fs/proc: Stop trying to report thread stacks
[cascardo/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26         unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29         anon = get_mm_counter(mm, MM_ANONPAGES);
30         file = get_mm_counter(mm, MM_FILEPAGES);
31         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33         /*
34          * Note: to minimize their overhead, mm maintains hiwater_vm and
35          * hiwater_rss only when about to *lower* total_vm or rss.  Any
36          * collector of these hiwater stats must therefore get total_vm
37          * and rss too, which will usually be the higher.  Barriers? not
38          * worth the effort, such snapshots can always be inconsistent.
39          */
40         hiwater_vm = total_vm = mm->total_vm;
41         if (hiwater_vm < mm->hiwater_vm)
42                 hiwater_vm = mm->hiwater_vm;
43         hiwater_rss = total_rss = anon + file + shmem;
44         if (hiwater_rss < mm->hiwater_rss)
45                 hiwater_rss = mm->hiwater_rss;
46
47         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49         swap = get_mm_counter(mm, MM_SWAPENTS);
50         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52         seq_printf(m,
53                 "VmPeak:\t%8lu kB\n"
54                 "VmSize:\t%8lu kB\n"
55                 "VmLck:\t%8lu kB\n"
56                 "VmPin:\t%8lu kB\n"
57                 "VmHWM:\t%8lu kB\n"
58                 "VmRSS:\t%8lu kB\n"
59                 "RssAnon:\t%8lu kB\n"
60                 "RssFile:\t%8lu kB\n"
61                 "RssShmem:\t%8lu kB\n"
62                 "VmData:\t%8lu kB\n"
63                 "VmStk:\t%8lu kB\n"
64                 "VmExe:\t%8lu kB\n"
65                 "VmLib:\t%8lu kB\n"
66                 "VmPTE:\t%8lu kB\n"
67                 "VmPMD:\t%8lu kB\n"
68                 "VmSwap:\t%8lu kB\n",
69                 hiwater_vm << (PAGE_SHIFT-10),
70                 total_vm << (PAGE_SHIFT-10),
71                 mm->locked_vm << (PAGE_SHIFT-10),
72                 mm->pinned_vm << (PAGE_SHIFT-10),
73                 hiwater_rss << (PAGE_SHIFT-10),
74                 total_rss << (PAGE_SHIFT-10),
75                 anon << (PAGE_SHIFT-10),
76                 file << (PAGE_SHIFT-10),
77                 shmem << (PAGE_SHIFT-10),
78                 mm->data_vm << (PAGE_SHIFT-10),
79                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80                 ptes >> 10,
81                 pmds >> 10,
82                 swap << (PAGE_SHIFT-10));
83         hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88         return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92                          unsigned long *shared, unsigned long *text,
93                          unsigned long *data, unsigned long *resident)
94 {
95         *shared = get_mm_counter(mm, MM_FILEPAGES) +
96                         get_mm_counter(mm, MM_SHMEMPAGES);
97         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98                                                                 >> PAGE_SHIFT;
99         *data = mm->data_vm + mm->stack_vm;
100         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101         return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110         struct task_struct *task = priv->task;
111
112         task_lock(task);
113         priv->task_mempolicy = get_task_policy(task);
114         mpol_get(priv->task_mempolicy);
115         task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119         mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132         struct mm_struct *mm = priv->mm;
133
134         release_task_mempolicy(priv);
135         up_read(&mm->mmap_sem);
136         mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142         if (vma == priv->tail_vma)
143                 return NULL;
144         return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149         if (m->count < m->size) /* vma is copied successfully */
150                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155         struct proc_maps_private *priv = m->private;
156         unsigned long last_addr = m->version;
157         struct mm_struct *mm;
158         struct vm_area_struct *vma;
159         unsigned int pos = *ppos;
160
161         /* See m_cache_vma(). Zero at the start or after lseek. */
162         if (last_addr == -1UL)
163                 return NULL;
164
165         priv->task = get_proc_task(priv->inode);
166         if (!priv->task)
167                 return ERR_PTR(-ESRCH);
168
169         mm = priv->mm;
170         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171                 return NULL;
172
173         down_read(&mm->mmap_sem);
174         hold_task_mempolicy(priv);
175         priv->tail_vma = get_gate_vma(mm);
176
177         if (last_addr) {
178                 vma = find_vma(mm, last_addr - 1);
179                 if (vma && vma->vm_start <= last_addr)
180                         vma = m_next_vma(priv, vma);
181                 if (vma)
182                         return vma;
183         }
184
185         m->version = 0;
186         if (pos < mm->map_count) {
187                 for (vma = mm->mmap; pos; pos--) {
188                         m->version = vma->vm_start;
189                         vma = vma->vm_next;
190                 }
191                 return vma;
192         }
193
194         /* we do not bother to update m->version in this case */
195         if (pos == mm->map_count && priv->tail_vma)
196                 return priv->tail_vma;
197
198         vma_stop(priv);
199         return NULL;
200 }
201
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204         struct proc_maps_private *priv = m->private;
205         struct vm_area_struct *next;
206
207         (*pos)++;
208         next = m_next_vma(priv, v);
209         if (!next)
210                 vma_stop(priv);
211         return next;
212 }
213
214 static void m_stop(struct seq_file *m, void *v)
215 {
216         struct proc_maps_private *priv = m->private;
217
218         if (!IS_ERR_OR_NULL(v))
219                 vma_stop(priv);
220         if (priv->task) {
221                 put_task_struct(priv->task);
222                 priv->task = NULL;
223         }
224 }
225
226 static int proc_maps_open(struct inode *inode, struct file *file,
227                         const struct seq_operations *ops, int psize)
228 {
229         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231         if (!priv)
232                 return -ENOMEM;
233
234         priv->inode = inode;
235         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236         if (IS_ERR(priv->mm)) {
237                 int err = PTR_ERR(priv->mm);
238
239                 seq_release_private(inode, file);
240                 return err;
241         }
242
243         return 0;
244 }
245
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248         struct seq_file *seq = file->private_data;
249         struct proc_maps_private *priv = seq->private;
250
251         if (priv->mm)
252                 mmdrop(priv->mm);
253
254         return seq_release_private(inode, file);
255 }
256
257 static int do_maps_open(struct inode *inode, struct file *file,
258                         const struct seq_operations *ops)
259 {
260         return proc_maps_open(inode, file, ops,
261                                 sizeof(struct proc_maps_private));
262 }
263
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct proc_maps_private *priv,
269                     struct vm_area_struct *vma)
270 {
271         /*
272          * We make no effort to guess what a given thread considers to be
273          * its "stack".  It's not even well-defined for programs written
274          * languages like Go.
275          */
276         return vma->vm_start <= vma->vm_mm->start_stack &&
277                 vma->vm_end >= vma->vm_mm->start_stack;
278 }
279
280 static void
281 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
282 {
283         struct mm_struct *mm = vma->vm_mm;
284         struct file *file = vma->vm_file;
285         struct proc_maps_private *priv = m->private;
286         vm_flags_t flags = vma->vm_flags;
287         unsigned long ino = 0;
288         unsigned long long pgoff = 0;
289         unsigned long start, end;
290         dev_t dev = 0;
291         const char *name = NULL;
292
293         if (file) {
294                 struct inode *inode = file_inode(vma->vm_file);
295                 dev = inode->i_sb->s_dev;
296                 ino = inode->i_ino;
297                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
298         }
299
300         /* We don't show the stack guard page in /proc/maps */
301         start = vma->vm_start;
302         if (stack_guard_page_start(vma, start))
303                 start += PAGE_SIZE;
304         end = vma->vm_end;
305         if (stack_guard_page_end(vma, end))
306                 end -= PAGE_SIZE;
307
308         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
309         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310                         start,
311                         end,
312                         flags & VM_READ ? 'r' : '-',
313                         flags & VM_WRITE ? 'w' : '-',
314                         flags & VM_EXEC ? 'x' : '-',
315                         flags & VM_MAYSHARE ? 's' : 'p',
316                         pgoff,
317                         MAJOR(dev), MINOR(dev), ino);
318
319         /*
320          * Print the dentry name for named mappings, and a
321          * special [heap] marker for the heap:
322          */
323         if (file) {
324                 seq_pad(m, ' ');
325                 seq_file_path(m, file, "\n");
326                 goto done;
327         }
328
329         if (vma->vm_ops && vma->vm_ops->name) {
330                 name = vma->vm_ops->name(vma);
331                 if (name)
332                         goto done;
333         }
334
335         name = arch_vma_name(vma);
336         if (!name) {
337                 if (!mm) {
338                         name = "[vdso]";
339                         goto done;
340                 }
341
342                 if (vma->vm_start <= mm->brk &&
343                     vma->vm_end >= mm->start_brk) {
344                         name = "[heap]";
345                         goto done;
346                 }
347
348                 if (is_stack(priv, vma))
349                         name = "[stack]";
350         }
351
352 done:
353         if (name) {
354                 seq_pad(m, ' ');
355                 seq_puts(m, name);
356         }
357         seq_putc(m, '\n');
358 }
359
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362         show_map_vma(m, v, is_pid);
363         m_cache_vma(m, v);
364         return 0;
365 }
366
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369         return show_map(m, v, 1);
370 }
371
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374         return show_map(m, v, 0);
375 }
376
377 static const struct seq_operations proc_pid_maps_op = {
378         .start  = m_start,
379         .next   = m_next,
380         .stop   = m_stop,
381         .show   = show_pid_map
382 };
383
384 static const struct seq_operations proc_tid_maps_op = {
385         .start  = m_start,
386         .next   = m_next,
387         .stop   = m_stop,
388         .show   = show_tid_map
389 };
390
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393         return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398         return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400
401 const struct file_operations proc_pid_maps_operations = {
402         .open           = pid_maps_open,
403         .read           = seq_read,
404         .llseek         = seq_lseek,
405         .release        = proc_map_release,
406 };
407
408 const struct file_operations proc_tid_maps_operations = {
409         .open           = tid_maps_open,
410         .read           = seq_read,
411         .llseek         = seq_lseek,
412         .release        = proc_map_release,
413 };
414
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  *      - 1M 3-user-pages add up to 8KB errors;
429  *      - supports mapcount up to 2^24, or 16M;
430  *      - supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436         unsigned long resident;
437         unsigned long shared_clean;
438         unsigned long shared_dirty;
439         unsigned long private_clean;
440         unsigned long private_dirty;
441         unsigned long referenced;
442         unsigned long anonymous;
443         unsigned long anonymous_thp;
444         unsigned long shmem_thp;
445         unsigned long swap;
446         unsigned long shared_hugetlb;
447         unsigned long private_hugetlb;
448         u64 pss;
449         u64 swap_pss;
450         bool check_shmem_swap;
451 };
452
453 static void smaps_account(struct mem_size_stats *mss, struct page *page,
454                 bool compound, bool young, bool dirty)
455 {
456         int i, nr = compound ? 1 << compound_order(page) : 1;
457         unsigned long size = nr * PAGE_SIZE;
458
459         if (PageAnon(page))
460                 mss->anonymous += size;
461
462         mss->resident += size;
463         /* Accumulate the size in pages that have been accessed. */
464         if (young || page_is_young(page) || PageReferenced(page))
465                 mss->referenced += size;
466
467         /*
468          * page_count(page) == 1 guarantees the page is mapped exactly once.
469          * If any subpage of the compound page mapped with PTE it would elevate
470          * page_count().
471          */
472         if (page_count(page) == 1) {
473                 if (dirty || PageDirty(page))
474                         mss->private_dirty += size;
475                 else
476                         mss->private_clean += size;
477                 mss->pss += (u64)size << PSS_SHIFT;
478                 return;
479         }
480
481         for (i = 0; i < nr; i++, page++) {
482                 int mapcount = page_mapcount(page);
483
484                 if (mapcount >= 2) {
485                         if (dirty || PageDirty(page))
486                                 mss->shared_dirty += PAGE_SIZE;
487                         else
488                                 mss->shared_clean += PAGE_SIZE;
489                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
490                 } else {
491                         if (dirty || PageDirty(page))
492                                 mss->private_dirty += PAGE_SIZE;
493                         else
494                                 mss->private_clean += PAGE_SIZE;
495                         mss->pss += PAGE_SIZE << PSS_SHIFT;
496                 }
497         }
498 }
499
500 #ifdef CONFIG_SHMEM
501 static int smaps_pte_hole(unsigned long addr, unsigned long end,
502                 struct mm_walk *walk)
503 {
504         struct mem_size_stats *mss = walk->private;
505
506         mss->swap += shmem_partial_swap_usage(
507                         walk->vma->vm_file->f_mapping, addr, end);
508
509         return 0;
510 }
511 #endif
512
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514                 struct mm_walk *walk)
515 {
516         struct mem_size_stats *mss = walk->private;
517         struct vm_area_struct *vma = walk->vma;
518         struct page *page = NULL;
519
520         if (pte_present(*pte)) {
521                 page = vm_normal_page(vma, addr, *pte);
522         } else if (is_swap_pte(*pte)) {
523                 swp_entry_t swpent = pte_to_swp_entry(*pte);
524
525                 if (!non_swap_entry(swpent)) {
526                         int mapcount;
527
528                         mss->swap += PAGE_SIZE;
529                         mapcount = swp_swapcount(swpent);
530                         if (mapcount >= 2) {
531                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
532
533                                 do_div(pss_delta, mapcount);
534                                 mss->swap_pss += pss_delta;
535                         } else {
536                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
537                         }
538                 } else if (is_migration_entry(swpent))
539                         page = migration_entry_to_page(swpent);
540         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
541                                                         && pte_none(*pte))) {
542                 page = find_get_entry(vma->vm_file->f_mapping,
543                                                 linear_page_index(vma, addr));
544                 if (!page)
545                         return;
546
547                 if (radix_tree_exceptional_entry(page))
548                         mss->swap += PAGE_SIZE;
549                 else
550                         put_page(page);
551
552                 return;
553         }
554
555         if (!page)
556                 return;
557
558         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559 }
560
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
563                 struct mm_walk *walk)
564 {
565         struct mem_size_stats *mss = walk->private;
566         struct vm_area_struct *vma = walk->vma;
567         struct page *page;
568
569         /* FOLL_DUMP will return -EFAULT on huge zero page */
570         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
571         if (IS_ERR_OR_NULL(page))
572                 return;
573         if (PageAnon(page))
574                 mss->anonymous_thp += HPAGE_PMD_SIZE;
575         else if (PageSwapBacked(page))
576                 mss->shmem_thp += HPAGE_PMD_SIZE;
577         else if (is_zone_device_page(page))
578                 /* pass */;
579         else
580                 VM_BUG_ON_PAGE(1, page);
581         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582 }
583 #else
584 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
585                 struct mm_walk *walk)
586 {
587 }
588 #endif
589
590 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591                            struct mm_walk *walk)
592 {
593         struct vm_area_struct *vma = walk->vma;
594         pte_t *pte;
595         spinlock_t *ptl;
596
597         ptl = pmd_trans_huge_lock(pmd, vma);
598         if (ptl) {
599                 smaps_pmd_entry(pmd, addr, walk);
600                 spin_unlock(ptl);
601                 return 0;
602         }
603
604         if (pmd_trans_unstable(pmd))
605                 return 0;
606         /*
607          * The mmap_sem held all the way back in m_start() is what
608          * keeps khugepaged out of here and from collapsing things
609          * in here.
610          */
611         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612         for (; addr != end; pte++, addr += PAGE_SIZE)
613                 smaps_pte_entry(pte, addr, walk);
614         pte_unmap_unlock(pte - 1, ptl);
615         cond_resched();
616         return 0;
617 }
618
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621         /*
622          * Don't forget to update Documentation/ on changes.
623          */
624         static const char mnemonics[BITS_PER_LONG][2] = {
625                 /*
626                  * In case if we meet a flag we don't know about.
627                  */
628                 [0 ... (BITS_PER_LONG-1)] = "??",
629
630                 [ilog2(VM_READ)]        = "rd",
631                 [ilog2(VM_WRITE)]       = "wr",
632                 [ilog2(VM_EXEC)]        = "ex",
633                 [ilog2(VM_SHARED)]      = "sh",
634                 [ilog2(VM_MAYREAD)]     = "mr",
635                 [ilog2(VM_MAYWRITE)]    = "mw",
636                 [ilog2(VM_MAYEXEC)]     = "me",
637                 [ilog2(VM_MAYSHARE)]    = "ms",
638                 [ilog2(VM_GROWSDOWN)]   = "gd",
639                 [ilog2(VM_PFNMAP)]      = "pf",
640                 [ilog2(VM_DENYWRITE)]   = "dw",
641 #ifdef CONFIG_X86_INTEL_MPX
642                 [ilog2(VM_MPX)]         = "mp",
643 #endif
644                 [ilog2(VM_LOCKED)]      = "lo",
645                 [ilog2(VM_IO)]          = "io",
646                 [ilog2(VM_SEQ_READ)]    = "sr",
647                 [ilog2(VM_RAND_READ)]   = "rr",
648                 [ilog2(VM_DONTCOPY)]    = "dc",
649                 [ilog2(VM_DONTEXPAND)]  = "de",
650                 [ilog2(VM_ACCOUNT)]     = "ac",
651                 [ilog2(VM_NORESERVE)]   = "nr",
652                 [ilog2(VM_HUGETLB)]     = "ht",
653                 [ilog2(VM_ARCH_1)]      = "ar",
654                 [ilog2(VM_DONTDUMP)]    = "dd",
655 #ifdef CONFIG_MEM_SOFT_DIRTY
656                 [ilog2(VM_SOFTDIRTY)]   = "sd",
657 #endif
658                 [ilog2(VM_MIXEDMAP)]    = "mm",
659                 [ilog2(VM_HUGEPAGE)]    = "hg",
660                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
661                 [ilog2(VM_MERGEABLE)]   = "mg",
662                 [ilog2(VM_UFFD_MISSING)]= "um",
663                 [ilog2(VM_UFFD_WP)]     = "uw",
664 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665                 /* These come out via ProtectionKey: */
666                 [ilog2(VM_PKEY_BIT0)]   = "",
667                 [ilog2(VM_PKEY_BIT1)]   = "",
668                 [ilog2(VM_PKEY_BIT2)]   = "",
669                 [ilog2(VM_PKEY_BIT3)]   = "",
670 #endif
671         };
672         size_t i;
673
674         seq_puts(m, "VmFlags: ");
675         for (i = 0; i < BITS_PER_LONG; i++) {
676                 if (!mnemonics[i][0])
677                         continue;
678                 if (vma->vm_flags & (1UL << i)) {
679                         seq_printf(m, "%c%c ",
680                                    mnemonics[i][0], mnemonics[i][1]);
681                 }
682         }
683         seq_putc(m, '\n');
684 }
685
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688                                  unsigned long addr, unsigned long end,
689                                  struct mm_walk *walk)
690 {
691         struct mem_size_stats *mss = walk->private;
692         struct vm_area_struct *vma = walk->vma;
693         struct page *page = NULL;
694
695         if (pte_present(*pte)) {
696                 page = vm_normal_page(vma, addr, *pte);
697         } else if (is_swap_pte(*pte)) {
698                 swp_entry_t swpent = pte_to_swp_entry(*pte);
699
700                 if (is_migration_entry(swpent))
701                         page = migration_entry_to_page(swpent);
702         }
703         if (page) {
704                 int mapcount = page_mapcount(page);
705
706                 if (mapcount >= 2)
707                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
708                 else
709                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
710         }
711         return 0;
712 }
713 #endif /* HUGETLB_PAGE */
714
715 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
716 {
717 }
718
719 static int show_smap(struct seq_file *m, void *v, int is_pid)
720 {
721         struct vm_area_struct *vma = v;
722         struct mem_size_stats mss;
723         struct mm_walk smaps_walk = {
724                 .pmd_entry = smaps_pte_range,
725 #ifdef CONFIG_HUGETLB_PAGE
726                 .hugetlb_entry = smaps_hugetlb_range,
727 #endif
728                 .mm = vma->vm_mm,
729                 .private = &mss,
730         };
731
732         memset(&mss, 0, sizeof mss);
733
734 #ifdef CONFIG_SHMEM
735         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736                 /*
737                  * For shared or readonly shmem mappings we know that all
738                  * swapped out pages belong to the shmem object, and we can
739                  * obtain the swap value much more efficiently. For private
740                  * writable mappings, we might have COW pages that are
741                  * not affected by the parent swapped out pages of the shmem
742                  * object, so we have to distinguish them during the page walk.
743                  * Unless we know that the shmem object (or the part mapped by
744                  * our VMA) has no swapped out pages at all.
745                  */
746                 unsigned long shmem_swapped = shmem_swap_usage(vma);
747
748                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
749                                         !(vma->vm_flags & VM_WRITE)) {
750                         mss.swap = shmem_swapped;
751                 } else {
752                         mss.check_shmem_swap = true;
753                         smaps_walk.pte_hole = smaps_pte_hole;
754                 }
755         }
756 #endif
757
758         /* mmap_sem is held in m_start */
759         walk_page_vma(vma, &smaps_walk);
760
761         show_map_vma(m, vma, is_pid);
762
763         seq_printf(m,
764                    "Size:           %8lu kB\n"
765                    "Rss:            %8lu kB\n"
766                    "Pss:            %8lu kB\n"
767                    "Shared_Clean:   %8lu kB\n"
768                    "Shared_Dirty:   %8lu kB\n"
769                    "Private_Clean:  %8lu kB\n"
770                    "Private_Dirty:  %8lu kB\n"
771                    "Referenced:     %8lu kB\n"
772                    "Anonymous:      %8lu kB\n"
773                    "AnonHugePages:  %8lu kB\n"
774                    "ShmemPmdMapped: %8lu kB\n"
775                    "Shared_Hugetlb: %8lu kB\n"
776                    "Private_Hugetlb: %7lu kB\n"
777                    "Swap:           %8lu kB\n"
778                    "SwapPss:        %8lu kB\n"
779                    "KernelPageSize: %8lu kB\n"
780                    "MMUPageSize:    %8lu kB\n"
781                    "Locked:         %8lu kB\n",
782                    (vma->vm_end - vma->vm_start) >> 10,
783                    mss.resident >> 10,
784                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
785                    mss.shared_clean  >> 10,
786                    mss.shared_dirty  >> 10,
787                    mss.private_clean >> 10,
788                    mss.private_dirty >> 10,
789                    mss.referenced >> 10,
790                    mss.anonymous >> 10,
791                    mss.anonymous_thp >> 10,
792                    mss.shmem_thp >> 10,
793                    mss.shared_hugetlb >> 10,
794                    mss.private_hugetlb >> 10,
795                    mss.swap >> 10,
796                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
797                    vma_kernel_pagesize(vma) >> 10,
798                    vma_mmu_pagesize(vma) >> 10,
799                    (vma->vm_flags & VM_LOCKED) ?
800                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
801
802         arch_show_smap(m, vma);
803         show_smap_vma_flags(m, vma);
804         m_cache_vma(m, vma);
805         return 0;
806 }
807
808 static int show_pid_smap(struct seq_file *m, void *v)
809 {
810         return show_smap(m, v, 1);
811 }
812
813 static int show_tid_smap(struct seq_file *m, void *v)
814 {
815         return show_smap(m, v, 0);
816 }
817
818 static const struct seq_operations proc_pid_smaps_op = {
819         .start  = m_start,
820         .next   = m_next,
821         .stop   = m_stop,
822         .show   = show_pid_smap
823 };
824
825 static const struct seq_operations proc_tid_smaps_op = {
826         .start  = m_start,
827         .next   = m_next,
828         .stop   = m_stop,
829         .show   = show_tid_smap
830 };
831
832 static int pid_smaps_open(struct inode *inode, struct file *file)
833 {
834         return do_maps_open(inode, file, &proc_pid_smaps_op);
835 }
836
837 static int tid_smaps_open(struct inode *inode, struct file *file)
838 {
839         return do_maps_open(inode, file, &proc_tid_smaps_op);
840 }
841
842 const struct file_operations proc_pid_smaps_operations = {
843         .open           = pid_smaps_open,
844         .read           = seq_read,
845         .llseek         = seq_lseek,
846         .release        = proc_map_release,
847 };
848
849 const struct file_operations proc_tid_smaps_operations = {
850         .open           = tid_smaps_open,
851         .read           = seq_read,
852         .llseek         = seq_lseek,
853         .release        = proc_map_release,
854 };
855
856 enum clear_refs_types {
857         CLEAR_REFS_ALL = 1,
858         CLEAR_REFS_ANON,
859         CLEAR_REFS_MAPPED,
860         CLEAR_REFS_SOFT_DIRTY,
861         CLEAR_REFS_MM_HIWATER_RSS,
862         CLEAR_REFS_LAST,
863 };
864
865 struct clear_refs_private {
866         enum clear_refs_types type;
867 };
868
869 #ifdef CONFIG_MEM_SOFT_DIRTY
870 static inline void clear_soft_dirty(struct vm_area_struct *vma,
871                 unsigned long addr, pte_t *pte)
872 {
873         /*
874          * The soft-dirty tracker uses #PF-s to catch writes
875          * to pages, so write-protect the pte as well. See the
876          * Documentation/vm/soft-dirty.txt for full description
877          * of how soft-dirty works.
878          */
879         pte_t ptent = *pte;
880
881         if (pte_present(ptent)) {
882                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
883                 ptent = pte_wrprotect(ptent);
884                 ptent = pte_clear_soft_dirty(ptent);
885                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
886         } else if (is_swap_pte(ptent)) {
887                 ptent = pte_swp_clear_soft_dirty(ptent);
888                 set_pte_at(vma->vm_mm, addr, pte, ptent);
889         }
890 }
891 #else
892 static inline void clear_soft_dirty(struct vm_area_struct *vma,
893                 unsigned long addr, pte_t *pte)
894 {
895 }
896 #endif
897
898 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
900                 unsigned long addr, pmd_t *pmdp)
901 {
902         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
903
904         pmd = pmd_wrprotect(pmd);
905         pmd = pmd_clear_soft_dirty(pmd);
906
907         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
908 }
909 #else
910 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
911                 unsigned long addr, pmd_t *pmdp)
912 {
913 }
914 #endif
915
916 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
917                                 unsigned long end, struct mm_walk *walk)
918 {
919         struct clear_refs_private *cp = walk->private;
920         struct vm_area_struct *vma = walk->vma;
921         pte_t *pte, ptent;
922         spinlock_t *ptl;
923         struct page *page;
924
925         ptl = pmd_trans_huge_lock(pmd, vma);
926         if (ptl) {
927                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
928                         clear_soft_dirty_pmd(vma, addr, pmd);
929                         goto out;
930                 }
931
932                 page = pmd_page(*pmd);
933
934                 /* Clear accessed and referenced bits. */
935                 pmdp_test_and_clear_young(vma, addr, pmd);
936                 test_and_clear_page_young(page);
937                 ClearPageReferenced(page);
938 out:
939                 spin_unlock(ptl);
940                 return 0;
941         }
942
943         if (pmd_trans_unstable(pmd))
944                 return 0;
945
946         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
947         for (; addr != end; pte++, addr += PAGE_SIZE) {
948                 ptent = *pte;
949
950                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
951                         clear_soft_dirty(vma, addr, pte);
952                         continue;
953                 }
954
955                 if (!pte_present(ptent))
956                         continue;
957
958                 page = vm_normal_page(vma, addr, ptent);
959                 if (!page)
960                         continue;
961
962                 /* Clear accessed and referenced bits. */
963                 ptep_test_and_clear_young(vma, addr, pte);
964                 test_and_clear_page_young(page);
965                 ClearPageReferenced(page);
966         }
967         pte_unmap_unlock(pte - 1, ptl);
968         cond_resched();
969         return 0;
970 }
971
972 static int clear_refs_test_walk(unsigned long start, unsigned long end,
973                                 struct mm_walk *walk)
974 {
975         struct clear_refs_private *cp = walk->private;
976         struct vm_area_struct *vma = walk->vma;
977
978         if (vma->vm_flags & VM_PFNMAP)
979                 return 1;
980
981         /*
982          * Writing 1 to /proc/pid/clear_refs affects all pages.
983          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
984          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
985          * Writing 4 to /proc/pid/clear_refs affects all pages.
986          */
987         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
988                 return 1;
989         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
990                 return 1;
991         return 0;
992 }
993
994 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
995                                 size_t count, loff_t *ppos)
996 {
997         struct task_struct *task;
998         char buffer[PROC_NUMBUF];
999         struct mm_struct *mm;
1000         struct vm_area_struct *vma;
1001         enum clear_refs_types type;
1002         int itype;
1003         int rv;
1004
1005         memset(buffer, 0, sizeof(buffer));
1006         if (count > sizeof(buffer) - 1)
1007                 count = sizeof(buffer) - 1;
1008         if (copy_from_user(buffer, buf, count))
1009                 return -EFAULT;
1010         rv = kstrtoint(strstrip(buffer), 10, &itype);
1011         if (rv < 0)
1012                 return rv;
1013         type = (enum clear_refs_types)itype;
1014         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1015                 return -EINVAL;
1016
1017         task = get_proc_task(file_inode(file));
1018         if (!task)
1019                 return -ESRCH;
1020         mm = get_task_mm(task);
1021         if (mm) {
1022                 struct clear_refs_private cp = {
1023                         .type = type,
1024                 };
1025                 struct mm_walk clear_refs_walk = {
1026                         .pmd_entry = clear_refs_pte_range,
1027                         .test_walk = clear_refs_test_walk,
1028                         .mm = mm,
1029                         .private = &cp,
1030                 };
1031
1032                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1033                         if (down_write_killable(&mm->mmap_sem)) {
1034                                 count = -EINTR;
1035                                 goto out_mm;
1036                         }
1037
1038                         /*
1039                          * Writing 5 to /proc/pid/clear_refs resets the peak
1040                          * resident set size to this mm's current rss value.
1041                          */
1042                         reset_mm_hiwater_rss(mm);
1043                         up_write(&mm->mmap_sem);
1044                         goto out_mm;
1045                 }
1046
1047                 down_read(&mm->mmap_sem);
1048                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1049                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1050                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1051                                         continue;
1052                                 up_read(&mm->mmap_sem);
1053                                 if (down_write_killable(&mm->mmap_sem)) {
1054                                         count = -EINTR;
1055                                         goto out_mm;
1056                                 }
1057                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1058                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1059                                         vma_set_page_prot(vma);
1060                                 }
1061                                 downgrade_write(&mm->mmap_sem);
1062                                 break;
1063                         }
1064                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1065                 }
1066                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1067                 if (type == CLEAR_REFS_SOFT_DIRTY)
1068                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1069                 flush_tlb_mm(mm);
1070                 up_read(&mm->mmap_sem);
1071 out_mm:
1072                 mmput(mm);
1073         }
1074         put_task_struct(task);
1075
1076         return count;
1077 }
1078
1079 const struct file_operations proc_clear_refs_operations = {
1080         .write          = clear_refs_write,
1081         .llseek         = noop_llseek,
1082 };
1083
1084 typedef struct {
1085         u64 pme;
1086 } pagemap_entry_t;
1087
1088 struct pagemapread {
1089         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1090         pagemap_entry_t *buffer;
1091         bool show_pfn;
1092 };
1093
1094 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1095 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1096
1097 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1098 #define PM_PFRAME_BITS          55
1099 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1100 #define PM_SOFT_DIRTY           BIT_ULL(55)
1101 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1102 #define PM_FILE                 BIT_ULL(61)
1103 #define PM_SWAP                 BIT_ULL(62)
1104 #define PM_PRESENT              BIT_ULL(63)
1105
1106 #define PM_END_OF_BUFFER    1
1107
1108 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1109 {
1110         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1111 }
1112
1113 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1114                           struct pagemapread *pm)
1115 {
1116         pm->buffer[pm->pos++] = *pme;
1117         if (pm->pos >= pm->len)
1118                 return PM_END_OF_BUFFER;
1119         return 0;
1120 }
1121
1122 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1123                                 struct mm_walk *walk)
1124 {
1125         struct pagemapread *pm = walk->private;
1126         unsigned long addr = start;
1127         int err = 0;
1128
1129         while (addr < end) {
1130                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1131                 pagemap_entry_t pme = make_pme(0, 0);
1132                 /* End of address space hole, which we mark as non-present. */
1133                 unsigned long hole_end;
1134
1135                 if (vma)
1136                         hole_end = min(end, vma->vm_start);
1137                 else
1138                         hole_end = end;
1139
1140                 for (; addr < hole_end; addr += PAGE_SIZE) {
1141                         err = add_to_pagemap(addr, &pme, pm);
1142                         if (err)
1143                                 goto out;
1144                 }
1145
1146                 if (!vma)
1147                         break;
1148
1149                 /* Addresses in the VMA. */
1150                 if (vma->vm_flags & VM_SOFTDIRTY)
1151                         pme = make_pme(0, PM_SOFT_DIRTY);
1152                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1153                         err = add_to_pagemap(addr, &pme, pm);
1154                         if (err)
1155                                 goto out;
1156                 }
1157         }
1158 out:
1159         return err;
1160 }
1161
1162 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1163                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1164 {
1165         u64 frame = 0, flags = 0;
1166         struct page *page = NULL;
1167
1168         if (pte_present(pte)) {
1169                 if (pm->show_pfn)
1170                         frame = pte_pfn(pte);
1171                 flags |= PM_PRESENT;
1172                 page = vm_normal_page(vma, addr, pte);
1173                 if (pte_soft_dirty(pte))
1174                         flags |= PM_SOFT_DIRTY;
1175         } else if (is_swap_pte(pte)) {
1176                 swp_entry_t entry;
1177                 if (pte_swp_soft_dirty(pte))
1178                         flags |= PM_SOFT_DIRTY;
1179                 entry = pte_to_swp_entry(pte);
1180                 frame = swp_type(entry) |
1181                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1182                 flags |= PM_SWAP;
1183                 if (is_migration_entry(entry))
1184                         page = migration_entry_to_page(entry);
1185         }
1186
1187         if (page && !PageAnon(page))
1188                 flags |= PM_FILE;
1189         if (page && page_mapcount(page) == 1)
1190                 flags |= PM_MMAP_EXCLUSIVE;
1191         if (vma->vm_flags & VM_SOFTDIRTY)
1192                 flags |= PM_SOFT_DIRTY;
1193
1194         return make_pme(frame, flags);
1195 }
1196
1197 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1198                              struct mm_walk *walk)
1199 {
1200         struct vm_area_struct *vma = walk->vma;
1201         struct pagemapread *pm = walk->private;
1202         spinlock_t *ptl;
1203         pte_t *pte, *orig_pte;
1204         int err = 0;
1205
1206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207         ptl = pmd_trans_huge_lock(pmdp, vma);
1208         if (ptl) {
1209                 u64 flags = 0, frame = 0;
1210                 pmd_t pmd = *pmdp;
1211
1212                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1213                         flags |= PM_SOFT_DIRTY;
1214
1215                 /*
1216                  * Currently pmd for thp is always present because thp
1217                  * can not be swapped-out, migrated, or HWPOISONed
1218                  * (split in such cases instead.)
1219                  * This if-check is just to prepare for future implementation.
1220                  */
1221                 if (pmd_present(pmd)) {
1222                         struct page *page = pmd_page(pmd);
1223
1224                         if (page_mapcount(page) == 1)
1225                                 flags |= PM_MMAP_EXCLUSIVE;
1226
1227                         flags |= PM_PRESENT;
1228                         if (pm->show_pfn)
1229                                 frame = pmd_pfn(pmd) +
1230                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1231                 }
1232
1233                 for (; addr != end; addr += PAGE_SIZE) {
1234                         pagemap_entry_t pme = make_pme(frame, flags);
1235
1236                         err = add_to_pagemap(addr, &pme, pm);
1237                         if (err)
1238                                 break;
1239                         if (pm->show_pfn && (flags & PM_PRESENT))
1240                                 frame++;
1241                 }
1242                 spin_unlock(ptl);
1243                 return err;
1244         }
1245
1246         if (pmd_trans_unstable(pmdp))
1247                 return 0;
1248 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1249
1250         /*
1251          * We can assume that @vma always points to a valid one and @end never
1252          * goes beyond vma->vm_end.
1253          */
1254         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1255         for (; addr < end; pte++, addr += PAGE_SIZE) {
1256                 pagemap_entry_t pme;
1257
1258                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1259                 err = add_to_pagemap(addr, &pme, pm);
1260                 if (err)
1261                         break;
1262         }
1263         pte_unmap_unlock(orig_pte, ptl);
1264
1265         cond_resched();
1266
1267         return err;
1268 }
1269
1270 #ifdef CONFIG_HUGETLB_PAGE
1271 /* This function walks within one hugetlb entry in the single call */
1272 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1273                                  unsigned long addr, unsigned long end,
1274                                  struct mm_walk *walk)
1275 {
1276         struct pagemapread *pm = walk->private;
1277         struct vm_area_struct *vma = walk->vma;
1278         u64 flags = 0, frame = 0;
1279         int err = 0;
1280         pte_t pte;
1281
1282         if (vma->vm_flags & VM_SOFTDIRTY)
1283                 flags |= PM_SOFT_DIRTY;
1284
1285         pte = huge_ptep_get(ptep);
1286         if (pte_present(pte)) {
1287                 struct page *page = pte_page(pte);
1288
1289                 if (!PageAnon(page))
1290                         flags |= PM_FILE;
1291
1292                 if (page_mapcount(page) == 1)
1293                         flags |= PM_MMAP_EXCLUSIVE;
1294
1295                 flags |= PM_PRESENT;
1296                 if (pm->show_pfn)
1297                         frame = pte_pfn(pte) +
1298                                 ((addr & ~hmask) >> PAGE_SHIFT);
1299         }
1300
1301         for (; addr != end; addr += PAGE_SIZE) {
1302                 pagemap_entry_t pme = make_pme(frame, flags);
1303
1304                 err = add_to_pagemap(addr, &pme, pm);
1305                 if (err)
1306                         return err;
1307                 if (pm->show_pfn && (flags & PM_PRESENT))
1308                         frame++;
1309         }
1310
1311         cond_resched();
1312
1313         return err;
1314 }
1315 #endif /* HUGETLB_PAGE */
1316
1317 /*
1318  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1319  *
1320  * For each page in the address space, this file contains one 64-bit entry
1321  * consisting of the following:
1322  *
1323  * Bits 0-54  page frame number (PFN) if present
1324  * Bits 0-4   swap type if swapped
1325  * Bits 5-54  swap offset if swapped
1326  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327  * Bit  56    page exclusively mapped
1328  * Bits 57-60 zero
1329  * Bit  61    page is file-page or shared-anon
1330  * Bit  62    page swapped
1331  * Bit  63    page present
1332  *
1333  * If the page is not present but in swap, then the PFN contains an
1334  * encoding of the swap file number and the page's offset into the
1335  * swap. Unmapped pages return a null PFN. This allows determining
1336  * precisely which pages are mapped (or in swap) and comparing mapped
1337  * pages between processes.
1338  *
1339  * Efficient users of this interface will use /proc/pid/maps to
1340  * determine which areas of memory are actually mapped and llseek to
1341  * skip over unmapped regions.
1342  */
1343 static ssize_t pagemap_read(struct file *file, char __user *buf,
1344                             size_t count, loff_t *ppos)
1345 {
1346         struct mm_struct *mm = file->private_data;
1347         struct pagemapread pm;
1348         struct mm_walk pagemap_walk = {};
1349         unsigned long src;
1350         unsigned long svpfn;
1351         unsigned long start_vaddr;
1352         unsigned long end_vaddr;
1353         int ret = 0, copied = 0;
1354
1355         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1356                 goto out;
1357
1358         ret = -EINVAL;
1359         /* file position must be aligned */
1360         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1361                 goto out_mm;
1362
1363         ret = 0;
1364         if (!count)
1365                 goto out_mm;
1366
1367         /* do not disclose physical addresses: attack vector */
1368         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1369
1370         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1371         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1372         ret = -ENOMEM;
1373         if (!pm.buffer)
1374                 goto out_mm;
1375
1376         pagemap_walk.pmd_entry = pagemap_pmd_range;
1377         pagemap_walk.pte_hole = pagemap_pte_hole;
1378 #ifdef CONFIG_HUGETLB_PAGE
1379         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1380 #endif
1381         pagemap_walk.mm = mm;
1382         pagemap_walk.private = &pm;
1383
1384         src = *ppos;
1385         svpfn = src / PM_ENTRY_BYTES;
1386         start_vaddr = svpfn << PAGE_SHIFT;
1387         end_vaddr = mm->task_size;
1388
1389         /* watch out for wraparound */
1390         if (svpfn > mm->task_size >> PAGE_SHIFT)
1391                 start_vaddr = end_vaddr;
1392
1393         /*
1394          * The odds are that this will stop walking way
1395          * before end_vaddr, because the length of the
1396          * user buffer is tracked in "pm", and the walk
1397          * will stop when we hit the end of the buffer.
1398          */
1399         ret = 0;
1400         while (count && (start_vaddr < end_vaddr)) {
1401                 int len;
1402                 unsigned long end;
1403
1404                 pm.pos = 0;
1405                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1406                 /* overflow ? */
1407                 if (end < start_vaddr || end > end_vaddr)
1408                         end = end_vaddr;
1409                 down_read(&mm->mmap_sem);
1410                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1411                 up_read(&mm->mmap_sem);
1412                 start_vaddr = end;
1413
1414                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1415                 if (copy_to_user(buf, pm.buffer, len)) {
1416                         ret = -EFAULT;
1417                         goto out_free;
1418                 }
1419                 copied += len;
1420                 buf += len;
1421                 count -= len;
1422         }
1423         *ppos += copied;
1424         if (!ret || ret == PM_END_OF_BUFFER)
1425                 ret = copied;
1426
1427 out_free:
1428         kfree(pm.buffer);
1429 out_mm:
1430         mmput(mm);
1431 out:
1432         return ret;
1433 }
1434
1435 static int pagemap_open(struct inode *inode, struct file *file)
1436 {
1437         struct mm_struct *mm;
1438
1439         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1440         if (IS_ERR(mm))
1441                 return PTR_ERR(mm);
1442         file->private_data = mm;
1443         return 0;
1444 }
1445
1446 static int pagemap_release(struct inode *inode, struct file *file)
1447 {
1448         struct mm_struct *mm = file->private_data;
1449
1450         if (mm)
1451                 mmdrop(mm);
1452         return 0;
1453 }
1454
1455 const struct file_operations proc_pagemap_operations = {
1456         .llseek         = mem_lseek, /* borrow this */
1457         .read           = pagemap_read,
1458         .open           = pagemap_open,
1459         .release        = pagemap_release,
1460 };
1461 #endif /* CONFIG_PROC_PAGE_MONITOR */
1462
1463 #ifdef CONFIG_NUMA
1464
1465 struct numa_maps {
1466         unsigned long pages;
1467         unsigned long anon;
1468         unsigned long active;
1469         unsigned long writeback;
1470         unsigned long mapcount_max;
1471         unsigned long dirty;
1472         unsigned long swapcache;
1473         unsigned long node[MAX_NUMNODES];
1474 };
1475
1476 struct numa_maps_private {
1477         struct proc_maps_private proc_maps;
1478         struct numa_maps md;
1479 };
1480
1481 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1482                         unsigned long nr_pages)
1483 {
1484         int count = page_mapcount(page);
1485
1486         md->pages += nr_pages;
1487         if (pte_dirty || PageDirty(page))
1488                 md->dirty += nr_pages;
1489
1490         if (PageSwapCache(page))
1491                 md->swapcache += nr_pages;
1492
1493         if (PageActive(page) || PageUnevictable(page))
1494                 md->active += nr_pages;
1495
1496         if (PageWriteback(page))
1497                 md->writeback += nr_pages;
1498
1499         if (PageAnon(page))
1500                 md->anon += nr_pages;
1501
1502         if (count > md->mapcount_max)
1503                 md->mapcount_max = count;
1504
1505         md->node[page_to_nid(page)] += nr_pages;
1506 }
1507
1508 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1509                 unsigned long addr)
1510 {
1511         struct page *page;
1512         int nid;
1513
1514         if (!pte_present(pte))
1515                 return NULL;
1516
1517         page = vm_normal_page(vma, addr, pte);
1518         if (!page)
1519                 return NULL;
1520
1521         if (PageReserved(page))
1522                 return NULL;
1523
1524         nid = page_to_nid(page);
1525         if (!node_isset(nid, node_states[N_MEMORY]))
1526                 return NULL;
1527
1528         return page;
1529 }
1530
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1533                                               struct vm_area_struct *vma,
1534                                               unsigned long addr)
1535 {
1536         struct page *page;
1537         int nid;
1538
1539         if (!pmd_present(pmd))
1540                 return NULL;
1541
1542         page = vm_normal_page_pmd(vma, addr, pmd);
1543         if (!page)
1544                 return NULL;
1545
1546         if (PageReserved(page))
1547                 return NULL;
1548
1549         nid = page_to_nid(page);
1550         if (!node_isset(nid, node_states[N_MEMORY]))
1551                 return NULL;
1552
1553         return page;
1554 }
1555 #endif
1556
1557 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1558                 unsigned long end, struct mm_walk *walk)
1559 {
1560         struct numa_maps *md = walk->private;
1561         struct vm_area_struct *vma = walk->vma;
1562         spinlock_t *ptl;
1563         pte_t *orig_pte;
1564         pte_t *pte;
1565
1566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567         ptl = pmd_trans_huge_lock(pmd, vma);
1568         if (ptl) {
1569                 struct page *page;
1570
1571                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1572                 if (page)
1573                         gather_stats(page, md, pmd_dirty(*pmd),
1574                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1575                 spin_unlock(ptl);
1576                 return 0;
1577         }
1578
1579         if (pmd_trans_unstable(pmd))
1580                 return 0;
1581 #endif
1582         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1583         do {
1584                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1585                 if (!page)
1586                         continue;
1587                 gather_stats(page, md, pte_dirty(*pte), 1);
1588
1589         } while (pte++, addr += PAGE_SIZE, addr != end);
1590         pte_unmap_unlock(orig_pte, ptl);
1591         return 0;
1592 }
1593 #ifdef CONFIG_HUGETLB_PAGE
1594 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1595                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1596 {
1597         pte_t huge_pte = huge_ptep_get(pte);
1598         struct numa_maps *md;
1599         struct page *page;
1600
1601         if (!pte_present(huge_pte))
1602                 return 0;
1603
1604         page = pte_page(huge_pte);
1605         if (!page)
1606                 return 0;
1607
1608         md = walk->private;
1609         gather_stats(page, md, pte_dirty(huge_pte), 1);
1610         return 0;
1611 }
1612
1613 #else
1614 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1615                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1616 {
1617         return 0;
1618 }
1619 #endif
1620
1621 /*
1622  * Display pages allocated per node and memory policy via /proc.
1623  */
1624 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1625 {
1626         struct numa_maps_private *numa_priv = m->private;
1627         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1628         struct vm_area_struct *vma = v;
1629         struct numa_maps *md = &numa_priv->md;
1630         struct file *file = vma->vm_file;
1631         struct mm_struct *mm = vma->vm_mm;
1632         struct mm_walk walk = {
1633                 .hugetlb_entry = gather_hugetlb_stats,
1634                 .pmd_entry = gather_pte_stats,
1635                 .private = md,
1636                 .mm = mm,
1637         };
1638         struct mempolicy *pol;
1639         char buffer[64];
1640         int nid;
1641
1642         if (!mm)
1643                 return 0;
1644
1645         /* Ensure we start with an empty set of numa_maps statistics. */
1646         memset(md, 0, sizeof(*md));
1647
1648         pol = __get_vma_policy(vma, vma->vm_start);
1649         if (pol) {
1650                 mpol_to_str(buffer, sizeof(buffer), pol);
1651                 mpol_cond_put(pol);
1652         } else {
1653                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1654         }
1655
1656         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1657
1658         if (file) {
1659                 seq_puts(m, " file=");
1660                 seq_file_path(m, file, "\n\t= ");
1661         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1662                 seq_puts(m, " heap");
1663         } else if (is_stack(proc_priv, vma)) {
1664                 seq_puts(m, " stack");
1665         }
1666
1667         if (is_vm_hugetlb_page(vma))
1668                 seq_puts(m, " huge");
1669
1670         /* mmap_sem is held by m_start */
1671         walk_page_vma(vma, &walk);
1672
1673         if (!md->pages)
1674                 goto out;
1675
1676         if (md->anon)
1677                 seq_printf(m, " anon=%lu", md->anon);
1678
1679         if (md->dirty)
1680                 seq_printf(m, " dirty=%lu", md->dirty);
1681
1682         if (md->pages != md->anon && md->pages != md->dirty)
1683                 seq_printf(m, " mapped=%lu", md->pages);
1684
1685         if (md->mapcount_max > 1)
1686                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1687
1688         if (md->swapcache)
1689                 seq_printf(m, " swapcache=%lu", md->swapcache);
1690
1691         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1692                 seq_printf(m, " active=%lu", md->active);
1693
1694         if (md->writeback)
1695                 seq_printf(m, " writeback=%lu", md->writeback);
1696
1697         for_each_node_state(nid, N_MEMORY)
1698                 if (md->node[nid])
1699                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1700
1701         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1702 out:
1703         seq_putc(m, '\n');
1704         m_cache_vma(m, vma);
1705         return 0;
1706 }
1707
1708 static int show_pid_numa_map(struct seq_file *m, void *v)
1709 {
1710         return show_numa_map(m, v, 1);
1711 }
1712
1713 static int show_tid_numa_map(struct seq_file *m, void *v)
1714 {
1715         return show_numa_map(m, v, 0);
1716 }
1717
1718 static const struct seq_operations proc_pid_numa_maps_op = {
1719         .start  = m_start,
1720         .next   = m_next,
1721         .stop   = m_stop,
1722         .show   = show_pid_numa_map,
1723 };
1724
1725 static const struct seq_operations proc_tid_numa_maps_op = {
1726         .start  = m_start,
1727         .next   = m_next,
1728         .stop   = m_stop,
1729         .show   = show_tid_numa_map,
1730 };
1731
1732 static int numa_maps_open(struct inode *inode, struct file *file,
1733                           const struct seq_operations *ops)
1734 {
1735         return proc_maps_open(inode, file, ops,
1736                                 sizeof(struct numa_maps_private));
1737 }
1738
1739 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1740 {
1741         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1742 }
1743
1744 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1745 {
1746         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1747 }
1748
1749 const struct file_operations proc_pid_numa_maps_operations = {
1750         .open           = pid_numa_maps_open,
1751         .read           = seq_read,
1752         .llseek         = seq_lseek,
1753         .release        = proc_map_release,
1754 };
1755
1756 const struct file_operations proc_tid_numa_maps_operations = {
1757         .open           = tid_numa_maps_open,
1758         .read           = seq_read,
1759         .llseek         = seq_lseek,
1760         .release        = proc_map_release,
1761 };
1762 #endif /* CONFIG_NUMA */