Merge tag 'mac80211-next-for-john-2014-11-04' of git://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / fs / ntfs / file.c
1 /*
2  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21
22 #include <linux/buffer_head.h>
23 #include <linux/gfp.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/sched.h>
27 #include <linux/swap.h>
28 #include <linux/uio.h>
29 #include <linux/writeback.h>
30 #include <linux/aio.h>
31
32 #include <asm/page.h>
33 #include <asm/uaccess.h>
34
35 #include "attrib.h"
36 #include "bitmap.h"
37 #include "inode.h"
38 #include "debug.h"
39 #include "lcnalloc.h"
40 #include "malloc.h"
41 #include "mft.h"
42 #include "ntfs.h"
43
44 /**
45  * ntfs_file_open - called when an inode is about to be opened
46  * @vi:         inode to be opened
47  * @filp:       file structure describing the inode
48  *
49  * Limit file size to the page cache limit on architectures where unsigned long
50  * is 32-bits. This is the most we can do for now without overflowing the page
51  * cache page index. Doing it this way means we don't run into problems because
52  * of existing too large files. It would be better to allow the user to read
53  * the beginning of the file but I doubt very much anyone is going to hit this
54  * check on a 32-bit architecture, so there is no point in adding the extra
55  * complexity required to support this.
56  *
57  * On 64-bit architectures, the check is hopefully optimized away by the
58  * compiler.
59  *
60  * After the check passes, just call generic_file_open() to do its work.
61  */
62 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 {
64         if (sizeof(unsigned long) < 8) {
65                 if (i_size_read(vi) > MAX_LFS_FILESIZE)
66                         return -EOVERFLOW;
67         }
68         return generic_file_open(vi, filp);
69 }
70
71 #ifdef NTFS_RW
72
73 /**
74  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
75  * @ni:                 ntfs inode of the attribute to extend
76  * @new_init_size:      requested new initialized size in bytes
77  *
78  * Extend the initialized size of an attribute described by the ntfs inode @ni
79  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
80  * the old initialized size and @new_init_size both in the page cache and on
81  * disk (if relevant complete pages are already uptodate in the page cache then
82  * these are simply marked dirty).
83  *
84  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85  * in the resident attribute case, it is tied to the initialized size and, in
86  * the non-resident attribute case, it may not fall below the initialized size.
87  *
88  * Note that if the attribute is resident, we do not need to touch the page
89  * cache at all.  This is because if the page cache page is not uptodate we
90  * bring it uptodate later, when doing the write to the mft record since we
91  * then already have the page mapped.  And if the page is uptodate, the
92  * non-initialized region will already have been zeroed when the page was
93  * brought uptodate and the region may in fact already have been overwritten
94  * with new data via mmap() based writes, so we cannot just zero it.  And since
95  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96  * is unspecified, we choose not to do zeroing and thus we do not need to touch
97  * the page at all.  For a more detailed explanation see ntfs_truncate() in
98  * fs/ntfs/inode.c.
99  *
100  * Return 0 on success and -errno on error.  In the case that an error is
101  * encountered it is possible that the initialized size will already have been
102  * incremented some way towards @new_init_size but it is guaranteed that if
103  * this is the case, the necessary zeroing will also have happened and that all
104  * metadata is self-consistent.
105  *
106  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
107  *          held by the caller.
108  */
109 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
110 {
111         s64 old_init_size;
112         loff_t old_i_size;
113         pgoff_t index, end_index;
114         unsigned long flags;
115         struct inode *vi = VFS_I(ni);
116         ntfs_inode *base_ni;
117         MFT_RECORD *m = NULL;
118         ATTR_RECORD *a;
119         ntfs_attr_search_ctx *ctx = NULL;
120         struct address_space *mapping;
121         struct page *page = NULL;
122         u8 *kattr;
123         int err;
124         u32 attr_len;
125
126         read_lock_irqsave(&ni->size_lock, flags);
127         old_init_size = ni->initialized_size;
128         old_i_size = i_size_read(vi);
129         BUG_ON(new_init_size > ni->allocated_size);
130         read_unlock_irqrestore(&ni->size_lock, flags);
131         ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
132                         "old_initialized_size 0x%llx, "
133                         "new_initialized_size 0x%llx, i_size 0x%llx.",
134                         vi->i_ino, (unsigned)le32_to_cpu(ni->type),
135                         (unsigned long long)old_init_size,
136                         (unsigned long long)new_init_size, old_i_size);
137         if (!NInoAttr(ni))
138                 base_ni = ni;
139         else
140                 base_ni = ni->ext.base_ntfs_ino;
141         /* Use goto to reduce indentation and we need the label below anyway. */
142         if (NInoNonResident(ni))
143                 goto do_non_resident_extend;
144         BUG_ON(old_init_size != old_i_size);
145         m = map_mft_record(base_ni);
146         if (IS_ERR(m)) {
147                 err = PTR_ERR(m);
148                 m = NULL;
149                 goto err_out;
150         }
151         ctx = ntfs_attr_get_search_ctx(base_ni, m);
152         if (unlikely(!ctx)) {
153                 err = -ENOMEM;
154                 goto err_out;
155         }
156         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
157                         CASE_SENSITIVE, 0, NULL, 0, ctx);
158         if (unlikely(err)) {
159                 if (err == -ENOENT)
160                         err = -EIO;
161                 goto err_out;
162         }
163         m = ctx->mrec;
164         a = ctx->attr;
165         BUG_ON(a->non_resident);
166         /* The total length of the attribute value. */
167         attr_len = le32_to_cpu(a->data.resident.value_length);
168         BUG_ON(old_i_size != (loff_t)attr_len);
169         /*
170          * Do the zeroing in the mft record and update the attribute size in
171          * the mft record.
172          */
173         kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
174         memset(kattr + attr_len, 0, new_init_size - attr_len);
175         a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
176         /* Finally, update the sizes in the vfs and ntfs inodes. */
177         write_lock_irqsave(&ni->size_lock, flags);
178         i_size_write(vi, new_init_size);
179         ni->initialized_size = new_init_size;
180         write_unlock_irqrestore(&ni->size_lock, flags);
181         goto done;
182 do_non_resident_extend:
183         /*
184          * If the new initialized size @new_init_size exceeds the current file
185          * size (vfs inode->i_size), we need to extend the file size to the
186          * new initialized size.
187          */
188         if (new_init_size > old_i_size) {
189                 m = map_mft_record(base_ni);
190                 if (IS_ERR(m)) {
191                         err = PTR_ERR(m);
192                         m = NULL;
193                         goto err_out;
194                 }
195                 ctx = ntfs_attr_get_search_ctx(base_ni, m);
196                 if (unlikely(!ctx)) {
197                         err = -ENOMEM;
198                         goto err_out;
199                 }
200                 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
201                                 CASE_SENSITIVE, 0, NULL, 0, ctx);
202                 if (unlikely(err)) {
203                         if (err == -ENOENT)
204                                 err = -EIO;
205                         goto err_out;
206                 }
207                 m = ctx->mrec;
208                 a = ctx->attr;
209                 BUG_ON(!a->non_resident);
210                 BUG_ON(old_i_size != (loff_t)
211                                 sle64_to_cpu(a->data.non_resident.data_size));
212                 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
213                 flush_dcache_mft_record_page(ctx->ntfs_ino);
214                 mark_mft_record_dirty(ctx->ntfs_ino);
215                 /* Update the file size in the vfs inode. */
216                 i_size_write(vi, new_init_size);
217                 ntfs_attr_put_search_ctx(ctx);
218                 ctx = NULL;
219                 unmap_mft_record(base_ni);
220                 m = NULL;
221         }
222         mapping = vi->i_mapping;
223         index = old_init_size >> PAGE_CACHE_SHIFT;
224         end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
225         do {
226                 /*
227                  * Read the page.  If the page is not present, this will zero
228                  * the uninitialized regions for us.
229                  */
230                 page = read_mapping_page(mapping, index, NULL);
231                 if (IS_ERR(page)) {
232                         err = PTR_ERR(page);
233                         goto init_err_out;
234                 }
235                 if (unlikely(PageError(page))) {
236                         page_cache_release(page);
237                         err = -EIO;
238                         goto init_err_out;
239                 }
240                 /*
241                  * Update the initialized size in the ntfs inode.  This is
242                  * enough to make ntfs_writepage() work.
243                  */
244                 write_lock_irqsave(&ni->size_lock, flags);
245                 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
246                 if (ni->initialized_size > new_init_size)
247                         ni->initialized_size = new_init_size;
248                 write_unlock_irqrestore(&ni->size_lock, flags);
249                 /* Set the page dirty so it gets written out. */
250                 set_page_dirty(page);
251                 page_cache_release(page);
252                 /*
253                  * Play nice with the vm and the rest of the system.  This is
254                  * very much needed as we can potentially be modifying the
255                  * initialised size from a very small value to a really huge
256                  * value, e.g.
257                  *      f = open(somefile, O_TRUNC);
258                  *      truncate(f, 10GiB);
259                  *      seek(f, 10GiB);
260                  *      write(f, 1);
261                  * And this would mean we would be marking dirty hundreds of
262                  * thousands of pages or as in the above example more than
263                  * two and a half million pages!
264                  *
265                  * TODO: For sparse pages could optimize this workload by using
266                  * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
267                  * would be set in readpage for sparse pages and here we would
268                  * not need to mark dirty any pages which have this bit set.
269                  * The only caveat is that we have to clear the bit everywhere
270                  * where we allocate any clusters that lie in the page or that
271                  * contain the page.
272                  *
273                  * TODO: An even greater optimization would be for us to only
274                  * call readpage() on pages which are not in sparse regions as
275                  * determined from the runlist.  This would greatly reduce the
276                  * number of pages we read and make dirty in the case of sparse
277                  * files.
278                  */
279                 balance_dirty_pages_ratelimited(mapping);
280                 cond_resched();
281         } while (++index < end_index);
282         read_lock_irqsave(&ni->size_lock, flags);
283         BUG_ON(ni->initialized_size != new_init_size);
284         read_unlock_irqrestore(&ni->size_lock, flags);
285         /* Now bring in sync the initialized_size in the mft record. */
286         m = map_mft_record(base_ni);
287         if (IS_ERR(m)) {
288                 err = PTR_ERR(m);
289                 m = NULL;
290                 goto init_err_out;
291         }
292         ctx = ntfs_attr_get_search_ctx(base_ni, m);
293         if (unlikely(!ctx)) {
294                 err = -ENOMEM;
295                 goto init_err_out;
296         }
297         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
298                         CASE_SENSITIVE, 0, NULL, 0, ctx);
299         if (unlikely(err)) {
300                 if (err == -ENOENT)
301                         err = -EIO;
302                 goto init_err_out;
303         }
304         m = ctx->mrec;
305         a = ctx->attr;
306         BUG_ON(!a->non_resident);
307         a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
308 done:
309         flush_dcache_mft_record_page(ctx->ntfs_ino);
310         mark_mft_record_dirty(ctx->ntfs_ino);
311         if (ctx)
312                 ntfs_attr_put_search_ctx(ctx);
313         if (m)
314                 unmap_mft_record(base_ni);
315         ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
316                         (unsigned long long)new_init_size, i_size_read(vi));
317         return 0;
318 init_err_out:
319         write_lock_irqsave(&ni->size_lock, flags);
320         ni->initialized_size = old_init_size;
321         write_unlock_irqrestore(&ni->size_lock, flags);
322 err_out:
323         if (ctx)
324                 ntfs_attr_put_search_ctx(ctx);
325         if (m)
326                 unmap_mft_record(base_ni);
327         ntfs_debug("Failed.  Returning error code %i.", err);
328         return err;
329 }
330
331 /**
332  * ntfs_fault_in_pages_readable -
333  *
334  * Fault a number of userspace pages into pagetables.
335  *
336  * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
337  * with more than two userspace pages as well as handling the single page case
338  * elegantly.
339  *
340  * If you find this difficult to understand, then think of the while loop being
341  * the following code, except that we do without the integer variable ret:
342  *
343  *      do {
344  *              ret = __get_user(c, uaddr);
345  *              uaddr += PAGE_SIZE;
346  *      } while (!ret && uaddr < end);
347  *
348  * Note, the final __get_user() may well run out-of-bounds of the user buffer,
349  * but _not_ out-of-bounds of the page the user buffer belongs to, and since
350  * this is only a read and not a write, and since it is still in the same page,
351  * it should not matter and this makes the code much simpler.
352  */
353 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
354                 int bytes)
355 {
356         const char __user *end;
357         volatile char c;
358
359         /* Set @end to the first byte outside the last page we care about. */
360         end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
361
362         while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
363                 ;
364 }
365
366 /**
367  * ntfs_fault_in_pages_readable_iovec -
368  *
369  * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
370  */
371 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
372                 size_t iov_ofs, int bytes)
373 {
374         do {
375                 const char __user *buf;
376                 unsigned len;
377
378                 buf = iov->iov_base + iov_ofs;
379                 len = iov->iov_len - iov_ofs;
380                 if (len > bytes)
381                         len = bytes;
382                 ntfs_fault_in_pages_readable(buf, len);
383                 bytes -= len;
384                 iov++;
385                 iov_ofs = 0;
386         } while (bytes);
387 }
388
389 /**
390  * __ntfs_grab_cache_pages - obtain a number of locked pages
391  * @mapping:    address space mapping from which to obtain page cache pages
392  * @index:      starting index in @mapping at which to begin obtaining pages
393  * @nr_pages:   number of page cache pages to obtain
394  * @pages:      array of pages in which to return the obtained page cache pages
395  * @cached_page: allocated but as yet unused page
396  *
397  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
398  * starting at index @index.
399  *
400  * If a page is newly created, add it to lru list
401  *
402  * Note, the page locks are obtained in ascending page index order.
403  */
404 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
405                 pgoff_t index, const unsigned nr_pages, struct page **pages,
406                 struct page **cached_page)
407 {
408         int err, nr;
409
410         BUG_ON(!nr_pages);
411         err = nr = 0;
412         do {
413                 pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
414                                 FGP_ACCESSED);
415                 if (!pages[nr]) {
416                         if (!*cached_page) {
417                                 *cached_page = page_cache_alloc(mapping);
418                                 if (unlikely(!*cached_page)) {
419                                         err = -ENOMEM;
420                                         goto err_out;
421                                 }
422                         }
423                         err = add_to_page_cache_lru(*cached_page, mapping, index,
424                                         GFP_KERNEL);
425                         if (unlikely(err)) {
426                                 if (err == -EEXIST)
427                                         continue;
428                                 goto err_out;
429                         }
430                         pages[nr] = *cached_page;
431                         *cached_page = NULL;
432                 }
433                 index++;
434                 nr++;
435         } while (nr < nr_pages);
436 out:
437         return err;
438 err_out:
439         while (nr > 0) {
440                 unlock_page(pages[--nr]);
441                 page_cache_release(pages[nr]);
442         }
443         goto out;
444 }
445
446 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
447 {
448         lock_buffer(bh);
449         get_bh(bh);
450         bh->b_end_io = end_buffer_read_sync;
451         return submit_bh(READ, bh);
452 }
453
454 /**
455  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
456  * @pages:      array of destination pages
457  * @nr_pages:   number of pages in @pages
458  * @pos:        byte position in file at which the write begins
459  * @bytes:      number of bytes to be written
460  *
461  * This is called for non-resident attributes from ntfs_file_buffered_write()
462  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
463  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
464  * data has not yet been copied into the @pages.
465  * 
466  * Need to fill any holes with actual clusters, allocate buffers if necessary,
467  * ensure all the buffers are mapped, and bring uptodate any buffers that are
468  * only partially being written to.
469  *
470  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
471  * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
472  * the same cluster and that they are the entirety of that cluster, and that
473  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
474  *
475  * i_size is not to be modified yet.
476  *
477  * Return 0 on success or -errno on error.
478  */
479 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
480                 unsigned nr_pages, s64 pos, size_t bytes)
481 {
482         VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
483         LCN lcn;
484         s64 bh_pos, vcn_len, end, initialized_size;
485         sector_t lcn_block;
486         struct page *page;
487         struct inode *vi;
488         ntfs_inode *ni, *base_ni = NULL;
489         ntfs_volume *vol;
490         runlist_element *rl, *rl2;
491         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
492         ntfs_attr_search_ctx *ctx = NULL;
493         MFT_RECORD *m = NULL;
494         ATTR_RECORD *a = NULL;
495         unsigned long flags;
496         u32 attr_rec_len = 0;
497         unsigned blocksize, u;
498         int err, mp_size;
499         bool rl_write_locked, was_hole, is_retry;
500         unsigned char blocksize_bits;
501         struct {
502                 u8 runlist_merged:1;
503                 u8 mft_attr_mapped:1;
504                 u8 mp_rebuilt:1;
505                 u8 attr_switched:1;
506         } status = { 0, 0, 0, 0 };
507
508         BUG_ON(!nr_pages);
509         BUG_ON(!pages);
510         BUG_ON(!*pages);
511         vi = pages[0]->mapping->host;
512         ni = NTFS_I(vi);
513         vol = ni->vol;
514         ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
515                         "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
516                         vi->i_ino, ni->type, pages[0]->index, nr_pages,
517                         (long long)pos, bytes);
518         blocksize = vol->sb->s_blocksize;
519         blocksize_bits = vol->sb->s_blocksize_bits;
520         u = 0;
521         do {
522                 page = pages[u];
523                 BUG_ON(!page);
524                 /*
525                  * create_empty_buffers() will create uptodate/dirty buffers if
526                  * the page is uptodate/dirty.
527                  */
528                 if (!page_has_buffers(page)) {
529                         create_empty_buffers(page, blocksize, 0);
530                         if (unlikely(!page_has_buffers(page)))
531                                 return -ENOMEM;
532                 }
533         } while (++u < nr_pages);
534         rl_write_locked = false;
535         rl = NULL;
536         err = 0;
537         vcn = lcn = -1;
538         vcn_len = 0;
539         lcn_block = -1;
540         was_hole = false;
541         cpos = pos >> vol->cluster_size_bits;
542         end = pos + bytes;
543         cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
544         /*
545          * Loop over each page and for each page over each buffer.  Use goto to
546          * reduce indentation.
547          */
548         u = 0;
549 do_next_page:
550         page = pages[u];
551         bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
552         bh = head = page_buffers(page);
553         do {
554                 VCN cdelta;
555                 s64 bh_end;
556                 unsigned bh_cofs;
557
558                 /* Clear buffer_new on all buffers to reinitialise state. */
559                 if (buffer_new(bh))
560                         clear_buffer_new(bh);
561                 bh_end = bh_pos + blocksize;
562                 bh_cpos = bh_pos >> vol->cluster_size_bits;
563                 bh_cofs = bh_pos & vol->cluster_size_mask;
564                 if (buffer_mapped(bh)) {
565                         /*
566                          * The buffer is already mapped.  If it is uptodate,
567                          * ignore it.
568                          */
569                         if (buffer_uptodate(bh))
570                                 continue;
571                         /*
572                          * The buffer is not uptodate.  If the page is uptodate
573                          * set the buffer uptodate and otherwise ignore it.
574                          */
575                         if (PageUptodate(page)) {
576                                 set_buffer_uptodate(bh);
577                                 continue;
578                         }
579                         /*
580                          * Neither the page nor the buffer are uptodate.  If
581                          * the buffer is only partially being written to, we
582                          * need to read it in before the write, i.e. now.
583                          */
584                         if ((bh_pos < pos && bh_end > pos) ||
585                                         (bh_pos < end && bh_end > end)) {
586                                 /*
587                                  * If the buffer is fully or partially within
588                                  * the initialized size, do an actual read.
589                                  * Otherwise, simply zero the buffer.
590                                  */
591                                 read_lock_irqsave(&ni->size_lock, flags);
592                                 initialized_size = ni->initialized_size;
593                                 read_unlock_irqrestore(&ni->size_lock, flags);
594                                 if (bh_pos < initialized_size) {
595                                         ntfs_submit_bh_for_read(bh);
596                                         *wait_bh++ = bh;
597                                 } else {
598                                         zero_user(page, bh_offset(bh),
599                                                         blocksize);
600                                         set_buffer_uptodate(bh);
601                                 }
602                         }
603                         continue;
604                 }
605                 /* Unmapped buffer.  Need to map it. */
606                 bh->b_bdev = vol->sb->s_bdev;
607                 /*
608                  * If the current buffer is in the same clusters as the map
609                  * cache, there is no need to check the runlist again.  The
610                  * map cache is made up of @vcn, which is the first cached file
611                  * cluster, @vcn_len which is the number of cached file
612                  * clusters, @lcn is the device cluster corresponding to @vcn,
613                  * and @lcn_block is the block number corresponding to @lcn.
614                  */
615                 cdelta = bh_cpos - vcn;
616                 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
617 map_buffer_cached:
618                         BUG_ON(lcn < 0);
619                         bh->b_blocknr = lcn_block +
620                                         (cdelta << (vol->cluster_size_bits -
621                                         blocksize_bits)) +
622                                         (bh_cofs >> blocksize_bits);
623                         set_buffer_mapped(bh);
624                         /*
625                          * If the page is uptodate so is the buffer.  If the
626                          * buffer is fully outside the write, we ignore it if
627                          * it was already allocated and we mark it dirty so it
628                          * gets written out if we allocated it.  On the other
629                          * hand, if we allocated the buffer but we are not
630                          * marking it dirty we set buffer_new so we can do
631                          * error recovery.
632                          */
633                         if (PageUptodate(page)) {
634                                 if (!buffer_uptodate(bh))
635                                         set_buffer_uptodate(bh);
636                                 if (unlikely(was_hole)) {
637                                         /* We allocated the buffer. */
638                                         unmap_underlying_metadata(bh->b_bdev,
639                                                         bh->b_blocknr);
640                                         if (bh_end <= pos || bh_pos >= end)
641                                                 mark_buffer_dirty(bh);
642                                         else
643                                                 set_buffer_new(bh);
644                                 }
645                                 continue;
646                         }
647                         /* Page is _not_ uptodate. */
648                         if (likely(!was_hole)) {
649                                 /*
650                                  * Buffer was already allocated.  If it is not
651                                  * uptodate and is only partially being written
652                                  * to, we need to read it in before the write,
653                                  * i.e. now.
654                                  */
655                                 if (!buffer_uptodate(bh) && bh_pos < end &&
656                                                 bh_end > pos &&
657                                                 (bh_pos < pos ||
658                                                 bh_end > end)) {
659                                         /*
660                                          * If the buffer is fully or partially
661                                          * within the initialized size, do an
662                                          * actual read.  Otherwise, simply zero
663                                          * the buffer.
664                                          */
665                                         read_lock_irqsave(&ni->size_lock,
666                                                         flags);
667                                         initialized_size = ni->initialized_size;
668                                         read_unlock_irqrestore(&ni->size_lock,
669                                                         flags);
670                                         if (bh_pos < initialized_size) {
671                                                 ntfs_submit_bh_for_read(bh);
672                                                 *wait_bh++ = bh;
673                                         } else {
674                                                 zero_user(page, bh_offset(bh),
675                                                                 blocksize);
676                                                 set_buffer_uptodate(bh);
677                                         }
678                                 }
679                                 continue;
680                         }
681                         /* We allocated the buffer. */
682                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
683                         /*
684                          * If the buffer is fully outside the write, zero it,
685                          * set it uptodate, and mark it dirty so it gets
686                          * written out.  If it is partially being written to,
687                          * zero region surrounding the write but leave it to
688                          * commit write to do anything else.  Finally, if the
689                          * buffer is fully being overwritten, do nothing.
690                          */
691                         if (bh_end <= pos || bh_pos >= end) {
692                                 if (!buffer_uptodate(bh)) {
693                                         zero_user(page, bh_offset(bh),
694                                                         blocksize);
695                                         set_buffer_uptodate(bh);
696                                 }
697                                 mark_buffer_dirty(bh);
698                                 continue;
699                         }
700                         set_buffer_new(bh);
701                         if (!buffer_uptodate(bh) &&
702                                         (bh_pos < pos || bh_end > end)) {
703                                 u8 *kaddr;
704                                 unsigned pofs;
705                                         
706                                 kaddr = kmap_atomic(page);
707                                 if (bh_pos < pos) {
708                                         pofs = bh_pos & ~PAGE_CACHE_MASK;
709                                         memset(kaddr + pofs, 0, pos - bh_pos);
710                                 }
711                                 if (bh_end > end) {
712                                         pofs = end & ~PAGE_CACHE_MASK;
713                                         memset(kaddr + pofs, 0, bh_end - end);
714                                 }
715                                 kunmap_atomic(kaddr);
716                                 flush_dcache_page(page);
717                         }
718                         continue;
719                 }
720                 /*
721                  * Slow path: this is the first buffer in the cluster.  If it
722                  * is outside allocated size and is not uptodate, zero it and
723                  * set it uptodate.
724                  */
725                 read_lock_irqsave(&ni->size_lock, flags);
726                 initialized_size = ni->allocated_size;
727                 read_unlock_irqrestore(&ni->size_lock, flags);
728                 if (bh_pos > initialized_size) {
729                         if (PageUptodate(page)) {
730                                 if (!buffer_uptodate(bh))
731                                         set_buffer_uptodate(bh);
732                         } else if (!buffer_uptodate(bh)) {
733                                 zero_user(page, bh_offset(bh), blocksize);
734                                 set_buffer_uptodate(bh);
735                         }
736                         continue;
737                 }
738                 is_retry = false;
739                 if (!rl) {
740                         down_read(&ni->runlist.lock);
741 retry_remap:
742                         rl = ni->runlist.rl;
743                 }
744                 if (likely(rl != NULL)) {
745                         /* Seek to element containing target cluster. */
746                         while (rl->length && rl[1].vcn <= bh_cpos)
747                                 rl++;
748                         lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
749                         if (likely(lcn >= 0)) {
750                                 /*
751                                  * Successful remap, setup the map cache and
752                                  * use that to deal with the buffer.
753                                  */
754                                 was_hole = false;
755                                 vcn = bh_cpos;
756                                 vcn_len = rl[1].vcn - vcn;
757                                 lcn_block = lcn << (vol->cluster_size_bits -
758                                                 blocksize_bits);
759                                 cdelta = 0;
760                                 /*
761                                  * If the number of remaining clusters touched
762                                  * by the write is smaller or equal to the
763                                  * number of cached clusters, unlock the
764                                  * runlist as the map cache will be used from
765                                  * now on.
766                                  */
767                                 if (likely(vcn + vcn_len >= cend)) {
768                                         if (rl_write_locked) {
769                                                 up_write(&ni->runlist.lock);
770                                                 rl_write_locked = false;
771                                         } else
772                                                 up_read(&ni->runlist.lock);
773                                         rl = NULL;
774                                 }
775                                 goto map_buffer_cached;
776                         }
777                 } else
778                         lcn = LCN_RL_NOT_MAPPED;
779                 /*
780                  * If it is not a hole and not out of bounds, the runlist is
781                  * probably unmapped so try to map it now.
782                  */
783                 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
784                         if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
785                                 /* Attempt to map runlist. */
786                                 if (!rl_write_locked) {
787                                         /*
788                                          * We need the runlist locked for
789                                          * writing, so if it is locked for
790                                          * reading relock it now and retry in
791                                          * case it changed whilst we dropped
792                                          * the lock.
793                                          */
794                                         up_read(&ni->runlist.lock);
795                                         down_write(&ni->runlist.lock);
796                                         rl_write_locked = true;
797                                         goto retry_remap;
798                                 }
799                                 err = ntfs_map_runlist_nolock(ni, bh_cpos,
800                                                 NULL);
801                                 if (likely(!err)) {
802                                         is_retry = true;
803                                         goto retry_remap;
804                                 }
805                                 /*
806                                  * If @vcn is out of bounds, pretend @lcn is
807                                  * LCN_ENOENT.  As long as the buffer is out
808                                  * of bounds this will work fine.
809                                  */
810                                 if (err == -ENOENT) {
811                                         lcn = LCN_ENOENT;
812                                         err = 0;
813                                         goto rl_not_mapped_enoent;
814                                 }
815                         } else
816                                 err = -EIO;
817                         /* Failed to map the buffer, even after retrying. */
818                         bh->b_blocknr = -1;
819                         ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
820                                         "attribute type 0x%x, vcn 0x%llx, "
821                                         "vcn offset 0x%x, because its "
822                                         "location on disk could not be "
823                                         "determined%s (error code %i).",
824                                         ni->mft_no, ni->type,
825                                         (unsigned long long)bh_cpos,
826                                         (unsigned)bh_pos &
827                                         vol->cluster_size_mask,
828                                         is_retry ? " even after retrying" : "",
829                                         err);
830                         break;
831                 }
832 rl_not_mapped_enoent:
833                 /*
834                  * The buffer is in a hole or out of bounds.  We need to fill
835                  * the hole, unless the buffer is in a cluster which is not
836                  * touched by the write, in which case we just leave the buffer
837                  * unmapped.  This can only happen when the cluster size is
838                  * less than the page cache size.
839                  */
840                 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
841                         bh_cend = (bh_end + vol->cluster_size - 1) >>
842                                         vol->cluster_size_bits;
843                         if ((bh_cend <= cpos || bh_cpos >= cend)) {
844                                 bh->b_blocknr = -1;
845                                 /*
846                                  * If the buffer is uptodate we skip it.  If it
847                                  * is not but the page is uptodate, we can set
848                                  * the buffer uptodate.  If the page is not
849                                  * uptodate, we can clear the buffer and set it
850                                  * uptodate.  Whether this is worthwhile is
851                                  * debatable and this could be removed.
852                                  */
853                                 if (PageUptodate(page)) {
854                                         if (!buffer_uptodate(bh))
855                                                 set_buffer_uptodate(bh);
856                                 } else if (!buffer_uptodate(bh)) {
857                                         zero_user(page, bh_offset(bh),
858                                                 blocksize);
859                                         set_buffer_uptodate(bh);
860                                 }
861                                 continue;
862                         }
863                 }
864                 /*
865                  * Out of bounds buffer is invalid if it was not really out of
866                  * bounds.
867                  */
868                 BUG_ON(lcn != LCN_HOLE);
869                 /*
870                  * We need the runlist locked for writing, so if it is locked
871                  * for reading relock it now and retry in case it changed
872                  * whilst we dropped the lock.
873                  */
874                 BUG_ON(!rl);
875                 if (!rl_write_locked) {
876                         up_read(&ni->runlist.lock);
877                         down_write(&ni->runlist.lock);
878                         rl_write_locked = true;
879                         goto retry_remap;
880                 }
881                 /* Find the previous last allocated cluster. */
882                 BUG_ON(rl->lcn != LCN_HOLE);
883                 lcn = -1;
884                 rl2 = rl;
885                 while (--rl2 >= ni->runlist.rl) {
886                         if (rl2->lcn >= 0) {
887                                 lcn = rl2->lcn + rl2->length;
888                                 break;
889                         }
890                 }
891                 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
892                                 false);
893                 if (IS_ERR(rl2)) {
894                         err = PTR_ERR(rl2);
895                         ntfs_debug("Failed to allocate cluster, error code %i.",
896                                         err);
897                         break;
898                 }
899                 lcn = rl2->lcn;
900                 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
901                 if (IS_ERR(rl)) {
902                         err = PTR_ERR(rl);
903                         if (err != -ENOMEM)
904                                 err = -EIO;
905                         if (ntfs_cluster_free_from_rl(vol, rl2)) {
906                                 ntfs_error(vol->sb, "Failed to release "
907                                                 "allocated cluster in error "
908                                                 "code path.  Run chkdsk to "
909                                                 "recover the lost cluster.");
910                                 NVolSetErrors(vol);
911                         }
912                         ntfs_free(rl2);
913                         break;
914                 }
915                 ni->runlist.rl = rl;
916                 status.runlist_merged = 1;
917                 ntfs_debug("Allocated cluster, lcn 0x%llx.",
918                                 (unsigned long long)lcn);
919                 /* Map and lock the mft record and get the attribute record. */
920                 if (!NInoAttr(ni))
921                         base_ni = ni;
922                 else
923                         base_ni = ni->ext.base_ntfs_ino;
924                 m = map_mft_record(base_ni);
925                 if (IS_ERR(m)) {
926                         err = PTR_ERR(m);
927                         break;
928                 }
929                 ctx = ntfs_attr_get_search_ctx(base_ni, m);
930                 if (unlikely(!ctx)) {
931                         err = -ENOMEM;
932                         unmap_mft_record(base_ni);
933                         break;
934                 }
935                 status.mft_attr_mapped = 1;
936                 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
937                                 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
938                 if (unlikely(err)) {
939                         if (err == -ENOENT)
940                                 err = -EIO;
941                         break;
942                 }
943                 m = ctx->mrec;
944                 a = ctx->attr;
945                 /*
946                  * Find the runlist element with which the attribute extent
947                  * starts.  Note, we cannot use the _attr_ version because we
948                  * have mapped the mft record.  That is ok because we know the
949                  * runlist fragment must be mapped already to have ever gotten
950                  * here, so we can just use the _rl_ version.
951                  */
952                 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
953                 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
954                 BUG_ON(!rl2);
955                 BUG_ON(!rl2->length);
956                 BUG_ON(rl2->lcn < LCN_HOLE);
957                 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
958                 /*
959                  * If @highest_vcn is zero, calculate the real highest_vcn
960                  * (which can really be zero).
961                  */
962                 if (!highest_vcn)
963                         highest_vcn = (sle64_to_cpu(
964                                         a->data.non_resident.allocated_size) >>
965                                         vol->cluster_size_bits) - 1;
966                 /*
967                  * Determine the size of the mapping pairs array for the new
968                  * extent, i.e. the old extent with the hole filled.
969                  */
970                 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
971                                 highest_vcn);
972                 if (unlikely(mp_size <= 0)) {
973                         if (!(err = mp_size))
974                                 err = -EIO;
975                         ntfs_debug("Failed to get size for mapping pairs "
976                                         "array, error code %i.", err);
977                         break;
978                 }
979                 /*
980                  * Resize the attribute record to fit the new mapping pairs
981                  * array.
982                  */
983                 attr_rec_len = le32_to_cpu(a->length);
984                 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
985                                 a->data.non_resident.mapping_pairs_offset));
986                 if (unlikely(err)) {
987                         BUG_ON(err != -ENOSPC);
988                         // TODO: Deal with this by using the current attribute
989                         // and fill it with as much of the mapping pairs
990                         // array as possible.  Then loop over each attribute
991                         // extent rewriting the mapping pairs arrays as we go
992                         // along and if when we reach the end we have not
993                         // enough space, try to resize the last attribute
994                         // extent and if even that fails, add a new attribute
995                         // extent.
996                         // We could also try to resize at each step in the hope
997                         // that we will not need to rewrite every single extent.
998                         // Note, we may need to decompress some extents to fill
999                         // the runlist as we are walking the extents...
1000                         ntfs_error(vol->sb, "Not enough space in the mft "
1001                                         "record for the extended attribute "
1002                                         "record.  This case is not "
1003                                         "implemented yet.");
1004                         err = -EOPNOTSUPP;
1005                         break ;
1006                 }
1007                 status.mp_rebuilt = 1;
1008                 /*
1009                  * Generate the mapping pairs array directly into the attribute
1010                  * record.
1011                  */
1012                 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1013                                 a->data.non_resident.mapping_pairs_offset),
1014                                 mp_size, rl2, vcn, highest_vcn, NULL);
1015                 if (unlikely(err)) {
1016                         ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1017                                         "attribute type 0x%x, because building "
1018                                         "the mapping pairs failed with error "
1019                                         "code %i.", vi->i_ino,
1020                                         (unsigned)le32_to_cpu(ni->type), err);
1021                         err = -EIO;
1022                         break;
1023                 }
1024                 /* Update the highest_vcn but only if it was not set. */
1025                 if (unlikely(!a->data.non_resident.highest_vcn))
1026                         a->data.non_resident.highest_vcn =
1027                                         cpu_to_sle64(highest_vcn);
1028                 /*
1029                  * If the attribute is sparse/compressed, update the compressed
1030                  * size in the ntfs_inode structure and the attribute record.
1031                  */
1032                 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1033                         /*
1034                          * If we are not in the first attribute extent, switch
1035                          * to it, but first ensure the changes will make it to
1036                          * disk later.
1037                          */
1038                         if (a->data.non_resident.lowest_vcn) {
1039                                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1040                                 mark_mft_record_dirty(ctx->ntfs_ino);
1041                                 ntfs_attr_reinit_search_ctx(ctx);
1042                                 err = ntfs_attr_lookup(ni->type, ni->name,
1043                                                 ni->name_len, CASE_SENSITIVE,
1044                                                 0, NULL, 0, ctx);
1045                                 if (unlikely(err)) {
1046                                         status.attr_switched = 1;
1047                                         break;
1048                                 }
1049                                 /* @m is not used any more so do not set it. */
1050                                 a = ctx->attr;
1051                         }
1052                         write_lock_irqsave(&ni->size_lock, flags);
1053                         ni->itype.compressed.size += vol->cluster_size;
1054                         a->data.non_resident.compressed_size =
1055                                         cpu_to_sle64(ni->itype.compressed.size);
1056                         write_unlock_irqrestore(&ni->size_lock, flags);
1057                 }
1058                 /* Ensure the changes make it to disk. */
1059                 flush_dcache_mft_record_page(ctx->ntfs_ino);
1060                 mark_mft_record_dirty(ctx->ntfs_ino);
1061                 ntfs_attr_put_search_ctx(ctx);
1062                 unmap_mft_record(base_ni);
1063                 /* Successfully filled the hole. */
1064                 status.runlist_merged = 0;
1065                 status.mft_attr_mapped = 0;
1066                 status.mp_rebuilt = 0;
1067                 /* Setup the map cache and use that to deal with the buffer. */
1068                 was_hole = true;
1069                 vcn = bh_cpos;
1070                 vcn_len = 1;
1071                 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1072                 cdelta = 0;
1073                 /*
1074                  * If the number of remaining clusters in the @pages is smaller
1075                  * or equal to the number of cached clusters, unlock the
1076                  * runlist as the map cache will be used from now on.
1077                  */
1078                 if (likely(vcn + vcn_len >= cend)) {
1079                         up_write(&ni->runlist.lock);
1080                         rl_write_locked = false;
1081                         rl = NULL;
1082                 }
1083                 goto map_buffer_cached;
1084         } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1085         /* If there are no errors, do the next page. */
1086         if (likely(!err && ++u < nr_pages))
1087                 goto do_next_page;
1088         /* If there are no errors, release the runlist lock if we took it. */
1089         if (likely(!err)) {
1090                 if (unlikely(rl_write_locked)) {
1091                         up_write(&ni->runlist.lock);
1092                         rl_write_locked = false;
1093                 } else if (unlikely(rl))
1094                         up_read(&ni->runlist.lock);
1095                 rl = NULL;
1096         }
1097         /* If we issued read requests, let them complete. */
1098         read_lock_irqsave(&ni->size_lock, flags);
1099         initialized_size = ni->initialized_size;
1100         read_unlock_irqrestore(&ni->size_lock, flags);
1101         while (wait_bh > wait) {
1102                 bh = *--wait_bh;
1103                 wait_on_buffer(bh);
1104                 if (likely(buffer_uptodate(bh))) {
1105                         page = bh->b_page;
1106                         bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1107                                         bh_offset(bh);
1108                         /*
1109                          * If the buffer overflows the initialized size, need
1110                          * to zero the overflowing region.
1111                          */
1112                         if (unlikely(bh_pos + blocksize > initialized_size)) {
1113                                 int ofs = 0;
1114
1115                                 if (likely(bh_pos < initialized_size))
1116                                         ofs = initialized_size - bh_pos;
1117                                 zero_user_segment(page, bh_offset(bh) + ofs,
1118                                                 blocksize);
1119                         }
1120                 } else /* if (unlikely(!buffer_uptodate(bh))) */
1121                         err = -EIO;
1122         }
1123         if (likely(!err)) {
1124                 /* Clear buffer_new on all buffers. */
1125                 u = 0;
1126                 do {
1127                         bh = head = page_buffers(pages[u]);
1128                         do {
1129                                 if (buffer_new(bh))
1130                                         clear_buffer_new(bh);
1131                         } while ((bh = bh->b_this_page) != head);
1132                 } while (++u < nr_pages);
1133                 ntfs_debug("Done.");
1134                 return err;
1135         }
1136         if (status.attr_switched) {
1137                 /* Get back to the attribute extent we modified. */
1138                 ntfs_attr_reinit_search_ctx(ctx);
1139                 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1140                                 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1141                         ntfs_error(vol->sb, "Failed to find required "
1142                                         "attribute extent of attribute in "
1143                                         "error code path.  Run chkdsk to "
1144                                         "recover.");
1145                         write_lock_irqsave(&ni->size_lock, flags);
1146                         ni->itype.compressed.size += vol->cluster_size;
1147                         write_unlock_irqrestore(&ni->size_lock, flags);
1148                         flush_dcache_mft_record_page(ctx->ntfs_ino);
1149                         mark_mft_record_dirty(ctx->ntfs_ino);
1150                         /*
1151                          * The only thing that is now wrong is the compressed
1152                          * size of the base attribute extent which chkdsk
1153                          * should be able to fix.
1154                          */
1155                         NVolSetErrors(vol);
1156                 } else {
1157                         m = ctx->mrec;
1158                         a = ctx->attr;
1159                         status.attr_switched = 0;
1160                 }
1161         }
1162         /*
1163          * If the runlist has been modified, need to restore it by punching a
1164          * hole into it and we then need to deallocate the on-disk cluster as
1165          * well.  Note, we only modify the runlist if we are able to generate a
1166          * new mapping pairs array, i.e. only when the mapped attribute extent
1167          * is not switched.
1168          */
1169         if (status.runlist_merged && !status.attr_switched) {
1170                 BUG_ON(!rl_write_locked);
1171                 /* Make the file cluster we allocated sparse in the runlist. */
1172                 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1173                         ntfs_error(vol->sb, "Failed to punch hole into "
1174                                         "attribute runlist in error code "
1175                                         "path.  Run chkdsk to recover the "
1176                                         "lost cluster.");
1177                         NVolSetErrors(vol);
1178                 } else /* if (success) */ {
1179                         status.runlist_merged = 0;
1180                         /*
1181                          * Deallocate the on-disk cluster we allocated but only
1182                          * if we succeeded in punching its vcn out of the
1183                          * runlist.
1184                          */
1185                         down_write(&vol->lcnbmp_lock);
1186                         if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1187                                 ntfs_error(vol->sb, "Failed to release "
1188                                                 "allocated cluster in error "
1189                                                 "code path.  Run chkdsk to "
1190                                                 "recover the lost cluster.");
1191                                 NVolSetErrors(vol);
1192                         }
1193                         up_write(&vol->lcnbmp_lock);
1194                 }
1195         }
1196         /*
1197          * Resize the attribute record to its old size and rebuild the mapping
1198          * pairs array.  Note, we only can do this if the runlist has been
1199          * restored to its old state which also implies that the mapped
1200          * attribute extent is not switched.
1201          */
1202         if (status.mp_rebuilt && !status.runlist_merged) {
1203                 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1204                         ntfs_error(vol->sb, "Failed to restore attribute "
1205                                         "record in error code path.  Run "
1206                                         "chkdsk to recover.");
1207                         NVolSetErrors(vol);
1208                 } else /* if (success) */ {
1209                         if (ntfs_mapping_pairs_build(vol, (u8*)a +
1210                                         le16_to_cpu(a->data.non_resident.
1211                                         mapping_pairs_offset), attr_rec_len -
1212                                         le16_to_cpu(a->data.non_resident.
1213                                         mapping_pairs_offset), ni->runlist.rl,
1214                                         vcn, highest_vcn, NULL)) {
1215                                 ntfs_error(vol->sb, "Failed to restore "
1216                                                 "mapping pairs array in error "
1217                                                 "code path.  Run chkdsk to "
1218                                                 "recover.");
1219                                 NVolSetErrors(vol);
1220                         }
1221                         flush_dcache_mft_record_page(ctx->ntfs_ino);
1222                         mark_mft_record_dirty(ctx->ntfs_ino);
1223                 }
1224         }
1225         /* Release the mft record and the attribute. */
1226         if (status.mft_attr_mapped) {
1227                 ntfs_attr_put_search_ctx(ctx);
1228                 unmap_mft_record(base_ni);
1229         }
1230         /* Release the runlist lock. */
1231         if (rl_write_locked)
1232                 up_write(&ni->runlist.lock);
1233         else if (rl)
1234                 up_read(&ni->runlist.lock);
1235         /*
1236          * Zero out any newly allocated blocks to avoid exposing stale data.
1237          * If BH_New is set, we know that the block was newly allocated above
1238          * and that it has not been fully zeroed and marked dirty yet.
1239          */
1240         nr_pages = u;
1241         u = 0;
1242         end = bh_cpos << vol->cluster_size_bits;
1243         do {
1244                 page = pages[u];
1245                 bh = head = page_buffers(page);
1246                 do {
1247                         if (u == nr_pages &&
1248                                         ((s64)page->index << PAGE_CACHE_SHIFT) +
1249                                         bh_offset(bh) >= end)
1250                                 break;
1251                         if (!buffer_new(bh))
1252                                 continue;
1253                         clear_buffer_new(bh);
1254                         if (!buffer_uptodate(bh)) {
1255                                 if (PageUptodate(page))
1256                                         set_buffer_uptodate(bh);
1257                                 else {
1258                                         zero_user(page, bh_offset(bh),
1259                                                         blocksize);
1260                                         set_buffer_uptodate(bh);
1261                                 }
1262                         }
1263                         mark_buffer_dirty(bh);
1264                 } while ((bh = bh->b_this_page) != head);
1265         } while (++u <= nr_pages);
1266         ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1267         return err;
1268 }
1269
1270 /*
1271  * Copy as much as we can into the pages and return the number of bytes which
1272  * were successfully copied.  If a fault is encountered then clear the pages
1273  * out to (ofs + bytes) and return the number of bytes which were copied.
1274  */
1275 static inline size_t ntfs_copy_from_user(struct page **pages,
1276                 unsigned nr_pages, unsigned ofs, const char __user *buf,
1277                 size_t bytes)
1278 {
1279         struct page **last_page = pages + nr_pages;
1280         char *addr;
1281         size_t total = 0;
1282         unsigned len;
1283         int left;
1284
1285         do {
1286                 len = PAGE_CACHE_SIZE - ofs;
1287                 if (len > bytes)
1288                         len = bytes;
1289                 addr = kmap_atomic(*pages);
1290                 left = __copy_from_user_inatomic(addr + ofs, buf, len);
1291                 kunmap_atomic(addr);
1292                 if (unlikely(left)) {
1293                         /* Do it the slow way. */
1294                         addr = kmap(*pages);
1295                         left = __copy_from_user(addr + ofs, buf, len);
1296                         kunmap(*pages);
1297                         if (unlikely(left))
1298                                 goto err_out;
1299                 }
1300                 total += len;
1301                 bytes -= len;
1302                 if (!bytes)
1303                         break;
1304                 buf += len;
1305                 ofs = 0;
1306         } while (++pages < last_page);
1307 out:
1308         return total;
1309 err_out:
1310         total += len - left;
1311         /* Zero the rest of the target like __copy_from_user(). */
1312         while (++pages < last_page) {
1313                 bytes -= len;
1314                 if (!bytes)
1315                         break;
1316                 len = PAGE_CACHE_SIZE;
1317                 if (len > bytes)
1318                         len = bytes;
1319                 zero_user(*pages, 0, len);
1320         }
1321         goto out;
1322 }
1323
1324 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1325                 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1326 {
1327         size_t total = 0;
1328
1329         while (1) {
1330                 const char __user *buf = iov->iov_base + iov_ofs;
1331                 unsigned len;
1332                 size_t left;
1333
1334                 len = iov->iov_len - iov_ofs;
1335                 if (len > bytes)
1336                         len = bytes;
1337                 left = __copy_from_user_inatomic(vaddr, buf, len);
1338                 total += len;
1339                 bytes -= len;
1340                 vaddr += len;
1341                 if (unlikely(left)) {
1342                         total -= left;
1343                         break;
1344                 }
1345                 if (!bytes)
1346                         break;
1347                 iov++;
1348                 iov_ofs = 0;
1349         }
1350         return total;
1351 }
1352
1353 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1354                 size_t *iov_ofsp, size_t bytes)
1355 {
1356         const struct iovec *iov = *iovp;
1357         size_t iov_ofs = *iov_ofsp;
1358
1359         while (bytes) {
1360                 unsigned len;
1361
1362                 len = iov->iov_len - iov_ofs;
1363                 if (len > bytes)
1364                         len = bytes;
1365                 bytes -= len;
1366                 iov_ofs += len;
1367                 if (iov->iov_len == iov_ofs) {
1368                         iov++;
1369                         iov_ofs = 0;
1370                 }
1371         }
1372         *iovp = iov;
1373         *iov_ofsp = iov_ofs;
1374 }
1375
1376 /*
1377  * This has the same side-effects and return value as ntfs_copy_from_user().
1378  * The difference is that on a fault we need to memset the remainder of the
1379  * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1380  * single-segment behaviour.
1381  *
1382  * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1383  * atomic and when not atomic.  This is ok because it calls
1384  * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1385  * fact, the only difference between __copy_from_user_inatomic() and
1386  * __copy_from_user() is that the latter calls might_sleep() and the former
1387  * should not zero the tail of the buffer on error.  And on many architectures
1388  * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1389  * makes no difference at all on those architectures.
1390  */
1391 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1392                 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1393                 size_t *iov_ofs, size_t bytes)
1394 {
1395         struct page **last_page = pages + nr_pages;
1396         char *addr;
1397         size_t copied, len, total = 0;
1398
1399         do {
1400                 len = PAGE_CACHE_SIZE - ofs;
1401                 if (len > bytes)
1402                         len = bytes;
1403                 addr = kmap_atomic(*pages);
1404                 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1405                                 *iov, *iov_ofs, len);
1406                 kunmap_atomic(addr);
1407                 if (unlikely(copied != len)) {
1408                         /* Do it the slow way. */
1409                         addr = kmap(*pages);
1410                         copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1411                                         ofs, *iov, *iov_ofs, len);
1412                         if (unlikely(copied != len))
1413                                 goto err_out;
1414                         kunmap(*pages);
1415                 }
1416                 total += len;
1417                 ntfs_set_next_iovec(iov, iov_ofs, len);
1418                 bytes -= len;
1419                 if (!bytes)
1420                         break;
1421                 ofs = 0;
1422         } while (++pages < last_page);
1423 out:
1424         return total;
1425 err_out:
1426         BUG_ON(copied > len);
1427         /* Zero the rest of the target like __copy_from_user(). */
1428         memset(addr + ofs + copied, 0, len - copied);
1429         kunmap(*pages);
1430         total += copied;
1431         ntfs_set_next_iovec(iov, iov_ofs, copied);
1432         while (++pages < last_page) {
1433                 bytes -= len;
1434                 if (!bytes)
1435                         break;
1436                 len = PAGE_CACHE_SIZE;
1437                 if (len > bytes)
1438                         len = bytes;
1439                 zero_user(*pages, 0, len);
1440         }
1441         goto out;
1442 }
1443
1444 static inline void ntfs_flush_dcache_pages(struct page **pages,
1445                 unsigned nr_pages)
1446 {
1447         BUG_ON(!nr_pages);
1448         /*
1449          * Warning: Do not do the decrement at the same time as the call to
1450          * flush_dcache_page() because it is a NULL macro on i386 and hence the
1451          * decrement never happens so the loop never terminates.
1452          */
1453         do {
1454                 --nr_pages;
1455                 flush_dcache_page(pages[nr_pages]);
1456         } while (nr_pages > 0);
1457 }
1458
1459 /**
1460  * ntfs_commit_pages_after_non_resident_write - commit the received data
1461  * @pages:      array of destination pages
1462  * @nr_pages:   number of pages in @pages
1463  * @pos:        byte position in file at which the write begins
1464  * @bytes:      number of bytes to be written
1465  *
1466  * See description of ntfs_commit_pages_after_write(), below.
1467  */
1468 static inline int ntfs_commit_pages_after_non_resident_write(
1469                 struct page **pages, const unsigned nr_pages,
1470                 s64 pos, size_t bytes)
1471 {
1472         s64 end, initialized_size;
1473         struct inode *vi;
1474         ntfs_inode *ni, *base_ni;
1475         struct buffer_head *bh, *head;
1476         ntfs_attr_search_ctx *ctx;
1477         MFT_RECORD *m;
1478         ATTR_RECORD *a;
1479         unsigned long flags;
1480         unsigned blocksize, u;
1481         int err;
1482
1483         vi = pages[0]->mapping->host;
1484         ni = NTFS_I(vi);
1485         blocksize = vi->i_sb->s_blocksize;
1486         end = pos + bytes;
1487         u = 0;
1488         do {
1489                 s64 bh_pos;
1490                 struct page *page;
1491                 bool partial;
1492
1493                 page = pages[u];
1494                 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1495                 bh = head = page_buffers(page);
1496                 partial = false;
1497                 do {
1498                         s64 bh_end;
1499
1500                         bh_end = bh_pos + blocksize;
1501                         if (bh_end <= pos || bh_pos >= end) {
1502                                 if (!buffer_uptodate(bh))
1503                                         partial = true;
1504                         } else {
1505                                 set_buffer_uptodate(bh);
1506                                 mark_buffer_dirty(bh);
1507                         }
1508                 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1509                 /*
1510                  * If all buffers are now uptodate but the page is not, set the
1511                  * page uptodate.
1512                  */
1513                 if (!partial && !PageUptodate(page))
1514                         SetPageUptodate(page);
1515         } while (++u < nr_pages);
1516         /*
1517          * Finally, if we do not need to update initialized_size or i_size we
1518          * are finished.
1519          */
1520         read_lock_irqsave(&ni->size_lock, flags);
1521         initialized_size = ni->initialized_size;
1522         read_unlock_irqrestore(&ni->size_lock, flags);
1523         if (end <= initialized_size) {
1524                 ntfs_debug("Done.");
1525                 return 0;
1526         }
1527         /*
1528          * Update initialized_size/i_size as appropriate, both in the inode and
1529          * the mft record.
1530          */
1531         if (!NInoAttr(ni))
1532                 base_ni = ni;
1533         else
1534                 base_ni = ni->ext.base_ntfs_ino;
1535         /* Map, pin, and lock the mft record. */
1536         m = map_mft_record(base_ni);
1537         if (IS_ERR(m)) {
1538                 err = PTR_ERR(m);
1539                 m = NULL;
1540                 ctx = NULL;
1541                 goto err_out;
1542         }
1543         BUG_ON(!NInoNonResident(ni));
1544         ctx = ntfs_attr_get_search_ctx(base_ni, m);
1545         if (unlikely(!ctx)) {
1546                 err = -ENOMEM;
1547                 goto err_out;
1548         }
1549         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1550                         CASE_SENSITIVE, 0, NULL, 0, ctx);
1551         if (unlikely(err)) {
1552                 if (err == -ENOENT)
1553                         err = -EIO;
1554                 goto err_out;
1555         }
1556         a = ctx->attr;
1557         BUG_ON(!a->non_resident);
1558         write_lock_irqsave(&ni->size_lock, flags);
1559         BUG_ON(end > ni->allocated_size);
1560         ni->initialized_size = end;
1561         a->data.non_resident.initialized_size = cpu_to_sle64(end);
1562         if (end > i_size_read(vi)) {
1563                 i_size_write(vi, end);
1564                 a->data.non_resident.data_size =
1565                                 a->data.non_resident.initialized_size;
1566         }
1567         write_unlock_irqrestore(&ni->size_lock, flags);
1568         /* Mark the mft record dirty, so it gets written back. */
1569         flush_dcache_mft_record_page(ctx->ntfs_ino);
1570         mark_mft_record_dirty(ctx->ntfs_ino);
1571         ntfs_attr_put_search_ctx(ctx);
1572         unmap_mft_record(base_ni);
1573         ntfs_debug("Done.");
1574         return 0;
1575 err_out:
1576         if (ctx)
1577                 ntfs_attr_put_search_ctx(ctx);
1578         if (m)
1579                 unmap_mft_record(base_ni);
1580         ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1581                         "code %i).", err);
1582         if (err != -ENOMEM)
1583                 NVolSetErrors(ni->vol);
1584         return err;
1585 }
1586
1587 /**
1588  * ntfs_commit_pages_after_write - commit the received data
1589  * @pages:      array of destination pages
1590  * @nr_pages:   number of pages in @pages
1591  * @pos:        byte position in file at which the write begins
1592  * @bytes:      number of bytes to be written
1593  *
1594  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1595  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1596  * locked but not kmap()ped.  The source data has already been copied into the
1597  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1598  * the data was copied (for non-resident attributes only) and it returned
1599  * success.
1600  *
1601  * Need to set uptodate and mark dirty all buffers within the boundary of the
1602  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1603  *
1604  * Setting the buffers dirty ensures that they get written out later when
1605  * ntfs_writepage() is invoked by the VM.
1606  *
1607  * Finally, we need to update i_size and initialized_size as appropriate both
1608  * in the inode and the mft record.
1609  *
1610  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1611  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1612  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1613  * that case, it also marks the inode dirty.
1614  *
1615  * If things have gone as outlined in
1616  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1617  * content modifications here for non-resident attributes.  For resident
1618  * attributes we need to do the uptodate bringing here which we combine with
1619  * the copying into the mft record which means we save one atomic kmap.
1620  *
1621  * Return 0 on success or -errno on error.
1622  */
1623 static int ntfs_commit_pages_after_write(struct page **pages,
1624                 const unsigned nr_pages, s64 pos, size_t bytes)
1625 {
1626         s64 end, initialized_size;
1627         loff_t i_size;
1628         struct inode *vi;
1629         ntfs_inode *ni, *base_ni;
1630         struct page *page;
1631         ntfs_attr_search_ctx *ctx;
1632         MFT_RECORD *m;
1633         ATTR_RECORD *a;
1634         char *kattr, *kaddr;
1635         unsigned long flags;
1636         u32 attr_len;
1637         int err;
1638
1639         BUG_ON(!nr_pages);
1640         BUG_ON(!pages);
1641         page = pages[0];
1642         BUG_ON(!page);
1643         vi = page->mapping->host;
1644         ni = NTFS_I(vi);
1645         ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1646                         "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1647                         vi->i_ino, ni->type, page->index, nr_pages,
1648                         (long long)pos, bytes);
1649         if (NInoNonResident(ni))
1650                 return ntfs_commit_pages_after_non_resident_write(pages,
1651                                 nr_pages, pos, bytes);
1652         BUG_ON(nr_pages > 1);
1653         /*
1654          * Attribute is resident, implying it is not compressed, encrypted, or
1655          * sparse.
1656          */
1657         if (!NInoAttr(ni))
1658                 base_ni = ni;
1659         else
1660                 base_ni = ni->ext.base_ntfs_ino;
1661         BUG_ON(NInoNonResident(ni));
1662         /* Map, pin, and lock the mft record. */
1663         m = map_mft_record(base_ni);
1664         if (IS_ERR(m)) {
1665                 err = PTR_ERR(m);
1666                 m = NULL;
1667                 ctx = NULL;
1668                 goto err_out;
1669         }
1670         ctx = ntfs_attr_get_search_ctx(base_ni, m);
1671         if (unlikely(!ctx)) {
1672                 err = -ENOMEM;
1673                 goto err_out;
1674         }
1675         err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1676                         CASE_SENSITIVE, 0, NULL, 0, ctx);
1677         if (unlikely(err)) {
1678                 if (err == -ENOENT)
1679                         err = -EIO;
1680                 goto err_out;
1681         }
1682         a = ctx->attr;
1683         BUG_ON(a->non_resident);
1684         /* The total length of the attribute value. */
1685         attr_len = le32_to_cpu(a->data.resident.value_length);
1686         i_size = i_size_read(vi);
1687         BUG_ON(attr_len != i_size);
1688         BUG_ON(pos > attr_len);
1689         end = pos + bytes;
1690         BUG_ON(end > le32_to_cpu(a->length) -
1691                         le16_to_cpu(a->data.resident.value_offset));
1692         kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1693         kaddr = kmap_atomic(page);
1694         /* Copy the received data from the page to the mft record. */
1695         memcpy(kattr + pos, kaddr + pos, bytes);
1696         /* Update the attribute length if necessary. */
1697         if (end > attr_len) {
1698                 attr_len = end;
1699                 a->data.resident.value_length = cpu_to_le32(attr_len);
1700         }
1701         /*
1702          * If the page is not uptodate, bring the out of bounds area(s)
1703          * uptodate by copying data from the mft record to the page.
1704          */
1705         if (!PageUptodate(page)) {
1706                 if (pos > 0)
1707                         memcpy(kaddr, kattr, pos);
1708                 if (end < attr_len)
1709                         memcpy(kaddr + end, kattr + end, attr_len - end);
1710                 /* Zero the region outside the end of the attribute value. */
1711                 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1712                 flush_dcache_page(page);
1713                 SetPageUptodate(page);
1714         }
1715         kunmap_atomic(kaddr);
1716         /* Update initialized_size/i_size if necessary. */
1717         read_lock_irqsave(&ni->size_lock, flags);
1718         initialized_size = ni->initialized_size;
1719         BUG_ON(end > ni->allocated_size);
1720         read_unlock_irqrestore(&ni->size_lock, flags);
1721         BUG_ON(initialized_size != i_size);
1722         if (end > initialized_size) {
1723                 write_lock_irqsave(&ni->size_lock, flags);
1724                 ni->initialized_size = end;
1725                 i_size_write(vi, end);
1726                 write_unlock_irqrestore(&ni->size_lock, flags);
1727         }
1728         /* Mark the mft record dirty, so it gets written back. */
1729         flush_dcache_mft_record_page(ctx->ntfs_ino);
1730         mark_mft_record_dirty(ctx->ntfs_ino);
1731         ntfs_attr_put_search_ctx(ctx);
1732         unmap_mft_record(base_ni);
1733         ntfs_debug("Done.");
1734         return 0;
1735 err_out:
1736         if (err == -ENOMEM) {
1737                 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1738                                 "commit the write.");
1739                 if (PageUptodate(page)) {
1740                         ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1741                                         "dirty so the write will be retried "
1742                                         "later on by the VM.");
1743                         /*
1744                          * Put the page on mapping->dirty_pages, but leave its
1745                          * buffers' dirty state as-is.
1746                          */
1747                         __set_page_dirty_nobuffers(page);
1748                         err = 0;
1749                 } else
1750                         ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1751                                         "data has been lost.");
1752         } else {
1753                 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1754                                 "with error %i.", err);
1755                 NVolSetErrors(ni->vol);
1756         }
1757         if (ctx)
1758                 ntfs_attr_put_search_ctx(ctx);
1759         if (m)
1760                 unmap_mft_record(base_ni);
1761         return err;
1762 }
1763
1764 static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1765 {
1766         struct inode *inode = mapping->host;
1767
1768         if (to > inode->i_size) {
1769                 truncate_pagecache(inode, inode->i_size);
1770                 ntfs_truncate_vfs(inode);
1771         }
1772 }
1773
1774 /**
1775  * ntfs_file_buffered_write -
1776  *
1777  * Locking: The vfs is holding ->i_mutex on the inode.
1778  */
1779 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1780                 const struct iovec *iov, unsigned long nr_segs,
1781                 loff_t pos, loff_t *ppos, size_t count)
1782 {
1783         struct file *file = iocb->ki_filp;
1784         struct address_space *mapping = file->f_mapping;
1785         struct inode *vi = mapping->host;
1786         ntfs_inode *ni = NTFS_I(vi);
1787         ntfs_volume *vol = ni->vol;
1788         struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1789         struct page *cached_page = NULL;
1790         char __user *buf = NULL;
1791         s64 end, ll;
1792         VCN last_vcn;
1793         LCN lcn;
1794         unsigned long flags;
1795         size_t bytes, iov_ofs = 0;      /* Offset in the current iovec. */
1796         ssize_t status, written;
1797         unsigned nr_pages;
1798         int err;
1799
1800         ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1801                         "pos 0x%llx, count 0x%lx.",
1802                         vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1803                         (unsigned long long)pos, (unsigned long)count);
1804         if (unlikely(!count))
1805                 return 0;
1806         BUG_ON(NInoMstProtected(ni));
1807         /*
1808          * If the attribute is not an index root and it is encrypted or
1809          * compressed, we cannot write to it yet.  Note we need to check for
1810          * AT_INDEX_ALLOCATION since this is the type of both directory and
1811          * index inodes.
1812          */
1813         if (ni->type != AT_INDEX_ALLOCATION) {
1814                 /* If file is encrypted, deny access, just like NT4. */
1815                 if (NInoEncrypted(ni)) {
1816                         /*
1817                          * Reminder for later: Encrypted files are _always_
1818                          * non-resident so that the content can always be
1819                          * encrypted.
1820                          */
1821                         ntfs_debug("Denying write access to encrypted file.");
1822                         return -EACCES;
1823                 }
1824                 if (NInoCompressed(ni)) {
1825                         /* Only unnamed $DATA attribute can be compressed. */
1826                         BUG_ON(ni->type != AT_DATA);
1827                         BUG_ON(ni->name_len);
1828                         /*
1829                          * Reminder for later: If resident, the data is not
1830                          * actually compressed.  Only on the switch to non-
1831                          * resident does compression kick in.  This is in
1832                          * contrast to encrypted files (see above).
1833                          */
1834                         ntfs_error(vi->i_sb, "Writing to compressed files is "
1835                                         "not implemented yet.  Sorry.");
1836                         return -EOPNOTSUPP;
1837                 }
1838         }
1839         /*
1840          * If a previous ntfs_truncate() failed, repeat it and abort if it
1841          * fails again.
1842          */
1843         if (unlikely(NInoTruncateFailed(ni))) {
1844                 inode_dio_wait(vi);
1845                 err = ntfs_truncate(vi);
1846                 if (err || NInoTruncateFailed(ni)) {
1847                         if (!err)
1848                                 err = -EIO;
1849                         ntfs_error(vol->sb, "Cannot perform write to inode "
1850                                         "0x%lx, attribute type 0x%x, because "
1851                                         "ntfs_truncate() failed (error code "
1852                                         "%i).", vi->i_ino,
1853                                         (unsigned)le32_to_cpu(ni->type), err);
1854                         return err;
1855                 }
1856         }
1857         /* The first byte after the write. */
1858         end = pos + count;
1859         /*
1860          * If the write goes beyond the allocated size, extend the allocation
1861          * to cover the whole of the write, rounded up to the nearest cluster.
1862          */
1863         read_lock_irqsave(&ni->size_lock, flags);
1864         ll = ni->allocated_size;
1865         read_unlock_irqrestore(&ni->size_lock, flags);
1866         if (end > ll) {
1867                 /* Extend the allocation without changing the data size. */
1868                 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1869                 if (likely(ll >= 0)) {
1870                         BUG_ON(pos >= ll);
1871                         /* If the extension was partial truncate the write. */
1872                         if (end > ll) {
1873                                 ntfs_debug("Truncating write to inode 0x%lx, "
1874                                                 "attribute type 0x%x, because "
1875                                                 "the allocation was only "
1876                                                 "partially extended.",
1877                                                 vi->i_ino, (unsigned)
1878                                                 le32_to_cpu(ni->type));
1879                                 end = ll;
1880                                 count = ll - pos;
1881                         }
1882                 } else {
1883                         err = ll;
1884                         read_lock_irqsave(&ni->size_lock, flags);
1885                         ll = ni->allocated_size;
1886                         read_unlock_irqrestore(&ni->size_lock, flags);
1887                         /* Perform a partial write if possible or fail. */
1888                         if (pos < ll) {
1889                                 ntfs_debug("Truncating write to inode 0x%lx, "
1890                                                 "attribute type 0x%x, because "
1891                                                 "extending the allocation "
1892                                                 "failed (error code %i).",
1893                                                 vi->i_ino, (unsigned)
1894                                                 le32_to_cpu(ni->type), err);
1895                                 end = ll;
1896                                 count = ll - pos;
1897                         } else {
1898                                 ntfs_error(vol->sb, "Cannot perform write to "
1899                                                 "inode 0x%lx, attribute type "
1900                                                 "0x%x, because extending the "
1901                                                 "allocation failed (error "
1902                                                 "code %i).", vi->i_ino,
1903                                                 (unsigned)
1904                                                 le32_to_cpu(ni->type), err);
1905                                 return err;
1906                         }
1907                 }
1908         }
1909         written = 0;
1910         /*
1911          * If the write starts beyond the initialized size, extend it up to the
1912          * beginning of the write and initialize all non-sparse space between
1913          * the old initialized size and the new one.  This automatically also
1914          * increments the vfs inode->i_size to keep it above or equal to the
1915          * initialized_size.
1916          */
1917         read_lock_irqsave(&ni->size_lock, flags);
1918         ll = ni->initialized_size;
1919         read_unlock_irqrestore(&ni->size_lock, flags);
1920         if (pos > ll) {
1921                 err = ntfs_attr_extend_initialized(ni, pos);
1922                 if (err < 0) {
1923                         ntfs_error(vol->sb, "Cannot perform write to inode "
1924                                         "0x%lx, attribute type 0x%x, because "
1925                                         "extending the initialized size "
1926                                         "failed (error code %i).", vi->i_ino,
1927                                         (unsigned)le32_to_cpu(ni->type), err);
1928                         status = err;
1929                         goto err_out;
1930                 }
1931         }
1932         /*
1933          * Determine the number of pages per cluster for non-resident
1934          * attributes.
1935          */
1936         nr_pages = 1;
1937         if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1938                 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1939         /* Finally, perform the actual write. */
1940         last_vcn = -1;
1941         if (likely(nr_segs == 1))
1942                 buf = iov->iov_base;
1943         do {
1944                 VCN vcn;
1945                 pgoff_t idx, start_idx;
1946                 unsigned ofs, do_pages, u;
1947                 size_t copied;
1948
1949                 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1950                 ofs = pos & ~PAGE_CACHE_MASK;
1951                 bytes = PAGE_CACHE_SIZE - ofs;
1952                 do_pages = 1;
1953                 if (nr_pages > 1) {
1954                         vcn = pos >> vol->cluster_size_bits;
1955                         if (vcn != last_vcn) {
1956                                 last_vcn = vcn;
1957                                 /*
1958                                  * Get the lcn of the vcn the write is in.  If
1959                                  * it is a hole, need to lock down all pages in
1960                                  * the cluster.
1961                                  */
1962                                 down_read(&ni->runlist.lock);
1963                                 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1964                                                 vol->cluster_size_bits, false);
1965                                 up_read(&ni->runlist.lock);
1966                                 if (unlikely(lcn < LCN_HOLE)) {
1967                                         status = -EIO;
1968                                         if (lcn == LCN_ENOMEM)
1969                                                 status = -ENOMEM;
1970                                         else
1971                                                 ntfs_error(vol->sb, "Cannot "
1972                                                         "perform write to "
1973                                                         "inode 0x%lx, "
1974                                                         "attribute type 0x%x, "
1975                                                         "because the attribute "
1976                                                         "is corrupt.",
1977                                                         vi->i_ino, (unsigned)
1978                                                         le32_to_cpu(ni->type));
1979                                         break;
1980                                 }
1981                                 if (lcn == LCN_HOLE) {
1982                                         start_idx = (pos & ~(s64)
1983                                                         vol->cluster_size_mask)
1984                                                         >> PAGE_CACHE_SHIFT;
1985                                         bytes = vol->cluster_size - (pos &
1986                                                         vol->cluster_size_mask);
1987                                         do_pages = nr_pages;
1988                                 }
1989                         }
1990                 }
1991                 if (bytes > count)
1992                         bytes = count;
1993                 /*
1994                  * Bring in the user page(s) that we will copy from _first_.
1995                  * Otherwise there is a nasty deadlock on copying from the same
1996                  * page(s) as we are writing to, without it/them being marked
1997                  * up-to-date.  Note, at present there is nothing to stop the
1998                  * pages being swapped out between us bringing them into memory
1999                  * and doing the actual copying.
2000                  */
2001                 if (likely(nr_segs == 1))
2002                         ntfs_fault_in_pages_readable(buf, bytes);
2003                 else
2004                         ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2005                 /* Get and lock @do_pages starting at index @start_idx. */
2006                 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2007                                 pages, &cached_page);
2008                 if (unlikely(status))
2009                         break;
2010                 /*
2011                  * For non-resident attributes, we need to fill any holes with
2012                  * actual clusters and ensure all bufferes are mapped.  We also
2013                  * need to bring uptodate any buffers that are only partially
2014                  * being written to.
2015                  */
2016                 if (NInoNonResident(ni)) {
2017                         status = ntfs_prepare_pages_for_non_resident_write(
2018                                         pages, do_pages, pos, bytes);
2019                         if (unlikely(status)) {
2020                                 loff_t i_size;
2021
2022                                 do {
2023                                         unlock_page(pages[--do_pages]);
2024                                         page_cache_release(pages[do_pages]);
2025                                 } while (do_pages);
2026                                 /*
2027                                  * The write preparation may have instantiated
2028                                  * allocated space outside i_size.  Trim this
2029                                  * off again.  We can ignore any errors in this
2030                                  * case as we will just be waisting a bit of
2031                                  * allocated space, which is not a disaster.
2032                                  */
2033                                 i_size = i_size_read(vi);
2034                                 if (pos + bytes > i_size) {
2035                                         ntfs_write_failed(mapping, pos + bytes);
2036                                 }
2037                                 break;
2038                         }
2039                 }
2040                 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2041                 if (likely(nr_segs == 1)) {
2042                         copied = ntfs_copy_from_user(pages + u, do_pages - u,
2043                                         ofs, buf, bytes);
2044                         buf += copied;
2045                 } else
2046                         copied = ntfs_copy_from_user_iovec(pages + u,
2047                                         do_pages - u, ofs, &iov, &iov_ofs,
2048                                         bytes);
2049                 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2050                 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2051                                 bytes);
2052                 if (likely(!status)) {
2053                         written += copied;
2054                         count -= copied;
2055                         pos += copied;
2056                         if (unlikely(copied != bytes))
2057                                 status = -EFAULT;
2058                 }
2059                 do {
2060                         unlock_page(pages[--do_pages]);
2061                         page_cache_release(pages[do_pages]);
2062                 } while (do_pages);
2063                 if (unlikely(status))
2064                         break;
2065                 balance_dirty_pages_ratelimited(mapping);
2066                 cond_resched();
2067         } while (count);
2068 err_out:
2069         *ppos = pos;
2070         if (cached_page)
2071                 page_cache_release(cached_page);
2072         ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2073                         written ? "written" : "status", (unsigned long)written,
2074                         (long)status);
2075         return written ? written : status;
2076 }
2077
2078 /**
2079  * ntfs_file_aio_write_nolock -
2080  */
2081 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2082                 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2083 {
2084         struct file *file = iocb->ki_filp;
2085         struct address_space *mapping = file->f_mapping;
2086         struct inode *inode = mapping->host;
2087         loff_t pos;
2088         size_t count;           /* after file limit checks */
2089         ssize_t written, err;
2090
2091         count = iov_length(iov, nr_segs);
2092         pos = *ppos;
2093         /* We can write back this queue in page reclaim. */
2094         current->backing_dev_info = mapping->backing_dev_info;
2095         written = 0;
2096         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2097         if (err)
2098                 goto out;
2099         if (!count)
2100                 goto out;
2101         err = file_remove_suid(file);
2102         if (err)
2103                 goto out;
2104         err = file_update_time(file);
2105         if (err)
2106                 goto out;
2107         written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2108                         count);
2109 out:
2110         current->backing_dev_info = NULL;
2111         return written ? written : err;
2112 }
2113
2114 /**
2115  * ntfs_file_aio_write -
2116  */
2117 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2118                 unsigned long nr_segs, loff_t pos)
2119 {
2120         struct file *file = iocb->ki_filp;
2121         struct address_space *mapping = file->f_mapping;
2122         struct inode *inode = mapping->host;
2123         ssize_t ret;
2124
2125         BUG_ON(iocb->ki_pos != pos);
2126
2127         mutex_lock(&inode->i_mutex);
2128         ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2129         mutex_unlock(&inode->i_mutex);
2130         if (ret > 0) {
2131                 int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2132                 if (err < 0)
2133                         ret = err;
2134         }
2135         return ret;
2136 }
2137
2138 /**
2139  * ntfs_file_fsync - sync a file to disk
2140  * @filp:       file to be synced
2141  * @datasync:   if non-zero only flush user data and not metadata
2142  *
2143  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2144  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2145  *
2146  * If @datasync is false, write the mft record and all associated extent mft
2147  * records as well as the $DATA attribute and then sync the block device.
2148  *
2149  * If @datasync is true and the attribute is non-resident, we skip the writing
2150  * of the mft record and all associated extent mft records (this might still
2151  * happen due to the write_inode_now() call).
2152  *
2153  * Also, if @datasync is true, we do not wait on the inode to be written out
2154  * but we always wait on the page cache pages to be written out.
2155  *
2156  * Locking: Caller must hold i_mutex on the inode.
2157  *
2158  * TODO: We should probably also write all attribute/index inodes associated
2159  * with this inode but since we have no simple way of getting to them we ignore
2160  * this problem for now.
2161  */
2162 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2163                            int datasync)
2164 {
2165         struct inode *vi = filp->f_mapping->host;
2166         int err, ret = 0;
2167
2168         ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2169
2170         err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2171         if (err)
2172                 return err;
2173         mutex_lock(&vi->i_mutex);
2174
2175         BUG_ON(S_ISDIR(vi->i_mode));
2176         if (!datasync || !NInoNonResident(NTFS_I(vi)))
2177                 ret = __ntfs_write_inode(vi, 1);
2178         write_inode_now(vi, !datasync);
2179         /*
2180          * NOTE: If we were to use mapping->private_list (see ext2 and
2181          * fs/buffer.c) for dirty blocks then we could optimize the below to be
2182          * sync_mapping_buffers(vi->i_mapping).
2183          */
2184         err = sync_blockdev(vi->i_sb->s_bdev);
2185         if (unlikely(err && !ret))
2186                 ret = err;
2187         if (likely(!ret))
2188                 ntfs_debug("Done.");
2189         else
2190                 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2191                                 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2192         mutex_unlock(&vi->i_mutex);
2193         return ret;
2194 }
2195
2196 #endif /* NTFS_RW */
2197
2198 const struct file_operations ntfs_file_ops = {
2199         .llseek         = generic_file_llseek,   /* Seek inside file. */
2200         .read           = new_sync_read,         /* Read from file. */
2201         .read_iter      = generic_file_read_iter, /* Async read from file. */
2202 #ifdef NTFS_RW
2203         .write          = do_sync_write,         /* Write to file. */
2204         .aio_write      = ntfs_file_aio_write,   /* Async write to file. */
2205         /*.release      = ,*/                    /* Last file is closed.  See
2206                                                     fs/ext2/file.c::
2207                                                     ext2_release_file() for
2208                                                     how to use this to discard
2209                                                     preallocated space for
2210                                                     write opened files. */
2211         .fsync          = ntfs_file_fsync,       /* Sync a file to disk. */
2212         /*.aio_fsync    = ,*/                    /* Sync all outstanding async
2213                                                     i/o operations on a
2214                                                     kiocb. */
2215 #endif /* NTFS_RW */
2216         /*.ioctl        = ,*/                    /* Perform function on the
2217                                                     mounted filesystem. */
2218         .mmap           = generic_file_mmap,     /* Mmap file. */
2219         .open           = ntfs_file_open,        /* Open file. */
2220         .splice_read    = generic_file_splice_read /* Zero-copy data send with
2221                                                     the data source being on
2222                                                     the ntfs partition.  We do
2223                                                     not need to care about the
2224                                                     data destination. */
2225         /*.sendpage     = ,*/                    /* Zero-copy data send with
2226                                                     the data destination being
2227                                                     on the ntfs partition.  We
2228                                                     do not need to care about
2229                                                     the data source. */
2230 };
2231
2232 const struct inode_operations ntfs_file_inode_ops = {
2233 #ifdef NTFS_RW
2234         .setattr        = ntfs_setattr,
2235 #endif /* NTFS_RW */
2236 };
2237
2238 const struct file_operations ntfs_empty_file_ops = {};
2239
2240 const struct inode_operations ntfs_empty_inode_ops = {};