Merge branch 'timecounter-next'
[cascardo/linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC        0
69 #define VDS_POS_UNALLOC_SPACE_DESC      1
70 #define VDS_POS_LOGICAL_VOL_DESC        2
71 #define VDS_POS_PARTITION_DESC          3
72 #define VDS_POS_IMP_USE_VOL_DESC        4
73 #define VDS_POS_VOL_DESC_PTR            5
74 #define VDS_POS_TERMINATING_DESC        6
75 #define VDS_POS_LENGTH                  7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 #define VSD_FIRST_SECTOR_OFFSET         32768
80 #define VSD_MAX_SECTOR_OFFSET           0x800000
81
82 enum { UDF_MAX_LINKS = 0xffff };
83
84 /* These are the "meat" - everything else is stuffing */
85 static int udf_fill_super(struct super_block *, void *, int);
86 static void udf_put_super(struct super_block *);
87 static int udf_sync_fs(struct super_block *, int);
88 static int udf_remount_fs(struct super_block *, int *, char *);
89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91                             struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93                              struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct dentry *);
99
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102         struct logicalVolIntegrityDesc *lvid;
103         unsigned int partnum;
104         unsigned int offset;
105
106         if (!UDF_SB(sb)->s_lvid_bh)
107                 return NULL;
108         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109         partnum = le32_to_cpu(lvid->numOfPartitions);
110         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111              offsetof(struct logicalVolIntegrityDesc, impUse)) /
112              (2 * sizeof(uint32_t)) < partnum) {
113                 udf_err(sb, "Logical volume integrity descriptor corrupted "
114                         "(numOfPartitions = %u)!\n", partnum);
115                 return NULL;
116         }
117         /* The offset is to skip freeSpaceTable and sizeTable arrays */
118         offset = partnum * 2 * sizeof(uint32_t);
119         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124                       int flags, const char *dev_name, void *data)
125 {
126         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130         .owner          = THIS_MODULE,
131         .name           = "udf",
132         .mount          = udf_mount,
133         .kill_sb        = kill_block_super,
134         .fs_flags       = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142         struct udf_inode_info *ei;
143         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144         if (!ei)
145                 return NULL;
146
147         ei->i_unique = 0;
148         ei->i_lenExtents = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         init_rwsem(&ei->i_data_sem);
153         ei->cached_extent.lstart = -1;
154         spin_lock_init(&ei->i_extent_cache_lock);
155
156         return &ei->vfs_inode;
157 }
158
159 static void udf_i_callback(struct rcu_head *head)
160 {
161         struct inode *inode = container_of(head, struct inode, i_rcu);
162         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164
165 static void udf_destroy_inode(struct inode *inode)
166 {
167         call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169
170 static void init_once(void *foo)
171 {
172         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174         ei->i_ext.i_data = NULL;
175         inode_init_once(&ei->vfs_inode);
176 }
177
178 static int __init init_inodecache(void)
179 {
180         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181                                              sizeof(struct udf_inode_info),
182                                              0, (SLAB_RECLAIM_ACCOUNT |
183                                                  SLAB_MEM_SPREAD),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234         int err;
235
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242
243         return 0;
244
245 out:
246         destroy_inodecache();
247
248 out1:
249         return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273
274         sbi->s_partitions = count;
275         return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283                                                 nr_groups);
284
285         for (i = 0; i < nr_groups; i++)
286                 if (bitmap->s_block_bitmap[i])
287                         brelse(bitmap->s_block_bitmap[i]);
288
289         if (size <= PAGE_SIZE)
290                 kfree(bitmap);
291         else
292                 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297         int i;
298         struct udf_meta_data *mdata;
299
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301                 iput(map->s_uspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303                 iput(map->s_fspace.s_table);
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308         if (map->s_partition_type == UDF_SPARABLE_MAP15)
309                 for (i = 0; i < 4; i++)
310                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311         else if (map->s_partition_type == UDF_METADATA_MAP25) {
312                 mdata = &map->s_type_specific.s_metadata;
313                 iput(mdata->s_metadata_fe);
314                 mdata->s_metadata_fe = NULL;
315
316                 iput(mdata->s_mirror_fe);
317                 mdata->s_mirror_fe = NULL;
318
319                 iput(mdata->s_bitmap_fe);
320                 mdata->s_bitmap_fe = NULL;
321         }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326         struct udf_sb_info *sbi = UDF_SB(sb);
327         int i;
328         if (sbi->s_partmaps == NULL)
329                 return;
330         for (i = 0; i < sbi->s_partitions; i++)
331                 udf_free_partition(&sbi->s_partmaps[i]);
332         kfree(sbi->s_partmaps);
333         sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338         struct super_block *sb = root->d_sb;
339         struct udf_sb_info *sbi = UDF_SB(sb);
340
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342                 seq_puts(seq, ",nostrict");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346                 seq_puts(seq, ",unhide");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348                 seq_puts(seq, ",undelete");
349         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350                 seq_puts(seq, ",noadinicb");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352                 seq_puts(seq, ",shortad");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354                 seq_puts(seq, ",uid=forget");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356                 seq_puts(seq, ",uid=ignore");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358                 seq_puts(seq, ",gid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360                 seq_puts(seq, ",gid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365         if (sbi->s_umask != 0)
366                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367         if (sbi->s_fmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369         if (sbi->s_dmode != UDF_INVALID_MODE)
370                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372                 seq_printf(seq, ",session=%u", sbi->s_session);
373         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375         if (sbi->s_anchor != 0)
376                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377         /*
378          * volume, partition, fileset and rootdir seem to be ignored
379          * currently
380          */
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382                 seq_puts(seq, ",utf8");
383         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386         return 0;
387 }
388
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *      Parse mount options.
394  *
395  * DESCRIPTION
396  *      The following mount options are supported:
397  *
398  *      gid=            Set the default group.
399  *      umask=          Set the default umask.
400  *      mode=           Set the default file permissions.
401  *      dmode=          Set the default directory permissions.
402  *      uid=            Set the default user.
403  *      bs=             Set the block size.
404  *      unhide          Show otherwise hidden files.
405  *      undelete        Show deleted files in lists.
406  *      adinicb         Embed data in the inode (default)
407  *      noadinicb       Don't embed data in the inode
408  *      shortad         Use short ad's
409  *      longad          Use long ad's (default)
410  *      nostrict        Unset strict conformance
411  *      iocharset=      Set the NLS character set
412  *
413  *      The remaining are for debugging and disaster recovery:
414  *
415  *      novrs           Skip volume sequence recognition
416  *
417  *      The following expect a offset from 0.
418  *
419  *      session=        Set the CDROM session (default= last session)
420  *      anchor=         Override standard anchor location. (default= 256)
421  *      volume=         Override the VolumeDesc location. (unused)
422  *      partition=      Override the PartitionDesc location. (unused)
423  *      lastblock=      Set the last block of the filesystem/
424  *
425  *      The following expect a offset from the partition root.
426  *
427  *      fileset=        Override the fileset block location. (unused)
428  *      rootdir=        Override the root directory location. (unused)
429  *              WARNING: overriding the rootdir to a non-directory may
430  *              yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *      options         Pointer to mount options string.
434  *      uopts           Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *      <return>        1       Mount options parsed okay.
438  *      <return>        0       Error parsing mount options.
439  *
440  * HISTORY
441  *      July 1, 1997 - Andrew E. Mileski
442  *      Written, tested, and released.
443  */
444
445 enum {
446         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450         Opt_rootdir, Opt_utf8, Opt_iocharset,
451         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452         Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456         {Opt_novrs,     "novrs"},
457         {Opt_nostrict,  "nostrict"},
458         {Opt_bs,        "bs=%u"},
459         {Opt_unhide,    "unhide"},
460         {Opt_undelete,  "undelete"},
461         {Opt_noadinicb, "noadinicb"},
462         {Opt_adinicb,   "adinicb"},
463         {Opt_shortad,   "shortad"},
464         {Opt_longad,    "longad"},
465         {Opt_uforget,   "uid=forget"},
466         {Opt_uignore,   "uid=ignore"},
467         {Opt_gforget,   "gid=forget"},
468         {Opt_gignore,   "gid=ignore"},
469         {Opt_gid,       "gid=%u"},
470         {Opt_uid,       "uid=%u"},
471         {Opt_umask,     "umask=%o"},
472         {Opt_session,   "session=%u"},
473         {Opt_lastblock, "lastblock=%u"},
474         {Opt_anchor,    "anchor=%u"},
475         {Opt_volume,    "volume=%u"},
476         {Opt_partition, "partition=%u"},
477         {Opt_fileset,   "fileset=%u"},
478         {Opt_rootdir,   "rootdir=%u"},
479         {Opt_utf8,      "utf8"},
480         {Opt_iocharset, "iocharset=%s"},
481         {Opt_fmode,     "mode=%o"},
482         {Opt_dmode,     "dmode=%o"},
483         {Opt_err,       NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487                              bool remount)
488 {
489         char *p;
490         int option;
491
492         uopt->novrs = 0;
493         uopt->partition = 0xFFFF;
494         uopt->session = 0xFFFFFFFF;
495         uopt->lastblock = 0;
496         uopt->anchor = 0;
497         uopt->volume = 0xFFFFFFFF;
498         uopt->rootdir = 0xFFFFFFFF;
499         uopt->fileset = 0xFFFFFFFF;
500         uopt->nls_map = NULL;
501
502         if (!options)
503                 return 1;
504
505         while ((p = strsep(&options, ",")) != NULL) {
506                 substring_t args[MAX_OPT_ARGS];
507                 int token;
508                 unsigned n;
509                 if (!*p)
510                         continue;
511
512                 token = match_token(p, tokens, args);
513                 switch (token) {
514                 case Opt_novrs:
515                         uopt->novrs = 1;
516                         break;
517                 case Opt_bs:
518                         if (match_int(&args[0], &option))
519                                 return 0;
520                         n = option;
521                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522                                 return 0;
523                         uopt->blocksize = n;
524                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525                         break;
526                 case Opt_unhide:
527                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528                         break;
529                 case Opt_undelete:
530                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531                         break;
532                 case Opt_noadinicb:
533                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534                         break;
535                 case Opt_adinicb:
536                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537                         break;
538                 case Opt_shortad:
539                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540                         break;
541                 case Opt_longad:
542                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543                         break;
544                 case Opt_gid:
545                         if (match_int(args, &option))
546                                 return 0;
547                         uopt->gid = make_kgid(current_user_ns(), option);
548                         if (!gid_valid(uopt->gid))
549                                 return 0;
550                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
551                         break;
552                 case Opt_uid:
553                         if (match_int(args, &option))
554                                 return 0;
555                         uopt->uid = make_kuid(current_user_ns(), option);
556                         if (!uid_valid(uopt->uid))
557                                 return 0;
558                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
559                         break;
560                 case Opt_umask:
561                         if (match_octal(args, &option))
562                                 return 0;
563                         uopt->umask = option;
564                         break;
565                 case Opt_nostrict:
566                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567                         break;
568                 case Opt_session:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->session = option;
572                         if (!remount)
573                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574                         break;
575                 case Opt_lastblock:
576                         if (match_int(args, &option))
577                                 return 0;
578                         uopt->lastblock = option;
579                         if (!remount)
580                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581                         break;
582                 case Opt_anchor:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->anchor = option;
586                         break;
587                 case Opt_volume:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->volume = option;
591                         break;
592                 case Opt_partition:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->partition = option;
596                         break;
597                 case Opt_fileset:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->fileset = option;
601                         break;
602                 case Opt_rootdir:
603                         if (match_int(args, &option))
604                                 return 0;
605                         uopt->rootdir = option;
606                         break;
607                 case Opt_utf8:
608                         uopt->flags |= (1 << UDF_FLAG_UTF8);
609                         break;
610 #ifdef CONFIG_UDF_NLS
611                 case Opt_iocharset:
612                         uopt->nls_map = load_nls(args[0].from);
613                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614                         break;
615 #endif
616                 case Opt_uignore:
617                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618                         break;
619                 case Opt_uforget:
620                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621                         break;
622                 case Opt_gignore:
623                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624                         break;
625                 case Opt_gforget:
626                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627                         break;
628                 case Opt_fmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->fmode = option & 0777;
632                         break;
633                 case Opt_dmode:
634                         if (match_octal(args, &option))
635                                 return 0;
636                         uopt->dmode = option & 0777;
637                         break;
638                 default:
639                         pr_err("bad mount option \"%s\" or missing value\n", p);
640                         return 0;
641                 }
642         }
643         return 1;
644 }
645
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648         struct udf_options uopt;
649         struct udf_sb_info *sbi = UDF_SB(sb);
650         int error = 0;
651         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653         sync_filesystem(sb);
654         if (lvidiu) {
655                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657                         return -EACCES;
658         }
659
660         uopt.flags = sbi->s_flags;
661         uopt.uid   = sbi->s_uid;
662         uopt.gid   = sbi->s_gid;
663         uopt.umask = sbi->s_umask;
664         uopt.fmode = sbi->s_fmode;
665         uopt.dmode = sbi->s_dmode;
666
667         if (!udf_parse_options(options, &uopt, true))
668                 return -EINVAL;
669
670         write_lock(&sbi->s_cred_lock);
671         sbi->s_flags = uopt.flags;
672         sbi->s_uid   = uopt.uid;
673         sbi->s_gid   = uopt.gid;
674         sbi->s_umask = uopt.umask;
675         sbi->s_fmode = uopt.fmode;
676         sbi->s_dmode = uopt.dmode;
677         write_unlock(&sbi->s_cred_lock);
678
679         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680                 goto out_unlock;
681
682         if (*flags & MS_RDONLY)
683                 udf_close_lvid(sb);
684         else
685                 udf_open_lvid(sb);
686
687 out_unlock:
688         return error;
689 }
690
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695         struct volStructDesc *vsd = NULL;
696         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697         int sectorsize;
698         struct buffer_head *bh = NULL;
699         int nsr02 = 0;
700         int nsr03 = 0;
701         struct udf_sb_info *sbi;
702
703         sbi = UDF_SB(sb);
704         if (sb->s_blocksize < sizeof(struct volStructDesc))
705                 sectorsize = sizeof(struct volStructDesc);
706         else
707                 sectorsize = sb->s_blocksize;
708
709         sector += (sbi->s_session << sb->s_blocksize_bits);
710
711         udf_debug("Starting at sector %u (%ld byte sectors)\n",
712                   (unsigned int)(sector >> sb->s_blocksize_bits),
713                   sb->s_blocksize);
714         /* Process the sequence (if applicable). The hard limit on the sector
715          * offset is arbitrary, hopefully large enough so that all valid UDF
716          * filesystems will be recognised. There is no mention of an upper
717          * bound to the size of the volume recognition area in the standard.
718          *  The limit will prevent the code to read all the sectors of a
719          * specially crafted image (like a bluray disc full of CD001 sectors),
720          * potentially causing minutes or even hours of uninterruptible I/O
721          * activity. This actually happened with uninitialised SSD partitions
722          * (all 0xFF) before the check for the limit and all valid IDs were
723          * added */
724         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725              sector += sectorsize) {
726                 /* Read a block */
727                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728                 if (!bh)
729                         break;
730
731                 /* Look for ISO  descriptors */
732                 vsd = (struct volStructDesc *)(bh->b_data +
733                                               (sector & (sb->s_blocksize - 1)));
734
735                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736                                     VSD_STD_ID_LEN)) {
737                         switch (vsd->structType) {
738                         case 0:
739                                 udf_debug("ISO9660 Boot Record found\n");
740                                 break;
741                         case 1:
742                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743                                 break;
744                         case 2:
745                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746                                 break;
747                         case 3:
748                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749                                 break;
750                         case 255:
751                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752                                 break;
753                         default:
754                                 udf_debug("ISO9660 VRS (%u) found\n",
755                                           vsd->structType);
756                                 break;
757                         }
758                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759                                     VSD_STD_ID_LEN))
760                         ; /* nothing */
761                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762                                     VSD_STD_ID_LEN)) {
763                         brelse(bh);
764                         break;
765                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766                                     VSD_STD_ID_LEN))
767                         nsr02 = sector;
768                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769                                     VSD_STD_ID_LEN))
770                         nsr03 = sector;
771                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772                                     VSD_STD_ID_LEN))
773                         ; /* nothing */
774                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775                                     VSD_STD_ID_LEN))
776                         ; /* nothing */
777                 else {
778                         /* invalid id : end of volume recognition area */
779                         brelse(bh);
780                         break;
781                 }
782                 brelse(bh);
783         }
784
785         if (nsr03)
786                 return nsr03;
787         else if (nsr02)
788                 return nsr02;
789         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790                         VSD_FIRST_SECTOR_OFFSET)
791                 return -1;
792         else
793                 return 0;
794 }
795
796 static int udf_find_fileset(struct super_block *sb,
797                             struct kernel_lb_addr *fileset,
798                             struct kernel_lb_addr *root)
799 {
800         struct buffer_head *bh = NULL;
801         long lastblock;
802         uint16_t ident;
803         struct udf_sb_info *sbi;
804
805         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806             fileset->partitionReferenceNum != 0xFFFF) {
807                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809                 if (!bh) {
810                         return 1;
811                 } else if (ident != TAG_IDENT_FSD) {
812                         brelse(bh);
813                         return 1;
814                 }
815
816         }
817
818         sbi = UDF_SB(sb);
819         if (!bh) {
820                 /* Search backwards through the partitions */
821                 struct kernel_lb_addr newfileset;
822
823 /* --> cvg: FIXME - is it reasonable? */
824                 return 1;
825
826                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827                      (newfileset.partitionReferenceNum != 0xFFFF &&
828                       fileset->logicalBlockNum == 0xFFFFFFFF &&
829                       fileset->partitionReferenceNum == 0xFFFF);
830                      newfileset.partitionReferenceNum--) {
831                         lastblock = sbi->s_partmaps
832                                         [newfileset.partitionReferenceNum]
833                                                 .s_partition_len;
834                         newfileset.logicalBlockNum = 0;
835
836                         do {
837                                 bh = udf_read_ptagged(sb, &newfileset, 0,
838                                                       &ident);
839                                 if (!bh) {
840                                         newfileset.logicalBlockNum++;
841                                         continue;
842                                 }
843
844                                 switch (ident) {
845                                 case TAG_IDENT_SBD:
846                                 {
847                                         struct spaceBitmapDesc *sp;
848                                         sp = (struct spaceBitmapDesc *)
849                                                                 bh->b_data;
850                                         newfileset.logicalBlockNum += 1 +
851                                                 ((le32_to_cpu(sp->numOfBytes) +
852                                                   sizeof(struct spaceBitmapDesc)
853                                                   - 1) >> sb->s_blocksize_bits);
854                                         brelse(bh);
855                                         break;
856                                 }
857                                 case TAG_IDENT_FSD:
858                                         *fileset = newfileset;
859                                         break;
860                                 default:
861                                         newfileset.logicalBlockNum++;
862                                         brelse(bh);
863                                         bh = NULL;
864                                         break;
865                                 }
866                         } while (newfileset.logicalBlockNum < lastblock &&
867                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
868                                  fileset->partitionReferenceNum == 0xFFFF);
869                 }
870         }
871
872         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873              fileset->partitionReferenceNum != 0xFFFF) && bh) {
874                 udf_debug("Fileset at block=%d, partition=%d\n",
875                           fileset->logicalBlockNum,
876                           fileset->partitionReferenceNum);
877
878                 sbi->s_partition = fileset->partitionReferenceNum;
879                 udf_load_fileset(sb, bh, root);
880                 brelse(bh);
881                 return 0;
882         }
883         return 1;
884 }
885
886 /*
887  * Load primary Volume Descriptor Sequence
888  *
889  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890  * should be tried.
891  */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894         struct primaryVolDesc *pvoldesc;
895         struct ustr *instr, *outstr;
896         struct buffer_head *bh;
897         uint16_t ident;
898         int ret = -ENOMEM;
899
900         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901         if (!instr)
902                 return -ENOMEM;
903
904         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905         if (!outstr)
906                 goto out1;
907
908         bh = udf_read_tagged(sb, block, block, &ident);
909         if (!bh) {
910                 ret = -EAGAIN;
911                 goto out2;
912         }
913
914         if (ident != TAG_IDENT_PVD) {
915                 ret = -EIO;
916                 goto out_bh;
917         }
918
919         pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922                               pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929         }
930
931         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932                 if (udf_CS0toUTF8(outstr, instr)) {
933                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934                                 outstr->u_len > 31 ? 31 : outstr->u_len);
935                         udf_debug("volIdent[] = '%s'\n",
936                                   UDF_SB(sb)->s_volume_ident);
937                 }
938
939         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940                 if (udf_CS0toUTF8(outstr, instr))
941                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942
943         ret = 0;
944 out_bh:
945         brelse(bh);
946 out2:
947         kfree(outstr);
948 out1:
949         kfree(instr);
950         return ret;
951 }
952
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954                                         u32 meta_file_loc, u32 partition_num)
955 {
956         struct kernel_lb_addr addr;
957         struct inode *metadata_fe;
958
959         addr.logicalBlockNum = meta_file_loc;
960         addr.partitionReferenceNum = partition_num;
961
962         metadata_fe = udf_iget_special(sb, &addr);
963
964         if (IS_ERR(metadata_fe)) {
965                 udf_warn(sb, "metadata inode efe not found\n");
966                 return metadata_fe;
967         }
968         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970                 iput(metadata_fe);
971                 return ERR_PTR(-EIO);
972         }
973
974         return metadata_fe;
975 }
976
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979         struct udf_sb_info *sbi = UDF_SB(sb);
980         struct udf_part_map *map;
981         struct udf_meta_data *mdata;
982         struct kernel_lb_addr addr;
983         struct inode *fe;
984
985         map = &sbi->s_partmaps[partition];
986         mdata = &map->s_type_specific.s_metadata;
987
988         /* metadata address */
989         udf_debug("Metadata file location: block = %d part = %d\n",
990                   mdata->s_meta_file_loc, map->s_partition_num);
991
992         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993                                          map->s_partition_num);
994         if (IS_ERR(fe)) {
995                 /* mirror file entry */
996                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
997                           mdata->s_mirror_file_loc, map->s_partition_num);
998
999                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000                                                  map->s_partition_num);
1001
1002                 if (IS_ERR(fe)) {
1003                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004                         return PTR_ERR(fe);
1005                 }
1006                 mdata->s_mirror_fe = fe;
1007         } else
1008                 mdata->s_metadata_fe = fe;
1009
1010
1011         /*
1012          * bitmap file entry
1013          * Note:
1014          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015         */
1016         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018                 addr.partitionReferenceNum = map->s_partition_num;
1019
1020                 udf_debug("Bitmap file location: block = %d part = %d\n",
1021                           addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023                 fe = udf_iget_special(sb, &addr);
1024                 if (IS_ERR(fe)) {
1025                         if (sb->s_flags & MS_RDONLY)
1026                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027                         else {
1028                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029                                 return PTR_ERR(fe);
1030                         }
1031                 } else
1032                         mdata->s_bitmap_fe = fe;
1033         }
1034
1035         udf_debug("udf_load_metadata_files Ok\n");
1036         return 0;
1037 }
1038
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040                              struct kernel_lb_addr *root)
1041 {
1042         struct fileSetDesc *fset;
1043
1044         fset = (struct fileSetDesc *)bh->b_data;
1045
1046         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050         udf_debug("Rootdir at block=%d, partition=%d\n",
1051                   root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057         return DIV_ROUND_UP(map->s_partition_len +
1058                             (sizeof(struct spaceBitmapDesc) << 3),
1059                             sb->s_blocksize * 8);
1060 }
1061
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064         struct udf_bitmap *bitmap;
1065         int nr_groups;
1066         int size;
1067
1068         nr_groups = udf_compute_nr_groups(sb, index);
1069         size = sizeof(struct udf_bitmap) +
1070                 (sizeof(struct buffer_head *) * nr_groups);
1071
1072         if (size <= PAGE_SIZE)
1073                 bitmap = kzalloc(size, GFP_KERNEL);
1074         else
1075                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077         if (bitmap == NULL)
1078                 return NULL;
1079
1080         bitmap->s_nr_groups = nr_groups;
1081         return bitmap;
1082 }
1083
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085                 struct partitionDesc *p, int p_index)
1086 {
1087         struct udf_part_map *map;
1088         struct udf_sb_info *sbi = UDF_SB(sb);
1089         struct partitionHeaderDesc *phd;
1090
1091         map = &sbi->s_partmaps[p_index];
1092
1093         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106                   p_index, map->s_partition_type,
1107                   map->s_partition_root, map->s_partition_len);
1108
1109         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111                 return 0;
1112
1113         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114         if (phd->unallocSpaceTable.extLength) {
1115                 struct kernel_lb_addr loc = {
1116                         .logicalBlockNum = le32_to_cpu(
1117                                 phd->unallocSpaceTable.extPosition),
1118                         .partitionReferenceNum = p_index,
1119                 };
1120                 struct inode *inode;
1121
1122                 inode = udf_iget_special(sb, &loc);
1123                 if (IS_ERR(inode)) {
1124                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125                                   p_index);
1126                         return PTR_ERR(inode);
1127                 }
1128                 map->s_uspace.s_table = inode;
1129                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131                           p_index, map->s_uspace.s_table->i_ino);
1132         }
1133
1134         if (phd->unallocSpaceBitmap.extLength) {
1135                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136                 if (!bitmap)
1137                         return -ENOMEM;
1138                 map->s_uspace.s_bitmap = bitmap;
1139                 bitmap->s_extPosition = le32_to_cpu(
1140                                 phd->unallocSpaceBitmap.extPosition);
1141                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143                           p_index, bitmap->s_extPosition);
1144         }
1145
1146         if (phd->partitionIntegrityTable.extLength)
1147                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149         if (phd->freedSpaceTable.extLength) {
1150                 struct kernel_lb_addr loc = {
1151                         .logicalBlockNum = le32_to_cpu(
1152                                 phd->freedSpaceTable.extPosition),
1153                         .partitionReferenceNum = p_index,
1154                 };
1155                 struct inode *inode;
1156
1157                 inode = udf_iget_special(sb, &loc);
1158                 if (IS_ERR(inode)) {
1159                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1160                                   p_index);
1161                         return PTR_ERR(inode);
1162                 }
1163                 map->s_fspace.s_table = inode;
1164                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166                           p_index, map->s_fspace.s_table->i_ino);
1167         }
1168
1169         if (phd->freedSpaceBitmap.extLength) {
1170                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171                 if (!bitmap)
1172                         return -ENOMEM;
1173                 map->s_fspace.s_bitmap = bitmap;
1174                 bitmap->s_extPosition = le32_to_cpu(
1175                                 phd->freedSpaceBitmap.extPosition);
1176                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178                           p_index, bitmap->s_extPosition);
1179         }
1180         return 0;
1181 }
1182
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184                                int type1_index, sector_t start_block)
1185 {
1186         struct udf_sb_info *sbi = UDF_SB(sb);
1187         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188         sector_t vat_block;
1189         struct kernel_lb_addr ino;
1190         struct inode *inode;
1191
1192         /*
1193          * VAT file entry is in the last recorded block. Some broken disks have
1194          * it a few blocks before so try a bit harder...
1195          */
1196         ino.partitionReferenceNum = type1_index;
1197         for (vat_block = start_block;
1198              vat_block >= map->s_partition_root &&
1199              vat_block >= start_block - 3; vat_block--) {
1200                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1201                 inode = udf_iget_special(sb, &ino);
1202                 if (!IS_ERR(inode)) {
1203                         sbi->s_vat_inode = inode;
1204                         break;
1205                 }
1206         }
1207 }
1208
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211         struct udf_sb_info *sbi = UDF_SB(sb);
1212         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213         struct buffer_head *bh = NULL;
1214         struct udf_inode_info *vati;
1215         uint32_t pos;
1216         struct virtualAllocationTable20 *vat20;
1217         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220         if (!sbi->s_vat_inode &&
1221             sbi->s_last_block != blocks - 1) {
1222                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223                           (unsigned long)sbi->s_last_block,
1224                           (unsigned long)blocks - 1);
1225                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226         }
1227         if (!sbi->s_vat_inode)
1228                 return -EIO;
1229
1230         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231                 map->s_type_specific.s_virtual.s_start_offset = 0;
1232                 map->s_type_specific.s_virtual.s_num_entries =
1233                         (sbi->s_vat_inode->i_size - 36) >> 2;
1234         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235                 vati = UDF_I(sbi->s_vat_inode);
1236                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237                         pos = udf_block_map(sbi->s_vat_inode, 0);
1238                         bh = sb_bread(sb, pos);
1239                         if (!bh)
1240                                 return -EIO;
1241                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242                 } else {
1243                         vat20 = (struct virtualAllocationTable20 *)
1244                                                         vati->i_ext.i_data;
1245                 }
1246
1247                 map->s_type_specific.s_virtual.s_start_offset =
1248                         le16_to_cpu(vat20->lengthHeader);
1249                 map->s_type_specific.s_virtual.s_num_entries =
1250                         (sbi->s_vat_inode->i_size -
1251                                 map->s_type_specific.s_virtual.
1252                                         s_start_offset) >> 2;
1253                 brelse(bh);
1254         }
1255         return 0;
1256 }
1257
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266         struct buffer_head *bh;
1267         struct partitionDesc *p;
1268         struct udf_part_map *map;
1269         struct udf_sb_info *sbi = UDF_SB(sb);
1270         int i, type1_idx;
1271         uint16_t partitionNumber;
1272         uint16_t ident;
1273         int ret;
1274
1275         bh = udf_read_tagged(sb, block, block, &ident);
1276         if (!bh)
1277                 return -EAGAIN;
1278         if (ident != TAG_IDENT_PD) {
1279                 ret = 0;
1280                 goto out_bh;
1281         }
1282
1283         p = (struct partitionDesc *)bh->b_data;
1284         partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1287         for (i = 0; i < sbi->s_partitions; i++) {
1288                 map = &sbi->s_partmaps[i];
1289                 udf_debug("Searching map: (%d == %d)\n",
1290                           map->s_partition_num, partitionNumber);
1291                 if (map->s_partition_num == partitionNumber &&
1292                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293                      map->s_partition_type == UDF_SPARABLE_MAP15))
1294                         break;
1295         }
1296
1297         if (i >= sbi->s_partitions) {
1298                 udf_debug("Partition (%d) not found in partition map\n",
1299                           partitionNumber);
1300                 ret = 0;
1301                 goto out_bh;
1302         }
1303
1304         ret = udf_fill_partdesc_info(sb, p, i);
1305         if (ret < 0)
1306                 goto out_bh;
1307
1308         /*
1309          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310          * PHYSICAL partitions are already set up
1311          */
1312         type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314         map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316         for (i = 0; i < sbi->s_partitions; i++) {
1317                 map = &sbi->s_partmaps[i];
1318
1319                 if (map->s_partition_num == partitionNumber &&
1320                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322                      map->s_partition_type == UDF_METADATA_MAP25))
1323                         break;
1324         }
1325
1326         if (i >= sbi->s_partitions) {
1327                 ret = 0;
1328                 goto out_bh;
1329         }
1330
1331         ret = udf_fill_partdesc_info(sb, p, i);
1332         if (ret < 0)
1333                 goto out_bh;
1334
1335         if (map->s_partition_type == UDF_METADATA_MAP25) {
1336                 ret = udf_load_metadata_files(sb, i);
1337                 if (ret < 0) {
1338                         udf_err(sb, "error loading MetaData partition map %d\n",
1339                                 i);
1340                         goto out_bh;
1341                 }
1342         } else {
1343                 /*
1344                  * If we have a partition with virtual map, we don't handle
1345                  * writing to it (we overwrite blocks instead of relocating
1346                  * them).
1347                  */
1348                 if (!(sb->s_flags & MS_RDONLY)) {
1349                         ret = -EACCES;
1350                         goto out_bh;
1351                 }
1352                 ret = udf_load_vat(sb, i, type1_idx);
1353                 if (ret < 0)
1354                         goto out_bh;
1355         }
1356         ret = 0;
1357 out_bh:
1358         /* In case loading failed, we handle cleanup in udf_fill_super */
1359         brelse(bh);
1360         return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364                                  struct udf_part_map *map,
1365                                  struct sparablePartitionMap *spm)
1366 {
1367         uint32_t loc;
1368         uint16_t ident;
1369         struct sparingTable *st;
1370         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371         int i;
1372         struct buffer_head *bh;
1373
1374         map->s_partition_type = UDF_SPARABLE_MAP15;
1375         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376         if (!is_power_of_2(sdata->s_packet_len)) {
1377                 udf_err(sb, "error loading logical volume descriptor: "
1378                         "Invalid packet length %u\n",
1379                         (unsigned)sdata->s_packet_len);
1380                 return -EIO;
1381         }
1382         if (spm->numSparingTables > 4) {
1383                 udf_err(sb, "error loading logical volume descriptor: "
1384                         "Too many sparing tables (%d)\n",
1385                         (int)spm->numSparingTables);
1386                 return -EIO;
1387         }
1388
1389         for (i = 0; i < spm->numSparingTables; i++) {
1390                 loc = le32_to_cpu(spm->locSparingTable[i]);
1391                 bh = udf_read_tagged(sb, loc, loc, &ident);
1392                 if (!bh)
1393                         continue;
1394
1395                 st = (struct sparingTable *)bh->b_data;
1396                 if (ident != 0 ||
1397                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398                             strlen(UDF_ID_SPARING)) ||
1399                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400                                                         sb->s_blocksize) {
1401                         brelse(bh);
1402                         continue;
1403                 }
1404
1405                 sdata->s_spar_map[i] = bh;
1406         }
1407         map->s_partition_func = udf_get_pblock_spar15;
1408         return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412                                struct kernel_lb_addr *fileset)
1413 {
1414         struct logicalVolDesc *lvd;
1415         int i, offset;
1416         uint8_t type;
1417         struct udf_sb_info *sbi = UDF_SB(sb);
1418         struct genericPartitionMap *gpm;
1419         uint16_t ident;
1420         struct buffer_head *bh;
1421         unsigned int table_len;
1422         int ret;
1423
1424         bh = udf_read_tagged(sb, block, block, &ident);
1425         if (!bh)
1426                 return -EAGAIN;
1427         BUG_ON(ident != TAG_IDENT_LVD);
1428         lvd = (struct logicalVolDesc *)bh->b_data;
1429         table_len = le32_to_cpu(lvd->mapTableLength);
1430         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431                 udf_err(sb, "error loading logical volume descriptor: "
1432                         "Partition table too long (%u > %lu)\n", table_len,
1433                         sb->s_blocksize - sizeof(*lvd));
1434                 ret = -EIO;
1435                 goto out_bh;
1436         }
1437
1438         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439         if (ret)
1440                 goto out_bh;
1441
1442         for (i = 0, offset = 0;
1443              i < sbi->s_partitions && offset < table_len;
1444              i++, offset += gpm->partitionMapLength) {
1445                 struct udf_part_map *map = &sbi->s_partmaps[i];
1446                 gpm = (struct genericPartitionMap *)
1447                                 &(lvd->partitionMaps[offset]);
1448                 type = gpm->partitionMapType;
1449                 if (type == 1) {
1450                         struct genericPartitionMap1 *gpm1 =
1451                                 (struct genericPartitionMap1 *)gpm;
1452                         map->s_partition_type = UDF_TYPE1_MAP15;
1453                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455                         map->s_partition_func = NULL;
1456                 } else if (type == 2) {
1457                         struct udfPartitionMap2 *upm2 =
1458                                                 (struct udfPartitionMap2 *)gpm;
1459                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460                                                 strlen(UDF_ID_VIRTUAL))) {
1461                                 u16 suf =
1462                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1463                                                         identSuffix)[0]);
1464                                 if (suf < 0x0200) {
1465                                         map->s_partition_type =
1466                                                         UDF_VIRTUAL_MAP15;
1467                                         map->s_partition_func =
1468                                                         udf_get_pblock_virt15;
1469                                 } else {
1470                                         map->s_partition_type =
1471                                                         UDF_VIRTUAL_MAP20;
1472                                         map->s_partition_func =
1473                                                         udf_get_pblock_virt20;
1474                                 }
1475                         } else if (!strncmp(upm2->partIdent.ident,
1476                                                 UDF_ID_SPARABLE,
1477                                                 strlen(UDF_ID_SPARABLE))) {
1478                                 ret = udf_load_sparable_map(sb, map,
1479                                         (struct sparablePartitionMap *)gpm);
1480                                 if (ret < 0)
1481                                         goto out_bh;
1482                         } else if (!strncmp(upm2->partIdent.ident,
1483                                                 UDF_ID_METADATA,
1484                                                 strlen(UDF_ID_METADATA))) {
1485                                 struct udf_meta_data *mdata =
1486                                         &map->s_type_specific.s_metadata;
1487                                 struct metadataPartitionMap *mdm =
1488                                                 (struct metadataPartitionMap *)
1489                                                 &(lvd->partitionMaps[offset]);
1490                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491                                           i, type, UDF_ID_METADATA);
1492
1493                                 map->s_partition_type = UDF_METADATA_MAP25;
1494                                 map->s_partition_func = udf_get_pblock_meta25;
1495
1496                                 mdata->s_meta_file_loc   =
1497                                         le32_to_cpu(mdm->metadataFileLoc);
1498                                 mdata->s_mirror_file_loc =
1499                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1500                                 mdata->s_bitmap_file_loc =
1501                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1502                                 mdata->s_alloc_unit_size =
1503                                         le32_to_cpu(mdm->allocUnitSize);
1504                                 mdata->s_align_unit_size =
1505                                         le16_to_cpu(mdm->alignUnitSize);
1506                                 if (mdm->flags & 0x01)
1507                                         mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509                                 udf_debug("Metadata Ident suffix=0x%x\n",
1510                                           le16_to_cpu(*(__le16 *)
1511                                                       mdm->partIdent.identSuffix));
1512                                 udf_debug("Metadata part num=%d\n",
1513                                           le16_to_cpu(mdm->partitionNum));
1514                                 udf_debug("Metadata part alloc unit size=%d\n",
1515                                           le32_to_cpu(mdm->allocUnitSize));
1516                                 udf_debug("Metadata file loc=%d\n",
1517                                           le32_to_cpu(mdm->metadataFileLoc));
1518                                 udf_debug("Mirror file loc=%d\n",
1519                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1520                                 udf_debug("Bitmap file loc=%d\n",
1521                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1522                                 udf_debug("Flags: %d %d\n",
1523                                           mdata->s_flags, mdm->flags);
1524                         } else {
1525                                 udf_debug("Unknown ident: %s\n",
1526                                           upm2->partIdent.ident);
1527                                 continue;
1528                         }
1529                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531                 }
1532                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533                           i, map->s_partition_num, type, map->s_volumeseqnum);
1534         }
1535
1536         if (fileset) {
1537                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539                 *fileset = lelb_to_cpu(la->extLocation);
1540                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541                           fileset->logicalBlockNum,
1542                           fileset->partitionReferenceNum);
1543         }
1544         if (lvd->integritySeqExt.extLength)
1545                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546         ret = 0;
1547 out_bh:
1548         brelse(bh);
1549         return ret;
1550 }
1551
1552 /*
1553  * udf_load_logicalvolint
1554  *
1555  */
1556 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1557 {
1558         struct buffer_head *bh = NULL;
1559         uint16_t ident;
1560         struct udf_sb_info *sbi = UDF_SB(sb);
1561         struct logicalVolIntegrityDesc *lvid;
1562
1563         while (loc.extLength > 0 &&
1564                (bh = udf_read_tagged(sb, loc.extLocation,
1565                                      loc.extLocation, &ident)) &&
1566                ident == TAG_IDENT_LVID) {
1567                 sbi->s_lvid_bh = bh;
1568                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1569
1570                 if (lvid->nextIntegrityExt.extLength)
1571                         udf_load_logicalvolint(sb,
1572                                 leea_to_cpu(lvid->nextIntegrityExt));
1573
1574                 if (sbi->s_lvid_bh != bh)
1575                         brelse(bh);
1576                 loc.extLength -= sb->s_blocksize;
1577                 loc.extLocation++;
1578         }
1579         if (sbi->s_lvid_bh != bh)
1580                 brelse(bh);
1581 }
1582
1583 /*
1584  * Process a main/reserve volume descriptor sequence.
1585  *   @block             First block of first extent of the sequence.
1586  *   @lastblock         Lastblock of first extent of the sequence.
1587  *   @fileset           There we store extent containing root fileset
1588  *
1589  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1590  * sequence
1591  */
1592 static noinline int udf_process_sequence(
1593                 struct super_block *sb,
1594                 sector_t block, sector_t lastblock,
1595                 struct kernel_lb_addr *fileset)
1596 {
1597         struct buffer_head *bh = NULL;
1598         struct udf_vds_record vds[VDS_POS_LENGTH];
1599         struct udf_vds_record *curr;
1600         struct generic_desc *gd;
1601         struct volDescPtr *vdp;
1602         int done = 0;
1603         uint32_t vdsn;
1604         uint16_t ident;
1605         long next_s = 0, next_e = 0;
1606         int ret;
1607
1608         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1609
1610         /*
1611          * Read the main descriptor sequence and find which descriptors
1612          * are in it.
1613          */
1614         for (; (!done && block <= lastblock); block++) {
1615
1616                 bh = udf_read_tagged(sb, block, block, &ident);
1617                 if (!bh) {
1618                         udf_err(sb,
1619                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1620                                 (unsigned long long)block);
1621                         return -EAGAIN;
1622                 }
1623
1624                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1625                 gd = (struct generic_desc *)bh->b_data;
1626                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1627                 switch (ident) {
1628                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1629                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1630                         if (vdsn >= curr->volDescSeqNum) {
1631                                 curr->volDescSeqNum = vdsn;
1632                                 curr->block = block;
1633                         }
1634                         break;
1635                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1636                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1637                         if (vdsn >= curr->volDescSeqNum) {
1638                                 curr->volDescSeqNum = vdsn;
1639                                 curr->block = block;
1640
1641                                 vdp = (struct volDescPtr *)bh->b_data;
1642                                 next_s = le32_to_cpu(
1643                                         vdp->nextVolDescSeqExt.extLocation);
1644                                 next_e = le32_to_cpu(
1645                                         vdp->nextVolDescSeqExt.extLength);
1646                                 next_e = next_e >> sb->s_blocksize_bits;
1647                                 next_e += next_s;
1648                         }
1649                         break;
1650                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1651                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1652                         if (vdsn >= curr->volDescSeqNum) {
1653                                 curr->volDescSeqNum = vdsn;
1654                                 curr->block = block;
1655                         }
1656                         break;
1657                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1658                         curr = &vds[VDS_POS_PARTITION_DESC];
1659                         if (!curr->block)
1660                                 curr->block = block;
1661                         break;
1662                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1664                         if (vdsn >= curr->volDescSeqNum) {
1665                                 curr->volDescSeqNum = vdsn;
1666                                 curr->block = block;
1667                         }
1668                         break;
1669                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1670                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1671                         if (vdsn >= curr->volDescSeqNum) {
1672                                 curr->volDescSeqNum = vdsn;
1673                                 curr->block = block;
1674                         }
1675                         break;
1676                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1677                         vds[VDS_POS_TERMINATING_DESC].block = block;
1678                         if (next_e) {
1679                                 block = next_s;
1680                                 lastblock = next_e;
1681                                 next_s = next_e = 0;
1682                         } else
1683                                 done = 1;
1684                         break;
1685                 }
1686                 brelse(bh);
1687         }
1688         /*
1689          * Now read interesting descriptors again and process them
1690          * in a suitable order
1691          */
1692         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1693                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1694                 return -EAGAIN;
1695         }
1696         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1697         if (ret < 0)
1698                 return ret;
1699
1700         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1701                 ret = udf_load_logicalvol(sb,
1702                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1703                                           fileset);
1704                 if (ret < 0)
1705                         return ret;
1706         }
1707
1708         if (vds[VDS_POS_PARTITION_DESC].block) {
1709                 /*
1710                  * We rescan the whole descriptor sequence to find
1711                  * partition descriptor blocks and process them.
1712                  */
1713                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1714                      block < vds[VDS_POS_TERMINATING_DESC].block;
1715                      block++) {
1716                         ret = udf_load_partdesc(sb, block);
1717                         if (ret < 0)
1718                                 return ret;
1719                 }
1720         }
1721
1722         return 0;
1723 }
1724
1725 /*
1726  * Load Volume Descriptor Sequence described by anchor in bh
1727  *
1728  * Returns <0 on error, 0 on success
1729  */
1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731                              struct kernel_lb_addr *fileset)
1732 {
1733         struct anchorVolDescPtr *anchor;
1734         sector_t main_s, main_e, reserve_s, reserve_e;
1735         int ret;
1736
1737         anchor = (struct anchorVolDescPtr *)bh->b_data;
1738
1739         /* Locate the main sequence */
1740         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742         main_e = main_e >> sb->s_blocksize_bits;
1743         main_e += main_s;
1744
1745         /* Locate the reserve sequence */
1746         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748         reserve_e = reserve_e >> sb->s_blocksize_bits;
1749         reserve_e += reserve_s;
1750
1751         /* Process the main & reserve sequences */
1752         /* responsible for finding the PartitionDesc(s) */
1753         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754         if (ret != -EAGAIN)
1755                 return ret;
1756         udf_sb_free_partitions(sb);
1757         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758         if (ret < 0) {
1759                 udf_sb_free_partitions(sb);
1760                 /* No sequence was OK, return -EIO */
1761                 if (ret == -EAGAIN)
1762                         ret = -EIO;
1763         }
1764         return ret;
1765 }
1766
1767 /*
1768  * Check whether there is an anchor block in the given block and
1769  * load Volume Descriptor Sequence if so.
1770  *
1771  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772  * block
1773  */
1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775                                   struct kernel_lb_addr *fileset)
1776 {
1777         struct buffer_head *bh;
1778         uint16_t ident;
1779         int ret;
1780
1781         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782             udf_fixed_to_variable(block) >=
1783             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1784                 return -EAGAIN;
1785
1786         bh = udf_read_tagged(sb, block, block, &ident);
1787         if (!bh)
1788                 return -EAGAIN;
1789         if (ident != TAG_IDENT_AVDP) {
1790                 brelse(bh);
1791                 return -EAGAIN;
1792         }
1793         ret = udf_load_sequence(sb, bh, fileset);
1794         brelse(bh);
1795         return ret;
1796 }
1797
1798 /*
1799  * Search for an anchor volume descriptor pointer.
1800  *
1801  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802  * of anchors.
1803  */
1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805                             struct kernel_lb_addr *fileset)
1806 {
1807         sector_t last[6];
1808         int i;
1809         struct udf_sb_info *sbi = UDF_SB(sb);
1810         int last_count = 0;
1811         int ret;
1812
1813         /* First try user provided anchor */
1814         if (sbi->s_anchor) {
1815                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816                 if (ret != -EAGAIN)
1817                         return ret;
1818         }
1819         /*
1820          * according to spec, anchor is in either:
1821          *     block 256
1822          *     lastblock-256
1823          *     lastblock
1824          *  however, if the disc isn't closed, it could be 512.
1825          */
1826         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827         if (ret != -EAGAIN)
1828                 return ret;
1829         /*
1830          * The trouble is which block is the last one. Drives often misreport
1831          * this so we try various possibilities.
1832          */
1833         last[last_count++] = *lastblock;
1834         if (*lastblock >= 1)
1835                 last[last_count++] = *lastblock - 1;
1836         last[last_count++] = *lastblock + 1;
1837         if (*lastblock >= 2)
1838                 last[last_count++] = *lastblock - 2;
1839         if (*lastblock >= 150)
1840                 last[last_count++] = *lastblock - 150;
1841         if (*lastblock >= 152)
1842                 last[last_count++] = *lastblock - 152;
1843
1844         for (i = 0; i < last_count; i++) {
1845                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1846                                 sb->s_blocksize_bits)
1847                         continue;
1848                 ret = udf_check_anchor_block(sb, last[i], fileset);
1849                 if (ret != -EAGAIN) {
1850                         if (!ret)
1851                                 *lastblock = last[i];
1852                         return ret;
1853                 }
1854                 if (last[i] < 256)
1855                         continue;
1856                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857                 if (ret != -EAGAIN) {
1858                         if (!ret)
1859                                 *lastblock = last[i];
1860                         return ret;
1861                 }
1862         }
1863
1864         /* Finally try block 512 in case media is open */
1865         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866 }
1867
1868 /*
1869  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870  * area specified by it. The function expects sbi->s_lastblock to be the last
1871  * block on the media.
1872  *
1873  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874  * was not found.
1875  */
1876 static int udf_find_anchor(struct super_block *sb,
1877                            struct kernel_lb_addr *fileset)
1878 {
1879         struct udf_sb_info *sbi = UDF_SB(sb);
1880         sector_t lastblock = sbi->s_last_block;
1881         int ret;
1882
1883         ret = udf_scan_anchors(sb, &lastblock, fileset);
1884         if (ret != -EAGAIN)
1885                 goto out;
1886
1887         /* No anchor found? Try VARCONV conversion of block numbers */
1888         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890         /* Firstly, we try to not convert number of the last block */
1891         ret = udf_scan_anchors(sb, &lastblock, fileset);
1892         if (ret != -EAGAIN)
1893                 goto out;
1894
1895         lastblock = sbi->s_last_block;
1896         /* Secondly, we try with converted number of the last block */
1897         ret = udf_scan_anchors(sb, &lastblock, fileset);
1898         if (ret < 0) {
1899                 /* VARCONV didn't help. Clear it. */
1900                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901         }
1902 out:
1903         if (ret == 0)
1904                 sbi->s_last_block = lastblock;
1905         return ret;
1906 }
1907
1908 /*
1909  * Check Volume Structure Descriptor, find Anchor block and load Volume
1910  * Descriptor Sequence.
1911  *
1912  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913  * block was not found.
1914  */
1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916                         int silent, struct kernel_lb_addr *fileset)
1917 {
1918         struct udf_sb_info *sbi = UDF_SB(sb);
1919         loff_t nsr_off;
1920         int ret;
1921
1922         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923                 if (!silent)
1924                         udf_warn(sb, "Bad block size\n");
1925                 return -EINVAL;
1926         }
1927         sbi->s_last_block = uopt->lastblock;
1928         if (!uopt->novrs) {
1929                 /* Check that it is NSR02 compliant */
1930                 nsr_off = udf_check_vsd(sb);
1931                 if (!nsr_off) {
1932                         if (!silent)
1933                                 udf_warn(sb, "No VRS found\n");
1934                         return 0;
1935                 }
1936                 if (nsr_off == -1)
1937                         udf_debug("Failed to read sector at offset %d. "
1938                                   "Assuming open disc. Skipping validity "
1939                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1940                 if (!sbi->s_last_block)
1941                         sbi->s_last_block = udf_get_last_block(sb);
1942         } else {
1943                 udf_debug("Validity check skipped because of novrs option\n");
1944         }
1945
1946         /* Look for anchor block and load Volume Descriptor Sequence */
1947         sbi->s_anchor = uopt->anchor;
1948         ret = udf_find_anchor(sb, fileset);
1949         if (ret < 0) {
1950                 if (!silent && ret == -EAGAIN)
1951                         udf_warn(sb, "No anchor found\n");
1952                 return ret;
1953         }
1954         return 0;
1955 }
1956
1957 static void udf_open_lvid(struct super_block *sb)
1958 {
1959         struct udf_sb_info *sbi = UDF_SB(sb);
1960         struct buffer_head *bh = sbi->s_lvid_bh;
1961         struct logicalVolIntegrityDesc *lvid;
1962         struct logicalVolIntegrityDescImpUse *lvidiu;
1963
1964         if (!bh)
1965                 return;
1966         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1967         lvidiu = udf_sb_lvidiu(sb);
1968         if (!lvidiu)
1969                 return;
1970
1971         mutex_lock(&sbi->s_alloc_mutex);
1972         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1973         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1974         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1975                                 CURRENT_TIME);
1976         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1977
1978         lvid->descTag.descCRC = cpu_to_le16(
1979                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1980                         le16_to_cpu(lvid->descTag.descCRCLength)));
1981
1982         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1983         mark_buffer_dirty(bh);
1984         sbi->s_lvid_dirty = 0;
1985         mutex_unlock(&sbi->s_alloc_mutex);
1986         /* Make opening of filesystem visible on the media immediately */
1987         sync_dirty_buffer(bh);
1988 }
1989
1990 static void udf_close_lvid(struct super_block *sb)
1991 {
1992         struct udf_sb_info *sbi = UDF_SB(sb);
1993         struct buffer_head *bh = sbi->s_lvid_bh;
1994         struct logicalVolIntegrityDesc *lvid;
1995         struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997         if (!bh)
1998                 return;
1999         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000         lvidiu = udf_sb_lvidiu(sb);
2001         if (!lvidiu)
2002                 return;
2003
2004         mutex_lock(&sbi->s_alloc_mutex);
2005         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2008         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2009                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2010         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2011                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2012         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2013                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2014         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2015
2016         lvid->descTag.descCRC = cpu_to_le16(
2017                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2018                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2019
2020         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2021         /*
2022          * We set buffer uptodate unconditionally here to avoid spurious
2023          * warnings from mark_buffer_dirty() when previous EIO has marked
2024          * the buffer as !uptodate
2025          */
2026         set_buffer_uptodate(bh);
2027         mark_buffer_dirty(bh);
2028         sbi->s_lvid_dirty = 0;
2029         mutex_unlock(&sbi->s_alloc_mutex);
2030         /* Make closing of filesystem visible on the media immediately */
2031         sync_dirty_buffer(bh);
2032 }
2033
2034 u64 lvid_get_unique_id(struct super_block *sb)
2035 {
2036         struct buffer_head *bh;
2037         struct udf_sb_info *sbi = UDF_SB(sb);
2038         struct logicalVolIntegrityDesc *lvid;
2039         struct logicalVolHeaderDesc *lvhd;
2040         u64 uniqueID;
2041         u64 ret;
2042
2043         bh = sbi->s_lvid_bh;
2044         if (!bh)
2045                 return 0;
2046
2047         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2048         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2049
2050         mutex_lock(&sbi->s_alloc_mutex);
2051         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2052         if (!(++uniqueID & 0xFFFFFFFF))
2053                 uniqueID += 16;
2054         lvhd->uniqueID = cpu_to_le64(uniqueID);
2055         mutex_unlock(&sbi->s_alloc_mutex);
2056         mark_buffer_dirty(bh);
2057
2058         return ret;
2059 }
2060
2061 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2062 {
2063         int ret = -EINVAL;
2064         struct inode *inode = NULL;
2065         struct udf_options uopt;
2066         struct kernel_lb_addr rootdir, fileset;
2067         struct udf_sb_info *sbi;
2068
2069         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2070         uopt.uid = INVALID_UID;
2071         uopt.gid = INVALID_GID;
2072         uopt.umask = 0;
2073         uopt.fmode = UDF_INVALID_MODE;
2074         uopt.dmode = UDF_INVALID_MODE;
2075
2076         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2077         if (!sbi)
2078                 return -ENOMEM;
2079
2080         sb->s_fs_info = sbi;
2081
2082         mutex_init(&sbi->s_alloc_mutex);
2083
2084         if (!udf_parse_options((char *)options, &uopt, false))
2085                 goto parse_options_failure;
2086
2087         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2088             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2089                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2090                 goto parse_options_failure;
2091         }
2092 #ifdef CONFIG_UDF_NLS
2093         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2094                 uopt.nls_map = load_nls_default();
2095                 if (!uopt.nls_map)
2096                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2097                 else
2098                         udf_debug("Using default NLS map\n");
2099         }
2100 #endif
2101         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2102                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2103
2104         fileset.logicalBlockNum = 0xFFFFFFFF;
2105         fileset.partitionReferenceNum = 0xFFFF;
2106
2107         sbi->s_flags = uopt.flags;
2108         sbi->s_uid = uopt.uid;
2109         sbi->s_gid = uopt.gid;
2110         sbi->s_umask = uopt.umask;
2111         sbi->s_fmode = uopt.fmode;
2112         sbi->s_dmode = uopt.dmode;
2113         sbi->s_nls_map = uopt.nls_map;
2114         rwlock_init(&sbi->s_cred_lock);
2115
2116         if (uopt.session == 0xFFFFFFFF)
2117                 sbi->s_session = udf_get_last_session(sb);
2118         else
2119                 sbi->s_session = uopt.session;
2120
2121         udf_debug("Multi-session=%d\n", sbi->s_session);
2122
2123         /* Fill in the rest of the superblock */
2124         sb->s_op = &udf_sb_ops;
2125         sb->s_export_op = &udf_export_ops;
2126
2127         sb->s_magic = UDF_SUPER_MAGIC;
2128         sb->s_time_gran = 1000;
2129
2130         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2131                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2132         } else {
2133                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2134                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2135                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2136                         if (!silent)
2137                                 pr_notice("Rescanning with blocksize %d\n",
2138                                           UDF_DEFAULT_BLOCKSIZE);
2139                         brelse(sbi->s_lvid_bh);
2140                         sbi->s_lvid_bh = NULL;
2141                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2142                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2143                 }
2144         }
2145         if (ret < 0) {
2146                 if (ret == -EAGAIN) {
2147                         udf_warn(sb, "No partition found (1)\n");
2148                         ret = -EINVAL;
2149                 }
2150                 goto error_out;
2151         }
2152
2153         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2154
2155         if (sbi->s_lvid_bh) {
2156                 struct logicalVolIntegrityDescImpUse *lvidiu =
2157                                                         udf_sb_lvidiu(sb);
2158                 uint16_t minUDFReadRev;
2159                 uint16_t minUDFWriteRev;
2160
2161                 if (!lvidiu) {
2162                         ret = -EINVAL;
2163                         goto error_out;
2164                 }
2165                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2166                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2167                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2168                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2169                                 minUDFReadRev,
2170                                 UDF_MAX_READ_VERSION);
2171                         ret = -EINVAL;
2172                         goto error_out;
2173                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2174                            !(sb->s_flags & MS_RDONLY)) {
2175                         ret = -EACCES;
2176                         goto error_out;
2177                 }
2178
2179                 sbi->s_udfrev = minUDFWriteRev;
2180
2181                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2182                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2183                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2184                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2185         }
2186
2187         if (!sbi->s_partitions) {
2188                 udf_warn(sb, "No partition found (2)\n");
2189                 ret = -EINVAL;
2190                 goto error_out;
2191         }
2192
2193         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2194                         UDF_PART_FLAG_READ_ONLY &&
2195             !(sb->s_flags & MS_RDONLY)) {
2196                 ret = -EACCES;
2197                 goto error_out;
2198         }
2199
2200         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2201                 udf_warn(sb, "No fileset found\n");
2202                 ret = -EINVAL;
2203                 goto error_out;
2204         }
2205
2206         if (!silent) {
2207                 struct timestamp ts;
2208                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2209                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2210                          sbi->s_volume_ident,
2211                          le16_to_cpu(ts.year), ts.month, ts.day,
2212                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2213         }
2214         if (!(sb->s_flags & MS_RDONLY))
2215                 udf_open_lvid(sb);
2216
2217         /* Assign the root inode */
2218         /* assign inodes by physical block number */
2219         /* perhaps it's not extensible enough, but for now ... */
2220         inode = udf_iget(sb, &rootdir);
2221         if (IS_ERR(inode)) {
2222                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2223                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2224                 ret = PTR_ERR(inode);
2225                 goto error_out;
2226         }
2227
2228         /* Allocate a dentry for the root inode */
2229         sb->s_root = d_make_root(inode);
2230         if (!sb->s_root) {
2231                 udf_err(sb, "Couldn't allocate root dentry\n");
2232                 ret = -ENOMEM;
2233                 goto error_out;
2234         }
2235         sb->s_maxbytes = MAX_LFS_FILESIZE;
2236         sb->s_max_links = UDF_MAX_LINKS;
2237         return 0;
2238
2239 error_out:
2240         iput(sbi->s_vat_inode);
2241 parse_options_failure:
2242 #ifdef CONFIG_UDF_NLS
2243         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2244                 unload_nls(sbi->s_nls_map);
2245 #endif
2246         if (!(sb->s_flags & MS_RDONLY))
2247                 udf_close_lvid(sb);
2248         brelse(sbi->s_lvid_bh);
2249         udf_sb_free_partitions(sb);
2250         kfree(sbi);
2251         sb->s_fs_info = NULL;
2252
2253         return ret;
2254 }
2255
2256 void _udf_err(struct super_block *sb, const char *function,
2257               const char *fmt, ...)
2258 {
2259         struct va_format vaf;
2260         va_list args;
2261
2262         va_start(args, fmt);
2263
2264         vaf.fmt = fmt;
2265         vaf.va = &args;
2266
2267         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2268
2269         va_end(args);
2270 }
2271
2272 void _udf_warn(struct super_block *sb, const char *function,
2273                const char *fmt, ...)
2274 {
2275         struct va_format vaf;
2276         va_list args;
2277
2278         va_start(args, fmt);
2279
2280         vaf.fmt = fmt;
2281         vaf.va = &args;
2282
2283         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2284
2285         va_end(args);
2286 }
2287
2288 static void udf_put_super(struct super_block *sb)
2289 {
2290         struct udf_sb_info *sbi;
2291
2292         sbi = UDF_SB(sb);
2293
2294         iput(sbi->s_vat_inode);
2295 #ifdef CONFIG_UDF_NLS
2296         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2297                 unload_nls(sbi->s_nls_map);
2298 #endif
2299         if (!(sb->s_flags & MS_RDONLY))
2300                 udf_close_lvid(sb);
2301         brelse(sbi->s_lvid_bh);
2302         udf_sb_free_partitions(sb);
2303         kfree(sb->s_fs_info);
2304         sb->s_fs_info = NULL;
2305 }
2306
2307 static int udf_sync_fs(struct super_block *sb, int wait)
2308 {
2309         struct udf_sb_info *sbi = UDF_SB(sb);
2310
2311         mutex_lock(&sbi->s_alloc_mutex);
2312         if (sbi->s_lvid_dirty) {
2313                 /*
2314                  * Blockdevice will be synced later so we don't have to submit
2315                  * the buffer for IO
2316                  */
2317                 mark_buffer_dirty(sbi->s_lvid_bh);
2318                 sbi->s_lvid_dirty = 0;
2319         }
2320         mutex_unlock(&sbi->s_alloc_mutex);
2321
2322         return 0;
2323 }
2324
2325 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2326 {
2327         struct super_block *sb = dentry->d_sb;
2328         struct udf_sb_info *sbi = UDF_SB(sb);
2329         struct logicalVolIntegrityDescImpUse *lvidiu;
2330         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2331
2332         lvidiu = udf_sb_lvidiu(sb);
2333         buf->f_type = UDF_SUPER_MAGIC;
2334         buf->f_bsize = sb->s_blocksize;
2335         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2336         buf->f_bfree = udf_count_free(sb);
2337         buf->f_bavail = buf->f_bfree;
2338         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2339                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2340                         + buf->f_bfree;
2341         buf->f_ffree = buf->f_bfree;
2342         buf->f_namelen = UDF_NAME_LEN - 2;
2343         buf->f_fsid.val[0] = (u32)id;
2344         buf->f_fsid.val[1] = (u32)(id >> 32);
2345
2346         return 0;
2347 }
2348
2349 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2350                                           struct udf_bitmap *bitmap)
2351 {
2352         struct buffer_head *bh = NULL;
2353         unsigned int accum = 0;
2354         int index;
2355         int block = 0, newblock;
2356         struct kernel_lb_addr loc;
2357         uint32_t bytes;
2358         uint8_t *ptr;
2359         uint16_t ident;
2360         struct spaceBitmapDesc *bm;
2361
2362         loc.logicalBlockNum = bitmap->s_extPosition;
2363         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2364         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2365
2366         if (!bh) {
2367                 udf_err(sb, "udf_count_free failed\n");
2368                 goto out;
2369         } else if (ident != TAG_IDENT_SBD) {
2370                 brelse(bh);
2371                 udf_err(sb, "udf_count_free failed\n");
2372                 goto out;
2373         }
2374
2375         bm = (struct spaceBitmapDesc *)bh->b_data;
2376         bytes = le32_to_cpu(bm->numOfBytes);
2377         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2378         ptr = (uint8_t *)bh->b_data;
2379
2380         while (bytes > 0) {
2381                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2382                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2383                                         cur_bytes * 8);
2384                 bytes -= cur_bytes;
2385                 if (bytes) {
2386                         brelse(bh);
2387                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2388                         bh = udf_tread(sb, newblock);
2389                         if (!bh) {
2390                                 udf_debug("read failed\n");
2391                                 goto out;
2392                         }
2393                         index = 0;
2394                         ptr = (uint8_t *)bh->b_data;
2395                 }
2396         }
2397         brelse(bh);
2398 out:
2399         return accum;
2400 }
2401
2402 static unsigned int udf_count_free_table(struct super_block *sb,
2403                                          struct inode *table)
2404 {
2405         unsigned int accum = 0;
2406         uint32_t elen;
2407         struct kernel_lb_addr eloc;
2408         int8_t etype;
2409         struct extent_position epos;
2410
2411         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2412         epos.block = UDF_I(table)->i_location;
2413         epos.offset = sizeof(struct unallocSpaceEntry);
2414         epos.bh = NULL;
2415
2416         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2417                 accum += (elen >> table->i_sb->s_blocksize_bits);
2418
2419         brelse(epos.bh);
2420         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2421
2422         return accum;
2423 }
2424
2425 static unsigned int udf_count_free(struct super_block *sb)
2426 {
2427         unsigned int accum = 0;
2428         struct udf_sb_info *sbi;
2429         struct udf_part_map *map;
2430
2431         sbi = UDF_SB(sb);
2432         if (sbi->s_lvid_bh) {
2433                 struct logicalVolIntegrityDesc *lvid =
2434                         (struct logicalVolIntegrityDesc *)
2435                         sbi->s_lvid_bh->b_data;
2436                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2437                         accum = le32_to_cpu(
2438                                         lvid->freeSpaceTable[sbi->s_partition]);
2439                         if (accum == 0xFFFFFFFF)
2440                                 accum = 0;
2441                 }
2442         }
2443
2444         if (accum)
2445                 return accum;
2446
2447         map = &sbi->s_partmaps[sbi->s_partition];
2448         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2449                 accum += udf_count_free_bitmap(sb,
2450                                                map->s_uspace.s_bitmap);
2451         }
2452         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2453                 accum += udf_count_free_bitmap(sb,
2454                                                map->s_fspace.s_bitmap);
2455         }
2456         if (accum)
2457                 return accum;
2458
2459         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2460                 accum += udf_count_free_table(sb,
2461                                               map->s_uspace.s_table);
2462         }
2463         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2464                 accum += udf_count_free_table(sb,
2465                                               map->s_fspace.s_table);
2466         }
2467
2468         return accum;
2469 }