Merge remote-tracking branch 'asoc/topic/intel' into asoc-next
[cascardo/linux.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t     *xfs_btree_cur_zone;
42
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48           XFS_FIBT_MAGIC },
49         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
51 };
52 #define xfs_btree_magic(cur) \
53         xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
54
55 STATIC int                              /* error (0 or EFSCORRUPTED) */
56 xfs_btree_check_lblock(
57         struct xfs_btree_cur    *cur,   /* btree cursor */
58         struct xfs_btree_block  *block, /* btree long form block pointer */
59         int                     level,  /* level of the btree block */
60         struct xfs_buf          *bp)    /* buffer for block, if any */
61 {
62         int                     lblock_ok = 1; /* block passes checks */
63         struct xfs_mount        *mp;    /* file system mount point */
64
65         mp = cur->bc_mp;
66
67         if (xfs_sb_version_hascrc(&mp->m_sb)) {
68                 lblock_ok = lblock_ok &&
69                         uuid_equal(&block->bb_u.l.bb_uuid,
70                                    &mp->m_sb.sb_meta_uuid) &&
71                         block->bb_u.l.bb_blkno == cpu_to_be64(
72                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
73         }
74
75         lblock_ok = lblock_ok &&
76                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
77                 be16_to_cpu(block->bb_level) == level &&
78                 be16_to_cpu(block->bb_numrecs) <=
79                         cur->bc_ops->get_maxrecs(cur, level) &&
80                 block->bb_u.l.bb_leftsib &&
81                 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
82                  XFS_FSB_SANITY_CHECK(mp,
83                         be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
84                 block->bb_u.l.bb_rightsib &&
85                 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
86                  XFS_FSB_SANITY_CHECK(mp,
87                         be64_to_cpu(block->bb_u.l.bb_rightsib)));
88
89         if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
90                         XFS_ERRTAG_BTREE_CHECK_LBLOCK,
91                         XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
92                 if (bp)
93                         trace_xfs_btree_corrupt(bp, _RET_IP_);
94                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
95                 return -EFSCORRUPTED;
96         }
97         return 0;
98 }
99
100 STATIC int                              /* error (0 or EFSCORRUPTED) */
101 xfs_btree_check_sblock(
102         struct xfs_btree_cur    *cur,   /* btree cursor */
103         struct xfs_btree_block  *block, /* btree short form block pointer */
104         int                     level,  /* level of the btree block */
105         struct xfs_buf          *bp)    /* buffer containing block */
106 {
107         struct xfs_mount        *mp;    /* file system mount point */
108         struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
109         struct xfs_agf          *agf;   /* ag. freespace structure */
110         xfs_agblock_t           agflen; /* native ag. freespace length */
111         int                     sblock_ok = 1; /* block passes checks */
112
113         mp = cur->bc_mp;
114         agbp = cur->bc_private.a.agbp;
115         agf = XFS_BUF_TO_AGF(agbp);
116         agflen = be32_to_cpu(agf->agf_length);
117
118         if (xfs_sb_version_hascrc(&mp->m_sb)) {
119                 sblock_ok = sblock_ok &&
120                         uuid_equal(&block->bb_u.s.bb_uuid,
121                                    &mp->m_sb.sb_meta_uuid) &&
122                         block->bb_u.s.bb_blkno == cpu_to_be64(
123                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
124         }
125
126         sblock_ok = sblock_ok &&
127                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
128                 be16_to_cpu(block->bb_level) == level &&
129                 be16_to_cpu(block->bb_numrecs) <=
130                         cur->bc_ops->get_maxrecs(cur, level) &&
131                 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
132                  be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
133                 block->bb_u.s.bb_leftsib &&
134                 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
135                  be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
136                 block->bb_u.s.bb_rightsib;
137
138         if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
139                         XFS_ERRTAG_BTREE_CHECK_SBLOCK,
140                         XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
141                 if (bp)
142                         trace_xfs_btree_corrupt(bp, _RET_IP_);
143                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
144                 return -EFSCORRUPTED;
145         }
146         return 0;
147 }
148
149 /*
150  * Debug routine: check that block header is ok.
151  */
152 int
153 xfs_btree_check_block(
154         struct xfs_btree_cur    *cur,   /* btree cursor */
155         struct xfs_btree_block  *block, /* generic btree block pointer */
156         int                     level,  /* level of the btree block */
157         struct xfs_buf          *bp)    /* buffer containing block, if any */
158 {
159         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
160                 return xfs_btree_check_lblock(cur, block, level, bp);
161         else
162                 return xfs_btree_check_sblock(cur, block, level, bp);
163 }
164
165 /*
166  * Check that (long) pointer is ok.
167  */
168 int                                     /* error (0 or EFSCORRUPTED) */
169 xfs_btree_check_lptr(
170         struct xfs_btree_cur    *cur,   /* btree cursor */
171         xfs_fsblock_t           bno,    /* btree block disk address */
172         int                     level)  /* btree block level */
173 {
174         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
175                 level > 0 &&
176                 bno != NULLFSBLOCK &&
177                 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
178         return 0;
179 }
180
181 #ifdef DEBUG
182 /*
183  * Check that (short) pointer is ok.
184  */
185 STATIC int                              /* error (0 or EFSCORRUPTED) */
186 xfs_btree_check_sptr(
187         struct xfs_btree_cur    *cur,   /* btree cursor */
188         xfs_agblock_t           bno,    /* btree block disk address */
189         int                     level)  /* btree block level */
190 {
191         xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
192
193         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
194                 level > 0 &&
195                 bno != NULLAGBLOCK &&
196                 bno != 0 &&
197                 bno < agblocks);
198         return 0;
199 }
200
201 /*
202  * Check that block ptr is ok.
203  */
204 STATIC int                              /* error (0 or EFSCORRUPTED) */
205 xfs_btree_check_ptr(
206         struct xfs_btree_cur    *cur,   /* btree cursor */
207         union xfs_btree_ptr     *ptr,   /* btree block disk address */
208         int                     index,  /* offset from ptr to check */
209         int                     level)  /* btree block level */
210 {
211         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
212                 return xfs_btree_check_lptr(cur,
213                                 be64_to_cpu((&ptr->l)[index]), level);
214         } else {
215                 return xfs_btree_check_sptr(cur,
216                                 be32_to_cpu((&ptr->s)[index]), level);
217         }
218 }
219 #endif
220
221 /*
222  * Calculate CRC on the whole btree block and stuff it into the
223  * long-form btree header.
224  *
225  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
226  * it into the buffer so recovery knows what the last modification was that made
227  * it to disk.
228  */
229 void
230 xfs_btree_lblock_calc_crc(
231         struct xfs_buf          *bp)
232 {
233         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
234         struct xfs_buf_log_item *bip = bp->b_fspriv;
235
236         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
237                 return;
238         if (bip)
239                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
240         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
241 }
242
243 bool
244 xfs_btree_lblock_verify_crc(
245         struct xfs_buf          *bp)
246 {
247         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
248         struct xfs_mount        *mp = bp->b_target->bt_mount;
249
250         if (xfs_sb_version_hascrc(&mp->m_sb)) {
251                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
252                         return false;
253                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
254         }
255
256         return true;
257 }
258
259 /*
260  * Calculate CRC on the whole btree block and stuff it into the
261  * short-form btree header.
262  *
263  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264  * it into the buffer so recovery knows what the last modification was that made
265  * it to disk.
266  */
267 void
268 xfs_btree_sblock_calc_crc(
269         struct xfs_buf          *bp)
270 {
271         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
272         struct xfs_buf_log_item *bip = bp->b_fspriv;
273
274         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275                 return;
276         if (bip)
277                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_sblock_verify_crc(
283         struct xfs_buf          *bp)
284 {
285         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
286         struct xfs_mount        *mp = bp->b_target->bt_mount;
287
288         if (xfs_sb_version_hascrc(&mp->m_sb)) {
289                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
290                         return false;
291                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
292         }
293
294         return true;
295 }
296
297 static int
298 xfs_btree_free_block(
299         struct xfs_btree_cur    *cur,
300         struct xfs_buf          *bp)
301 {
302         int                     error;
303
304         error = cur->bc_ops->free_block(cur, bp);
305         if (!error) {
306                 xfs_trans_binval(cur->bc_tp, bp);
307                 XFS_BTREE_STATS_INC(cur, free);
308         }
309         return error;
310 }
311
312 /*
313  * Delete the btree cursor.
314  */
315 void
316 xfs_btree_del_cursor(
317         xfs_btree_cur_t *cur,           /* btree cursor */
318         int             error)          /* del because of error */
319 {
320         int             i;              /* btree level */
321
322         /*
323          * Clear the buffer pointers, and release the buffers.
324          * If we're doing this in the face of an error, we
325          * need to make sure to inspect all of the entries
326          * in the bc_bufs array for buffers to be unlocked.
327          * This is because some of the btree code works from
328          * level n down to 0, and if we get an error along
329          * the way we won't have initialized all the entries
330          * down to 0.
331          */
332         for (i = 0; i < cur->bc_nlevels; i++) {
333                 if (cur->bc_bufs[i])
334                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
335                 else if (!error)
336                         break;
337         }
338         /*
339          * Can't free a bmap cursor without having dealt with the
340          * allocated indirect blocks' accounting.
341          */
342         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
343                cur->bc_private.b.allocated == 0);
344         /*
345          * Free the cursor.
346          */
347         kmem_zone_free(xfs_btree_cur_zone, cur);
348 }
349
350 /*
351  * Duplicate the btree cursor.
352  * Allocate a new one, copy the record, re-get the buffers.
353  */
354 int                                     /* error */
355 xfs_btree_dup_cursor(
356         xfs_btree_cur_t *cur,           /* input cursor */
357         xfs_btree_cur_t **ncur)         /* output cursor */
358 {
359         xfs_buf_t       *bp;            /* btree block's buffer pointer */
360         int             error;          /* error return value */
361         int             i;              /* level number of btree block */
362         xfs_mount_t     *mp;            /* mount structure for filesystem */
363         xfs_btree_cur_t *new;           /* new cursor value */
364         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
365
366         tp = cur->bc_tp;
367         mp = cur->bc_mp;
368
369         /*
370          * Allocate a new cursor like the old one.
371          */
372         new = cur->bc_ops->dup_cursor(cur);
373
374         /*
375          * Copy the record currently in the cursor.
376          */
377         new->bc_rec = cur->bc_rec;
378
379         /*
380          * For each level current, re-get the buffer and copy the ptr value.
381          */
382         for (i = 0; i < new->bc_nlevels; i++) {
383                 new->bc_ptrs[i] = cur->bc_ptrs[i];
384                 new->bc_ra[i] = cur->bc_ra[i];
385                 bp = cur->bc_bufs[i];
386                 if (bp) {
387                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
388                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
389                                                    0, &bp,
390                                                    cur->bc_ops->buf_ops);
391                         if (error) {
392                                 xfs_btree_del_cursor(new, error);
393                                 *ncur = NULL;
394                                 return error;
395                         }
396                 }
397                 new->bc_bufs[i] = bp;
398         }
399         *ncur = new;
400         return 0;
401 }
402
403 /*
404  * XFS btree block layout and addressing:
405  *
406  * There are two types of blocks in the btree: leaf and non-leaf blocks.
407  *
408  * The leaf record start with a header then followed by records containing
409  * the values.  A non-leaf block also starts with the same header, and
410  * then first contains lookup keys followed by an equal number of pointers
411  * to the btree blocks at the previous level.
412  *
413  *              +--------+-------+-------+-------+-------+-------+-------+
414  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
415  *              +--------+-------+-------+-------+-------+-------+-------+
416  *
417  *              +--------+-------+-------+-------+-------+-------+-------+
418  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
419  *              +--------+-------+-------+-------+-------+-------+-------+
420  *
421  * The header is called struct xfs_btree_block for reasons better left unknown
422  * and comes in different versions for short (32bit) and long (64bit) block
423  * pointers.  The record and key structures are defined by the btree instances
424  * and opaque to the btree core.  The block pointers are simple disk endian
425  * integers, available in a short (32bit) and long (64bit) variant.
426  *
427  * The helpers below calculate the offset of a given record, key or pointer
428  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
429  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
430  * inside the btree block is done using indices starting at one, not zero!
431  *
432  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
433  * overlapping intervals.  In such a tree, records are still sorted lowest to
434  * highest and indexed by the smallest key value that refers to the record.
435  * However, nodes are different: each pointer has two associated keys -- one
436  * indexing the lowest key available in the block(s) below (the same behavior
437  * as the key in a regular btree) and another indexing the highest key
438  * available in the block(s) below.  Because records are /not/ sorted by the
439  * highest key, all leaf block updates require us to compute the highest key
440  * that matches any record in the leaf and to recursively update the high keys
441  * in the nodes going further up in the tree, if necessary.  Nodes look like
442  * this:
443  *
444  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
445  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
446  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
447  *
448  * To perform an interval query on an overlapped tree, perform the usual
449  * depth-first search and use the low and high keys to decide if we can skip
450  * that particular node.  If a leaf node is reached, return the records that
451  * intersect the interval.  Note that an interval query may return numerous
452  * entries.  For a non-overlapped tree, simply search for the record associated
453  * with the lowest key and iterate forward until a non-matching record is
454  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
455  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
456  * more detail.
457  *
458  * Why do we care about overlapping intervals?  Let's say you have a bunch of
459  * reverse mapping records on a reflink filesystem:
460  *
461  * 1: +- file A startblock B offset C length D -----------+
462  * 2:      +- file E startblock F offset G length H --------------+
463  * 3:      +- file I startblock F offset J length K --+
464  * 4:                                                        +- file L... --+
465  *
466  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
467  * we'd simply increment the length of record 1.  But how do we find the record
468  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
469  * record 3 because the keys are ordered first by startblock.  An interval
470  * query would return records 1 and 2 because they both overlap (B+D-1), and
471  * from that we can pick out record 1 as the appropriate left neighbor.
472  *
473  * In the non-overlapped case you can do a LE lookup and decrement the cursor
474  * because a record's interval must end before the next record.
475  */
476
477 /*
478  * Return size of the btree block header for this btree instance.
479  */
480 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
481 {
482         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
483                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
484                         return XFS_BTREE_LBLOCK_CRC_LEN;
485                 return XFS_BTREE_LBLOCK_LEN;
486         }
487         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
488                 return XFS_BTREE_SBLOCK_CRC_LEN;
489         return XFS_BTREE_SBLOCK_LEN;
490 }
491
492 /*
493  * Return size of btree block pointers for this btree instance.
494  */
495 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
496 {
497         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
498                 sizeof(__be64) : sizeof(__be32);
499 }
500
501 /*
502  * Calculate offset of the n-th record in a btree block.
503  */
504 STATIC size_t
505 xfs_btree_rec_offset(
506         struct xfs_btree_cur    *cur,
507         int                     n)
508 {
509         return xfs_btree_block_len(cur) +
510                 (n - 1) * cur->bc_ops->rec_len;
511 }
512
513 /*
514  * Calculate offset of the n-th key in a btree block.
515  */
516 STATIC size_t
517 xfs_btree_key_offset(
518         struct xfs_btree_cur    *cur,
519         int                     n)
520 {
521         return xfs_btree_block_len(cur) +
522                 (n - 1) * cur->bc_ops->key_len;
523 }
524
525 /*
526  * Calculate offset of the n-th high key in a btree block.
527  */
528 STATIC size_t
529 xfs_btree_high_key_offset(
530         struct xfs_btree_cur    *cur,
531         int                     n)
532 {
533         return xfs_btree_block_len(cur) +
534                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
535 }
536
537 /*
538  * Calculate offset of the n-th block pointer in a btree block.
539  */
540 STATIC size_t
541 xfs_btree_ptr_offset(
542         struct xfs_btree_cur    *cur,
543         int                     n,
544         int                     level)
545 {
546         return xfs_btree_block_len(cur) +
547                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
548                 (n - 1) * xfs_btree_ptr_len(cur);
549 }
550
551 /*
552  * Return a pointer to the n-th record in the btree block.
553  */
554 STATIC union xfs_btree_rec *
555 xfs_btree_rec_addr(
556         struct xfs_btree_cur    *cur,
557         int                     n,
558         struct xfs_btree_block  *block)
559 {
560         return (union xfs_btree_rec *)
561                 ((char *)block + xfs_btree_rec_offset(cur, n));
562 }
563
564 /*
565  * Return a pointer to the n-th key in the btree block.
566  */
567 STATIC union xfs_btree_key *
568 xfs_btree_key_addr(
569         struct xfs_btree_cur    *cur,
570         int                     n,
571         struct xfs_btree_block  *block)
572 {
573         return (union xfs_btree_key *)
574                 ((char *)block + xfs_btree_key_offset(cur, n));
575 }
576
577 /*
578  * Return a pointer to the n-th high key in the btree block.
579  */
580 STATIC union xfs_btree_key *
581 xfs_btree_high_key_addr(
582         struct xfs_btree_cur    *cur,
583         int                     n,
584         struct xfs_btree_block  *block)
585 {
586         return (union xfs_btree_key *)
587                 ((char *)block + xfs_btree_high_key_offset(cur, n));
588 }
589
590 /*
591  * Return a pointer to the n-th block pointer in the btree block.
592  */
593 STATIC union xfs_btree_ptr *
594 xfs_btree_ptr_addr(
595         struct xfs_btree_cur    *cur,
596         int                     n,
597         struct xfs_btree_block  *block)
598 {
599         int                     level = xfs_btree_get_level(block);
600
601         ASSERT(block->bb_level != 0);
602
603         return (union xfs_btree_ptr *)
604                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
605 }
606
607 /*
608  * Get the root block which is stored in the inode.
609  *
610  * For now this btree implementation assumes the btree root is always
611  * stored in the if_broot field of an inode fork.
612  */
613 STATIC struct xfs_btree_block *
614 xfs_btree_get_iroot(
615         struct xfs_btree_cur    *cur)
616 {
617         struct xfs_ifork        *ifp;
618
619         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
620         return (struct xfs_btree_block *)ifp->if_broot;
621 }
622
623 /*
624  * Retrieve the block pointer from the cursor at the given level.
625  * This may be an inode btree root or from a buffer.
626  */
627 STATIC struct xfs_btree_block *         /* generic btree block pointer */
628 xfs_btree_get_block(
629         struct xfs_btree_cur    *cur,   /* btree cursor */
630         int                     level,  /* level in btree */
631         struct xfs_buf          **bpp)  /* buffer containing the block */
632 {
633         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
634             (level == cur->bc_nlevels - 1)) {
635                 *bpp = NULL;
636                 return xfs_btree_get_iroot(cur);
637         }
638
639         *bpp = cur->bc_bufs[level];
640         return XFS_BUF_TO_BLOCK(*bpp);
641 }
642
643 /*
644  * Get a buffer for the block, return it with no data read.
645  * Long-form addressing.
646  */
647 xfs_buf_t *                             /* buffer for fsbno */
648 xfs_btree_get_bufl(
649         xfs_mount_t     *mp,            /* file system mount point */
650         xfs_trans_t     *tp,            /* transaction pointer */
651         xfs_fsblock_t   fsbno,          /* file system block number */
652         uint            lock)           /* lock flags for get_buf */
653 {
654         xfs_daddr_t             d;              /* real disk block address */
655
656         ASSERT(fsbno != NULLFSBLOCK);
657         d = XFS_FSB_TO_DADDR(mp, fsbno);
658         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
659 }
660
661 /*
662  * Get a buffer for the block, return it with no data read.
663  * Short-form addressing.
664  */
665 xfs_buf_t *                             /* buffer for agno/agbno */
666 xfs_btree_get_bufs(
667         xfs_mount_t     *mp,            /* file system mount point */
668         xfs_trans_t     *tp,            /* transaction pointer */
669         xfs_agnumber_t  agno,           /* allocation group number */
670         xfs_agblock_t   agbno,          /* allocation group block number */
671         uint            lock)           /* lock flags for get_buf */
672 {
673         xfs_daddr_t             d;              /* real disk block address */
674
675         ASSERT(agno != NULLAGNUMBER);
676         ASSERT(agbno != NULLAGBLOCK);
677         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
678         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
679 }
680
681 /*
682  * Check for the cursor referring to the last block at the given level.
683  */
684 int                                     /* 1=is last block, 0=not last block */
685 xfs_btree_islastblock(
686         xfs_btree_cur_t         *cur,   /* btree cursor */
687         int                     level)  /* level to check */
688 {
689         struct xfs_btree_block  *block; /* generic btree block pointer */
690         xfs_buf_t               *bp;    /* buffer containing block */
691
692         block = xfs_btree_get_block(cur, level, &bp);
693         xfs_btree_check_block(cur, block, level, bp);
694         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
695                 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
696         else
697                 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
698 }
699
700 /*
701  * Change the cursor to point to the first record at the given level.
702  * Other levels are unaffected.
703  */
704 STATIC int                              /* success=1, failure=0 */
705 xfs_btree_firstrec(
706         xfs_btree_cur_t         *cur,   /* btree cursor */
707         int                     level)  /* level to change */
708 {
709         struct xfs_btree_block  *block; /* generic btree block pointer */
710         xfs_buf_t               *bp;    /* buffer containing block */
711
712         /*
713          * Get the block pointer for this level.
714          */
715         block = xfs_btree_get_block(cur, level, &bp);
716         xfs_btree_check_block(cur, block, level, bp);
717         /*
718          * It's empty, there is no such record.
719          */
720         if (!block->bb_numrecs)
721                 return 0;
722         /*
723          * Set the ptr value to 1, that's the first record/key.
724          */
725         cur->bc_ptrs[level] = 1;
726         return 1;
727 }
728
729 /*
730  * Change the cursor to point to the last record in the current block
731  * at the given level.  Other levels are unaffected.
732  */
733 STATIC int                              /* success=1, failure=0 */
734 xfs_btree_lastrec(
735         xfs_btree_cur_t         *cur,   /* btree cursor */
736         int                     level)  /* level to change */
737 {
738         struct xfs_btree_block  *block; /* generic btree block pointer */
739         xfs_buf_t               *bp;    /* buffer containing block */
740
741         /*
742          * Get the block pointer for this level.
743          */
744         block = xfs_btree_get_block(cur, level, &bp);
745         xfs_btree_check_block(cur, block, level, bp);
746         /*
747          * It's empty, there is no such record.
748          */
749         if (!block->bb_numrecs)
750                 return 0;
751         /*
752          * Set the ptr value to numrecs, that's the last record/key.
753          */
754         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
755         return 1;
756 }
757
758 /*
759  * Compute first and last byte offsets for the fields given.
760  * Interprets the offsets table, which contains struct field offsets.
761  */
762 void
763 xfs_btree_offsets(
764         __int64_t       fields,         /* bitmask of fields */
765         const short     *offsets,       /* table of field offsets */
766         int             nbits,          /* number of bits to inspect */
767         int             *first,         /* output: first byte offset */
768         int             *last)          /* output: last byte offset */
769 {
770         int             i;              /* current bit number */
771         __int64_t       imask;          /* mask for current bit number */
772
773         ASSERT(fields != 0);
774         /*
775          * Find the lowest bit, so the first byte offset.
776          */
777         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
778                 if (imask & fields) {
779                         *first = offsets[i];
780                         break;
781                 }
782         }
783         /*
784          * Find the highest bit, so the last byte offset.
785          */
786         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
787                 if (imask & fields) {
788                         *last = offsets[i + 1] - 1;
789                         break;
790                 }
791         }
792 }
793
794 /*
795  * Get a buffer for the block, return it read in.
796  * Long-form addressing.
797  */
798 int
799 xfs_btree_read_bufl(
800         struct xfs_mount        *mp,            /* file system mount point */
801         struct xfs_trans        *tp,            /* transaction pointer */
802         xfs_fsblock_t           fsbno,          /* file system block number */
803         uint                    lock,           /* lock flags for read_buf */
804         struct xfs_buf          **bpp,          /* buffer for fsbno */
805         int                     refval,         /* ref count value for buffer */
806         const struct xfs_buf_ops *ops)
807 {
808         struct xfs_buf          *bp;            /* return value */
809         xfs_daddr_t             d;              /* real disk block address */
810         int                     error;
811
812         ASSERT(fsbno != NULLFSBLOCK);
813         d = XFS_FSB_TO_DADDR(mp, fsbno);
814         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
815                                    mp->m_bsize, lock, &bp, ops);
816         if (error)
817                 return error;
818         if (bp)
819                 xfs_buf_set_ref(bp, refval);
820         *bpp = bp;
821         return 0;
822 }
823
824 /*
825  * Read-ahead the block, don't wait for it, don't return a buffer.
826  * Long-form addressing.
827  */
828 /* ARGSUSED */
829 void
830 xfs_btree_reada_bufl(
831         struct xfs_mount        *mp,            /* file system mount point */
832         xfs_fsblock_t           fsbno,          /* file system block number */
833         xfs_extlen_t            count,          /* count of filesystem blocks */
834         const struct xfs_buf_ops *ops)
835 {
836         xfs_daddr_t             d;
837
838         ASSERT(fsbno != NULLFSBLOCK);
839         d = XFS_FSB_TO_DADDR(mp, fsbno);
840         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
841 }
842
843 /*
844  * Read-ahead the block, don't wait for it, don't return a buffer.
845  * Short-form addressing.
846  */
847 /* ARGSUSED */
848 void
849 xfs_btree_reada_bufs(
850         struct xfs_mount        *mp,            /* file system mount point */
851         xfs_agnumber_t          agno,           /* allocation group number */
852         xfs_agblock_t           agbno,          /* allocation group block number */
853         xfs_extlen_t            count,          /* count of filesystem blocks */
854         const struct xfs_buf_ops *ops)
855 {
856         xfs_daddr_t             d;
857
858         ASSERT(agno != NULLAGNUMBER);
859         ASSERT(agbno != NULLAGBLOCK);
860         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
861         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
862 }
863
864 STATIC int
865 xfs_btree_readahead_lblock(
866         struct xfs_btree_cur    *cur,
867         int                     lr,
868         struct xfs_btree_block  *block)
869 {
870         int                     rval = 0;
871         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
872         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
873
874         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
875                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
876                                      cur->bc_ops->buf_ops);
877                 rval++;
878         }
879
880         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
881                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
882                                      cur->bc_ops->buf_ops);
883                 rval++;
884         }
885
886         return rval;
887 }
888
889 STATIC int
890 xfs_btree_readahead_sblock(
891         struct xfs_btree_cur    *cur,
892         int                     lr,
893         struct xfs_btree_block *block)
894 {
895         int                     rval = 0;
896         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
897         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
898
899
900         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
901                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
902                                      left, 1, cur->bc_ops->buf_ops);
903                 rval++;
904         }
905
906         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
907                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
908                                      right, 1, cur->bc_ops->buf_ops);
909                 rval++;
910         }
911
912         return rval;
913 }
914
915 /*
916  * Read-ahead btree blocks, at the given level.
917  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
918  */
919 STATIC int
920 xfs_btree_readahead(
921         struct xfs_btree_cur    *cur,           /* btree cursor */
922         int                     lev,            /* level in btree */
923         int                     lr)             /* left/right bits */
924 {
925         struct xfs_btree_block  *block;
926
927         /*
928          * No readahead needed if we are at the root level and the
929          * btree root is stored in the inode.
930          */
931         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
932             (lev == cur->bc_nlevels - 1))
933                 return 0;
934
935         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
936                 return 0;
937
938         cur->bc_ra[lev] |= lr;
939         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
940
941         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
942                 return xfs_btree_readahead_lblock(cur, lr, block);
943         return xfs_btree_readahead_sblock(cur, lr, block);
944 }
945
946 STATIC xfs_daddr_t
947 xfs_btree_ptr_to_daddr(
948         struct xfs_btree_cur    *cur,
949         union xfs_btree_ptr     *ptr)
950 {
951         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
952                 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
953
954                 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
955         } else {
956                 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
957                 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
958
959                 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
960                                         be32_to_cpu(ptr->s));
961         }
962 }
963
964 /*
965  * Readahead @count btree blocks at the given @ptr location.
966  *
967  * We don't need to care about long or short form btrees here as we have a
968  * method of converting the ptr directly to a daddr available to us.
969  */
970 STATIC void
971 xfs_btree_readahead_ptr(
972         struct xfs_btree_cur    *cur,
973         union xfs_btree_ptr     *ptr,
974         xfs_extlen_t            count)
975 {
976         xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
977                           xfs_btree_ptr_to_daddr(cur, ptr),
978                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
979 }
980
981 /*
982  * Set the buffer for level "lev" in the cursor to bp, releasing
983  * any previous buffer.
984  */
985 STATIC void
986 xfs_btree_setbuf(
987         xfs_btree_cur_t         *cur,   /* btree cursor */
988         int                     lev,    /* level in btree */
989         xfs_buf_t               *bp)    /* new buffer to set */
990 {
991         struct xfs_btree_block  *b;     /* btree block */
992
993         if (cur->bc_bufs[lev])
994                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
995         cur->bc_bufs[lev] = bp;
996         cur->bc_ra[lev] = 0;
997
998         b = XFS_BUF_TO_BLOCK(bp);
999         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1000                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1001                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1002                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1003                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1004         } else {
1005                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1006                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1007                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1008                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1009         }
1010 }
1011
1012 STATIC int
1013 xfs_btree_ptr_is_null(
1014         struct xfs_btree_cur    *cur,
1015         union xfs_btree_ptr     *ptr)
1016 {
1017         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1018                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1019         else
1020                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1021 }
1022
1023 STATIC void
1024 xfs_btree_set_ptr_null(
1025         struct xfs_btree_cur    *cur,
1026         union xfs_btree_ptr     *ptr)
1027 {
1028         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1029                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1030         else
1031                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1032 }
1033
1034 /*
1035  * Get/set/init sibling pointers
1036  */
1037 STATIC void
1038 xfs_btree_get_sibling(
1039         struct xfs_btree_cur    *cur,
1040         struct xfs_btree_block  *block,
1041         union xfs_btree_ptr     *ptr,
1042         int                     lr)
1043 {
1044         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1045
1046         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1047                 if (lr == XFS_BB_RIGHTSIB)
1048                         ptr->l = block->bb_u.l.bb_rightsib;
1049                 else
1050                         ptr->l = block->bb_u.l.bb_leftsib;
1051         } else {
1052                 if (lr == XFS_BB_RIGHTSIB)
1053                         ptr->s = block->bb_u.s.bb_rightsib;
1054                 else
1055                         ptr->s = block->bb_u.s.bb_leftsib;
1056         }
1057 }
1058
1059 STATIC void
1060 xfs_btree_set_sibling(
1061         struct xfs_btree_cur    *cur,
1062         struct xfs_btree_block  *block,
1063         union xfs_btree_ptr     *ptr,
1064         int                     lr)
1065 {
1066         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1067
1068         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1069                 if (lr == XFS_BB_RIGHTSIB)
1070                         block->bb_u.l.bb_rightsib = ptr->l;
1071                 else
1072                         block->bb_u.l.bb_leftsib = ptr->l;
1073         } else {
1074                 if (lr == XFS_BB_RIGHTSIB)
1075                         block->bb_u.s.bb_rightsib = ptr->s;
1076                 else
1077                         block->bb_u.s.bb_leftsib = ptr->s;
1078         }
1079 }
1080
1081 void
1082 xfs_btree_init_block_int(
1083         struct xfs_mount        *mp,
1084         struct xfs_btree_block  *buf,
1085         xfs_daddr_t             blkno,
1086         __u32                   magic,
1087         __u16                   level,
1088         __u16                   numrecs,
1089         __u64                   owner,
1090         unsigned int            flags)
1091 {
1092         buf->bb_magic = cpu_to_be32(magic);
1093         buf->bb_level = cpu_to_be16(level);
1094         buf->bb_numrecs = cpu_to_be16(numrecs);
1095
1096         if (flags & XFS_BTREE_LONG_PTRS) {
1097                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1098                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1099                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1100                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1101                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1102                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1103                         buf->bb_u.l.bb_pad = 0;
1104                         buf->bb_u.l.bb_lsn = 0;
1105                 }
1106         } else {
1107                 /* owner is a 32 bit value on short blocks */
1108                 __u32 __owner = (__u32)owner;
1109
1110                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1111                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1112                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1113                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1114                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1115                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1116                         buf->bb_u.s.bb_lsn = 0;
1117                 }
1118         }
1119 }
1120
1121 void
1122 xfs_btree_init_block(
1123         struct xfs_mount *mp,
1124         struct xfs_buf  *bp,
1125         __u32           magic,
1126         __u16           level,
1127         __u16           numrecs,
1128         __u64           owner,
1129         unsigned int    flags)
1130 {
1131         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1132                                  magic, level, numrecs, owner, flags);
1133 }
1134
1135 STATIC void
1136 xfs_btree_init_block_cur(
1137         struct xfs_btree_cur    *cur,
1138         struct xfs_buf          *bp,
1139         int                     level,
1140         int                     numrecs)
1141 {
1142         __u64 owner;
1143
1144         /*
1145          * we can pull the owner from the cursor right now as the different
1146          * owners align directly with the pointer size of the btree. This may
1147          * change in future, but is safe for current users of the generic btree
1148          * code.
1149          */
1150         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1151                 owner = cur->bc_private.b.ip->i_ino;
1152         else
1153                 owner = cur->bc_private.a.agno;
1154
1155         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1156                                  xfs_btree_magic(cur), level, numrecs,
1157                                  owner, cur->bc_flags);
1158 }
1159
1160 /*
1161  * Return true if ptr is the last record in the btree and
1162  * we need to track updates to this record.  The decision
1163  * will be further refined in the update_lastrec method.
1164  */
1165 STATIC int
1166 xfs_btree_is_lastrec(
1167         struct xfs_btree_cur    *cur,
1168         struct xfs_btree_block  *block,
1169         int                     level)
1170 {
1171         union xfs_btree_ptr     ptr;
1172
1173         if (level > 0)
1174                 return 0;
1175         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1176                 return 0;
1177
1178         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1179         if (!xfs_btree_ptr_is_null(cur, &ptr))
1180                 return 0;
1181         return 1;
1182 }
1183
1184 STATIC void
1185 xfs_btree_buf_to_ptr(
1186         struct xfs_btree_cur    *cur,
1187         struct xfs_buf          *bp,
1188         union xfs_btree_ptr     *ptr)
1189 {
1190         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1191                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1192                                         XFS_BUF_ADDR(bp)));
1193         else {
1194                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1195                                         XFS_BUF_ADDR(bp)));
1196         }
1197 }
1198
1199 STATIC void
1200 xfs_btree_set_refs(
1201         struct xfs_btree_cur    *cur,
1202         struct xfs_buf          *bp)
1203 {
1204         switch (cur->bc_btnum) {
1205         case XFS_BTNUM_BNO:
1206         case XFS_BTNUM_CNT:
1207                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1208                 break;
1209         case XFS_BTNUM_INO:
1210         case XFS_BTNUM_FINO:
1211                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1212                 break;
1213         case XFS_BTNUM_BMAP:
1214                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1215                 break;
1216         case XFS_BTNUM_RMAP:
1217                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1218                 break;
1219         default:
1220                 ASSERT(0);
1221         }
1222 }
1223
1224 STATIC int
1225 xfs_btree_get_buf_block(
1226         struct xfs_btree_cur    *cur,
1227         union xfs_btree_ptr     *ptr,
1228         int                     flags,
1229         struct xfs_btree_block  **block,
1230         struct xfs_buf          **bpp)
1231 {
1232         struct xfs_mount        *mp = cur->bc_mp;
1233         xfs_daddr_t             d;
1234
1235         /* need to sort out how callers deal with failures first */
1236         ASSERT(!(flags & XBF_TRYLOCK));
1237
1238         d = xfs_btree_ptr_to_daddr(cur, ptr);
1239         *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1240                                  mp->m_bsize, flags);
1241
1242         if (!*bpp)
1243                 return -ENOMEM;
1244
1245         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1246         *block = XFS_BUF_TO_BLOCK(*bpp);
1247         return 0;
1248 }
1249
1250 /*
1251  * Read in the buffer at the given ptr and return the buffer and
1252  * the block pointer within the buffer.
1253  */
1254 STATIC int
1255 xfs_btree_read_buf_block(
1256         struct xfs_btree_cur    *cur,
1257         union xfs_btree_ptr     *ptr,
1258         int                     flags,
1259         struct xfs_btree_block  **block,
1260         struct xfs_buf          **bpp)
1261 {
1262         struct xfs_mount        *mp = cur->bc_mp;
1263         xfs_daddr_t             d;
1264         int                     error;
1265
1266         /* need to sort out how callers deal with failures first */
1267         ASSERT(!(flags & XBF_TRYLOCK));
1268
1269         d = xfs_btree_ptr_to_daddr(cur, ptr);
1270         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1271                                    mp->m_bsize, flags, bpp,
1272                                    cur->bc_ops->buf_ops);
1273         if (error)
1274                 return error;
1275
1276         xfs_btree_set_refs(cur, *bpp);
1277         *block = XFS_BUF_TO_BLOCK(*bpp);
1278         return 0;
1279 }
1280
1281 /*
1282  * Copy keys from one btree block to another.
1283  */
1284 STATIC void
1285 xfs_btree_copy_keys(
1286         struct xfs_btree_cur    *cur,
1287         union xfs_btree_key     *dst_key,
1288         union xfs_btree_key     *src_key,
1289         int                     numkeys)
1290 {
1291         ASSERT(numkeys >= 0);
1292         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1293 }
1294
1295 /*
1296  * Copy records from one btree block to another.
1297  */
1298 STATIC void
1299 xfs_btree_copy_recs(
1300         struct xfs_btree_cur    *cur,
1301         union xfs_btree_rec     *dst_rec,
1302         union xfs_btree_rec     *src_rec,
1303         int                     numrecs)
1304 {
1305         ASSERT(numrecs >= 0);
1306         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1307 }
1308
1309 /*
1310  * Copy block pointers from one btree block to another.
1311  */
1312 STATIC void
1313 xfs_btree_copy_ptrs(
1314         struct xfs_btree_cur    *cur,
1315         union xfs_btree_ptr     *dst_ptr,
1316         union xfs_btree_ptr     *src_ptr,
1317         int                     numptrs)
1318 {
1319         ASSERT(numptrs >= 0);
1320         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1321 }
1322
1323 /*
1324  * Shift keys one index left/right inside a single btree block.
1325  */
1326 STATIC void
1327 xfs_btree_shift_keys(
1328         struct xfs_btree_cur    *cur,
1329         union xfs_btree_key     *key,
1330         int                     dir,
1331         int                     numkeys)
1332 {
1333         char                    *dst_key;
1334
1335         ASSERT(numkeys >= 0);
1336         ASSERT(dir == 1 || dir == -1);
1337
1338         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1339         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1340 }
1341
1342 /*
1343  * Shift records one index left/right inside a single btree block.
1344  */
1345 STATIC void
1346 xfs_btree_shift_recs(
1347         struct xfs_btree_cur    *cur,
1348         union xfs_btree_rec     *rec,
1349         int                     dir,
1350         int                     numrecs)
1351 {
1352         char                    *dst_rec;
1353
1354         ASSERT(numrecs >= 0);
1355         ASSERT(dir == 1 || dir == -1);
1356
1357         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1358         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1359 }
1360
1361 /*
1362  * Shift block pointers one index left/right inside a single btree block.
1363  */
1364 STATIC void
1365 xfs_btree_shift_ptrs(
1366         struct xfs_btree_cur    *cur,
1367         union xfs_btree_ptr     *ptr,
1368         int                     dir,
1369         int                     numptrs)
1370 {
1371         char                    *dst_ptr;
1372
1373         ASSERT(numptrs >= 0);
1374         ASSERT(dir == 1 || dir == -1);
1375
1376         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1377         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379
1380 /*
1381  * Log key values from the btree block.
1382  */
1383 STATIC void
1384 xfs_btree_log_keys(
1385         struct xfs_btree_cur    *cur,
1386         struct xfs_buf          *bp,
1387         int                     first,
1388         int                     last)
1389 {
1390         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1391         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1392
1393         if (bp) {
1394                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1395                 xfs_trans_log_buf(cur->bc_tp, bp,
1396                                   xfs_btree_key_offset(cur, first),
1397                                   xfs_btree_key_offset(cur, last + 1) - 1);
1398         } else {
1399                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1400                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1401         }
1402
1403         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1404 }
1405
1406 /*
1407  * Log record values from the btree block.
1408  */
1409 void
1410 xfs_btree_log_recs(
1411         struct xfs_btree_cur    *cur,
1412         struct xfs_buf          *bp,
1413         int                     first,
1414         int                     last)
1415 {
1416         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1417         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1418
1419         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420         xfs_trans_log_buf(cur->bc_tp, bp,
1421                           xfs_btree_rec_offset(cur, first),
1422                           xfs_btree_rec_offset(cur, last + 1) - 1);
1423
1424         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1425 }
1426
1427 /*
1428  * Log block pointer fields from a btree block (nonleaf).
1429  */
1430 STATIC void
1431 xfs_btree_log_ptrs(
1432         struct xfs_btree_cur    *cur,   /* btree cursor */
1433         struct xfs_buf          *bp,    /* buffer containing btree block */
1434         int                     first,  /* index of first pointer to log */
1435         int                     last)   /* index of last pointer to log */
1436 {
1437         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1438         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1439
1440         if (bp) {
1441                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1442                 int                     level = xfs_btree_get_level(block);
1443
1444                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445                 xfs_trans_log_buf(cur->bc_tp, bp,
1446                                 xfs_btree_ptr_offset(cur, first, level),
1447                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448         } else {
1449                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1450                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1451         }
1452
1453         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1454 }
1455
1456 /*
1457  * Log fields from a btree block header.
1458  */
1459 void
1460 xfs_btree_log_block(
1461         struct xfs_btree_cur    *cur,   /* btree cursor */
1462         struct xfs_buf          *bp,    /* buffer containing btree block */
1463         int                     fields) /* mask of fields: XFS_BB_... */
1464 {
1465         int                     first;  /* first byte offset logged */
1466         int                     last;   /* last byte offset logged */
1467         static const short      soffsets[] = {  /* table of offsets (short) */
1468                 offsetof(struct xfs_btree_block, bb_magic),
1469                 offsetof(struct xfs_btree_block, bb_level),
1470                 offsetof(struct xfs_btree_block, bb_numrecs),
1471                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1472                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1473                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1474                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1475                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1476                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1477                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1478                 XFS_BTREE_SBLOCK_CRC_LEN
1479         };
1480         static const short      loffsets[] = {  /* table of offsets (long) */
1481                 offsetof(struct xfs_btree_block, bb_magic),
1482                 offsetof(struct xfs_btree_block, bb_level),
1483                 offsetof(struct xfs_btree_block, bb_numrecs),
1484                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1485                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1486                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1487                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1488                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1489                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1490                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1491                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1492                 XFS_BTREE_LBLOCK_CRC_LEN
1493         };
1494
1495         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1496         XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1497
1498         if (bp) {
1499                 int nbits;
1500
1501                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1502                         /*
1503                          * We don't log the CRC when updating a btree
1504                          * block but instead recreate it during log
1505                          * recovery.  As the log buffers have checksums
1506                          * of their own this is safe and avoids logging a crc
1507                          * update in a lot of places.
1508                          */
1509                         if (fields == XFS_BB_ALL_BITS)
1510                                 fields = XFS_BB_ALL_BITS_CRC;
1511                         nbits = XFS_BB_NUM_BITS_CRC;
1512                 } else {
1513                         nbits = XFS_BB_NUM_BITS;
1514                 }
1515                 xfs_btree_offsets(fields,
1516                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1517                                         loffsets : soffsets,
1518                                   nbits, &first, &last);
1519                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1521         } else {
1522                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1523                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1524         }
1525
1526         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1527 }
1528
1529 /*
1530  * Increment cursor by one record at the level.
1531  * For nonzero levels the leaf-ward information is untouched.
1532  */
1533 int                                             /* error */
1534 xfs_btree_increment(
1535         struct xfs_btree_cur    *cur,
1536         int                     level,
1537         int                     *stat)          /* success/failure */
1538 {
1539         struct xfs_btree_block  *block;
1540         union xfs_btree_ptr     ptr;
1541         struct xfs_buf          *bp;
1542         int                     error;          /* error return value */
1543         int                     lev;
1544
1545         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1546         XFS_BTREE_TRACE_ARGI(cur, level);
1547
1548         ASSERT(level < cur->bc_nlevels);
1549
1550         /* Read-ahead to the right at this level. */
1551         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1552
1553         /* Get a pointer to the btree block. */
1554         block = xfs_btree_get_block(cur, level, &bp);
1555
1556 #ifdef DEBUG
1557         error = xfs_btree_check_block(cur, block, level, bp);
1558         if (error)
1559                 goto error0;
1560 #endif
1561
1562         /* We're done if we remain in the block after the increment. */
1563         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1564                 goto out1;
1565
1566         /* Fail if we just went off the right edge of the tree. */
1567         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1568         if (xfs_btree_ptr_is_null(cur, &ptr))
1569                 goto out0;
1570
1571         XFS_BTREE_STATS_INC(cur, increment);
1572
1573         /*
1574          * March up the tree incrementing pointers.
1575          * Stop when we don't go off the right edge of a block.
1576          */
1577         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1578                 block = xfs_btree_get_block(cur, lev, &bp);
1579
1580 #ifdef DEBUG
1581                 error = xfs_btree_check_block(cur, block, lev, bp);
1582                 if (error)
1583                         goto error0;
1584 #endif
1585
1586                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1587                         break;
1588
1589                 /* Read-ahead the right block for the next loop. */
1590                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1591         }
1592
1593         /*
1594          * If we went off the root then we are either seriously
1595          * confused or have the tree root in an inode.
1596          */
1597         if (lev == cur->bc_nlevels) {
1598                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1599                         goto out0;
1600                 ASSERT(0);
1601                 error = -EFSCORRUPTED;
1602                 goto error0;
1603         }
1604         ASSERT(lev < cur->bc_nlevels);
1605
1606         /*
1607          * Now walk back down the tree, fixing up the cursor's buffer
1608          * pointers and key numbers.
1609          */
1610         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1611                 union xfs_btree_ptr     *ptrp;
1612
1613                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1614                 --lev;
1615                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1616                 if (error)
1617                         goto error0;
1618
1619                 xfs_btree_setbuf(cur, lev, bp);
1620                 cur->bc_ptrs[lev] = 1;
1621         }
1622 out1:
1623         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1624         *stat = 1;
1625         return 0;
1626
1627 out0:
1628         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1629         *stat = 0;
1630         return 0;
1631
1632 error0:
1633         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1634         return error;
1635 }
1636
1637 /*
1638  * Decrement cursor by one record at the level.
1639  * For nonzero levels the leaf-ward information is untouched.
1640  */
1641 int                                             /* error */
1642 xfs_btree_decrement(
1643         struct xfs_btree_cur    *cur,
1644         int                     level,
1645         int                     *stat)          /* success/failure */
1646 {
1647         struct xfs_btree_block  *block;
1648         xfs_buf_t               *bp;
1649         int                     error;          /* error return value */
1650         int                     lev;
1651         union xfs_btree_ptr     ptr;
1652
1653         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1654         XFS_BTREE_TRACE_ARGI(cur, level);
1655
1656         ASSERT(level < cur->bc_nlevels);
1657
1658         /* Read-ahead to the left at this level. */
1659         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1660
1661         /* We're done if we remain in the block after the decrement. */
1662         if (--cur->bc_ptrs[level] > 0)
1663                 goto out1;
1664
1665         /* Get a pointer to the btree block. */
1666         block = xfs_btree_get_block(cur, level, &bp);
1667
1668 #ifdef DEBUG
1669         error = xfs_btree_check_block(cur, block, level, bp);
1670         if (error)
1671                 goto error0;
1672 #endif
1673
1674         /* Fail if we just went off the left edge of the tree. */
1675         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1676         if (xfs_btree_ptr_is_null(cur, &ptr))
1677                 goto out0;
1678
1679         XFS_BTREE_STATS_INC(cur, decrement);
1680
1681         /*
1682          * March up the tree decrementing pointers.
1683          * Stop when we don't go off the left edge of a block.
1684          */
1685         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1686                 if (--cur->bc_ptrs[lev] > 0)
1687                         break;
1688                 /* Read-ahead the left block for the next loop. */
1689                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1690         }
1691
1692         /*
1693          * If we went off the root then we are seriously confused.
1694          * or the root of the tree is in an inode.
1695          */
1696         if (lev == cur->bc_nlevels) {
1697                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1698                         goto out0;
1699                 ASSERT(0);
1700                 error = -EFSCORRUPTED;
1701                 goto error0;
1702         }
1703         ASSERT(lev < cur->bc_nlevels);
1704
1705         /*
1706          * Now walk back down the tree, fixing up the cursor's buffer
1707          * pointers and key numbers.
1708          */
1709         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1710                 union xfs_btree_ptr     *ptrp;
1711
1712                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1713                 --lev;
1714                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1715                 if (error)
1716                         goto error0;
1717                 xfs_btree_setbuf(cur, lev, bp);
1718                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1719         }
1720 out1:
1721         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1722         *stat = 1;
1723         return 0;
1724
1725 out0:
1726         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1727         *stat = 0;
1728         return 0;
1729
1730 error0:
1731         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1732         return error;
1733 }
1734
1735 STATIC int
1736 xfs_btree_lookup_get_block(
1737         struct xfs_btree_cur    *cur,   /* btree cursor */
1738         int                     level,  /* level in the btree */
1739         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1740         struct xfs_btree_block  **blkp) /* return btree block */
1741 {
1742         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1743         int                     error = 0;
1744
1745         /* special case the root block if in an inode */
1746         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1747             (level == cur->bc_nlevels - 1)) {
1748                 *blkp = xfs_btree_get_iroot(cur);
1749                 return 0;
1750         }
1751
1752         /*
1753          * If the old buffer at this level for the disk address we are
1754          * looking for re-use it.
1755          *
1756          * Otherwise throw it away and get a new one.
1757          */
1758         bp = cur->bc_bufs[level];
1759         if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1760                 *blkp = XFS_BUF_TO_BLOCK(bp);
1761                 return 0;
1762         }
1763
1764         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1765         if (error)
1766                 return error;
1767
1768         xfs_btree_setbuf(cur, level, bp);
1769         return 0;
1770 }
1771
1772 /*
1773  * Get current search key.  For level 0 we don't actually have a key
1774  * structure so we make one up from the record.  For all other levels
1775  * we just return the right key.
1776  */
1777 STATIC union xfs_btree_key *
1778 xfs_lookup_get_search_key(
1779         struct xfs_btree_cur    *cur,
1780         int                     level,
1781         int                     keyno,
1782         struct xfs_btree_block  *block,
1783         union xfs_btree_key     *kp)
1784 {
1785         if (level == 0) {
1786                 cur->bc_ops->init_key_from_rec(kp,
1787                                 xfs_btree_rec_addr(cur, keyno, block));
1788                 return kp;
1789         }
1790
1791         return xfs_btree_key_addr(cur, keyno, block);
1792 }
1793
1794 /*
1795  * Lookup the record.  The cursor is made to point to it, based on dir.
1796  * stat is set to 0 if can't find any such record, 1 for success.
1797  */
1798 int                                     /* error */
1799 xfs_btree_lookup(
1800         struct xfs_btree_cur    *cur,   /* btree cursor */
1801         xfs_lookup_t            dir,    /* <=, ==, or >= */
1802         int                     *stat)  /* success/failure */
1803 {
1804         struct xfs_btree_block  *block; /* current btree block */
1805         __int64_t               diff;   /* difference for the current key */
1806         int                     error;  /* error return value */
1807         int                     keyno;  /* current key number */
1808         int                     level;  /* level in the btree */
1809         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1810         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1811
1812         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1813         XFS_BTREE_TRACE_ARGI(cur, dir);
1814
1815         XFS_BTREE_STATS_INC(cur, lookup);
1816
1817         /* No such thing as a zero-level tree. */
1818         if (cur->bc_nlevels == 0)
1819                 return -EFSCORRUPTED;
1820
1821         block = NULL;
1822         keyno = 0;
1823
1824         /* initialise start pointer from cursor */
1825         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1826         pp = &ptr;
1827
1828         /*
1829          * Iterate over each level in the btree, starting at the root.
1830          * For each level above the leaves, find the key we need, based
1831          * on the lookup record, then follow the corresponding block
1832          * pointer down to the next level.
1833          */
1834         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1835                 /* Get the block we need to do the lookup on. */
1836                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1837                 if (error)
1838                         goto error0;
1839
1840                 if (diff == 0) {
1841                         /*
1842                          * If we already had a key match at a higher level, we
1843                          * know we need to use the first entry in this block.
1844                          */
1845                         keyno = 1;
1846                 } else {
1847                         /* Otherwise search this block. Do a binary search. */
1848
1849                         int     high;   /* high entry number */
1850                         int     low;    /* low entry number */
1851
1852                         /* Set low and high entry numbers, 1-based. */
1853                         low = 1;
1854                         high = xfs_btree_get_numrecs(block);
1855                         if (!high) {
1856                                 /* Block is empty, must be an empty leaf. */
1857                                 ASSERT(level == 0 && cur->bc_nlevels == 1);
1858
1859                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1860                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1861                                 *stat = 0;
1862                                 return 0;
1863                         }
1864
1865                         /* Binary search the block. */
1866                         while (low <= high) {
1867                                 union xfs_btree_key     key;
1868                                 union xfs_btree_key     *kp;
1869
1870                                 XFS_BTREE_STATS_INC(cur, compare);
1871
1872                                 /* keyno is average of low and high. */
1873                                 keyno = (low + high) >> 1;
1874
1875                                 /* Get current search key */
1876                                 kp = xfs_lookup_get_search_key(cur, level,
1877                                                 keyno, block, &key);
1878
1879                                 /*
1880                                  * Compute difference to get next direction:
1881                                  *  - less than, move right
1882                                  *  - greater than, move left
1883                                  *  - equal, we're done
1884                                  */
1885                                 diff = cur->bc_ops->key_diff(cur, kp);
1886                                 if (diff < 0)
1887                                         low = keyno + 1;
1888                                 else if (diff > 0)
1889                                         high = keyno - 1;
1890                                 else
1891                                         break;
1892                         }
1893                 }
1894
1895                 /*
1896                  * If there are more levels, set up for the next level
1897                  * by getting the block number and filling in the cursor.
1898                  */
1899                 if (level > 0) {
1900                         /*
1901                          * If we moved left, need the previous key number,
1902                          * unless there isn't one.
1903                          */
1904                         if (diff > 0 && --keyno < 1)
1905                                 keyno = 1;
1906                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1907
1908 #ifdef DEBUG
1909                         error = xfs_btree_check_ptr(cur, pp, 0, level);
1910                         if (error)
1911                                 goto error0;
1912 #endif
1913                         cur->bc_ptrs[level] = keyno;
1914                 }
1915         }
1916
1917         /* Done with the search. See if we need to adjust the results. */
1918         if (dir != XFS_LOOKUP_LE && diff < 0) {
1919                 keyno++;
1920                 /*
1921                  * If ge search and we went off the end of the block, but it's
1922                  * not the last block, we're in the wrong block.
1923                  */
1924                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1925                 if (dir == XFS_LOOKUP_GE &&
1926                     keyno > xfs_btree_get_numrecs(block) &&
1927                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1928                         int     i;
1929
1930                         cur->bc_ptrs[0] = keyno;
1931                         error = xfs_btree_increment(cur, 0, &i);
1932                         if (error)
1933                                 goto error0;
1934                         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1935                         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1936                         *stat = 1;
1937                         return 0;
1938                 }
1939         } else if (dir == XFS_LOOKUP_LE && diff > 0)
1940                 keyno--;
1941         cur->bc_ptrs[0] = keyno;
1942
1943         /* Return if we succeeded or not. */
1944         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1945                 *stat = 0;
1946         else if (dir != XFS_LOOKUP_EQ || diff == 0)
1947                 *stat = 1;
1948         else
1949                 *stat = 0;
1950         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1951         return 0;
1952
1953 error0:
1954         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1955         return error;
1956 }
1957
1958 /* Find the high key storage area from a regular key. */
1959 STATIC union xfs_btree_key *
1960 xfs_btree_high_key_from_key(
1961         struct xfs_btree_cur    *cur,
1962         union xfs_btree_key     *key)
1963 {
1964         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1965         return (union xfs_btree_key *)((char *)key +
1966                         (cur->bc_ops->key_len / 2));
1967 }
1968
1969 /* Determine the low (and high if overlapped) keys of a leaf block */
1970 STATIC void
1971 xfs_btree_get_leaf_keys(
1972         struct xfs_btree_cur    *cur,
1973         struct xfs_btree_block  *block,
1974         union xfs_btree_key     *key)
1975 {
1976         union xfs_btree_key     max_hkey;
1977         union xfs_btree_key     hkey;
1978         union xfs_btree_rec     *rec;
1979         union xfs_btree_key     *high;
1980         int                     n;
1981
1982         rec = xfs_btree_rec_addr(cur, 1, block);
1983         cur->bc_ops->init_key_from_rec(key, rec);
1984
1985         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1986
1987                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1988                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1989                         rec = xfs_btree_rec_addr(cur, n, block);
1990                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1991                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1992                                         > 0)
1993                                 max_hkey = hkey;
1994                 }
1995
1996                 high = xfs_btree_high_key_from_key(cur, key);
1997                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1998         }
1999 }
2000
2001 /* Determine the low (and high if overlapped) keys of a node block */
2002 STATIC void
2003 xfs_btree_get_node_keys(
2004         struct xfs_btree_cur    *cur,
2005         struct xfs_btree_block  *block,
2006         union xfs_btree_key     *key)
2007 {
2008         union xfs_btree_key     *hkey;
2009         union xfs_btree_key     *max_hkey;
2010         union xfs_btree_key     *high;
2011         int                     n;
2012
2013         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2014                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2015                                 cur->bc_ops->key_len / 2);
2016
2017                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2018                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2019                         hkey = xfs_btree_high_key_addr(cur, n, block);
2020                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2021                                 max_hkey = hkey;
2022                 }
2023
2024                 high = xfs_btree_high_key_from_key(cur, key);
2025                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2026         } else {
2027                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2028                                 cur->bc_ops->key_len);
2029         }
2030 }
2031
2032 /* Derive the keys for any btree block. */
2033 STATIC void
2034 xfs_btree_get_keys(
2035         struct xfs_btree_cur    *cur,
2036         struct xfs_btree_block  *block,
2037         union xfs_btree_key     *key)
2038 {
2039         if (be16_to_cpu(block->bb_level) == 0)
2040                 xfs_btree_get_leaf_keys(cur, block, key);
2041         else
2042                 xfs_btree_get_node_keys(cur, block, key);
2043 }
2044
2045 /*
2046  * Decide if we need to update the parent keys of a btree block.  For
2047  * a standard btree this is only necessary if we're updating the first
2048  * record/key.  For an overlapping btree, we must always update the
2049  * keys because the highest key can be in any of the records or keys
2050  * in the block.
2051  */
2052 static inline bool
2053 xfs_btree_needs_key_update(
2054         struct xfs_btree_cur    *cur,
2055         int                     ptr)
2056 {
2057         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2058 }
2059
2060 /*
2061  * Update the low and high parent keys of the given level, progressing
2062  * towards the root.  If force_all is false, stop if the keys for a given
2063  * level do not need updating.
2064  */
2065 STATIC int
2066 __xfs_btree_updkeys(
2067         struct xfs_btree_cur    *cur,
2068         int                     level,
2069         struct xfs_btree_block  *block,
2070         struct xfs_buf          *bp0,
2071         bool                    force_all)
2072 {
2073         union xfs_btree_bigkey  key;    /* keys from current level */
2074         union xfs_btree_key     *lkey;  /* keys from the next level up */
2075         union xfs_btree_key     *hkey;
2076         union xfs_btree_key     *nlkey; /* keys from the next level up */
2077         union xfs_btree_key     *nhkey;
2078         struct xfs_buf          *bp;
2079         int                     ptr;
2080
2081         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2082
2083         /* Exit if there aren't any parent levels to update. */
2084         if (level + 1 >= cur->bc_nlevels)
2085                 return 0;
2086
2087         trace_xfs_btree_updkeys(cur, level, bp0);
2088
2089         lkey = (union xfs_btree_key *)&key;
2090         hkey = xfs_btree_high_key_from_key(cur, lkey);
2091         xfs_btree_get_keys(cur, block, lkey);
2092         for (level++; level < cur->bc_nlevels; level++) {
2093 #ifdef DEBUG
2094                 int             error;
2095 #endif
2096                 block = xfs_btree_get_block(cur, level, &bp);
2097                 trace_xfs_btree_updkeys(cur, level, bp);
2098 #ifdef DEBUG
2099                 error = xfs_btree_check_block(cur, block, level, bp);
2100                 if (error) {
2101                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2102                         return error;
2103                 }
2104 #endif
2105                 ptr = cur->bc_ptrs[level];
2106                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2107                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2108                 if (!force_all &&
2109                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2110                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2111                         break;
2112                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2113                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2114                 if (level + 1 >= cur->bc_nlevels)
2115                         break;
2116                 xfs_btree_get_node_keys(cur, block, lkey);
2117         }
2118
2119         return 0;
2120 }
2121
2122 /* Update all the keys from some level in cursor back to the root. */
2123 STATIC int
2124 xfs_btree_updkeys_force(
2125         struct xfs_btree_cur    *cur,
2126         int                     level)
2127 {
2128         struct xfs_buf          *bp;
2129         struct xfs_btree_block  *block;
2130
2131         block = xfs_btree_get_block(cur, level, &bp);
2132         return __xfs_btree_updkeys(cur, level, block, bp, true);
2133 }
2134
2135 /*
2136  * Update the parent keys of the given level, progressing towards the root.
2137  */
2138 STATIC int
2139 xfs_btree_update_keys(
2140         struct xfs_btree_cur    *cur,
2141         int                     level)
2142 {
2143         struct xfs_btree_block  *block;
2144         struct xfs_buf          *bp;
2145         union xfs_btree_key     *kp;
2146         union xfs_btree_key     key;
2147         int                     ptr;
2148
2149         ASSERT(level >= 0);
2150
2151         block = xfs_btree_get_block(cur, level, &bp);
2152         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2153                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2154
2155         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2156         XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2157
2158         /*
2159          * Go up the tree from this level toward the root.
2160          * At each level, update the key value to the value input.
2161          * Stop when we reach a level where the cursor isn't pointing
2162          * at the first entry in the block.
2163          */
2164         xfs_btree_get_keys(cur, block, &key);
2165         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2166 #ifdef DEBUG
2167                 int             error;
2168 #endif
2169                 block = xfs_btree_get_block(cur, level, &bp);
2170 #ifdef DEBUG
2171                 error = xfs_btree_check_block(cur, block, level, bp);
2172                 if (error) {
2173                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2174                         return error;
2175                 }
2176 #endif
2177                 ptr = cur->bc_ptrs[level];
2178                 kp = xfs_btree_key_addr(cur, ptr, block);
2179                 xfs_btree_copy_keys(cur, kp, &key, 1);
2180                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2181         }
2182
2183         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2184         return 0;
2185 }
2186
2187 /*
2188  * Update the record referred to by cur to the value in the
2189  * given record. This either works (return 0) or gets an
2190  * EFSCORRUPTED error.
2191  */
2192 int
2193 xfs_btree_update(
2194         struct xfs_btree_cur    *cur,
2195         union xfs_btree_rec     *rec)
2196 {
2197         struct xfs_btree_block  *block;
2198         struct xfs_buf          *bp;
2199         int                     error;
2200         int                     ptr;
2201         union xfs_btree_rec     *rp;
2202
2203         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2204         XFS_BTREE_TRACE_ARGR(cur, rec);
2205
2206         /* Pick up the current block. */
2207         block = xfs_btree_get_block(cur, 0, &bp);
2208
2209 #ifdef DEBUG
2210         error = xfs_btree_check_block(cur, block, 0, bp);
2211         if (error)
2212                 goto error0;
2213 #endif
2214         /* Get the address of the rec to be updated. */
2215         ptr = cur->bc_ptrs[0];
2216         rp = xfs_btree_rec_addr(cur, ptr, block);
2217
2218         /* Fill in the new contents and log them. */
2219         xfs_btree_copy_recs(cur, rp, rec, 1);
2220         xfs_btree_log_recs(cur, bp, ptr, ptr);
2221
2222         /*
2223          * If we are tracking the last record in the tree and
2224          * we are at the far right edge of the tree, update it.
2225          */
2226         if (xfs_btree_is_lastrec(cur, block, 0)) {
2227                 cur->bc_ops->update_lastrec(cur, block, rec,
2228                                             ptr, LASTREC_UPDATE);
2229         }
2230
2231         /* Pass new key value up to our parent. */
2232         if (xfs_btree_needs_key_update(cur, ptr)) {
2233                 error = xfs_btree_update_keys(cur, 0);
2234                 if (error)
2235                         goto error0;
2236         }
2237
2238         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2239         return 0;
2240
2241 error0:
2242         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2243         return error;
2244 }
2245
2246 /*
2247  * Move 1 record left from cur/level if possible.
2248  * Update cur to reflect the new path.
2249  */
2250 STATIC int                                      /* error */
2251 xfs_btree_lshift(
2252         struct xfs_btree_cur    *cur,
2253         int                     level,
2254         int                     *stat)          /* success/failure */
2255 {
2256         struct xfs_buf          *lbp;           /* left buffer pointer */
2257         struct xfs_btree_block  *left;          /* left btree block */
2258         int                     lrecs;          /* left record count */
2259         struct xfs_buf          *rbp;           /* right buffer pointer */
2260         struct xfs_btree_block  *right;         /* right btree block */
2261         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2262         int                     rrecs;          /* right record count */
2263         union xfs_btree_ptr     lptr;           /* left btree pointer */
2264         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2265         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2266         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2267         int                     error;          /* error return value */
2268         int                     i;
2269
2270         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2271         XFS_BTREE_TRACE_ARGI(cur, level);
2272
2273         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2274             level == cur->bc_nlevels - 1)
2275                 goto out0;
2276
2277         /* Set up variables for this block as "right". */
2278         right = xfs_btree_get_block(cur, level, &rbp);
2279
2280 #ifdef DEBUG
2281         error = xfs_btree_check_block(cur, right, level, rbp);
2282         if (error)
2283                 goto error0;
2284 #endif
2285
2286         /* If we've got no left sibling then we can't shift an entry left. */
2287         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2288         if (xfs_btree_ptr_is_null(cur, &lptr))
2289                 goto out0;
2290
2291         /*
2292          * If the cursor entry is the one that would be moved, don't
2293          * do it... it's too complicated.
2294          */
2295         if (cur->bc_ptrs[level] <= 1)
2296                 goto out0;
2297
2298         /* Set up the left neighbor as "left". */
2299         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2300         if (error)
2301                 goto error0;
2302
2303         /* If it's full, it can't take another entry. */
2304         lrecs = xfs_btree_get_numrecs(left);
2305         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2306                 goto out0;
2307
2308         rrecs = xfs_btree_get_numrecs(right);
2309
2310         /*
2311          * We add one entry to the left side and remove one for the right side.
2312          * Account for it here, the changes will be updated on disk and logged
2313          * later.
2314          */
2315         lrecs++;
2316         rrecs--;
2317
2318         XFS_BTREE_STATS_INC(cur, lshift);
2319         XFS_BTREE_STATS_ADD(cur, moves, 1);
2320
2321         /*
2322          * If non-leaf, copy a key and a ptr to the left block.
2323          * Log the changes to the left block.
2324          */
2325         if (level > 0) {
2326                 /* It's a non-leaf.  Move keys and pointers. */
2327                 union xfs_btree_key     *lkp;   /* left btree key */
2328                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2329
2330                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2331                 rkp = xfs_btree_key_addr(cur, 1, right);
2332
2333                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2334                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2335 #ifdef DEBUG
2336                 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2337                 if (error)
2338                         goto error0;
2339 #endif
2340                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2341                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2342
2343                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2344                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2345
2346                 ASSERT(cur->bc_ops->keys_inorder(cur,
2347                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2348         } else {
2349                 /* It's a leaf.  Move records.  */
2350                 union xfs_btree_rec     *lrp;   /* left record pointer */
2351
2352                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2353                 rrp = xfs_btree_rec_addr(cur, 1, right);
2354
2355                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2356                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2357
2358                 ASSERT(cur->bc_ops->recs_inorder(cur,
2359                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2360         }
2361
2362         xfs_btree_set_numrecs(left, lrecs);
2363         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2364
2365         xfs_btree_set_numrecs(right, rrecs);
2366         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2367
2368         /*
2369          * Slide the contents of right down one entry.
2370          */
2371         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2372         if (level > 0) {
2373                 /* It's a nonleaf. operate on keys and ptrs */
2374 #ifdef DEBUG
2375                 int                     i;              /* loop index */
2376
2377                 for (i = 0; i < rrecs; i++) {
2378                         error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2379                         if (error)
2380                                 goto error0;
2381                 }
2382 #endif
2383                 xfs_btree_shift_keys(cur,
2384                                 xfs_btree_key_addr(cur, 2, right),
2385                                 -1, rrecs);
2386                 xfs_btree_shift_ptrs(cur,
2387                                 xfs_btree_ptr_addr(cur, 2, right),
2388                                 -1, rrecs);
2389
2390                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2391                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2392         } else {
2393                 /* It's a leaf. operate on records */
2394                 xfs_btree_shift_recs(cur,
2395                         xfs_btree_rec_addr(cur, 2, right),
2396                         -1, rrecs);
2397                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2398         }
2399
2400         /*
2401          * Using a temporary cursor, update the parent key values of the
2402          * block on the left.
2403          */
2404         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2405                 error = xfs_btree_dup_cursor(cur, &tcur);
2406                 if (error)
2407                         goto error0;
2408                 i = xfs_btree_firstrec(tcur, level);
2409                 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2410
2411                 error = xfs_btree_decrement(tcur, level, &i);
2412                 if (error)
2413                         goto error1;
2414
2415                 /* Update the parent high keys of the left block, if needed. */
2416                 error = xfs_btree_update_keys(tcur, level);
2417                 if (error)
2418                         goto error1;
2419
2420                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2421         }
2422
2423         /* Update the parent keys of the right block. */
2424         error = xfs_btree_update_keys(cur, level);
2425         if (error)
2426                 goto error0;
2427
2428         /* Slide the cursor value left one. */
2429         cur->bc_ptrs[level]--;
2430
2431         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2432         *stat = 1;
2433         return 0;
2434
2435 out0:
2436         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2437         *stat = 0;
2438         return 0;
2439
2440 error0:
2441         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2442         return error;
2443
2444 error1:
2445         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2446         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2447         return error;
2448 }
2449
2450 /*
2451  * Move 1 record right from cur/level if possible.
2452  * Update cur to reflect the new path.
2453  */
2454 STATIC int                                      /* error */
2455 xfs_btree_rshift(
2456         struct xfs_btree_cur    *cur,
2457         int                     level,
2458         int                     *stat)          /* success/failure */
2459 {
2460         struct xfs_buf          *lbp;           /* left buffer pointer */
2461         struct xfs_btree_block  *left;          /* left btree block */
2462         struct xfs_buf          *rbp;           /* right buffer pointer */
2463         struct xfs_btree_block  *right;         /* right btree block */
2464         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2465         union xfs_btree_ptr     rptr;           /* right block pointer */
2466         union xfs_btree_key     *rkp;           /* right btree key */
2467         int                     rrecs;          /* right record count */
2468         int                     lrecs;          /* left record count */
2469         int                     error;          /* error return value */
2470         int                     i;              /* loop counter */
2471
2472         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2473         XFS_BTREE_TRACE_ARGI(cur, level);
2474
2475         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2476             (level == cur->bc_nlevels - 1))
2477                 goto out0;
2478
2479         /* Set up variables for this block as "left". */
2480         left = xfs_btree_get_block(cur, level, &lbp);
2481
2482 #ifdef DEBUG
2483         error = xfs_btree_check_block(cur, left, level, lbp);
2484         if (error)
2485                 goto error0;
2486 #endif
2487
2488         /* If we've got no right sibling then we can't shift an entry right. */
2489         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2490         if (xfs_btree_ptr_is_null(cur, &rptr))
2491                 goto out0;
2492
2493         /*
2494          * If the cursor entry is the one that would be moved, don't
2495          * do it... it's too complicated.
2496          */
2497         lrecs = xfs_btree_get_numrecs(left);
2498         if (cur->bc_ptrs[level] >= lrecs)
2499                 goto out0;
2500
2501         /* Set up the right neighbor as "right". */
2502         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2503         if (error)
2504                 goto error0;
2505
2506         /* If it's full, it can't take another entry. */
2507         rrecs = xfs_btree_get_numrecs(right);
2508         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2509                 goto out0;
2510
2511         XFS_BTREE_STATS_INC(cur, rshift);
2512         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2513
2514         /*
2515          * Make a hole at the start of the right neighbor block, then
2516          * copy the last left block entry to the hole.
2517          */
2518         if (level > 0) {
2519                 /* It's a nonleaf. make a hole in the keys and ptrs */
2520                 union xfs_btree_key     *lkp;
2521                 union xfs_btree_ptr     *lpp;
2522                 union xfs_btree_ptr     *rpp;
2523
2524                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2525                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2526                 rkp = xfs_btree_key_addr(cur, 1, right);
2527                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2528
2529 #ifdef DEBUG
2530                 for (i = rrecs - 1; i >= 0; i--) {
2531                         error = xfs_btree_check_ptr(cur, rpp, i, level);
2532                         if (error)
2533                                 goto error0;
2534                 }
2535 #endif
2536
2537                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2538                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2539
2540 #ifdef DEBUG
2541                 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2542                 if (error)
2543                         goto error0;
2544 #endif
2545
2546                 /* Now put the new data in, and log it. */
2547                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2548                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2549
2550                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2551                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2552
2553                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2554                         xfs_btree_key_addr(cur, 2, right)));
2555         } else {
2556                 /* It's a leaf. make a hole in the records */
2557                 union xfs_btree_rec     *lrp;
2558                 union xfs_btree_rec     *rrp;
2559
2560                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2561                 rrp = xfs_btree_rec_addr(cur, 1, right);
2562
2563                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2564
2565                 /* Now put the new data in, and log it. */
2566                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2567                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2568         }
2569
2570         /*
2571          * Decrement and log left's numrecs, bump and log right's numrecs.
2572          */
2573         xfs_btree_set_numrecs(left, --lrecs);
2574         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2575
2576         xfs_btree_set_numrecs(right, ++rrecs);
2577         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2578
2579         /*
2580          * Using a temporary cursor, update the parent key values of the
2581          * block on the right.
2582          */
2583         error = xfs_btree_dup_cursor(cur, &tcur);
2584         if (error)
2585                 goto error0;
2586         i = xfs_btree_lastrec(tcur, level);
2587         XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2588
2589         error = xfs_btree_increment(tcur, level, &i);
2590         if (error)
2591                 goto error1;
2592
2593         /* Update the parent high keys of the left block, if needed. */
2594         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2595                 error = xfs_btree_update_keys(cur, level);
2596                 if (error)
2597                         goto error1;
2598         }
2599
2600         /* Update the parent keys of the right block. */
2601         error = xfs_btree_update_keys(tcur, level);
2602         if (error)
2603                 goto error1;
2604
2605         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2606
2607         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2608         *stat = 1;
2609         return 0;
2610
2611 out0:
2612         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2613         *stat = 0;
2614         return 0;
2615
2616 error0:
2617         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2618         return error;
2619
2620 error1:
2621         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2622         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2623         return error;
2624 }
2625
2626 /*
2627  * Split cur/level block in half.
2628  * Return new block number and the key to its first
2629  * record (to be inserted into parent).
2630  */
2631 STATIC int                                      /* error */
2632 __xfs_btree_split(
2633         struct xfs_btree_cur    *cur,
2634         int                     level,
2635         union xfs_btree_ptr     *ptrp,
2636         union xfs_btree_key     *key,
2637         struct xfs_btree_cur    **curp,
2638         int                     *stat)          /* success/failure */
2639 {
2640         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2641         struct xfs_buf          *lbp;           /* left buffer pointer */
2642         struct xfs_btree_block  *left;          /* left btree block */
2643         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2644         struct xfs_buf          *rbp;           /* right buffer pointer */
2645         struct xfs_btree_block  *right;         /* right btree block */
2646         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2647         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2648         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2649         int                     lrecs;
2650         int                     rrecs;
2651         int                     src_index;
2652         int                     error;          /* error return value */
2653 #ifdef DEBUG
2654         int                     i;
2655 #endif
2656
2657         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2658         XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2659
2660         XFS_BTREE_STATS_INC(cur, split);
2661
2662         /* Set up left block (current one). */
2663         left = xfs_btree_get_block(cur, level, &lbp);
2664
2665 #ifdef DEBUG
2666         error = xfs_btree_check_block(cur, left, level, lbp);
2667         if (error)
2668                 goto error0;
2669 #endif
2670
2671         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2672
2673         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2674         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2675         if (error)
2676                 goto error0;
2677         if (*stat == 0)
2678                 goto out0;
2679         XFS_BTREE_STATS_INC(cur, alloc);
2680
2681         /* Set up the new block as "right". */
2682         error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2683         if (error)
2684                 goto error0;
2685
2686         /* Fill in the btree header for the new right block. */
2687         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2688
2689         /*
2690          * Split the entries between the old and the new block evenly.
2691          * Make sure that if there's an odd number of entries now, that
2692          * each new block will have the same number of entries.
2693          */
2694         lrecs = xfs_btree_get_numrecs(left);
2695         rrecs = lrecs / 2;
2696         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2697                 rrecs++;
2698         src_index = (lrecs - rrecs + 1);
2699
2700         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2701
2702         /* Adjust numrecs for the later get_*_keys() calls. */
2703         lrecs -= rrecs;
2704         xfs_btree_set_numrecs(left, lrecs);
2705         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2706
2707         /*
2708          * Copy btree block entries from the left block over to the
2709          * new block, the right. Update the right block and log the
2710          * changes.
2711          */
2712         if (level > 0) {
2713                 /* It's a non-leaf.  Move keys and pointers. */
2714                 union xfs_btree_key     *lkp;   /* left btree key */
2715                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2716                 union xfs_btree_key     *rkp;   /* right btree key */
2717                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2718
2719                 lkp = xfs_btree_key_addr(cur, src_index, left);
2720                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2721                 rkp = xfs_btree_key_addr(cur, 1, right);
2722                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2723
2724 #ifdef DEBUG
2725                 for (i = src_index; i < rrecs; i++) {
2726                         error = xfs_btree_check_ptr(cur, lpp, i, level);
2727                         if (error)
2728                                 goto error0;
2729                 }
2730 #endif
2731
2732                 /* Copy the keys & pointers to the new block. */
2733                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2734                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2735
2736                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2737                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2738
2739                 /* Stash the keys of the new block for later insertion. */
2740                 xfs_btree_get_node_keys(cur, right, key);
2741         } else {
2742                 /* It's a leaf.  Move records.  */
2743                 union xfs_btree_rec     *lrp;   /* left record pointer */
2744                 union xfs_btree_rec     *rrp;   /* right record pointer */
2745
2746                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2747                 rrp = xfs_btree_rec_addr(cur, 1, right);
2748
2749                 /* Copy records to the new block. */
2750                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2751                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2752
2753                 /* Stash the keys of the new block for later insertion. */
2754                 xfs_btree_get_leaf_keys(cur, right, key);
2755         }
2756
2757         /*
2758          * Find the left block number by looking in the buffer.
2759          * Adjust sibling pointers.
2760          */
2761         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2762         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2763         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2764         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2765
2766         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2767         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2768
2769         /*
2770          * If there's a block to the new block's right, make that block
2771          * point back to right instead of to left.
2772          */
2773         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2774                 error = xfs_btree_read_buf_block(cur, &rrptr,
2775                                                         0, &rrblock, &rrbp);
2776                 if (error)
2777                         goto error0;
2778                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2779                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2780         }
2781
2782         /* Update the parent high keys of the left block, if needed. */
2783         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2784                 error = xfs_btree_update_keys(cur, level);
2785                 if (error)
2786                         goto error0;
2787         }
2788
2789         /*
2790          * If the cursor is really in the right block, move it there.
2791          * If it's just pointing past the last entry in left, then we'll
2792          * insert there, so don't change anything in that case.
2793          */
2794         if (cur->bc_ptrs[level] > lrecs + 1) {
2795                 xfs_btree_setbuf(cur, level, rbp);
2796                 cur->bc_ptrs[level] -= lrecs;
2797         }
2798         /*
2799          * If there are more levels, we'll need another cursor which refers
2800          * the right block, no matter where this cursor was.
2801          */
2802         if (level + 1 < cur->bc_nlevels) {
2803                 error = xfs_btree_dup_cursor(cur, curp);
2804                 if (error)
2805                         goto error0;
2806                 (*curp)->bc_ptrs[level + 1]++;
2807         }
2808         *ptrp = rptr;
2809         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2810         *stat = 1;
2811         return 0;
2812 out0:
2813         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2814         *stat = 0;
2815         return 0;
2816
2817 error0:
2818         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2819         return error;
2820 }
2821
2822 struct xfs_btree_split_args {
2823         struct xfs_btree_cur    *cur;
2824         int                     level;
2825         union xfs_btree_ptr     *ptrp;
2826         union xfs_btree_key     *key;
2827         struct xfs_btree_cur    **curp;
2828         int                     *stat;          /* success/failure */
2829         int                     result;
2830         bool                    kswapd; /* allocation in kswapd context */
2831         struct completion       *done;
2832         struct work_struct      work;
2833 };
2834
2835 /*
2836  * Stack switching interfaces for allocation
2837  */
2838 static void
2839 xfs_btree_split_worker(
2840         struct work_struct      *work)
2841 {
2842         struct xfs_btree_split_args     *args = container_of(work,
2843                                                 struct xfs_btree_split_args, work);
2844         unsigned long           pflags;
2845         unsigned long           new_pflags = PF_FSTRANS;
2846
2847         /*
2848          * we are in a transaction context here, but may also be doing work
2849          * in kswapd context, and hence we may need to inherit that state
2850          * temporarily to ensure that we don't block waiting for memory reclaim
2851          * in any way.
2852          */
2853         if (args->kswapd)
2854                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2855
2856         current_set_flags_nested(&pflags, new_pflags);
2857
2858         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2859                                          args->key, args->curp, args->stat);
2860         complete(args->done);
2861
2862         current_restore_flags_nested(&pflags, new_pflags);
2863 }
2864
2865 /*
2866  * BMBT split requests often come in with little stack to work on. Push
2867  * them off to a worker thread so there is lots of stack to use. For the other
2868  * btree types, just call directly to avoid the context switch overhead here.
2869  */
2870 STATIC int                                      /* error */
2871 xfs_btree_split(
2872         struct xfs_btree_cur    *cur,
2873         int                     level,
2874         union xfs_btree_ptr     *ptrp,
2875         union xfs_btree_key     *key,
2876         struct xfs_btree_cur    **curp,
2877         int                     *stat)          /* success/failure */
2878 {
2879         struct xfs_btree_split_args     args;
2880         DECLARE_COMPLETION_ONSTACK(done);
2881
2882         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2883                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2884
2885         args.cur = cur;
2886         args.level = level;
2887         args.ptrp = ptrp;
2888         args.key = key;
2889         args.curp = curp;
2890         args.stat = stat;
2891         args.done = &done;
2892         args.kswapd = current_is_kswapd();
2893         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2894         queue_work(xfs_alloc_wq, &args.work);
2895         wait_for_completion(&done);
2896         destroy_work_on_stack(&args.work);
2897         return args.result;
2898 }
2899
2900
2901 /*
2902  * Copy the old inode root contents into a real block and make the
2903  * broot point to it.
2904  */
2905 int                                             /* error */
2906 xfs_btree_new_iroot(
2907         struct xfs_btree_cur    *cur,           /* btree cursor */
2908         int                     *logflags,      /* logging flags for inode */
2909         int                     *stat)          /* return status - 0 fail */
2910 {
2911         struct xfs_buf          *cbp;           /* buffer for cblock */
2912         struct xfs_btree_block  *block;         /* btree block */
2913         struct xfs_btree_block  *cblock;        /* child btree block */
2914         union xfs_btree_key     *ckp;           /* child key pointer */
2915         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2916         union xfs_btree_key     *kp;            /* pointer to btree key */
2917         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2918         union xfs_btree_ptr     nptr;           /* new block addr */
2919         int                     level;          /* btree level */
2920         int                     error;          /* error return code */
2921 #ifdef DEBUG
2922         int                     i;              /* loop counter */
2923 #endif
2924
2925         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2926         XFS_BTREE_STATS_INC(cur, newroot);
2927
2928         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2929
2930         level = cur->bc_nlevels - 1;
2931
2932         block = xfs_btree_get_iroot(cur);
2933         pp = xfs_btree_ptr_addr(cur, 1, block);
2934
2935         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2936         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2937         if (error)
2938                 goto error0;
2939         if (*stat == 0) {
2940                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2941                 return 0;
2942         }
2943         XFS_BTREE_STATS_INC(cur, alloc);
2944
2945         /* Copy the root into a real block. */
2946         error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2947         if (error)
2948                 goto error0;
2949
2950         /*
2951          * we can't just memcpy() the root in for CRC enabled btree blocks.
2952          * In that case have to also ensure the blkno remains correct
2953          */
2954         memcpy(cblock, block, xfs_btree_block_len(cur));
2955         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2956                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2957                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2958                 else
2959                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2960         }
2961
2962         be16_add_cpu(&block->bb_level, 1);
2963         xfs_btree_set_numrecs(block, 1);
2964         cur->bc_nlevels++;
2965         cur->bc_ptrs[level + 1] = 1;
2966
2967         kp = xfs_btree_key_addr(cur, 1, block);
2968         ckp = xfs_btree_key_addr(cur, 1, cblock);
2969         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2970
2971         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2972 #ifdef DEBUG
2973         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2974                 error = xfs_btree_check_ptr(cur, pp, i, level);
2975                 if (error)
2976                         goto error0;
2977         }
2978 #endif
2979         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2980
2981 #ifdef DEBUG
2982         error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2983         if (error)
2984                 goto error0;
2985 #endif
2986         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2987
2988         xfs_iroot_realloc(cur->bc_private.b.ip,
2989                           1 - xfs_btree_get_numrecs(cblock),
2990                           cur->bc_private.b.whichfork);
2991
2992         xfs_btree_setbuf(cur, level, cbp);
2993
2994         /*
2995          * Do all this logging at the end so that
2996          * the root is at the right level.
2997          */
2998         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2999         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3000         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3001
3002         *logflags |=
3003                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3004         *stat = 1;
3005         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3006         return 0;
3007 error0:
3008         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3009         return error;
3010 }
3011
3012 /*
3013  * Allocate a new root block, fill it in.
3014  */
3015 STATIC int                              /* error */
3016 xfs_btree_new_root(
3017         struct xfs_btree_cur    *cur,   /* btree cursor */
3018         int                     *stat)  /* success/failure */
3019 {
3020         struct xfs_btree_block  *block; /* one half of the old root block */
3021         struct xfs_buf          *bp;    /* buffer containing block */
3022         int                     error;  /* error return value */
3023         struct xfs_buf          *lbp;   /* left buffer pointer */
3024         struct xfs_btree_block  *left;  /* left btree block */
3025         struct xfs_buf          *nbp;   /* new (root) buffer */
3026         struct xfs_btree_block  *new;   /* new (root) btree block */
3027         int                     nptr;   /* new value for key index, 1 or 2 */
3028         struct xfs_buf          *rbp;   /* right buffer pointer */
3029         struct xfs_btree_block  *right; /* right btree block */
3030         union xfs_btree_ptr     rptr;
3031         union xfs_btree_ptr     lptr;
3032
3033         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3034         XFS_BTREE_STATS_INC(cur, newroot);
3035
3036         /* initialise our start point from the cursor */
3037         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3038
3039         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3040         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3041         if (error)
3042                 goto error0;
3043         if (*stat == 0)
3044                 goto out0;
3045         XFS_BTREE_STATS_INC(cur, alloc);
3046
3047         /* Set up the new block. */
3048         error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3049         if (error)
3050                 goto error0;
3051
3052         /* Set the root in the holding structure  increasing the level by 1. */
3053         cur->bc_ops->set_root(cur, &lptr, 1);
3054
3055         /*
3056          * At the previous root level there are now two blocks: the old root,
3057          * and the new block generated when it was split.  We don't know which
3058          * one the cursor is pointing at, so we set up variables "left" and
3059          * "right" for each case.
3060          */
3061         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3062
3063 #ifdef DEBUG
3064         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3065         if (error)
3066                 goto error0;
3067 #endif
3068
3069         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3070         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3071                 /* Our block is left, pick up the right block. */
3072                 lbp = bp;
3073                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3074                 left = block;
3075                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3076                 if (error)
3077                         goto error0;
3078                 bp = rbp;
3079                 nptr = 1;
3080         } else {
3081                 /* Our block is right, pick up the left block. */
3082                 rbp = bp;
3083                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3084                 right = block;
3085                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3086                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3087                 if (error)
3088                         goto error0;
3089                 bp = lbp;
3090                 nptr = 2;
3091         }
3092
3093         /* Fill in the new block's btree header and log it. */
3094         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3095         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3096         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3097                         !xfs_btree_ptr_is_null(cur, &rptr));
3098
3099         /* Fill in the key data in the new root. */
3100         if (xfs_btree_get_level(left) > 0) {
3101                 /*
3102                  * Get the keys for the left block's keys and put them directly
3103                  * in the parent block.  Do the same for the right block.
3104                  */
3105                 xfs_btree_get_node_keys(cur, left,
3106                                 xfs_btree_key_addr(cur, 1, new));
3107                 xfs_btree_get_node_keys(cur, right,
3108                                 xfs_btree_key_addr(cur, 2, new));
3109         } else {
3110                 /*
3111                  * Get the keys for the left block's records and put them
3112                  * directly in the parent block.  Do the same for the right
3113                  * block.
3114                  */
3115                 xfs_btree_get_leaf_keys(cur, left,
3116                         xfs_btree_key_addr(cur, 1, new));
3117                 xfs_btree_get_leaf_keys(cur, right,
3118                         xfs_btree_key_addr(cur, 2, new));
3119         }
3120         xfs_btree_log_keys(cur, nbp, 1, 2);
3121
3122         /* Fill in the pointer data in the new root. */
3123         xfs_btree_copy_ptrs(cur,
3124                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3125         xfs_btree_copy_ptrs(cur,
3126                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3127         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3128
3129         /* Fix up the cursor. */
3130         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3131         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3132         cur->bc_nlevels++;
3133         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3134         *stat = 1;
3135         return 0;
3136 error0:
3137         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3138         return error;
3139 out0:
3140         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3141         *stat = 0;
3142         return 0;
3143 }
3144
3145 STATIC int
3146 xfs_btree_make_block_unfull(
3147         struct xfs_btree_cur    *cur,   /* btree cursor */
3148         int                     level,  /* btree level */
3149         int                     numrecs,/* # of recs in block */
3150         int                     *oindex,/* old tree index */
3151         int                     *index, /* new tree index */
3152         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3153         struct xfs_btree_cur    **ncur, /* new btree cursor */
3154         union xfs_btree_key     *key,   /* key of new block */
3155         int                     *stat)
3156 {
3157         int                     error = 0;
3158
3159         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3160             level == cur->bc_nlevels - 1) {
3161                 struct xfs_inode *ip = cur->bc_private.b.ip;
3162
3163                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3164                         /* A root block that can be made bigger. */
3165                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3166                         *stat = 1;
3167                 } else {
3168                         /* A root block that needs replacing */
3169                         int     logflags = 0;
3170
3171                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3172                         if (error || *stat == 0)
3173                                 return error;
3174
3175                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3176                 }
3177
3178                 return 0;
3179         }
3180
3181         /* First, try shifting an entry to the right neighbor. */
3182         error = xfs_btree_rshift(cur, level, stat);
3183         if (error || *stat)
3184                 return error;
3185
3186         /* Next, try shifting an entry to the left neighbor. */
3187         error = xfs_btree_lshift(cur, level, stat);
3188         if (error)
3189                 return error;
3190
3191         if (*stat) {
3192                 *oindex = *index = cur->bc_ptrs[level];
3193                 return 0;
3194         }
3195
3196         /*
3197          * Next, try splitting the current block in half.
3198          *
3199          * If this works we have to re-set our variables because we
3200          * could be in a different block now.
3201          */
3202         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3203         if (error || *stat == 0)
3204                 return error;
3205
3206
3207         *index = cur->bc_ptrs[level];
3208         return 0;
3209 }
3210
3211 /*
3212  * Insert one record/level.  Return information to the caller
3213  * allowing the next level up to proceed if necessary.
3214  */
3215 STATIC int
3216 xfs_btree_insrec(
3217         struct xfs_btree_cur    *cur,   /* btree cursor */
3218         int                     level,  /* level to insert record at */
3219         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3220         union xfs_btree_rec     *rec,   /* record to insert */
3221         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3222         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3223         int                     *stat)  /* success/failure */
3224 {
3225         struct xfs_btree_block  *block; /* btree block */
3226         struct xfs_buf          *bp;    /* buffer for block */
3227         union xfs_btree_ptr     nptr;   /* new block ptr */
3228         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3229         union xfs_btree_bigkey  nkey;   /* new block key */
3230         union xfs_btree_key     *lkey;
3231         int                     optr;   /* old key/record index */
3232         int                     ptr;    /* key/record index */
3233         int                     numrecs;/* number of records */
3234         int                     error;  /* error return value */
3235 #ifdef DEBUG
3236         int                     i;
3237 #endif
3238         xfs_daddr_t             old_bn;
3239
3240         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3241         XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3242
3243         ncur = NULL;
3244         lkey = (union xfs_btree_key *)&nkey;
3245
3246         /*
3247          * If we have an external root pointer, and we've made it to the
3248          * root level, allocate a new root block and we're done.
3249          */
3250         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3251             (level >= cur->bc_nlevels)) {
3252                 error = xfs_btree_new_root(cur, stat);
3253                 xfs_btree_set_ptr_null(cur, ptrp);
3254
3255                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3256                 return error;
3257         }
3258
3259         /* If we're off the left edge, return failure. */
3260         ptr = cur->bc_ptrs[level];
3261         if (ptr == 0) {
3262                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3263                 *stat = 0;
3264                 return 0;
3265         }
3266
3267         optr = ptr;
3268
3269         XFS_BTREE_STATS_INC(cur, insrec);
3270
3271         /* Get pointers to the btree buffer and block. */
3272         block = xfs_btree_get_block(cur, level, &bp);
3273         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3274         numrecs = xfs_btree_get_numrecs(block);
3275
3276 #ifdef DEBUG
3277         error = xfs_btree_check_block(cur, block, level, bp);
3278         if (error)
3279                 goto error0;
3280
3281         /* Check that the new entry is being inserted in the right place. */
3282         if (ptr <= numrecs) {
3283                 if (level == 0) {
3284                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3285                                 xfs_btree_rec_addr(cur, ptr, block)));
3286                 } else {
3287                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3288                                 xfs_btree_key_addr(cur, ptr, block)));
3289                 }
3290         }
3291 #endif
3292
3293         /*
3294          * If the block is full, we can't insert the new entry until we
3295          * make the block un-full.
3296          */
3297         xfs_btree_set_ptr_null(cur, &nptr);
3298         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3299                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3300                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3301                 if (error || *stat == 0)
3302                         goto error0;
3303         }
3304
3305         /*
3306          * The current block may have changed if the block was
3307          * previously full and we have just made space in it.
3308          */
3309         block = xfs_btree_get_block(cur, level, &bp);
3310         numrecs = xfs_btree_get_numrecs(block);
3311
3312 #ifdef DEBUG
3313         error = xfs_btree_check_block(cur, block, level, bp);
3314         if (error)
3315                 return error;
3316 #endif
3317
3318         /*
3319          * At this point we know there's room for our new entry in the block
3320          * we're pointing at.
3321          */
3322         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3323
3324         if (level > 0) {
3325                 /* It's a nonleaf. make a hole in the keys and ptrs */
3326                 union xfs_btree_key     *kp;
3327                 union xfs_btree_ptr     *pp;
3328
3329                 kp = xfs_btree_key_addr(cur, ptr, block);
3330                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3331
3332 #ifdef DEBUG
3333                 for (i = numrecs - ptr; i >= 0; i--) {
3334                         error = xfs_btree_check_ptr(cur, pp, i, level);
3335                         if (error)
3336                                 return error;
3337                 }
3338 #endif
3339
3340                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3341                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3342
3343 #ifdef DEBUG
3344                 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3345                 if (error)
3346                         goto error0;
3347 #endif
3348
3349                 /* Now put the new data in, bump numrecs and log it. */
3350                 xfs_btree_copy_keys(cur, kp, key, 1);
3351                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3352                 numrecs++;
3353                 xfs_btree_set_numrecs(block, numrecs);
3354                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3355                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3356 #ifdef DEBUG
3357                 if (ptr < numrecs) {
3358                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3359                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3360                 }
3361 #endif
3362         } else {
3363                 /* It's a leaf. make a hole in the records */
3364                 union xfs_btree_rec             *rp;
3365
3366                 rp = xfs_btree_rec_addr(cur, ptr, block);
3367
3368                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3369
3370                 /* Now put the new data in, bump numrecs and log it. */
3371                 xfs_btree_copy_recs(cur, rp, rec, 1);
3372                 xfs_btree_set_numrecs(block, ++numrecs);
3373                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3374 #ifdef DEBUG
3375                 if (ptr < numrecs) {
3376                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3377                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3378                 }
3379 #endif
3380         }
3381
3382         /* Log the new number of records in the btree header. */
3383         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3384
3385         /*
3386          * If we just inserted into a new tree block, we have to
3387          * recalculate nkey here because nkey is out of date.
3388          *
3389          * Otherwise we're just updating an existing block (having shoved
3390          * some records into the new tree block), so use the regular key
3391          * update mechanism.
3392          */
3393         if (bp && bp->b_bn != old_bn) {
3394                 xfs_btree_get_keys(cur, block, lkey);
3395         } else if (xfs_btree_needs_key_update(cur, optr)) {
3396                 error = xfs_btree_update_keys(cur, level);
3397                 if (error)
3398                         goto error0;
3399         }
3400
3401         /*
3402          * If we are tracking the last record in the tree and
3403          * we are at the far right edge of the tree, update it.
3404          */
3405         if (xfs_btree_is_lastrec(cur, block, level)) {
3406                 cur->bc_ops->update_lastrec(cur, block, rec,
3407                                             ptr, LASTREC_INSREC);
3408         }
3409
3410         /*
3411          * Return the new block number, if any.
3412          * If there is one, give back a record value and a cursor too.
3413          */
3414         *ptrp = nptr;
3415         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3416                 xfs_btree_copy_keys(cur, key, lkey, 1);
3417                 *curp = ncur;
3418         }
3419
3420         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3421         *stat = 1;
3422         return 0;
3423
3424 error0:
3425         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3426         return error;
3427 }
3428
3429 /*
3430  * Insert the record at the point referenced by cur.
3431  *
3432  * A multi-level split of the tree on insert will invalidate the original
3433  * cursor.  All callers of this function should assume that the cursor is
3434  * no longer valid and revalidate it.
3435  */
3436 int
3437 xfs_btree_insert(
3438         struct xfs_btree_cur    *cur,
3439         int                     *stat)
3440 {
3441         int                     error;  /* error return value */
3442         int                     i;      /* result value, 0 for failure */
3443         int                     level;  /* current level number in btree */
3444         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3445         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3446         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3447         union xfs_btree_bigkey  bkey;   /* key of block to insert */
3448         union xfs_btree_key     *key;
3449         union xfs_btree_rec     rec;    /* record to insert */
3450
3451         level = 0;
3452         ncur = NULL;
3453         pcur = cur;
3454         key = (union xfs_btree_key *)&bkey;
3455
3456         xfs_btree_set_ptr_null(cur, &nptr);
3457
3458         /* Make a key out of the record data to be inserted, and save it. */
3459         cur->bc_ops->init_rec_from_cur(cur, &rec);
3460         cur->bc_ops->init_key_from_rec(key, &rec);
3461
3462         /*
3463          * Loop going up the tree, starting at the leaf level.
3464          * Stop when we don't get a split block, that must mean that
3465          * the insert is finished with this level.
3466          */
3467         do {
3468                 /*
3469                  * Insert nrec/nptr into this level of the tree.
3470                  * Note if we fail, nptr will be null.
3471                  */
3472                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3473                                 &ncur, &i);
3474                 if (error) {
3475                         if (pcur != cur)
3476                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3477                         goto error0;
3478                 }
3479
3480                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3481                 level++;
3482
3483                 /*
3484                  * See if the cursor we just used is trash.
3485                  * Can't trash the caller's cursor, but otherwise we should
3486                  * if ncur is a new cursor or we're about to be done.
3487                  */
3488                 if (pcur != cur &&
3489                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3490                         /* Save the state from the cursor before we trash it */
3491                         if (cur->bc_ops->update_cursor)
3492                                 cur->bc_ops->update_cursor(pcur, cur);
3493                         cur->bc_nlevels = pcur->bc_nlevels;
3494                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3495                 }
3496                 /* If we got a new cursor, switch to it. */
3497                 if (ncur) {
3498                         pcur = ncur;
3499                         ncur = NULL;
3500                 }
3501         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3502
3503         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3504         *stat = i;
3505         return 0;
3506 error0:
3507         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3508         return error;
3509 }
3510
3511 /*
3512  * Try to merge a non-leaf block back into the inode root.
3513  *
3514  * Note: the killroot names comes from the fact that we're effectively
3515  * killing the old root block.  But because we can't just delete the
3516  * inode we have to copy the single block it was pointing to into the
3517  * inode.
3518  */
3519 STATIC int
3520 xfs_btree_kill_iroot(
3521         struct xfs_btree_cur    *cur)
3522 {
3523         int                     whichfork = cur->bc_private.b.whichfork;
3524         struct xfs_inode        *ip = cur->bc_private.b.ip;
3525         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3526         struct xfs_btree_block  *block;
3527         struct xfs_btree_block  *cblock;
3528         union xfs_btree_key     *kp;
3529         union xfs_btree_key     *ckp;
3530         union xfs_btree_ptr     *pp;
3531         union xfs_btree_ptr     *cpp;
3532         struct xfs_buf          *cbp;
3533         int                     level;
3534         int                     index;
3535         int                     numrecs;
3536         int                     error;
3537 #ifdef DEBUG
3538         union xfs_btree_ptr     ptr;
3539         int                     i;
3540 #endif
3541
3542         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3543
3544         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3545         ASSERT(cur->bc_nlevels > 1);
3546
3547         /*
3548          * Don't deal with the root block needs to be a leaf case.
3549          * We're just going to turn the thing back into extents anyway.
3550          */
3551         level = cur->bc_nlevels - 1;
3552         if (level == 1)
3553                 goto out0;
3554
3555         /*
3556          * Give up if the root has multiple children.
3557          */
3558         block = xfs_btree_get_iroot(cur);
3559         if (xfs_btree_get_numrecs(block) != 1)
3560                 goto out0;
3561
3562         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3563         numrecs = xfs_btree_get_numrecs(cblock);
3564
3565         /*
3566          * Only do this if the next level will fit.
3567          * Then the data must be copied up to the inode,
3568          * instead of freeing the root you free the next level.
3569          */
3570         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3571                 goto out0;
3572
3573         XFS_BTREE_STATS_INC(cur, killroot);
3574
3575 #ifdef DEBUG
3576         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3577         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3578         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3579         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3580 #endif
3581
3582         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3583         if (index) {
3584                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3585                                   cur->bc_private.b.whichfork);
3586                 block = ifp->if_broot;
3587         }
3588
3589         be16_add_cpu(&block->bb_numrecs, index);
3590         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3591
3592         kp = xfs_btree_key_addr(cur, 1, block);
3593         ckp = xfs_btree_key_addr(cur, 1, cblock);
3594         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3595
3596         pp = xfs_btree_ptr_addr(cur, 1, block);
3597         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3598 #ifdef DEBUG
3599         for (i = 0; i < numrecs; i++) {
3600                 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3601                 if (error) {
3602                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3603                         return error;
3604                 }
3605         }
3606 #endif
3607         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3608
3609         error = xfs_btree_free_block(cur, cbp);
3610         if (error) {
3611                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3612                 return error;
3613         }
3614
3615         cur->bc_bufs[level - 1] = NULL;
3616         be16_add_cpu(&block->bb_level, -1);
3617         xfs_trans_log_inode(cur->bc_tp, ip,
3618                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3619         cur->bc_nlevels--;
3620 out0:
3621         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3622         return 0;
3623 }
3624
3625 /*
3626  * Kill the current root node, and replace it with it's only child node.
3627  */
3628 STATIC int
3629 xfs_btree_kill_root(
3630         struct xfs_btree_cur    *cur,
3631         struct xfs_buf          *bp,
3632         int                     level,
3633         union xfs_btree_ptr     *newroot)
3634 {
3635         int                     error;
3636
3637         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3638         XFS_BTREE_STATS_INC(cur, killroot);
3639
3640         /*
3641          * Update the root pointer, decreasing the level by 1 and then
3642          * free the old root.
3643          */
3644         cur->bc_ops->set_root(cur, newroot, -1);
3645
3646         error = xfs_btree_free_block(cur, bp);
3647         if (error) {
3648                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3649                 return error;
3650         }
3651
3652         cur->bc_bufs[level] = NULL;
3653         cur->bc_ra[level] = 0;
3654         cur->bc_nlevels--;
3655
3656         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3657         return 0;
3658 }
3659
3660 STATIC int
3661 xfs_btree_dec_cursor(
3662         struct xfs_btree_cur    *cur,
3663         int                     level,
3664         int                     *stat)
3665 {
3666         int                     error;
3667         int                     i;
3668
3669         if (level > 0) {
3670                 error = xfs_btree_decrement(cur, level, &i);
3671                 if (error)
3672                         return error;
3673         }
3674
3675         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3676         *stat = 1;
3677         return 0;
3678 }
3679
3680 /*
3681  * Single level of the btree record deletion routine.
3682  * Delete record pointed to by cur/level.
3683  * Remove the record from its block then rebalance the tree.
3684  * Return 0 for error, 1 for done, 2 to go on to the next level.
3685  */
3686 STATIC int                                      /* error */
3687 xfs_btree_delrec(
3688         struct xfs_btree_cur    *cur,           /* btree cursor */
3689         int                     level,          /* level removing record from */
3690         int                     *stat)          /* fail/done/go-on */
3691 {
3692         struct xfs_btree_block  *block;         /* btree block */
3693         union xfs_btree_ptr     cptr;           /* current block ptr */
3694         struct xfs_buf          *bp;            /* buffer for block */
3695         int                     error;          /* error return value */
3696         int                     i;              /* loop counter */
3697         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3698         struct xfs_buf          *lbp;           /* left buffer pointer */
3699         struct xfs_btree_block  *left;          /* left btree block */
3700         int                     lrecs = 0;      /* left record count */
3701         int                     ptr;            /* key/record index */
3702         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3703         struct xfs_buf          *rbp;           /* right buffer pointer */
3704         struct xfs_btree_block  *right;         /* right btree block */
3705         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3706         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3707         int                     rrecs = 0;      /* right record count */
3708         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3709         int                     numrecs;        /* temporary numrec count */
3710
3711         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3712         XFS_BTREE_TRACE_ARGI(cur, level);
3713
3714         tcur = NULL;
3715
3716         /* Get the index of the entry being deleted, check for nothing there. */
3717         ptr = cur->bc_ptrs[level];
3718         if (ptr == 0) {
3719                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3720                 *stat = 0;
3721                 return 0;
3722         }
3723
3724         /* Get the buffer & block containing the record or key/ptr. */
3725         block = xfs_btree_get_block(cur, level, &bp);
3726         numrecs = xfs_btree_get_numrecs(block);
3727
3728 #ifdef DEBUG
3729         error = xfs_btree_check_block(cur, block, level, bp);
3730         if (error)
3731                 goto error0;
3732 #endif
3733
3734         /* Fail if we're off the end of the block. */
3735         if (ptr > numrecs) {
3736                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3737                 *stat = 0;
3738                 return 0;
3739         }
3740
3741         XFS_BTREE_STATS_INC(cur, delrec);
3742         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3743
3744         /* Excise the entries being deleted. */
3745         if (level > 0) {
3746                 /* It's a nonleaf. operate on keys and ptrs */
3747                 union xfs_btree_key     *lkp;
3748                 union xfs_btree_ptr     *lpp;
3749
3750                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3751                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3752
3753 #ifdef DEBUG
3754                 for (i = 0; i < numrecs - ptr; i++) {
3755                         error = xfs_btree_check_ptr(cur, lpp, i, level);
3756                         if (error)
3757                                 goto error0;
3758                 }
3759 #endif
3760
3761                 if (ptr < numrecs) {
3762                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3763                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3764                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3765                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3766                 }
3767         } else {
3768                 /* It's a leaf. operate on records */
3769                 if (ptr < numrecs) {
3770                         xfs_btree_shift_recs(cur,
3771                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3772                                 -1, numrecs - ptr);
3773                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3774                 }
3775         }
3776
3777         /*
3778          * Decrement and log the number of entries in the block.
3779          */
3780         xfs_btree_set_numrecs(block, --numrecs);
3781         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3782
3783         /*
3784          * If we are tracking the last record in the tree and
3785          * we are at the far right edge of the tree, update it.
3786          */
3787         if (xfs_btree_is_lastrec(cur, block, level)) {
3788                 cur->bc_ops->update_lastrec(cur, block, NULL,
3789                                             ptr, LASTREC_DELREC);
3790         }
3791
3792         /*
3793          * We're at the root level.  First, shrink the root block in-memory.
3794          * Try to get rid of the next level down.  If we can't then there's
3795          * nothing left to do.
3796          */
3797         if (level == cur->bc_nlevels - 1) {
3798                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3799                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3800                                           cur->bc_private.b.whichfork);
3801
3802                         error = xfs_btree_kill_iroot(cur);
3803                         if (error)
3804                                 goto error0;
3805
3806                         error = xfs_btree_dec_cursor(cur, level, stat);
3807                         if (error)
3808                                 goto error0;
3809                         *stat = 1;
3810                         return 0;
3811                 }
3812
3813                 /*
3814                  * If this is the root level, and there's only one entry left,
3815                  * and it's NOT the leaf level, then we can get rid of this
3816                  * level.
3817                  */
3818                 if (numrecs == 1 && level > 0) {
3819                         union xfs_btree_ptr     *pp;
3820                         /*
3821                          * pp is still set to the first pointer in the block.
3822                          * Make it the new root of the btree.
3823                          */
3824                         pp = xfs_btree_ptr_addr(cur, 1, block);
3825                         error = xfs_btree_kill_root(cur, bp, level, pp);
3826                         if (error)
3827                                 goto error0;
3828                 } else if (level > 0) {
3829                         error = xfs_btree_dec_cursor(cur, level, stat);
3830                         if (error)
3831                                 goto error0;
3832                 }
3833                 *stat = 1;
3834                 return 0;
3835         }
3836
3837         /*
3838          * If we deleted the leftmost entry in the block, update the
3839          * key values above us in the tree.
3840          */
3841         if (xfs_btree_needs_key_update(cur, ptr)) {
3842                 error = xfs_btree_update_keys(cur, level);
3843                 if (error)
3844                         goto error0;
3845         }
3846
3847         /*
3848          * If the number of records remaining in the block is at least
3849          * the minimum, we're done.
3850          */
3851         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3852                 error = xfs_btree_dec_cursor(cur, level, stat);
3853                 if (error)
3854                         goto error0;
3855                 return 0;
3856         }
3857
3858         /*
3859          * Otherwise, we have to move some records around to keep the
3860          * tree balanced.  Look at the left and right sibling blocks to
3861          * see if we can re-balance by moving only one record.
3862          */
3863         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3864         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3865
3866         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3867                 /*
3868                  * One child of root, need to get a chance to copy its contents
3869                  * into the root and delete it. Can't go up to next level,
3870                  * there's nothing to delete there.
3871                  */
3872                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3873                     xfs_btree_ptr_is_null(cur, &lptr) &&
3874                     level == cur->bc_nlevels - 2) {
3875                         error = xfs_btree_kill_iroot(cur);
3876                         if (!error)
3877                                 error = xfs_btree_dec_cursor(cur, level, stat);
3878                         if (error)
3879                                 goto error0;
3880                         return 0;
3881                 }
3882         }
3883
3884         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3885                !xfs_btree_ptr_is_null(cur, &lptr));
3886
3887         /*
3888          * Duplicate the cursor so our btree manipulations here won't
3889          * disrupt the next level up.
3890          */
3891         error = xfs_btree_dup_cursor(cur, &tcur);
3892         if (error)
3893                 goto error0;
3894
3895         /*
3896          * If there's a right sibling, see if it's ok to shift an entry
3897          * out of it.
3898          */
3899         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3900                 /*
3901                  * Move the temp cursor to the last entry in the next block.
3902                  * Actually any entry but the first would suffice.
3903                  */
3904                 i = xfs_btree_lastrec(tcur, level);
3905                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3906
3907                 error = xfs_btree_increment(tcur, level, &i);
3908                 if (error)
3909                         goto error0;
3910                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3911
3912                 i = xfs_btree_lastrec(tcur, level);
3913                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3914
3915                 /* Grab a pointer to the block. */
3916                 right = xfs_btree_get_block(tcur, level, &rbp);
3917 #ifdef DEBUG
3918                 error = xfs_btree_check_block(tcur, right, level, rbp);
3919                 if (error)
3920                         goto error0;
3921 #endif
3922                 /* Grab the current block number, for future use. */
3923                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3924
3925                 /*
3926                  * If right block is full enough so that removing one entry
3927                  * won't make it too empty, and left-shifting an entry out
3928                  * of right to us works, we're done.
3929                  */
3930                 if (xfs_btree_get_numrecs(right) - 1 >=
3931                     cur->bc_ops->get_minrecs(tcur, level)) {
3932                         error = xfs_btree_lshift(tcur, level, &i);
3933                         if (error)
3934                                 goto error0;
3935                         if (i) {
3936                                 ASSERT(xfs_btree_get_numrecs(block) >=
3937                                        cur->bc_ops->get_minrecs(tcur, level));
3938
3939                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3940                                 tcur = NULL;
3941
3942                                 error = xfs_btree_dec_cursor(cur, level, stat);
3943                                 if (error)
3944                                         goto error0;
3945                                 return 0;
3946                         }
3947                 }
3948
3949                 /*
3950                  * Otherwise, grab the number of records in right for
3951                  * future reference, and fix up the temp cursor to point
3952                  * to our block again (last record).
3953                  */
3954                 rrecs = xfs_btree_get_numrecs(right);
3955                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3956                         i = xfs_btree_firstrec(tcur, level);
3957                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3958
3959                         error = xfs_btree_decrement(tcur, level, &i);
3960                         if (error)
3961                                 goto error0;
3962                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3963                 }
3964         }
3965
3966         /*
3967          * If there's a left sibling, see if it's ok to shift an entry
3968          * out of it.
3969          */
3970         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3971                 /*
3972                  * Move the temp cursor to the first entry in the
3973                  * previous block.
3974                  */
3975                 i = xfs_btree_firstrec(tcur, level);
3976                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3977
3978                 error = xfs_btree_decrement(tcur, level, &i);
3979                 if (error)
3980                         goto error0;
3981                 i = xfs_btree_firstrec(tcur, level);
3982                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3983
3984                 /* Grab a pointer to the block. */
3985                 left = xfs_btree_get_block(tcur, level, &lbp);
3986 #ifdef DEBUG
3987                 error = xfs_btree_check_block(cur, left, level, lbp);
3988                 if (error)
3989                         goto error0;
3990 #endif
3991                 /* Grab the current block number, for future use. */
3992                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3993
3994                 /*
3995                  * If left block is full enough so that removing one entry
3996                  * won't make it too empty, and right-shifting an entry out
3997                  * of left to us works, we're done.
3998                  */
3999                 if (xfs_btree_get_numrecs(left) - 1 >=
4000                     cur->bc_ops->get_minrecs(tcur, level)) {
4001                         error = xfs_btree_rshift(tcur, level, &i);
4002                         if (error)
4003                                 goto error0;
4004                         if (i) {
4005                                 ASSERT(xfs_btree_get_numrecs(block) >=
4006                                        cur->bc_ops->get_minrecs(tcur, level));
4007                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4008                                 tcur = NULL;
4009                                 if (level == 0)
4010                                         cur->bc_ptrs[0]++;
4011                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4012                                 *stat = 1;
4013                                 return 0;
4014                         }
4015                 }
4016
4017                 /*
4018                  * Otherwise, grab the number of records in right for
4019                  * future reference.
4020                  */
4021                 lrecs = xfs_btree_get_numrecs(left);
4022         }
4023
4024         /* Delete the temp cursor, we're done with it. */
4025         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4026         tcur = NULL;
4027
4028         /* If here, we need to do a join to keep the tree balanced. */
4029         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4030
4031         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4032             lrecs + xfs_btree_get_numrecs(block) <=
4033                         cur->bc_ops->get_maxrecs(cur, level)) {
4034                 /*
4035                  * Set "right" to be the starting block,
4036                  * "left" to be the left neighbor.
4037                  */
4038                 rptr = cptr;
4039                 right = block;
4040                 rbp = bp;
4041                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4042                 if (error)
4043                         goto error0;
4044
4045         /*
4046          * If that won't work, see if we can join with the right neighbor block.
4047          */
4048         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4049                    rrecs + xfs_btree_get_numrecs(block) <=
4050                         cur->bc_ops->get_maxrecs(cur, level)) {
4051                 /*
4052                  * Set "left" to be the starting block,
4053                  * "right" to be the right neighbor.
4054                  */
4055                 lptr = cptr;
4056                 left = block;
4057                 lbp = bp;
4058                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4059                 if (error)
4060                         goto error0;
4061
4062         /*
4063          * Otherwise, we can't fix the imbalance.
4064          * Just return.  This is probably a logic error, but it's not fatal.
4065          */
4066         } else {
4067                 error = xfs_btree_dec_cursor(cur, level, stat);
4068                 if (error)
4069                         goto error0;
4070                 return 0;
4071         }
4072
4073         rrecs = xfs_btree_get_numrecs(right);
4074         lrecs = xfs_btree_get_numrecs(left);
4075
4076         /*
4077          * We're now going to join "left" and "right" by moving all the stuff
4078          * in "right" to "left" and deleting "right".
4079          */
4080         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4081         if (level > 0) {
4082                 /* It's a non-leaf.  Move keys and pointers. */
4083                 union xfs_btree_key     *lkp;   /* left btree key */
4084                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4085                 union xfs_btree_key     *rkp;   /* right btree key */
4086                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4087
4088                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4089                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4090                 rkp = xfs_btree_key_addr(cur, 1, right);
4091                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4092 #ifdef DEBUG
4093                 for (i = 1; i < rrecs; i++) {
4094                         error = xfs_btree_check_ptr(cur, rpp, i, level);
4095                         if (error)
4096                                 goto error0;
4097                 }
4098 #endif
4099                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4100                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4101
4102                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4103                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4104         } else {
4105                 /* It's a leaf.  Move records.  */
4106                 union xfs_btree_rec     *lrp;   /* left record pointer */
4107                 union xfs_btree_rec     *rrp;   /* right record pointer */
4108
4109                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4110                 rrp = xfs_btree_rec_addr(cur, 1, right);
4111
4112                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4113                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4114         }
4115
4116         XFS_BTREE_STATS_INC(cur, join);
4117
4118         /*
4119          * Fix up the number of records and right block pointer in the
4120          * surviving block, and log it.
4121          */
4122         xfs_btree_set_numrecs(left, lrecs + rrecs);
4123         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4124         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4125         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4126
4127         /* If there is a right sibling, point it to the remaining block. */
4128         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4129         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4130                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4131                 if (error)
4132                         goto error0;
4133                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4134                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4135         }
4136
4137         /* Free the deleted block. */
4138         error = xfs_btree_free_block(cur, rbp);
4139         if (error)
4140                 goto error0;
4141
4142         /*
4143          * If we joined with the left neighbor, set the buffer in the
4144          * cursor to the left block, and fix up the index.
4145          */
4146         if (bp != lbp) {
4147                 cur->bc_bufs[level] = lbp;
4148                 cur->bc_ptrs[level] += lrecs;
4149                 cur->bc_ra[level] = 0;
4150         }
4151         /*
4152          * If we joined with the right neighbor and there's a level above
4153          * us, increment the cursor at that level.
4154          */
4155         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4156                    (level + 1 < cur->bc_nlevels)) {
4157                 error = xfs_btree_increment(cur, level + 1, &i);
4158                 if (error)
4159                         goto error0;
4160         }
4161
4162         /*
4163          * Readjust the ptr at this level if it's not a leaf, since it's
4164          * still pointing at the deletion point, which makes the cursor
4165          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4166          * We can't use decrement because it would change the next level up.
4167          */
4168         if (level > 0)
4169                 cur->bc_ptrs[level]--;
4170
4171         /*
4172          * We combined blocks, so we have to update the parent keys if the
4173          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4174          * points to the old block so that the caller knows which record to
4175          * delete.  Therefore, the caller must be savvy enough to call updkeys
4176          * for us if we return stat == 2.  The other exit points from this
4177          * function don't require deletions further up the tree, so they can
4178          * call updkeys directly.
4179          */
4180
4181         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4182         /* Return value means the next level up has something to do. */
4183         *stat = 2;
4184         return 0;
4185
4186 error0:
4187         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4188         if (tcur)
4189                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4190         return error;
4191 }
4192
4193 /*
4194  * Delete the record pointed to by cur.
4195  * The cursor refers to the place where the record was (could be inserted)
4196  * when the operation returns.
4197  */
4198 int                                     /* error */
4199 xfs_btree_delete(
4200         struct xfs_btree_cur    *cur,
4201         int                     *stat)  /* success/failure */
4202 {
4203         int                     error;  /* error return value */
4204         int                     level;
4205         int                     i;
4206         bool                    joined = false;
4207
4208         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4209
4210         /*
4211          * Go up the tree, starting at leaf level.
4212          *
4213          * If 2 is returned then a join was done; go to the next level.
4214          * Otherwise we are done.
4215          */
4216         for (level = 0, i = 2; i == 2; level++) {
4217                 error = xfs_btree_delrec(cur, level, &i);
4218                 if (error)
4219                         goto error0;
4220                 if (i == 2)
4221                         joined = true;
4222         }
4223
4224         /*
4225          * If we combined blocks as part of deleting the record, delrec won't
4226          * have updated the parent high keys so we have to do that here.
4227          */
4228         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4229                 error = xfs_btree_updkeys_force(cur, 0);
4230                 if (error)
4231                         goto error0;
4232         }
4233
4234         if (i == 0) {
4235                 for (level = 1; level < cur->bc_nlevels; level++) {
4236                         if (cur->bc_ptrs[level] == 0) {
4237                                 error = xfs_btree_decrement(cur, level, &i);
4238                                 if (error)
4239                                         goto error0;
4240                                 break;
4241                         }
4242                 }
4243         }
4244
4245         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4246         *stat = i;
4247         return 0;
4248 error0:
4249         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4250         return error;
4251 }
4252
4253 /*
4254  * Get the data from the pointed-to record.
4255  */
4256 int                                     /* error */
4257 xfs_btree_get_rec(
4258         struct xfs_btree_cur    *cur,   /* btree cursor */
4259         union xfs_btree_rec     **recp, /* output: btree record */
4260         int                     *stat)  /* output: success/failure */
4261 {
4262         struct xfs_btree_block  *block; /* btree block */
4263         struct xfs_buf          *bp;    /* buffer pointer */
4264         int                     ptr;    /* record number */
4265 #ifdef DEBUG
4266         int                     error;  /* error return value */
4267 #endif
4268
4269         ptr = cur->bc_ptrs[0];
4270         block = xfs_btree_get_block(cur, 0, &bp);
4271
4272 #ifdef DEBUG
4273         error = xfs_btree_check_block(cur, block, 0, bp);
4274         if (error)
4275                 return error;
4276 #endif
4277
4278         /*
4279          * Off the right end or left end, return failure.
4280          */
4281         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4282                 *stat = 0;
4283                 return 0;
4284         }
4285
4286         /*
4287          * Point to the record and extract its data.
4288          */
4289         *recp = xfs_btree_rec_addr(cur, ptr, block);
4290         *stat = 1;
4291         return 0;
4292 }
4293
4294 /* Visit a block in a btree. */
4295 STATIC int
4296 xfs_btree_visit_block(
4297         struct xfs_btree_cur            *cur,
4298         int                             level,
4299         xfs_btree_visit_blocks_fn       fn,
4300         void                            *data)
4301 {
4302         struct xfs_btree_block          *block;
4303         struct xfs_buf                  *bp;
4304         union xfs_btree_ptr             rptr;
4305         int                             error;
4306
4307         /* do right sibling readahead */
4308         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4309         block = xfs_btree_get_block(cur, level, &bp);
4310
4311         /* process the block */
4312         error = fn(cur, level, data);
4313         if (error)
4314                 return error;
4315
4316         /* now read rh sibling block for next iteration */
4317         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4318         if (xfs_btree_ptr_is_null(cur, &rptr))
4319                 return -ENOENT;
4320
4321         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4322 }
4323
4324
4325 /* Visit every block in a btree. */
4326 int
4327 xfs_btree_visit_blocks(
4328         struct xfs_btree_cur            *cur,
4329         xfs_btree_visit_blocks_fn       fn,
4330         void                            *data)
4331 {
4332         union xfs_btree_ptr             lptr;
4333         int                             level;
4334         struct xfs_btree_block          *block = NULL;
4335         int                             error = 0;
4336
4337         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4338
4339         /* for each level */
4340         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4341                 /* grab the left hand block */
4342                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4343                 if (error)
4344                         return error;
4345
4346                 /* readahead the left most block for the next level down */
4347                 if (level > 0) {
4348                         union xfs_btree_ptr     *ptr;
4349
4350                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4351                         xfs_btree_readahead_ptr(cur, ptr, 1);
4352
4353                         /* save for the next iteration of the loop */
4354                         lptr = *ptr;
4355                 }
4356
4357                 /* for each buffer in the level */
4358                 do {
4359                         error = xfs_btree_visit_block(cur, level, fn, data);
4360                 } while (!error);
4361
4362                 if (error != -ENOENT)
4363                         return error;
4364         }
4365
4366         return 0;
4367 }
4368
4369 /*
4370  * Change the owner of a btree.
4371  *
4372  * The mechanism we use here is ordered buffer logging. Because we don't know
4373  * how many buffers were are going to need to modify, we don't really want to
4374  * have to make transaction reservations for the worst case of every buffer in a
4375  * full size btree as that may be more space that we can fit in the log....
4376  *
4377  * We do the btree walk in the most optimal manner possible - we have sibling
4378  * pointers so we can just walk all the blocks on each level from left to right
4379  * in a single pass, and then move to the next level and do the same. We can
4380  * also do readahead on the sibling pointers to get IO moving more quickly,
4381  * though for slow disks this is unlikely to make much difference to performance
4382  * as the amount of CPU work we have to do before moving to the next block is
4383  * relatively small.
4384  *
4385  * For each btree block that we load, modify the owner appropriately, set the
4386  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4387  * we mark the region we change dirty so that if the buffer is relogged in
4388  * a subsequent transaction the changes we make here as an ordered buffer are
4389  * correctly relogged in that transaction.  If we are in recovery context, then
4390  * just queue the modified buffer as delayed write buffer so the transaction
4391  * recovery completion writes the changes to disk.
4392  */
4393 struct xfs_btree_block_change_owner_info {
4394         __uint64_t              new_owner;
4395         struct list_head        *buffer_list;
4396 };
4397
4398 static int
4399 xfs_btree_block_change_owner(
4400         struct xfs_btree_cur    *cur,
4401         int                     level,
4402         void                    *data)
4403 {
4404         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4405         struct xfs_btree_block  *block;
4406         struct xfs_buf          *bp;
4407
4408         /* modify the owner */
4409         block = xfs_btree_get_block(cur, level, &bp);
4410         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4411                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4412         else
4413                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4414
4415         /*
4416          * If the block is a root block hosted in an inode, we might not have a
4417          * buffer pointer here and we shouldn't attempt to log the change as the
4418          * information is already held in the inode and discarded when the root
4419          * block is formatted into the on-disk inode fork. We still change it,
4420          * though, so everything is consistent in memory.
4421          */
4422         if (bp) {
4423                 if (cur->bc_tp) {
4424                         xfs_trans_ordered_buf(cur->bc_tp, bp);
4425                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4426                 } else {
4427                         xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4428                 }
4429         } else {
4430                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4431                 ASSERT(level == cur->bc_nlevels - 1);
4432         }
4433
4434         return 0;
4435 }
4436
4437 int
4438 xfs_btree_change_owner(
4439         struct xfs_btree_cur    *cur,
4440         __uint64_t              new_owner,
4441         struct list_head        *buffer_list)
4442 {
4443         struct xfs_btree_block_change_owner_info        bbcoi;
4444
4445         bbcoi.new_owner = new_owner;
4446         bbcoi.buffer_list = buffer_list;
4447
4448         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4449                         &bbcoi);
4450 }
4451
4452 /**
4453  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4454  *                                    btree block
4455  *
4456  * @bp: buffer containing the btree block
4457  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4458  * @pag_max_level: pointer to the per-ag max level field
4459  */
4460 bool
4461 xfs_btree_sblock_v5hdr_verify(
4462         struct xfs_buf          *bp)
4463 {
4464         struct xfs_mount        *mp = bp->b_target->bt_mount;
4465         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4466         struct xfs_perag        *pag = bp->b_pag;
4467
4468         if (!xfs_sb_version_hascrc(&mp->m_sb))
4469                 return false;
4470         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4471                 return false;
4472         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4473                 return false;
4474         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4475                 return false;
4476         return true;
4477 }
4478
4479 /**
4480  * xfs_btree_sblock_verify() -- verify a short-format btree block
4481  *
4482  * @bp: buffer containing the btree block
4483  * @max_recs: maximum records allowed in this btree node
4484  */
4485 bool
4486 xfs_btree_sblock_verify(
4487         struct xfs_buf          *bp,
4488         unsigned int            max_recs)
4489 {
4490         struct xfs_mount        *mp = bp->b_target->bt_mount;
4491         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4492
4493         /* numrecs verification */
4494         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4495                 return false;
4496
4497         /* sibling pointer verification */
4498         if (!block->bb_u.s.bb_leftsib ||
4499             (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4500              block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4501                 return false;
4502         if (!block->bb_u.s.bb_rightsib ||
4503             (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4504              block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4505                 return false;
4506
4507         return true;
4508 }
4509
4510 /*
4511  * Calculate the number of btree levels needed to store a given number of
4512  * records in a short-format btree.
4513  */
4514 uint
4515 xfs_btree_compute_maxlevels(
4516         struct xfs_mount        *mp,
4517         uint                    *limits,
4518         unsigned long           len)
4519 {
4520         uint                    level;
4521         unsigned long           maxblocks;
4522
4523         maxblocks = (len + limits[0] - 1) / limits[0];
4524         for (level = 1; maxblocks > 1; level++)
4525                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526         return level;
4527 }
4528
4529 /*
4530  * Query a regular btree for all records overlapping a given interval.
4531  * Start with a LE lookup of the key of low_rec and return all records
4532  * until we find a record with a key greater than the key of high_rec.
4533  */
4534 STATIC int
4535 xfs_btree_simple_query_range(
4536         struct xfs_btree_cur            *cur,
4537         union xfs_btree_key             *low_key,
4538         union xfs_btree_key             *high_key,
4539         xfs_btree_query_range_fn        fn,
4540         void                            *priv)
4541 {
4542         union xfs_btree_rec             *recp;
4543         union xfs_btree_key             rec_key;
4544         __int64_t                       diff;
4545         int                             stat;
4546         bool                            firstrec = true;
4547         int                             error;
4548
4549         ASSERT(cur->bc_ops->init_high_key_from_rec);
4550         ASSERT(cur->bc_ops->diff_two_keys);
4551
4552         /*
4553          * Find the leftmost record.  The btree cursor must be set
4554          * to the low record used to generate low_key.
4555          */
4556         stat = 0;
4557         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558         if (error)
4559                 goto out;
4560
4561         /* Nothing?  See if there's anything to the right. */
4562         if (!stat) {
4563                 error = xfs_btree_increment(cur, 0, &stat);
4564                 if (error)
4565                         goto out;
4566         }
4567
4568         while (stat) {
4569                 /* Find the record. */
4570                 error = xfs_btree_get_rec(cur, &recp, &stat);
4571                 if (error || !stat)
4572                         break;
4573
4574                 /* Skip if high_key(rec) < low_key. */
4575                 if (firstrec) {
4576                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577                         firstrec = false;
4578                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579                                         &rec_key);
4580                         if (diff > 0)
4581                                 goto advloop;
4582                 }
4583
4584                 /* Stop if high_key < low_key(rec). */
4585                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587                 if (diff > 0)
4588                         break;
4589
4590                 /* Callback */
4591                 error = fn(cur, recp, priv);
4592                 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4593                         break;
4594
4595 advloop:
4596                 /* Move on to the next record. */
4597                 error = xfs_btree_increment(cur, 0, &stat);
4598                 if (error)
4599                         break;
4600         }
4601
4602 out:
4603         return error;
4604 }
4605
4606 /*
4607  * Query an overlapped interval btree for all records overlapping a given
4608  * interval.  This function roughly follows the algorithm given in
4609  * "Interval Trees" of _Introduction to Algorithms_, which is section
4610  * 14.3 in the 2nd and 3rd editions.
4611  *
4612  * First, generate keys for the low and high records passed in.
4613  *
4614  * For any leaf node, generate the high and low keys for the record.
4615  * If the record keys overlap with the query low/high keys, pass the
4616  * record to the function iterator.
4617  *
4618  * For any internal node, compare the low and high keys of each
4619  * pointer against the query low/high keys.  If there's an overlap,
4620  * follow the pointer.
4621  *
4622  * As an optimization, we stop scanning a block when we find a low key
4623  * that is greater than the query's high key.
4624  */
4625 STATIC int
4626 xfs_btree_overlapped_query_range(
4627         struct xfs_btree_cur            *cur,
4628         union xfs_btree_key             *low_key,
4629         union xfs_btree_key             *high_key,
4630         xfs_btree_query_range_fn        fn,
4631         void                            *priv)
4632 {
4633         union xfs_btree_ptr             ptr;
4634         union xfs_btree_ptr             *pp;
4635         union xfs_btree_key             rec_key;
4636         union xfs_btree_key             rec_hkey;
4637         union xfs_btree_key             *lkp;
4638         union xfs_btree_key             *hkp;
4639         union xfs_btree_rec             *recp;
4640         struct xfs_btree_block          *block;
4641         __int64_t                       ldiff;
4642         __int64_t                       hdiff;
4643         int                             level;
4644         struct xfs_buf                  *bp;
4645         int                             i;
4646         int                             error;
4647
4648         /* Load the root of the btree. */
4649         level = cur->bc_nlevels - 1;
4650         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652         if (error)
4653                 return error;
4654         xfs_btree_get_block(cur, level, &bp);
4655         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656 #ifdef DEBUG
4657         error = xfs_btree_check_block(cur, block, level, bp);
4658         if (error)
4659                 goto out;
4660 #endif
4661         cur->bc_ptrs[level] = 1;
4662
4663         while (level < cur->bc_nlevels) {
4664                 block = xfs_btree_get_block(cur, level, &bp);
4665
4666                 /* End of node, pop back towards the root. */
4667                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668 pop_up:
4669                         if (level < cur->bc_nlevels - 1)
4670                                 cur->bc_ptrs[level + 1]++;
4671                         level++;
4672                         continue;
4673                 }
4674
4675                 if (level == 0) {
4676                         /* Handle a leaf node. */
4677                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678
4679                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681                                         low_key);
4682
4683                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685                                         &rec_key);
4686
4687                         /*
4688                          * If (record's high key >= query's low key) and
4689                          *    (query's high key >= record's low key), then
4690                          * this record overlaps the query range; callback.
4691                          */
4692                         if (ldiff >= 0 && hdiff >= 0) {
4693                                 error = fn(cur, recp, priv);
4694                                 if (error < 0 ||
4695                                     error == XFS_BTREE_QUERY_RANGE_ABORT)
4696                                         break;
4697                         } else if (hdiff < 0) {
4698                                 /* Record is larger than high key; pop. */
4699                                 goto pop_up;
4700                         }
4701                         cur->bc_ptrs[level]++;
4702                         continue;
4703                 }
4704
4705                 /* Handle an internal node. */
4706                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4707                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4708                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4709
4710                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4711                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4712
4713                 /*
4714                  * If (pointer's high key >= query's low key) and
4715                  *    (query's high key >= pointer's low key), then
4716                  * this record overlaps the query range; follow pointer.
4717                  */
4718                 if (ldiff >= 0 && hdiff >= 0) {
4719                         level--;
4720                         error = xfs_btree_lookup_get_block(cur, level, pp,
4721                                         &block);
4722                         if (error)
4723                                 goto out;
4724                         xfs_btree_get_block(cur, level, &bp);
4725                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4726 #ifdef DEBUG
4727                         error = xfs_btree_check_block(cur, block, level, bp);
4728                         if (error)
4729                                 goto out;
4730 #endif
4731                         cur->bc_ptrs[level] = 1;
4732                         continue;
4733                 } else if (hdiff < 0) {
4734                         /* The low key is larger than the upper range; pop. */
4735                         goto pop_up;
4736                 }
4737                 cur->bc_ptrs[level]++;
4738         }
4739
4740 out:
4741         /*
4742          * If we don't end this function with the cursor pointing at a record
4743          * block, a subsequent non-error cursor deletion will not release
4744          * node-level buffers, causing a buffer leak.  This is quite possible
4745          * with a zero-results range query, so release the buffers if we
4746          * failed to return any results.
4747          */
4748         if (cur->bc_bufs[0] == NULL) {
4749                 for (i = 0; i < cur->bc_nlevels; i++) {
4750                         if (cur->bc_bufs[i]) {
4751                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4752                                 cur->bc_bufs[i] = NULL;
4753                                 cur->bc_ptrs[i] = 0;
4754                                 cur->bc_ra[i] = 0;
4755                         }
4756                 }
4757         }
4758
4759         return error;
4760 }
4761
4762 /*
4763  * Query a btree for all records overlapping a given interval of keys.  The
4764  * supplied function will be called with each record found; return one of the
4765  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4766  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4767  * negative error code.
4768  */
4769 int
4770 xfs_btree_query_range(
4771         struct xfs_btree_cur            *cur,
4772         union xfs_btree_irec            *low_rec,
4773         union xfs_btree_irec            *high_rec,
4774         xfs_btree_query_range_fn        fn,
4775         void                            *priv)
4776 {
4777         union xfs_btree_rec             rec;
4778         union xfs_btree_key             low_key;
4779         union xfs_btree_key             high_key;
4780
4781         /* Find the keys of both ends of the interval. */
4782         cur->bc_rec = *high_rec;
4783         cur->bc_ops->init_rec_from_cur(cur, &rec);
4784         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4785
4786         cur->bc_rec = *low_rec;
4787         cur->bc_ops->init_rec_from_cur(cur, &rec);
4788         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4789
4790         /* Enforce low key < high key. */
4791         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4792                 return -EINVAL;
4793
4794         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4795                 return xfs_btree_simple_query_range(cur, &low_key,
4796                                 &high_key, fn, priv);
4797         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4798                         fn, priv);
4799 }