer_freed(bh);
2208                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2209                         jh->b_next_transaction = journal->j_running_transaction;
2210                 jbd2_journal_put_journal_head(jh);
2211                 spin_unlock(&journal->j_list_lock);
2212                 jbd_unlock_bh_state(bh);
2213                 write_unlock(&journal->j_state_lock);
2214                 return 0;
2215         } else {
2216                 /* Good, the buffer belongs to the running transaction.
2217                  * We are writing our own transaction's data, not any
2218                  * previous one's, so it is safe to throw it away
2219                  * (remember that we expect the filesystem to have set
2220                  * i_size already for this truncate so recovery will not
2221                  * expose the disk blocks we are discarding here.) */
2222                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2223                 JBUFFER_TRACE(jh, "on running transaction");
2224                 may_free = __dispose_buffer(jh, transaction);
2225         }
2226
2227 zap_buffer:
2228         /*
2229          * This is tricky. Although the buffer is truncated, it may be reused
2230          * if blocksize < pagesize and it is attached to the page straddling
2231          * EOF. Since the buffer might have been added to BJ_Forget list of the
2232          * running transaction, journal_get_write_access() won't clear
2233          * b_modified and credit accounting gets confused. So clear b_modified
2234          * here.
2235          */
2236         jh->b_modified = 0;
2237         jbd2_journal_put_journal_head(jh);
2238 zap_buffer_no_jh:
2239         spin_unlock(&journal->j_list_lock);
2240         jbd_unlock_bh_state(bh);
2241         write_unlock(&journal->j_state_lock);
2242 zap_buffer_unlocked:
2243         clear_buffer_dirty(bh);
2244         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2245         clear_buffer_mapped(bh);
2246         clear_buffer_req(bh);
2247         clear_buffer_new(bh);
2248         clear_buffer_delay(bh);
2249         clear_buffer_unwritten(bh);
2250         bh->b_bdev = NULL;
2251         return may_free;
2252 }
2253
2254 /**
2255  * void jbd2_journal_invalidatepage()
2256  * @journal: journal to use for flush...
2257  * @page:    page to flush
2258  * @offset:  start of the range to invalidate
2259  * @length:  length of the range to invalidate
2260  *
2261  * Reap page buffers containing data after in the specified range in page.
2262  * Can return -EBUSY if buffers are part of the committing transaction and
2263  * the page is straddling i_size. Caller then has to wait for current commit
2264  * and try again.
2265  */
2266 int jbd2_journal_invalidatepage(journal_t *journal,
2267                                 struct page *page,
2268                                 unsigned int offset,
2269                                 unsigned int length)
2270 {
2271         struct buffer_head *head, *bh, *next;
2272         unsigned int stop = offset + length;
2273         unsigned int curr_off = 0;
2274         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2275         int may_free = 1;
2276         int ret = 0;
2277
2278         if (!PageLocked(page))
2279                 BUG();
2280         if (!page_has_buffers(page))
2281                 return 0;
2282
2283         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2284
2285         /* We will potentially be playing with lists other than just the
2286          * data lists (especially for journaled data mode), so be
2287          * cautious in our locking. */
2288
2289         head = bh = page_buffers(page);
2290         do {
2291                 unsigned int next_off = curr_off + bh->b_size;
2292                 next = bh->b_this_page;
2293
2294                 if (next_off > stop)
2295                         return 0;
2296
2297                 if (offset <= curr_off) {
2298                         /* This block is wholly outside the truncation point */
2299                         lock_buffer(bh);
2300                         ret = journal_unmap_buffer(journal, bh, partial_page);
2301                         unlock_buffer(bh);
2302                         if (ret < 0)
2303                                 return ret;
2304                         may_free &= ret;
2305                 }
2306                 curr_off = next_off;
2307                 bh = next;
2308
2309         } while (bh != head);
2310
2311         if (!partial_page) {
2312                 if (may_free && try_to_free_buffers(page))
2313                         J_ASSERT(!page_has_buffers(page));
2314         }
2315         return 0;
2316 }
2317
2318 /*
2319  * File a buffer on the given transaction list.
2320  */
2321 void __jbd2_journal_file_buffer(struct journal_head *jh,
2322                         transaction_t *transaction, int jlist)
2323 {
2324         struct journal_head **list = NULL;
2325         int was_dirty = 0;
2326         struct buffer_head *bh = jh2bh(jh);
2327
2328         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2329         assert_spin_locked(&transaction->t_journal->j_list_lock);
2330
2331         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2332         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2333                                 jh->b_transaction == NULL);
2334
2335         if (jh->b_transaction && jh->b_jlist == jlist)
2336                 return;
2337
2338         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2339             jlist == BJ_Shadow || jlist == BJ_Forget) {
2340                 /*
2341                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2342                  * instead of buffer_dirty. We should not see a dirty bit set
2343                  * here because we clear it in do_get_write_access but e.g.
2344                  * tune2fs can modify the sb and set the dirty bit at any time
2345                  * so we try to gracefully handle that.
2346                  */
2347                 if (buffer_dirty(bh))
2348                         warn_dirty_buffer(bh);
2349                 if (test_clear_buffer_dirty(bh) ||
2350                     test_clear_buffer_jbddirty(bh))
2351                         was_dirty = 1;
2352         }
2353
2354         if (jh->b_transaction)
2355                 __jbd2_journal_temp_unlink_buffer(jh);
2356         else
2357                 jbd2_journal_grab_journal_head(bh);
2358         jh->b_transaction = transaction;
2359
2360         switch (jlist) {
2361         case BJ_None:
2362                 J_ASSERT_JH(jh, !jh->b_committed_data);
2363                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2364                 return;
2365         case BJ_Metadata:
2366                 transaction->t_nr_buffers++;
2367                 list = &transaction->t_buffers;
2368                 break;
2369         case BJ_Forget:
2370                 list = &transaction->t_forget;
2371                 break;
2372         case BJ_Shadow:
2373                 list = &transaction->t_shadow_list;
2374                 break;
2375         case BJ_Reserved:
2376                 list = &transaction->t_reserved_list;
2377                 break;
2378         }
2379
2380         __blist_add_buffer(list, jh);
2381         jh->b_jlist = jlist;
2382
2383         if (was_dirty)
2384                 set_buffer_jbddirty(bh);
2385 }
2386
2387 void jbd2_journal_file_buffer(struct journal_head *jh,
2388                                 transaction_t *transaction, int jlist)
2389 {
2390         jbd_lock_bh_state(jh2bh(jh));
2391         spin_lock(&transaction->t_journal->j_list_lock);
2392         __jbd2_journal_file_buffer(jh, transaction, jlist);
2393         spin_unlock(&transaction->t_journal->j_list_lock);
2394         jbd_unlock_bh_state(jh2bh(jh));
2395 }
2396
2397 /*
2398  * Remove a buffer from its current buffer list in preparation for
2399  * dropping it from its current transaction entirely.  If the buffer has
2400  * already started to be used by a subsequent transaction, refile the
2401  * buffer on that transaction's metadata list.
2402  *
2403  * Called under j_list_lock
2404  * Called under jbd_lock_bh_state(jh2bh(jh))
2405  *
2406  * jh and bh may be already free when this function returns
2407  */
2408 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2409 {
2410         int was_dirty, jlist;
2411         struct buffer_head *bh = jh2bh(jh);
2412
2413         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2414         if (jh->b_transaction)
2415                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2416
2417         /* If the buffer is now unused, just drop it. */
2418         if (jh->b_next_transaction == NULL) {
2419                 __jbd2_journal_unfile_buffer(jh);
2420                 return;
2421         }
2422
2423         /*
2424          * It has been modified by a later transaction: add it to the new
2425          * transaction's metadata list.
2426          */
2427
2428         was_dirty = test_clear_buffer_jbddirty(bh);
2429         __jbd2_journal_temp_unlink_buffer(jh);
2430         /*
2431          * We set b_transaction here because b_next_transaction will inherit
2432          * our jh reference and thus __jbd2_journal_file_buffer() must not
2433          * take a new one.
2434          */
2435         jh->b_transaction = jh->b_next_transaction;
2436         jh->b_next_transaction = NULL;
2437         if (buffer_freed(bh))
2438                 jlist = BJ_Forget;
2439         else if (jh->b_modified)
2440                 jlist = BJ_Metadata;
2441         else
2442                 jlist = BJ_Reserved;
2443         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2444         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2445
2446         if (was_dirty)
2447                 set_buffer_jbddirty(bh);
2448 }
2449
2450 /*
2451  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2452  * bh reference so that we can safely unlock bh.
2453  *
2454  * The jh and bh may be freed by this call.
2455  */
2456 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2457 {
2458         struct buffer_head *bh = jh2bh(jh);
2459
2460         /* Get reference so that buffer cannot be freed before we unlock it */
2461         get_bh(bh);
2462         jbd_lock_bh_state(bh);
2463         spin_lock(&journal->j_list_lock);
2464         __jbd2_journal_refile_buffer(jh);
2465         jbd_unlock_bh_state(bh);
2466         spin_unlock(&journal->j_list_lock);
2467         __brelse(bh);
2468 }
2469
2470 /*
2471  * File inode in the inode list of the handle's transaction
2472  */
2473 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2474 {
2475         transaction_t *transaction = handle->h_transaction;
2476         journal_t *journal;
2477
2478         if (is_handle_aborted(handle))
2479                 return -EROFS;
2480         journal = transaction->t_journal;
2481
2482         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2483                         transaction->t_tid);
2484
2485         /*
2486          * First check whether inode isn't already on the transaction's
2487          * lists without taking the lock. Note that this check is safe
2488          * without the lock as we cannot race with somebody removing inode
2489          * from the transaction. The reason is that we remove inode from the
2490          * transaction only in journal_release_jbd_inode() and when we commit
2491          * the transaction. We are guarded from the first case by holding
2492          * a reference to the inode. We are safe against the second case
2493          * because if jinode->i_transaction == transaction, commit code
2494          * cannot touch the transaction because we hold reference to it,
2495          * and if jinode->i_next_transaction == transaction, commit code
2496          * will only file the inode where we want it.
2497          */
2498         if (jinode->i_transaction == transaction ||
2499             jinode->i_next_transaction == transaction)
2500                 return 0;
2501
2502         spin_lock(&journal->j_list_lock);
2503
2504         if (jinode->i_transaction == transaction ||
2505             jinode->i_next_transaction == transaction)
2506                 goto done;
2507
2508         /*
2509          * We only ever set this variable to 1 so the test is safe. Since
2510          * t_need_data_flush is likely to be set, we do the test to save some
2511          * cacheline bouncing
2512          */
2513         if (!transaction->t_need_data_flush)
2514                 transaction->t_need_data_flush = 1;
2515         /* On some different transaction's list - should be
2516          * the committing one */
2517         if (jinode->i_transaction) {
2518                 J_ASSERT(jinode->i_next_transaction == NULL);
2519                 J_ASSERT(jinode->i_transaction ==
2520                                         journal->j_committing_transaction);
2521                 jinode->i_next_transaction = transaction;
2522                 goto done;
2523         }
2524         /* Not on any transaction list... */
2525         J_ASSERT(!jinode->i_next_transaction);
2526         jinode->i_transaction = transaction;
2527         list_add(&jinode->i_list, &transaction->t_inode_list);
2528 done:
2529         spin_unlock(&journal->j_list_lock);
2530
2531         return 0;
2532 }
2533
2534 /*
2535  * File truncate and transaction commit interact with each other in a
2536  * non-trivial way.  If a transaction writing data block A is
2537  * committing, we cannot discard the data by truncate until we have
2538  * written them.  Otherwise if we crashed after the transaction with
2539  * write has committed but before the transaction with truncate has
2540  * committed, we could see stale data in block A.  This function is a
2541  * helper to solve this problem.  It starts writeout of the truncated
2542  * part in case it is in the committing transaction.
2543  *
2544  * Filesystem code must call this function when inode is journaled in
2545  * ordered mode before truncation happens and after the inode has been
2546  * placed on orphan list with the new inode size. The second condition
2547  * avoids the race that someone writes new data and we start
2548  * committing the transaction after this function has been called but
2549  * before a transaction for truncate is started (and furthermore it
2550  * allows us to optimize the case where the addition to orphan list
2551  * happens in the same transaction as write --- we don't have to write
2552  * any data in such case).
2553  */
2554 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2555                                         struct jbd2_inode *jinode,
2556                                         loff_t new_size)
2557 {
2558         transaction_t *inode_trans, *commit_trans;
2559         int ret = 0;
2560
2561         /* This is a quick check to avoid locking if not necessary */
2562         if (!jinode->i_transaction)
2563                 goto out;
2564         /* Locks are here just to force reading of recent values, it is
2565          * enough that the transaction was not committing before we started
2566          * a transaction adding the inode to orphan list */
2567         read_lock(&journal->j_state_lock);
2568         commit_trans = journal->j_committing_transaction;
2569         read_unlock(&journal->j_state_lock);
2570         spin_lock(&journal->j_list_lock);
2571         inode_trans = jinode->i_transaction;
2572         spin_unlock(&journal->j_list_lock);
2573         if (inode_trans == commit_trans) {
2574                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2575                         new_size, LLONG_MAX);
2576                 if (ret)
2577                         jbd2_journal_abort(journal, ret);
2578         }
2579 out:
2580         return ret;
2581 }