Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         jbd2_might_wait_for_commit(journal);
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         wait_event(journal->j_wait_reserved,
218                                    atomic_read(&journal->j_reserved_credits) + total <=
219                                    journal->j_max_transaction_buffers);
220                         return 1;
221                 }
222
223                 wait_transaction_locked(journal);
224                 return 1;
225         }
226
227         /*
228          * The commit code assumes that it can get enough log space
229          * without forcing a checkpoint.  This is *critical* for
230          * correctness: a checkpoint of a buffer which is also
231          * associated with a committing transaction creates a deadlock,
232          * so commit simply cannot force through checkpoints.
233          *
234          * We must therefore ensure the necessary space in the journal
235          * *before* starting to dirty potentially checkpointed buffers
236          * in the new transaction.
237          */
238         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239                 atomic_sub(total, &t->t_outstanding_credits);
240                 read_unlock(&journal->j_state_lock);
241                 write_lock(&journal->j_state_lock);
242                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
243                         __jbd2_log_wait_for_space(journal);
244                 write_unlock(&journal->j_state_lock);
245                 return 1;
246         }
247
248         /* No reservation? We are done... */
249         if (!rsv_blocks)
250                 return 0;
251
252         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
253         /* We allow at most half of a transaction to be reserved */
254         if (needed > journal->j_max_transaction_buffers / 2) {
255                 sub_reserved_credits(journal, rsv_blocks);
256                 atomic_sub(total, &t->t_outstanding_credits);
257                 read_unlock(&journal->j_state_lock);
258                 wait_event(journal->j_wait_reserved,
259                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
260                          <= journal->j_max_transaction_buffers / 2);
261                 return 1;
262         }
263         return 0;
264 }
265
266 /*
267  * start_this_handle: Given a handle, deal with any locking or stalling
268  * needed to make sure that there is enough journal space for the handle
269  * to begin.  Attach the handle to a transaction and set up the
270  * transaction's buffer credits.
271  */
272
273 static int start_this_handle(journal_t *journal, handle_t *handle,
274                              gfp_t gfp_mask)
275 {
276         transaction_t   *transaction, *new_transaction = NULL;
277         int             blocks = handle->h_buffer_credits;
278         int             rsv_blocks = 0;
279         unsigned long ts = jiffies;
280
281         if (handle->h_rsv_handle)
282                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283
284         /*
285          * Limit the number of reserved credits to 1/2 of maximum transaction
286          * size and limit the number of total credits to not exceed maximum
287          * transaction size per operation.
288          */
289         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291                 printk(KERN_ERR "JBD2: %s wants too many credits "
292                        "credits:%d rsv_credits:%d max:%d\n",
293                        current->comm, blocks, rsv_blocks,
294                        journal->j_max_transaction_buffers);
295                 WARN_ON(1);
296                 return -ENOSPC;
297         }
298
299 alloc_transaction:
300         if (!journal->j_running_transaction) {
301                 /*
302                  * If __GFP_FS is not present, then we may be being called from
303                  * inside the fs writeback layer, so we MUST NOT fail.
304                  */
305                 if ((gfp_mask & __GFP_FS) == 0)
306                         gfp_mask |= __GFP_NOFAIL;
307                 new_transaction = kmem_cache_zalloc(transaction_cache,
308                                                     gfp_mask);
309                 if (!new_transaction)
310                         return -ENOMEM;
311         }
312
313         jbd_debug(3, "New handle %p going live.\n", handle);
314
315         /*
316          * We need to hold j_state_lock until t_updates has been incremented,
317          * for proper journal barrier handling
318          */
319 repeat:
320         read_lock(&journal->j_state_lock);
321         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322         if (is_journal_aborted(journal) ||
323             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324                 read_unlock(&journal->j_state_lock);
325                 jbd2_journal_free_transaction(new_transaction);
326                 return -EROFS;
327         }
328
329         /*
330          * Wait on the journal's transaction barrier if necessary. Specifically
331          * we allow reserved handles to proceed because otherwise commit could
332          * deadlock on page writeback not being able to complete.
333          */
334         if (!handle->h_reserved && journal->j_barrier_count) {
335                 read_unlock(&journal->j_state_lock);
336                 wait_event(journal->j_wait_transaction_locked,
337                                 journal->j_barrier_count == 0);
338                 goto repeat;
339         }
340
341         if (!journal->j_running_transaction) {
342                 read_unlock(&journal->j_state_lock);
343                 if (!new_transaction)
344                         goto alloc_transaction;
345                 write_lock(&journal->j_state_lock);
346                 if (!journal->j_running_transaction &&
347                     (handle->h_reserved || !journal->j_barrier_count)) {
348                         jbd2_get_transaction(journal, new_transaction);
349                         new_transaction = NULL;
350                 }
351                 write_unlock(&journal->j_state_lock);
352                 goto repeat;
353         }
354
355         transaction = journal->j_running_transaction;
356
357         if (!handle->h_reserved) {
358                 /* We may have dropped j_state_lock - restart in that case */
359                 if (add_transaction_credits(journal, blocks, rsv_blocks))
360                         goto repeat;
361         } else {
362                 /*
363                  * We have handle reserved so we are allowed to join T_LOCKED
364                  * transaction and we don't have to check for transaction size
365                  * and journal space.
366                  */
367                 sub_reserved_credits(journal, blocks);
368                 handle->h_reserved = 0;
369         }
370
371         /* OK, account for the buffers that this operation expects to
372          * use and add the handle to the running transaction. 
373          */
374         update_t_max_wait(transaction, ts);
375         handle->h_transaction = transaction;
376         handle->h_requested_credits = blocks;
377         handle->h_start_jiffies = jiffies;
378         atomic_inc(&transaction->t_updates);
379         atomic_inc(&transaction->t_handle_count);
380         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381                   handle, blocks,
382                   atomic_read(&transaction->t_outstanding_credits),
383                   jbd2_log_space_left(journal));
384         read_unlock(&journal->j_state_lock);
385         current->journal_info = handle;
386
387         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
388         jbd2_journal_free_transaction(new_transaction);
389         return 0;
390 }
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         return handle;
402 }
403
404 /**
405  * handle_t *jbd2_journal_start() - Obtain a new handle.
406  * @journal: Journal to start transaction on.
407  * @nblocks: number of block buffer we might modify
408  *
409  * We make sure that the transaction can guarantee at least nblocks of
410  * modified buffers in the log.  We block until the log can guarantee
411  * that much space. Additionally, if rsv_blocks > 0, we also create another
412  * handle with rsv_blocks reserved blocks in the journal. This handle is
413  * is stored in h_rsv_handle. It is not attached to any particular transaction
414  * and thus doesn't block transaction commit. If the caller uses this reserved
415  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
416  * on the parent handle will dispose the reserved one. Reserved handle has to
417  * be converted to a normal handle using jbd2_journal_start_reserved() before
418  * it can be used.
419  *
420  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
421  * on failure.
422  */
423 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
424                               gfp_t gfp_mask, unsigned int type,
425                               unsigned int line_no)
426 {
427         handle_t *handle = journal_current_handle();
428         int err;
429
430         if (!journal)
431                 return ERR_PTR(-EROFS);
432
433         if (handle) {
434                 J_ASSERT(handle->h_transaction->t_journal == journal);
435                 handle->h_ref++;
436                 return handle;
437         }
438
439         handle = new_handle(nblocks);
440         if (!handle)
441                 return ERR_PTR(-ENOMEM);
442         if (rsv_blocks) {
443                 handle_t *rsv_handle;
444
445                 rsv_handle = new_handle(rsv_blocks);
446                 if (!rsv_handle) {
447                         jbd2_free_handle(handle);
448                         return ERR_PTR(-ENOMEM);
449                 }
450                 rsv_handle->h_reserved = 1;
451                 rsv_handle->h_journal = journal;
452                 handle->h_rsv_handle = rsv_handle;
453         }
454
455         err = start_this_handle(journal, handle, gfp_mask);
456         if (err < 0) {
457                 if (handle->h_rsv_handle)
458                         jbd2_free_handle(handle->h_rsv_handle);
459                 jbd2_free_handle(handle);
460                 return ERR_PTR(err);
461         }
462         handle->h_type = type;
463         handle->h_line_no = line_no;
464         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
465                                 handle->h_transaction->t_tid, type,
466                                 line_no, nblocks);
467         return handle;
468 }
469 EXPORT_SYMBOL(jbd2__journal_start);
470
471
472 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
473 {
474         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
475 }
476 EXPORT_SYMBOL(jbd2_journal_start);
477
478 void jbd2_journal_free_reserved(handle_t *handle)
479 {
480         journal_t *journal = handle->h_journal;
481
482         WARN_ON(!handle->h_reserved);
483         sub_reserved_credits(journal, handle->h_buffer_credits);
484         jbd2_free_handle(handle);
485 }
486 EXPORT_SYMBOL(jbd2_journal_free_reserved);
487
488 /**
489  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
490  * @handle: handle to start
491  *
492  * Start handle that has been previously reserved with jbd2_journal_reserve().
493  * This attaches @handle to the running transaction (or creates one if there's
494  * not transaction running). Unlike jbd2_journal_start() this function cannot
495  * block on journal commit, checkpointing, or similar stuff. It can block on
496  * memory allocation or frozen journal though.
497  *
498  * Return 0 on success, non-zero on error - handle is freed in that case.
499  */
500 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
501                                 unsigned int line_no)
502 {
503         journal_t *journal = handle->h_journal;
504         int ret = -EIO;
505
506         if (WARN_ON(!handle->h_reserved)) {
507                 /* Someone passed in normal handle? Just stop it. */
508                 jbd2_journal_stop(handle);
509                 return ret;
510         }
511         /*
512          * Usefulness of mixing of reserved and unreserved handles is
513          * questionable. So far nobody seems to need it so just error out.
514          */
515         if (WARN_ON(current->journal_info)) {
516                 jbd2_journal_free_reserved(handle);
517                 return ret;
518         }
519
520         handle->h_journal = NULL;
521         /*
522          * GFP_NOFS is here because callers are likely from writeback or
523          * similarly constrained call sites
524          */
525         ret = start_this_handle(journal, handle, GFP_NOFS);
526         if (ret < 0) {
527                 jbd2_journal_free_reserved(handle);
528                 return ret;
529         }
530         handle->h_type = type;
531         handle->h_line_no = line_no;
532         return 0;
533 }
534 EXPORT_SYMBOL(jbd2_journal_start_reserved);
535
536 /**
537  * int jbd2_journal_extend() - extend buffer credits.
538  * @handle:  handle to 'extend'
539  * @nblocks: nr blocks to try to extend by.
540  *
541  * Some transactions, such as large extends and truncates, can be done
542  * atomically all at once or in several stages.  The operation requests
543  * a credit for a number of buffer modifications in advance, but can
544  * extend its credit if it needs more.
545  *
546  * jbd2_journal_extend tries to give the running handle more buffer credits.
547  * It does not guarantee that allocation - this is a best-effort only.
548  * The calling process MUST be able to deal cleanly with a failure to
549  * extend here.
550  *
551  * Return 0 on success, non-zero on failure.
552  *
553  * return code < 0 implies an error
554  * return code > 0 implies normal transaction-full status.
555  */
556 int jbd2_journal_extend(handle_t *handle, int nblocks)
557 {
558         transaction_t *transaction = handle->h_transaction;
559         journal_t *journal;
560         int result;
561         int wanted;
562
563         if (is_handle_aborted(handle))
564                 return -EROFS;
565         journal = transaction->t_journal;
566
567         result = 1;
568
569         read_lock(&journal->j_state_lock);
570
571         /* Don't extend a locked-down transaction! */
572         if (transaction->t_state != T_RUNNING) {
573                 jbd_debug(3, "denied handle %p %d blocks: "
574                           "transaction not running\n", handle, nblocks);
575                 goto error_out;
576         }
577
578         spin_lock(&transaction->t_handle_lock);
579         wanted = atomic_add_return(nblocks,
580                                    &transaction->t_outstanding_credits);
581
582         if (wanted > journal->j_max_transaction_buffers) {
583                 jbd_debug(3, "denied handle %p %d blocks: "
584                           "transaction too large\n", handle, nblocks);
585                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
586                 goto unlock;
587         }
588
589         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
590             jbd2_log_space_left(journal)) {
591                 jbd_debug(3, "denied handle %p %d blocks: "
592                           "insufficient log space\n", handle, nblocks);
593                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
594                 goto unlock;
595         }
596
597         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
598                                  transaction->t_tid,
599                                  handle->h_type, handle->h_line_no,
600                                  handle->h_buffer_credits,
601                                  nblocks);
602
603         handle->h_buffer_credits += nblocks;
604         handle->h_requested_credits += nblocks;
605         result = 0;
606
607         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
608 unlock:
609         spin_unlock(&transaction->t_handle_lock);
610 error_out:
611         read_unlock(&journal->j_state_lock);
612         return result;
613 }
614
615
616 /**
617  * int jbd2_journal_restart() - restart a handle .
618  * @handle:  handle to restart
619  * @nblocks: nr credits requested
620  *
621  * Restart a handle for a multi-transaction filesystem
622  * operation.
623  *
624  * If the jbd2_journal_extend() call above fails to grant new buffer credits
625  * to a running handle, a call to jbd2_journal_restart will commit the
626  * handle's transaction so far and reattach the handle to a new
627  * transaction capable of guaranteeing the requested number of
628  * credits. We preserve reserved handle if there's any attached to the
629  * passed in handle.
630  */
631 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
632 {
633         transaction_t *transaction = handle->h_transaction;
634         journal_t *journal;
635         tid_t           tid;
636         int             need_to_start, ret;
637
638         /* If we've had an abort of any type, don't even think about
639          * actually doing the restart! */
640         if (is_handle_aborted(handle))
641                 return 0;
642         journal = transaction->t_journal;
643
644         /*
645          * First unlink the handle from its current transaction, and start the
646          * commit on that.
647          */
648         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
649         J_ASSERT(journal_current_handle() == handle);
650
651         read_lock(&journal->j_state_lock);
652         spin_lock(&transaction->t_handle_lock);
653         atomic_sub(handle->h_buffer_credits,
654                    &transaction->t_outstanding_credits);
655         if (handle->h_rsv_handle) {
656                 sub_reserved_credits(journal,
657                                      handle->h_rsv_handle->h_buffer_credits);
658         }
659         if (atomic_dec_and_test(&transaction->t_updates))
660                 wake_up(&journal->j_wait_updates);
661         tid = transaction->t_tid;
662         spin_unlock(&transaction->t_handle_lock);
663         handle->h_transaction = NULL;
664         current->journal_info = NULL;
665
666         jbd_debug(2, "restarting handle %p\n", handle);
667         need_to_start = !tid_geq(journal->j_commit_request, tid);
668         read_unlock(&journal->j_state_lock);
669         if (need_to_start)
670                 jbd2_log_start_commit(journal, tid);
671
672         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
673         handle->h_buffer_credits = nblocks;
674         ret = start_this_handle(journal, handle, gfp_mask);
675         return ret;
676 }
677 EXPORT_SYMBOL(jbd2__journal_restart);
678
679
680 int jbd2_journal_restart(handle_t *handle, int nblocks)
681 {
682         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
683 }
684 EXPORT_SYMBOL(jbd2_journal_restart);
685
686 /**
687  * void jbd2_journal_lock_updates () - establish a transaction barrier.
688  * @journal:  Journal to establish a barrier on.
689  *
690  * This locks out any further updates from being started, and blocks
691  * until all existing updates have completed, returning only once the
692  * journal is in a quiescent state with no updates running.
693  *
694  * The journal lock should not be held on entry.
695  */
696 void jbd2_journal_lock_updates(journal_t *journal)
697 {
698         DEFINE_WAIT(wait);
699
700         jbd2_might_wait_for_commit(journal);
701
702         write_lock(&journal->j_state_lock);
703         ++journal->j_barrier_count;
704
705         /* Wait until there are no reserved handles */
706         if (atomic_read(&journal->j_reserved_credits)) {
707                 write_unlock(&journal->j_state_lock);
708                 wait_event(journal->j_wait_reserved,
709                            atomic_read(&journal->j_reserved_credits) == 0);
710                 write_lock(&journal->j_state_lock);
711         }
712
713         /* Wait until there are no running updates */
714         while (1) {
715                 transaction_t *transaction = journal->j_running_transaction;
716
717                 if (!transaction)
718                         break;
719
720                 spin_lock(&transaction->t_handle_lock);
721                 prepare_to_wait(&journal->j_wait_updates, &wait,
722                                 TASK_UNINTERRUPTIBLE);
723                 if (!atomic_read(&transaction->t_updates)) {
724                         spin_unlock(&transaction->t_handle_lock);
725                         finish_wait(&journal->j_wait_updates, &wait);
726                         break;
727                 }
728                 spin_unlock(&transaction->t_handle_lock);
729                 write_unlock(&journal->j_state_lock);
730                 schedule();
731                 finish_wait(&journal->j_wait_updates, &wait);
732                 write_lock(&journal->j_state_lock);
733         }
734         write_unlock(&journal->j_state_lock);
735
736         /*
737          * We have now established a barrier against other normal updates, but
738          * we also need to barrier against other jbd2_journal_lock_updates() calls
739          * to make sure that we serialise special journal-locked operations
740          * too.
741          */
742         mutex_lock(&journal->j_barrier);
743 }
744
745 /**
746  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
747  * @journal:  Journal to release the barrier on.
748  *
749  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
750  *
751  * Should be called without the journal lock held.
752  */
753 void jbd2_journal_unlock_updates (journal_t *journal)
754 {
755         J_ASSERT(journal->j_barrier_count != 0);
756
757         mutex_unlock(&journal->j_barrier);
758         write_lock(&journal->j_state_lock);
759         --journal->j_barrier_count;
760         write_unlock(&journal->j_state_lock);
761         wake_up(&journal->j_wait_transaction_locked);
762 }
763
764 static void warn_dirty_buffer(struct buffer_head *bh)
765 {
766         printk(KERN_WARNING
767                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
768                "There's a risk of filesystem corruption in case of system "
769                "crash.\n",
770                bh->b_bdev, (unsigned long long)bh->b_blocknr);
771 }
772
773 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
774 static void jbd2_freeze_jh_data(struct journal_head *jh)
775 {
776         struct page *page;
777         int offset;
778         char *source;
779         struct buffer_head *bh = jh2bh(jh);
780
781         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
782         page = bh->b_page;
783         offset = offset_in_page(bh->b_data);
784         source = kmap_atomic(page);
785         /* Fire data frozen trigger just before we copy the data */
786         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
787         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
788         kunmap_atomic(source);
789
790         /*
791          * Now that the frozen data is saved off, we need to store any matching
792          * triggers.
793          */
794         jh->b_frozen_triggers = jh->b_triggers;
795 }
796
797 /*
798  * If the buffer is already part of the current transaction, then there
799  * is nothing we need to do.  If it is already part of a prior
800  * transaction which we are still committing to disk, then we need to
801  * make sure that we do not overwrite the old copy: we do copy-out to
802  * preserve the copy going to disk.  We also account the buffer against
803  * the handle's metadata buffer credits (unless the buffer is already
804  * part of the transaction, that is).
805  *
806  */
807 static int
808 do_get_write_access(handle_t *handle, struct journal_head *jh,
809                         int force_copy)
810 {
811         struct buffer_head *bh;
812         transaction_t *transaction = handle->h_transaction;
813         journal_t *journal;
814         int error;
815         char *frozen_buffer = NULL;
816         unsigned long start_lock, time_lock;
817
818         if (is_handle_aborted(handle))
819                 return -EROFS;
820         journal = transaction->t_journal;
821
822         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
823
824         JBUFFER_TRACE(jh, "entry");
825 repeat:
826         bh = jh2bh(jh);
827
828         /* @@@ Need to check for errors here at some point. */
829
830         start_lock = jiffies;
831         lock_buffer(bh);
832         jbd_lock_bh_state(bh);
833
834         /* If it takes too long to lock the buffer, trace it */
835         time_lock = jbd2_time_diff(start_lock, jiffies);
836         if (time_lock > HZ/10)
837                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
838                         jiffies_to_msecs(time_lock));
839
840         /* We now hold the buffer lock so it is safe to query the buffer
841          * state.  Is the buffer dirty?
842          *
843          * If so, there are two possibilities.  The buffer may be
844          * non-journaled, and undergoing a quite legitimate writeback.
845          * Otherwise, it is journaled, and we don't expect dirty buffers
846          * in that state (the buffers should be marked JBD_Dirty
847          * instead.)  So either the IO is being done under our own
848          * control and this is a bug, or it's a third party IO such as
849          * dump(8) (which may leave the buffer scheduled for read ---
850          * ie. locked but not dirty) or tune2fs (which may actually have
851          * the buffer dirtied, ugh.)  */
852
853         if (buffer_dirty(bh)) {
854                 /*
855                  * First question: is this buffer already part of the current
856                  * transaction or the existing committing transaction?
857                  */
858                 if (jh->b_transaction) {
859                         J_ASSERT_JH(jh,
860                                 jh->b_transaction == transaction ||
861                                 jh->b_transaction ==
862                                         journal->j_committing_transaction);
863                         if (jh->b_next_transaction)
864                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
865                                                         transaction);
866                         warn_dirty_buffer(bh);
867                 }
868                 /*
869                  * In any case we need to clean the dirty flag and we must
870                  * do it under the buffer lock to be sure we don't race
871                  * with running write-out.
872                  */
873                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
874                 clear_buffer_dirty(bh);
875                 set_buffer_jbddirty(bh);
876         }
877
878         unlock_buffer(bh);
879
880         error = -EROFS;
881         if (is_handle_aborted(handle)) {
882                 jbd_unlock_bh_state(bh);
883                 goto out;
884         }
885         error = 0;
886
887         /*
888          * The buffer is already part of this transaction if b_transaction or
889          * b_next_transaction points to it
890          */
891         if (jh->b_transaction == transaction ||
892             jh->b_next_transaction == transaction)
893                 goto done;
894
895         /*
896          * this is the first time this transaction is touching this buffer,
897          * reset the modified flag
898          */
899        jh->b_modified = 0;
900
901         /*
902          * If the buffer is not journaled right now, we need to make sure it
903          * doesn't get written to disk before the caller actually commits the
904          * new data
905          */
906         if (!jh->b_transaction) {
907                 JBUFFER_TRACE(jh, "no transaction");
908                 J_ASSERT_JH(jh, !jh->b_next_transaction);
909                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
910                 /*
911                  * Make sure all stores to jh (b_modified, b_frozen_data) are
912                  * visible before attaching it to the running transaction.
913                  * Paired with barrier in jbd2_write_access_granted()
914                  */
915                 smp_wmb();
916                 spin_lock(&journal->j_list_lock);
917                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
918                 spin_unlock(&journal->j_list_lock);
919                 goto done;
920         }
921         /*
922          * If there is already a copy-out version of this buffer, then we don't
923          * need to make another one
924          */
925         if (jh->b_frozen_data) {
926                 JBUFFER_TRACE(jh, "has frozen data");
927                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
928                 goto attach_next;
929         }
930
931         JBUFFER_TRACE(jh, "owned by older transaction");
932         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
933         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
934
935         /*
936          * There is one case we have to be very careful about.  If the
937          * committing transaction is currently writing this buffer out to disk
938          * and has NOT made a copy-out, then we cannot modify the buffer
939          * contents at all right now.  The essence of copy-out is that it is
940          * the extra copy, not the primary copy, which gets journaled.  If the
941          * primary copy is already going to disk then we cannot do copy-out
942          * here.
943          */
944         if (buffer_shadow(bh)) {
945                 JBUFFER_TRACE(jh, "on shadow: sleep");
946                 jbd_unlock_bh_state(bh);
947                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
948                 goto repeat;
949         }
950
951         /*
952          * Only do the copy if the currently-owning transaction still needs it.
953          * If buffer isn't on BJ_Metadata list, the committing transaction is
954          * past that stage (here we use the fact that BH_Shadow is set under
955          * bh_state lock together with refiling to BJ_Shadow list and at this
956          * point we know the buffer doesn't have BH_Shadow set).
957          *
958          * Subtle point, though: if this is a get_undo_access, then we will be
959          * relying on the frozen_data to contain the new value of the
960          * committed_data record after the transaction, so we HAVE to force the
961          * frozen_data copy in that case.
962          */
963         if (jh->b_jlist == BJ_Metadata || force_copy) {
964                 JBUFFER_TRACE(jh, "generate frozen data");
965                 if (!frozen_buffer) {
966                         JBUFFER_TRACE(jh, "allocate memory for buffer");
967                         jbd_unlock_bh_state(bh);
968                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
969                                                    GFP_NOFS | __GFP_NOFAIL);
970                         goto repeat;
971                 }
972                 jh->b_frozen_data = frozen_buffer;
973                 frozen_buffer = NULL;
974                 jbd2_freeze_jh_data(jh);
975         }
976 attach_next:
977         /*
978          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
979          * before attaching it to the running transaction. Paired with barrier
980          * in jbd2_write_access_granted()
981          */
982         smp_wmb();
983         jh->b_next_transaction = transaction;
984
985 done:
986         jbd_unlock_bh_state(bh);
987
988         /*
989          * If we are about to journal a buffer, then any revoke pending on it is
990          * no longer valid
991          */
992         jbd2_journal_cancel_revoke(handle, jh);
993
994 out:
995         if (unlikely(frozen_buffer))    /* It's usually NULL */
996                 jbd2_free(frozen_buffer, bh->b_size);
997
998         JBUFFER_TRACE(jh, "exit");
999         return error;
1000 }
1001
1002 /* Fast check whether buffer is already attached to the required transaction */
1003 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1004                                                         bool undo)
1005 {
1006         struct journal_head *jh;
1007         bool ret = false;
1008
1009         /* Dirty buffers require special handling... */
1010         if (buffer_dirty(bh))
1011                 return false;
1012
1013         /*
1014          * RCU protects us from dereferencing freed pages. So the checks we do
1015          * are guaranteed not to oops. However the jh slab object can get freed
1016          * & reallocated while we work with it. So we have to be careful. When
1017          * we see jh attached to the running transaction, we know it must stay
1018          * so until the transaction is committed. Thus jh won't be freed and
1019          * will be attached to the same bh while we run.  However it can
1020          * happen jh gets freed, reallocated, and attached to the transaction
1021          * just after we get pointer to it from bh. So we have to be careful
1022          * and recheck jh still belongs to our bh before we return success.
1023          */
1024         rcu_read_lock();
1025         if (!buffer_jbd(bh))
1026                 goto out;
1027         /* This should be bh2jh() but that doesn't work with inline functions */
1028         jh = READ_ONCE(bh->b_private);
1029         if (!jh)
1030                 goto out;
1031         /* For undo access buffer must have data copied */
1032         if (undo && !jh->b_committed_data)
1033                 goto out;
1034         if (jh->b_transaction != handle->h_transaction &&
1035             jh->b_next_transaction != handle->h_transaction)
1036                 goto out;
1037         /*
1038          * There are two reasons for the barrier here:
1039          * 1) Make sure to fetch b_bh after we did previous checks so that we
1040          * detect when jh went through free, realloc, attach to transaction
1041          * while we were checking. Paired with implicit barrier in that path.
1042          * 2) So that access to bh done after jbd2_write_access_granted()
1043          * doesn't get reordered and see inconsistent state of concurrent
1044          * do_get_write_access().
1045          */
1046         smp_mb();
1047         if (unlikely(jh->b_bh != bh))
1048                 goto out;
1049         ret = true;
1050 out:
1051         rcu_read_unlock();
1052         return ret;
1053 }
1054
1055 /**
1056  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1057  * @handle: transaction to add buffer modifications to
1058  * @bh:     bh to be used for metadata writes
1059  *
1060  * Returns an error code or 0 on success.
1061  *
1062  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1063  * because we're write()ing a buffer which is also part of a shared mapping.
1064  */
1065
1066 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1067 {
1068         struct journal_head *jh;
1069         int rc;
1070
1071         if (jbd2_write_access_granted(handle, bh, false))
1072                 return 0;
1073
1074         jh = jbd2_journal_add_journal_head(bh);
1075         /* We do not want to get caught playing with fields which the
1076          * log thread also manipulates.  Make sure that the buffer
1077          * completes any outstanding IO before proceeding. */
1078         rc = do_get_write_access(handle, jh, 0);
1079         jbd2_journal_put_journal_head(jh);
1080         return rc;
1081 }
1082
1083
1084 /*
1085  * When the user wants to journal a newly created buffer_head
1086  * (ie. getblk() returned a new buffer and we are going to populate it
1087  * manually rather than reading off disk), then we need to keep the
1088  * buffer_head locked until it has been completely filled with new
1089  * data.  In this case, we should be able to make the assertion that
1090  * the bh is not already part of an existing transaction.
1091  *
1092  * The buffer should already be locked by the caller by this point.
1093  * There is no lock ranking violation: it was a newly created,
1094  * unlocked buffer beforehand. */
1095
1096 /**
1097  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1098  * @handle: transaction to new buffer to
1099  * @bh: new buffer.
1100  *
1101  * Call this if you create a new bh.
1102  */
1103 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1104 {
1105         transaction_t *transaction = handle->h_transaction;
1106         journal_t *journal;
1107         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1108         int err;
1109
1110         jbd_debug(5, "journal_head %p\n", jh);
1111         err = -EROFS;
1112         if (is_handle_aborted(handle))
1113                 goto out;
1114         journal = transaction->t_journal;
1115         err = 0;
1116
1117         JBUFFER_TRACE(jh, "entry");
1118         /*
1119          * The buffer may already belong to this transaction due to pre-zeroing
1120          * in the filesystem's new_block code.  It may also be on the previous,
1121          * committing transaction's lists, but it HAS to be in Forget state in
1122          * that case: the transaction must have deleted the buffer for it to be
1123          * reused here.
1124          */
1125         jbd_lock_bh_state(bh);
1126         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1127                 jh->b_transaction == NULL ||
1128                 (jh->b_transaction == journal->j_committing_transaction &&
1129                           jh->b_jlist == BJ_Forget)));
1130
1131         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1132         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1133
1134         if (jh->b_transaction == NULL) {
1135                 /*
1136                  * Previous jbd2_journal_forget() could have left the buffer
1137                  * with jbddirty bit set because it was being committed. When
1138                  * the commit finished, we've filed the buffer for
1139                  * checkpointing and marked it dirty. Now we are reallocating
1140                  * the buffer so the transaction freeing it must have
1141                  * committed and so it's safe to clear the dirty bit.
1142                  */
1143                 clear_buffer_dirty(jh2bh(jh));
1144                 /* first access by this transaction */
1145                 jh->b_modified = 0;
1146
1147                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1148                 spin_lock(&journal->j_list_lock);
1149                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1150         } else if (jh->b_transaction == journal->j_committing_transaction) {
1151                 /* first access by this transaction */
1152                 jh->b_modified = 0;
1153
1154                 JBUFFER_TRACE(jh, "set next transaction");
1155                 spin_lock(&journal->j_list_lock);
1156                 jh->b_next_transaction = transaction;
1157         }
1158         spin_unlock(&journal->j_list_lock);
1159         jbd_unlock_bh_state(bh);
1160
1161         /*
1162          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1163          * blocks which contain freed but then revoked metadata.  We need
1164          * to cancel the revoke in case we end up freeing it yet again
1165          * and the reallocating as data - this would cause a second revoke,
1166          * which hits an assertion error.
1167          */
1168         JBUFFER_TRACE(jh, "cancelling revoke");
1169         jbd2_journal_cancel_revoke(handle, jh);
1170 out:
1171         jbd2_journal_put_journal_head(jh);
1172         return err;
1173 }
1174
1175 /**
1176  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1177  *     non-rewindable consequences
1178  * @handle: transaction
1179  * @bh: buffer to undo
1180  *
1181  * Sometimes there is a need to distinguish between metadata which has
1182  * been committed to disk and that which has not.  The ext3fs code uses
1183  * this for freeing and allocating space, we have to make sure that we
1184  * do not reuse freed space until the deallocation has been committed,
1185  * since if we overwrote that space we would make the delete
1186  * un-rewindable in case of a crash.
1187  *
1188  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1189  * buffer for parts of non-rewindable operations such as delete
1190  * operations on the bitmaps.  The journaling code must keep a copy of
1191  * the buffer's contents prior to the undo_access call until such time
1192  * as we know that the buffer has definitely been committed to disk.
1193  *
1194  * We never need to know which transaction the committed data is part
1195  * of, buffers touched here are guaranteed to be dirtied later and so
1196  * will be committed to a new transaction in due course, at which point
1197  * we can discard the old committed data pointer.
1198  *
1199  * Returns error number or 0 on success.
1200  */
1201 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1202 {
1203         int err;
1204         struct journal_head *jh;
1205         char *committed_data = NULL;
1206
1207         JBUFFER_TRACE(jh, "entry");
1208         if (jbd2_write_access_granted(handle, bh, true))
1209                 return 0;
1210
1211         jh = jbd2_journal_add_journal_head(bh);
1212         /*
1213          * Do this first --- it can drop the journal lock, so we want to
1214          * make sure that obtaining the committed_data is done
1215          * atomically wrt. completion of any outstanding commits.
1216          */
1217         err = do_get_write_access(handle, jh, 1);
1218         if (err)
1219                 goto out;
1220
1221 repeat:
1222         if (!jh->b_committed_data)
1223                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1224                                             GFP_NOFS|__GFP_NOFAIL);
1225
1226         jbd_lock_bh_state(bh);
1227         if (!jh->b_committed_data) {
1228                 /* Copy out the current buffer contents into the
1229                  * preserved, committed copy. */
1230                 JBUFFER_TRACE(jh, "generate b_committed data");
1231                 if (!committed_data) {
1232                         jbd_unlock_bh_state(bh);
1233                         goto repeat;
1234                 }
1235
1236                 jh->b_committed_data = committed_data;
1237                 committed_data = NULL;
1238                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1239         }
1240         jbd_unlock_bh_state(bh);
1241 out:
1242         jbd2_journal_put_journal_head(jh);
1243         if (unlikely(committed_data))
1244                 jbd2_free(committed_data, bh->b_size);
1245         return err;
1246 }
1247
1248 /**
1249  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1250  * @bh: buffer to trigger on
1251  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1252  *
1253  * Set any triggers on this journal_head.  This is always safe, because
1254  * triggers for a committing buffer will be saved off, and triggers for
1255  * a running transaction will match the buffer in that transaction.
1256  *
1257  * Call with NULL to clear the triggers.
1258  */
1259 void jbd2_journal_set_triggers(struct buffer_head *bh,
1260                                struct jbd2_buffer_trigger_type *type)
1261 {
1262         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1263
1264         if (WARN_ON(!jh))
1265                 return;
1266         jh->b_triggers = type;
1267         jbd2_journal_put_journal_head(jh);
1268 }
1269
1270 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1271                                 struct jbd2_buffer_trigger_type *triggers)
1272 {
1273         struct buffer_head *bh = jh2bh(jh);
1274
1275         if (!triggers || !triggers->t_frozen)
1276                 return;
1277
1278         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1279 }
1280
1281 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1282                                struct jbd2_buffer_trigger_type *triggers)
1283 {
1284         if (!triggers || !triggers->t_abort)
1285                 return;
1286
1287         triggers->t_abort(triggers, jh2bh(jh));
1288 }
1289
1290 /**
1291  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1292  * @handle: transaction to add buffer to.
1293  * @bh: buffer to mark
1294  *
1295  * mark dirty metadata which needs to be journaled as part of the current
1296  * transaction.
1297  *
1298  * The buffer must have previously had jbd2_journal_get_write_access()
1299  * called so that it has a valid journal_head attached to the buffer
1300  * head.
1301  *
1302  * The buffer is placed on the transaction's metadata list and is marked
1303  * as belonging to the transaction.
1304  *
1305  * Returns error number or 0 on success.
1306  *
1307  * Special care needs to be taken if the buffer already belongs to the
1308  * current committing transaction (in which case we should have frozen
1309  * data present for that commit).  In that case, we don't relink the
1310  * buffer: that only gets done when the old transaction finally
1311  * completes its commit.
1312  */
1313 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1314 {
1315         transaction_t *transaction = handle->h_transaction;
1316         journal_t *journal;
1317         struct journal_head *jh;
1318         int ret = 0;
1319
1320         if (is_handle_aborted(handle))
1321                 return -EROFS;
1322         if (!buffer_jbd(bh)) {
1323                 ret = -EUCLEAN;
1324                 goto out;
1325         }
1326         /*
1327          * We don't grab jh reference here since the buffer must be part
1328          * of the running transaction.
1329          */
1330         jh = bh2jh(bh);
1331         /*
1332          * This and the following assertions are unreliable since we may see jh
1333          * in inconsistent state unless we grab bh_state lock. But this is
1334          * crucial to catch bugs so let's do a reliable check until the
1335          * lockless handling is fully proven.
1336          */
1337         if (jh->b_transaction != transaction &&
1338             jh->b_next_transaction != transaction) {
1339                 jbd_lock_bh_state(bh);
1340                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1341                                 jh->b_next_transaction == transaction);
1342                 jbd_unlock_bh_state(bh);
1343         }
1344         if (jh->b_modified == 1) {
1345                 /* If it's in our transaction it must be in BJ_Metadata list. */
1346                 if (jh->b_transaction == transaction &&
1347                     jh->b_jlist != BJ_Metadata) {
1348                         jbd_lock_bh_state(bh);
1349                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1350                                         jh->b_jlist == BJ_Metadata);
1351                         jbd_unlock_bh_state(bh);
1352                 }
1353                 goto out;
1354         }
1355
1356         journal = transaction->t_journal;
1357         jbd_debug(5, "journal_head %p\n", jh);
1358         JBUFFER_TRACE(jh, "entry");
1359
1360         jbd_lock_bh_state(bh);
1361
1362         if (jh->b_modified == 0) {
1363                 /*
1364                  * This buffer's got modified and becoming part
1365                  * of the transaction. This needs to be done
1366                  * once a transaction -bzzz
1367                  */
1368                 jh->b_modified = 1;
1369                 if (handle->h_buffer_credits <= 0) {
1370                         ret = -ENOSPC;
1371                         goto out_unlock_bh;
1372                 }
1373                 handle->h_buffer_credits--;
1374         }
1375
1376         /*
1377          * fastpath, to avoid expensive locking.  If this buffer is already
1378          * on the running transaction's metadata list there is nothing to do.
1379          * Nobody can take it off again because there is a handle open.
1380          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1381          * result in this test being false, so we go in and take the locks.
1382          */
1383         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1384                 JBUFFER_TRACE(jh, "fastpath");
1385                 if (unlikely(jh->b_transaction !=
1386                              journal->j_running_transaction)) {
1387                         printk(KERN_ERR "JBD2: %s: "
1388                                "jh->b_transaction (%llu, %p, %u) != "
1389                                "journal->j_running_transaction (%p, %u)\n",
1390                                journal->j_devname,
1391                                (unsigned long long) bh->b_blocknr,
1392                                jh->b_transaction,
1393                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1394                                journal->j_running_transaction,
1395                                journal->j_running_transaction ?
1396                                journal->j_running_transaction->t_tid : 0);
1397                         ret = -EINVAL;
1398                 }
1399                 goto out_unlock_bh;
1400         }
1401
1402         set_buffer_jbddirty(bh);
1403
1404         /*
1405          * Metadata already on the current transaction list doesn't
1406          * need to be filed.  Metadata on another transaction's list must
1407          * be committing, and will be refiled once the commit completes:
1408          * leave it alone for now.
1409          */
1410         if (jh->b_transaction != transaction) {
1411                 JBUFFER_TRACE(jh, "already on other transaction");
1412                 if (unlikely(((jh->b_transaction !=
1413                                journal->j_committing_transaction)) ||
1414                              (jh->b_next_transaction != transaction))) {
1415                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1416                                "bad jh for block %llu: "
1417                                "transaction (%p, %u), "
1418                                "jh->b_transaction (%p, %u), "
1419                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1420                                journal->j_devname,
1421                                (unsigned long long) bh->b_blocknr,
1422                                transaction, transaction->t_tid,
1423                                jh->b_transaction,
1424                                jh->b_transaction ?
1425                                jh->b_transaction->t_tid : 0,
1426                                jh->b_next_transaction,
1427                                jh->b_next_transaction ?
1428                                jh->b_next_transaction->t_tid : 0,
1429                                jh->b_jlist);
1430                         WARN_ON(1);
1431                         ret = -EINVAL;
1432                 }
1433                 /* And this case is illegal: we can't reuse another
1434                  * transaction's data buffer, ever. */
1435                 goto out_unlock_bh;
1436         }
1437
1438         /* That test should have eliminated the following case: */
1439         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1440
1441         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1442         spin_lock(&journal->j_list_lock);
1443         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1444         spin_unlock(&journal->j_list_lock);
1445 out_unlock_bh:
1446         jbd_unlock_bh_state(bh);
1447 out:
1448         JBUFFER_TRACE(jh, "exit");
1449         return ret;
1450 }
1451
1452 /**
1453  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1454  * @handle: transaction handle
1455  * @bh:     bh to 'forget'
1456  *
1457  * We can only do the bforget if there are no commits pending against the
1458  * buffer.  If the buffer is dirty in the current running transaction we
1459  * can safely unlink it.
1460  *
1461  * bh may not be a journalled buffer at all - it may be a non-JBD
1462  * buffer which came off the hashtable.  Check for this.
1463  *
1464  * Decrements bh->b_count by one.
1465  *
1466  * Allow this call even if the handle has aborted --- it may be part of
1467  * the caller's cleanup after an abort.
1468  */
1469 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1470 {
1471         transaction_t *transaction = handle->h_transaction;
1472         journal_t *journal;
1473         struct journal_head *jh;
1474         int drop_reserve = 0;
1475         int err = 0;
1476         int was_modified = 0;
1477
1478         if (is_handle_aborted(handle))
1479                 return -EROFS;
1480         journal = transaction->t_journal;
1481
1482         BUFFER_TRACE(bh, "entry");
1483
1484         jbd_lock_bh_state(bh);
1485
1486         if (!buffer_jbd(bh))
1487                 goto not_jbd;
1488         jh = bh2jh(bh);
1489
1490         /* Critical error: attempting to delete a bitmap buffer, maybe?
1491          * Don't do any jbd operations, and return an error. */
1492         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1493                          "inconsistent data on disk")) {
1494                 err = -EIO;
1495                 goto not_jbd;
1496         }
1497
1498         /* keep track of whether or not this transaction modified us */
1499         was_modified = jh->b_modified;
1500
1501         /*
1502          * The buffer's going from the transaction, we must drop
1503          * all references -bzzz
1504          */
1505         jh->b_modified = 0;
1506
1507         if (jh->b_transaction == transaction) {
1508                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1509
1510                 /* If we are forgetting a buffer which is already part
1511                  * of this transaction, then we can just drop it from
1512                  * the transaction immediately. */
1513                 clear_buffer_dirty(bh);
1514                 clear_buffer_jbddirty(bh);
1515
1516                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1517
1518                 /*
1519                  * we only want to drop a reference if this transaction
1520                  * modified the buffer
1521                  */
1522                 if (was_modified)
1523                         drop_reserve = 1;
1524
1525                 /*
1526                  * We are no longer going to journal this buffer.
1527                  * However, the commit of this transaction is still
1528                  * important to the buffer: the delete that we are now
1529                  * processing might obsolete an old log entry, so by
1530                  * committing, we can satisfy the buffer's checkpoint.
1531                  *
1532                  * So, if we have a checkpoint on the buffer, we should
1533                  * now refile the buffer on our BJ_Forget list so that
1534                  * we know to remove the checkpoint after we commit.
1535                  */
1536
1537                 spin_lock(&journal->j_list_lock);
1538                 if (jh->b_cp_transaction) {
1539                         __jbd2_journal_temp_unlink_buffer(jh);
1540                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1541                 } else {
1542                         __jbd2_journal_unfile_buffer(jh);
1543                         if (!buffer_jbd(bh)) {
1544                                 spin_unlock(&journal->j_list_lock);
1545                                 jbd_unlock_bh_state(bh);
1546                                 __bforget(bh);
1547                                 goto drop;
1548                         }
1549                 }
1550                 spin_unlock(&journal->j_list_lock);
1551         } else if (jh->b_transaction) {
1552                 J_ASSERT_JH(jh, (jh->b_transaction ==
1553                                  journal->j_committing_transaction));
1554                 /* However, if the buffer is still owned by a prior
1555                  * (committing) transaction, we can't drop it yet... */
1556                 JBUFFER_TRACE(jh, "belongs to older transaction");
1557                 /* ... but we CAN drop it from the new transaction if we
1558                  * have also modified it since the original commit. */
1559
1560                 if (jh->b_next_transaction) {
1561                         J_ASSERT(jh->b_next_transaction == transaction);
1562                         spin_lock(&journal->j_list_lock);
1563                         jh->b_next_transaction = NULL;
1564                         spin_unlock(&journal->j_list_lock);
1565
1566                         /*
1567                          * only drop a reference if this transaction modified
1568                          * the buffer
1569                          */
1570                         if (was_modified)
1571                                 drop_reserve = 1;
1572                 }
1573         }
1574
1575 not_jbd:
1576         jbd_unlock_bh_state(bh);
1577         __brelse(bh);
1578 drop:
1579         if (drop_reserve) {
1580                 /* no need to reserve log space for this block -bzzz */
1581                 handle->h_buffer_credits++;
1582         }
1583         return err;
1584 }
1585
1586 /**
1587  * int jbd2_journal_stop() - complete a transaction
1588  * @handle: transaction to complete.
1589  *
1590  * All done for a particular handle.
1591  *
1592  * There is not much action needed here.  We just return any remaining
1593  * buffer credits to the transaction and remove the handle.  The only
1594  * complication is that we need to start a commit operation if the
1595  * filesystem is marked for synchronous update.
1596  *
1597  * jbd2_journal_stop itself will not usually return an error, but it may
1598  * do so in unusual circumstances.  In particular, expect it to
1599  * return -EIO if a jbd2_journal_abort has been executed since the
1600  * transaction began.
1601  */
1602 int jbd2_journal_stop(handle_t *handle)
1603 {
1604         transaction_t *transaction = handle->h_transaction;
1605         journal_t *journal;
1606         int err = 0, wait_for_commit = 0;
1607         tid_t tid;
1608         pid_t pid;
1609
1610         if (!transaction) {
1611                 /*
1612                  * Handle is already detached from the transaction so
1613                  * there is nothing to do other than decrease a refcount,
1614                  * or free the handle if refcount drops to zero
1615                  */
1616                 if (--handle->h_ref > 0) {
1617                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1618                                                          handle->h_ref);
1619                         return err;
1620                 } else {
1621                         if (handle->h_rsv_handle)
1622                                 jbd2_free_handle(handle->h_rsv_handle);
1623                         goto free_and_exit;
1624                 }
1625         }
1626         journal = transaction->t_journal;
1627
1628         J_ASSERT(journal_current_handle() == handle);
1629
1630         if (is_handle_aborted(handle))
1631                 err = -EIO;
1632         else
1633                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1634
1635         if (--handle->h_ref > 0) {
1636                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1637                           handle->h_ref);
1638                 return err;
1639         }
1640
1641         jbd_debug(4, "Handle %p going down\n", handle);
1642         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1643                                 transaction->t_tid,
1644                                 handle->h_type, handle->h_line_no,
1645                                 jiffies - handle->h_start_jiffies,
1646                                 handle->h_sync, handle->h_requested_credits,
1647                                 (handle->h_requested_credits -
1648                                  handle->h_buffer_credits));
1649
1650         /*
1651          * Implement synchronous transaction batching.  If the handle
1652          * was synchronous, don't force a commit immediately.  Let's
1653          * yield and let another thread piggyback onto this
1654          * transaction.  Keep doing that while new threads continue to
1655          * arrive.  It doesn't cost much - we're about to run a commit
1656          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1657          * operations by 30x or more...
1658          *
1659          * We try and optimize the sleep time against what the
1660          * underlying disk can do, instead of having a static sleep
1661          * time.  This is useful for the case where our storage is so
1662          * fast that it is more optimal to go ahead and force a flush
1663          * and wait for the transaction to be committed than it is to
1664          * wait for an arbitrary amount of time for new writers to
1665          * join the transaction.  We achieve this by measuring how
1666          * long it takes to commit a transaction, and compare it with
1667          * how long this transaction has been running, and if run time
1668          * < commit time then we sleep for the delta and commit.  This
1669          * greatly helps super fast disks that would see slowdowns as
1670          * more threads started doing fsyncs.
1671          *
1672          * But don't do this if this process was the most recent one
1673          * to perform a synchronous write.  We do this to detect the
1674          * case where a single process is doing a stream of sync
1675          * writes.  No point in waiting for joiners in that case.
1676          *
1677          * Setting max_batch_time to 0 disables this completely.
1678          */
1679         pid = current->pid;
1680         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1681             journal->j_max_batch_time) {
1682                 u64 commit_time, trans_time;
1683
1684                 journal->j_last_sync_writer = pid;
1685
1686                 read_lock(&journal->j_state_lock);
1687                 commit_time = journal->j_average_commit_time;
1688                 read_unlock(&journal->j_state_lock);
1689
1690                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1691                                                    transaction->t_start_time));
1692
1693                 commit_time = max_t(u64, commit_time,
1694                                     1000*journal->j_min_batch_time);
1695                 commit_time = min_t(u64, commit_time,
1696                                     1000*journal->j_max_batch_time);
1697
1698                 if (trans_time < commit_time) {
1699                         ktime_t expires = ktime_add_ns(ktime_get(),
1700                                                        commit_time);
1701                         set_current_state(TASK_UNINTERRUPTIBLE);
1702                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1703                 }
1704         }
1705
1706         if (handle->h_sync)
1707                 transaction->t_synchronous_commit = 1;
1708         current->journal_info = NULL;
1709         atomic_sub(handle->h_buffer_credits,
1710                    &transaction->t_outstanding_credits);
1711
1712         /*
1713          * If the handle is marked SYNC, we need to set another commit
1714          * going!  We also want to force a commit if the current
1715          * transaction is occupying too much of the log, or if the
1716          * transaction is too old now.
1717          */
1718         if (handle->h_sync ||
1719             (atomic_read(&transaction->t_outstanding_credits) >
1720              journal->j_max_transaction_buffers) ||
1721             time_after_eq(jiffies, transaction->t_expires)) {
1722                 /* Do this even for aborted journals: an abort still
1723                  * completes the commit thread, it just doesn't write
1724                  * anything to disk. */
1725
1726                 jbd_debug(2, "transaction too old, requesting commit for "
1727                                         "handle %p\n", handle);
1728                 /* This is non-blocking */
1729                 jbd2_log_start_commit(journal, transaction->t_tid);
1730
1731                 /*
1732                  * Special case: JBD2_SYNC synchronous updates require us
1733                  * to wait for the commit to complete.
1734                  */
1735                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1736                         wait_for_commit = 1;
1737         }
1738
1739         /*
1740          * Once we drop t_updates, if it goes to zero the transaction
1741          * could start committing on us and eventually disappear.  So
1742          * once we do this, we must not dereference transaction
1743          * pointer again.
1744          */
1745         tid = transaction->t_tid;
1746         if (atomic_dec_and_test(&transaction->t_updates)) {
1747                 wake_up(&journal->j_wait_updates);
1748                 if (journal->j_barrier_count)
1749                         wake_up(&journal->j_wait_transaction_locked);
1750         }
1751
1752         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1753
1754         if (wait_for_commit)
1755                 err = jbd2_log_wait_commit(journal, tid);
1756
1757         if (handle->h_rsv_handle)
1758                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1759 free_and_exit:
1760         jbd2_free_handle(handle);
1761         return err;
1762 }
1763
1764 /*
1765  *
1766  * List management code snippets: various functions for manipulating the
1767  * transaction buffer lists.
1768  *
1769  */
1770
1771 /*
1772  * Append a buffer to a transaction list, given the transaction's list head
1773  * pointer.
1774  *
1775  * j_list_lock is held.
1776  *
1777  * jbd_lock_bh_state(jh2bh(jh)) is held.
1778  */
1779
1780 static inline void
1781 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1782 {
1783         if (!*list) {
1784                 jh->b_tnext = jh->b_tprev = jh;
1785                 *list = jh;
1786         } else {
1787                 /* Insert at the tail of the list to preserve order */
1788                 struct journal_head *first = *list, *last = first->b_tprev;
1789                 jh->b_tprev = last;
1790                 jh->b_tnext = first;
1791                 last->b_tnext = first->b_tprev = jh;
1792         }
1793 }
1794
1795 /*
1796  * Remove a buffer from a transaction list, given the transaction's list
1797  * head pointer.
1798  *
1799  * Called with j_list_lock held, and the journal may not be locked.
1800  *
1801  * jbd_lock_bh_state(jh2bh(jh)) is held.
1802  */
1803
1804 static inline void
1805 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1806 {
1807         if (*list == jh) {
1808                 *list = jh->b_tnext;
1809                 if (*list == jh)
1810                         *list = NULL;
1811         }
1812         jh->b_tprev->b_tnext = jh->b_tnext;
1813         jh->b_tnext->b_tprev = jh->b_tprev;
1814 }
1815
1816 /*
1817  * Remove a buffer from the appropriate transaction list.
1818  *
1819  * Note that this function can *change* the value of
1820  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1821  * t_reserved_list.  If the caller is holding onto a copy of one of these
1822  * pointers, it could go bad.  Generally the caller needs to re-read the
1823  * pointer from the transaction_t.
1824  *
1825  * Called under j_list_lock.
1826  */
1827 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1828 {
1829         struct journal_head **list = NULL;
1830         transaction_t *transaction;
1831         struct buffer_head *bh = jh2bh(jh);
1832
1833         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1834         transaction = jh->b_transaction;
1835         if (transaction)
1836                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1837
1838         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1839         if (jh->b_jlist != BJ_None)
1840                 J_ASSERT_JH(jh, transaction != NULL);
1841
1842         switch (jh->b_jlist) {
1843         case BJ_None:
1844                 return;
1845         case BJ_Metadata:
1846                 transaction->t_nr_buffers--;
1847                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1848                 list = &transaction->t_buffers;
1849                 break;
1850         case BJ_Forget:
1851                 list = &transaction->t_forget;
1852                 break;
1853         case BJ_Shadow:
1854                 list = &transaction->t_shadow_list;
1855                 break;
1856         case BJ_Reserved:
1857                 list = &transaction->t_reserved_list;
1858                 break;
1859         }
1860
1861         __blist_del_buffer(list, jh);
1862         jh->b_jlist = BJ_None;
1863         if (test_clear_buffer_jbddirty(bh))
1864                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1865 }
1866
1867 /*
1868  * Remove buffer from all transactions.
1869  *
1870  * Called with bh_state lock and j_list_lock
1871  *
1872  * jh and bh may be already freed when this function returns.
1873  */
1874 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1875 {
1876         __jbd2_journal_temp_unlink_buffer(jh);
1877         jh->b_transaction = NULL;
1878         jbd2_journal_put_journal_head(jh);
1879 }
1880
1881 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1882 {
1883         struct buffer_head *bh = jh2bh(jh);
1884
1885         /* Get reference so that buffer cannot be freed before we unlock it */
1886         get_bh(bh);
1887         jbd_lock_bh_state(bh);
1888         spin_lock(&journal->j_list_lock);
1889         __jbd2_journal_unfile_buffer(jh);
1890         spin_unlock(&journal->j_list_lock);
1891         jbd_unlock_bh_state(bh);
1892         __brelse(bh);
1893 }
1894
1895 /*
1896  * Called from jbd2_journal_try_to_free_buffers().
1897  *
1898  * Called under jbd_lock_bh_state(bh)
1899  */
1900 static void
1901 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1902 {
1903         struct journal_head *jh;
1904
1905         jh = bh2jh(bh);
1906
1907         if (buffer_locked(bh) || buffer_dirty(bh))
1908                 goto out;
1909
1910         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1911                 goto out;
1912
1913         spin_lock(&journal->j_list_lock);
1914         if (jh->b_cp_transaction != NULL) {
1915                 /* written-back checkpointed metadata buffer */
1916                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1917                 __jbd2_journal_remove_checkpoint(jh);
1918         }
1919         spin_unlock(&journal->j_list_lock);
1920 out:
1921         return;
1922 }
1923
1924 /**
1925  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1926  * @journal: journal for operation
1927  * @page: to try and free
1928  * @gfp_mask: we use the mask to detect how hard should we try to release
1929  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1930  * code to release the buffers.
1931  *
1932  *
1933  * For all the buffers on this page,
1934  * if they are fully written out ordered data, move them onto BUF_CLEAN
1935  * so try_to_free_buffers() can reap them.
1936  *
1937  * This function returns non-zero if we wish try_to_free_buffers()
1938  * to be called. We do this if the page is releasable by try_to_free_buffers().
1939  * We also do it if the page has locked or dirty buffers and the caller wants
1940  * us to perform sync or async writeout.
1941  *
1942  * This complicates JBD locking somewhat.  We aren't protected by the
1943  * BKL here.  We wish to remove the buffer from its committing or
1944  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1945  *
1946  * This may *change* the value of transaction_t->t_datalist, so anyone
1947  * who looks at t_datalist needs to lock against this function.
1948  *
1949  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1950  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1951  * will come out of the lock with the buffer dirty, which makes it
1952  * ineligible for release here.
1953  *
1954  * Who else is affected by this?  hmm...  Really the only contender
1955  * is do_get_write_access() - it could be looking at the buffer while
1956  * journal_try_to_free_buffer() is changing its state.  But that
1957  * cannot happen because we never reallocate freed data as metadata
1958  * while the data is part of a transaction.  Yes?
1959  *
1960  * Return 0 on failure, 1 on success
1961  */
1962 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1963                                 struct page *page, gfp_t gfp_mask)
1964 {
1965         struct buffer_head *head;
1966         struct buffer_head *bh;
1967         int ret = 0;
1968
1969         J_ASSERT(PageLocked(page));
1970
1971         head = page_buffers(page);
1972         bh = head;
1973         do {
1974                 struct journal_head *jh;
1975
1976                 /*
1977                  * We take our own ref against the journal_head here to avoid
1978                  * having to add tons of locking around each instance of
1979                  * jbd2_journal_put_journal_head().
1980                  */
1981                 jh = jbd2_journal_grab_journal_head(bh);
1982                 if (!jh)
1983                         continue;
1984
1985                 jbd_lock_bh_state(bh);
1986                 __journal_try_to_free_buffer(journal, bh);
1987                 jbd2_journal_put_journal_head(jh);
1988                 jbd_unlock_bh_state(bh);
1989                 if (buffer_jbd(bh))
1990                         goto busy;
1991         } while ((bh = bh->b_this_page) != head);
1992
1993         ret = try_to_free_buffers(page);
1994
1995 busy:
1996         return ret;
1997 }
1998
1999 /*
2000  * This buffer is no longer needed.  If it is on an older transaction's
2001  * checkpoint list we need to record it on this transaction's forget list
2002  * to pin this buffer (and hence its checkpointing transaction) down until
2003  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2004  * release it.
2005  * Returns non-zero if JBD no longer has an interest in the buffer.
2006  *
2007  * Called under j_list_lock.
2008  *
2009  * Called under jbd_lock_bh_state(bh).
2010  */
2011 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2012 {
2013         int may_free = 1;
2014         struct buffer_head *bh = jh2bh(jh);
2015
2016         if (jh->b_cp_transaction) {
2017                 JBUFFER_TRACE(jh, "on running+cp transaction");
2018                 __jbd2_journal_temp_unlink_buffer(jh);
2019                 /*
2020                  * We don't want to write the buffer anymore, clear the
2021                  * bit so that we don't confuse checks in
2022                  * __journal_file_buffer
2023                  */
2024                 clear_buffer_dirty(bh);
2025                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2026                 may_free = 0;
2027         } else {
2028                 JBUFFER_TRACE(jh, "on running transaction");
2029                 __jbd2_journal_unfile_buffer(jh);
2030         }
2031         return may_free;
2032 }
2033
2034 /*
2035  * jbd2_journal_invalidatepage
2036  *
2037  * This code is tricky.  It has a number of cases to deal with.
2038  *
2039  * There are two invariants which this code relies on:
2040  *
2041  * i_size must be updated on disk before we start calling invalidatepage on the
2042  * data.
2043  *
2044  *  This is done in ext3 by defining an ext3_setattr method which
2045  *  updates i_size before truncate gets going.  By maintaining this
2046  *  invariant, we can be sure that it is safe to throw away any buffers
2047  *  attached to the current transaction: once the transaction commits,
2048  *  we know that the data will not be needed.
2049  *
2050  *  Note however that we can *not* throw away data belonging to the
2051  *  previous, committing transaction!
2052  *
2053  * Any disk blocks which *are* part of the previous, committing
2054  * transaction (and which therefore cannot be discarded immediately) are
2055  * not going to be reused in the new running transaction
2056  *
2057  *  The bitmap committed_data images guarantee this: any block which is
2058  *  allocated in one transaction and removed in the next will be marked
2059  *  as in-use in the committed_data bitmap, so cannot be reused until
2060  *  the next transaction to delete the block commits.  This means that
2061  *  leaving committing buffers dirty is quite safe: the disk blocks
2062  *  cannot be reallocated to a different file and so buffer aliasing is
2063  *  not possible.
2064  *
2065  *
2066  * The above applies mainly to ordered data mode.  In writeback mode we
2067  * don't make guarantees about the order in which data hits disk --- in
2068  * particular we don't guarantee that new dirty data is flushed before
2069  * transaction commit --- so it is always safe just to discard data
2070  * immediately in that mode.  --sct
2071  */
2072
2073 /*
2074  * The journal_unmap_buffer helper function returns zero if the buffer
2075  * concerned remains pinned as an anonymous buffer belonging to an older
2076  * transaction.
2077  *
2078  * We're outside-transaction here.  Either or both of j_running_transaction
2079  * and j_committing_transaction may be NULL.
2080  */
2081 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2082                                 int partial_page)
2083 {
2084         transaction_t *transaction;
2085         struct journal_head *jh;
2086         int may_free = 1;
2087
2088         BUFFER_TRACE(bh, "entry");
2089
2090         /*
2091          * It is safe to proceed here without the j_list_lock because the
2092          * buffers cannot be stolen by try_to_free_buffers as long as we are
2093          * holding the page lock. --sct
2094          */
2095
2096         if (!buffer_jbd(bh))
2097                 goto zap_buffer_unlocked;
2098
2099         /* OK, we have data buffer in journaled mode */
2100         write_lock(&journal->j_state_lock);
2101         jbd_lock_bh_state(bh);
2102         spin_lock(&journal->j_list_lock);
2103
2104         jh = jbd2_journal_grab_journal_head(bh);
2105         if (!jh)
2106                 goto zap_buffer_no_jh;
2107
2108         /*
2109          * We cannot remove the buffer from checkpoint lists until the
2110          * transaction adding inode to orphan list (let's call it T)
2111          * is committed.  Otherwise if the transaction changing the
2112          * buffer would be cleaned from the journal before T is
2113          * committed, a crash will cause that the correct contents of
2114          * the buffer will be lost.  On the other hand we have to
2115          * clear the buffer dirty bit at latest at the moment when the
2116          * transaction marking the buffer as freed in the filesystem
2117          * structures is committed because from that moment on the
2118          * block can be reallocated and used by a different page.
2119          * Since the block hasn't been freed yet but the inode has
2120          * already been added to orphan list, it is safe for us to add
2121          * the buffer to BJ_Forget list of the newest transaction.
2122          *
2123          * Also we have to clear buffer_mapped flag of a truncated buffer
2124          * because the buffer_head may be attached to the page straddling
2125          * i_size (can happen only when blocksize < pagesize) and thus the
2126          * buffer_head can be reused when the file is extended again. So we end
2127          * up keeping around invalidated buffers attached to transactions'
2128          * BJ_Forget list just to stop checkpointing code from cleaning up
2129          * the transaction this buffer was modified in.
2130          */
2131         transaction = jh->b_transaction;
2132         if (transaction == NULL) {
2133                 /* First case: not on any transaction.  If it
2134                  * has no checkpoint link, then we can zap it:
2135                  * it's a writeback-mode buffer so we don't care
2136                  * if it hits disk safely. */
2137                 if (!jh->b_cp_transaction) {
2138                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2139                         goto zap_buffer;
2140                 }
2141
2142                 if (!buffer_dirty(bh)) {
2143                         /* bdflush has written it.  We can drop it now */
2144                         __jbd2_journal_remove_checkpoint(jh);
2145                         goto zap_buffer;
2146                 }
2147
2148                 /* OK, it must be in the journal but still not
2149                  * written fully to disk: it's metadata or
2150                  * journaled data... */
2151
2152                 if (journal->j_running_transaction) {
2153                         /* ... and once the current transaction has
2154                          * committed, the buffer won't be needed any
2155                          * longer. */
2156                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2157                         may_free = __dispose_buffer(jh,
2158                                         journal->j_running_transaction);
2159                         goto zap_buffer;
2160                 } else {
2161                         /* There is no currently-running transaction. So the
2162                          * orphan record which we wrote for this file must have
2163                          * passed into commit.  We must attach this buffer to
2164                          * the committing transaction, if it exists. */
2165                         if (journal->j_committing_transaction) {
2166                                 JBUFFER_TRACE(jh, "give to committing trans");
2167                                 may_free = __dispose_buffer(jh,
2168                                         journal->j_committing_transaction);
2169                                 goto zap_buffer;
2170                         } else {
2171                                 /* The orphan record's transaction has
2172                                  * committed.  We can cleanse this buffer */
2173                                 clear_buffer_jbddirty(bh);
2174                                 __jbd2_journal_remove_checkpoint(jh);
2175                                 goto zap_buffer;
2176                         }
2177                 }
2178         } else if (transaction == journal->j_committing_transaction) {
2179                 JBUFFER_TRACE(jh, "on committing transaction");
2180                 /*
2181                  * The buffer is committing, we simply cannot touch
2182                  * it. If the page is straddling i_size we have to wait
2183                  * for commit and try again.
2184                  */
2185                 if (partial_page) {
2186                         jbd2_journal_put_journal_head(jh);
2187                         spin_unlock(&journal->j_list_lock);
2188                         jbd_unlock_bh_state(bh);
2189                         write_unlock(&journal->j_state_lock);
2190                         return -EBUSY;
2191                 }
2192                 /*
2193                  * OK, buffer won't be reachable after truncate. We just set
2194                  * j_next_transaction to the running transaction (if there is
2195                  * one) and mark buffer as freed so that commit code knows it
2196                  * should clear dirty bits when it is done with the buffer.
2197                  */
2198                 set_buffer_freed(bh);
2199                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2200                         jh->b_next_transaction = journal->j_running_transaction;
2201                 jbd2_journal_put_journal_head(jh);
2202                 spin_unlock(&journal->j_list_lock);
2203                 jbd_unlock_bh_state(bh);
2204                 write_unlock(&journal->j_state_lock);
2205                 return 0;
2206         } else {
2207                 /* Good, the buffer belongs to the running transaction.
2208                  * We are writing our own transaction's data, not any
2209                  * previous one's, so it is safe to throw it away
2210                  * (remember that we expect the filesystem to have set
2211                  * i_size already for this truncate so recovery will not
2212                  * expose the disk blocks we are discarding here.) */
2213                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2214                 JBUFFER_TRACE(jh, "on running transaction");
2215                 may_free = __dispose_buffer(jh, transaction);
2216         }
2217
2218 zap_buffer:
2219         /*
2220          * This is tricky. Although the buffer is truncated, it may be reused
2221          * if blocksize < pagesize and it is attached to the page straddling
2222          * EOF. Since the buffer might have been added to BJ_Forget list of the
2223          * running transaction, journal_get_write_access() won't clear
2224          * b_modified and credit accounting gets confused. So clear b_modified
2225          * here.
2226          */
2227         jh->b_modified = 0;
2228         jbd2_journal_put_journal_head(jh);
2229 zap_buffer_no_jh:
2230         spin_unlock(&journal->j_list_lock);
2231         jbd_unlock_bh_state(bh);
2232         write_unlock(&journal->j_state_lock);
2233 zap_buffer_unlocked:
2234         clear_buffer_dirty(bh);
2235         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2236         clear_buffer_mapped(bh);
2237         clear_buffer_req(bh);
2238         clear_buffer_new(bh);
2239         clear_buffer_delay(bh);
2240         clear_buffer_unwritten(bh);
2241         bh->b_bdev = NULL;
2242         return may_free;
2243 }
2244
2245 /**
2246  * void jbd2_journal_invalidatepage()
2247  * @journal: journal to use for flush...
2248  * @page:    page to flush
2249  * @offset:  start of the range to invalidate
2250  * @length:  length of the range to invalidate
2251  *
2252  * Reap page buffers containing data after in the specified range in page.
2253  * Can return -EBUSY if buffers are part of the committing transaction and
2254  * the page is straddling i_size. Caller then has to wait for current commit
2255  * and try again.
2256  */
2257 int jbd2_journal_invalidatepage(journal_t *journal,
2258                                 struct page *page,
2259                                 unsigned int offset,
2260                                 unsigned int length)
2261 {
2262         struct buffer_head *head, *bh, *next;
2263         unsigned int stop = offset + length;
2264         unsigned int curr_off = 0;
2265         int partial_page = (offset || length < PAGE_SIZE);
2266         int may_free = 1;
2267         int ret = 0;
2268
2269         if (!PageLocked(page))
2270                 BUG();
2271         if (!page_has_buffers(page))
2272                 return 0;
2273
2274         BUG_ON(stop > PAGE_SIZE || stop < length);
2275
2276         /* We will potentially be playing with lists other than just the
2277          * data lists (especially for journaled data mode), so be
2278          * cautious in our locking. */
2279
2280         head = bh = page_buffers(page);
2281         do {
2282                 unsigned int next_off = curr_off + bh->b_size;
2283                 next = bh->b_this_page;
2284
2285                 if (next_off > stop)
2286                         return 0;
2287
2288                 if (offset <= curr_off) {
2289                         /* This block is wholly outside the truncation point */
2290                         lock_buffer(bh);
2291                         ret = journal_unmap_buffer(journal, bh, partial_page);
2292                         unlock_buffer(bh);
2293                         if (ret < 0)
2294                                 return ret;
2295                         may_free &= ret;
2296                 }
2297                 curr_off = next_off;
2298                 bh = next;
2299
2300         } while (bh != head);
2301
2302         if (!partial_page) {
2303                 if (may_free && try_to_free_buffers(page))
2304                         J_ASSERT(!page_has_buffers(page));
2305         }
2306         return 0;
2307 }
2308
2309 /*
2310  * File a buffer on the given transaction list.
2311  */
2312 void __jbd2_journal_file_buffer(struct journal_head *jh,
2313                         transaction_t *transaction, int jlist)
2314 {
2315         struct journal_head **list = NULL;
2316         int was_dirty = 0;
2317         struct buffer_head *bh = jh2bh(jh);
2318
2319         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2320         assert_spin_locked(&transaction->t_journal->j_list_lock);
2321
2322         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2323         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2324                                 jh->b_transaction == NULL);
2325
2326         if (jh->b_transaction && jh->b_jlist == jlist)
2327                 return;
2328
2329         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2330             jlist == BJ_Shadow || jlist == BJ_Forget) {
2331                 /*
2332                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2333                  * instead of buffer_dirty. We should not see a dirty bit set
2334                  * here because we clear it in do_get_write_access but e.g.
2335                  * tune2fs can modify the sb and set the dirty bit at any time
2336                  * so we try to gracefully handle that.
2337                  */
2338                 if (buffer_dirty(bh))
2339                         warn_dirty_buffer(bh);
2340                 if (test_clear_buffer_dirty(bh) ||
2341                     test_clear_buffer_jbddirty(bh))
2342                         was_dirty = 1;
2343         }
2344
2345         if (jh->b_transaction)
2346                 __jbd2_journal_temp_unlink_buffer(jh);
2347         else
2348                 jbd2_journal_grab_journal_head(bh);
2349         jh->b_transaction = transaction;
2350
2351         switch (jlist) {
2352         case BJ_None:
2353                 J_ASSERT_JH(jh, !jh->b_committed_data);
2354                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2355                 return;
2356         case BJ_Metadata:
2357                 transaction->t_nr_buffers++;
2358                 list = &transaction->t_buffers;
2359                 break;
2360         case BJ_Forget:
2361                 list = &transaction->t_forget;
2362                 break;
2363         case BJ_Shadow:
2364                 list = &transaction->t_shadow_list;
2365                 break;
2366         case BJ_Reserved:
2367                 list = &transaction->t_reserved_list;
2368                 break;
2369         }
2370
2371         __blist_add_buffer(list, jh);
2372         jh->b_jlist = jlist;
2373
2374         if (was_dirty)
2375                 set_buffer_jbddirty(bh);
2376 }
2377
2378 void jbd2_journal_file_buffer(struct journal_head *jh,
2379                                 transaction_t *transaction, int jlist)
2380 {
2381         jbd_lock_bh_state(jh2bh(jh));
2382         spin_lock(&transaction->t_journal->j_list_lock);
2383         __jbd2_journal_file_buffer(jh, transaction, jlist);
2384         spin_unlock(&transaction->t_journal->j_list_lock);
2385         jbd_unlock_bh_state(jh2bh(jh));
2386 }
2387
2388 /*
2389  * Remove a buffer from its current buffer list in preparation for
2390  * dropping it from its current transaction entirely.  If the buffer has
2391  * already started to be used by a subsequent transaction, refile the
2392  * buffer on that transaction's metadata list.
2393  *
2394  * Called under j_list_lock
2395  * Called under jbd_lock_bh_state(jh2bh(jh))
2396  *
2397  * jh and bh may be already free when this function returns
2398  */
2399 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2400 {
2401         int was_dirty, jlist;
2402         struct buffer_head *bh = jh2bh(jh);
2403
2404         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2405         if (jh->b_transaction)
2406                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2407
2408         /* If the buffer is now unused, just drop it. */
2409         if (jh->b_next_transaction == NULL) {
2410                 __jbd2_journal_unfile_buffer(jh);
2411                 return;
2412         }
2413
2414         /*
2415          * It has been modified by a later transaction: add it to the new
2416          * transaction's metadata list.
2417          */
2418
2419         was_dirty = test_clear_buffer_jbddirty(bh);
2420         __jbd2_journal_temp_unlink_buffer(jh);
2421         /*
2422          * We set b_transaction here because b_next_transaction will inherit
2423          * our jh reference and thus __jbd2_journal_file_buffer() must not
2424          * take a new one.
2425          */
2426         jh->b_transaction = jh->b_next_transaction;
2427         jh->b_next_transaction = NULL;
2428         if (buffer_freed(bh))
2429                 jlist = BJ_Forget;
2430         else if (jh->b_modified)
2431                 jlist = BJ_Metadata;
2432         else
2433                 jlist = BJ_Reserved;
2434         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2435         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2436
2437         if (was_dirty)
2438                 set_buffer_jbddirty(bh);
2439 }
2440
2441 /*
2442  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2443  * bh reference so that we can safely unlock bh.
2444  *
2445  * The jh and bh may be freed by this call.
2446  */
2447 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2448 {
2449         struct buffer_head *bh = jh2bh(jh);
2450
2451         /* Get reference so that buffer cannot be freed before we unlock it */
2452         get_bh(bh);
2453         jbd_lock_bh_state(bh);
2454         spin_lock(&journal->j_list_lock);
2455         __jbd2_journal_refile_buffer(jh);
2456         jbd_unlock_bh_state(bh);
2457         spin_unlock(&journal->j_list_lock);
2458         __brelse(bh);
2459 }
2460
2461 /*
2462  * File inode in the inode list of the handle's transaction
2463  */
2464 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2465                                    unsigned long flags)
2466 {
2467         transaction_t *transaction = handle->h_transaction;
2468         journal_t *journal;
2469
2470         if (is_handle_aborted(handle))
2471                 return -EROFS;
2472         journal = transaction->t_journal;
2473
2474         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2475                         transaction->t_tid);
2476
2477         /*
2478          * First check whether inode isn't already on the transaction's
2479          * lists without taking the lock. Note that this check is safe
2480          * without the lock as we cannot race with somebody removing inode
2481          * from the transaction. The reason is that we remove inode from the
2482          * transaction only in journal_release_jbd_inode() and when we commit
2483          * the transaction. We are guarded from the first case by holding
2484          * a reference to the inode. We are safe against the second case
2485          * because if jinode->i_transaction == transaction, commit code
2486          * cannot touch the transaction because we hold reference to it,
2487          * and if jinode->i_next_transaction == transaction, commit code
2488          * will only file the inode where we want it.
2489          */
2490         if ((jinode->i_transaction == transaction ||
2491             jinode->i_next_transaction == transaction) &&
2492             (jinode->i_flags & flags) == flags)
2493                 return 0;
2494
2495         spin_lock(&journal->j_list_lock);
2496         jinode->i_flags |= flags;
2497         /* Is inode already attached where we need it? */
2498         if (jinode->i_transaction == transaction ||
2499             jinode->i_next_transaction == transaction)
2500                 goto done;
2501
2502         /*
2503          * We only ever set this variable to 1 so the test is safe. Since
2504          * t_need_data_flush is likely to be set, we do the test to save some
2505          * cacheline bouncing
2506          */
2507         if (!transaction->t_need_data_flush)
2508                 transaction->t_need_data_flush = 1;
2509         /* On some different transaction's list - should be
2510          * the committing one */
2511         if (jinode->i_transaction) {
2512                 J_ASSERT(jinode->i_next_transaction == NULL);
2513                 J_ASSERT(jinode->i_transaction ==
2514                                         journal->j_committing_transaction);
2515                 jinode->i_next_transaction = transaction;
2516                 goto done;
2517         }
2518         /* Not on any transaction list... */
2519         J_ASSERT(!jinode->i_next_transaction);
2520         jinode->i_transaction = transaction;
2521         list_add(&jinode->i_list, &transaction->t_inode_list);
2522 done:
2523         spin_unlock(&journal->j_list_lock);
2524
2525         return 0;
2526 }
2527
2528 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2529 {
2530         return jbd2_journal_file_inode(handle, jinode,
2531                                        JI_WRITE_DATA | JI_WAIT_DATA);
2532 }
2533
2534 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2535 {
2536         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2537 }
2538
2539 /*
2540  * File truncate and transaction commit interact with each other in a
2541  * non-trivial way.  If a transaction writing data block A is
2542  * committing, we cannot discard the data by truncate until we have
2543  * written them.  Otherwise if we crashed after the transaction with
2544  * write has committed but before the transaction with truncate has
2545  * committed, we could see stale data in block A.  This function is a
2546  * helper to solve this problem.  It starts writeout of the truncated
2547  * part in case it is in the committing transaction.
2548  *
2549  * Filesystem code must call this function when inode is journaled in
2550  * ordered mode before truncation happens and after the inode has been
2551  * placed on orphan list with the new inode size. The second condition
2552  * avoids the race that someone writes new data and we start
2553  * committing the transaction after this function has been called but
2554  * before a transaction for truncate is started (and furthermore it
2555  * allows us to optimize the case where the addition to orphan list
2556  * happens in the same transaction as write --- we don't have to write
2557  * any data in such case).
2558  */
2559 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2560                                         struct jbd2_inode *jinode,
2561                                         loff_t new_size)
2562 {
2563         transaction_t *inode_trans, *commit_trans;
2564         int ret = 0;
2565
2566         /* This is a quick check to avoid locking if not necessary */
2567         if (!jinode->i_transaction)
2568                 goto out;
2569         /* Locks are here just to force reading of recent values, it is
2570          * enough that the transaction was not committing before we started
2571          * a transaction adding the inode to orphan list */
2572         read_lock(&journal->j_state_lock);
2573         commit_trans = journal->j_committing_transaction;
2574         read_unlock(&journal->j_state_lock);
2575         spin_lock(&journal->j_list_lock);
2576         inode_trans = jinode->i_transaction;
2577         spin_unlock(&journal->j_list_lock);
2578         if (inode_trans == commit_trans) {
2579                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2580                         new_size, LLONG_MAX);
2581                 if (ret)
2582                         jbd2_journal_abort(journal, ret);
2583         }
2584 out:
2585         return ret;
2586 }