Merge tag 'arm-plt-optimizations-for-v4.9' of git://git.linaro.org/people/ard.biesheu...
[cascardo/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29         anon = get_mm_counter(mm, MM_ANONPAGES);
30         file = get_mm_counter(mm, MM_FILEPAGES);
31         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33         /*
34          * Note: to minimize their overhead, mm maintains hiwater_vm and
35          * hiwater_rss only when about to *lower* total_vm or rss.  Any
36          * collector of these hiwater stats must therefore get total_vm
37          * and rss too, which will usually be the higher.  Barriers? not
38          * worth the effort, such snapshots can always be inconsistent.
39          */
40         hiwater_vm = total_vm = mm->total_vm;
41         if (hiwater_vm < mm->hiwater_vm)
42                 hiwater_vm = mm->hiwater_vm;
43         hiwater_rss = total_rss = anon + file + shmem;
44         if (hiwater_rss < mm->hiwater_rss)
45                 hiwater_rss = mm->hiwater_rss;
46
47         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49         swap = get_mm_counter(mm, MM_SWAPENTS);
50         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52         seq_printf(m,
53                 "VmPeak:\t%8lu kB\n"
54                 "VmSize:\t%8lu kB\n"
55                 "VmLck:\t%8lu kB\n"
56                 "VmPin:\t%8lu kB\n"
57                 "VmHWM:\t%8lu kB\n"
58                 "VmRSS:\t%8lu kB\n"
59                 "RssAnon:\t%8lu kB\n"
60                 "RssFile:\t%8lu kB\n"
61                 "RssShmem:\t%8lu kB\n"
62                 "VmData:\t%8lu kB\n"
63                 "VmStk:\t%8lu kB\n"
64                 "VmExe:\t%8lu kB\n"
65                 "VmLib:\t%8lu kB\n"
66                 "VmPTE:\t%8lu kB\n"
67                 "VmPMD:\t%8lu kB\n"
68                 "VmSwap:\t%8lu kB\n",
69                 hiwater_vm << (PAGE_SHIFT-10),
70                 total_vm << (PAGE_SHIFT-10),
71                 mm->locked_vm << (PAGE_SHIFT-10),
72                 mm->pinned_vm << (PAGE_SHIFT-10),
73                 hiwater_rss << (PAGE_SHIFT-10),
74                 total_rss << (PAGE_SHIFT-10),
75                 anon << (PAGE_SHIFT-10),
76                 file << (PAGE_SHIFT-10),
77                 shmem << (PAGE_SHIFT-10),
78                 mm->data_vm << (PAGE_SHIFT-10),
79                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80                 ptes >> 10,
81                 pmds >> 10,
82                 swap << (PAGE_SHIFT-10));
83         hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88         return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92                          unsigned long *shared, unsigned long *text,
93                          unsigned long *data, unsigned long *resident)
94 {
95         *shared = get_mm_counter(mm, MM_FILEPAGES) +
96                         get_mm_counter(mm, MM_SHMEMPAGES);
97         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98                                                                 >> PAGE_SHIFT;
99         *data = mm->data_vm + mm->stack_vm;
100         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101         return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110         struct task_struct *task = priv->task;
111
112         task_lock(task);
113         priv->task_mempolicy = get_task_policy(task);
114         mpol_get(priv->task_mempolicy);
115         task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119         mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132         struct mm_struct *mm = priv->mm;
133
134         release_task_mempolicy(priv);
135         up_read(&mm->mmap_sem);
136         mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142         if (vma == priv->tail_vma)
143                 return NULL;
144         return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149         if (m->count < m->size) /* vma is copied successfully */
150                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155         struct proc_maps_private *priv = m->private;
156         unsigned long last_addr = m->version;
157         struct mm_struct *mm;
158         struct vm_area_struct *vma;
159         unsigned int pos = *ppos;
160
161         /* See m_cache_vma(). Zero at the start or after lseek. */
162         if (last_addr == -1UL)
163                 return NULL;
164
165         priv->task = get_proc_task(priv->inode);
166         if (!priv->task)
167                 return ERR_PTR(-ESRCH);
168
169         mm = priv->mm;
170         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171                 return NULL;
172
173         down_read(&mm->mmap_sem);
174         hold_task_mempolicy(priv);
175         priv->tail_vma = get_gate_vma(mm);
176
177         if (last_addr) {
178                 vma = find_vma(mm, last_addr);
179                 if (vma && (vma = m_next_vma(priv, vma)))
180                         return vma;
181         }
182
183         m->version = 0;
184         if (pos < mm->map_count) {
185                 for (vma = mm->mmap; pos; pos--) {
186                         m->version = vma->vm_start;
187                         vma = vma->vm_next;
188                 }
189                 return vma;
190         }
191
192         /* we do not bother to update m->version in this case */
193         if (pos == mm->map_count && priv->tail_vma)
194                 return priv->tail_vma;
195
196         vma_stop(priv);
197         return NULL;
198 }
199
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202         struct proc_maps_private *priv = m->private;
203         struct vm_area_struct *next;
204
205         (*pos)++;
206         next = m_next_vma(priv, v);
207         if (!next)
208                 vma_stop(priv);
209         return next;
210 }
211
212 static void m_stop(struct seq_file *m, void *v)
213 {
214         struct proc_maps_private *priv = m->private;
215
216         if (!IS_ERR_OR_NULL(v))
217                 vma_stop(priv);
218         if (priv->task) {
219                 put_task_struct(priv->task);
220                 priv->task = NULL;
221         }
222 }
223
224 static int proc_maps_open(struct inode *inode, struct file *file,
225                         const struct seq_operations *ops, int psize)
226 {
227         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229         if (!priv)
230                 return -ENOMEM;
231
232         priv->inode = inode;
233         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234         if (IS_ERR(priv->mm)) {
235                 int err = PTR_ERR(priv->mm);
236
237                 seq_release_private(inode, file);
238                 return err;
239         }
240
241         return 0;
242 }
243
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246         struct seq_file *seq = file->private_data;
247         struct proc_maps_private *priv = seq->private;
248
249         if (priv->mm)
250                 mmdrop(priv->mm);
251
252         return seq_release_private(inode, file);
253 }
254
255 static int do_maps_open(struct inode *inode, struct file *file,
256                         const struct seq_operations *ops)
257 {
258         return proc_maps_open(inode, file, ops,
259                                 sizeof(struct proc_maps_private));
260 }
261
262 /*
263  * Indicate if the VMA is a stack for the given task; for
264  * /proc/PID/maps that is the stack of the main task.
265  */
266 static int is_stack(struct proc_maps_private *priv,
267                     struct vm_area_struct *vma, int is_pid)
268 {
269         int stack = 0;
270
271         if (is_pid) {
272                 stack = vma->vm_start <= vma->vm_mm->start_stack &&
273                         vma->vm_end >= vma->vm_mm->start_stack;
274         } else {
275                 struct inode *inode = priv->inode;
276                 struct task_struct *task;
277
278                 rcu_read_lock();
279                 task = pid_task(proc_pid(inode), PIDTYPE_PID);
280                 if (task)
281                         stack = vma_is_stack_for_task(vma, task);
282                 rcu_read_unlock();
283         }
284         return stack;
285 }
286
287 static void
288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
289 {
290         struct mm_struct *mm = vma->vm_mm;
291         struct file *file = vma->vm_file;
292         struct proc_maps_private *priv = m->private;
293         vm_flags_t flags = vma->vm_flags;
294         unsigned long ino = 0;
295         unsigned long long pgoff = 0;
296         unsigned long start, end;
297         dev_t dev = 0;
298         const char *name = NULL;
299
300         if (file) {
301                 struct inode *inode = file_inode(vma->vm_file);
302                 dev = inode->i_sb->s_dev;
303                 ino = inode->i_ino;
304                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
305         }
306
307         /* We don't show the stack guard page in /proc/maps */
308         start = vma->vm_start;
309         if (stack_guard_page_start(vma, start))
310                 start += PAGE_SIZE;
311         end = vma->vm_end;
312         if (stack_guard_page_end(vma, end))
313                 end -= PAGE_SIZE;
314
315         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
316         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
317                         start,
318                         end,
319                         flags & VM_READ ? 'r' : '-',
320                         flags & VM_WRITE ? 'w' : '-',
321                         flags & VM_EXEC ? 'x' : '-',
322                         flags & VM_MAYSHARE ? 's' : 'p',
323                         pgoff,
324                         MAJOR(dev), MINOR(dev), ino);
325
326         /*
327          * Print the dentry name for named mappings, and a
328          * special [heap] marker for the heap:
329          */
330         if (file) {
331                 seq_pad(m, ' ');
332                 seq_file_path(m, file, "\n");
333                 goto done;
334         }
335
336         if (vma->vm_ops && vma->vm_ops->name) {
337                 name = vma->vm_ops->name(vma);
338                 if (name)
339                         goto done;
340         }
341
342         name = arch_vma_name(vma);
343         if (!name) {
344                 if (!mm) {
345                         name = "[vdso]";
346                         goto done;
347                 }
348
349                 if (vma->vm_start <= mm->brk &&
350                     vma->vm_end >= mm->start_brk) {
351                         name = "[heap]";
352                         goto done;
353                 }
354
355                 if (is_stack(priv, vma, is_pid))
356                         name = "[stack]";
357         }
358
359 done:
360         if (name) {
361                 seq_pad(m, ' ');
362                 seq_puts(m, name);
363         }
364         seq_putc(m, '\n');
365 }
366
367 static int show_map(struct seq_file *m, void *v, int is_pid)
368 {
369         show_map_vma(m, v, is_pid);
370         m_cache_vma(m, v);
371         return 0;
372 }
373
374 static int show_pid_map(struct seq_file *m, void *v)
375 {
376         return show_map(m, v, 1);
377 }
378
379 static int show_tid_map(struct seq_file *m, void *v)
380 {
381         return show_map(m, v, 0);
382 }
383
384 static const struct seq_operations proc_pid_maps_op = {
385         .start  = m_start,
386         .next   = m_next,
387         .stop   = m_stop,
388         .show   = show_pid_map
389 };
390
391 static const struct seq_operations proc_tid_maps_op = {
392         .start  = m_start,
393         .next   = m_next,
394         .stop   = m_stop,
395         .show   = show_tid_map
396 };
397
398 static int pid_maps_open(struct inode *inode, struct file *file)
399 {
400         return do_maps_open(inode, file, &proc_pid_maps_op);
401 }
402
403 static int tid_maps_open(struct inode *inode, struct file *file)
404 {
405         return do_maps_open(inode, file, &proc_tid_maps_op);
406 }
407
408 const struct file_operations proc_pid_maps_operations = {
409         .open           = pid_maps_open,
410         .read           = seq_read,
411         .llseek         = seq_lseek,
412         .release        = proc_map_release,
413 };
414
415 const struct file_operations proc_tid_maps_operations = {
416         .open           = tid_maps_open,
417         .read           = seq_read,
418         .llseek         = seq_lseek,
419         .release        = proc_map_release,
420 };
421
422 /*
423  * Proportional Set Size(PSS): my share of RSS.
424  *
425  * PSS of a process is the count of pages it has in memory, where each
426  * page is divided by the number of processes sharing it.  So if a
427  * process has 1000 pages all to itself, and 1000 shared with one other
428  * process, its PSS will be 1500.
429  *
430  * To keep (accumulated) division errors low, we adopt a 64bit
431  * fixed-point pss counter to minimize division errors. So (pss >>
432  * PSS_SHIFT) would be the real byte count.
433  *
434  * A shift of 12 before division means (assuming 4K page size):
435  *      - 1M 3-user-pages add up to 8KB errors;
436  *      - supports mapcount up to 2^24, or 16M;
437  *      - supports PSS up to 2^52 bytes, or 4PB.
438  */
439 #define PSS_SHIFT 12
440
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats {
443         unsigned long resident;
444         unsigned long shared_clean;
445         unsigned long shared_dirty;
446         unsigned long private_clean;
447         unsigned long private_dirty;
448         unsigned long referenced;
449         unsigned long anonymous;
450         unsigned long anonymous_thp;
451         unsigned long shmem_thp;
452         unsigned long swap;
453         unsigned long shared_hugetlb;
454         unsigned long private_hugetlb;
455         u64 pss;
456         u64 swap_pss;
457         bool check_shmem_swap;
458 };
459
460 static void smaps_account(struct mem_size_stats *mss, struct page *page,
461                 bool compound, bool young, bool dirty)
462 {
463         int i, nr = compound ? 1 << compound_order(page) : 1;
464         unsigned long size = nr * PAGE_SIZE;
465
466         if (PageAnon(page))
467                 mss->anonymous += size;
468
469         mss->resident += size;
470         /* Accumulate the size in pages that have been accessed. */
471         if (young || page_is_young(page) || PageReferenced(page))
472                 mss->referenced += size;
473
474         /*
475          * page_count(page) == 1 guarantees the page is mapped exactly once.
476          * If any subpage of the compound page mapped with PTE it would elevate
477          * page_count().
478          */
479         if (page_count(page) == 1) {
480                 if (dirty || PageDirty(page))
481                         mss->private_dirty += size;
482                 else
483                         mss->private_clean += size;
484                 mss->pss += (u64)size << PSS_SHIFT;
485                 return;
486         }
487
488         for (i = 0; i < nr; i++, page++) {
489                 int mapcount = page_mapcount(page);
490
491                 if (mapcount >= 2) {
492                         if (dirty || PageDirty(page))
493                                 mss->shared_dirty += PAGE_SIZE;
494                         else
495                                 mss->shared_clean += PAGE_SIZE;
496                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497                 } else {
498                         if (dirty || PageDirty(page))
499                                 mss->private_dirty += PAGE_SIZE;
500                         else
501                                 mss->private_clean += PAGE_SIZE;
502                         mss->pss += PAGE_SIZE << PSS_SHIFT;
503                 }
504         }
505 }
506
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509                 struct mm_walk *walk)
510 {
511         struct mem_size_stats *mss = walk->private;
512
513         mss->swap += shmem_partial_swap_usage(
514                         walk->vma->vm_file->f_mapping, addr, end);
515
516         return 0;
517 }
518 #endif
519
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521                 struct mm_walk *walk)
522 {
523         struct mem_size_stats *mss = walk->private;
524         struct vm_area_struct *vma = walk->vma;
525         struct page *page = NULL;
526
527         if (pte_present(*pte)) {
528                 page = vm_normal_page(vma, addr, *pte);
529         } else if (is_swap_pte(*pte)) {
530                 swp_entry_t swpent = pte_to_swp_entry(*pte);
531
532                 if (!non_swap_entry(swpent)) {
533                         int mapcount;
534
535                         mss->swap += PAGE_SIZE;
536                         mapcount = swp_swapcount(swpent);
537                         if (mapcount >= 2) {
538                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539
540                                 do_div(pss_delta, mapcount);
541                                 mss->swap_pss += pss_delta;
542                         } else {
543                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544                         }
545                 } else if (is_migration_entry(swpent))
546                         page = migration_entry_to_page(swpent);
547         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
548                                                         && pte_none(*pte))) {
549                 page = find_get_entry(vma->vm_file->f_mapping,
550                                                 linear_page_index(vma, addr));
551                 if (!page)
552                         return;
553
554                 if (radix_tree_exceptional_entry(page))
555                         mss->swap += PAGE_SIZE;
556                 else
557                         put_page(page);
558
559                 return;
560         }
561
562         if (!page)
563                 return;
564
565         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
566 }
567
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
570                 struct mm_walk *walk)
571 {
572         struct mem_size_stats *mss = walk->private;
573         struct vm_area_struct *vma = walk->vma;
574         struct page *page;
575
576         /* FOLL_DUMP will return -EFAULT on huge zero page */
577         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578         if (IS_ERR_OR_NULL(page))
579                 return;
580         if (PageAnon(page))
581                 mss->anonymous_thp += HPAGE_PMD_SIZE;
582         else if (PageSwapBacked(page))
583                 mss->shmem_thp += HPAGE_PMD_SIZE;
584         else
585                 VM_BUG_ON_PAGE(1, page);
586         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
587 }
588 #else
589 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
590                 struct mm_walk *walk)
591 {
592 }
593 #endif
594
595 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
596                            struct mm_walk *walk)
597 {
598         struct vm_area_struct *vma = walk->vma;
599         pte_t *pte;
600         spinlock_t *ptl;
601
602         ptl = pmd_trans_huge_lock(pmd, vma);
603         if (ptl) {
604                 smaps_pmd_entry(pmd, addr, walk);
605                 spin_unlock(ptl);
606                 return 0;
607         }
608
609         if (pmd_trans_unstable(pmd))
610                 return 0;
611         /*
612          * The mmap_sem held all the way back in m_start() is what
613          * keeps khugepaged out of here and from collapsing things
614          * in here.
615          */
616         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
617         for (; addr != end; pte++, addr += PAGE_SIZE)
618                 smaps_pte_entry(pte, addr, walk);
619         pte_unmap_unlock(pte - 1, ptl);
620         cond_resched();
621         return 0;
622 }
623
624 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
625 {
626         /*
627          * Don't forget to update Documentation/ on changes.
628          */
629         static const char mnemonics[BITS_PER_LONG][2] = {
630                 /*
631                  * In case if we meet a flag we don't know about.
632                  */
633                 [0 ... (BITS_PER_LONG-1)] = "??",
634
635                 [ilog2(VM_READ)]        = "rd",
636                 [ilog2(VM_WRITE)]       = "wr",
637                 [ilog2(VM_EXEC)]        = "ex",
638                 [ilog2(VM_SHARED)]      = "sh",
639                 [ilog2(VM_MAYREAD)]     = "mr",
640                 [ilog2(VM_MAYWRITE)]    = "mw",
641                 [ilog2(VM_MAYEXEC)]     = "me",
642                 [ilog2(VM_MAYSHARE)]    = "ms",
643                 [ilog2(VM_GROWSDOWN)]   = "gd",
644                 [ilog2(VM_PFNMAP)]      = "pf",
645                 [ilog2(VM_DENYWRITE)]   = "dw",
646 #ifdef CONFIG_X86_INTEL_MPX
647                 [ilog2(VM_MPX)]         = "mp",
648 #endif
649                 [ilog2(VM_LOCKED)]      = "lo",
650                 [ilog2(VM_IO)]          = "io",
651                 [ilog2(VM_SEQ_READ)]    = "sr",
652                 [ilog2(VM_RAND_READ)]   = "rr",
653                 [ilog2(VM_DONTCOPY)]    = "dc",
654                 [ilog2(VM_DONTEXPAND)]  = "de",
655                 [ilog2(VM_ACCOUNT)]     = "ac",
656                 [ilog2(VM_NORESERVE)]   = "nr",
657                 [ilog2(VM_HUGETLB)]     = "ht",
658                 [ilog2(VM_ARCH_1)]      = "ar",
659                 [ilog2(VM_DONTDUMP)]    = "dd",
660 #ifdef CONFIG_MEM_SOFT_DIRTY
661                 [ilog2(VM_SOFTDIRTY)]   = "sd",
662 #endif
663                 [ilog2(VM_MIXEDMAP)]    = "mm",
664                 [ilog2(VM_HUGEPAGE)]    = "hg",
665                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
666                 [ilog2(VM_MERGEABLE)]   = "mg",
667                 [ilog2(VM_UFFD_MISSING)]= "um",
668                 [ilog2(VM_UFFD_WP)]     = "uw",
669 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
670                 /* These come out via ProtectionKey: */
671                 [ilog2(VM_PKEY_BIT0)]   = "",
672                 [ilog2(VM_PKEY_BIT1)]   = "",
673                 [ilog2(VM_PKEY_BIT2)]   = "",
674                 [ilog2(VM_PKEY_BIT3)]   = "",
675 #endif
676         };
677         size_t i;
678
679         seq_puts(m, "VmFlags: ");
680         for (i = 0; i < BITS_PER_LONG; i++) {
681                 if (!mnemonics[i][0])
682                         continue;
683                 if (vma->vm_flags & (1UL << i)) {
684                         seq_printf(m, "%c%c ",
685                                    mnemonics[i][0], mnemonics[i][1]);
686                 }
687         }
688         seq_putc(m, '\n');
689 }
690
691 #ifdef CONFIG_HUGETLB_PAGE
692 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
693                                  unsigned long addr, unsigned long end,
694                                  struct mm_walk *walk)
695 {
696         struct mem_size_stats *mss = walk->private;
697         struct vm_area_struct *vma = walk->vma;
698         struct page *page = NULL;
699
700         if (pte_present(*pte)) {
701                 page = vm_normal_page(vma, addr, *pte);
702         } else if (is_swap_pte(*pte)) {
703                 swp_entry_t swpent = pte_to_swp_entry(*pte);
704
705                 if (is_migration_entry(swpent))
706                         page = migration_entry_to_page(swpent);
707         }
708         if (page) {
709                 int mapcount = page_mapcount(page);
710
711                 if (mapcount >= 2)
712                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
713                 else
714                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
715         }
716         return 0;
717 }
718 #endif /* HUGETLB_PAGE */
719
720 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
721 {
722 }
723
724 static int show_smap(struct seq_file *m, void *v, int is_pid)
725 {
726         struct vm_area_struct *vma = v;
727         struct mem_size_stats mss;
728         struct mm_walk smaps_walk = {
729                 .pmd_entry = smaps_pte_range,
730 #ifdef CONFIG_HUGETLB_PAGE
731                 .hugetlb_entry = smaps_hugetlb_range,
732 #endif
733                 .mm = vma->vm_mm,
734                 .private = &mss,
735         };
736
737         memset(&mss, 0, sizeof mss);
738
739 #ifdef CONFIG_SHMEM
740         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741                 /*
742                  * For shared or readonly shmem mappings we know that all
743                  * swapped out pages belong to the shmem object, and we can
744                  * obtain the swap value much more efficiently. For private
745                  * writable mappings, we might have COW pages that are
746                  * not affected by the parent swapped out pages of the shmem
747                  * object, so we have to distinguish them during the page walk.
748                  * Unless we know that the shmem object (or the part mapped by
749                  * our VMA) has no swapped out pages at all.
750                  */
751                 unsigned long shmem_swapped = shmem_swap_usage(vma);
752
753                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754                                         !(vma->vm_flags & VM_WRITE)) {
755                         mss.swap = shmem_swapped;
756                 } else {
757                         mss.check_shmem_swap = true;
758                         smaps_walk.pte_hole = smaps_pte_hole;
759                 }
760         }
761 #endif
762
763         /* mmap_sem is held in m_start */
764         walk_page_vma(vma, &smaps_walk);
765
766         show_map_vma(m, vma, is_pid);
767
768         seq_printf(m,
769                    "Size:           %8lu kB\n"
770                    "Rss:            %8lu kB\n"
771                    "Pss:            %8lu kB\n"
772                    "Shared_Clean:   %8lu kB\n"
773                    "Shared_Dirty:   %8lu kB\n"
774                    "Private_Clean:  %8lu kB\n"
775                    "Private_Dirty:  %8lu kB\n"
776                    "Referenced:     %8lu kB\n"
777                    "Anonymous:      %8lu kB\n"
778                    "AnonHugePages:  %8lu kB\n"
779                    "ShmemPmdMapped: %8lu kB\n"
780                    "Shared_Hugetlb: %8lu kB\n"
781                    "Private_Hugetlb: %7lu kB\n"
782                    "Swap:           %8lu kB\n"
783                    "SwapPss:        %8lu kB\n"
784                    "KernelPageSize: %8lu kB\n"
785                    "MMUPageSize:    %8lu kB\n"
786                    "Locked:         %8lu kB\n",
787                    (vma->vm_end - vma->vm_start) >> 10,
788                    mss.resident >> 10,
789                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
790                    mss.shared_clean  >> 10,
791                    mss.shared_dirty  >> 10,
792                    mss.private_clean >> 10,
793                    mss.private_dirty >> 10,
794                    mss.referenced >> 10,
795                    mss.anonymous >> 10,
796                    mss.anonymous_thp >> 10,
797                    mss.shmem_thp >> 10,
798                    mss.shared_hugetlb >> 10,
799                    mss.private_hugetlb >> 10,
800                    mss.swap >> 10,
801                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
802                    vma_kernel_pagesize(vma) >> 10,
803                    vma_mmu_pagesize(vma) >> 10,
804                    (vma->vm_flags & VM_LOCKED) ?
805                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
806
807         arch_show_smap(m, vma);
808         show_smap_vma_flags(m, vma);
809         m_cache_vma(m, vma);
810         return 0;
811 }
812
813 static int show_pid_smap(struct seq_file *m, void *v)
814 {
815         return show_smap(m, v, 1);
816 }
817
818 static int show_tid_smap(struct seq_file *m, void *v)
819 {
820         return show_smap(m, v, 0);
821 }
822
823 static const struct seq_operations proc_pid_smaps_op = {
824         .start  = m_start,
825         .next   = m_next,
826         .stop   = m_stop,
827         .show   = show_pid_smap
828 };
829
830 static const struct seq_operations proc_tid_smaps_op = {
831         .start  = m_start,
832         .next   = m_next,
833         .stop   = m_stop,
834         .show   = show_tid_smap
835 };
836
837 static int pid_smaps_open(struct inode *inode, struct file *file)
838 {
839         return do_maps_open(inode, file, &proc_pid_smaps_op);
840 }
841
842 static int tid_smaps_open(struct inode *inode, struct file *file)
843 {
844         return do_maps_open(inode, file, &proc_tid_smaps_op);
845 }
846
847 const struct file_operations proc_pid_smaps_operations = {
848         .open           = pid_smaps_open,
849         .read           = seq_read,
850         .llseek         = seq_lseek,
851         .release        = proc_map_release,
852 };
853
854 const struct file_operations proc_tid_smaps_operations = {
855         .open           = tid_smaps_open,
856         .read           = seq_read,
857         .llseek         = seq_lseek,
858         .release        = proc_map_release,
859 };
860
861 enum clear_refs_types {
862         CLEAR_REFS_ALL = 1,
863         CLEAR_REFS_ANON,
864         CLEAR_REFS_MAPPED,
865         CLEAR_REFS_SOFT_DIRTY,
866         CLEAR_REFS_MM_HIWATER_RSS,
867         CLEAR_REFS_LAST,
868 };
869
870 struct clear_refs_private {
871         enum clear_refs_types type;
872 };
873
874 #ifdef CONFIG_MEM_SOFT_DIRTY
875 static inline void clear_soft_dirty(struct vm_area_struct *vma,
876                 unsigned long addr, pte_t *pte)
877 {
878         /*
879          * The soft-dirty tracker uses #PF-s to catch writes
880          * to pages, so write-protect the pte as well. See the
881          * Documentation/vm/soft-dirty.txt for full description
882          * of how soft-dirty works.
883          */
884         pte_t ptent = *pte;
885
886         if (pte_present(ptent)) {
887                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
888                 ptent = pte_wrprotect(ptent);
889                 ptent = pte_clear_soft_dirty(ptent);
890                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
891         } else if (is_swap_pte(ptent)) {
892                 ptent = pte_swp_clear_soft_dirty(ptent);
893                 set_pte_at(vma->vm_mm, addr, pte, ptent);
894         }
895 }
896 #else
897 static inline void clear_soft_dirty(struct vm_area_struct *vma,
898                 unsigned long addr, pte_t *pte)
899 {
900 }
901 #endif
902
903 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
904 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
905                 unsigned long addr, pmd_t *pmdp)
906 {
907         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
908
909         pmd = pmd_wrprotect(pmd);
910         pmd = pmd_clear_soft_dirty(pmd);
911
912         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
913 }
914 #else
915 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
916                 unsigned long addr, pmd_t *pmdp)
917 {
918 }
919 #endif
920
921 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
922                                 unsigned long end, struct mm_walk *walk)
923 {
924         struct clear_refs_private *cp = walk->private;
925         struct vm_area_struct *vma = walk->vma;
926         pte_t *pte, ptent;
927         spinlock_t *ptl;
928         struct page *page;
929
930         ptl = pmd_trans_huge_lock(pmd, vma);
931         if (ptl) {
932                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
933                         clear_soft_dirty_pmd(vma, addr, pmd);
934                         goto out;
935                 }
936
937                 page = pmd_page(*pmd);
938
939                 /* Clear accessed and referenced bits. */
940                 pmdp_test_and_clear_young(vma, addr, pmd);
941                 test_and_clear_page_young(page);
942                 ClearPageReferenced(page);
943 out:
944                 spin_unlock(ptl);
945                 return 0;
946         }
947
948         if (pmd_trans_unstable(pmd))
949                 return 0;
950
951         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
952         for (; addr != end; pte++, addr += PAGE_SIZE) {
953                 ptent = *pte;
954
955                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
956                         clear_soft_dirty(vma, addr, pte);
957                         continue;
958                 }
959
960                 if (!pte_present(ptent))
961                         continue;
962
963                 page = vm_normal_page(vma, addr, ptent);
964                 if (!page)
965                         continue;
966
967                 /* Clear accessed and referenced bits. */
968                 ptep_test_and_clear_young(vma, addr, pte);
969                 test_and_clear_page_young(page);
970                 ClearPageReferenced(page);
971         }
972         pte_unmap_unlock(pte - 1, ptl);
973         cond_resched();
974         return 0;
975 }
976
977 static int clear_refs_test_walk(unsigned long start, unsigned long end,
978                                 struct mm_walk *walk)
979 {
980         struct clear_refs_private *cp = walk->private;
981         struct vm_area_struct *vma = walk->vma;
982
983         if (vma->vm_flags & VM_PFNMAP)
984                 return 1;
985
986         /*
987          * Writing 1 to /proc/pid/clear_refs affects all pages.
988          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
989          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
990          * Writing 4 to /proc/pid/clear_refs affects all pages.
991          */
992         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
993                 return 1;
994         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
995                 return 1;
996         return 0;
997 }
998
999 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1000                                 size_t count, loff_t *ppos)
1001 {
1002         struct task_struct *task;
1003         char buffer[PROC_NUMBUF];
1004         struct mm_struct *mm;
1005         struct vm_area_struct *vma;
1006         enum clear_refs_types type;
1007         int itype;
1008         int rv;
1009
1010         memset(buffer, 0, sizeof(buffer));
1011         if (count > sizeof(buffer) - 1)
1012                 count = sizeof(buffer) - 1;
1013         if (copy_from_user(buffer, buf, count))
1014                 return -EFAULT;
1015         rv = kstrtoint(strstrip(buffer), 10, &itype);
1016         if (rv < 0)
1017                 return rv;
1018         type = (enum clear_refs_types)itype;
1019         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1020                 return -EINVAL;
1021
1022         task = get_proc_task(file_inode(file));
1023         if (!task)
1024                 return -ESRCH;
1025         mm = get_task_mm(task);
1026         if (mm) {
1027                 struct clear_refs_private cp = {
1028                         .type = type,
1029                 };
1030                 struct mm_walk clear_refs_walk = {
1031                         .pmd_entry = clear_refs_pte_range,
1032                         .test_walk = clear_refs_test_walk,
1033                         .mm = mm,
1034                         .private = &cp,
1035                 };
1036
1037                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1038                         if (down_write_killable(&mm->mmap_sem)) {
1039                                 count = -EINTR;
1040                                 goto out_mm;
1041                         }
1042
1043                         /*
1044                          * Writing 5 to /proc/pid/clear_refs resets the peak
1045                          * resident set size to this mm's current rss value.
1046                          */
1047                         reset_mm_hiwater_rss(mm);
1048                         up_write(&mm->mmap_sem);
1049                         goto out_mm;
1050                 }
1051
1052                 down_read(&mm->mmap_sem);
1053                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1054                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1055                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1056                                         continue;
1057                                 up_read(&mm->mmap_sem);
1058                                 if (down_write_killable(&mm->mmap_sem)) {
1059                                         count = -EINTR;
1060                                         goto out_mm;
1061                                 }
1062                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1063                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1064                                         vma_set_page_prot(vma);
1065                                 }
1066                                 downgrade_write(&mm->mmap_sem);
1067                                 break;
1068                         }
1069                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1070                 }
1071                 walk_page_range(0, ~0UL, &clear_refs_walk);
1072                 if (type == CLEAR_REFS_SOFT_DIRTY)
1073                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1074                 flush_tlb_mm(mm);
1075                 up_read(&mm->mmap_sem);
1076 out_mm:
1077                 mmput(mm);
1078         }
1079         put_task_struct(task);
1080
1081         return count;
1082 }
1083
1084 const struct file_operations proc_clear_refs_operations = {
1085         .write          = clear_refs_write,
1086         .llseek         = noop_llseek,
1087 };
1088
1089 typedef struct {
1090         u64 pme;
1091 } pagemap_entry_t;
1092
1093 struct pagemapread {
1094         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1095         pagemap_entry_t *buffer;
1096         bool show_pfn;
1097 };
1098
1099 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1100 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1101
1102 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1103 #define PM_PFRAME_BITS          55
1104 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1105 #define PM_SOFT_DIRTY           BIT_ULL(55)
1106 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1107 #define PM_FILE                 BIT_ULL(61)
1108 #define PM_SWAP                 BIT_ULL(62)
1109 #define PM_PRESENT              BIT_ULL(63)
1110
1111 #define PM_END_OF_BUFFER    1
1112
1113 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1114 {
1115         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1116 }
1117
1118 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1119                           struct pagemapread *pm)
1120 {
1121         pm->buffer[pm->pos++] = *pme;
1122         if (pm->pos >= pm->len)
1123                 return PM_END_OF_BUFFER;
1124         return 0;
1125 }
1126
1127 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1128                                 struct mm_walk *walk)
1129 {
1130         struct pagemapread *pm = walk->private;
1131         unsigned long addr = start;
1132         int err = 0;
1133
1134         while (addr < end) {
1135                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1136                 pagemap_entry_t pme = make_pme(0, 0);
1137                 /* End of address space hole, which we mark as non-present. */
1138                 unsigned long hole_end;
1139
1140                 if (vma)
1141                         hole_end = min(end, vma->vm_start);
1142                 else
1143                         hole_end = end;
1144
1145                 for (; addr < hole_end; addr += PAGE_SIZE) {
1146                         err = add_to_pagemap(addr, &pme, pm);
1147                         if (err)
1148                                 goto out;
1149                 }
1150
1151                 if (!vma)
1152                         break;
1153
1154                 /* Addresses in the VMA. */
1155                 if (vma->vm_flags & VM_SOFTDIRTY)
1156                         pme = make_pme(0, PM_SOFT_DIRTY);
1157                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1158                         err = add_to_pagemap(addr, &pme, pm);
1159                         if (err)
1160                                 goto out;
1161                 }
1162         }
1163 out:
1164         return err;
1165 }
1166
1167 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1168                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1169 {
1170         u64 frame = 0, flags = 0;
1171         struct page *page = NULL;
1172
1173         if (pte_present(pte)) {
1174                 if (pm->show_pfn)
1175                         frame = pte_pfn(pte);
1176                 flags |= PM_PRESENT;
1177                 page = vm_normal_page(vma, addr, pte);
1178                 if (pte_soft_dirty(pte))
1179                         flags |= PM_SOFT_DIRTY;
1180         } else if (is_swap_pte(pte)) {
1181                 swp_entry_t entry;
1182                 if (pte_swp_soft_dirty(pte))
1183                         flags |= PM_SOFT_DIRTY;
1184                 entry = pte_to_swp_entry(pte);
1185                 frame = swp_type(entry) |
1186                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1187                 flags |= PM_SWAP;
1188                 if (is_migration_entry(entry))
1189                         page = migration_entry_to_page(entry);
1190         }
1191
1192         if (page && !PageAnon(page))
1193                 flags |= PM_FILE;
1194         if (page && page_mapcount(page) == 1)
1195                 flags |= PM_MMAP_EXCLUSIVE;
1196         if (vma->vm_flags & VM_SOFTDIRTY)
1197                 flags |= PM_SOFT_DIRTY;
1198
1199         return make_pme(frame, flags);
1200 }
1201
1202 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1203                              struct mm_walk *walk)
1204 {
1205         struct vm_area_struct *vma = walk->vma;
1206         struct pagemapread *pm = walk->private;
1207         spinlock_t *ptl;
1208         pte_t *pte, *orig_pte;
1209         int err = 0;
1210
1211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1212         ptl = pmd_trans_huge_lock(pmdp, vma);
1213         if (ptl) {
1214                 u64 flags = 0, frame = 0;
1215                 pmd_t pmd = *pmdp;
1216
1217                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1218                         flags |= PM_SOFT_DIRTY;
1219
1220                 /*
1221                  * Currently pmd for thp is always present because thp
1222                  * can not be swapped-out, migrated, or HWPOISONed
1223                  * (split in such cases instead.)
1224                  * This if-check is just to prepare for future implementation.
1225                  */
1226                 if (pmd_present(pmd)) {
1227                         struct page *page = pmd_page(pmd);
1228
1229                         if (page_mapcount(page) == 1)
1230                                 flags |= PM_MMAP_EXCLUSIVE;
1231
1232                         flags |= PM_PRESENT;
1233                         if (pm->show_pfn)
1234                                 frame = pmd_pfn(pmd) +
1235                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1236                 }
1237
1238                 for (; addr != end; addr += PAGE_SIZE) {
1239                         pagemap_entry_t pme = make_pme(frame, flags);
1240
1241                         err = add_to_pagemap(addr, &pme, pm);
1242                         if (err)
1243                                 break;
1244                         if (pm->show_pfn && (flags & PM_PRESENT))
1245                                 frame++;
1246                 }
1247                 spin_unlock(ptl);
1248                 return err;
1249         }
1250
1251         if (pmd_trans_unstable(pmdp))
1252                 return 0;
1253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254
1255         /*
1256          * We can assume that @vma always points to a valid one and @end never
1257          * goes beyond vma->vm_end.
1258          */
1259         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1260         for (; addr < end; pte++, addr += PAGE_SIZE) {
1261                 pagemap_entry_t pme;
1262
1263                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1264                 err = add_to_pagemap(addr, &pme, pm);
1265                 if (err)
1266                         break;
1267         }
1268         pte_unmap_unlock(orig_pte, ptl);
1269
1270         cond_resched();
1271
1272         return err;
1273 }
1274
1275 #ifdef CONFIG_HUGETLB_PAGE
1276 /* This function walks within one hugetlb entry in the single call */
1277 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1278                                  unsigned long addr, unsigned long end,
1279                                  struct mm_walk *walk)
1280 {
1281         struct pagemapread *pm = walk->private;
1282         struct vm_area_struct *vma = walk->vma;
1283         u64 flags = 0, frame = 0;
1284         int err = 0;
1285         pte_t pte;
1286
1287         if (vma->vm_flags & VM_SOFTDIRTY)
1288                 flags |= PM_SOFT_DIRTY;
1289
1290         pte = huge_ptep_get(ptep);
1291         if (pte_present(pte)) {
1292                 struct page *page = pte_page(pte);
1293
1294                 if (!PageAnon(page))
1295                         flags |= PM_FILE;
1296
1297                 if (page_mapcount(page) == 1)
1298                         flags |= PM_MMAP_EXCLUSIVE;
1299
1300                 flags |= PM_PRESENT;
1301                 if (pm->show_pfn)
1302                         frame = pte_pfn(pte) +
1303                                 ((addr & ~hmask) >> PAGE_SHIFT);
1304         }
1305
1306         for (; addr != end; addr += PAGE_SIZE) {
1307                 pagemap_entry_t pme = make_pme(frame, flags);
1308
1309                 err = add_to_pagemap(addr, &pme, pm);
1310                 if (err)
1311                         return err;
1312                 if (pm->show_pfn && (flags & PM_PRESENT))
1313                         frame++;
1314         }
1315
1316         cond_resched();
1317
1318         return err;
1319 }
1320 #endif /* HUGETLB_PAGE */
1321
1322 /*
1323  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1324  *
1325  * For each page in the address space, this file contains one 64-bit entry
1326  * consisting of the following:
1327  *
1328  * Bits 0-54  page frame number (PFN) if present
1329  * Bits 0-4   swap type if swapped
1330  * Bits 5-54  swap offset if swapped
1331  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1332  * Bit  56    page exclusively mapped
1333  * Bits 57-60 zero
1334  * Bit  61    page is file-page or shared-anon
1335  * Bit  62    page swapped
1336  * Bit  63    page present
1337  *
1338  * If the page is not present but in swap, then the PFN contains an
1339  * encoding of the swap file number and the page's offset into the
1340  * swap. Unmapped pages return a null PFN. This allows determining
1341  * precisely which pages are mapped (or in swap) and comparing mapped
1342  * pages between processes.
1343  *
1344  * Efficient users of this interface will use /proc/pid/maps to
1345  * determine which areas of memory are actually mapped and llseek to
1346  * skip over unmapped regions.
1347  */
1348 static ssize_t pagemap_read(struct file *file, char __user *buf,
1349                             size_t count, loff_t *ppos)
1350 {
1351         struct mm_struct *mm = file->private_data;
1352         struct pagemapread pm;
1353         struct mm_walk pagemap_walk = {};
1354         unsigned long src;
1355         unsigned long svpfn;
1356         unsigned long start_vaddr;
1357         unsigned long end_vaddr;
1358         int ret = 0, copied = 0;
1359
1360         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1361                 goto out;
1362
1363         ret = -EINVAL;
1364         /* file position must be aligned */
1365         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1366                 goto out_mm;
1367
1368         ret = 0;
1369         if (!count)
1370                 goto out_mm;
1371
1372         /* do not disclose physical addresses: attack vector */
1373         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1374
1375         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1376         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1377         ret = -ENOMEM;
1378         if (!pm.buffer)
1379                 goto out_mm;
1380
1381         pagemap_walk.pmd_entry = pagemap_pmd_range;
1382         pagemap_walk.pte_hole = pagemap_pte_hole;
1383 #ifdef CONFIG_HUGETLB_PAGE
1384         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1385 #endif
1386         pagemap_walk.mm = mm;
1387         pagemap_walk.private = &pm;
1388
1389         src = *ppos;
1390         svpfn = src / PM_ENTRY_BYTES;
1391         start_vaddr = svpfn << PAGE_SHIFT;
1392         end_vaddr = mm->task_size;
1393
1394         /* watch out for wraparound */
1395         if (svpfn > mm->task_size >> PAGE_SHIFT)
1396                 start_vaddr = end_vaddr;
1397
1398         /*
1399          * The odds are that this will stop walking way
1400          * before end_vaddr, because the length of the
1401          * user buffer is tracked in "pm", and the walk
1402          * will stop when we hit the end of the buffer.
1403          */
1404         ret = 0;
1405         while (count && (start_vaddr < end_vaddr)) {
1406                 int len;
1407                 unsigned long end;
1408
1409                 pm.pos = 0;
1410                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1411                 /* overflow ? */
1412                 if (end < start_vaddr || end > end_vaddr)
1413                         end = end_vaddr;
1414                 down_read(&mm->mmap_sem);
1415                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1416                 up_read(&mm->mmap_sem);
1417                 start_vaddr = end;
1418
1419                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1420                 if (copy_to_user(buf, pm.buffer, len)) {
1421                         ret = -EFAULT;
1422                         goto out_free;
1423                 }
1424                 copied += len;
1425                 buf += len;
1426                 count -= len;
1427         }
1428         *ppos += copied;
1429         if (!ret || ret == PM_END_OF_BUFFER)
1430                 ret = copied;
1431
1432 out_free:
1433         kfree(pm.buffer);
1434 out_mm:
1435         mmput(mm);
1436 out:
1437         return ret;
1438 }
1439
1440 static int pagemap_open(struct inode *inode, struct file *file)
1441 {
1442         struct mm_struct *mm;
1443
1444         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1445         if (IS_ERR(mm))
1446                 return PTR_ERR(mm);
1447         file->private_data = mm;
1448         return 0;
1449 }
1450
1451 static int pagemap_release(struct inode *inode, struct file *file)
1452 {
1453         struct mm_struct *mm = file->private_data;
1454
1455         if (mm)
1456                 mmdrop(mm);
1457         return 0;
1458 }
1459
1460 const struct file_operations proc_pagemap_operations = {
1461         .llseek         = mem_lseek, /* borrow this */
1462         .read           = pagemap_read,
1463         .open           = pagemap_open,
1464         .release        = pagemap_release,
1465 };
1466 #endif /* CONFIG_PROC_PAGE_MONITOR */
1467
1468 #ifdef CONFIG_NUMA
1469
1470 struct numa_maps {
1471         unsigned long pages;
1472         unsigned long anon;
1473         unsigned long active;
1474         unsigned long writeback;
1475         unsigned long mapcount_max;
1476         unsigned long dirty;
1477         unsigned long swapcache;
1478         unsigned long node[MAX_NUMNODES];
1479 };
1480
1481 struct numa_maps_private {
1482         struct proc_maps_private proc_maps;
1483         struct numa_maps md;
1484 };
1485
1486 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1487                         unsigned long nr_pages)
1488 {
1489         int count = page_mapcount(page);
1490
1491         md->pages += nr_pages;
1492         if (pte_dirty || PageDirty(page))
1493                 md->dirty += nr_pages;
1494
1495         if (PageSwapCache(page))
1496                 md->swapcache += nr_pages;
1497
1498         if (PageActive(page) || PageUnevictable(page))
1499                 md->active += nr_pages;
1500
1501         if (PageWriteback(page))
1502                 md->writeback += nr_pages;
1503
1504         if (PageAnon(page))
1505                 md->anon += nr_pages;
1506
1507         if (count > md->mapcount_max)
1508                 md->mapcount_max = count;
1509
1510         md->node[page_to_nid(page)] += nr_pages;
1511 }
1512
1513 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1514                 unsigned long addr)
1515 {
1516         struct page *page;
1517         int nid;
1518
1519         if (!pte_present(pte))
1520                 return NULL;
1521
1522         page = vm_normal_page(vma, addr, pte);
1523         if (!page)
1524                 return NULL;
1525
1526         if (PageReserved(page))
1527                 return NULL;
1528
1529         nid = page_to_nid(page);
1530         if (!node_isset(nid, node_states[N_MEMORY]))
1531                 return NULL;
1532
1533         return page;
1534 }
1535
1536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1538                                               struct vm_area_struct *vma,
1539                                               unsigned long addr)
1540 {
1541         struct page *page;
1542         int nid;
1543
1544         if (!pmd_present(pmd))
1545                 return NULL;
1546
1547         page = vm_normal_page_pmd(vma, addr, pmd);
1548         if (!page)
1549                 return NULL;
1550
1551         if (PageReserved(page))
1552                 return NULL;
1553
1554         nid = page_to_nid(page);
1555         if (!node_isset(nid, node_states[N_MEMORY]))
1556                 return NULL;
1557
1558         return page;
1559 }
1560 #endif
1561
1562 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1563                 unsigned long end, struct mm_walk *walk)
1564 {
1565         struct numa_maps *md = walk->private;
1566         struct vm_area_struct *vma = walk->vma;
1567         spinlock_t *ptl;
1568         pte_t *orig_pte;
1569         pte_t *pte;
1570
1571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1572         ptl = pmd_trans_huge_lock(pmd, vma);
1573         if (ptl) {
1574                 struct page *page;
1575
1576                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1577                 if (page)
1578                         gather_stats(page, md, pmd_dirty(*pmd),
1579                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1580                 spin_unlock(ptl);
1581                 return 0;
1582         }
1583
1584         if (pmd_trans_unstable(pmd))
1585                 return 0;
1586 #endif
1587         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1588         do {
1589                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1590                 if (!page)
1591                         continue;
1592                 gather_stats(page, md, pte_dirty(*pte), 1);
1593
1594         } while (pte++, addr += PAGE_SIZE, addr != end);
1595         pte_unmap_unlock(orig_pte, ptl);
1596         return 0;
1597 }
1598 #ifdef CONFIG_HUGETLB_PAGE
1599 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1600                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1601 {
1602         pte_t huge_pte = huge_ptep_get(pte);
1603         struct numa_maps *md;
1604         struct page *page;
1605
1606         if (!pte_present(huge_pte))
1607                 return 0;
1608
1609         page = pte_page(huge_pte);
1610         if (!page)
1611                 return 0;
1612
1613         md = walk->private;
1614         gather_stats(page, md, pte_dirty(huge_pte), 1);
1615         return 0;
1616 }
1617
1618 #else
1619 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1620                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1621 {
1622         return 0;
1623 }
1624 #endif
1625
1626 /*
1627  * Display pages allocated per node and memory policy via /proc.
1628  */
1629 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1630 {
1631         struct numa_maps_private *numa_priv = m->private;
1632         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1633         struct vm_area_struct *vma = v;
1634         struct numa_maps *md = &numa_priv->md;
1635         struct file *file = vma->vm_file;
1636         struct mm_struct *mm = vma->vm_mm;
1637         struct mm_walk walk = {
1638                 .hugetlb_entry = gather_hugetlb_stats,
1639                 .pmd_entry = gather_pte_stats,
1640                 .private = md,
1641                 .mm = mm,
1642         };
1643         struct mempolicy *pol;
1644         char buffer[64];
1645         int nid;
1646
1647         if (!mm)
1648                 return 0;
1649
1650         /* Ensure we start with an empty set of numa_maps statistics. */
1651         memset(md, 0, sizeof(*md));
1652
1653         pol = __get_vma_policy(vma, vma->vm_start);
1654         if (pol) {
1655                 mpol_to_str(buffer, sizeof(buffer), pol);
1656                 mpol_cond_put(pol);
1657         } else {
1658                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1659         }
1660
1661         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1662
1663         if (file) {
1664                 seq_puts(m, " file=");
1665                 seq_file_path(m, file, "\n\t= ");
1666         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1667                 seq_puts(m, " heap");
1668         } else if (is_stack(proc_priv, vma, is_pid)) {
1669                 seq_puts(m, " stack");
1670         }
1671
1672         if (is_vm_hugetlb_page(vma))
1673                 seq_puts(m, " huge");
1674
1675         /* mmap_sem is held by m_start */
1676         walk_page_vma(vma, &walk);
1677
1678         if (!md->pages)
1679                 goto out;
1680
1681         if (md->anon)
1682                 seq_printf(m, " anon=%lu", md->anon);
1683
1684         if (md->dirty)
1685                 seq_printf(m, " dirty=%lu", md->dirty);
1686
1687         if (md->pages != md->anon && md->pages != md->dirty)
1688                 seq_printf(m, " mapped=%lu", md->pages);
1689
1690         if (md->mapcount_max > 1)
1691                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1692
1693         if (md->swapcache)
1694                 seq_printf(m, " swapcache=%lu", md->swapcache);
1695
1696         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1697                 seq_printf(m, " active=%lu", md->active);
1698
1699         if (md->writeback)
1700                 seq_printf(m, " writeback=%lu", md->writeback);
1701
1702         for_each_node_state(nid, N_MEMORY)
1703                 if (md->node[nid])
1704                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1705
1706         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1707 out:
1708         seq_putc(m, '\n');
1709         m_cache_vma(m, vma);
1710         return 0;
1711 }
1712
1713 static int show_pid_numa_map(struct seq_file *m, void *v)
1714 {
1715         return show_numa_map(m, v, 1);
1716 }
1717
1718 static int show_tid_numa_map(struct seq_file *m, void *v)
1719 {
1720         return show_numa_map(m, v, 0);
1721 }
1722
1723 static const struct seq_operations proc_pid_numa_maps_op = {
1724         .start  = m_start,
1725         .next   = m_next,
1726         .stop   = m_stop,
1727         .show   = show_pid_numa_map,
1728 };
1729
1730 static const struct seq_operations proc_tid_numa_maps_op = {
1731         .start  = m_start,
1732         .next   = m_next,
1733         .stop   = m_stop,
1734         .show   = show_tid_numa_map,
1735 };
1736
1737 static int numa_maps_open(struct inode *inode, struct file *file,
1738                           const struct seq_operations *ops)
1739 {
1740         return proc_maps_open(inode, file, ops,
1741                                 sizeof(struct numa_maps_private));
1742 }
1743
1744 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1745 {
1746         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1747 }
1748
1749 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1750 {
1751         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1752 }
1753
1754 const struct file_operations proc_pid_numa_maps_operations = {
1755         .open           = pid_numa_maps_open,
1756         .read           = seq_read,
1757         .llseek         = seq_lseek,
1758         .release        = proc_map_release,
1759 };
1760
1761 const struct file_operations proc_tid_numa_maps_operations = {
1762         .open           = tid_numa_maps_open,
1763         .read           = seq_read,
1764         .llseek         = seq_lseek,
1765         .release        = proc_map_release,
1766 };
1767 #endif /* CONFIG_NUMA */