nilfs2: hide function name argument from nilfs_error()
[cascardo/linux.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63                    "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 static void nilfs_set_error(struct super_block *sb)
75 {
76         struct the_nilfs *nilfs = sb->s_fs_info;
77         struct nilfs_super_block **sbp;
78
79         down_write(&nilfs->ns_sem);
80         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
82                 sbp = nilfs_prepare_super(sb, 0);
83                 if (likely(sbp)) {
84                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85                         if (sbp[1])
86                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88                 }
89         }
90         up_write(&nilfs->ns_sem);
91 }
92
93 /**
94  * __nilfs_error() - report failure condition on a filesystem
95  *
96  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
97  * reporting an error message.  This function should be called when
98  * NILFS detects incoherences or defects of meta data on disk.
99  *
100  * This implements the body of nilfs_error() macro.  Normally,
101  * nilfs_error() should be used.  As for sustainable errors such as a
102  * single-shot I/O error, nilfs_warning() or printk() should be used
103  * instead.
104  *
105  * Callers should not add a trailing newline since this will do it.
106  */
107 void __nilfs_error(struct super_block *sb, const char *function,
108                    const char *fmt, ...)
109 {
110         struct the_nilfs *nilfs = sb->s_fs_info;
111         struct va_format vaf;
112         va_list args;
113
114         va_start(args, fmt);
115
116         vaf.fmt = fmt;
117         vaf.va = &args;
118
119         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
120                sb->s_id, function, &vaf);
121
122         va_end(args);
123
124         if (!(sb->s_flags & MS_RDONLY)) {
125                 nilfs_set_error(sb);
126
127                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
128                         printk(KERN_CRIT "Remounting filesystem read-only\n");
129                         sb->s_flags |= MS_RDONLY;
130                 }
131         }
132
133         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
134                 panic("NILFS (device %s): panic forced after error\n",
135                       sb->s_id);
136 }
137
138 void nilfs_warning(struct super_block *sb, const char *function,
139                    const char *fmt, ...)
140 {
141         struct va_format vaf;
142         va_list args;
143
144         va_start(args, fmt);
145
146         vaf.fmt = fmt;
147         vaf.va = &args;
148
149         printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
150                sb->s_id, function, &vaf);
151
152         va_end(args);
153 }
154
155
156 struct inode *nilfs_alloc_inode(struct super_block *sb)
157 {
158         struct nilfs_inode_info *ii;
159
160         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
161         if (!ii)
162                 return NULL;
163         ii->i_bh = NULL;
164         ii->i_state = 0;
165         ii->i_cno = 0;
166         ii->vfs_inode.i_version = 1;
167         nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
168         return &ii->vfs_inode;
169 }
170
171 static void nilfs_i_callback(struct rcu_head *head)
172 {
173         struct inode *inode = container_of(head, struct inode, i_rcu);
174
175         if (nilfs_is_metadata_file_inode(inode))
176                 nilfs_mdt_destroy(inode);
177
178         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
179 }
180
181 void nilfs_destroy_inode(struct inode *inode)
182 {
183         call_rcu(&inode->i_rcu, nilfs_i_callback);
184 }
185
186 static int nilfs_sync_super(struct super_block *sb, int flag)
187 {
188         struct the_nilfs *nilfs = sb->s_fs_info;
189         int err;
190
191  retry:
192         set_buffer_dirty(nilfs->ns_sbh[0]);
193         if (nilfs_test_opt(nilfs, BARRIER)) {
194                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
195                                           WRITE_SYNC | WRITE_FLUSH_FUA);
196         } else {
197                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
198         }
199
200         if (unlikely(err)) {
201                 printk(KERN_ERR
202                        "NILFS: unable to write superblock (err=%d)\n", err);
203                 if (err == -EIO && nilfs->ns_sbh[1]) {
204                         /*
205                          * sbp[0] points to newer log than sbp[1],
206                          * so copy sbp[0] to sbp[1] to take over sbp[0].
207                          */
208                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
209                                nilfs->ns_sbsize);
210                         nilfs_fall_back_super_block(nilfs);
211                         goto retry;
212                 }
213         } else {
214                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
215
216                 nilfs->ns_sbwcount++;
217
218                 /*
219                  * The latest segment becomes trailable from the position
220                  * written in superblock.
221                  */
222                 clear_nilfs_discontinued(nilfs);
223
224                 /* update GC protection for recent segments */
225                 if (nilfs->ns_sbh[1]) {
226                         if (flag == NILFS_SB_COMMIT_ALL) {
227                                 set_buffer_dirty(nilfs->ns_sbh[1]);
228                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
229                                         goto out;
230                         }
231                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
232                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
233                                 sbp = nilfs->ns_sbp[1];
234                 }
235
236                 spin_lock(&nilfs->ns_last_segment_lock);
237                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
238                 spin_unlock(&nilfs->ns_last_segment_lock);
239         }
240  out:
241         return err;
242 }
243
244 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
245                           struct the_nilfs *nilfs)
246 {
247         sector_t nfreeblocks;
248
249         /* nilfs->ns_sem must be locked by the caller. */
250         nilfs_count_free_blocks(nilfs, &nfreeblocks);
251         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
252
253         spin_lock(&nilfs->ns_last_segment_lock);
254         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
255         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
256         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
257         spin_unlock(&nilfs->ns_last_segment_lock);
258 }
259
260 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
261                                                int flip)
262 {
263         struct the_nilfs *nilfs = sb->s_fs_info;
264         struct nilfs_super_block **sbp = nilfs->ns_sbp;
265
266         /* nilfs->ns_sem must be locked by the caller. */
267         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
268                 if (sbp[1] &&
269                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
270                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
271                 } else {
272                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
273                                sb->s_id);
274                         return NULL;
275                 }
276         } else if (sbp[1] &&
277                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
278                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
279         }
280
281         if (flip && sbp[1])
282                 nilfs_swap_super_block(nilfs);
283
284         return sbp;
285 }
286
287 int nilfs_commit_super(struct super_block *sb, int flag)
288 {
289         struct the_nilfs *nilfs = sb->s_fs_info;
290         struct nilfs_super_block **sbp = nilfs->ns_sbp;
291         time_t t;
292
293         /* nilfs->ns_sem must be locked by the caller. */
294         t = get_seconds();
295         nilfs->ns_sbwtime = t;
296         sbp[0]->s_wtime = cpu_to_le64(t);
297         sbp[0]->s_sum = 0;
298         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
299                                              (unsigned char *)sbp[0],
300                                              nilfs->ns_sbsize));
301         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
302                 sbp[1]->s_wtime = sbp[0]->s_wtime;
303                 sbp[1]->s_sum = 0;
304                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
305                                             (unsigned char *)sbp[1],
306                                             nilfs->ns_sbsize));
307         }
308         clear_nilfs_sb_dirty(nilfs);
309         nilfs->ns_flushed_device = 1;
310         /* make sure store to ns_flushed_device cannot be reordered */
311         smp_wmb();
312         return nilfs_sync_super(sb, flag);
313 }
314
315 /**
316  * nilfs_cleanup_super() - write filesystem state for cleanup
317  * @sb: super block instance to be unmounted or degraded to read-only
318  *
319  * This function restores state flags in the on-disk super block.
320  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
321  * filesystem was not clean previously.
322  */
323 int nilfs_cleanup_super(struct super_block *sb)
324 {
325         struct the_nilfs *nilfs = sb->s_fs_info;
326         struct nilfs_super_block **sbp;
327         int flag = NILFS_SB_COMMIT;
328         int ret = -EIO;
329
330         sbp = nilfs_prepare_super(sb, 0);
331         if (sbp) {
332                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
333                 nilfs_set_log_cursor(sbp[0], nilfs);
334                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
335                         /*
336                          * make the "clean" flag also to the opposite
337                          * super block if both super blocks point to
338                          * the same checkpoint.
339                          */
340                         sbp[1]->s_state = sbp[0]->s_state;
341                         flag = NILFS_SB_COMMIT_ALL;
342                 }
343                 ret = nilfs_commit_super(sb, flag);
344         }
345         return ret;
346 }
347
348 /**
349  * nilfs_move_2nd_super - relocate secondary super block
350  * @sb: super block instance
351  * @sb2off: new offset of the secondary super block (in bytes)
352  */
353 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
354 {
355         struct the_nilfs *nilfs = sb->s_fs_info;
356         struct buffer_head *nsbh;
357         struct nilfs_super_block *nsbp;
358         sector_t blocknr, newblocknr;
359         unsigned long offset;
360         int sb2i;  /* array index of the secondary superblock */
361         int ret = 0;
362
363         /* nilfs->ns_sem must be locked by the caller. */
364         if (nilfs->ns_sbh[1] &&
365             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
366                 sb2i = 1;
367                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
368         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
369                 sb2i = 0;
370                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
371         } else {
372                 sb2i = -1;
373                 blocknr = 0;
374         }
375         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
376                 goto out;  /* super block location is unchanged */
377
378         /* Get new super block buffer */
379         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
380         offset = sb2off & (nilfs->ns_blocksize - 1);
381         nsbh = sb_getblk(sb, newblocknr);
382         if (!nsbh) {
383                 printk(KERN_WARNING
384                        "NILFS warning: unable to move secondary superblock "
385                        "to block %llu\n", (unsigned long long)newblocknr);
386                 ret = -EIO;
387                 goto out;
388         }
389         nsbp = (void *)nsbh->b_data + offset;
390         memset(nsbp, 0, nilfs->ns_blocksize);
391
392         if (sb2i >= 0) {
393                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
394                 brelse(nilfs->ns_sbh[sb2i]);
395                 nilfs->ns_sbh[sb2i] = nsbh;
396                 nilfs->ns_sbp[sb2i] = nsbp;
397         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
398                 /* secondary super block will be restored to index 1 */
399                 nilfs->ns_sbh[1] = nsbh;
400                 nilfs->ns_sbp[1] = nsbp;
401         } else {
402                 brelse(nsbh);
403         }
404 out:
405         return ret;
406 }
407
408 /**
409  * nilfs_resize_fs - resize the filesystem
410  * @sb: super block instance
411  * @newsize: new size of the filesystem (in bytes)
412  */
413 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
414 {
415         struct the_nilfs *nilfs = sb->s_fs_info;
416         struct nilfs_super_block **sbp;
417         __u64 devsize, newnsegs;
418         loff_t sb2off;
419         int ret;
420
421         ret = -ERANGE;
422         devsize = i_size_read(sb->s_bdev->bd_inode);
423         if (newsize > devsize)
424                 goto out;
425
426         /*
427          * Write lock is required to protect some functions depending
428          * on the number of segments, the number of reserved segments,
429          * and so forth.
430          */
431         down_write(&nilfs->ns_segctor_sem);
432
433         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
434         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
435         do_div(newnsegs, nilfs->ns_blocks_per_segment);
436
437         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
438         up_write(&nilfs->ns_segctor_sem);
439         if (ret < 0)
440                 goto out;
441
442         ret = nilfs_construct_segment(sb);
443         if (ret < 0)
444                 goto out;
445
446         down_write(&nilfs->ns_sem);
447         nilfs_move_2nd_super(sb, sb2off);
448         ret = -EIO;
449         sbp = nilfs_prepare_super(sb, 0);
450         if (likely(sbp)) {
451                 nilfs_set_log_cursor(sbp[0], nilfs);
452                 /*
453                  * Drop NILFS_RESIZE_FS flag for compatibility with
454                  * mount-time resize which may be implemented in a
455                  * future release.
456                  */
457                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
458                                               ~NILFS_RESIZE_FS);
459                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
460                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
461                 if (sbp[1])
462                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
463                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
464         }
465         up_write(&nilfs->ns_sem);
466
467         /*
468          * Reset the range of allocatable segments last.  This order
469          * is important in the case of expansion because the secondary
470          * superblock must be protected from log write until migration
471          * completes.
472          */
473         if (!ret)
474                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
475 out:
476         return ret;
477 }
478
479 static void nilfs_put_super(struct super_block *sb)
480 {
481         struct the_nilfs *nilfs = sb->s_fs_info;
482
483         nilfs_detach_log_writer(sb);
484
485         if (!(sb->s_flags & MS_RDONLY)) {
486                 down_write(&nilfs->ns_sem);
487                 nilfs_cleanup_super(sb);
488                 up_write(&nilfs->ns_sem);
489         }
490
491         iput(nilfs->ns_sufile);
492         iput(nilfs->ns_cpfile);
493         iput(nilfs->ns_dat);
494
495         destroy_nilfs(nilfs);
496         sb->s_fs_info = NULL;
497 }
498
499 static int nilfs_sync_fs(struct super_block *sb, int wait)
500 {
501         struct the_nilfs *nilfs = sb->s_fs_info;
502         struct nilfs_super_block **sbp;
503         int err = 0;
504
505         /* This function is called when super block should be written back */
506         if (wait)
507                 err = nilfs_construct_segment(sb);
508
509         down_write(&nilfs->ns_sem);
510         if (nilfs_sb_dirty(nilfs)) {
511                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
512                 if (likely(sbp)) {
513                         nilfs_set_log_cursor(sbp[0], nilfs);
514                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
515                 }
516         }
517         up_write(&nilfs->ns_sem);
518
519         if (!err)
520                 err = nilfs_flush_device(nilfs);
521
522         return err;
523 }
524
525 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
526                             struct nilfs_root **rootp)
527 {
528         struct the_nilfs *nilfs = sb->s_fs_info;
529         struct nilfs_root *root;
530         struct nilfs_checkpoint *raw_cp;
531         struct buffer_head *bh_cp;
532         int err = -ENOMEM;
533
534         root = nilfs_find_or_create_root(
535                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
536         if (!root)
537                 return err;
538
539         if (root->ifile)
540                 goto reuse; /* already attached checkpoint */
541
542         down_read(&nilfs->ns_segctor_sem);
543         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
544                                           &bh_cp);
545         up_read(&nilfs->ns_segctor_sem);
546         if (unlikely(err)) {
547                 if (err == -ENOENT || err == -EINVAL) {
548                         printk(KERN_ERR
549                                "NILFS: Invalid checkpoint "
550                                "(checkpoint number=%llu)\n",
551                                (unsigned long long)cno);
552                         err = -EINVAL;
553                 }
554                 goto failed;
555         }
556
557         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
558                                &raw_cp->cp_ifile_inode, &root->ifile);
559         if (err)
560                 goto failed_bh;
561
562         atomic64_set(&root->inodes_count,
563                         le64_to_cpu(raw_cp->cp_inodes_count));
564         atomic64_set(&root->blocks_count,
565                         le64_to_cpu(raw_cp->cp_blocks_count));
566
567         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
568
569  reuse:
570         *rootp = root;
571         return 0;
572
573  failed_bh:
574         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
575  failed:
576         nilfs_put_root(root);
577
578         return err;
579 }
580
581 static int nilfs_freeze(struct super_block *sb)
582 {
583         struct the_nilfs *nilfs = sb->s_fs_info;
584         int err;
585
586         if (sb->s_flags & MS_RDONLY)
587                 return 0;
588
589         /* Mark super block clean */
590         down_write(&nilfs->ns_sem);
591         err = nilfs_cleanup_super(sb);
592         up_write(&nilfs->ns_sem);
593         return err;
594 }
595
596 static int nilfs_unfreeze(struct super_block *sb)
597 {
598         struct the_nilfs *nilfs = sb->s_fs_info;
599
600         if (sb->s_flags & MS_RDONLY)
601                 return 0;
602
603         down_write(&nilfs->ns_sem);
604         nilfs_setup_super(sb, false);
605         up_write(&nilfs->ns_sem);
606         return 0;
607 }
608
609 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
610 {
611         struct super_block *sb = dentry->d_sb;
612         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
613         struct the_nilfs *nilfs = root->nilfs;
614         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
615         unsigned long long blocks;
616         unsigned long overhead;
617         unsigned long nrsvblocks;
618         sector_t nfreeblocks;
619         u64 nmaxinodes, nfreeinodes;
620         int err;
621
622         /*
623          * Compute all of the segment blocks
624          *
625          * The blocks before first segment and after last segment
626          * are excluded.
627          */
628         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
629                 - nilfs->ns_first_data_block;
630         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
631
632         /*
633          * Compute the overhead
634          *
635          * When distributing meta data blocks outside segment structure,
636          * We must count them as the overhead.
637          */
638         overhead = 0;
639
640         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
641         if (unlikely(err))
642                 return err;
643
644         err = nilfs_ifile_count_free_inodes(root->ifile,
645                                             &nmaxinodes, &nfreeinodes);
646         if (unlikely(err)) {
647                 printk(KERN_WARNING
648                         "NILFS warning: fail to count free inodes: err %d.\n",
649                         err);
650                 if (err == -ERANGE) {
651                         /*
652                          * If nilfs_palloc_count_max_entries() returns
653                          * -ERANGE error code then we simply treat
654                          * curent inodes count as maximum possible and
655                          * zero as free inodes value.
656                          */
657                         nmaxinodes = atomic64_read(&root->inodes_count);
658                         nfreeinodes = 0;
659                         err = 0;
660                 } else
661                         return err;
662         }
663
664         buf->f_type = NILFS_SUPER_MAGIC;
665         buf->f_bsize = sb->s_blocksize;
666         buf->f_blocks = blocks - overhead;
667         buf->f_bfree = nfreeblocks;
668         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
669                 (buf->f_bfree - nrsvblocks) : 0;
670         buf->f_files = nmaxinodes;
671         buf->f_ffree = nfreeinodes;
672         buf->f_namelen = NILFS_NAME_LEN;
673         buf->f_fsid.val[0] = (u32)id;
674         buf->f_fsid.val[1] = (u32)(id >> 32);
675
676         return 0;
677 }
678
679 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
680 {
681         struct super_block *sb = dentry->d_sb;
682         struct the_nilfs *nilfs = sb->s_fs_info;
683         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
684
685         if (!nilfs_test_opt(nilfs, BARRIER))
686                 seq_puts(seq, ",nobarrier");
687         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
688                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
689         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
690                 seq_puts(seq, ",errors=panic");
691         if (nilfs_test_opt(nilfs, ERRORS_CONT))
692                 seq_puts(seq, ",errors=continue");
693         if (nilfs_test_opt(nilfs, STRICT_ORDER))
694                 seq_puts(seq, ",order=strict");
695         if (nilfs_test_opt(nilfs, NORECOVERY))
696                 seq_puts(seq, ",norecovery");
697         if (nilfs_test_opt(nilfs, DISCARD))
698                 seq_puts(seq, ",discard");
699
700         return 0;
701 }
702
703 static const struct super_operations nilfs_sops = {
704         .alloc_inode    = nilfs_alloc_inode,
705         .destroy_inode  = nilfs_destroy_inode,
706         .dirty_inode    = nilfs_dirty_inode,
707         .evict_inode    = nilfs_evict_inode,
708         .put_super      = nilfs_put_super,
709         .sync_fs        = nilfs_sync_fs,
710         .freeze_fs      = nilfs_freeze,
711         .unfreeze_fs    = nilfs_unfreeze,
712         .statfs         = nilfs_statfs,
713         .remount_fs     = nilfs_remount,
714         .show_options = nilfs_show_options
715 };
716
717 enum {
718         Opt_err_cont, Opt_err_panic, Opt_err_ro,
719         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
720         Opt_discard, Opt_nodiscard, Opt_err,
721 };
722
723 static match_table_t tokens = {
724         {Opt_err_cont, "errors=continue"},
725         {Opt_err_panic, "errors=panic"},
726         {Opt_err_ro, "errors=remount-ro"},
727         {Opt_barrier, "barrier"},
728         {Opt_nobarrier, "nobarrier"},
729         {Opt_snapshot, "cp=%u"},
730         {Opt_order, "order=%s"},
731         {Opt_norecovery, "norecovery"},
732         {Opt_discard, "discard"},
733         {Opt_nodiscard, "nodiscard"},
734         {Opt_err, NULL}
735 };
736
737 static int parse_options(char *options, struct super_block *sb, int is_remount)
738 {
739         struct the_nilfs *nilfs = sb->s_fs_info;
740         char *p;
741         substring_t args[MAX_OPT_ARGS];
742
743         if (!options)
744                 return 1;
745
746         while ((p = strsep(&options, ",")) != NULL) {
747                 int token;
748
749                 if (!*p)
750                         continue;
751
752                 token = match_token(p, tokens, args);
753                 switch (token) {
754                 case Opt_barrier:
755                         nilfs_set_opt(nilfs, BARRIER);
756                         break;
757                 case Opt_nobarrier:
758                         nilfs_clear_opt(nilfs, BARRIER);
759                         break;
760                 case Opt_order:
761                         if (strcmp(args[0].from, "relaxed") == 0)
762                                 /* Ordered data semantics */
763                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
764                         else if (strcmp(args[0].from, "strict") == 0)
765                                 /* Strict in-order semantics */
766                                 nilfs_set_opt(nilfs, STRICT_ORDER);
767                         else
768                                 return 0;
769                         break;
770                 case Opt_err_panic:
771                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
772                         break;
773                 case Opt_err_ro:
774                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
775                         break;
776                 case Opt_err_cont:
777                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
778                         break;
779                 case Opt_snapshot:
780                         if (is_remount) {
781                                 printk(KERN_ERR
782                                        "NILFS: \"%s\" option is invalid "
783                                        "for remount.\n", p);
784                                 return 0;
785                         }
786                         break;
787                 case Opt_norecovery:
788                         nilfs_set_opt(nilfs, NORECOVERY);
789                         break;
790                 case Opt_discard:
791                         nilfs_set_opt(nilfs, DISCARD);
792                         break;
793                 case Opt_nodiscard:
794                         nilfs_clear_opt(nilfs, DISCARD);
795                         break;
796                 default:
797                         printk(KERN_ERR
798                                "NILFS: Unrecognized mount option \"%s\"\n", p);
799                         return 0;
800                 }
801         }
802         return 1;
803 }
804
805 static inline void
806 nilfs_set_default_options(struct super_block *sb,
807                           struct nilfs_super_block *sbp)
808 {
809         struct the_nilfs *nilfs = sb->s_fs_info;
810
811         nilfs->ns_mount_opt =
812                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
813 }
814
815 static int nilfs_setup_super(struct super_block *sb, int is_mount)
816 {
817         struct the_nilfs *nilfs = sb->s_fs_info;
818         struct nilfs_super_block **sbp;
819         int max_mnt_count;
820         int mnt_count;
821
822         /* nilfs->ns_sem must be locked by the caller. */
823         sbp = nilfs_prepare_super(sb, 0);
824         if (!sbp)
825                 return -EIO;
826
827         if (!is_mount)
828                 goto skip_mount_setup;
829
830         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
831         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
832
833         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
834                 printk(KERN_WARNING
835                        "NILFS warning: mounting fs with errors\n");
836 #if 0
837         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
838                 printk(KERN_WARNING
839                        "NILFS warning: maximal mount count reached\n");
840 #endif
841         }
842         if (!max_mnt_count)
843                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
844
845         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
846         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
847
848 skip_mount_setup:
849         sbp[0]->s_state =
850                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
851         /* synchronize sbp[1] with sbp[0] */
852         if (sbp[1])
853                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
854         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
855 }
856
857 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
858                                                  u64 pos, int blocksize,
859                                                  struct buffer_head **pbh)
860 {
861         unsigned long long sb_index = pos;
862         unsigned long offset;
863
864         offset = do_div(sb_index, blocksize);
865         *pbh = sb_bread(sb, sb_index);
866         if (!*pbh)
867                 return NULL;
868         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
869 }
870
871 int nilfs_store_magic_and_option(struct super_block *sb,
872                                  struct nilfs_super_block *sbp,
873                                  char *data)
874 {
875         struct the_nilfs *nilfs = sb->s_fs_info;
876
877         sb->s_magic = le16_to_cpu(sbp->s_magic);
878
879         /* FS independent flags */
880 #ifdef NILFS_ATIME_DISABLE
881         sb->s_flags |= MS_NOATIME;
882 #endif
883
884         nilfs_set_default_options(sb, sbp);
885
886         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
887         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
888         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
889         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
890
891         return !parse_options(data, sb, 0) ? -EINVAL : 0;
892 }
893
894 int nilfs_check_feature_compatibility(struct super_block *sb,
895                                       struct nilfs_super_block *sbp)
896 {
897         __u64 features;
898
899         features = le64_to_cpu(sbp->s_feature_incompat) &
900                 ~NILFS_FEATURE_INCOMPAT_SUPP;
901         if (features) {
902                 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
903                        "optional features (%llx)\n",
904                        (unsigned long long)features);
905                 return -EINVAL;
906         }
907         features = le64_to_cpu(sbp->s_feature_compat_ro) &
908                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
909         if (!(sb->s_flags & MS_RDONLY) && features) {
910                 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
911                        "unsupported optional features (%llx)\n",
912                        (unsigned long long)features);
913                 return -EINVAL;
914         }
915         return 0;
916 }
917
918 static int nilfs_get_root_dentry(struct super_block *sb,
919                                  struct nilfs_root *root,
920                                  struct dentry **root_dentry)
921 {
922         struct inode *inode;
923         struct dentry *dentry;
924         int ret = 0;
925
926         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
927         if (IS_ERR(inode)) {
928                 printk(KERN_ERR "NILFS: get root inode failed\n");
929                 ret = PTR_ERR(inode);
930                 goto out;
931         }
932         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
933                 iput(inode);
934                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
935                 ret = -EINVAL;
936                 goto out;
937         }
938
939         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
940                 dentry = d_find_alias(inode);
941                 if (!dentry) {
942                         dentry = d_make_root(inode);
943                         if (!dentry) {
944                                 ret = -ENOMEM;
945                                 goto failed_dentry;
946                         }
947                 } else {
948                         iput(inode);
949                 }
950         } else {
951                 dentry = d_obtain_root(inode);
952                 if (IS_ERR(dentry)) {
953                         ret = PTR_ERR(dentry);
954                         goto failed_dentry;
955                 }
956         }
957         *root_dentry = dentry;
958  out:
959         return ret;
960
961  failed_dentry:
962         printk(KERN_ERR "NILFS: get root dentry failed\n");
963         goto out;
964 }
965
966 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
967                                  struct dentry **root_dentry)
968 {
969         struct the_nilfs *nilfs = s->s_fs_info;
970         struct nilfs_root *root;
971         int ret;
972
973         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
974
975         down_read(&nilfs->ns_segctor_sem);
976         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
977         up_read(&nilfs->ns_segctor_sem);
978         if (ret < 0) {
979                 ret = (ret == -ENOENT) ? -EINVAL : ret;
980                 goto out;
981         } else if (!ret) {
982                 printk(KERN_ERR "NILFS: The specified checkpoint is "
983                        "not a snapshot (checkpoint number=%llu).\n",
984                        (unsigned long long)cno);
985                 ret = -EINVAL;
986                 goto out;
987         }
988
989         ret = nilfs_attach_checkpoint(s, cno, false, &root);
990         if (ret) {
991                 printk(KERN_ERR "NILFS: error loading snapshot "
992                        "(checkpoint number=%llu).\n",
993                (unsigned long long)cno);
994                 goto out;
995         }
996         ret = nilfs_get_root_dentry(s, root, root_dentry);
997         nilfs_put_root(root);
998  out:
999         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1000         return ret;
1001 }
1002
1003 /**
1004  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1005  * @root_dentry: root dentry of the tree to be shrunk
1006  *
1007  * This function returns true if the tree was in-use.
1008  */
1009 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1010 {
1011         shrink_dcache_parent(root_dentry);
1012         return d_count(root_dentry) > 1;
1013 }
1014
1015 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1016 {
1017         struct the_nilfs *nilfs = sb->s_fs_info;
1018         struct nilfs_root *root;
1019         struct inode *inode;
1020         struct dentry *dentry;
1021         int ret;
1022
1023         if (cno > nilfs->ns_cno)
1024                 return false;
1025
1026         if (cno >= nilfs_last_cno(nilfs))
1027                 return true;    /* protect recent checkpoints */
1028
1029         ret = false;
1030         root = nilfs_lookup_root(nilfs, cno);
1031         if (root) {
1032                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1033                 if (inode) {
1034                         dentry = d_find_alias(inode);
1035                         if (dentry) {
1036                                 ret = nilfs_tree_is_busy(dentry);
1037                                 dput(dentry);
1038                         }
1039                         iput(inode);
1040                 }
1041                 nilfs_put_root(root);
1042         }
1043         return ret;
1044 }
1045
1046 /**
1047  * nilfs_fill_super() - initialize a super block instance
1048  * @sb: super_block
1049  * @data: mount options
1050  * @silent: silent mode flag
1051  *
1052  * This function is called exclusively by nilfs->ns_mount_mutex.
1053  * So, the recovery process is protected from other simultaneous mounts.
1054  */
1055 static int
1056 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1057 {
1058         struct the_nilfs *nilfs;
1059         struct nilfs_root *fsroot;
1060         __u64 cno;
1061         int err;
1062
1063         nilfs = alloc_nilfs(sb->s_bdev);
1064         if (!nilfs)
1065                 return -ENOMEM;
1066
1067         sb->s_fs_info = nilfs;
1068
1069         err = init_nilfs(nilfs, sb, (char *)data);
1070         if (err)
1071                 goto failed_nilfs;
1072
1073         sb->s_op = &nilfs_sops;
1074         sb->s_export_op = &nilfs_export_ops;
1075         sb->s_root = NULL;
1076         sb->s_time_gran = 1;
1077         sb->s_max_links = NILFS_LINK_MAX;
1078
1079         sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1080
1081         err = load_nilfs(nilfs, sb);
1082         if (err)
1083                 goto failed_nilfs;
1084
1085         cno = nilfs_last_cno(nilfs);
1086         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1087         if (err) {
1088                 printk(KERN_ERR "NILFS: error loading last checkpoint "
1089                        "(checkpoint number=%llu).\n", (unsigned long long)cno);
1090                 goto failed_unload;
1091         }
1092
1093         if (!(sb->s_flags & MS_RDONLY)) {
1094                 err = nilfs_attach_log_writer(sb, fsroot);
1095                 if (err)
1096                         goto failed_checkpoint;
1097         }
1098
1099         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1100         if (err)
1101                 goto failed_segctor;
1102
1103         nilfs_put_root(fsroot);
1104
1105         if (!(sb->s_flags & MS_RDONLY)) {
1106                 down_write(&nilfs->ns_sem);
1107                 nilfs_setup_super(sb, true);
1108                 up_write(&nilfs->ns_sem);
1109         }
1110
1111         return 0;
1112
1113  failed_segctor:
1114         nilfs_detach_log_writer(sb);
1115
1116  failed_checkpoint:
1117         nilfs_put_root(fsroot);
1118
1119  failed_unload:
1120         iput(nilfs->ns_sufile);
1121         iput(nilfs->ns_cpfile);
1122         iput(nilfs->ns_dat);
1123
1124  failed_nilfs:
1125         destroy_nilfs(nilfs);
1126         return err;
1127 }
1128
1129 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1130 {
1131         struct the_nilfs *nilfs = sb->s_fs_info;
1132         unsigned long old_sb_flags;
1133         unsigned long old_mount_opt;
1134         int err;
1135
1136         sync_filesystem(sb);
1137         old_sb_flags = sb->s_flags;
1138         old_mount_opt = nilfs->ns_mount_opt;
1139
1140         if (!parse_options(data, sb, 1)) {
1141                 err = -EINVAL;
1142                 goto restore_opts;
1143         }
1144         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1145
1146         err = -EINVAL;
1147
1148         if (!nilfs_valid_fs(nilfs)) {
1149                 printk(KERN_WARNING "NILFS (device %s): couldn't "
1150                        "remount because the filesystem is in an "
1151                        "incomplete recovery state.\n", sb->s_id);
1152                 goto restore_opts;
1153         }
1154
1155         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1156                 goto out;
1157         if (*flags & MS_RDONLY) {
1158                 /* Shutting down log writer */
1159                 nilfs_detach_log_writer(sb);
1160                 sb->s_flags |= MS_RDONLY;
1161
1162                 /*
1163                  * Remounting a valid RW partition RDONLY, so set
1164                  * the RDONLY flag and then mark the partition as valid again.
1165                  */
1166                 down_write(&nilfs->ns_sem);
1167                 nilfs_cleanup_super(sb);
1168                 up_write(&nilfs->ns_sem);
1169         } else {
1170                 __u64 features;
1171                 struct nilfs_root *root;
1172
1173                 /*
1174                  * Mounting a RDONLY partition read-write, so reread and
1175                  * store the current valid flag.  (It may have been changed
1176                  * by fsck since we originally mounted the partition.)
1177                  */
1178                 down_read(&nilfs->ns_sem);
1179                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1180                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1181                 up_read(&nilfs->ns_sem);
1182                 if (features) {
1183                         printk(KERN_WARNING "NILFS (device %s): couldn't "
1184                                "remount RDWR because of unsupported optional "
1185                                "features (%llx)\n",
1186                                sb->s_id, (unsigned long long)features);
1187                         err = -EROFS;
1188                         goto restore_opts;
1189                 }
1190
1191                 sb->s_flags &= ~MS_RDONLY;
1192
1193                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1194                 err = nilfs_attach_log_writer(sb, root);
1195                 if (err)
1196                         goto restore_opts;
1197
1198                 down_write(&nilfs->ns_sem);
1199                 nilfs_setup_super(sb, true);
1200                 up_write(&nilfs->ns_sem);
1201         }
1202  out:
1203         return 0;
1204
1205  restore_opts:
1206         sb->s_flags = old_sb_flags;
1207         nilfs->ns_mount_opt = old_mount_opt;
1208         return err;
1209 }
1210
1211 struct nilfs_super_data {
1212         struct block_device *bdev;
1213         __u64 cno;
1214         int flags;
1215 };
1216
1217 /**
1218  * nilfs_identify - pre-read mount options needed to identify mount instance
1219  * @data: mount options
1220  * @sd: nilfs_super_data
1221  */
1222 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1223 {
1224         char *p, *options = data;
1225         substring_t args[MAX_OPT_ARGS];
1226         int token;
1227         int ret = 0;
1228
1229         do {
1230                 p = strsep(&options, ",");
1231                 if (p != NULL && *p) {
1232                         token = match_token(p, tokens, args);
1233                         if (token == Opt_snapshot) {
1234                                 if (!(sd->flags & MS_RDONLY)) {
1235                                         ret++;
1236                                 } else {
1237                                         sd->cno = simple_strtoull(args[0].from,
1238                                                                   NULL, 0);
1239                                         /*
1240                                          * No need to see the end pointer;
1241                                          * match_token() has done syntax
1242                                          * checking.
1243                                          */
1244                                         if (sd->cno == 0)
1245                                                 ret++;
1246                                 }
1247                         }
1248                         if (ret)
1249                                 printk(KERN_ERR
1250                                        "NILFS: invalid mount option: %s\n", p);
1251                 }
1252                 if (!options)
1253                         break;
1254                 BUG_ON(options == data);
1255                 *(options - 1) = ',';
1256         } while (!ret);
1257         return ret;
1258 }
1259
1260 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1261 {
1262         s->s_bdev = data;
1263         s->s_dev = s->s_bdev->bd_dev;
1264         return 0;
1265 }
1266
1267 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1268 {
1269         return (void *)s->s_bdev == data;
1270 }
1271
1272 static struct dentry *
1273 nilfs_mount(struct file_system_type *fs_type, int flags,
1274              const char *dev_name, void *data)
1275 {
1276         struct nilfs_super_data sd;
1277         struct super_block *s;
1278         fmode_t mode = FMODE_READ | FMODE_EXCL;
1279         struct dentry *root_dentry;
1280         int err, s_new = false;
1281
1282         if (!(flags & MS_RDONLY))
1283                 mode |= FMODE_WRITE;
1284
1285         sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1286         if (IS_ERR(sd.bdev))
1287                 return ERR_CAST(sd.bdev);
1288
1289         sd.cno = 0;
1290         sd.flags = flags;
1291         if (nilfs_identify((char *)data, &sd)) {
1292                 err = -EINVAL;
1293                 goto failed;
1294         }
1295
1296         /*
1297          * once the super is inserted into the list by sget, s_umount
1298          * will protect the lockfs code from trying to start a snapshot
1299          * while we are mounting
1300          */
1301         mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1302         if (sd.bdev->bd_fsfreeze_count > 0) {
1303                 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304                 err = -EBUSY;
1305                 goto failed;
1306         }
1307         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1308                  sd.bdev);
1309         mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1310         if (IS_ERR(s)) {
1311                 err = PTR_ERR(s);
1312                 goto failed;
1313         }
1314
1315         if (!s->s_root) {
1316                 s_new = true;
1317
1318                 /* New superblock instance created */
1319                 s->s_mode = mode;
1320                 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1321                 sb_set_blocksize(s, block_size(sd.bdev));
1322
1323                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1324                 if (err)
1325                         goto failed_super;
1326
1327                 s->s_flags |= MS_ACTIVE;
1328         } else if (!sd.cno) {
1329                 if (nilfs_tree_is_busy(s->s_root)) {
1330                         if ((flags ^ s->s_flags) & MS_RDONLY) {
1331                                 printk(KERN_ERR "NILFS: the device already "
1332                                        "has a %s mount.\n",
1333                                        (s->s_flags & MS_RDONLY) ?
1334                                        "read-only" : "read/write");
1335                                 err = -EBUSY;
1336                                 goto failed_super;
1337                         }
1338                 } else {
1339                         /*
1340                          * Try remount to setup mount states if the current
1341                          * tree is not mounted and only snapshots use this sb.
1342                          */
1343                         err = nilfs_remount(s, &flags, data);
1344                         if (err)
1345                                 goto failed_super;
1346                 }
1347         }
1348
1349         if (sd.cno) {
1350                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1351                 if (err)
1352                         goto failed_super;
1353         } else {
1354                 root_dentry = dget(s->s_root);
1355         }
1356
1357         if (!s_new)
1358                 blkdev_put(sd.bdev, mode);
1359
1360         return root_dentry;
1361
1362  failed_super:
1363         deactivate_locked_super(s);
1364
1365  failed:
1366         if (!s_new)
1367                 blkdev_put(sd.bdev, mode);
1368         return ERR_PTR(err);
1369 }
1370
1371 struct file_system_type nilfs_fs_type = {
1372         .owner    = THIS_MODULE,
1373         .name     = "nilfs2",
1374         .mount    = nilfs_mount,
1375         .kill_sb  = kill_block_super,
1376         .fs_flags = FS_REQUIRES_DEV,
1377 };
1378 MODULE_ALIAS_FS("nilfs2");
1379
1380 static void nilfs_inode_init_once(void *obj)
1381 {
1382         struct nilfs_inode_info *ii = obj;
1383
1384         INIT_LIST_HEAD(&ii->i_dirty);
1385 #ifdef CONFIG_NILFS_XATTR
1386         init_rwsem(&ii->xattr_sem);
1387 #endif
1388         address_space_init_once(&ii->i_btnode_cache);
1389         ii->i_bmap = &ii->i_bmap_data;
1390         inode_init_once(&ii->vfs_inode);
1391 }
1392
1393 static void nilfs_segbuf_init_once(void *obj)
1394 {
1395         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1396 }
1397
1398 static void nilfs_destroy_cachep(void)
1399 {
1400         /*
1401          * Make sure all delayed rcu free inodes are flushed before we
1402          * destroy cache.
1403          */
1404         rcu_barrier();
1405
1406         kmem_cache_destroy(nilfs_inode_cachep);
1407         kmem_cache_destroy(nilfs_transaction_cachep);
1408         kmem_cache_destroy(nilfs_segbuf_cachep);
1409         kmem_cache_destroy(nilfs_btree_path_cache);
1410 }
1411
1412 static int __init nilfs_init_cachep(void)
1413 {
1414         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1415                         sizeof(struct nilfs_inode_info), 0,
1416                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1417                         nilfs_inode_init_once);
1418         if (!nilfs_inode_cachep)
1419                 goto fail;
1420
1421         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1422                         sizeof(struct nilfs_transaction_info), 0,
1423                         SLAB_RECLAIM_ACCOUNT, NULL);
1424         if (!nilfs_transaction_cachep)
1425                 goto fail;
1426
1427         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1428                         sizeof(struct nilfs_segment_buffer), 0,
1429                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1430         if (!nilfs_segbuf_cachep)
1431                 goto fail;
1432
1433         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1434                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1435                         0, 0, NULL);
1436         if (!nilfs_btree_path_cache)
1437                 goto fail;
1438
1439         return 0;
1440
1441 fail:
1442         nilfs_destroy_cachep();
1443         return -ENOMEM;
1444 }
1445
1446 static int __init init_nilfs_fs(void)
1447 {
1448         int err;
1449
1450         err = nilfs_init_cachep();
1451         if (err)
1452                 goto fail;
1453
1454         err = nilfs_sysfs_init();
1455         if (err)
1456                 goto free_cachep;
1457
1458         err = register_filesystem(&nilfs_fs_type);
1459         if (err)
1460                 goto deinit_sysfs_entry;
1461
1462         printk(KERN_INFO "NILFS version 2 loaded\n");
1463         return 0;
1464
1465 deinit_sysfs_entry:
1466         nilfs_sysfs_exit();
1467 free_cachep:
1468         nilfs_destroy_cachep();
1469 fail:
1470         return err;
1471 }
1472
1473 static void __exit exit_nilfs_fs(void)
1474 {
1475         nilfs_destroy_cachep();
1476         nilfs_sysfs_exit();
1477         unregister_filesystem(&nilfs_fs_type);
1478 }
1479
1480 module_init(init_nilfs_fs)
1481 module_exit(exit_nilfs_fs)