Merge branch 'cow_readahead' of git://oss.oracle.com/git/tma/linux-2.6 into merge-2
[cascardo/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63                    (unsigned long long)iblock, bh_result, create);
64
65         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69                      (unsigned long long)iblock);
70                 goto bail;
71         }
72
73         status = ocfs2_read_inode_block(inode, &bh);
74         if (status < 0) {
75                 mlog_errno(status);
76                 goto bail;
77         }
78         fe = (struct ocfs2_dinode *) bh->b_data;
79
80         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81                                                     le32_to_cpu(fe->i_clusters))) {
82                 mlog(ML_ERROR, "block offset is outside the allocated size: "
83                      "%llu\n", (unsigned long long)iblock);
84                 goto bail;
85         }
86
87         /* We don't use the page cache to create symlink data, so if
88          * need be, copy it over from the buffer cache. */
89         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91                             iblock;
92                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93                 if (!buffer_cache_bh) {
94                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95                         goto bail;
96                 }
97
98                 /* we haven't locked out transactions, so a commit
99                  * could've happened. Since we've got a reference on
100                  * the bh, even if it commits while we're doing the
101                  * copy, the data is still good. */
102                 if (buffer_jbd(buffer_cache_bh)
103                     && ocfs2_inode_is_new(inode)) {
104                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105                         if (!kaddr) {
106                                 mlog(ML_ERROR, "couldn't kmap!\n");
107                                 goto bail;
108                         }
109                         memcpy(kaddr + (bh_result->b_size * iblock),
110                                buffer_cache_bh->b_data,
111                                bh_result->b_size);
112                         kunmap_atomic(kaddr, KM_USER0);
113                         set_buffer_uptodate(bh_result);
114                 }
115                 brelse(buffer_cache_bh);
116         }
117
118         map_bh(bh_result, inode->i_sb,
119                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121         err = 0;
122
123 bail:
124         brelse(bh);
125
126         mlog_exit(err);
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140                    (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows block_prepare_write() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199         }
200
201         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202         mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203              (unsigned long long)past_eof);
204         if (create && (iblock >= past_eof))
205                 set_buffer_new(bh_result);
206
207 bail:
208         if (err < 0)
209                 err = -EIO;
210
211         mlog_exit(err);
212         return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216                            struct buffer_head *di_bh)
217 {
218         void *kaddr;
219         loff_t size;
220         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
225                 return -EROFS;
226         }
227
228         size = i_size_read(inode);
229
230         if (size > PAGE_CACHE_SIZE ||
231             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232                 ocfs2_error(inode->i_sb,
233                             "Inode %llu has with inline data has bad size: %Lu",
234                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
235                             (unsigned long long)size);
236                 return -EROFS;
237         }
238
239         kaddr = kmap_atomic(page, KM_USER0);
240         if (size)
241                 memcpy(kaddr, di->id2.i_data.id_data, size);
242         /* Clear the remaining part of the page */
243         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244         flush_dcache_page(page);
245         kunmap_atomic(kaddr, KM_USER0);
246
247         SetPageUptodate(page);
248
249         return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254         int ret;
255         struct buffer_head *di_bh = NULL;
256
257         BUG_ON(!PageLocked(page));
258         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260         ret = ocfs2_read_inode_block(inode, &di_bh);
261         if (ret) {
262                 mlog_errno(ret);
263                 goto out;
264         }
265
266         ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268         unlock_page(page);
269
270         brelse(di_bh);
271         return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276         struct inode *inode = page->mapping->host;
277         struct ocfs2_inode_info *oi = OCFS2_I(inode);
278         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279         int ret, unlock = 1;
280
281         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
283         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284         if (ret != 0) {
285                 if (ret == AOP_TRUNCATED_PAGE)
286                         unlock = 0;
287                 mlog_errno(ret);
288                 goto out;
289         }
290
291         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292                 ret = AOP_TRUNCATED_PAGE;
293                 goto out_inode_unlock;
294         }
295
296         /*
297          * i_size might have just been updated as we grabed the meta lock.  We
298          * might now be discovering a truncate that hit on another node.
299          * block_read_full_page->get_block freaks out if it is asked to read
300          * beyond the end of a file, so we check here.  Callers
301          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302          * and notice that the page they just read isn't needed.
303          *
304          * XXX sys_readahead() seems to get that wrong?
305          */
306         if (start >= i_size_read(inode)) {
307                 zero_user(page, 0, PAGE_SIZE);
308                 SetPageUptodate(page);
309                 ret = 0;
310                 goto out_alloc;
311         }
312
313         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314                 ret = ocfs2_readpage_inline(inode, page);
315         else
316                 ret = block_read_full_page(page, ocfs2_get_block);
317         unlock = 0;
318
319 out_alloc:
320         up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322         ocfs2_inode_unlock(inode, 0);
323 out:
324         if (unlock)
325                 unlock_page(page);
326         mlog_exit(ret);
327         return ret;
328 }
329
330 /*
331  * This is used only for read-ahead. Failures or difficult to handle
332  * situations are safe to ignore.
333  *
334  * Right now, we don't bother with BH_Boundary - in-inode extent lists
335  * are quite large (243 extents on 4k blocks), so most inodes don't
336  * grow out to a tree. If need be, detecting boundary extents could
337  * trivially be added in a future version of ocfs2_get_block().
338  */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340                            struct list_head *pages, unsigned nr_pages)
341 {
342         int ret, err = -EIO;
343         struct inode *inode = mapping->host;
344         struct ocfs2_inode_info *oi = OCFS2_I(inode);
345         loff_t start;
346         struct page *last;
347
348         /*
349          * Use the nonblocking flag for the dlm code to avoid page
350          * lock inversion, but don't bother with retrying.
351          */
352         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353         if (ret)
354                 return err;
355
356         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357                 ocfs2_inode_unlock(inode, 0);
358                 return err;
359         }
360
361         /*
362          * Don't bother with inline-data. There isn't anything
363          * to read-ahead in that case anyway...
364          */
365         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366                 goto out_unlock;
367
368         /*
369          * Check whether a remote node truncated this file - we just
370          * drop out in that case as it's not worth handling here.
371          */
372         last = list_entry(pages->prev, struct page, lru);
373         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374         if (start >= i_size_read(inode))
375                 goto out_unlock;
376
377         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379 out_unlock:
380         up_read(&oi->ip_alloc_sem);
381         ocfs2_inode_unlock(inode, 0);
382
383         return err;
384 }
385
386 /* Note: Because we don't support holes, our allocation has
387  * already happened (allocation writes zeros to the file data)
388  * so we don't have to worry about ordered writes in
389  * ocfs2_writepage.
390  *
391  * ->writepage is called during the process of invalidating the page cache
392  * during blocked lock processing.  It can't block on any cluster locks
393  * to during block mapping.  It's relying on the fact that the block
394  * mapping can't have disappeared under the dirty pages that it is
395  * being asked to write back.
396  */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399         int ret;
400
401         mlog_entry("(0x%p)\n", page);
402
403         ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405         mlog_exit(ret);
406
407         return ret;
408 }
409
410 /*
411  * This is called from ocfs2_write_zero_page() which has handled it's
412  * own cluster locking and has ensured allocation exists for those
413  * blocks to be written.
414  */
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416                                unsigned from, unsigned to)
417 {
418         int ret;
419
420         ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
422         return ret;
423 }
424
425 /* Taken from ext3. We don't necessarily need the full blown
426  * functionality yet, but IMHO it's better to cut and paste the whole
427  * thing so we can avoid introducing our own bugs (and easily pick up
428  * their fixes when they happen) --Mark */
429 int walk_page_buffers(  handle_t *handle,
430                         struct buffer_head *head,
431                         unsigned from,
432                         unsigned to,
433                         int *partial,
434                         int (*fn)(      handle_t *handle,
435                                         struct buffer_head *bh))
436 {
437         struct buffer_head *bh;
438         unsigned block_start, block_end;
439         unsigned blocksize = head->b_size;
440         int err, ret = 0;
441         struct buffer_head *next;
442
443         for (   bh = head, block_start = 0;
444                 ret == 0 && (bh != head || !block_start);
445                 block_start = block_end, bh = next)
446         {
447                 next = bh->b_this_page;
448                 block_end = block_start + blocksize;
449                 if (block_end <= from || block_start >= to) {
450                         if (partial && !buffer_uptodate(bh))
451                                 *partial = 1;
452                         continue;
453                 }
454                 err = (*fn)(handle, bh);
455                 if (!ret)
456                         ret = err;
457         }
458         return ret;
459 }
460
461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
462 {
463         sector_t status;
464         u64 p_blkno = 0;
465         int err = 0;
466         struct inode *inode = mapping->host;
467
468         mlog_entry("(block = %llu)\n", (unsigned long long)block);
469
470         /* We don't need to lock journal system files, since they aren't
471          * accessed concurrently from multiple nodes.
472          */
473         if (!INODE_JOURNAL(inode)) {
474                 err = ocfs2_inode_lock(inode, NULL, 0);
475                 if (err) {
476                         if (err != -ENOENT)
477                                 mlog_errno(err);
478                         goto bail;
479                 }
480                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
481         }
482
483         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485                                                   NULL);
486
487         if (!INODE_JOURNAL(inode)) {
488                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
489                 ocfs2_inode_unlock(inode, 0);
490         }
491
492         if (err) {
493                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494                      (unsigned long long)block);
495                 mlog_errno(err);
496                 goto bail;
497         }
498
499 bail:
500         status = err ? 0 : p_blkno;
501
502         mlog_exit((int)status);
503
504         return status;
505 }
506
507 /*
508  * TODO: Make this into a generic get_blocks function.
509  *
510  * From do_direct_io in direct-io.c:
511  *  "So what we do is to permit the ->get_blocks function to populate
512  *   bh.b_size with the size of IO which is permitted at this offset and
513  *   this i_blkbits."
514  *
515  * This function is called directly from get_more_blocks in direct-io.c.
516  *
517  * called like this: dio->get_blocks(dio->inode, fs_startblk,
518  *                                      fs_count, map_bh, dio->rw == WRITE);
519  *
520  * Note that we never bother to allocate blocks here, and thus ignore the
521  * create argument.
522  */
523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
524                                      struct buffer_head *bh_result, int create)
525 {
526         int ret;
527         u64 p_blkno, inode_blocks, contig_blocks;
528         unsigned int ext_flags;
529         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
530         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
531
532         /* This function won't even be called if the request isn't all
533          * nicely aligned and of the right size, so there's no need
534          * for us to check any of that. */
535
536         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
537
538         /* This figures out the size of the next contiguous block, and
539          * our logical offset */
540         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541                                           &contig_blocks, &ext_flags);
542         if (ret) {
543                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544                      (unsigned long long)iblock);
545                 ret = -EIO;
546                 goto bail;
547         }
548
549         /* We should already CoW the refcounted extent in case of create. */
550         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
551
552         /*
553          * get_more_blocks() expects us to describe a hole by clearing
554          * the mapped bit on bh_result().
555          *
556          * Consider an unwritten extent as a hole.
557          */
558         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
559                 map_bh(bh_result, inode->i_sb, p_blkno);
560         else
561                 clear_buffer_mapped(bh_result);
562
563         /* make sure we don't map more than max_blocks blocks here as
564            that's all the kernel will handle at this point. */
565         if (max_blocks < contig_blocks)
566                 contig_blocks = max_blocks;
567         bh_result->b_size = contig_blocks << blocksize_bits;
568 bail:
569         return ret;
570 }
571
572 /*
573  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
574  * particularly interested in the aio/dio case.  Like the core uses
575  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576  * truncation on another.
577  */
578 static void ocfs2_dio_end_io(struct kiocb *iocb,
579                              loff_t offset,
580                              ssize_t bytes,
581                              void *private,
582                              int ret,
583                              bool is_async)
584 {
585         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
586         int level;
587
588         /* this io's submitter should not have unlocked this before we could */
589         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
590
591         ocfs2_iocb_clear_rw_locked(iocb);
592
593         level = ocfs2_iocb_rw_locked_level(iocb);
594         if (!level)
595                 up_read(&inode->i_alloc_sem);
596         ocfs2_rw_unlock(inode, level);
597
598         if (is_async)
599                 aio_complete(iocb, ret, 0);
600 }
601
602 /*
603  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
604  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
605  * do journalled data.
606  */
607 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
608 {
609         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
611         jbd2_journal_invalidatepage(journal, page, offset);
612 }
613
614 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 {
616         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617
618         if (!page_has_buffers(page))
619                 return 0;
620         return jbd2_journal_try_to_free_buffers(journal, page, wait);
621 }
622
623 static ssize_t ocfs2_direct_IO(int rw,
624                                struct kiocb *iocb,
625                                const struct iovec *iov,
626                                loff_t offset,
627                                unsigned long nr_segs)
628 {
629         struct file *file = iocb->ki_filp;
630         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
631         int ret;
632
633         mlog_entry_void();
634
635         /*
636          * Fallback to buffered I/O if we see an inode without
637          * extents.
638          */
639         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
640                 return 0;
641
642         /* Fallback to buffered I/O if we are appending. */
643         if (i_size_read(inode) <= offset)
644                 return 0;
645
646         ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
647                                    iov, offset, nr_segs,
648                                    ocfs2_direct_IO_get_blocks,
649                                    ocfs2_dio_end_io, NULL, 0);
650
651         mlog_exit(ret);
652         return ret;
653 }
654
655 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
656                                             u32 cpos,
657                                             unsigned int *start,
658                                             unsigned int *end)
659 {
660         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
661
662         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
663                 unsigned int cpp;
664
665                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
666
667                 cluster_start = cpos % cpp;
668                 cluster_start = cluster_start << osb->s_clustersize_bits;
669
670                 cluster_end = cluster_start + osb->s_clustersize;
671         }
672
673         BUG_ON(cluster_start > PAGE_SIZE);
674         BUG_ON(cluster_end > PAGE_SIZE);
675
676         if (start)
677                 *start = cluster_start;
678         if (end)
679                 *end = cluster_end;
680 }
681
682 /*
683  * 'from' and 'to' are the region in the page to avoid zeroing.
684  *
685  * If pagesize > clustersize, this function will avoid zeroing outside
686  * of the cluster boundary.
687  *
688  * from == to == 0 is code for "zero the entire cluster region"
689  */
690 static void ocfs2_clear_page_regions(struct page *page,
691                                      struct ocfs2_super *osb, u32 cpos,
692                                      unsigned from, unsigned to)
693 {
694         void *kaddr;
695         unsigned int cluster_start, cluster_end;
696
697         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
698
699         kaddr = kmap_atomic(page, KM_USER0);
700
701         if (from || to) {
702                 if (from > cluster_start)
703                         memset(kaddr + cluster_start, 0, from - cluster_start);
704                 if (to < cluster_end)
705                         memset(kaddr + to, 0, cluster_end - to);
706         } else {
707                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
708         }
709
710         kunmap_atomic(kaddr, KM_USER0);
711 }
712
713 /*
714  * Nonsparse file systems fully allocate before we get to the write
715  * code. This prevents ocfs2_write() from tagging the write as an
716  * allocating one, which means ocfs2_map_page_blocks() might try to
717  * read-in the blocks at the tail of our file. Avoid reading them by
718  * testing i_size against each block offset.
719  */
720 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
721                                  unsigned int block_start)
722 {
723         u64 offset = page_offset(page) + block_start;
724
725         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
726                 return 1;
727
728         if (i_size_read(inode) > offset)
729                 return 1;
730
731         return 0;
732 }
733
734 /*
735  * Some of this taken from block_prepare_write(). We already have our
736  * mapping by now though, and the entire write will be allocating or
737  * it won't, so not much need to use BH_New.
738  *
739  * This will also skip zeroing, which is handled externally.
740  */
741 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
742                           struct inode *inode, unsigned int from,
743                           unsigned int to, int new)
744 {
745         int ret = 0;
746         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
747         unsigned int block_end, block_start;
748         unsigned int bsize = 1 << inode->i_blkbits;
749
750         if (!page_has_buffers(page))
751                 create_empty_buffers(page, bsize, 0);
752
753         head = page_buffers(page);
754         for (bh = head, block_start = 0; bh != head || !block_start;
755              bh = bh->b_this_page, block_start += bsize) {
756                 block_end = block_start + bsize;
757
758                 clear_buffer_new(bh);
759
760                 /*
761                  * Ignore blocks outside of our i/o range -
762                  * they may belong to unallocated clusters.
763                  */
764                 if (block_start >= to || block_end <= from) {
765                         if (PageUptodate(page))
766                                 set_buffer_uptodate(bh);
767                         continue;
768                 }
769
770                 /*
771                  * For an allocating write with cluster size >= page
772                  * size, we always write the entire page.
773                  */
774                 if (new)
775                         set_buffer_new(bh);
776
777                 if (!buffer_mapped(bh)) {
778                         map_bh(bh, inode->i_sb, *p_blkno);
779                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
780                 }
781
782                 if (PageUptodate(page)) {
783                         if (!buffer_uptodate(bh))
784                                 set_buffer_uptodate(bh);
785                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
786                            !buffer_new(bh) &&
787                            ocfs2_should_read_blk(inode, page, block_start) &&
788                            (block_start < from || block_end > to)) {
789                         ll_rw_block(READ, 1, &bh);
790                         *wait_bh++=bh;
791                 }
792
793                 *p_blkno = *p_blkno + 1;
794         }
795
796         /*
797          * If we issued read requests - let them complete.
798          */
799         while(wait_bh > wait) {
800                 wait_on_buffer(*--wait_bh);
801                 if (!buffer_uptodate(*wait_bh))
802                         ret = -EIO;
803         }
804
805         if (ret == 0 || !new)
806                 return ret;
807
808         /*
809          * If we get -EIO above, zero out any newly allocated blocks
810          * to avoid exposing stale data.
811          */
812         bh = head;
813         block_start = 0;
814         do {
815                 block_end = block_start + bsize;
816                 if (block_end <= from)
817                         goto next_bh;
818                 if (block_start >= to)
819                         break;
820
821                 zero_user(page, block_start, bh->b_size);
822                 set_buffer_uptodate(bh);
823                 mark_buffer_dirty(bh);
824
825 next_bh:
826                 block_start = block_end;
827                 bh = bh->b_this_page;
828         } while (bh != head);
829
830         return ret;
831 }
832
833 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
834 #define OCFS2_MAX_CTXT_PAGES    1
835 #else
836 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
837 #endif
838
839 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
840
841 /*
842  * Describe the state of a single cluster to be written to.
843  */
844 struct ocfs2_write_cluster_desc {
845         u32             c_cpos;
846         u32             c_phys;
847         /*
848          * Give this a unique field because c_phys eventually gets
849          * filled.
850          */
851         unsigned        c_new;
852         unsigned        c_unwritten;
853         unsigned        c_needs_zero;
854 };
855
856 struct ocfs2_write_ctxt {
857         /* Logical cluster position / len of write */
858         u32                             w_cpos;
859         u32                             w_clen;
860
861         /* First cluster allocated in a nonsparse extend */
862         u32                             w_first_new_cpos;
863
864         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
865
866         /*
867          * This is true if page_size > cluster_size.
868          *
869          * It triggers a set of special cases during write which might
870          * have to deal with allocating writes to partial pages.
871          */
872         unsigned int                    w_large_pages;
873
874         /*
875          * Pages involved in this write.
876          *
877          * w_target_page is the page being written to by the user.
878          *
879          * w_pages is an array of pages which always contains
880          * w_target_page, and in the case of an allocating write with
881          * page_size < cluster size, it will contain zero'd and mapped
882          * pages adjacent to w_target_page which need to be written
883          * out in so that future reads from that region will get
884          * zero's.
885          */
886         unsigned int                    w_num_pages;
887         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
888         struct page                     *w_target_page;
889
890         /*
891          * ocfs2_write_end() uses this to know what the real range to
892          * write in the target should be.
893          */
894         unsigned int                    w_target_from;
895         unsigned int                    w_target_to;
896
897         /*
898          * We could use journal_current_handle() but this is cleaner,
899          * IMHO -Mark
900          */
901         handle_t                        *w_handle;
902
903         struct buffer_head              *w_di_bh;
904
905         struct ocfs2_cached_dealloc_ctxt w_dealloc;
906 };
907
908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 {
910         int i;
911
912         for(i = 0; i < num_pages; i++) {
913                 if (pages[i]) {
914                         unlock_page(pages[i]);
915                         mark_page_accessed(pages[i]);
916                         page_cache_release(pages[i]);
917                 }
918         }
919 }
920
921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 {
923         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
924
925         brelse(wc->w_di_bh);
926         kfree(wc);
927 }
928
929 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
930                                   struct ocfs2_super *osb, loff_t pos,
931                                   unsigned len, struct buffer_head *di_bh)
932 {
933         u32 cend;
934         struct ocfs2_write_ctxt *wc;
935
936         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
937         if (!wc)
938                 return -ENOMEM;
939
940         wc->w_cpos = pos >> osb->s_clustersize_bits;
941         wc->w_first_new_cpos = UINT_MAX;
942         cend = (pos + len - 1) >> osb->s_clustersize_bits;
943         wc->w_clen = cend - wc->w_cpos + 1;
944         get_bh(di_bh);
945         wc->w_di_bh = di_bh;
946
947         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
948                 wc->w_large_pages = 1;
949         else
950                 wc->w_large_pages = 0;
951
952         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
953
954         *wcp = wc;
955
956         return 0;
957 }
958
959 /*
960  * If a page has any new buffers, zero them out here, and mark them uptodate
961  * and dirty so they'll be written out (in order to prevent uninitialised
962  * block data from leaking). And clear the new bit.
963  */
964 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
965 {
966         unsigned int block_start, block_end;
967         struct buffer_head *head, *bh;
968
969         BUG_ON(!PageLocked(page));
970         if (!page_has_buffers(page))
971                 return;
972
973         bh = head = page_buffers(page);
974         block_start = 0;
975         do {
976                 block_end = block_start + bh->b_size;
977
978                 if (buffer_new(bh)) {
979                         if (block_end > from && block_start < to) {
980                                 if (!PageUptodate(page)) {
981                                         unsigned start, end;
982
983                                         start = max(from, block_start);
984                                         end = min(to, block_end);
985
986                                         zero_user_segment(page, start, end);
987                                         set_buffer_uptodate(bh);
988                                 }
989
990                                 clear_buffer_new(bh);
991                                 mark_buffer_dirty(bh);
992                         }
993                 }
994
995                 block_start = block_end;
996                 bh = bh->b_this_page;
997         } while (bh != head);
998 }
999
1000 /*
1001  * Only called when we have a failure during allocating write to write
1002  * zero's to the newly allocated region.
1003  */
1004 static void ocfs2_write_failure(struct inode *inode,
1005                                 struct ocfs2_write_ctxt *wc,
1006                                 loff_t user_pos, unsigned user_len)
1007 {
1008         int i;
1009         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1010                 to = user_pos + user_len;
1011         struct page *tmppage;
1012
1013         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1014
1015         for(i = 0; i < wc->w_num_pages; i++) {
1016                 tmppage = wc->w_pages[i];
1017
1018                 if (page_has_buffers(tmppage)) {
1019                         if (ocfs2_should_order_data(inode))
1020                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1021
1022                         block_commit_write(tmppage, from, to);
1023                 }
1024         }
1025 }
1026
1027 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1028                                         struct ocfs2_write_ctxt *wc,
1029                                         struct page *page, u32 cpos,
1030                                         loff_t user_pos, unsigned user_len,
1031                                         int new)
1032 {
1033         int ret;
1034         unsigned int map_from = 0, map_to = 0;
1035         unsigned int cluster_start, cluster_end;
1036         unsigned int user_data_from = 0, user_data_to = 0;
1037
1038         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1039                                         &cluster_start, &cluster_end);
1040
1041         if (page == wc->w_target_page) {
1042                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043                 map_to = map_from + user_len;
1044
1045                 if (new)
1046                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047                                                     cluster_start, cluster_end,
1048                                                     new);
1049                 else
1050                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051                                                     map_from, map_to, new);
1052                 if (ret) {
1053                         mlog_errno(ret);
1054                         goto out;
1055                 }
1056
1057                 user_data_from = map_from;
1058                 user_data_to = map_to;
1059                 if (new) {
1060                         map_from = cluster_start;
1061                         map_to = cluster_end;
1062                 }
1063         } else {
1064                 /*
1065                  * If we haven't allocated the new page yet, we
1066                  * shouldn't be writing it out without copying user
1067                  * data. This is likely a math error from the caller.
1068                  */
1069                 BUG_ON(!new);
1070
1071                 map_from = cluster_start;
1072                 map_to = cluster_end;
1073
1074                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075                                             cluster_start, cluster_end, new);
1076                 if (ret) {
1077                         mlog_errno(ret);
1078                         goto out;
1079                 }
1080         }
1081
1082         /*
1083          * Parts of newly allocated pages need to be zero'd.
1084          *
1085          * Above, we have also rewritten 'to' and 'from' - as far as
1086          * the rest of the function is concerned, the entire cluster
1087          * range inside of a page needs to be written.
1088          *
1089          * We can skip this if the page is up to date - it's already
1090          * been zero'd from being read in as a hole.
1091          */
1092         if (new && !PageUptodate(page))
1093                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094                                          cpos, user_data_from, user_data_to);
1095
1096         flush_dcache_page(page);
1097
1098 out:
1099         return ret;
1100 }
1101
1102 /*
1103  * This function will only grab one clusters worth of pages.
1104  */
1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106                                       struct ocfs2_write_ctxt *wc,
1107                                       u32 cpos, loff_t user_pos,
1108                                       unsigned user_len, int new,
1109                                       struct page *mmap_page)
1110 {
1111         int ret = 0, i;
1112         unsigned long start, target_index, end_index, index;
1113         struct inode *inode = mapping->host;
1114         loff_t last_byte;
1115
1116         target_index = user_pos >> PAGE_CACHE_SHIFT;
1117
1118         /*
1119          * Figure out how many pages we'll be manipulating here. For
1120          * non allocating write, we just change the one
1121          * page. Otherwise, we'll need a whole clusters worth.  If we're
1122          * writing past i_size, we only need enough pages to cover the
1123          * last page of the write.
1124          */
1125         if (new) {
1126                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1128                 /*
1129                  * We need the index *past* the last page we could possibly
1130                  * touch.  This is the page past the end of the write or
1131                  * i_size, whichever is greater.
1132                  */
1133                 last_byte = max(user_pos + user_len, i_size_read(inode));
1134                 BUG_ON(last_byte < 1);
1135                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136                 if ((start + wc->w_num_pages) > end_index)
1137                         wc->w_num_pages = end_index - start;
1138         } else {
1139                 wc->w_num_pages = 1;
1140                 start = target_index;
1141         }
1142
1143         for(i = 0; i < wc->w_num_pages; i++) {
1144                 index = start + i;
1145
1146                 if (index == target_index && mmap_page) {
1147                         /*
1148                          * ocfs2_pagemkwrite() is a little different
1149                          * and wants us to directly use the page
1150                          * passed in.
1151                          */
1152                         lock_page(mmap_page);
1153
1154                         if (mmap_page->mapping != mapping) {
1155                                 unlock_page(mmap_page);
1156                                 /*
1157                                  * Sanity check - the locking in
1158                                  * ocfs2_pagemkwrite() should ensure
1159                                  * that this code doesn't trigger.
1160                                  */
1161                                 ret = -EINVAL;
1162                                 mlog_errno(ret);
1163                                 goto out;
1164                         }
1165
1166                         page_cache_get(mmap_page);
1167                         wc->w_pages[i] = mmap_page;
1168                 } else {
1169                         wc->w_pages[i] = find_or_create_page(mapping, index,
1170                                                              GFP_NOFS);
1171                         if (!wc->w_pages[i]) {
1172                                 ret = -ENOMEM;
1173                                 mlog_errno(ret);
1174                                 goto out;
1175                         }
1176                 }
1177
1178                 if (index == target_index)
1179                         wc->w_target_page = wc->w_pages[i];
1180         }
1181 out:
1182         return ret;
1183 }
1184
1185 /*
1186  * Prepare a single cluster for write one cluster into the file.
1187  */
1188 static int ocfs2_write_cluster(struct address_space *mapping,
1189                                u32 phys, unsigned int unwritten,
1190                                unsigned int should_zero,
1191                                struct ocfs2_alloc_context *data_ac,
1192                                struct ocfs2_alloc_context *meta_ac,
1193                                struct ocfs2_write_ctxt *wc, u32 cpos,
1194                                loff_t user_pos, unsigned user_len)
1195 {
1196         int ret, i, new;
1197         u64 v_blkno, p_blkno;
1198         struct inode *inode = mapping->host;
1199         struct ocfs2_extent_tree et;
1200
1201         new = phys == 0 ? 1 : 0;
1202         if (new) {
1203                 u32 tmp_pos;
1204
1205                 /*
1206                  * This is safe to call with the page locks - it won't take
1207                  * any additional semaphores or cluster locks.
1208                  */
1209                 tmp_pos = cpos;
1210                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211                                            &tmp_pos, 1, 0, wc->w_di_bh,
1212                                            wc->w_handle, data_ac,
1213                                            meta_ac, NULL);
1214                 /*
1215                  * This shouldn't happen because we must have already
1216                  * calculated the correct meta data allocation required. The
1217                  * internal tree allocation code should know how to increase
1218                  * transaction credits itself.
1219                  *
1220                  * If need be, we could handle -EAGAIN for a
1221                  * RESTART_TRANS here.
1222                  */
1223                 mlog_bug_on_msg(ret == -EAGAIN,
1224                                 "Inode %llu: EAGAIN return during allocation.\n",
1225                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1226                 if (ret < 0) {
1227                         mlog_errno(ret);
1228                         goto out;
1229                 }
1230         } else if (unwritten) {
1231                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232                                               wc->w_di_bh);
1233                 ret = ocfs2_mark_extent_written(inode, &et,
1234                                                 wc->w_handle, cpos, 1, phys,
1235                                                 meta_ac, &wc->w_dealloc);
1236                 if (ret < 0) {
1237                         mlog_errno(ret);
1238                         goto out;
1239                 }
1240         }
1241
1242         if (should_zero)
1243                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244         else
1245                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1246
1247         /*
1248          * The only reason this should fail is due to an inability to
1249          * find the extent added.
1250          */
1251         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252                                           NULL);
1253         if (ret < 0) {
1254                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255                             "at logical block %llu",
1256                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257                             (unsigned long long)v_blkno);
1258                 goto out;
1259         }
1260
1261         BUG_ON(p_blkno == 0);
1262
1263         for(i = 0; i < wc->w_num_pages; i++) {
1264                 int tmpret;
1265
1266                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267                                                       wc->w_pages[i], cpos,
1268                                                       user_pos, user_len,
1269                                                       should_zero);
1270                 if (tmpret) {
1271                         mlog_errno(tmpret);
1272                         if (ret == 0)
1273                                 ret = tmpret;
1274                 }
1275         }
1276
1277         /*
1278          * We only have cleanup to do in case of allocating write.
1279          */
1280         if (ret && new)
1281                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1282
1283 out:
1284
1285         return ret;
1286 }
1287
1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289                                        struct ocfs2_alloc_context *data_ac,
1290                                        struct ocfs2_alloc_context *meta_ac,
1291                                        struct ocfs2_write_ctxt *wc,
1292                                        loff_t pos, unsigned len)
1293 {
1294         int ret, i;
1295         loff_t cluster_off;
1296         unsigned int local_len = len;
1297         struct ocfs2_write_cluster_desc *desc;
1298         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1299
1300         for (i = 0; i < wc->w_clen; i++) {
1301                 desc = &wc->w_desc[i];
1302
1303                 /*
1304                  * We have to make sure that the total write passed in
1305                  * doesn't extend past a single cluster.
1306                  */
1307                 local_len = len;
1308                 cluster_off = pos & (osb->s_clustersize - 1);
1309                 if ((cluster_off + local_len) > osb->s_clustersize)
1310                         local_len = osb->s_clustersize - cluster_off;
1311
1312                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313                                           desc->c_unwritten,
1314                                           desc->c_needs_zero,
1315                                           data_ac, meta_ac,
1316                                           wc, desc->c_cpos, pos, local_len);
1317                 if (ret) {
1318                         mlog_errno(ret);
1319                         goto out;
1320                 }
1321
1322                 len -= local_len;
1323                 pos += local_len;
1324         }
1325
1326         ret = 0;
1327 out:
1328         return ret;
1329 }
1330
1331 /*
1332  * ocfs2_write_end() wants to know which parts of the target page it
1333  * should complete the write on. It's easiest to compute them ahead of
1334  * time when a more complete view of the write is available.
1335  */
1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337                                         struct ocfs2_write_ctxt *wc,
1338                                         loff_t pos, unsigned len, int alloc)
1339 {
1340         struct ocfs2_write_cluster_desc *desc;
1341
1342         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343         wc->w_target_to = wc->w_target_from + len;
1344
1345         if (alloc == 0)
1346                 return;
1347
1348         /*
1349          * Allocating write - we may have different boundaries based
1350          * on page size and cluster size.
1351          *
1352          * NOTE: We can no longer compute one value from the other as
1353          * the actual write length and user provided length may be
1354          * different.
1355          */
1356
1357         if (wc->w_large_pages) {
1358                 /*
1359                  * We only care about the 1st and last cluster within
1360                  * our range and whether they should be zero'd or not. Either
1361                  * value may be extended out to the start/end of a
1362                  * newly allocated cluster.
1363                  */
1364                 desc = &wc->w_desc[0];
1365                 if (desc->c_needs_zero)
1366                         ocfs2_figure_cluster_boundaries(osb,
1367                                                         desc->c_cpos,
1368                                                         &wc->w_target_from,
1369                                                         NULL);
1370
1371                 desc = &wc->w_desc[wc->w_clen - 1];
1372                 if (desc->c_needs_zero)
1373                         ocfs2_figure_cluster_boundaries(osb,
1374                                                         desc->c_cpos,
1375                                                         NULL,
1376                                                         &wc->w_target_to);
1377         } else {
1378                 wc->w_target_from = 0;
1379                 wc->w_target_to = PAGE_CACHE_SIZE;
1380         }
1381 }
1382
1383 /*
1384  * Populate each single-cluster write descriptor in the write context
1385  * with information about the i/o to be done.
1386  *
1387  * Returns the number of clusters that will have to be allocated, as
1388  * well as a worst case estimate of the number of extent records that
1389  * would have to be created during a write to an unwritten region.
1390  */
1391 static int ocfs2_populate_write_desc(struct inode *inode,
1392                                      struct ocfs2_write_ctxt *wc,
1393                                      unsigned int *clusters_to_alloc,
1394                                      unsigned int *extents_to_split)
1395 {
1396         int ret;
1397         struct ocfs2_write_cluster_desc *desc;
1398         unsigned int num_clusters = 0;
1399         unsigned int ext_flags = 0;
1400         u32 phys = 0;
1401         int i;
1402
1403         *clusters_to_alloc = 0;
1404         *extents_to_split = 0;
1405
1406         for (i = 0; i < wc->w_clen; i++) {
1407                 desc = &wc->w_desc[i];
1408                 desc->c_cpos = wc->w_cpos + i;
1409
1410                 if (num_clusters == 0) {
1411                         /*
1412                          * Need to look up the next extent record.
1413                          */
1414                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415                                                  &num_clusters, &ext_flags);
1416                         if (ret) {
1417                                 mlog_errno(ret);
1418                                 goto out;
1419                         }
1420
1421                         /* We should already CoW the refcountd extent. */
1422                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423
1424                         /*
1425                          * Assume worst case - that we're writing in
1426                          * the middle of the extent.
1427                          *
1428                          * We can assume that the write proceeds from
1429                          * left to right, in which case the extent
1430                          * insert code is smart enough to coalesce the
1431                          * next splits into the previous records created.
1432                          */
1433                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434                                 *extents_to_split = *extents_to_split + 2;
1435                 } else if (phys) {
1436                         /*
1437                          * Only increment phys if it doesn't describe
1438                          * a hole.
1439                          */
1440                         phys++;
1441                 }
1442
1443                 /*
1444                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445                  * file that got extended.  w_first_new_cpos tells us
1446                  * where the newly allocated clusters are so we can
1447                  * zero them.
1448                  */
1449                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1450                         BUG_ON(phys == 0);
1451                         desc->c_needs_zero = 1;
1452                 }
1453
1454                 desc->c_phys = phys;
1455                 if (phys == 0) {
1456                         desc->c_new = 1;
1457                         desc->c_needs_zero = 1;
1458                         *clusters_to_alloc = *clusters_to_alloc + 1;
1459                 }
1460
1461                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462                         desc->c_unwritten = 1;
1463                         desc->c_needs_zero = 1;
1464                 }
1465
1466                 num_clusters--;
1467         }
1468
1469         ret = 0;
1470 out:
1471         return ret;
1472 }
1473
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                     struct inode *inode,
1476                                     struct ocfs2_write_ctxt *wc)
1477 {
1478         int ret;
1479         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480         struct page *page;
1481         handle_t *handle;
1482         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484         page = find_or_create_page(mapping, 0, GFP_NOFS);
1485         if (!page) {
1486                 ret = -ENOMEM;
1487                 mlog_errno(ret);
1488                 goto out;
1489         }
1490         /*
1491          * If we don't set w_num_pages then this page won't get unlocked
1492          * and freed on cleanup of the write context.
1493          */
1494         wc->w_pages[0] = wc->w_target_page = page;
1495         wc->w_num_pages = 1;
1496
1497         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498         if (IS_ERR(handle)) {
1499                 ret = PTR_ERR(handle);
1500                 mlog_errno(ret);
1501                 goto out;
1502         }
1503
1504         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505                                       OCFS2_JOURNAL_ACCESS_WRITE);
1506         if (ret) {
1507                 ocfs2_commit_trans(osb, handle);
1508
1509                 mlog_errno(ret);
1510                 goto out;
1511         }
1512
1513         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514                 ocfs2_set_inode_data_inline(inode, di);
1515
1516         if (!PageUptodate(page)) {
1517                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518                 if (ret) {
1519                         ocfs2_commit_trans(osb, handle);
1520
1521                         goto out;
1522                 }
1523         }
1524
1525         wc->w_handle = handle;
1526 out:
1527         return ret;
1528 }
1529
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535                 return 1;
1536         return 0;
1537 }
1538
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540                                           struct inode *inode, loff_t pos,
1541                                           unsigned len, struct page *mmap_page,
1542                                           struct ocfs2_write_ctxt *wc)
1543 {
1544         int ret, written = 0;
1545         loff_t end = pos + len;
1546         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547         struct ocfs2_dinode *di = NULL;
1548
1549         mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1550              (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1551              oi->ip_dyn_features);
1552
1553         /*
1554          * Handle inodes which already have inline data 1st.
1555          */
1556         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557                 if (mmap_page == NULL &&
1558                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559                         goto do_inline_write;
1560
1561                 /*
1562                  * The write won't fit - we have to give this inode an
1563                  * inline extent list now.
1564                  */
1565                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566                 if (ret)
1567                         mlog_errno(ret);
1568                 goto out;
1569         }
1570
1571         /*
1572          * Check whether the inode can accept inline data.
1573          */
1574         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575                 return 0;
1576
1577         /*
1578          * Check whether the write can fit.
1579          */
1580         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581         if (mmap_page ||
1582             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583                 return 0;
1584
1585 do_inline_write:
1586         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587         if (ret) {
1588                 mlog_errno(ret);
1589                 goto out;
1590         }
1591
1592         /*
1593          * This signals to the caller that the data can be written
1594          * inline.
1595          */
1596         written = 1;
1597 out:
1598         return written ? written : ret;
1599 }
1600
1601 /*
1602  * This function only does anything for file systems which can't
1603  * handle sparse files.
1604  *
1605  * What we want to do here is fill in any hole between the current end
1606  * of allocation and the end of our write. That way the rest of the
1607  * write path can treat it as an non-allocating write, which has no
1608  * special case code for sparse/nonsparse files.
1609  */
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611                                         struct buffer_head *di_bh,
1612                                         loff_t pos, unsigned len,
1613                                         struct ocfs2_write_ctxt *wc)
1614 {
1615         int ret;
1616         loff_t newsize = pos + len;
1617
1618         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620         if (newsize <= i_size_read(inode))
1621                 return 0;
1622
1623         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624         if (ret)
1625                 mlog_errno(ret);
1626
1627         wc->w_first_new_cpos =
1628                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
1630         return ret;
1631 }
1632
1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634                            loff_t pos)
1635 {
1636         int ret = 0;
1637
1638         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639         if (pos > i_size_read(inode))
1640                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642         return ret;
1643 }
1644
1645 int ocfs2_write_begin_nolock(struct file *filp,
1646                              struct address_space *mapping,
1647                              loff_t pos, unsigned len, unsigned flags,
1648                              struct page **pagep, void **fsdata,
1649                              struct buffer_head *di_bh, struct page *mmap_page)
1650 {
1651         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652         unsigned int clusters_to_alloc, extents_to_split;
1653         struct ocfs2_write_ctxt *wc;
1654         struct inode *inode = mapping->host;
1655         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656         struct ocfs2_dinode *di;
1657         struct ocfs2_alloc_context *data_ac = NULL;
1658         struct ocfs2_alloc_context *meta_ac = NULL;
1659         handle_t *handle;
1660         struct ocfs2_extent_tree et;
1661
1662         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1663         if (ret) {
1664                 mlog_errno(ret);
1665                 return ret;
1666         }
1667
1668         if (ocfs2_supports_inline_data(osb)) {
1669                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1670                                                      mmap_page, wc);
1671                 if (ret == 1) {
1672                         ret = 0;
1673                         goto success;
1674                 }
1675                 if (ret < 0) {
1676                         mlog_errno(ret);
1677                         goto out;
1678                 }
1679         }
1680
1681         if (ocfs2_sparse_alloc(osb))
1682                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1683         else
1684                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1685                                                    wc);
1686         if (ret) {
1687                 mlog_errno(ret);
1688                 goto out;
1689         }
1690
1691         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1692         if (ret < 0) {
1693                 mlog_errno(ret);
1694                 goto out;
1695         } else if (ret == 1) {
1696                 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1697                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1698                 if (ret) {
1699                         mlog_errno(ret);
1700                         goto out;
1701                 }
1702         }
1703
1704         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1705                                         &extents_to_split);
1706         if (ret) {
1707                 mlog_errno(ret);
1708                 goto out;
1709         }
1710
1711         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1712
1713         /*
1714          * We set w_target_from, w_target_to here so that
1715          * ocfs2_write_end() knows which range in the target page to
1716          * write out. An allocation requires that we write the entire
1717          * cluster range.
1718          */
1719         if (clusters_to_alloc || extents_to_split) {
1720                 /*
1721                  * XXX: We are stretching the limits of
1722                  * ocfs2_lock_allocators(). It greatly over-estimates
1723                  * the work to be done.
1724                  */
1725                 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1726                      " clusters_to_add = %u, extents_to_split = %u\n",
1727                      (unsigned long long)OCFS2_I(inode)->ip_blkno,
1728                      (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1729                      clusters_to_alloc, extents_to_split);
1730
1731                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1732                                               wc->w_di_bh);
1733                 ret = ocfs2_lock_allocators(inode, &et,
1734                                             clusters_to_alloc, extents_to_split,
1735                                             &data_ac, &meta_ac);
1736                 if (ret) {
1737                         mlog_errno(ret);
1738                         goto out;
1739                 }
1740
1741                 if (data_ac)
1742                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1743
1744                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1745                                                     &di->id2.i_list,
1746                                                     clusters_to_alloc);
1747
1748         }
1749
1750         /*
1751          * We have to zero sparse allocated clusters, unwritten extent clusters,
1752          * and non-sparse clusters we just extended.  For non-sparse writes,
1753          * we know zeros will only be needed in the first and/or last cluster.
1754          */
1755         if (clusters_to_alloc || extents_to_split ||
1756             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1757                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1758                 cluster_of_pages = 1;
1759         else
1760                 cluster_of_pages = 0;
1761
1762         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1763
1764         handle = ocfs2_start_trans(osb, credits);
1765         if (IS_ERR(handle)) {
1766                 ret = PTR_ERR(handle);
1767                 mlog_errno(ret);
1768                 goto out;
1769         }
1770
1771         wc->w_handle = handle;
1772
1773         if (clusters_to_alloc) {
1774                 ret = dquot_alloc_space_nodirty(inode,
1775                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1776                 if (ret)
1777                         goto out_commit;
1778         }
1779         /*
1780          * We don't want this to fail in ocfs2_write_end(), so do it
1781          * here.
1782          */
1783         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1784                                       OCFS2_JOURNAL_ACCESS_WRITE);
1785         if (ret) {
1786                 mlog_errno(ret);
1787                 goto out_quota;
1788         }
1789
1790         /*
1791          * Fill our page array first. That way we've grabbed enough so
1792          * that we can zero and flush if we error after adding the
1793          * extent.
1794          */
1795         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1796                                          cluster_of_pages, mmap_page);
1797         if (ret) {
1798                 mlog_errno(ret);
1799                 goto out_quota;
1800         }
1801
1802         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1803                                           len);
1804         if (ret) {
1805                 mlog_errno(ret);
1806                 goto out_quota;
1807         }
1808
1809         if (data_ac)
1810                 ocfs2_free_alloc_context(data_ac);
1811         if (meta_ac)
1812                 ocfs2_free_alloc_context(meta_ac);
1813
1814 success:
1815         *pagep = wc->w_target_page;
1816         *fsdata = wc;
1817         return 0;
1818 out_quota:
1819         if (clusters_to_alloc)
1820                 dquot_free_space(inode,
1821                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 out_commit:
1823         ocfs2_commit_trans(osb, handle);
1824
1825 out:
1826         ocfs2_free_write_ctxt(wc);
1827
1828         if (data_ac)
1829                 ocfs2_free_alloc_context(data_ac);
1830         if (meta_ac)
1831                 ocfs2_free_alloc_context(meta_ac);
1832         return ret;
1833 }
1834
1835 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1836                              loff_t pos, unsigned len, unsigned flags,
1837                              struct page **pagep, void **fsdata)
1838 {
1839         int ret;
1840         struct buffer_head *di_bh = NULL;
1841         struct inode *inode = mapping->host;
1842
1843         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1844         if (ret) {
1845                 mlog_errno(ret);
1846                 return ret;
1847         }
1848
1849         /*
1850          * Take alloc sem here to prevent concurrent lookups. That way
1851          * the mapping, zeroing and tree manipulation within
1852          * ocfs2_write() will be safe against ->readpage(). This
1853          * should also serve to lock out allocation from a shared
1854          * writeable region.
1855          */
1856         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1857
1858         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1859                                        fsdata, di_bh, NULL);
1860         if (ret) {
1861                 mlog_errno(ret);
1862                 goto out_fail;
1863         }
1864
1865         brelse(di_bh);
1866
1867         return 0;
1868
1869 out_fail:
1870         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1871
1872         brelse(di_bh);
1873         ocfs2_inode_unlock(inode, 1);
1874
1875         return ret;
1876 }
1877
1878 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1879                                    unsigned len, unsigned *copied,
1880                                    struct ocfs2_dinode *di,
1881                                    struct ocfs2_write_ctxt *wc)
1882 {
1883         void *kaddr;
1884
1885         if (unlikely(*copied < len)) {
1886                 if (!PageUptodate(wc->w_target_page)) {
1887                         *copied = 0;
1888                         return;
1889                 }
1890         }
1891
1892         kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1893         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1894         kunmap_atomic(kaddr, KM_USER0);
1895
1896         mlog(0, "Data written to inode at offset %llu. "
1897              "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1898              (unsigned long long)pos, *copied,
1899              le16_to_cpu(di->id2.i_data.id_count),
1900              le16_to_cpu(di->i_dyn_features));
1901 }
1902
1903 int ocfs2_write_end_nolock(struct address_space *mapping,
1904                            loff_t pos, unsigned len, unsigned copied,
1905                            struct page *page, void *fsdata)
1906 {
1907         int i;
1908         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1909         struct inode *inode = mapping->host;
1910         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1911         struct ocfs2_write_ctxt *wc = fsdata;
1912         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1913         handle_t *handle = wc->w_handle;
1914         struct page *tmppage;
1915
1916         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1917                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1918                 goto out_write_size;
1919         }
1920
1921         if (unlikely(copied < len)) {
1922                 if (!PageUptodate(wc->w_target_page))
1923                         copied = 0;
1924
1925                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1926                                        start+len);
1927         }
1928         flush_dcache_page(wc->w_target_page);
1929
1930         for(i = 0; i < wc->w_num_pages; i++) {
1931                 tmppage = wc->w_pages[i];
1932
1933                 if (tmppage == wc->w_target_page) {
1934                         from = wc->w_target_from;
1935                         to = wc->w_target_to;
1936
1937                         BUG_ON(from > PAGE_CACHE_SIZE ||
1938                                to > PAGE_CACHE_SIZE ||
1939                                to < from);
1940                 } else {
1941                         /*
1942                          * Pages adjacent to the target (if any) imply
1943                          * a hole-filling write in which case we want
1944                          * to flush their entire range.
1945                          */
1946                         from = 0;
1947                         to = PAGE_CACHE_SIZE;
1948                 }
1949
1950                 if (page_has_buffers(tmppage)) {
1951                         if (ocfs2_should_order_data(inode))
1952                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1953                         block_commit_write(tmppage, from, to);
1954                 }
1955         }
1956
1957 out_write_size:
1958         pos += copied;
1959         if (pos > inode->i_size) {
1960                 i_size_write(inode, pos);
1961                 mark_inode_dirty(inode);
1962         }
1963         inode->i_blocks = ocfs2_inode_sector_count(inode);
1964         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1965         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1966         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1967         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1968         ocfs2_journal_dirty(handle, wc->w_di_bh);
1969
1970         ocfs2_commit_trans(osb, handle);
1971
1972         ocfs2_run_deallocs(osb, &wc->w_dealloc);
1973
1974         ocfs2_free_write_ctxt(wc);
1975
1976         return copied;
1977 }
1978
1979 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1980                            loff_t pos, unsigned len, unsigned copied,
1981                            struct page *page, void *fsdata)
1982 {
1983         int ret;
1984         struct inode *inode = mapping->host;
1985
1986         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1987
1988         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1989         ocfs2_inode_unlock(inode, 1);
1990
1991         return ret;
1992 }
1993
1994 const struct address_space_operations ocfs2_aops = {
1995         .readpage               = ocfs2_readpage,
1996         .readpages              = ocfs2_readpages,
1997         .writepage              = ocfs2_writepage,
1998         .write_begin            = ocfs2_write_begin,
1999         .write_end              = ocfs2_write_end,
2000         .bmap                   = ocfs2_bmap,
2001         .sync_page              = block_sync_page,
2002         .direct_IO              = ocfs2_direct_IO,
2003         .invalidatepage         = ocfs2_invalidatepage,
2004         .releasepage            = ocfs2_releasepage,
2005         .migratepage            = buffer_migrate_page,
2006         .is_partially_uptodate  = block_is_partially_uptodate,
2007         .error_remove_page      = generic_error_remove_page,
2008 };