arm64: dts: ls2080a: update the DTS for QSPI and DSPI support
[cascardo/linux.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    Andrew Morton
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48         struct bio_vec *bv;
49         int i;
50
51         bio_for_each_segment_all(bv, bio, i) {
52                 struct page *page = bv->bv_page;
53                 page_endio(page, bio_data_dir(bio), bio->bi_error);
54         }
55
56         bio_put(bio);
57 }
58
59 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
60 {
61         bio->bi_end_io = mpage_end_io;
62         guard_bio_eod(rw, bio);
63         submit_bio(rw, bio);
64         return NULL;
65 }
66
67 static struct bio *
68 mpage_alloc(struct block_device *bdev,
69                 sector_t first_sector, int nr_vecs,
70                 gfp_t gfp_flags)
71 {
72         struct bio *bio;
73
74         bio = bio_alloc(gfp_flags, nr_vecs);
75
76         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
77                 while (!bio && (nr_vecs /= 2))
78                         bio = bio_alloc(gfp_flags, nr_vecs);
79         }
80
81         if (bio) {
82                 bio->bi_bdev = bdev;
83                 bio->bi_iter.bi_sector = first_sector;
84         }
85         return bio;
86 }
87
88 /*
89  * support function for mpage_readpages.  The fs supplied get_block might
90  * return an up to date buffer.  This is used to map that buffer into
91  * the page, which allows readpage to avoid triggering a duplicate call
92  * to get_block.
93  *
94  * The idea is to avoid adding buffers to pages that don't already have
95  * them.  So when the buffer is up to date and the page size == block size,
96  * this marks the page up to date instead of adding new buffers.
97  */
98 static void 
99 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
100 {
101         struct inode *inode = page->mapping->host;
102         struct buffer_head *page_bh, *head;
103         int block = 0;
104
105         if (!page_has_buffers(page)) {
106                 /*
107                  * don't make any buffers if there is only one buffer on
108                  * the page and the page just needs to be set up to date
109                  */
110                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
111                     buffer_uptodate(bh)) {
112                         SetPageUptodate(page);    
113                         return;
114                 }
115                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
116         }
117         head = page_buffers(page);
118         page_bh = head;
119         do {
120                 if (block == page_block) {
121                         page_bh->b_state = bh->b_state;
122                         page_bh->b_bdev = bh->b_bdev;
123                         page_bh->b_blocknr = bh->b_blocknr;
124                         break;
125                 }
126                 page_bh = page_bh->b_this_page;
127                 block++;
128         } while (page_bh != head);
129 }
130
131 /*
132  * This is the worker routine which does all the work of mapping the disk
133  * blocks and constructs largest possible bios, submits them for IO if the
134  * blocks are not contiguous on the disk.
135  *
136  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
137  * represent the validity of its disk mapping and to decide when to do the next
138  * get_block() call.
139  */
140 static struct bio *
141 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
142                 sector_t *last_block_in_bio, struct buffer_head *map_bh,
143                 unsigned long *first_logical_block, get_block_t get_block,
144                 gfp_t gfp)
145 {
146         struct inode *inode = page->mapping->host;
147         const unsigned blkbits = inode->i_blkbits;
148         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
149         const unsigned blocksize = 1 << blkbits;
150         sector_t block_in_file;
151         sector_t last_block;
152         sector_t last_block_in_file;
153         sector_t blocks[MAX_BUF_PER_PAGE];
154         unsigned page_block;
155         unsigned first_hole = blocks_per_page;
156         struct block_device *bdev = NULL;
157         int length;
158         int fully_mapped = 1;
159         unsigned nblocks;
160         unsigned relative_block;
161
162         if (page_has_buffers(page))
163                 goto confused;
164
165         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
166         last_block = block_in_file + nr_pages * blocks_per_page;
167         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168         if (last_block > last_block_in_file)
169                 last_block = last_block_in_file;
170         page_block = 0;
171
172         /*
173          * Map blocks using the result from the previous get_blocks call first.
174          */
175         nblocks = map_bh->b_size >> blkbits;
176         if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
177                         block_in_file < (*first_logical_block + nblocks)) {
178                 unsigned map_offset = block_in_file - *first_logical_block;
179                 unsigned last = nblocks - map_offset;
180
181                 for (relative_block = 0; ; relative_block++) {
182                         if (relative_block == last) {
183                                 clear_buffer_mapped(map_bh);
184                                 break;
185                         }
186                         if (page_block == blocks_per_page)
187                                 break;
188                         blocks[page_block] = map_bh->b_blocknr + map_offset +
189                                                 relative_block;
190                         page_block++;
191                         block_in_file++;
192                 }
193                 bdev = map_bh->b_bdev;
194         }
195
196         /*
197          * Then do more get_blocks calls until we are done with this page.
198          */
199         map_bh->b_page = page;
200         while (page_block < blocks_per_page) {
201                 map_bh->b_state = 0;
202                 map_bh->b_size = 0;
203
204                 if (block_in_file < last_block) {
205                         map_bh->b_size = (last_block-block_in_file) << blkbits;
206                         if (get_block(inode, block_in_file, map_bh, 0))
207                                 goto confused;
208                         *first_logical_block = block_in_file;
209                 }
210
211                 if (!buffer_mapped(map_bh)) {
212                         fully_mapped = 0;
213                         if (first_hole == blocks_per_page)
214                                 first_hole = page_block;
215                         page_block++;
216                         block_in_file++;
217                         continue;
218                 }
219
220                 /* some filesystems will copy data into the page during
221                  * the get_block call, in which case we don't want to
222                  * read it again.  map_buffer_to_page copies the data
223                  * we just collected from get_block into the page's buffers
224                  * so readpage doesn't have to repeat the get_block call
225                  */
226                 if (buffer_uptodate(map_bh)) {
227                         map_buffer_to_page(page, map_bh, page_block);
228                         goto confused;
229                 }
230         
231                 if (first_hole != blocks_per_page)
232                         goto confused;          /* hole -> non-hole */
233
234                 /* Contiguous blocks? */
235                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
236                         goto confused;
237                 nblocks = map_bh->b_size >> blkbits;
238                 for (relative_block = 0; ; relative_block++) {
239                         if (relative_block == nblocks) {
240                                 clear_buffer_mapped(map_bh);
241                                 break;
242                         } else if (page_block == blocks_per_page)
243                                 break;
244                         blocks[page_block] = map_bh->b_blocknr+relative_block;
245                         page_block++;
246                         block_in_file++;
247                 }
248                 bdev = map_bh->b_bdev;
249         }
250
251         if (first_hole != blocks_per_page) {
252                 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
253                 if (first_hole == 0) {
254                         SetPageUptodate(page);
255                         unlock_page(page);
256                         goto out;
257                 }
258         } else if (fully_mapped) {
259                 SetPageMappedToDisk(page);
260         }
261
262         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
263             cleancache_get_page(page) == 0) {
264                 SetPageUptodate(page);
265                 goto confused;
266         }
267
268         /*
269          * This page will go to BIO.  Do we need to send this BIO off first?
270          */
271         if (bio && (*last_block_in_bio != blocks[0] - 1))
272                 bio = mpage_bio_submit(READ, bio);
273
274 alloc_new:
275         if (bio == NULL) {
276                 if (first_hole == blocks_per_page) {
277                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
278                                                                 page))
279                                 goto out;
280                 }
281                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
282                                 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
283                 if (bio == NULL)
284                         goto confused;
285         }
286
287         length = first_hole << blkbits;
288         if (bio_add_page(bio, page, length, 0) < length) {
289                 bio = mpage_bio_submit(READ, bio);
290                 goto alloc_new;
291         }
292
293         relative_block = block_in_file - *first_logical_block;
294         nblocks = map_bh->b_size >> blkbits;
295         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
296             (first_hole != blocks_per_page))
297                 bio = mpage_bio_submit(READ, bio);
298         else
299                 *last_block_in_bio = blocks[blocks_per_page - 1];
300 out:
301         return bio;
302
303 confused:
304         if (bio)
305                 bio = mpage_bio_submit(READ, bio);
306         if (!PageUptodate(page))
307                 block_read_full_page(page, get_block);
308         else
309                 unlock_page(page);
310         goto out;
311 }
312
313 /**
314  * mpage_readpages - populate an address space with some pages & start reads against them
315  * @mapping: the address_space
316  * @pages: The address of a list_head which contains the target pages.  These
317  *   pages have their ->index populated and are otherwise uninitialised.
318  *   The page at @pages->prev has the lowest file offset, and reads should be
319  *   issued in @pages->prev to @pages->next order.
320  * @nr_pages: The number of pages at *@pages
321  * @get_block: The filesystem's block mapper function.
322  *
323  * This function walks the pages and the blocks within each page, building and
324  * emitting large BIOs.
325  *
326  * If anything unusual happens, such as:
327  *
328  * - encountering a page which has buffers
329  * - encountering a page which has a non-hole after a hole
330  * - encountering a page with non-contiguous blocks
331  *
332  * then this code just gives up and calls the buffer_head-based read function.
333  * It does handle a page which has holes at the end - that is a common case:
334  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
335  *
336  * BH_Boundary explanation:
337  *
338  * There is a problem.  The mpage read code assembles several pages, gets all
339  * their disk mappings, and then submits them all.  That's fine, but obtaining
340  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
341  *
342  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
343  * submitted in the following order:
344  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345  *
346  * because the indirect block has to be read to get the mappings of blocks
347  * 13,14,15,16.  Obviously, this impacts performance.
348  *
349  * So what we do it to allow the filesystem's get_block() function to set
350  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
351  * after this one will require I/O against a block which is probably close to
352  * this one.  So you should push what I/O you have currently accumulated.
353  *
354  * This all causes the disk requests to be issued in the correct order.
355  */
356 int
357 mpage_readpages(struct address_space *mapping, struct list_head *pages,
358                                 unsigned nr_pages, get_block_t get_block)
359 {
360         struct bio *bio = NULL;
361         unsigned page_idx;
362         sector_t last_block_in_bio = 0;
363         struct buffer_head map_bh;
364         unsigned long first_logical_block = 0;
365         gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
366
367         map_bh.b_state = 0;
368         map_bh.b_size = 0;
369         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
370                 struct page *page = lru_to_page(pages);
371
372                 prefetchw(&page->flags);
373                 list_del(&page->lru);
374                 if (!add_to_page_cache_lru(page, mapping,
375                                         page->index,
376                                         gfp)) {
377                         bio = do_mpage_readpage(bio, page,
378                                         nr_pages - page_idx,
379                                         &last_block_in_bio, &map_bh,
380                                         &first_logical_block,
381                                         get_block, gfp);
382                 }
383                 page_cache_release(page);
384         }
385         BUG_ON(!list_empty(pages));
386         if (bio)
387                 mpage_bio_submit(READ, bio);
388         return 0;
389 }
390 EXPORT_SYMBOL(mpage_readpages);
391
392 /*
393  * This isn't called much at all
394  */
395 int mpage_readpage(struct page *page, get_block_t get_block)
396 {
397         struct bio *bio = NULL;
398         sector_t last_block_in_bio = 0;
399         struct buffer_head map_bh;
400         unsigned long first_logical_block = 0;
401         gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
402
403         map_bh.b_state = 0;
404         map_bh.b_size = 0;
405         bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
406                         &map_bh, &first_logical_block, get_block, gfp);
407         if (bio)
408                 mpage_bio_submit(READ, bio);
409         return 0;
410 }
411 EXPORT_SYMBOL(mpage_readpage);
412
413 /*
414  * Writing is not so simple.
415  *
416  * If the page has buffers then they will be used for obtaining the disk
417  * mapping.  We only support pages which are fully mapped-and-dirty, with a
418  * special case for pages which are unmapped at the end: end-of-file.
419  *
420  * If the page has no buffers (preferred) then the page is mapped here.
421  *
422  * If all blocks are found to be contiguous then the page can go into the
423  * BIO.  Otherwise fall back to the mapping's writepage().
424  * 
425  * FIXME: This code wants an estimate of how many pages are still to be
426  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
427  * just allocate full-size (16-page) BIOs.
428  */
429
430 struct mpage_data {
431         struct bio *bio;
432         sector_t last_block_in_bio;
433         get_block_t *get_block;
434         unsigned use_writepage;
435 };
436
437 /*
438  * We have our BIO, so we can now mark the buffers clean.  Make
439  * sure to only clean buffers which we know we'll be writing.
440  */
441 static void clean_buffers(struct page *page, unsigned first_unmapped)
442 {
443         unsigned buffer_counter = 0;
444         struct buffer_head *bh, *head;
445         if (!page_has_buffers(page))
446                 return;
447         head = page_buffers(page);
448         bh = head;
449
450         do {
451                 if (buffer_counter++ == first_unmapped)
452                         break;
453                 clear_buffer_dirty(bh);
454                 bh = bh->b_this_page;
455         } while (bh != head);
456
457         /*
458          * we cannot drop the bh if the page is not uptodate or a concurrent
459          * readpage would fail to serialize with the bh and it would read from
460          * disk before we reach the platter.
461          */
462         if (buffer_heads_over_limit && PageUptodate(page))
463                 try_to_free_buffers(page);
464 }
465
466 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
467                       void *data)
468 {
469         struct mpage_data *mpd = data;
470         struct bio *bio = mpd->bio;
471         struct address_space *mapping = page->mapping;
472         struct inode *inode = page->mapping->host;
473         const unsigned blkbits = inode->i_blkbits;
474         unsigned long end_index;
475         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
476         sector_t last_block;
477         sector_t block_in_file;
478         sector_t blocks[MAX_BUF_PER_PAGE];
479         unsigned page_block;
480         unsigned first_unmapped = blocks_per_page;
481         struct block_device *bdev = NULL;
482         int boundary = 0;
483         sector_t boundary_block = 0;
484         struct block_device *boundary_bdev = NULL;
485         int length;
486         struct buffer_head map_bh;
487         loff_t i_size = i_size_read(inode);
488         int ret = 0;
489         int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
490
491         if (page_has_buffers(page)) {
492                 struct buffer_head *head = page_buffers(page);
493                 struct buffer_head *bh = head;
494
495                 /* If they're all mapped and dirty, do it */
496                 page_block = 0;
497                 do {
498                         BUG_ON(buffer_locked(bh));
499                         if (!buffer_mapped(bh)) {
500                                 /*
501                                  * unmapped dirty buffers are created by
502                                  * __set_page_dirty_buffers -> mmapped data
503                                  */
504                                 if (buffer_dirty(bh))
505                                         goto confused;
506                                 if (first_unmapped == blocks_per_page)
507                                         first_unmapped = page_block;
508                                 continue;
509                         }
510
511                         if (first_unmapped != blocks_per_page)
512                                 goto confused;  /* hole -> non-hole */
513
514                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515                                 goto confused;
516                         if (page_block) {
517                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
518                                         goto confused;
519                         }
520                         blocks[page_block++] = bh->b_blocknr;
521                         boundary = buffer_boundary(bh);
522                         if (boundary) {
523                                 boundary_block = bh->b_blocknr;
524                                 boundary_bdev = bh->b_bdev;
525                         }
526                         bdev = bh->b_bdev;
527                 } while ((bh = bh->b_this_page) != head);
528
529                 if (first_unmapped)
530                         goto page_is_mapped;
531
532                 /*
533                  * Page has buffers, but they are all unmapped. The page was
534                  * created by pagein or read over a hole which was handled by
535                  * block_read_full_page().  If this address_space is also
536                  * using mpage_readpages then this can rarely happen.
537                  */
538                 goto confused;
539         }
540
541         /*
542          * The page has no buffers: map it to disk
543          */
544         BUG_ON(!PageUptodate(page));
545         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
546         last_block = (i_size - 1) >> blkbits;
547         map_bh.b_page = page;
548         for (page_block = 0; page_block < blocks_per_page; ) {
549
550                 map_bh.b_state = 0;
551                 map_bh.b_size = 1 << blkbits;
552                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553                         goto confused;
554                 if (buffer_new(&map_bh))
555                         unmap_underlying_metadata(map_bh.b_bdev,
556                                                 map_bh.b_blocknr);
557                 if (buffer_boundary(&map_bh)) {
558                         boundary_block = map_bh.b_blocknr;
559                         boundary_bdev = map_bh.b_bdev;
560                 }
561                 if (page_block) {
562                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
563                                 goto confused;
564                 }
565                 blocks[page_block++] = map_bh.b_blocknr;
566                 boundary = buffer_boundary(&map_bh);
567                 bdev = map_bh.b_bdev;
568                 if (block_in_file == last_block)
569                         break;
570                 block_in_file++;
571         }
572         BUG_ON(page_block == 0);
573
574         first_unmapped = page_block;
575
576 page_is_mapped:
577         end_index = i_size >> PAGE_CACHE_SHIFT;
578         if (page->index >= end_index) {
579                 /*
580                  * The page straddles i_size.  It must be zeroed out on each
581                  * and every writepage invocation because it may be mmapped.
582                  * "A file is mapped in multiples of the page size.  For a file
583                  * that is not a multiple of the page size, the remaining memory
584                  * is zeroed when mapped, and writes to that region are not
585                  * written out to the file."
586                  */
587                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
588
589                 if (page->index > end_index || !offset)
590                         goto confused;
591                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
592         }
593
594         /*
595          * This page will go to BIO.  Do we need to send this BIO off first?
596          */
597         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
598                 bio = mpage_bio_submit(wr, bio);
599
600 alloc_new:
601         if (bio == NULL) {
602                 if (first_unmapped == blocks_per_page) {
603                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604                                                                 page, wbc)) {
605                                 clean_buffers(page, first_unmapped);
606                                 goto out;
607                         }
608                 }
609                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
610                                 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
611                 if (bio == NULL)
612                         goto confused;
613
614                 wbc_init_bio(wbc, bio);
615         }
616
617         /*
618          * Must try to add the page before marking the buffer clean or
619          * the confused fail path above (OOM) will be very confused when
620          * it finds all bh marked clean (i.e. it will not write anything)
621          */
622         wbc_account_io(wbc, page, PAGE_SIZE);
623         length = first_unmapped << blkbits;
624         if (bio_add_page(bio, page, length, 0) < length) {
625                 bio = mpage_bio_submit(wr, bio);
626                 goto alloc_new;
627         }
628
629         clean_buffers(page, first_unmapped);
630
631         BUG_ON(PageWriteback(page));
632         set_page_writeback(page);
633         unlock_page(page);
634         if (boundary || (first_unmapped != blocks_per_page)) {
635                 bio = mpage_bio_submit(wr, bio);
636                 if (boundary_block) {
637                         write_boundary_block(boundary_bdev,
638                                         boundary_block, 1 << blkbits);
639                 }
640         } else {
641                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
642         }
643         goto out;
644
645 confused:
646         if (bio)
647                 bio = mpage_bio_submit(wr, bio);
648
649         if (mpd->use_writepage) {
650                 ret = mapping->a_ops->writepage(page, wbc);
651         } else {
652                 ret = -EAGAIN;
653                 goto out;
654         }
655         /*
656          * The caller has a ref on the inode, so *mapping is stable
657          */
658         mapping_set_error(mapping, ret);
659 out:
660         mpd->bio = bio;
661         return ret;
662 }
663
664 /**
665  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
666  * @mapping: address space structure to write
667  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
668  * @get_block: the filesystem's block mapper function.
669  *             If this is NULL then use a_ops->writepage.  Otherwise, go
670  *             direct-to-BIO.
671  *
672  * This is a library function, which implements the writepages()
673  * address_space_operation.
674  *
675  * If a page is already under I/O, generic_writepages() skips it, even
676  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
677  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
678  * and msync() need to guarantee that all the data which was dirty at the time
679  * the call was made get new I/O started against them.  If wbc->sync_mode is
680  * WB_SYNC_ALL then we were called for data integrity and we must wait for
681  * existing IO to complete.
682  */
683 int
684 mpage_writepages(struct address_space *mapping,
685                 struct writeback_control *wbc, get_block_t get_block)
686 {
687         struct blk_plug plug;
688         int ret;
689
690         blk_start_plug(&plug);
691
692         if (!get_block)
693                 ret = generic_writepages(mapping, wbc);
694         else {
695                 struct mpage_data mpd = {
696                         .bio = NULL,
697                         .last_block_in_bio = 0,
698                         .get_block = get_block,
699                         .use_writepage = 1,
700                 };
701
702                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703                 if (mpd.bio) {
704                         int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705                                   WRITE_SYNC : WRITE);
706                         mpage_bio_submit(wr, mpd.bio);
707                 }
708         }
709         blk_finish_plug(&plug);
710         return ret;
711 }
712 EXPORT_SYMBOL(mpage_writepages);
713
714 int mpage_writepage(struct page *page, get_block_t get_block,
715         struct writeback_control *wbc)
716 {
717         struct mpage_data mpd = {
718                 .bio = NULL,
719                 .last_block_in_bio = 0,
720                 .get_block = get_block,
721                 .use_writepage = 0,
722         };
723         int ret = __mpage_writepage(page, wbc, &mpd);
724         if (mpd.bio) {
725                 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726                           WRITE_SYNC : WRITE);
727                 mpage_bio_submit(wr, mpd.bio);
728         }
729         return ret;
730 }
731 EXPORT_SYMBOL(mpage_writepage);