spi: rspi: Increase accuracy of bit rate for RZ
[cascardo/linux.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t     *xfs_btree_cur_zone;
42
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48           XFS_FIBT_MAGIC },
49         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
51 };
52 #define xfs_btree_magic(cur) \
53         xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
54
55 STATIC int                              /* error (0 or EFSCORRUPTED) */
56 xfs_btree_check_lblock(
57         struct xfs_btree_cur    *cur,   /* btree cursor */
58         struct xfs_btree_block  *block, /* btree long form block pointer */
59         int                     level,  /* level of the btree block */
60         struct xfs_buf          *bp)    /* buffer for block, if any */
61 {
62         int                     lblock_ok = 1; /* block passes checks */
63         struct xfs_mount        *mp;    /* file system mount point */
64
65         mp = cur->bc_mp;
66
67         if (xfs_sb_version_hascrc(&mp->m_sb)) {
68                 lblock_ok = lblock_ok &&
69                         uuid_equal(&block->bb_u.l.bb_uuid,
70                                    &mp->m_sb.sb_meta_uuid) &&
71                         block->bb_u.l.bb_blkno == cpu_to_be64(
72                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
73         }
74
75         lblock_ok = lblock_ok &&
76                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
77                 be16_to_cpu(block->bb_level) == level &&
78                 be16_to_cpu(block->bb_numrecs) <=
79                         cur->bc_ops->get_maxrecs(cur, level) &&
80                 block->bb_u.l.bb_leftsib &&
81                 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
82                  XFS_FSB_SANITY_CHECK(mp,
83                         be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
84                 block->bb_u.l.bb_rightsib &&
85                 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
86                  XFS_FSB_SANITY_CHECK(mp,
87                         be64_to_cpu(block->bb_u.l.bb_rightsib)));
88
89         if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
90                         XFS_ERRTAG_BTREE_CHECK_LBLOCK,
91                         XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
92                 if (bp)
93                         trace_xfs_btree_corrupt(bp, _RET_IP_);
94                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
95                 return -EFSCORRUPTED;
96         }
97         return 0;
98 }
99
100 STATIC int                              /* error (0 or EFSCORRUPTED) */
101 xfs_btree_check_sblock(
102         struct xfs_btree_cur    *cur,   /* btree cursor */
103         struct xfs_btree_block  *block, /* btree short form block pointer */
104         int                     level,  /* level of the btree block */
105         struct xfs_buf          *bp)    /* buffer containing block */
106 {
107         struct xfs_mount        *mp;    /* file system mount point */
108         struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
109         struct xfs_agf          *agf;   /* ag. freespace structure */
110         xfs_agblock_t           agflen; /* native ag. freespace length */
111         int                     sblock_ok = 1; /* block passes checks */
112
113         mp = cur->bc_mp;
114         agbp = cur->bc_private.a.agbp;
115         agf = XFS_BUF_TO_AGF(agbp);
116         agflen = be32_to_cpu(agf->agf_length);
117
118         if (xfs_sb_version_hascrc(&mp->m_sb)) {
119                 sblock_ok = sblock_ok &&
120                         uuid_equal(&block->bb_u.s.bb_uuid,
121                                    &mp->m_sb.sb_meta_uuid) &&
122                         block->bb_u.s.bb_blkno == cpu_to_be64(
123                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
124         }
125
126         sblock_ok = sblock_ok &&
127                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
128                 be16_to_cpu(block->bb_level) == level &&
129                 be16_to_cpu(block->bb_numrecs) <=
130                         cur->bc_ops->get_maxrecs(cur, level) &&
131                 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
132                  be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
133                 block->bb_u.s.bb_leftsib &&
134                 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
135                  be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
136                 block->bb_u.s.bb_rightsib;
137
138         if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
139                         XFS_ERRTAG_BTREE_CHECK_SBLOCK,
140                         XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
141                 if (bp)
142                         trace_xfs_btree_corrupt(bp, _RET_IP_);
143                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
144                 return -EFSCORRUPTED;
145         }
146         return 0;
147 }
148
149 /*
150  * Debug routine: check that block header is ok.
151  */
152 int
153 xfs_btree_check_block(
154         struct xfs_btree_cur    *cur,   /* btree cursor */
155         struct xfs_btree_block  *block, /* generic btree block pointer */
156         int                     level,  /* level of the btree block */
157         struct xfs_buf          *bp)    /* buffer containing block, if any */
158 {
159         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
160                 return xfs_btree_check_lblock(cur, block, level, bp);
161         else
162                 return xfs_btree_check_sblock(cur, block, level, bp);
163 }
164
165 /*
166  * Check that (long) pointer is ok.
167  */
168 int                                     /* error (0 or EFSCORRUPTED) */
169 xfs_btree_check_lptr(
170         struct xfs_btree_cur    *cur,   /* btree cursor */
171         xfs_fsblock_t           bno,    /* btree block disk address */
172         int                     level)  /* btree block level */
173 {
174         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
175                 level > 0 &&
176                 bno != NULLFSBLOCK &&
177                 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
178         return 0;
179 }
180
181 #ifdef DEBUG
182 /*
183  * Check that (short) pointer is ok.
184  */
185 STATIC int                              /* error (0 or EFSCORRUPTED) */
186 xfs_btree_check_sptr(
187         struct xfs_btree_cur    *cur,   /* btree cursor */
188         xfs_agblock_t           bno,    /* btree block disk address */
189         int                     level)  /* btree block level */
190 {
191         xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
192
193         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
194                 level > 0 &&
195                 bno != NULLAGBLOCK &&
196                 bno != 0 &&
197                 bno < agblocks);
198         return 0;
199 }
200
201 /*
202  * Check that block ptr is ok.
203  */
204 STATIC int                              /* error (0 or EFSCORRUPTED) */
205 xfs_btree_check_ptr(
206         struct xfs_btree_cur    *cur,   /* btree cursor */
207         union xfs_btree_ptr     *ptr,   /* btree block disk address */
208         int                     index,  /* offset from ptr to check */
209         int                     level)  /* btree block level */
210 {
211         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
212                 return xfs_btree_check_lptr(cur,
213                                 be64_to_cpu((&ptr->l)[index]), level);
214         } else {
215                 return xfs_btree_check_sptr(cur,
216                                 be32_to_cpu((&ptr->s)[index]), level);
217         }
218 }
219 #endif
220
221 /*
222  * Calculate CRC on the whole btree block and stuff it into the
223  * long-form btree header.
224  *
225  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
226  * it into the buffer so recovery knows what the last modification was that made
227  * it to disk.
228  */
229 void
230 xfs_btree_lblock_calc_crc(
231         struct xfs_buf          *bp)
232 {
233         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
234         struct xfs_buf_log_item *bip = bp->b_fspriv;
235
236         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
237                 return;
238         if (bip)
239                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
240         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
241 }
242
243 bool
244 xfs_btree_lblock_verify_crc(
245         struct xfs_buf          *bp)
246 {
247         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
248         struct xfs_mount        *mp = bp->b_target->bt_mount;
249
250         if (xfs_sb_version_hascrc(&mp->m_sb)) {
251                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
252                         return false;
253                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
254         }
255
256         return true;
257 }
258
259 /*
260  * Calculate CRC on the whole btree block and stuff it into the
261  * short-form btree header.
262  *
263  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
264  * it into the buffer so recovery knows what the last modification was that made
265  * it to disk.
266  */
267 void
268 xfs_btree_sblock_calc_crc(
269         struct xfs_buf          *bp)
270 {
271         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
272         struct xfs_buf_log_item *bip = bp->b_fspriv;
273
274         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
275                 return;
276         if (bip)
277                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
278         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
279 }
280
281 bool
282 xfs_btree_sblock_verify_crc(
283         struct xfs_buf          *bp)
284 {
285         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
286         struct xfs_mount        *mp = bp->b_target->bt_mount;
287
288         if (xfs_sb_version_hascrc(&mp->m_sb)) {
289                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
290                         return false;
291                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
292         }
293
294         return true;
295 }
296
297 static int
298 xfs_btree_free_block(
299         struct xfs_btree_cur    *cur,
300         struct xfs_buf          *bp)
301 {
302         int                     error;
303
304         error = cur->bc_ops->free_block(cur, bp);
305         if (!error) {
306                 xfs_trans_binval(cur->bc_tp, bp);
307                 XFS_BTREE_STATS_INC(cur, free);
308         }
309         return error;
310 }
311
312 /*
313  * Delete the btree cursor.
314  */
315 void
316 xfs_btree_del_cursor(
317         xfs_btree_cur_t *cur,           /* btree cursor */
318         int             error)          /* del because of error */
319 {
320         int             i;              /* btree level */
321
322         /*
323          * Clear the buffer pointers, and release the buffers.
324          * If we're doing this in the face of an error, we
325          * need to make sure to inspect all of the entries
326          * in the bc_bufs array for buffers to be unlocked.
327          * This is because some of the btree code works from
328          * level n down to 0, and if we get an error along
329          * the way we won't have initialized all the entries
330          * down to 0.
331          */
332         for (i = 0; i < cur->bc_nlevels; i++) {
333                 if (cur->bc_bufs[i])
334                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
335                 else if (!error)
336                         break;
337         }
338         /*
339          * Can't free a bmap cursor without having dealt with the
340          * allocated indirect blocks' accounting.
341          */
342         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
343                cur->bc_private.b.allocated == 0);
344         /*
345          * Free the cursor.
346          */
347         kmem_zone_free(xfs_btree_cur_zone, cur);
348 }
349
350 /*
351  * Duplicate the btree cursor.
352  * Allocate a new one, copy the record, re-get the buffers.
353  */
354 int                                     /* error */
355 xfs_btree_dup_cursor(
356         xfs_btree_cur_t *cur,           /* input cursor */
357         xfs_btree_cur_t **ncur)         /* output cursor */
358 {
359         xfs_buf_t       *bp;            /* btree block's buffer pointer */
360         int             error;          /* error return value */
361         int             i;              /* level number of btree block */
362         xfs_mount_t     *mp;            /* mount structure for filesystem */
363         xfs_btree_cur_t *new;           /* new cursor value */
364         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
365
366         tp = cur->bc_tp;
367         mp = cur->bc_mp;
368
369         /*
370          * Allocate a new cursor like the old one.
371          */
372         new = cur->bc_ops->dup_cursor(cur);
373
374         /*
375          * Copy the record currently in the cursor.
376          */
377         new->bc_rec = cur->bc_rec;
378
379         /*
380          * For each level current, re-get the buffer and copy the ptr value.
381          */
382         for (i = 0; i < new->bc_nlevels; i++) {
383                 new->bc_ptrs[i] = cur->bc_ptrs[i];
384                 new->bc_ra[i] = cur->bc_ra[i];
385                 bp = cur->bc_bufs[i];
386                 if (bp) {
387                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
388                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
389                                                    0, &bp,
390                                                    cur->bc_ops->buf_ops);
391                         if (error) {
392                                 xfs_btree_del_cursor(new, error);
393                                 *ncur = NULL;
394                                 return error;
395                         }
396                 }
397                 new->bc_bufs[i] = bp;
398         }
399         *ncur = new;
400         return 0;
401 }
402
403 /*
404  * XFS btree block layout and addressing:
405  *
406  * There are two types of blocks in the btree: leaf and non-leaf blocks.
407  *
408  * The leaf record start with a header then followed by records containing
409  * the values.  A non-leaf block also starts with the same header, and
410  * then first contains lookup keys followed by an equal number of pointers
411  * to the btree blocks at the previous level.
412  *
413  *              +--------+-------+-------+-------+-------+-------+-------+
414  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
415  *              +--------+-------+-------+-------+-------+-------+-------+
416  *
417  *              +--------+-------+-------+-------+-------+-------+-------+
418  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
419  *              +--------+-------+-------+-------+-------+-------+-------+
420  *
421  * The header is called struct xfs_btree_block for reasons better left unknown
422  * and comes in different versions for short (32bit) and long (64bit) block
423  * pointers.  The record and key structures are defined by the btree instances
424  * and opaque to the btree core.  The block pointers are simple disk endian
425  * integers, available in a short (32bit) and long (64bit) variant.
426  *
427  * The helpers below calculate the offset of a given record, key or pointer
428  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
429  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
430  * inside the btree block is done using indices starting at one, not zero!
431  *
432  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
433  * overlapping intervals.  In such a tree, records are still sorted lowest to
434  * highest and indexed by the smallest key value that refers to the record.
435  * However, nodes are different: each pointer has two associated keys -- one
436  * indexing the lowest key available in the block(s) below (the same behavior
437  * as the key in a regular btree) and another indexing the highest key
438  * available in the block(s) below.  Because records are /not/ sorted by the
439  * highest key, all leaf block updates require us to compute the highest key
440  * that matches any record in the leaf and to recursively update the high keys
441  * in the nodes going further up in the tree, if necessary.  Nodes look like
442  * this:
443  *
444  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
445  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
446  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
447  *
448  * To perform an interval query on an overlapped tree, perform the usual
449  * depth-first search and use the low and high keys to decide if we can skip
450  * that particular node.  If a leaf node is reached, return the records that
451  * intersect the interval.  Note that an interval query may return numerous
452  * entries.  For a non-overlapped tree, simply search for the record associated
453  * with the lowest key and iterate forward until a non-matching record is
454  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
455  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
456  * more detail.
457  *
458  * Why do we care about overlapping intervals?  Let's say you have a bunch of
459  * reverse mapping records on a reflink filesystem:
460  *
461  * 1: +- file A startblock B offset C length D -----------+
462  * 2:      +- file E startblock F offset G length H --------------+
463  * 3:      +- file I startblock F offset J length K --+
464  * 4:                                                        +- file L... --+
465  *
466  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
467  * we'd simply increment the length of record 1.  But how do we find the record
468  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
469  * record 3 because the keys are ordered first by startblock.  An interval
470  * query would return records 1 and 2 because they both overlap (B+D-1), and
471  * from that we can pick out record 1 as the appropriate left neighbor.
472  *
473  * In the non-overlapped case you can do a LE lookup and decrement the cursor
474  * because a record's interval must end before the next record.
475  */
476
477 /*
478  * Return size of the btree block header for this btree instance.
479  */
480 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
481 {
482         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
483                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
484                         return XFS_BTREE_LBLOCK_CRC_LEN;
485                 return XFS_BTREE_LBLOCK_LEN;
486         }
487         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
488                 return XFS_BTREE_SBLOCK_CRC_LEN;
489         return XFS_BTREE_SBLOCK_LEN;
490 }
491
492 /*
493  * Return size of btree block pointers for this btree instance.
494  */
495 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
496 {
497         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
498                 sizeof(__be64) : sizeof(__be32);
499 }
500
501 /*
502  * Calculate offset of the n-th record in a btree block.
503  */
504 STATIC size_t
505 xfs_btree_rec_offset(
506         struct xfs_btree_cur    *cur,
507         int                     n)
508 {
509         return xfs_btree_block_len(cur) +
510                 (n - 1) * cur->bc_ops->rec_len;
511 }
512
513 /*
514  * Calculate offset of the n-th key in a btree block.
515  */
516 STATIC size_t
517 xfs_btree_key_offset(
518         struct xfs_btree_cur    *cur,
519         int                     n)
520 {
521         return xfs_btree_block_len(cur) +
522                 (n - 1) * cur->bc_ops->key_len;
523 }
524
525 /*
526  * Calculate offset of the n-th high key in a btree block.
527  */
528 STATIC size_t
529 xfs_btree_high_key_offset(
530         struct xfs_btree_cur    *cur,
531         int                     n)
532 {
533         return xfs_btree_block_len(cur) +
534                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
535 }
536
537 /*
538  * Calculate offset of the n-th block pointer in a btree block.
539  */
540 STATIC size_t
541 xfs_btree_ptr_offset(
542         struct xfs_btree_cur    *cur,
543         int                     n,
544         int                     level)
545 {
546         return xfs_btree_block_len(cur) +
547                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
548                 (n - 1) * xfs_btree_ptr_len(cur);
549 }
550
551 /*
552  * Return a pointer to the n-th record in the btree block.
553  */
554 STATIC union xfs_btree_rec *
555 xfs_btree_rec_addr(
556         struct xfs_btree_cur    *cur,
557         int                     n,
558         struct xfs_btree_block  *block)
559 {
560         return (union xfs_btree_rec *)
561                 ((char *)block + xfs_btree_rec_offset(cur, n));
562 }
563
564 /*
565  * Return a pointer to the n-th key in the btree block.
566  */
567 STATIC union xfs_btree_key *
568 xfs_btree_key_addr(
569         struct xfs_btree_cur    *cur,
570         int                     n,
571         struct xfs_btree_block  *block)
572 {
573         return (union xfs_btree_key *)
574                 ((char *)block + xfs_btree_key_offset(cur, n));
575 }
576
577 /*
578  * Return a pointer to the n-th high key in the btree block.
579  */
580 STATIC union xfs_btree_key *
581 xfs_btree_high_key_addr(
582         struct xfs_btree_cur    *cur,
583         int                     n,
584         struct xfs_btree_block  *block)
585 {
586         return (union xfs_btree_key *)
587                 ((char *)block + xfs_btree_high_key_offset(cur, n));
588 }
589
590 /*
591  * Return a pointer to the n-th block pointer in the btree block.
592  */
593 STATIC union xfs_btree_ptr *
594 xfs_btree_ptr_addr(
595         struct xfs_btree_cur    *cur,
596         int                     n,
597         struct xfs_btree_block  *block)
598 {
599         int                     level = xfs_btree_get_level(block);
600
601         ASSERT(block->bb_level != 0);
602
603         return (union xfs_btree_ptr *)
604                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
605 }
606
607 /*
608  * Get the root block which is stored in the inode.
609  *
610  * For now this btree implementation assumes the btree root is always
611  * stored in the if_broot field of an inode fork.
612  */
613 STATIC struct xfs_btree_block *
614 xfs_btree_get_iroot(
615         struct xfs_btree_cur    *cur)
616 {
617         struct xfs_ifork        *ifp;
618
619         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
620         return (struct xfs_btree_block *)ifp->if_broot;
621 }
622
623 /*
624  * Retrieve the block pointer from the cursor at the given level.
625  * This may be an inode btree root or from a buffer.
626  */
627 STATIC struct xfs_btree_block *         /* generic btree block pointer */
628 xfs_btree_get_block(
629         struct xfs_btree_cur    *cur,   /* btree cursor */
630         int                     level,  /* level in btree */
631         struct xfs_buf          **bpp)  /* buffer containing the block */
632 {
633         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
634             (level == cur->bc_nlevels - 1)) {
635                 *bpp = NULL;
636                 return xfs_btree_get_iroot(cur);
637         }
638
639         *bpp = cur->bc_bufs[level];
640         return XFS_BUF_TO_BLOCK(*bpp);
641 }
642
643 /*
644  * Get a buffer for the block, return it with no data read.
645  * Long-form addressing.
646  */
647 xfs_buf_t *                             /* buffer for fsbno */
648 xfs_btree_get_bufl(
649         xfs_mount_t     *mp,            /* file system mount point */
650         xfs_trans_t     *tp,            /* transaction pointer */
651         xfs_fsblock_t   fsbno,          /* file system block number */
652         uint            lock)           /* lock flags for get_buf */
653 {
654         xfs_daddr_t             d;              /* real disk block address */
655
656         ASSERT(fsbno != NULLFSBLOCK);
657         d = XFS_FSB_TO_DADDR(mp, fsbno);
658         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
659 }
660
661 /*
662  * Get a buffer for the block, return it with no data read.
663  * Short-form addressing.
664  */
665 xfs_buf_t *                             /* buffer for agno/agbno */
666 xfs_btree_get_bufs(
667         xfs_mount_t     *mp,            /* file system mount point */
668         xfs_trans_t     *tp,            /* transaction pointer */
669         xfs_agnumber_t  agno,           /* allocation group number */
670         xfs_agblock_t   agbno,          /* allocation group block number */
671         uint            lock)           /* lock flags for get_buf */
672 {
673         xfs_daddr_t             d;              /* real disk block address */
674
675         ASSERT(agno != NULLAGNUMBER);
676         ASSERT(agbno != NULLAGBLOCK);
677         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
678         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
679 }
680
681 /*
682  * Check for the cursor referring to the last block at the given level.
683  */
684 int                                     /* 1=is last block, 0=not last block */
685 xfs_btree_islastblock(
686         xfs_btree_cur_t         *cur,   /* btree cursor */
687         int                     level)  /* level to check */
688 {
689         struct xfs_btree_block  *block; /* generic btree block pointer */
690         xfs_buf_t               *bp;    /* buffer containing block */
691
692         block = xfs_btree_get_block(cur, level, &bp);
693         xfs_btree_check_block(cur, block, level, bp);
694         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
695                 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
696         else
697                 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
698 }
699
700 /*
701  * Change the cursor to point to the first record at the given level.
702  * Other levels are unaffected.
703  */
704 STATIC int                              /* success=1, failure=0 */
705 xfs_btree_firstrec(
706         xfs_btree_cur_t         *cur,   /* btree cursor */
707         int                     level)  /* level to change */
708 {
709         struct xfs_btree_block  *block; /* generic btree block pointer */
710         xfs_buf_t               *bp;    /* buffer containing block */
711
712         /*
713          * Get the block pointer for this level.
714          */
715         block = xfs_btree_get_block(cur, level, &bp);
716         xfs_btree_check_block(cur, block, level, bp);
717         /*
718          * It's empty, there is no such record.
719          */
720         if (!block->bb_numrecs)
721                 return 0;
722         /*
723          * Set the ptr value to 1, that's the first record/key.
724          */
725         cur->bc_ptrs[level] = 1;
726         return 1;
727 }
728
729 /*
730  * Change the cursor to point to the last record in the current block
731  * at the given level.  Other levels are unaffected.
732  */
733 STATIC int                              /* success=1, failure=0 */
734 xfs_btree_lastrec(
735         xfs_btree_cur_t         *cur,   /* btree cursor */
736         int                     level)  /* level to change */
737 {
738         struct xfs_btree_block  *block; /* generic btree block pointer */
739         xfs_buf_t               *bp;    /* buffer containing block */
740
741         /*
742          * Get the block pointer for this level.
743          */
744         block = xfs_btree_get_block(cur, level, &bp);
745         xfs_btree_check_block(cur, block, level, bp);
746         /*
747          * It's empty, there is no such record.
748          */
749         if (!block->bb_numrecs)
750                 return 0;
751         /*
752          * Set the ptr value to numrecs, that's the last record/key.
753          */
754         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
755         return 1;
756 }
757
758 /*
759  * Compute first and last byte offsets for the fields given.
760  * Interprets the offsets table, which contains struct field offsets.
761  */
762 void
763 xfs_btree_offsets(
764         __int64_t       fields,         /* bitmask of fields */
765         const short     *offsets,       /* table of field offsets */
766         int             nbits,          /* number of bits to inspect */
767         int             *first,         /* output: first byte offset */
768         int             *last)          /* output: last byte offset */
769 {
770         int             i;              /* current bit number */
771         __int64_t       imask;          /* mask for current bit number */
772
773         ASSERT(fields != 0);
774         /*
775          * Find the lowest bit, so the first byte offset.
776          */
777         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
778                 if (imask & fields) {
779                         *first = offsets[i];
780                         break;
781                 }
782         }
783         /*
784          * Find the highest bit, so the last byte offset.
785          */
786         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
787                 if (imask & fields) {
788                         *last = offsets[i + 1] - 1;
789                         break;
790                 }
791         }
792 }
793
794 /*
795  * Get a buffer for the block, return it read in.
796  * Long-form addressing.
797  */
798 int
799 xfs_btree_read_bufl(
800         struct xfs_mount        *mp,            /* file system mount point */
801         struct xfs_trans        *tp,            /* transaction pointer */
802         xfs_fsblock_t           fsbno,          /* file system block number */
803         uint                    lock,           /* lock flags for read_buf */
804         struct xfs_buf          **bpp,          /* buffer for fsbno */
805         int                     refval,         /* ref count value for buffer */
806         const struct xfs_buf_ops *ops)
807 {
808         struct xfs_buf          *bp;            /* return value */
809         xfs_daddr_t             d;              /* real disk block address */
810         int                     error;
811
812         ASSERT(fsbno != NULLFSBLOCK);
813         d = XFS_FSB_TO_DADDR(mp, fsbno);
814         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
815                                    mp->m_bsize, lock, &bp, ops);
816         if (error)
817                 return error;
818         if (bp)
819                 xfs_buf_set_ref(bp, refval);
820         *bpp = bp;
821         return 0;
822 }
823
824 /*
825  * Read-ahead the block, don't wait for it, don't return a buffer.
826  * Long-form addressing.
827  */
828 /* ARGSUSED */
829 void
830 xfs_btree_reada_bufl(
831         struct xfs_mount        *mp,            /* file system mount point */
832         xfs_fsblock_t           fsbno,          /* file system block number */
833         xfs_extlen_t            count,          /* count of filesystem blocks */
834         const struct xfs_buf_ops *ops)
835 {
836         xfs_daddr_t             d;
837
838         ASSERT(fsbno != NULLFSBLOCK);
839         d = XFS_FSB_TO_DADDR(mp, fsbno);
840         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
841 }
842
843 /*
844  * Read-ahead the block, don't wait for it, don't return a buffer.
845  * Short-form addressing.
846  */
847 /* ARGSUSED */
848 void
849 xfs_btree_reada_bufs(
850         struct xfs_mount        *mp,            /* file system mount point */
851         xfs_agnumber_t          agno,           /* allocation group number */
852         xfs_agblock_t           agbno,          /* allocation group block number */
853         xfs_extlen_t            count,          /* count of filesystem blocks */
854         const struct xfs_buf_ops *ops)
855 {
856         xfs_daddr_t             d;
857
858         ASSERT(agno != NULLAGNUMBER);
859         ASSERT(agbno != NULLAGBLOCK);
860         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
861         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
862 }
863
864 STATIC int
865 xfs_btree_readahead_lblock(
866         struct xfs_btree_cur    *cur,
867         int                     lr,
868         struct xfs_btree_block  *block)
869 {
870         int                     rval = 0;
871         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
872         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
873
874         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
875                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
876                                      cur->bc_ops->buf_ops);
877                 rval++;
878         }
879
880         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
881                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
882                                      cur->bc_ops->buf_ops);
883                 rval++;
884         }
885
886         return rval;
887 }
888
889 STATIC int
890 xfs_btree_readahead_sblock(
891         struct xfs_btree_cur    *cur,
892         int                     lr,
893         struct xfs_btree_block *block)
894 {
895         int                     rval = 0;
896         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
897         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
898
899
900         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
901                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
902                                      left, 1, cur->bc_ops->buf_ops);
903                 rval++;
904         }
905
906         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
907                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
908                                      right, 1, cur->bc_ops->buf_ops);
909                 rval++;
910         }
911
912         return rval;
913 }
914
915 /*
916  * Read-ahead btree blocks, at the given level.
917  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
918  */
919 STATIC int
920 xfs_btree_readahead(
921         struct xfs_btree_cur    *cur,           /* btree cursor */
922         int                     lev,            /* level in btree */
923         int                     lr)             /* left/right bits */
924 {
925         struct xfs_btree_block  *block;
926
927         /*
928          * No readahead needed if we are at the root level and the
929          * btree root is stored in the inode.
930          */
931         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
932             (lev == cur->bc_nlevels - 1))
933                 return 0;
934
935         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
936                 return 0;
937
938         cur->bc_ra[lev] |= lr;
939         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
940
941         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
942                 return xfs_btree_readahead_lblock(cur, lr, block);
943         return xfs_btree_readahead_sblock(cur, lr, block);
944 }
945
946 STATIC xfs_daddr_t
947 xfs_btree_ptr_to_daddr(
948         struct xfs_btree_cur    *cur,
949         union xfs_btree_ptr     *ptr)
950 {
951         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
952                 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
953
954                 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
955         } else {
956                 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
957                 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
958
959                 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
960                                         be32_to_cpu(ptr->s));
961         }
962 }
963
964 /*
965  * Readahead @count btree blocks at the given @ptr location.
966  *
967  * We don't need to care about long or short form btrees here as we have a
968  * method of converting the ptr directly to a daddr available to us.
969  */
970 STATIC void
971 xfs_btree_readahead_ptr(
972         struct xfs_btree_cur    *cur,
973         union xfs_btree_ptr     *ptr,
974         xfs_extlen_t            count)
975 {
976         xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
977                           xfs_btree_ptr_to_daddr(cur, ptr),
978                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
979 }
980
981 /*
982  * Set the buffer for level "lev" in the cursor to bp, releasing
983  * any previous buffer.
984  */
985 STATIC void
986 xfs_btree_setbuf(
987         xfs_btree_cur_t         *cur,   /* btree cursor */
988         int                     lev,    /* level in btree */
989         xfs_buf_t               *bp)    /* new buffer to set */
990 {
991         struct xfs_btree_block  *b;     /* btree block */
992
993         if (cur->bc_bufs[lev])
994                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
995         cur->bc_bufs[lev] = bp;
996         cur->bc_ra[lev] = 0;
997
998         b = XFS_BUF_TO_BLOCK(bp);
999         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1000                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1001                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1002                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1003                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1004         } else {
1005                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1006                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1007                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1008                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1009         }
1010 }
1011
1012 STATIC int
1013 xfs_btree_ptr_is_null(
1014         struct xfs_btree_cur    *cur,
1015         union xfs_btree_ptr     *ptr)
1016 {
1017         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1018                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1019         else
1020                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1021 }
1022
1023 STATIC void
1024 xfs_btree_set_ptr_null(
1025         struct xfs_btree_cur    *cur,
1026         union xfs_btree_ptr     *ptr)
1027 {
1028         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1029                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1030         else
1031                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1032 }
1033
1034 /*
1035  * Get/set/init sibling pointers
1036  */
1037 STATIC void
1038 xfs_btree_get_sibling(
1039         struct xfs_btree_cur    *cur,
1040         struct xfs_btree_block  *block,
1041         union xfs_btree_ptr     *ptr,
1042         int                     lr)
1043 {
1044         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1045
1046         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1047                 if (lr == XFS_BB_RIGHTSIB)
1048                         ptr->l = block->bb_u.l.bb_rightsib;
1049                 else
1050                         ptr->l = block->bb_u.l.bb_leftsib;
1051         } else {
1052                 if (lr == XFS_BB_RIGHTSIB)
1053                         ptr->s = block->bb_u.s.bb_rightsib;
1054                 else
1055                         ptr->s = block->bb_u.s.bb_leftsib;
1056         }
1057 }
1058
1059 STATIC void
1060 xfs_btree_set_sibling(
1061         struct xfs_btree_cur    *cur,
1062         struct xfs_btree_block  *block,
1063         union xfs_btree_ptr     *ptr,
1064         int                     lr)
1065 {
1066         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1067
1068         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1069                 if (lr == XFS_BB_RIGHTSIB)
1070                         block->bb_u.l.bb_rightsib = ptr->l;
1071                 else
1072                         block->bb_u.l.bb_leftsib = ptr->l;
1073         } else {
1074                 if (lr == XFS_BB_RIGHTSIB)
1075                         block->bb_u.s.bb_rightsib = ptr->s;
1076                 else
1077                         block->bb_u.s.bb_leftsib = ptr->s;
1078         }
1079 }
1080
1081 void
1082 xfs_btree_init_block_int(
1083         struct xfs_mount        *mp,
1084         struct xfs_btree_block  *buf,
1085         xfs_daddr_t             blkno,
1086         __u32                   magic,
1087         __u16                   level,
1088         __u16                   numrecs,
1089         __u64                   owner,
1090         unsigned int            flags)
1091 {
1092         buf->bb_magic = cpu_to_be32(magic);
1093         buf->bb_level = cpu_to_be16(level);
1094         buf->bb_numrecs = cpu_to_be16(numrecs);
1095
1096         if (flags & XFS_BTREE_LONG_PTRS) {
1097                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1098                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1099                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1100                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1101                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1102                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1103                         buf->bb_u.l.bb_pad = 0;
1104                         buf->bb_u.l.bb_lsn = 0;
1105                 }
1106         } else {
1107                 /* owner is a 32 bit value on short blocks */
1108                 __u32 __owner = (__u32)owner;
1109
1110                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1111                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1112                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1113                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1114                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1115                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1116                         buf->bb_u.s.bb_lsn = 0;
1117                 }
1118         }
1119 }
1120
1121 void
1122 xfs_btree_init_block(
1123         struct xfs_mount *mp,
1124         struct xfs_buf  *bp,
1125         __u32           magic,
1126         __u16           level,
1127         __u16           numrecs,
1128         __u64           owner,
1129         unsigned int    flags)
1130 {
1131         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1132                                  magic, level, numrecs, owner, flags);
1133 }
1134
1135 STATIC void
1136 xfs_btree_init_block_cur(
1137         struct xfs_btree_cur    *cur,
1138         struct xfs_buf          *bp,
1139         int                     level,
1140         int                     numrecs)
1141 {
1142         __u64 owner;
1143
1144         /*
1145          * we can pull the owner from the cursor right now as the different
1146          * owners align directly with the pointer size of the btree. This may
1147          * change in future, but is safe for current users of the generic btree
1148          * code.
1149          */
1150         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1151                 owner = cur->bc_private.b.ip->i_ino;
1152         else
1153                 owner = cur->bc_private.a.agno;
1154
1155         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1156                                  xfs_btree_magic(cur), level, numrecs,
1157                                  owner, cur->bc_flags);
1158 }
1159
1160 /*
1161  * Return true if ptr is the last record in the btree and
1162  * we need to track updates to this record.  The decision
1163  * will be further refined in the update_lastrec method.
1164  */
1165 STATIC int
1166 xfs_btree_is_lastrec(
1167         struct xfs_btree_cur    *cur,
1168         struct xfs_btree_block  *block,
1169         int                     level)
1170 {
1171         union xfs_btree_ptr     ptr;
1172
1173         if (level > 0)
1174                 return 0;
1175         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1176                 return 0;
1177
1178         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1179         if (!xfs_btree_ptr_is_null(cur, &ptr))
1180                 return 0;
1181         return 1;
1182 }
1183
1184 STATIC void
1185 xfs_btree_buf_to_ptr(
1186         struct xfs_btree_cur    *cur,
1187         struct xfs_buf          *bp,
1188         union xfs_btree_ptr     *ptr)
1189 {
1190         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1191                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1192                                         XFS_BUF_ADDR(bp)));
1193         else {
1194                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1195                                         XFS_BUF_ADDR(bp)));
1196         }
1197 }
1198
1199 STATIC void
1200 xfs_btree_set_refs(
1201         struct xfs_btree_cur    *cur,
1202         struct xfs_buf          *bp)
1203 {
1204         switch (cur->bc_btnum) {
1205         case XFS_BTNUM_BNO:
1206         case XFS_BTNUM_CNT:
1207                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1208                 break;
1209         case XFS_BTNUM_INO:
1210         case XFS_BTNUM_FINO:
1211                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1212                 break;
1213         case XFS_BTNUM_BMAP:
1214                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1215                 break;
1216         case XFS_BTNUM_RMAP:
1217                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1218                 break;
1219         default:
1220                 ASSERT(0);
1221         }
1222 }
1223
1224 STATIC int
1225 xfs_btree_get_buf_block(
1226         struct xfs_btree_cur    *cur,
1227         union xfs_btree_ptr     *ptr,
1228         int                     flags,
1229         struct xfs_btree_block  **block,
1230         struct xfs_buf          **bpp)
1231 {
1232         struct xfs_mount        *mp = cur->bc_mp;
1233         xfs_daddr_t             d;
1234
1235         /* need to sort out how callers deal with failures first */
1236         ASSERT(!(flags & XBF_TRYLOCK));
1237
1238         d = xfs_btree_ptr_to_daddr(cur, ptr);
1239         *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1240                                  mp->m_bsize, flags);
1241
1242         if (!*bpp)
1243                 return -ENOMEM;
1244
1245         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1246         *block = XFS_BUF_TO_BLOCK(*bpp);
1247         return 0;
1248 }
1249
1250 /*
1251  * Read in the buffer at the given ptr and return the buffer and
1252  * the block pointer within the buffer.
1253  */
1254 STATIC int
1255 xfs_btree_read_buf_block(
1256         struct xfs_btree_cur    *cur,
1257         union xfs_btree_ptr     *ptr,
1258         int                     flags,
1259         struct xfs_btree_block  **block,
1260         struct xfs_buf          **bpp)
1261 {
1262         struct xfs_mount        *mp = cur->bc_mp;
1263         xfs_daddr_t             d;
1264         int                     error;
1265
1266         /* need to sort out how callers deal with failures first */
1267         ASSERT(!(flags & XBF_TRYLOCK));
1268
1269         d = xfs_btree_ptr_to_daddr(cur, ptr);
1270         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1271                                    mp->m_bsize, flags, bpp,
1272                                    cur->bc_ops->buf_ops);
1273         if (error)
1274                 return error;
1275
1276         xfs_btree_set_refs(cur, *bpp);
1277         *block = XFS_BUF_TO_BLOCK(*bpp);
1278         return 0;
1279 }
1280
1281 /*
1282  * Copy keys from one btree block to another.
1283  */
1284 STATIC void
1285 xfs_btree_copy_keys(
1286         struct xfs_btree_cur    *cur,
1287         union xfs_btree_key     *dst_key,
1288         union xfs_btree_key     *src_key,
1289         int                     numkeys)
1290 {
1291         ASSERT(numkeys >= 0);
1292         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1293 }
1294
1295 /*
1296  * Copy records from one btree block to another.
1297  */
1298 STATIC void
1299 xfs_btree_copy_recs(
1300         struct xfs_btree_cur    *cur,
1301         union xfs_btree_rec     *dst_rec,
1302         union xfs_btree_rec     *src_rec,
1303         int                     numrecs)
1304 {
1305         ASSERT(numrecs >= 0);
1306         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1307 }
1308
1309 /*
1310  * Copy block pointers from one btree block to another.
1311  */
1312 STATIC void
1313 xfs_btree_copy_ptrs(
1314         struct xfs_btree_cur    *cur,
1315         union xfs_btree_ptr     *dst_ptr,
1316         union xfs_btree_ptr     *src_ptr,
1317         int                     numptrs)
1318 {
1319         ASSERT(numptrs >= 0);
1320         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1321 }
1322
1323 /*
1324  * Shift keys one index left/right inside a single btree block.
1325  */
1326 STATIC void
1327 xfs_btree_shift_keys(
1328         struct xfs_btree_cur    *cur,
1329         union xfs_btree_key     *key,
1330         int                     dir,
1331         int                     numkeys)
1332 {
1333         char                    *dst_key;
1334
1335         ASSERT(numkeys >= 0);
1336         ASSERT(dir == 1 || dir == -1);
1337
1338         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1339         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1340 }
1341
1342 /*
1343  * Shift records one index left/right inside a single btree block.
1344  */
1345 STATIC void
1346 xfs_btree_shift_recs(
1347         struct xfs_btree_cur    *cur,
1348         union xfs_btree_rec     *rec,
1349         int                     dir,
1350         int                     numrecs)
1351 {
1352         char                    *dst_rec;
1353
1354         ASSERT(numrecs >= 0);
1355         ASSERT(dir == 1 || dir == -1);
1356
1357         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1358         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1359 }
1360
1361 /*
1362  * Shift block pointers one index left/right inside a single btree block.
1363  */
1364 STATIC void
1365 xfs_btree_shift_ptrs(
1366         struct xfs_btree_cur    *cur,
1367         union xfs_btree_ptr     *ptr,
1368         int                     dir,
1369         int                     numptrs)
1370 {
1371         char                    *dst_ptr;
1372
1373         ASSERT(numptrs >= 0);
1374         ASSERT(dir == 1 || dir == -1);
1375
1376         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1377         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1378 }
1379
1380 /*
1381  * Log key values from the btree block.
1382  */
1383 STATIC void
1384 xfs_btree_log_keys(
1385         struct xfs_btree_cur    *cur,
1386         struct xfs_buf          *bp,
1387         int                     first,
1388         int                     last)
1389 {
1390         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1391         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1392
1393         if (bp) {
1394                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1395                 xfs_trans_log_buf(cur->bc_tp, bp,
1396                                   xfs_btree_key_offset(cur, first),
1397                                   xfs_btree_key_offset(cur, last + 1) - 1);
1398         } else {
1399                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1400                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1401         }
1402
1403         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1404 }
1405
1406 /*
1407  * Log record values from the btree block.
1408  */
1409 void
1410 xfs_btree_log_recs(
1411         struct xfs_btree_cur    *cur,
1412         struct xfs_buf          *bp,
1413         int                     first,
1414         int                     last)
1415 {
1416         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1417         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1418
1419         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1420         xfs_trans_log_buf(cur->bc_tp, bp,
1421                           xfs_btree_rec_offset(cur, first),
1422                           xfs_btree_rec_offset(cur, last + 1) - 1);
1423
1424         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1425 }
1426
1427 /*
1428  * Log block pointer fields from a btree block (nonleaf).
1429  */
1430 STATIC void
1431 xfs_btree_log_ptrs(
1432         struct xfs_btree_cur    *cur,   /* btree cursor */
1433         struct xfs_buf          *bp,    /* buffer containing btree block */
1434         int                     first,  /* index of first pointer to log */
1435         int                     last)   /* index of last pointer to log */
1436 {
1437         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1438         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1439
1440         if (bp) {
1441                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1442                 int                     level = xfs_btree_get_level(block);
1443
1444                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445                 xfs_trans_log_buf(cur->bc_tp, bp,
1446                                 xfs_btree_ptr_offset(cur, first, level),
1447                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448         } else {
1449                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1450                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1451         }
1452
1453         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1454 }
1455
1456 /*
1457  * Log fields from a btree block header.
1458  */
1459 void
1460 xfs_btree_log_block(
1461         struct xfs_btree_cur    *cur,   /* btree cursor */
1462         struct xfs_buf          *bp,    /* buffer containing btree block */
1463         int                     fields) /* mask of fields: XFS_BB_... */
1464 {
1465         int                     first;  /* first byte offset logged */
1466         int                     last;   /* last byte offset logged */
1467         static const short      soffsets[] = {  /* table of offsets (short) */
1468                 offsetof(struct xfs_btree_block, bb_magic),
1469                 offsetof(struct xfs_btree_block, bb_level),
1470                 offsetof(struct xfs_btree_block, bb_numrecs),
1471                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1472                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1473                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1474                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1475                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1476                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1477                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1478                 XFS_BTREE_SBLOCK_CRC_LEN
1479         };
1480         static const short      loffsets[] = {  /* table of offsets (long) */
1481                 offsetof(struct xfs_btree_block, bb_magic),
1482                 offsetof(struct xfs_btree_block, bb_level),
1483                 offsetof(struct xfs_btree_block, bb_numrecs),
1484                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1485                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1486                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1487                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1488                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1489                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1490                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1491                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1492                 XFS_BTREE_LBLOCK_CRC_LEN
1493         };
1494
1495         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1496         XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1497
1498         if (bp) {
1499                 int nbits;
1500
1501                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1502                         /*
1503                          * We don't log the CRC when updating a btree
1504                          * block but instead recreate it during log
1505                          * recovery.  As the log buffers have checksums
1506                          * of their own this is safe and avoids logging a crc
1507                          * update in a lot of places.
1508                          */
1509                         if (fields == XFS_BB_ALL_BITS)
1510                                 fields = XFS_BB_ALL_BITS_CRC;
1511                         nbits = XFS_BB_NUM_BITS_CRC;
1512                 } else {
1513                         nbits = XFS_BB_NUM_BITS;
1514                 }
1515                 xfs_btree_offsets(fields,
1516                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1517                                         loffsets : soffsets,
1518                                   nbits, &first, &last);
1519                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1521         } else {
1522                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1523                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1524         }
1525
1526         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1527 }
1528
1529 /*
1530  * Increment cursor by one record at the level.
1531  * For nonzero levels the leaf-ward information is untouched.
1532  */
1533 int                                             /* error */
1534 xfs_btree_increment(
1535         struct xfs_btree_cur    *cur,
1536         int                     level,
1537         int                     *stat)          /* success/failure */
1538 {
1539         struct xfs_btree_block  *block;
1540         union xfs_btree_ptr     ptr;
1541         struct xfs_buf          *bp;
1542         int                     error;          /* error return value */
1543         int                     lev;
1544
1545         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1546         XFS_BTREE_TRACE_ARGI(cur, level);
1547
1548         ASSERT(level < cur->bc_nlevels);
1549
1550         /* Read-ahead to the right at this level. */
1551         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1552
1553         /* Get a pointer to the btree block. */
1554         block = xfs_btree_get_block(cur, level, &bp);
1555
1556 #ifdef DEBUG
1557         error = xfs_btree_check_block(cur, block, level, bp);
1558         if (error)
1559                 goto error0;
1560 #endif
1561
1562         /* We're done if we remain in the block after the increment. */
1563         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1564                 goto out1;
1565
1566         /* Fail if we just went off the right edge of the tree. */
1567         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1568         if (xfs_btree_ptr_is_null(cur, &ptr))
1569                 goto out0;
1570
1571         XFS_BTREE_STATS_INC(cur, increment);
1572
1573         /*
1574          * March up the tree incrementing pointers.
1575          * Stop when we don't go off the right edge of a block.
1576          */
1577         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1578                 block = xfs_btree_get_block(cur, lev, &bp);
1579
1580 #ifdef DEBUG
1581                 error = xfs_btree_check_block(cur, block, lev, bp);
1582                 if (error)
1583                         goto error0;
1584 #endif
1585
1586                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1587                         break;
1588
1589                 /* Read-ahead the right block for the next loop. */
1590                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1591         }
1592
1593         /*
1594          * If we went off the root then we are either seriously
1595          * confused or have the tree root in an inode.
1596          */
1597         if (lev == cur->bc_nlevels) {
1598                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1599                         goto out0;
1600                 ASSERT(0);
1601                 error = -EFSCORRUPTED;
1602                 goto error0;
1603         }
1604         ASSERT(lev < cur->bc_nlevels);
1605
1606         /*
1607          * Now walk back down the tree, fixing up the cursor's buffer
1608          * pointers and key numbers.
1609          */
1610         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1611                 union xfs_btree_ptr     *ptrp;
1612
1613                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1614                 --lev;
1615                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1616                 if (error)
1617                         goto error0;
1618
1619                 xfs_btree_setbuf(cur, lev, bp);
1620                 cur->bc_ptrs[lev] = 1;
1621         }
1622 out1:
1623         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1624         *stat = 1;
1625         return 0;
1626
1627 out0:
1628         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1629         *stat = 0;
1630         return 0;
1631
1632 error0:
1633         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1634         return error;
1635 }
1636
1637 /*
1638  * Decrement cursor by one record at the level.
1639  * For nonzero levels the leaf-ward information is untouched.
1640  */
1641 int                                             /* error */
1642 xfs_btree_decrement(
1643         struct xfs_btree_cur    *cur,
1644         int                     level,
1645         int                     *stat)          /* success/failure */
1646 {
1647         struct xfs_btree_block  *block;
1648         xfs_buf_t               *bp;
1649         int                     error;          /* error return value */
1650         int                     lev;
1651         union xfs_btree_ptr     ptr;
1652
1653         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1654         XFS_BTREE_TRACE_ARGI(cur, level);
1655
1656         ASSERT(level < cur->bc_nlevels);
1657
1658         /* Read-ahead to the left at this level. */
1659         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1660
1661         /* We're done if we remain in the block after the decrement. */
1662         if (--cur->bc_ptrs[level] > 0)
1663                 goto out1;
1664
1665         /* Get a pointer to the btree block. */
1666         block = xfs_btree_get_block(cur, level, &bp);
1667
1668 #ifdef DEBUG
1669         error = xfs_btree_check_block(cur, block, level, bp);
1670         if (error)
1671                 goto error0;
1672 #endif
1673
1674         /* Fail if we just went off the left edge of the tree. */
1675         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1676         if (xfs_btree_ptr_is_null(cur, &ptr))
1677                 goto out0;
1678
1679         XFS_BTREE_STATS_INC(cur, decrement);
1680
1681         /*
1682          * March up the tree decrementing pointers.
1683          * Stop when we don't go off the left edge of a block.
1684          */
1685         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1686                 if (--cur->bc_ptrs[lev] > 0)
1687                         break;
1688                 /* Read-ahead the left block for the next loop. */
1689                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1690         }
1691
1692         /*
1693          * If we went off the root then we are seriously confused.
1694          * or the root of the tree is in an inode.
1695          */
1696         if (lev == cur->bc_nlevels) {
1697                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1698                         goto out0;
1699                 ASSERT(0);
1700                 error = -EFSCORRUPTED;
1701                 goto error0;
1702         }
1703         ASSERT(lev < cur->bc_nlevels);
1704
1705         /*
1706          * Now walk back down the tree, fixing up the cursor's buffer
1707          * pointers and key numbers.
1708          */
1709         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1710                 union xfs_btree_ptr     *ptrp;
1711
1712                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1713                 --lev;
1714                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1715                 if (error)
1716                         goto error0;
1717                 xfs_btree_setbuf(cur, lev, bp);
1718                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1719         }
1720 out1:
1721         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1722         *stat = 1;
1723         return 0;
1724
1725 out0:
1726         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1727         *stat = 0;
1728         return 0;
1729
1730 error0:
1731         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1732         return error;
1733 }
1734
1735 STATIC int
1736 xfs_btree_lookup_get_block(
1737         struct xfs_btree_cur    *cur,   /* btree cursor */
1738         int                     level,  /* level in the btree */
1739         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1740         struct xfs_btree_block  **blkp) /* return btree block */
1741 {
1742         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1743         int                     error = 0;
1744
1745         /* special case the root block if in an inode */
1746         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1747             (level == cur->bc_nlevels - 1)) {
1748                 *blkp = xfs_btree_get_iroot(cur);
1749                 return 0;
1750         }
1751
1752         /*
1753          * If the old buffer at this level for the disk address we are
1754          * looking for re-use it.
1755          *
1756          * Otherwise throw it away and get a new one.
1757          */
1758         bp = cur->bc_bufs[level];
1759         if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1760                 *blkp = XFS_BUF_TO_BLOCK(bp);
1761                 return 0;
1762         }
1763
1764         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1765         if (error)
1766                 return error;
1767
1768         xfs_btree_setbuf(cur, level, bp);
1769         return 0;
1770 }
1771
1772 /*
1773  * Get current search key.  For level 0 we don't actually have a key
1774  * structure so we make one up from the record.  For all other levels
1775  * we just return the right key.
1776  */
1777 STATIC union xfs_btree_key *
1778 xfs_lookup_get_search_key(
1779         struct xfs_btree_cur    *cur,
1780         int                     level,
1781         int                     keyno,
1782         struct xfs_btree_block  *block,
1783         union xfs_btree_key     *kp)
1784 {
1785         if (level == 0) {
1786                 cur->bc_ops->init_key_from_rec(kp,
1787                                 xfs_btree_rec_addr(cur, keyno, block));
1788                 return kp;
1789         }
1790
1791         return xfs_btree_key_addr(cur, keyno, block);
1792 }
1793
1794 /*
1795  * Lookup the record.  The cursor is made to point to it, based on dir.
1796  * stat is set to 0 if can't find any such record, 1 for success.
1797  */
1798 int                                     /* error */
1799 xfs_btree_lookup(
1800         struct xfs_btree_cur    *cur,   /* btree cursor */
1801         xfs_lookup_t            dir,    /* <=, ==, or >= */
1802         int                     *stat)  /* success/failure */
1803 {
1804         struct xfs_btree_block  *block; /* current btree block */
1805         __int64_t               diff;   /* difference for the current key */
1806         int                     error;  /* error return value */
1807         int                     keyno;  /* current key number */
1808         int                     level;  /* level in the btree */
1809         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1810         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1811
1812         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1813         XFS_BTREE_TRACE_ARGI(cur, dir);
1814
1815         XFS_BTREE_STATS_INC(cur, lookup);
1816
1817         block = NULL;
1818         keyno = 0;
1819
1820         /* initialise start pointer from cursor */
1821         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1822         pp = &ptr;
1823
1824         /*
1825          * Iterate over each level in the btree, starting at the root.
1826          * For each level above the leaves, find the key we need, based
1827          * on the lookup record, then follow the corresponding block
1828          * pointer down to the next level.
1829          */
1830         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1831                 /* Get the block we need to do the lookup on. */
1832                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1833                 if (error)
1834                         goto error0;
1835
1836                 if (diff == 0) {
1837                         /*
1838                          * If we already had a key match at a higher level, we
1839                          * know we need to use the first entry in this block.
1840                          */
1841                         keyno = 1;
1842                 } else {
1843                         /* Otherwise search this block. Do a binary search. */
1844
1845                         int     high;   /* high entry number */
1846                         int     low;    /* low entry number */
1847
1848                         /* Set low and high entry numbers, 1-based. */
1849                         low = 1;
1850                         high = xfs_btree_get_numrecs(block);
1851                         if (!high) {
1852                                 /* Block is empty, must be an empty leaf. */
1853                                 ASSERT(level == 0 && cur->bc_nlevels == 1);
1854
1855                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1856                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1857                                 *stat = 0;
1858                                 return 0;
1859                         }
1860
1861                         /* Binary search the block. */
1862                         while (low <= high) {
1863                                 union xfs_btree_key     key;
1864                                 union xfs_btree_key     *kp;
1865
1866                                 XFS_BTREE_STATS_INC(cur, compare);
1867
1868                                 /* keyno is average of low and high. */
1869                                 keyno = (low + high) >> 1;
1870
1871                                 /* Get current search key */
1872                                 kp = xfs_lookup_get_search_key(cur, level,
1873                                                 keyno, block, &key);
1874
1875                                 /*
1876                                  * Compute difference to get next direction:
1877                                  *  - less than, move right
1878                                  *  - greater than, move left
1879                                  *  - equal, we're done
1880                                  */
1881                                 diff = cur->bc_ops->key_diff(cur, kp);
1882                                 if (diff < 0)
1883                                         low = keyno + 1;
1884                                 else if (diff > 0)
1885                                         high = keyno - 1;
1886                                 else
1887                                         break;
1888                         }
1889                 }
1890
1891                 /*
1892                  * If there are more levels, set up for the next level
1893                  * by getting the block number and filling in the cursor.
1894                  */
1895                 if (level > 0) {
1896                         /*
1897                          * If we moved left, need the previous key number,
1898                          * unless there isn't one.
1899                          */
1900                         if (diff > 0 && --keyno < 1)
1901                                 keyno = 1;
1902                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1903
1904 #ifdef DEBUG
1905                         error = xfs_btree_check_ptr(cur, pp, 0, level);
1906                         if (error)
1907                                 goto error0;
1908 #endif
1909                         cur->bc_ptrs[level] = keyno;
1910                 }
1911         }
1912
1913         /* Done with the search. See if we need to adjust the results. */
1914         if (dir != XFS_LOOKUP_LE && diff < 0) {
1915                 keyno++;
1916                 /*
1917                  * If ge search and we went off the end of the block, but it's
1918                  * not the last block, we're in the wrong block.
1919                  */
1920                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1921                 if (dir == XFS_LOOKUP_GE &&
1922                     keyno > xfs_btree_get_numrecs(block) &&
1923                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1924                         int     i;
1925
1926                         cur->bc_ptrs[0] = keyno;
1927                         error = xfs_btree_increment(cur, 0, &i);
1928                         if (error)
1929                                 goto error0;
1930                         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1931                         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1932                         *stat = 1;
1933                         return 0;
1934                 }
1935         } else if (dir == XFS_LOOKUP_LE && diff > 0)
1936                 keyno--;
1937         cur->bc_ptrs[0] = keyno;
1938
1939         /* Return if we succeeded or not. */
1940         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1941                 *stat = 0;
1942         else if (dir != XFS_LOOKUP_EQ || diff == 0)
1943                 *stat = 1;
1944         else
1945                 *stat = 0;
1946         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1947         return 0;
1948
1949 error0:
1950         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1951         return error;
1952 }
1953
1954 /* Find the high key storage area from a regular key. */
1955 STATIC union xfs_btree_key *
1956 xfs_btree_high_key_from_key(
1957         struct xfs_btree_cur    *cur,
1958         union xfs_btree_key     *key)
1959 {
1960         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1961         return (union xfs_btree_key *)((char *)key +
1962                         (cur->bc_ops->key_len / 2));
1963 }
1964
1965 /* Determine the low (and high if overlapped) keys of a leaf block */
1966 STATIC void
1967 xfs_btree_get_leaf_keys(
1968         struct xfs_btree_cur    *cur,
1969         struct xfs_btree_block  *block,
1970         union xfs_btree_key     *key)
1971 {
1972         union xfs_btree_key     max_hkey;
1973         union xfs_btree_key     hkey;
1974         union xfs_btree_rec     *rec;
1975         union xfs_btree_key     *high;
1976         int                     n;
1977
1978         rec = xfs_btree_rec_addr(cur, 1, block);
1979         cur->bc_ops->init_key_from_rec(key, rec);
1980
1981         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1982
1983                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1984                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1985                         rec = xfs_btree_rec_addr(cur, n, block);
1986                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1987                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1988                                         > 0)
1989                                 max_hkey = hkey;
1990                 }
1991
1992                 high = xfs_btree_high_key_from_key(cur, key);
1993                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
1994         }
1995 }
1996
1997 /* Determine the low (and high if overlapped) keys of a node block */
1998 STATIC void
1999 xfs_btree_get_node_keys(
2000         struct xfs_btree_cur    *cur,
2001         struct xfs_btree_block  *block,
2002         union xfs_btree_key     *key)
2003 {
2004         union xfs_btree_key     *hkey;
2005         union xfs_btree_key     *max_hkey;
2006         union xfs_btree_key     *high;
2007         int                     n;
2008
2009         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2010                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2011                                 cur->bc_ops->key_len / 2);
2012
2013                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2014                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2015                         hkey = xfs_btree_high_key_addr(cur, n, block);
2016                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2017                                 max_hkey = hkey;
2018                 }
2019
2020                 high = xfs_btree_high_key_from_key(cur, key);
2021                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2022         } else {
2023                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2024                                 cur->bc_ops->key_len);
2025         }
2026 }
2027
2028 /* Derive the keys for any btree block. */
2029 STATIC void
2030 xfs_btree_get_keys(
2031         struct xfs_btree_cur    *cur,
2032         struct xfs_btree_block  *block,
2033         union xfs_btree_key     *key)
2034 {
2035         if (be16_to_cpu(block->bb_level) == 0)
2036                 xfs_btree_get_leaf_keys(cur, block, key);
2037         else
2038                 xfs_btree_get_node_keys(cur, block, key);
2039 }
2040
2041 /*
2042  * Decide if we need to update the parent keys of a btree block.  For
2043  * a standard btree this is only necessary if we're updating the first
2044  * record/key.  For an overlapping btree, we must always update the
2045  * keys because the highest key can be in any of the records or keys
2046  * in the block.
2047  */
2048 static inline bool
2049 xfs_btree_needs_key_update(
2050         struct xfs_btree_cur    *cur,
2051         int                     ptr)
2052 {
2053         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2054 }
2055
2056 /*
2057  * Update the low and high parent keys of the given level, progressing
2058  * towards the root.  If force_all is false, stop if the keys for a given
2059  * level do not need updating.
2060  */
2061 STATIC int
2062 __xfs_btree_updkeys(
2063         struct xfs_btree_cur    *cur,
2064         int                     level,
2065         struct xfs_btree_block  *block,
2066         struct xfs_buf          *bp0,
2067         bool                    force_all)
2068 {
2069         union xfs_btree_bigkey  key;    /* keys from current level */
2070         union xfs_btree_key     *lkey;  /* keys from the next level up */
2071         union xfs_btree_key     *hkey;
2072         union xfs_btree_key     *nlkey; /* keys from the next level up */
2073         union xfs_btree_key     *nhkey;
2074         struct xfs_buf          *bp;
2075         int                     ptr;
2076
2077         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2078
2079         /* Exit if there aren't any parent levels to update. */
2080         if (level + 1 >= cur->bc_nlevels)
2081                 return 0;
2082
2083         trace_xfs_btree_updkeys(cur, level, bp0);
2084
2085         lkey = (union xfs_btree_key *)&key;
2086         hkey = xfs_btree_high_key_from_key(cur, lkey);
2087         xfs_btree_get_keys(cur, block, lkey);
2088         for (level++; level < cur->bc_nlevels; level++) {
2089 #ifdef DEBUG
2090                 int             error;
2091 #endif
2092                 block = xfs_btree_get_block(cur, level, &bp);
2093                 trace_xfs_btree_updkeys(cur, level, bp);
2094 #ifdef DEBUG
2095                 error = xfs_btree_check_block(cur, block, level, bp);
2096                 if (error) {
2097                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2098                         return error;
2099                 }
2100 #endif
2101                 ptr = cur->bc_ptrs[level];
2102                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2103                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2104                 if (!force_all &&
2105                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2106                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2107                         break;
2108                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2109                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2110                 if (level + 1 >= cur->bc_nlevels)
2111                         break;
2112                 xfs_btree_get_node_keys(cur, block, lkey);
2113         }
2114
2115         return 0;
2116 }
2117
2118 /* Update all the keys from some level in cursor back to the root. */
2119 STATIC int
2120 xfs_btree_updkeys_force(
2121         struct xfs_btree_cur    *cur,
2122         int                     level)
2123 {
2124         struct xfs_buf          *bp;
2125         struct xfs_btree_block  *block;
2126
2127         block = xfs_btree_get_block(cur, level, &bp);
2128         return __xfs_btree_updkeys(cur, level, block, bp, true);
2129 }
2130
2131 /*
2132  * Update the parent keys of the given level, progressing towards the root.
2133  */
2134 STATIC int
2135 xfs_btree_update_keys(
2136         struct xfs_btree_cur    *cur,
2137         int                     level)
2138 {
2139         struct xfs_btree_block  *block;
2140         struct xfs_buf          *bp;
2141         union xfs_btree_key     *kp;
2142         union xfs_btree_key     key;
2143         int                     ptr;
2144
2145         ASSERT(level >= 0);
2146
2147         block = xfs_btree_get_block(cur, level, &bp);
2148         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2149                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2150
2151         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2152         XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2153
2154         /*
2155          * Go up the tree from this level toward the root.
2156          * At each level, update the key value to the value input.
2157          * Stop when we reach a level where the cursor isn't pointing
2158          * at the first entry in the block.
2159          */
2160         xfs_btree_get_keys(cur, block, &key);
2161         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2162 #ifdef DEBUG
2163                 int             error;
2164 #endif
2165                 block = xfs_btree_get_block(cur, level, &bp);
2166 #ifdef DEBUG
2167                 error = xfs_btree_check_block(cur, block, level, bp);
2168                 if (error) {
2169                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2170                         return error;
2171                 }
2172 #endif
2173                 ptr = cur->bc_ptrs[level];
2174                 kp = xfs_btree_key_addr(cur, ptr, block);
2175                 xfs_btree_copy_keys(cur, kp, &key, 1);
2176                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2177         }
2178
2179         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2180         return 0;
2181 }
2182
2183 /*
2184  * Update the record referred to by cur to the value in the
2185  * given record. This either works (return 0) or gets an
2186  * EFSCORRUPTED error.
2187  */
2188 int
2189 xfs_btree_update(
2190         struct xfs_btree_cur    *cur,
2191         union xfs_btree_rec     *rec)
2192 {
2193         struct xfs_btree_block  *block;
2194         struct xfs_buf          *bp;
2195         int                     error;
2196         int                     ptr;
2197         union xfs_btree_rec     *rp;
2198
2199         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2200         XFS_BTREE_TRACE_ARGR(cur, rec);
2201
2202         /* Pick up the current block. */
2203         block = xfs_btree_get_block(cur, 0, &bp);
2204
2205 #ifdef DEBUG
2206         error = xfs_btree_check_block(cur, block, 0, bp);
2207         if (error)
2208                 goto error0;
2209 #endif
2210         /* Get the address of the rec to be updated. */
2211         ptr = cur->bc_ptrs[0];
2212         rp = xfs_btree_rec_addr(cur, ptr, block);
2213
2214         /* Fill in the new contents and log them. */
2215         xfs_btree_copy_recs(cur, rp, rec, 1);
2216         xfs_btree_log_recs(cur, bp, ptr, ptr);
2217
2218         /*
2219          * If we are tracking the last record in the tree and
2220          * we are at the far right edge of the tree, update it.
2221          */
2222         if (xfs_btree_is_lastrec(cur, block, 0)) {
2223                 cur->bc_ops->update_lastrec(cur, block, rec,
2224                                             ptr, LASTREC_UPDATE);
2225         }
2226
2227         /* Pass new key value up to our parent. */
2228         if (xfs_btree_needs_key_update(cur, ptr)) {
2229                 error = xfs_btree_update_keys(cur, 0);
2230                 if (error)
2231                         goto error0;
2232         }
2233
2234         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2235         return 0;
2236
2237 error0:
2238         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2239         return error;
2240 }
2241
2242 /*
2243  * Move 1 record left from cur/level if possible.
2244  * Update cur to reflect the new path.
2245  */
2246 STATIC int                                      /* error */
2247 xfs_btree_lshift(
2248         struct xfs_btree_cur    *cur,
2249         int                     level,
2250         int                     *stat)          /* success/failure */
2251 {
2252         struct xfs_buf          *lbp;           /* left buffer pointer */
2253         struct xfs_btree_block  *left;          /* left btree block */
2254         int                     lrecs;          /* left record count */
2255         struct xfs_buf          *rbp;           /* right buffer pointer */
2256         struct xfs_btree_block  *right;         /* right btree block */
2257         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2258         int                     rrecs;          /* right record count */
2259         union xfs_btree_ptr     lptr;           /* left btree pointer */
2260         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2261         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2262         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2263         int                     error;          /* error return value */
2264         int                     i;
2265
2266         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2267         XFS_BTREE_TRACE_ARGI(cur, level);
2268
2269         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2270             level == cur->bc_nlevels - 1)
2271                 goto out0;
2272
2273         /* Set up variables for this block as "right". */
2274         right = xfs_btree_get_block(cur, level, &rbp);
2275
2276 #ifdef DEBUG
2277         error = xfs_btree_check_block(cur, right, level, rbp);
2278         if (error)
2279                 goto error0;
2280 #endif
2281
2282         /* If we've got no left sibling then we can't shift an entry left. */
2283         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2284         if (xfs_btree_ptr_is_null(cur, &lptr))
2285                 goto out0;
2286
2287         /*
2288          * If the cursor entry is the one that would be moved, don't
2289          * do it... it's too complicated.
2290          */
2291         if (cur->bc_ptrs[level] <= 1)
2292                 goto out0;
2293
2294         /* Set up the left neighbor as "left". */
2295         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2296         if (error)
2297                 goto error0;
2298
2299         /* If it's full, it can't take another entry. */
2300         lrecs = xfs_btree_get_numrecs(left);
2301         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2302                 goto out0;
2303
2304         rrecs = xfs_btree_get_numrecs(right);
2305
2306         /*
2307          * We add one entry to the left side and remove one for the right side.
2308          * Account for it here, the changes will be updated on disk and logged
2309          * later.
2310          */
2311         lrecs++;
2312         rrecs--;
2313
2314         XFS_BTREE_STATS_INC(cur, lshift);
2315         XFS_BTREE_STATS_ADD(cur, moves, 1);
2316
2317         /*
2318          * If non-leaf, copy a key and a ptr to the left block.
2319          * Log the changes to the left block.
2320          */
2321         if (level > 0) {
2322                 /* It's a non-leaf.  Move keys and pointers. */
2323                 union xfs_btree_key     *lkp;   /* left btree key */
2324                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2325
2326                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2327                 rkp = xfs_btree_key_addr(cur, 1, right);
2328
2329                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2330                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2331 #ifdef DEBUG
2332                 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2333                 if (error)
2334                         goto error0;
2335 #endif
2336                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2337                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2338
2339                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2340                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2341
2342                 ASSERT(cur->bc_ops->keys_inorder(cur,
2343                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2344         } else {
2345                 /* It's a leaf.  Move records.  */
2346                 union xfs_btree_rec     *lrp;   /* left record pointer */
2347
2348                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2349                 rrp = xfs_btree_rec_addr(cur, 1, right);
2350
2351                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2352                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2353
2354                 ASSERT(cur->bc_ops->recs_inorder(cur,
2355                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2356         }
2357
2358         xfs_btree_set_numrecs(left, lrecs);
2359         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2360
2361         xfs_btree_set_numrecs(right, rrecs);
2362         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2363
2364         /*
2365          * Slide the contents of right down one entry.
2366          */
2367         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2368         if (level > 0) {
2369                 /* It's a nonleaf. operate on keys and ptrs */
2370 #ifdef DEBUG
2371                 int                     i;              /* loop index */
2372
2373                 for (i = 0; i < rrecs; i++) {
2374                         error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2375                         if (error)
2376                                 goto error0;
2377                 }
2378 #endif
2379                 xfs_btree_shift_keys(cur,
2380                                 xfs_btree_key_addr(cur, 2, right),
2381                                 -1, rrecs);
2382                 xfs_btree_shift_ptrs(cur,
2383                                 xfs_btree_ptr_addr(cur, 2, right),
2384                                 -1, rrecs);
2385
2386                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2387                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2388         } else {
2389                 /* It's a leaf. operate on records */
2390                 xfs_btree_shift_recs(cur,
2391                         xfs_btree_rec_addr(cur, 2, right),
2392                         -1, rrecs);
2393                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2394         }
2395
2396         /*
2397          * Using a temporary cursor, update the parent key values of the
2398          * block on the left.
2399          */
2400         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2401                 error = xfs_btree_dup_cursor(cur, &tcur);
2402                 if (error)
2403                         goto error0;
2404                 i = xfs_btree_firstrec(tcur, level);
2405                 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2406
2407                 error = xfs_btree_decrement(tcur, level, &i);
2408                 if (error)
2409                         goto error1;
2410
2411                 /* Update the parent high keys of the left block, if needed. */
2412                 error = xfs_btree_update_keys(tcur, level);
2413                 if (error)
2414                         goto error1;
2415
2416                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2417         }
2418
2419         /* Update the parent keys of the right block. */
2420         error = xfs_btree_update_keys(cur, level);
2421         if (error)
2422                 goto error0;
2423
2424         /* Slide the cursor value left one. */
2425         cur->bc_ptrs[level]--;
2426
2427         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2428         *stat = 1;
2429         return 0;
2430
2431 out0:
2432         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2433         *stat = 0;
2434         return 0;
2435
2436 error0:
2437         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2438         return error;
2439
2440 error1:
2441         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2442         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2443         return error;
2444 }
2445
2446 /*
2447  * Move 1 record right from cur/level if possible.
2448  * Update cur to reflect the new path.
2449  */
2450 STATIC int                                      /* error */
2451 xfs_btree_rshift(
2452         struct xfs_btree_cur    *cur,
2453         int                     level,
2454         int                     *stat)          /* success/failure */
2455 {
2456         struct xfs_buf          *lbp;           /* left buffer pointer */
2457         struct xfs_btree_block  *left;          /* left btree block */
2458         struct xfs_buf          *rbp;           /* right buffer pointer */
2459         struct xfs_btree_block  *right;         /* right btree block */
2460         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2461         union xfs_btree_ptr     rptr;           /* right block pointer */
2462         union xfs_btree_key     *rkp;           /* right btree key */
2463         int                     rrecs;          /* right record count */
2464         int                     lrecs;          /* left record count */
2465         int                     error;          /* error return value */
2466         int                     i;              /* loop counter */
2467
2468         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2469         XFS_BTREE_TRACE_ARGI(cur, level);
2470
2471         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2472             (level == cur->bc_nlevels - 1))
2473                 goto out0;
2474
2475         /* Set up variables for this block as "left". */
2476         left = xfs_btree_get_block(cur, level, &lbp);
2477
2478 #ifdef DEBUG
2479         error = xfs_btree_check_block(cur, left, level, lbp);
2480         if (error)
2481                 goto error0;
2482 #endif
2483
2484         /* If we've got no right sibling then we can't shift an entry right. */
2485         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2486         if (xfs_btree_ptr_is_null(cur, &rptr))
2487                 goto out0;
2488
2489         /*
2490          * If the cursor entry is the one that would be moved, don't
2491          * do it... it's too complicated.
2492          */
2493         lrecs = xfs_btree_get_numrecs(left);
2494         if (cur->bc_ptrs[level] >= lrecs)
2495                 goto out0;
2496
2497         /* Set up the right neighbor as "right". */
2498         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2499         if (error)
2500                 goto error0;
2501
2502         /* If it's full, it can't take another entry. */
2503         rrecs = xfs_btree_get_numrecs(right);
2504         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2505                 goto out0;
2506
2507         XFS_BTREE_STATS_INC(cur, rshift);
2508         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2509
2510         /*
2511          * Make a hole at the start of the right neighbor block, then
2512          * copy the last left block entry to the hole.
2513          */
2514         if (level > 0) {
2515                 /* It's a nonleaf. make a hole in the keys and ptrs */
2516                 union xfs_btree_key     *lkp;
2517                 union xfs_btree_ptr     *lpp;
2518                 union xfs_btree_ptr     *rpp;
2519
2520                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2521                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2522                 rkp = xfs_btree_key_addr(cur, 1, right);
2523                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2524
2525 #ifdef DEBUG
2526                 for (i = rrecs - 1; i >= 0; i--) {
2527                         error = xfs_btree_check_ptr(cur, rpp, i, level);
2528                         if (error)
2529                                 goto error0;
2530                 }
2531 #endif
2532
2533                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2534                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2535
2536 #ifdef DEBUG
2537                 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2538                 if (error)
2539                         goto error0;
2540 #endif
2541
2542                 /* Now put the new data in, and log it. */
2543                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2544                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2545
2546                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2547                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2548
2549                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2550                         xfs_btree_key_addr(cur, 2, right)));
2551         } else {
2552                 /* It's a leaf. make a hole in the records */
2553                 union xfs_btree_rec     *lrp;
2554                 union xfs_btree_rec     *rrp;
2555
2556                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2557                 rrp = xfs_btree_rec_addr(cur, 1, right);
2558
2559                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2560
2561                 /* Now put the new data in, and log it. */
2562                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2563                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2564         }
2565
2566         /*
2567          * Decrement and log left's numrecs, bump and log right's numrecs.
2568          */
2569         xfs_btree_set_numrecs(left, --lrecs);
2570         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2571
2572         xfs_btree_set_numrecs(right, ++rrecs);
2573         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2574
2575         /*
2576          * Using a temporary cursor, update the parent key values of the
2577          * block on the right.
2578          */
2579         error = xfs_btree_dup_cursor(cur, &tcur);
2580         if (error)
2581                 goto error0;
2582         i = xfs_btree_lastrec(tcur, level);
2583         XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2584
2585         error = xfs_btree_increment(tcur, level, &i);
2586         if (error)
2587                 goto error1;
2588
2589         /* Update the parent high keys of the left block, if needed. */
2590         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2591                 error = xfs_btree_update_keys(cur, level);
2592                 if (error)
2593                         goto error1;
2594         }
2595
2596         /* Update the parent keys of the right block. */
2597         error = xfs_btree_update_keys(tcur, level);
2598         if (error)
2599                 goto error1;
2600
2601         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2602
2603         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2604         *stat = 1;
2605         return 0;
2606
2607 out0:
2608         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2609         *stat = 0;
2610         return 0;
2611
2612 error0:
2613         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2614         return error;
2615
2616 error1:
2617         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2618         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2619         return error;
2620 }
2621
2622 /*
2623  * Split cur/level block in half.
2624  * Return new block number and the key to its first
2625  * record (to be inserted into parent).
2626  */
2627 STATIC int                                      /* error */
2628 __xfs_btree_split(
2629         struct xfs_btree_cur    *cur,
2630         int                     level,
2631         union xfs_btree_ptr     *ptrp,
2632         union xfs_btree_key     *key,
2633         struct xfs_btree_cur    **curp,
2634         int                     *stat)          /* success/failure */
2635 {
2636         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2637         struct xfs_buf          *lbp;           /* left buffer pointer */
2638         struct xfs_btree_block  *left;          /* left btree block */
2639         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2640         struct xfs_buf          *rbp;           /* right buffer pointer */
2641         struct xfs_btree_block  *right;         /* right btree block */
2642         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2643         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2644         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2645         int                     lrecs;
2646         int                     rrecs;
2647         int                     src_index;
2648         int                     error;          /* error return value */
2649 #ifdef DEBUG
2650         int                     i;
2651 #endif
2652
2653         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2654         XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2655
2656         XFS_BTREE_STATS_INC(cur, split);
2657
2658         /* Set up left block (current one). */
2659         left = xfs_btree_get_block(cur, level, &lbp);
2660
2661 #ifdef DEBUG
2662         error = xfs_btree_check_block(cur, left, level, lbp);
2663         if (error)
2664                 goto error0;
2665 #endif
2666
2667         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2668
2669         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2670         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2671         if (error)
2672                 goto error0;
2673         if (*stat == 0)
2674                 goto out0;
2675         XFS_BTREE_STATS_INC(cur, alloc);
2676
2677         /* Set up the new block as "right". */
2678         error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2679         if (error)
2680                 goto error0;
2681
2682         /* Fill in the btree header for the new right block. */
2683         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2684
2685         /*
2686          * Split the entries between the old and the new block evenly.
2687          * Make sure that if there's an odd number of entries now, that
2688          * each new block will have the same number of entries.
2689          */
2690         lrecs = xfs_btree_get_numrecs(left);
2691         rrecs = lrecs / 2;
2692         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2693                 rrecs++;
2694         src_index = (lrecs - rrecs + 1);
2695
2696         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2697
2698         /* Adjust numrecs for the later get_*_keys() calls. */
2699         lrecs -= rrecs;
2700         xfs_btree_set_numrecs(left, lrecs);
2701         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2702
2703         /*
2704          * Copy btree block entries from the left block over to the
2705          * new block, the right. Update the right block and log the
2706          * changes.
2707          */
2708         if (level > 0) {
2709                 /* It's a non-leaf.  Move keys and pointers. */
2710                 union xfs_btree_key     *lkp;   /* left btree key */
2711                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2712                 union xfs_btree_key     *rkp;   /* right btree key */
2713                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2714
2715                 lkp = xfs_btree_key_addr(cur, src_index, left);
2716                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2717                 rkp = xfs_btree_key_addr(cur, 1, right);
2718                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2719
2720 #ifdef DEBUG
2721                 for (i = src_index; i < rrecs; i++) {
2722                         error = xfs_btree_check_ptr(cur, lpp, i, level);
2723                         if (error)
2724                                 goto error0;
2725                 }
2726 #endif
2727
2728                 /* Copy the keys & pointers to the new block. */
2729                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2730                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2731
2732                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2733                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2734
2735                 /* Stash the keys of the new block for later insertion. */
2736                 xfs_btree_get_node_keys(cur, right, key);
2737         } else {
2738                 /* It's a leaf.  Move records.  */
2739                 union xfs_btree_rec     *lrp;   /* left record pointer */
2740                 union xfs_btree_rec     *rrp;   /* right record pointer */
2741
2742                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2743                 rrp = xfs_btree_rec_addr(cur, 1, right);
2744
2745                 /* Copy records to the new block. */
2746                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2747                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2748
2749                 /* Stash the keys of the new block for later insertion. */
2750                 xfs_btree_get_leaf_keys(cur, right, key);
2751         }
2752
2753         /*
2754          * Find the left block number by looking in the buffer.
2755          * Adjust sibling pointers.
2756          */
2757         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2758         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2759         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2760         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2761
2762         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2763         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2764
2765         /*
2766          * If there's a block to the new block's right, make that block
2767          * point back to right instead of to left.
2768          */
2769         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2770                 error = xfs_btree_read_buf_block(cur, &rrptr,
2771                                                         0, &rrblock, &rrbp);
2772                 if (error)
2773                         goto error0;
2774                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2775                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2776         }
2777
2778         /* Update the parent high keys of the left block, if needed. */
2779         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2780                 error = xfs_btree_update_keys(cur, level);
2781                 if (error)
2782                         goto error0;
2783         }
2784
2785         /*
2786          * If the cursor is really in the right block, move it there.
2787          * If it's just pointing past the last entry in left, then we'll
2788          * insert there, so don't change anything in that case.
2789          */
2790         if (cur->bc_ptrs[level] > lrecs + 1) {
2791                 xfs_btree_setbuf(cur, level, rbp);
2792                 cur->bc_ptrs[level] -= lrecs;
2793         }
2794         /*
2795          * If there are more levels, we'll need another cursor which refers
2796          * the right block, no matter where this cursor was.
2797          */
2798         if (level + 1 < cur->bc_nlevels) {
2799                 error = xfs_btree_dup_cursor(cur, curp);
2800                 if (error)
2801                         goto error0;
2802                 (*curp)->bc_ptrs[level + 1]++;
2803         }
2804         *ptrp = rptr;
2805         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2806         *stat = 1;
2807         return 0;
2808 out0:
2809         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2810         *stat = 0;
2811         return 0;
2812
2813 error0:
2814         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2815         return error;
2816 }
2817
2818 struct xfs_btree_split_args {
2819         struct xfs_btree_cur    *cur;
2820         int                     level;
2821         union xfs_btree_ptr     *ptrp;
2822         union xfs_btree_key     *key;
2823         struct xfs_btree_cur    **curp;
2824         int                     *stat;          /* success/failure */
2825         int                     result;
2826         bool                    kswapd; /* allocation in kswapd context */
2827         struct completion       *done;
2828         struct work_struct      work;
2829 };
2830
2831 /*
2832  * Stack switching interfaces for allocation
2833  */
2834 static void
2835 xfs_btree_split_worker(
2836         struct work_struct      *work)
2837 {
2838         struct xfs_btree_split_args     *args = container_of(work,
2839                                                 struct xfs_btree_split_args, work);
2840         unsigned long           pflags;
2841         unsigned long           new_pflags = PF_FSTRANS;
2842
2843         /*
2844          * we are in a transaction context here, but may also be doing work
2845          * in kswapd context, and hence we may need to inherit that state
2846          * temporarily to ensure that we don't block waiting for memory reclaim
2847          * in any way.
2848          */
2849         if (args->kswapd)
2850                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2851
2852         current_set_flags_nested(&pflags, new_pflags);
2853
2854         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2855                                          args->key, args->curp, args->stat);
2856         complete(args->done);
2857
2858         current_restore_flags_nested(&pflags, new_pflags);
2859 }
2860
2861 /*
2862  * BMBT split requests often come in with little stack to work on. Push
2863  * them off to a worker thread so there is lots of stack to use. For the other
2864  * btree types, just call directly to avoid the context switch overhead here.
2865  */
2866 STATIC int                                      /* error */
2867 xfs_btree_split(
2868         struct xfs_btree_cur    *cur,
2869         int                     level,
2870         union xfs_btree_ptr     *ptrp,
2871         union xfs_btree_key     *key,
2872         struct xfs_btree_cur    **curp,
2873         int                     *stat)          /* success/failure */
2874 {
2875         struct xfs_btree_split_args     args;
2876         DECLARE_COMPLETION_ONSTACK(done);
2877
2878         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2879                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2880
2881         args.cur = cur;
2882         args.level = level;
2883         args.ptrp = ptrp;
2884         args.key = key;
2885         args.curp = curp;
2886         args.stat = stat;
2887         args.done = &done;
2888         args.kswapd = current_is_kswapd();
2889         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2890         queue_work(xfs_alloc_wq, &args.work);
2891         wait_for_completion(&done);
2892         destroy_work_on_stack(&args.work);
2893         return args.result;
2894 }
2895
2896
2897 /*
2898  * Copy the old inode root contents into a real block and make the
2899  * broot point to it.
2900  */
2901 int                                             /* error */
2902 xfs_btree_new_iroot(
2903         struct xfs_btree_cur    *cur,           /* btree cursor */
2904         int                     *logflags,      /* logging flags for inode */
2905         int                     *stat)          /* return status - 0 fail */
2906 {
2907         struct xfs_buf          *cbp;           /* buffer for cblock */
2908         struct xfs_btree_block  *block;         /* btree block */
2909         struct xfs_btree_block  *cblock;        /* child btree block */
2910         union xfs_btree_key     *ckp;           /* child key pointer */
2911         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2912         union xfs_btree_key     *kp;            /* pointer to btree key */
2913         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2914         union xfs_btree_ptr     nptr;           /* new block addr */
2915         int                     level;          /* btree level */
2916         int                     error;          /* error return code */
2917 #ifdef DEBUG
2918         int                     i;              /* loop counter */
2919 #endif
2920
2921         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2922         XFS_BTREE_STATS_INC(cur, newroot);
2923
2924         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2925
2926         level = cur->bc_nlevels - 1;
2927
2928         block = xfs_btree_get_iroot(cur);
2929         pp = xfs_btree_ptr_addr(cur, 1, block);
2930
2931         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2932         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2933         if (error)
2934                 goto error0;
2935         if (*stat == 0) {
2936                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2937                 return 0;
2938         }
2939         XFS_BTREE_STATS_INC(cur, alloc);
2940
2941         /* Copy the root into a real block. */
2942         error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2943         if (error)
2944                 goto error0;
2945
2946         /*
2947          * we can't just memcpy() the root in for CRC enabled btree blocks.
2948          * In that case have to also ensure the blkno remains correct
2949          */
2950         memcpy(cblock, block, xfs_btree_block_len(cur));
2951         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2952                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2953                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2954                 else
2955                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2956         }
2957
2958         be16_add_cpu(&block->bb_level, 1);
2959         xfs_btree_set_numrecs(block, 1);
2960         cur->bc_nlevels++;
2961         cur->bc_ptrs[level + 1] = 1;
2962
2963         kp = xfs_btree_key_addr(cur, 1, block);
2964         ckp = xfs_btree_key_addr(cur, 1, cblock);
2965         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2966
2967         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2968 #ifdef DEBUG
2969         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2970                 error = xfs_btree_check_ptr(cur, pp, i, level);
2971                 if (error)
2972                         goto error0;
2973         }
2974 #endif
2975         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2976
2977 #ifdef DEBUG
2978         error = xfs_btree_check_ptr(cur, &nptr, 0, level);
2979         if (error)
2980                 goto error0;
2981 #endif
2982         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2983
2984         xfs_iroot_realloc(cur->bc_private.b.ip,
2985                           1 - xfs_btree_get_numrecs(cblock),
2986                           cur->bc_private.b.whichfork);
2987
2988         xfs_btree_setbuf(cur, level, cbp);
2989
2990         /*
2991          * Do all this logging at the end so that
2992          * the root is at the right level.
2993          */
2994         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2995         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2996         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2997
2998         *logflags |=
2999                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3000         *stat = 1;
3001         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3002         return 0;
3003 error0:
3004         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3005         return error;
3006 }
3007
3008 /*
3009  * Allocate a new root block, fill it in.
3010  */
3011 STATIC int                              /* error */
3012 xfs_btree_new_root(
3013         struct xfs_btree_cur    *cur,   /* btree cursor */
3014         int                     *stat)  /* success/failure */
3015 {
3016         struct xfs_btree_block  *block; /* one half of the old root block */
3017         struct xfs_buf          *bp;    /* buffer containing block */
3018         int                     error;  /* error return value */
3019         struct xfs_buf          *lbp;   /* left buffer pointer */
3020         struct xfs_btree_block  *left;  /* left btree block */
3021         struct xfs_buf          *nbp;   /* new (root) buffer */
3022         struct xfs_btree_block  *new;   /* new (root) btree block */
3023         int                     nptr;   /* new value for key index, 1 or 2 */
3024         struct xfs_buf          *rbp;   /* right buffer pointer */
3025         struct xfs_btree_block  *right; /* right btree block */
3026         union xfs_btree_ptr     rptr;
3027         union xfs_btree_ptr     lptr;
3028
3029         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3030         XFS_BTREE_STATS_INC(cur, newroot);
3031
3032         /* initialise our start point from the cursor */
3033         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3034
3035         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3036         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3037         if (error)
3038                 goto error0;
3039         if (*stat == 0)
3040                 goto out0;
3041         XFS_BTREE_STATS_INC(cur, alloc);
3042
3043         /* Set up the new block. */
3044         error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3045         if (error)
3046                 goto error0;
3047
3048         /* Set the root in the holding structure  increasing the level by 1. */
3049         cur->bc_ops->set_root(cur, &lptr, 1);
3050
3051         /*
3052          * At the previous root level there are now two blocks: the old root,
3053          * and the new block generated when it was split.  We don't know which
3054          * one the cursor is pointing at, so we set up variables "left" and
3055          * "right" for each case.
3056          */
3057         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3058
3059 #ifdef DEBUG
3060         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3061         if (error)
3062                 goto error0;
3063 #endif
3064
3065         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3066         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3067                 /* Our block is left, pick up the right block. */
3068                 lbp = bp;
3069                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3070                 left = block;
3071                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3072                 if (error)
3073                         goto error0;
3074                 bp = rbp;
3075                 nptr = 1;
3076         } else {
3077                 /* Our block is right, pick up the left block. */
3078                 rbp = bp;
3079                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3080                 right = block;
3081                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3082                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3083                 if (error)
3084                         goto error0;
3085                 bp = lbp;
3086                 nptr = 2;
3087         }
3088
3089         /* Fill in the new block's btree header and log it. */
3090         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3091         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3092         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3093                         !xfs_btree_ptr_is_null(cur, &rptr));
3094
3095         /* Fill in the key data in the new root. */
3096         if (xfs_btree_get_level(left) > 0) {
3097                 /*
3098                  * Get the keys for the left block's keys and put them directly
3099                  * in the parent block.  Do the same for the right block.
3100                  */
3101                 xfs_btree_get_node_keys(cur, left,
3102                                 xfs_btree_key_addr(cur, 1, new));
3103                 xfs_btree_get_node_keys(cur, right,
3104                                 xfs_btree_key_addr(cur, 2, new));
3105         } else {
3106                 /*
3107                  * Get the keys for the left block's records and put them
3108                  * directly in the parent block.  Do the same for the right
3109                  * block.
3110                  */
3111                 xfs_btree_get_leaf_keys(cur, left,
3112                         xfs_btree_key_addr(cur, 1, new));
3113                 xfs_btree_get_leaf_keys(cur, right,
3114                         xfs_btree_key_addr(cur, 2, new));
3115         }
3116         xfs_btree_log_keys(cur, nbp, 1, 2);
3117
3118         /* Fill in the pointer data in the new root. */
3119         xfs_btree_copy_ptrs(cur,
3120                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3121         xfs_btree_copy_ptrs(cur,
3122                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3123         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3124
3125         /* Fix up the cursor. */
3126         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3127         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3128         cur->bc_nlevels++;
3129         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3130         *stat = 1;
3131         return 0;
3132 error0:
3133         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3134         return error;
3135 out0:
3136         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3137         *stat = 0;
3138         return 0;
3139 }
3140
3141 STATIC int
3142 xfs_btree_make_block_unfull(
3143         struct xfs_btree_cur    *cur,   /* btree cursor */
3144         int                     level,  /* btree level */
3145         int                     numrecs,/* # of recs in block */
3146         int                     *oindex,/* old tree index */
3147         int                     *index, /* new tree index */
3148         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3149         struct xfs_btree_cur    **ncur, /* new btree cursor */
3150         union xfs_btree_key     *key,   /* key of new block */
3151         int                     *stat)
3152 {
3153         int                     error = 0;
3154
3155         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3156             level == cur->bc_nlevels - 1) {
3157                 struct xfs_inode *ip = cur->bc_private.b.ip;
3158
3159                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3160                         /* A root block that can be made bigger. */
3161                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3162                         *stat = 1;
3163                 } else {
3164                         /* A root block that needs replacing */
3165                         int     logflags = 0;
3166
3167                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3168                         if (error || *stat == 0)
3169                                 return error;
3170
3171                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3172                 }
3173
3174                 return 0;
3175         }
3176
3177         /* First, try shifting an entry to the right neighbor. */
3178         error = xfs_btree_rshift(cur, level, stat);
3179         if (error || *stat)
3180                 return error;
3181
3182         /* Next, try shifting an entry to the left neighbor. */
3183         error = xfs_btree_lshift(cur, level, stat);
3184         if (error)
3185                 return error;
3186
3187         if (*stat) {
3188                 *oindex = *index = cur->bc_ptrs[level];
3189                 return 0;
3190         }
3191
3192         /*
3193          * Next, try splitting the current block in half.
3194          *
3195          * If this works we have to re-set our variables because we
3196          * could be in a different block now.
3197          */
3198         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3199         if (error || *stat == 0)
3200                 return error;
3201
3202
3203         *index = cur->bc_ptrs[level];
3204         return 0;
3205 }
3206
3207 /*
3208  * Insert one record/level.  Return information to the caller
3209  * allowing the next level up to proceed if necessary.
3210  */
3211 STATIC int
3212 xfs_btree_insrec(
3213         struct xfs_btree_cur    *cur,   /* btree cursor */
3214         int                     level,  /* level to insert record at */
3215         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3216         union xfs_btree_rec     *rec,   /* record to insert */
3217         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3218         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3219         int                     *stat)  /* success/failure */
3220 {
3221         struct xfs_btree_block  *block; /* btree block */
3222         struct xfs_buf          *bp;    /* buffer for block */
3223         union xfs_btree_ptr     nptr;   /* new block ptr */
3224         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3225         union xfs_btree_bigkey  nkey;   /* new block key */
3226         union xfs_btree_key     *lkey;
3227         int                     optr;   /* old key/record index */
3228         int                     ptr;    /* key/record index */
3229         int                     numrecs;/* number of records */
3230         int                     error;  /* error return value */
3231 #ifdef DEBUG
3232         int                     i;
3233 #endif
3234         xfs_daddr_t             old_bn;
3235
3236         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3237         XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3238
3239         ncur = NULL;
3240         lkey = (union xfs_btree_key *)&nkey;
3241
3242         /*
3243          * If we have an external root pointer, and we've made it to the
3244          * root level, allocate a new root block and we're done.
3245          */
3246         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3247             (level >= cur->bc_nlevels)) {
3248                 error = xfs_btree_new_root(cur, stat);
3249                 xfs_btree_set_ptr_null(cur, ptrp);
3250
3251                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3252                 return error;
3253         }
3254
3255         /* If we're off the left edge, return failure. */
3256         ptr = cur->bc_ptrs[level];
3257         if (ptr == 0) {
3258                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3259                 *stat = 0;
3260                 return 0;
3261         }
3262
3263         optr = ptr;
3264
3265         XFS_BTREE_STATS_INC(cur, insrec);
3266
3267         /* Get pointers to the btree buffer and block. */
3268         block = xfs_btree_get_block(cur, level, &bp);
3269         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3270         numrecs = xfs_btree_get_numrecs(block);
3271
3272 #ifdef DEBUG
3273         error = xfs_btree_check_block(cur, block, level, bp);
3274         if (error)
3275                 goto error0;
3276
3277         /* Check that the new entry is being inserted in the right place. */
3278         if (ptr <= numrecs) {
3279                 if (level == 0) {
3280                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3281                                 xfs_btree_rec_addr(cur, ptr, block)));
3282                 } else {
3283                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3284                                 xfs_btree_key_addr(cur, ptr, block)));
3285                 }
3286         }
3287 #endif
3288
3289         /*
3290          * If the block is full, we can't insert the new entry until we
3291          * make the block un-full.
3292          */
3293         xfs_btree_set_ptr_null(cur, &nptr);
3294         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3295                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3296                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3297                 if (error || *stat == 0)
3298                         goto error0;
3299         }
3300
3301         /*
3302          * The current block may have changed if the block was
3303          * previously full and we have just made space in it.
3304          */
3305         block = xfs_btree_get_block(cur, level, &bp);
3306         numrecs = xfs_btree_get_numrecs(block);
3307
3308 #ifdef DEBUG
3309         error = xfs_btree_check_block(cur, block, level, bp);
3310         if (error)
3311                 return error;
3312 #endif
3313
3314         /*
3315          * At this point we know there's room for our new entry in the block
3316          * we're pointing at.
3317          */
3318         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3319
3320         if (level > 0) {
3321                 /* It's a nonleaf. make a hole in the keys and ptrs */
3322                 union xfs_btree_key     *kp;
3323                 union xfs_btree_ptr     *pp;
3324
3325                 kp = xfs_btree_key_addr(cur, ptr, block);
3326                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3327
3328 #ifdef DEBUG
3329                 for (i = numrecs - ptr; i >= 0; i--) {
3330                         error = xfs_btree_check_ptr(cur, pp, i, level);
3331                         if (error)
3332                                 return error;
3333                 }
3334 #endif
3335
3336                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3337                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3338
3339 #ifdef DEBUG
3340                 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3341                 if (error)
3342                         goto error0;
3343 #endif
3344
3345                 /* Now put the new data in, bump numrecs and log it. */
3346                 xfs_btree_copy_keys(cur, kp, key, 1);
3347                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3348                 numrecs++;
3349                 xfs_btree_set_numrecs(block, numrecs);
3350                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3351                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3352 #ifdef DEBUG
3353                 if (ptr < numrecs) {
3354                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3355                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3356                 }
3357 #endif
3358         } else {
3359                 /* It's a leaf. make a hole in the records */
3360                 union xfs_btree_rec             *rp;
3361
3362                 rp = xfs_btree_rec_addr(cur, ptr, block);
3363
3364                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3365
3366                 /* Now put the new data in, bump numrecs and log it. */
3367                 xfs_btree_copy_recs(cur, rp, rec, 1);
3368                 xfs_btree_set_numrecs(block, ++numrecs);
3369                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3370 #ifdef DEBUG
3371                 if (ptr < numrecs) {
3372                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3373                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3374                 }
3375 #endif
3376         }
3377
3378         /* Log the new number of records in the btree header. */
3379         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3380
3381         /*
3382          * If we just inserted into a new tree block, we have to
3383          * recalculate nkey here because nkey is out of date.
3384          *
3385          * Otherwise we're just updating an existing block (having shoved
3386          * some records into the new tree block), so use the regular key
3387          * update mechanism.
3388          */
3389         if (bp && bp->b_bn != old_bn) {
3390                 xfs_btree_get_keys(cur, block, lkey);
3391         } else if (xfs_btree_needs_key_update(cur, optr)) {
3392                 error = xfs_btree_update_keys(cur, level);
3393                 if (error)
3394                         goto error0;
3395         }
3396
3397         /*
3398          * If we are tracking the last record in the tree and
3399          * we are at the far right edge of the tree, update it.
3400          */
3401         if (xfs_btree_is_lastrec(cur, block, level)) {
3402                 cur->bc_ops->update_lastrec(cur, block, rec,
3403                                             ptr, LASTREC_INSREC);
3404         }
3405
3406         /*
3407          * Return the new block number, if any.
3408          * If there is one, give back a record value and a cursor too.
3409          */
3410         *ptrp = nptr;
3411         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3412                 xfs_btree_copy_keys(cur, key, lkey, 1);
3413                 *curp = ncur;
3414         }
3415
3416         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3417         *stat = 1;
3418         return 0;
3419
3420 error0:
3421         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3422         return error;
3423 }
3424
3425 /*
3426  * Insert the record at the point referenced by cur.
3427  *
3428  * A multi-level split of the tree on insert will invalidate the original
3429  * cursor.  All callers of this function should assume that the cursor is
3430  * no longer valid and revalidate it.
3431  */
3432 int
3433 xfs_btree_insert(
3434         struct xfs_btree_cur    *cur,
3435         int                     *stat)
3436 {
3437         int                     error;  /* error return value */
3438         int                     i;      /* result value, 0 for failure */
3439         int                     level;  /* current level number in btree */
3440         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3441         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3442         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3443         union xfs_btree_bigkey  bkey;   /* key of block to insert */
3444         union xfs_btree_key     *key;
3445         union xfs_btree_rec     rec;    /* record to insert */
3446
3447         level = 0;
3448         ncur = NULL;
3449         pcur = cur;
3450         key = (union xfs_btree_key *)&bkey;
3451
3452         xfs_btree_set_ptr_null(cur, &nptr);
3453
3454         /* Make a key out of the record data to be inserted, and save it. */
3455         cur->bc_ops->init_rec_from_cur(cur, &rec);
3456         cur->bc_ops->init_key_from_rec(key, &rec);
3457
3458         /*
3459          * Loop going up the tree, starting at the leaf level.
3460          * Stop when we don't get a split block, that must mean that
3461          * the insert is finished with this level.
3462          */
3463         do {
3464                 /*
3465                  * Insert nrec/nptr into this level of the tree.
3466                  * Note if we fail, nptr will be null.
3467                  */
3468                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3469                                 &ncur, &i);
3470                 if (error) {
3471                         if (pcur != cur)
3472                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3473                         goto error0;
3474                 }
3475
3476                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3477                 level++;
3478
3479                 /*
3480                  * See if the cursor we just used is trash.
3481                  * Can't trash the caller's cursor, but otherwise we should
3482                  * if ncur is a new cursor or we're about to be done.
3483                  */
3484                 if (pcur != cur &&
3485                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3486                         /* Save the state from the cursor before we trash it */
3487                         if (cur->bc_ops->update_cursor)
3488                                 cur->bc_ops->update_cursor(pcur, cur);
3489                         cur->bc_nlevels = pcur->bc_nlevels;
3490                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3491                 }
3492                 /* If we got a new cursor, switch to it. */
3493                 if (ncur) {
3494                         pcur = ncur;
3495                         ncur = NULL;
3496                 }
3497         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3498
3499         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3500         *stat = i;
3501         return 0;
3502 error0:
3503         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3504         return error;
3505 }
3506
3507 /*
3508  * Try to merge a non-leaf block back into the inode root.
3509  *
3510  * Note: the killroot names comes from the fact that we're effectively
3511  * killing the old root block.  But because we can't just delete the
3512  * inode we have to copy the single block it was pointing to into the
3513  * inode.
3514  */
3515 STATIC int
3516 xfs_btree_kill_iroot(
3517         struct xfs_btree_cur    *cur)
3518 {
3519         int                     whichfork = cur->bc_private.b.whichfork;
3520         struct xfs_inode        *ip = cur->bc_private.b.ip;
3521         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3522         struct xfs_btree_block  *block;
3523         struct xfs_btree_block  *cblock;
3524         union xfs_btree_key     *kp;
3525         union xfs_btree_key     *ckp;
3526         union xfs_btree_ptr     *pp;
3527         union xfs_btree_ptr     *cpp;
3528         struct xfs_buf          *cbp;
3529         int                     level;
3530         int                     index;
3531         int                     numrecs;
3532         int                     error;
3533 #ifdef DEBUG
3534         union xfs_btree_ptr     ptr;
3535         int                     i;
3536 #endif
3537
3538         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3539
3540         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3541         ASSERT(cur->bc_nlevels > 1);
3542
3543         /*
3544          * Don't deal with the root block needs to be a leaf case.
3545          * We're just going to turn the thing back into extents anyway.
3546          */
3547         level = cur->bc_nlevels - 1;
3548         if (level == 1)
3549                 goto out0;
3550
3551         /*
3552          * Give up if the root has multiple children.
3553          */
3554         block = xfs_btree_get_iroot(cur);
3555         if (xfs_btree_get_numrecs(block) != 1)
3556                 goto out0;
3557
3558         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3559         numrecs = xfs_btree_get_numrecs(cblock);
3560
3561         /*
3562          * Only do this if the next level will fit.
3563          * Then the data must be copied up to the inode,
3564          * instead of freeing the root you free the next level.
3565          */
3566         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3567                 goto out0;
3568
3569         XFS_BTREE_STATS_INC(cur, killroot);
3570
3571 #ifdef DEBUG
3572         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3573         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3574         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3575         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3576 #endif
3577
3578         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3579         if (index) {
3580                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3581                                   cur->bc_private.b.whichfork);
3582                 block = ifp->if_broot;
3583         }
3584
3585         be16_add_cpu(&block->bb_numrecs, index);
3586         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3587
3588         kp = xfs_btree_key_addr(cur, 1, block);
3589         ckp = xfs_btree_key_addr(cur, 1, cblock);
3590         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3591
3592         pp = xfs_btree_ptr_addr(cur, 1, block);
3593         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3594 #ifdef DEBUG
3595         for (i = 0; i < numrecs; i++) {
3596                 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3597                 if (error) {
3598                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3599                         return error;
3600                 }
3601         }
3602 #endif
3603         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3604
3605         error = xfs_btree_free_block(cur, cbp);
3606         if (error) {
3607                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3608                 return error;
3609         }
3610
3611         cur->bc_bufs[level - 1] = NULL;
3612         be16_add_cpu(&block->bb_level, -1);
3613         xfs_trans_log_inode(cur->bc_tp, ip,
3614                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3615         cur->bc_nlevels--;
3616 out0:
3617         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3618         return 0;
3619 }
3620
3621 /*
3622  * Kill the current root node, and replace it with it's only child node.
3623  */
3624 STATIC int
3625 xfs_btree_kill_root(
3626         struct xfs_btree_cur    *cur,
3627         struct xfs_buf          *bp,
3628         int                     level,
3629         union xfs_btree_ptr     *newroot)
3630 {
3631         int                     error;
3632
3633         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3634         XFS_BTREE_STATS_INC(cur, killroot);
3635
3636         /*
3637          * Update the root pointer, decreasing the level by 1 and then
3638          * free the old root.
3639          */
3640         cur->bc_ops->set_root(cur, newroot, -1);
3641
3642         error = xfs_btree_free_block(cur, bp);
3643         if (error) {
3644                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3645                 return error;
3646         }
3647
3648         cur->bc_bufs[level] = NULL;
3649         cur->bc_ra[level] = 0;
3650         cur->bc_nlevels--;
3651
3652         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3653         return 0;
3654 }
3655
3656 STATIC int
3657 xfs_btree_dec_cursor(
3658         struct xfs_btree_cur    *cur,
3659         int                     level,
3660         int                     *stat)
3661 {
3662         int                     error;
3663         int                     i;
3664
3665         if (level > 0) {
3666                 error = xfs_btree_decrement(cur, level, &i);
3667                 if (error)
3668                         return error;
3669         }
3670
3671         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3672         *stat = 1;
3673         return 0;
3674 }
3675
3676 /*
3677  * Single level of the btree record deletion routine.
3678  * Delete record pointed to by cur/level.
3679  * Remove the record from its block then rebalance the tree.
3680  * Return 0 for error, 1 for done, 2 to go on to the next level.
3681  */
3682 STATIC int                                      /* error */
3683 xfs_btree_delrec(
3684         struct xfs_btree_cur    *cur,           /* btree cursor */
3685         int                     level,          /* level removing record from */
3686         int                     *stat)          /* fail/done/go-on */
3687 {
3688         struct xfs_btree_block  *block;         /* btree block */
3689         union xfs_btree_ptr     cptr;           /* current block ptr */
3690         struct xfs_buf          *bp;            /* buffer for block */
3691         int                     error;          /* error return value */
3692         int                     i;              /* loop counter */
3693         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3694         struct xfs_buf          *lbp;           /* left buffer pointer */
3695         struct xfs_btree_block  *left;          /* left btree block */
3696         int                     lrecs = 0;      /* left record count */
3697         int                     ptr;            /* key/record index */
3698         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3699         struct xfs_buf          *rbp;           /* right buffer pointer */
3700         struct xfs_btree_block  *right;         /* right btree block */
3701         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3702         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3703         int                     rrecs = 0;      /* right record count */
3704         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3705         int                     numrecs;        /* temporary numrec count */
3706
3707         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3708         XFS_BTREE_TRACE_ARGI(cur, level);
3709
3710         tcur = NULL;
3711
3712         /* Get the index of the entry being deleted, check for nothing there. */
3713         ptr = cur->bc_ptrs[level];
3714         if (ptr == 0) {
3715                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3716                 *stat = 0;
3717                 return 0;
3718         }
3719
3720         /* Get the buffer & block containing the record or key/ptr. */
3721         block = xfs_btree_get_block(cur, level, &bp);
3722         numrecs = xfs_btree_get_numrecs(block);
3723
3724 #ifdef DEBUG
3725         error = xfs_btree_check_block(cur, block, level, bp);
3726         if (error)
3727                 goto error0;
3728 #endif
3729
3730         /* Fail if we're off the end of the block. */
3731         if (ptr > numrecs) {
3732                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3733                 *stat = 0;
3734                 return 0;
3735         }
3736
3737         XFS_BTREE_STATS_INC(cur, delrec);
3738         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3739
3740         /* Excise the entries being deleted. */
3741         if (level > 0) {
3742                 /* It's a nonleaf. operate on keys and ptrs */
3743                 union xfs_btree_key     *lkp;
3744                 union xfs_btree_ptr     *lpp;
3745
3746                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3747                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3748
3749 #ifdef DEBUG
3750                 for (i = 0; i < numrecs - ptr; i++) {
3751                         error = xfs_btree_check_ptr(cur, lpp, i, level);
3752                         if (error)
3753                                 goto error0;
3754                 }
3755 #endif
3756
3757                 if (ptr < numrecs) {
3758                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3759                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3760                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3761                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3762                 }
3763         } else {
3764                 /* It's a leaf. operate on records */
3765                 if (ptr < numrecs) {
3766                         xfs_btree_shift_recs(cur,
3767                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3768                                 -1, numrecs - ptr);
3769                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3770                 }
3771         }
3772
3773         /*
3774          * Decrement and log the number of entries in the block.
3775          */
3776         xfs_btree_set_numrecs(block, --numrecs);
3777         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3778
3779         /*
3780          * If we are tracking the last record in the tree and
3781          * we are at the far right edge of the tree, update it.
3782          */
3783         if (xfs_btree_is_lastrec(cur, block, level)) {
3784                 cur->bc_ops->update_lastrec(cur, block, NULL,
3785                                             ptr, LASTREC_DELREC);
3786         }
3787
3788         /*
3789          * We're at the root level.  First, shrink the root block in-memory.
3790          * Try to get rid of the next level down.  If we can't then there's
3791          * nothing left to do.
3792          */
3793         if (level == cur->bc_nlevels - 1) {
3794                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3795                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3796                                           cur->bc_private.b.whichfork);
3797
3798                         error = xfs_btree_kill_iroot(cur);
3799                         if (error)
3800                                 goto error0;
3801
3802                         error = xfs_btree_dec_cursor(cur, level, stat);
3803                         if (error)
3804                                 goto error0;
3805                         *stat = 1;
3806                         return 0;
3807                 }
3808
3809                 /*
3810                  * If this is the root level, and there's only one entry left,
3811                  * and it's NOT the leaf level, then we can get rid of this
3812                  * level.
3813                  */
3814                 if (numrecs == 1 && level > 0) {
3815                         union xfs_btree_ptr     *pp;
3816                         /*
3817                          * pp is still set to the first pointer in the block.
3818                          * Make it the new root of the btree.
3819                          */
3820                         pp = xfs_btree_ptr_addr(cur, 1, block);
3821                         error = xfs_btree_kill_root(cur, bp, level, pp);
3822                         if (error)
3823                                 goto error0;
3824                 } else if (level > 0) {
3825                         error = xfs_btree_dec_cursor(cur, level, stat);
3826                         if (error)
3827                                 goto error0;
3828                 }
3829                 *stat = 1;
3830                 return 0;
3831         }
3832
3833         /*
3834          * If we deleted the leftmost entry in the block, update the
3835          * key values above us in the tree.
3836          */
3837         if (xfs_btree_needs_key_update(cur, ptr)) {
3838                 error = xfs_btree_update_keys(cur, level);
3839                 if (error)
3840                         goto error0;
3841         }
3842
3843         /*
3844          * If the number of records remaining in the block is at least
3845          * the minimum, we're done.
3846          */
3847         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3848                 error = xfs_btree_dec_cursor(cur, level, stat);
3849                 if (error)
3850                         goto error0;
3851                 return 0;
3852         }
3853
3854         /*
3855          * Otherwise, we have to move some records around to keep the
3856          * tree balanced.  Look at the left and right sibling blocks to
3857          * see if we can re-balance by moving only one record.
3858          */
3859         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3860         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3861
3862         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3863                 /*
3864                  * One child of root, need to get a chance to copy its contents
3865                  * into the root and delete it. Can't go up to next level,
3866                  * there's nothing to delete there.
3867                  */
3868                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3869                     xfs_btree_ptr_is_null(cur, &lptr) &&
3870                     level == cur->bc_nlevels - 2) {
3871                         error = xfs_btree_kill_iroot(cur);
3872                         if (!error)
3873                                 error = xfs_btree_dec_cursor(cur, level, stat);
3874                         if (error)
3875                                 goto error0;
3876                         return 0;
3877                 }
3878         }
3879
3880         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3881                !xfs_btree_ptr_is_null(cur, &lptr));
3882
3883         /*
3884          * Duplicate the cursor so our btree manipulations here won't
3885          * disrupt the next level up.
3886          */
3887         error = xfs_btree_dup_cursor(cur, &tcur);
3888         if (error)
3889                 goto error0;
3890
3891         /*
3892          * If there's a right sibling, see if it's ok to shift an entry
3893          * out of it.
3894          */
3895         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3896                 /*
3897                  * Move the temp cursor to the last entry in the next block.
3898                  * Actually any entry but the first would suffice.
3899                  */
3900                 i = xfs_btree_lastrec(tcur, level);
3901                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3902
3903                 error = xfs_btree_increment(tcur, level, &i);
3904                 if (error)
3905                         goto error0;
3906                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3907
3908                 i = xfs_btree_lastrec(tcur, level);
3909                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3910
3911                 /* Grab a pointer to the block. */
3912                 right = xfs_btree_get_block(tcur, level, &rbp);
3913 #ifdef DEBUG
3914                 error = xfs_btree_check_block(tcur, right, level, rbp);
3915                 if (error)
3916                         goto error0;
3917 #endif
3918                 /* Grab the current block number, for future use. */
3919                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3920
3921                 /*
3922                  * If right block is full enough so that removing one entry
3923                  * won't make it too empty, and left-shifting an entry out
3924                  * of right to us works, we're done.
3925                  */
3926                 if (xfs_btree_get_numrecs(right) - 1 >=
3927                     cur->bc_ops->get_minrecs(tcur, level)) {
3928                         error = xfs_btree_lshift(tcur, level, &i);
3929                         if (error)
3930                                 goto error0;
3931                         if (i) {
3932                                 ASSERT(xfs_btree_get_numrecs(block) >=
3933                                        cur->bc_ops->get_minrecs(tcur, level));
3934
3935                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3936                                 tcur = NULL;
3937
3938                                 error = xfs_btree_dec_cursor(cur, level, stat);
3939                                 if (error)
3940                                         goto error0;
3941                                 return 0;
3942                         }
3943                 }
3944
3945                 /*
3946                  * Otherwise, grab the number of records in right for
3947                  * future reference, and fix up the temp cursor to point
3948                  * to our block again (last record).
3949                  */
3950                 rrecs = xfs_btree_get_numrecs(right);
3951                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3952                         i = xfs_btree_firstrec(tcur, level);
3953                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3954
3955                         error = xfs_btree_decrement(tcur, level, &i);
3956                         if (error)
3957                                 goto error0;
3958                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3959                 }
3960         }
3961
3962         /*
3963          * If there's a left sibling, see if it's ok to shift an entry
3964          * out of it.
3965          */
3966         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3967                 /*
3968                  * Move the temp cursor to the first entry in the
3969                  * previous block.
3970                  */
3971                 i = xfs_btree_firstrec(tcur, level);
3972                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3973
3974                 error = xfs_btree_decrement(tcur, level, &i);
3975                 if (error)
3976                         goto error0;
3977                 i = xfs_btree_firstrec(tcur, level);
3978                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3979
3980                 /* Grab a pointer to the block. */
3981                 left = xfs_btree_get_block(tcur, level, &lbp);
3982 #ifdef DEBUG
3983                 error = xfs_btree_check_block(cur, left, level, lbp);
3984                 if (error)
3985                         goto error0;
3986 #endif
3987                 /* Grab the current block number, for future use. */
3988                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3989
3990                 /*
3991                  * If left block is full enough so that removing one entry
3992                  * won't make it too empty, and right-shifting an entry out
3993                  * of left to us works, we're done.
3994                  */
3995                 if (xfs_btree_get_numrecs(left) - 1 >=
3996                     cur->bc_ops->get_minrecs(tcur, level)) {
3997                         error = xfs_btree_rshift(tcur, level, &i);
3998                         if (error)
3999                                 goto error0;
4000                         if (i) {
4001                                 ASSERT(xfs_btree_get_numrecs(block) >=
4002                                        cur->bc_ops->get_minrecs(tcur, level));
4003                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4004                                 tcur = NULL;
4005                                 if (level == 0)
4006                                         cur->bc_ptrs[0]++;
4007                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4008                                 *stat = 1;
4009                                 return 0;
4010                         }
4011                 }
4012
4013                 /*
4014                  * Otherwise, grab the number of records in right for
4015                  * future reference.
4016                  */
4017                 lrecs = xfs_btree_get_numrecs(left);
4018         }
4019
4020         /* Delete the temp cursor, we're done with it. */
4021         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4022         tcur = NULL;
4023
4024         /* If here, we need to do a join to keep the tree balanced. */
4025         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4026
4027         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4028             lrecs + xfs_btree_get_numrecs(block) <=
4029                         cur->bc_ops->get_maxrecs(cur, level)) {
4030                 /*
4031                  * Set "right" to be the starting block,
4032                  * "left" to be the left neighbor.
4033                  */
4034                 rptr = cptr;
4035                 right = block;
4036                 rbp = bp;
4037                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4038                 if (error)
4039                         goto error0;
4040
4041         /*
4042          * If that won't work, see if we can join with the right neighbor block.
4043          */
4044         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4045                    rrecs + xfs_btree_get_numrecs(block) <=
4046                         cur->bc_ops->get_maxrecs(cur, level)) {
4047                 /*
4048                  * Set "left" to be the starting block,
4049                  * "right" to be the right neighbor.
4050                  */
4051                 lptr = cptr;
4052                 left = block;
4053                 lbp = bp;
4054                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4055                 if (error)
4056                         goto error0;
4057
4058         /*
4059          * Otherwise, we can't fix the imbalance.
4060          * Just return.  This is probably a logic error, but it's not fatal.
4061          */
4062         } else {
4063                 error = xfs_btree_dec_cursor(cur, level, stat);
4064                 if (error)
4065                         goto error0;
4066                 return 0;
4067         }
4068
4069         rrecs = xfs_btree_get_numrecs(right);
4070         lrecs = xfs_btree_get_numrecs(left);
4071
4072         /*
4073          * We're now going to join "left" and "right" by moving all the stuff
4074          * in "right" to "left" and deleting "right".
4075          */
4076         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4077         if (level > 0) {
4078                 /* It's a non-leaf.  Move keys and pointers. */
4079                 union xfs_btree_key     *lkp;   /* left btree key */
4080                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4081                 union xfs_btree_key     *rkp;   /* right btree key */
4082                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4083
4084                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4085                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4086                 rkp = xfs_btree_key_addr(cur, 1, right);
4087                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4088 #ifdef DEBUG
4089                 for (i = 1; i < rrecs; i++) {
4090                         error = xfs_btree_check_ptr(cur, rpp, i, level);
4091                         if (error)
4092                                 goto error0;
4093                 }
4094 #endif
4095                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4096                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4097
4098                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4099                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4100         } else {
4101                 /* It's a leaf.  Move records.  */
4102                 union xfs_btree_rec     *lrp;   /* left record pointer */
4103                 union xfs_btree_rec     *rrp;   /* right record pointer */
4104
4105                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4106                 rrp = xfs_btree_rec_addr(cur, 1, right);
4107
4108                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4109                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4110         }
4111
4112         XFS_BTREE_STATS_INC(cur, join);
4113
4114         /*
4115          * Fix up the number of records and right block pointer in the
4116          * surviving block, and log it.
4117          */
4118         xfs_btree_set_numrecs(left, lrecs + rrecs);
4119         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4120         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4121         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4122
4123         /* If there is a right sibling, point it to the remaining block. */
4124         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4125         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4126                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4127                 if (error)
4128                         goto error0;
4129                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4130                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4131         }
4132
4133         /* Free the deleted block. */
4134         error = xfs_btree_free_block(cur, rbp);
4135         if (error)
4136                 goto error0;
4137
4138         /*
4139          * If we joined with the left neighbor, set the buffer in the
4140          * cursor to the left block, and fix up the index.
4141          */
4142         if (bp != lbp) {
4143                 cur->bc_bufs[level] = lbp;
4144                 cur->bc_ptrs[level] += lrecs;
4145                 cur->bc_ra[level] = 0;
4146         }
4147         /*
4148          * If we joined with the right neighbor and there's a level above
4149          * us, increment the cursor at that level.
4150          */
4151         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4152                    (level + 1 < cur->bc_nlevels)) {
4153                 error = xfs_btree_increment(cur, level + 1, &i);
4154                 if (error)
4155                         goto error0;
4156         }
4157
4158         /*
4159          * Readjust the ptr at this level if it's not a leaf, since it's
4160          * still pointing at the deletion point, which makes the cursor
4161          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4162          * We can't use decrement because it would change the next level up.
4163          */
4164         if (level > 0)
4165                 cur->bc_ptrs[level]--;
4166
4167         /*
4168          * We combined blocks, so we have to update the parent keys if the
4169          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4170          * points to the old block so that the caller knows which record to
4171          * delete.  Therefore, the caller must be savvy enough to call updkeys
4172          * for us if we return stat == 2.  The other exit points from this
4173          * function don't require deletions further up the tree, so they can
4174          * call updkeys directly.
4175          */
4176
4177         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4178         /* Return value means the next level up has something to do. */
4179         *stat = 2;
4180         return 0;
4181
4182 error0:
4183         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4184         if (tcur)
4185                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4186         return error;
4187 }
4188
4189 /*
4190  * Delete the record pointed to by cur.
4191  * The cursor refers to the place where the record was (could be inserted)
4192  * when the operation returns.
4193  */
4194 int                                     /* error */
4195 xfs_btree_delete(
4196         struct xfs_btree_cur    *cur,
4197         int                     *stat)  /* success/failure */
4198 {
4199         int                     error;  /* error return value */
4200         int                     level;
4201         int                     i;
4202         bool                    joined = false;
4203
4204         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4205
4206         /*
4207          * Go up the tree, starting at leaf level.
4208          *
4209          * If 2 is returned then a join was done; go to the next level.
4210          * Otherwise we are done.
4211          */
4212         for (level = 0, i = 2; i == 2; level++) {
4213                 error = xfs_btree_delrec(cur, level, &i);
4214                 if (error)
4215                         goto error0;
4216                 if (i == 2)
4217                         joined = true;
4218         }
4219
4220         /*
4221          * If we combined blocks as part of deleting the record, delrec won't
4222          * have updated the parent high keys so we have to do that here.
4223          */
4224         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4225                 error = xfs_btree_updkeys_force(cur, 0);
4226                 if (error)
4227                         goto error0;
4228         }
4229
4230         if (i == 0) {
4231                 for (level = 1; level < cur->bc_nlevels; level++) {
4232                         if (cur->bc_ptrs[level] == 0) {
4233                                 error = xfs_btree_decrement(cur, level, &i);
4234                                 if (error)
4235                                         goto error0;
4236                                 break;
4237                         }
4238                 }
4239         }
4240
4241         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4242         *stat = i;
4243         return 0;
4244 error0:
4245         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4246         return error;
4247 }
4248
4249 /*
4250  * Get the data from the pointed-to record.
4251  */
4252 int                                     /* error */
4253 xfs_btree_get_rec(
4254         struct xfs_btree_cur    *cur,   /* btree cursor */
4255         union xfs_btree_rec     **recp, /* output: btree record */
4256         int                     *stat)  /* output: success/failure */
4257 {
4258         struct xfs_btree_block  *block; /* btree block */
4259         struct xfs_buf          *bp;    /* buffer pointer */
4260         int                     ptr;    /* record number */
4261 #ifdef DEBUG
4262         int                     error;  /* error return value */
4263 #endif
4264
4265         ptr = cur->bc_ptrs[0];
4266         block = xfs_btree_get_block(cur, 0, &bp);
4267
4268 #ifdef DEBUG
4269         error = xfs_btree_check_block(cur, block, 0, bp);
4270         if (error)
4271                 return error;
4272 #endif
4273
4274         /*
4275          * Off the right end or left end, return failure.
4276          */
4277         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4278                 *stat = 0;
4279                 return 0;
4280         }
4281
4282         /*
4283          * Point to the record and extract its data.
4284          */
4285         *recp = xfs_btree_rec_addr(cur, ptr, block);
4286         *stat = 1;
4287         return 0;
4288 }
4289
4290 /* Visit a block in a btree. */
4291 STATIC int
4292 xfs_btree_visit_block(
4293         struct xfs_btree_cur            *cur,
4294         int                             level,
4295         xfs_btree_visit_blocks_fn       fn,
4296         void                            *data)
4297 {
4298         struct xfs_btree_block          *block;
4299         struct xfs_buf                  *bp;
4300         union xfs_btree_ptr             rptr;
4301         int                             error;
4302
4303         /* do right sibling readahead */
4304         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4305         block = xfs_btree_get_block(cur, level, &bp);
4306
4307         /* process the block */
4308         error = fn(cur, level, data);
4309         if (error)
4310                 return error;
4311
4312         /* now read rh sibling block for next iteration */
4313         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4314         if (xfs_btree_ptr_is_null(cur, &rptr))
4315                 return -ENOENT;
4316
4317         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4318 }
4319
4320
4321 /* Visit every block in a btree. */
4322 int
4323 xfs_btree_visit_blocks(
4324         struct xfs_btree_cur            *cur,
4325         xfs_btree_visit_blocks_fn       fn,
4326         void                            *data)
4327 {
4328         union xfs_btree_ptr             lptr;
4329         int                             level;
4330         struct xfs_btree_block          *block = NULL;
4331         int                             error = 0;
4332
4333         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4334
4335         /* for each level */
4336         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4337                 /* grab the left hand block */
4338                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4339                 if (error)
4340                         return error;
4341
4342                 /* readahead the left most block for the next level down */
4343                 if (level > 0) {
4344                         union xfs_btree_ptr     *ptr;
4345
4346                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4347                         xfs_btree_readahead_ptr(cur, ptr, 1);
4348
4349                         /* save for the next iteration of the loop */
4350                         lptr = *ptr;
4351                 }
4352
4353                 /* for each buffer in the level */
4354                 do {
4355                         error = xfs_btree_visit_block(cur, level, fn, data);
4356                 } while (!error);
4357
4358                 if (error != -ENOENT)
4359                         return error;
4360         }
4361
4362         return 0;
4363 }
4364
4365 /*
4366  * Change the owner of a btree.
4367  *
4368  * The mechanism we use here is ordered buffer logging. Because we don't know
4369  * how many buffers were are going to need to modify, we don't really want to
4370  * have to make transaction reservations for the worst case of every buffer in a
4371  * full size btree as that may be more space that we can fit in the log....
4372  *
4373  * We do the btree walk in the most optimal manner possible - we have sibling
4374  * pointers so we can just walk all the blocks on each level from left to right
4375  * in a single pass, and then move to the next level and do the same. We can
4376  * also do readahead on the sibling pointers to get IO moving more quickly,
4377  * though for slow disks this is unlikely to make much difference to performance
4378  * as the amount of CPU work we have to do before moving to the next block is
4379  * relatively small.
4380  *
4381  * For each btree block that we load, modify the owner appropriately, set the
4382  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4383  * we mark the region we change dirty so that if the buffer is relogged in
4384  * a subsequent transaction the changes we make here as an ordered buffer are
4385  * correctly relogged in that transaction.  If we are in recovery context, then
4386  * just queue the modified buffer as delayed write buffer so the transaction
4387  * recovery completion writes the changes to disk.
4388  */
4389 struct xfs_btree_block_change_owner_info {
4390         __uint64_t              new_owner;
4391         struct list_head        *buffer_list;
4392 };
4393
4394 static int
4395 xfs_btree_block_change_owner(
4396         struct xfs_btree_cur    *cur,
4397         int                     level,
4398         void                    *data)
4399 {
4400         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4401         struct xfs_btree_block  *block;
4402         struct xfs_buf          *bp;
4403
4404         /* modify the owner */
4405         block = xfs_btree_get_block(cur, level, &bp);
4406         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4407                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4408         else
4409                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4410
4411         /*
4412          * If the block is a root block hosted in an inode, we might not have a
4413          * buffer pointer here and we shouldn't attempt to log the change as the
4414          * information is already held in the inode and discarded when the root
4415          * block is formatted into the on-disk inode fork. We still change it,
4416          * though, so everything is consistent in memory.
4417          */
4418         if (bp) {
4419                 if (cur->bc_tp) {
4420                         xfs_trans_ordered_buf(cur->bc_tp, bp);
4421                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4422                 } else {
4423                         xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4424                 }
4425         } else {
4426                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4427                 ASSERT(level == cur->bc_nlevels - 1);
4428         }
4429
4430         return 0;
4431 }
4432
4433 int
4434 xfs_btree_change_owner(
4435         struct xfs_btree_cur    *cur,
4436         __uint64_t              new_owner,
4437         struct list_head        *buffer_list)
4438 {
4439         struct xfs_btree_block_change_owner_info        bbcoi;
4440
4441         bbcoi.new_owner = new_owner;
4442         bbcoi.buffer_list = buffer_list;
4443
4444         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4445                         &bbcoi);
4446 }
4447
4448 /**
4449  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4450  *                                    btree block
4451  *
4452  * @bp: buffer containing the btree block
4453  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4454  * @pag_max_level: pointer to the per-ag max level field
4455  */
4456 bool
4457 xfs_btree_sblock_v5hdr_verify(
4458         struct xfs_buf          *bp)
4459 {
4460         struct xfs_mount        *mp = bp->b_target->bt_mount;
4461         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4462         struct xfs_perag        *pag = bp->b_pag;
4463
4464         if (!xfs_sb_version_hascrc(&mp->m_sb))
4465                 return false;
4466         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4467                 return false;
4468         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4469                 return false;
4470         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4471                 return false;
4472         return true;
4473 }
4474
4475 /**
4476  * xfs_btree_sblock_verify() -- verify a short-format btree block
4477  *
4478  * @bp: buffer containing the btree block
4479  * @max_recs: maximum records allowed in this btree node
4480  */
4481 bool
4482 xfs_btree_sblock_verify(
4483         struct xfs_buf          *bp,
4484         unsigned int            max_recs)
4485 {
4486         struct xfs_mount        *mp = bp->b_target->bt_mount;
4487         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4488
4489         /* numrecs verification */
4490         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4491                 return false;
4492
4493         /* sibling pointer verification */
4494         if (!block->bb_u.s.bb_leftsib ||
4495             (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4496              block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4497                 return false;
4498         if (!block->bb_u.s.bb_rightsib ||
4499             (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4500              block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4501                 return false;
4502
4503         return true;
4504 }
4505
4506 /*
4507  * Calculate the number of btree levels needed to store a given number of
4508  * records in a short-format btree.
4509  */
4510 uint
4511 xfs_btree_compute_maxlevels(
4512         struct xfs_mount        *mp,
4513         uint                    *limits,
4514         unsigned long           len)
4515 {
4516         uint                    level;
4517         unsigned long           maxblocks;
4518
4519         maxblocks = (len + limits[0] - 1) / limits[0];
4520         for (level = 1; maxblocks > 1; level++)
4521                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4522         return level;
4523 }
4524
4525 /*
4526  * Query a regular btree for all records overlapping a given interval.
4527  * Start with a LE lookup of the key of low_rec and return all records
4528  * until we find a record with a key greater than the key of high_rec.
4529  */
4530 STATIC int
4531 xfs_btree_simple_query_range(
4532         struct xfs_btree_cur            *cur,
4533         union xfs_btree_key             *low_key,
4534         union xfs_btree_key             *high_key,
4535         xfs_btree_query_range_fn        fn,
4536         void                            *priv)
4537 {
4538         union xfs_btree_rec             *recp;
4539         union xfs_btree_key             rec_key;
4540         __int64_t                       diff;
4541         int                             stat;
4542         bool                            firstrec = true;
4543         int                             error;
4544
4545         ASSERT(cur->bc_ops->init_high_key_from_rec);
4546         ASSERT(cur->bc_ops->diff_two_keys);
4547
4548         /*
4549          * Find the leftmost record.  The btree cursor must be set
4550          * to the low record used to generate low_key.
4551          */
4552         stat = 0;
4553         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4554         if (error)
4555                 goto out;
4556
4557         while (stat) {
4558                 /* Find the record. */
4559                 error = xfs_btree_get_rec(cur, &recp, &stat);
4560                 if (error || !stat)
4561                         break;
4562                 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4563
4564                 /* Skip if high_key(rec) < low_key. */
4565                 if (firstrec) {
4566                         firstrec = false;
4567                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4568                                         &rec_key);
4569                         if (diff > 0)
4570                                 goto advloop;
4571                 }
4572
4573                 /* Stop if high_key < low_key(rec). */
4574                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4575                 if (diff > 0)
4576                         break;
4577
4578                 /* Callback */
4579                 error = fn(cur, recp, priv);
4580                 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4581                         break;
4582
4583 advloop:
4584                 /* Move on to the next record. */
4585                 error = xfs_btree_increment(cur, 0, &stat);
4586                 if (error)
4587                         break;
4588         }
4589
4590 out:
4591         return error;
4592 }
4593
4594 /*
4595  * Query an overlapped interval btree for all records overlapping a given
4596  * interval.  This function roughly follows the algorithm given in
4597  * "Interval Trees" of _Introduction to Algorithms_, which is section
4598  * 14.3 in the 2nd and 3rd editions.
4599  *
4600  * First, generate keys for the low and high records passed in.
4601  *
4602  * For any leaf node, generate the high and low keys for the record.
4603  * If the record keys overlap with the query low/high keys, pass the
4604  * record to the function iterator.
4605  *
4606  * For any internal node, compare the low and high keys of each
4607  * pointer against the query low/high keys.  If there's an overlap,
4608  * follow the pointer.
4609  *
4610  * As an optimization, we stop scanning a block when we find a low key
4611  * that is greater than the query's high key.
4612  */
4613 STATIC int
4614 xfs_btree_overlapped_query_range(
4615         struct xfs_btree_cur            *cur,
4616         union xfs_btree_key             *low_key,
4617         union xfs_btree_key             *high_key,
4618         xfs_btree_query_range_fn        fn,
4619         void                            *priv)
4620 {
4621         union xfs_btree_ptr             ptr;
4622         union xfs_btree_ptr             *pp;
4623         union xfs_btree_key             rec_key;
4624         union xfs_btree_key             rec_hkey;
4625         union xfs_btree_key             *lkp;
4626         union xfs_btree_key             *hkp;
4627         union xfs_btree_rec             *recp;
4628         struct xfs_btree_block          *block;
4629         __int64_t                       ldiff;
4630         __int64_t                       hdiff;
4631         int                             level;
4632         struct xfs_buf                  *bp;
4633         int                             i;
4634         int                             error;
4635
4636         /* Load the root of the btree. */
4637         level = cur->bc_nlevels - 1;
4638         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4639         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4640         if (error)
4641                 return error;
4642         xfs_btree_get_block(cur, level, &bp);
4643         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4644 #ifdef DEBUG
4645         error = xfs_btree_check_block(cur, block, level, bp);
4646         if (error)
4647                 goto out;
4648 #endif
4649         cur->bc_ptrs[level] = 1;
4650
4651         while (level < cur->bc_nlevels) {
4652                 block = xfs_btree_get_block(cur, level, &bp);
4653
4654                 /* End of node, pop back towards the root. */
4655                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4656 pop_up:
4657                         if (level < cur->bc_nlevels - 1)
4658                                 cur->bc_ptrs[level + 1]++;
4659                         level++;
4660                         continue;
4661                 }
4662
4663                 if (level == 0) {
4664                         /* Handle a leaf node. */
4665                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4666
4667                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4668                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4669                                         low_key);
4670
4671                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4672                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4673                                         &rec_key);
4674
4675                         /*
4676                          * If (record's high key >= query's low key) and
4677                          *    (query's high key >= record's low key), then
4678                          * this record overlaps the query range; callback.
4679                          */
4680                         if (ldiff >= 0 && hdiff >= 0) {
4681                                 error = fn(cur, recp, priv);
4682                                 if (error < 0 ||
4683                                     error == XFS_BTREE_QUERY_RANGE_ABORT)
4684                                         break;
4685                         } else if (hdiff < 0) {
4686                                 /* Record is larger than high key; pop. */
4687                                 goto pop_up;
4688                         }
4689                         cur->bc_ptrs[level]++;
4690                         continue;
4691                 }
4692
4693                 /* Handle an internal node. */
4694                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4695                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4696                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4697
4698                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4699                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4700
4701                 /*
4702                  * If (pointer's high key >= query's low key) and
4703                  *    (query's high key >= pointer's low key), then
4704                  * this record overlaps the query range; follow pointer.
4705                  */
4706                 if (ldiff >= 0 && hdiff >= 0) {
4707                         level--;
4708                         error = xfs_btree_lookup_get_block(cur, level, pp,
4709                                         &block);
4710                         if (error)
4711                                 goto out;
4712                         xfs_btree_get_block(cur, level, &bp);
4713                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4714 #ifdef DEBUG
4715                         error = xfs_btree_check_block(cur, block, level, bp);
4716                         if (error)
4717                                 goto out;
4718 #endif
4719                         cur->bc_ptrs[level] = 1;
4720                         continue;
4721                 } else if (hdiff < 0) {
4722                         /* The low key is larger than the upper range; pop. */
4723                         goto pop_up;
4724                 }
4725                 cur->bc_ptrs[level]++;
4726         }
4727
4728 out:
4729         /*
4730          * If we don't end this function with the cursor pointing at a record
4731          * block, a subsequent non-error cursor deletion will not release
4732          * node-level buffers, causing a buffer leak.  This is quite possible
4733          * with a zero-results range query, so release the buffers if we
4734          * failed to return any results.
4735          */
4736         if (cur->bc_bufs[0] == NULL) {
4737                 for (i = 0; i < cur->bc_nlevels; i++) {
4738                         if (cur->bc_bufs[i]) {
4739                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4740                                 cur->bc_bufs[i] = NULL;
4741                                 cur->bc_ptrs[i] = 0;
4742                                 cur->bc_ra[i] = 0;
4743                         }
4744                 }
4745         }
4746
4747         return error;
4748 }
4749
4750 /*
4751  * Query a btree for all records overlapping a given interval of keys.  The
4752  * supplied function will be called with each record found; return one of the
4753  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4754  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4755  * negative error code.
4756  */
4757 int
4758 xfs_btree_query_range(
4759         struct xfs_btree_cur            *cur,
4760         union xfs_btree_irec            *low_rec,
4761         union xfs_btree_irec            *high_rec,
4762         xfs_btree_query_range_fn        fn,
4763         void                            *priv)
4764 {
4765         union xfs_btree_rec             rec;
4766         union xfs_btree_key             low_key;
4767         union xfs_btree_key             high_key;
4768
4769         /* Find the keys of both ends of the interval. */
4770         cur->bc_rec = *high_rec;
4771         cur->bc_ops->init_rec_from_cur(cur, &rec);
4772         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4773
4774         cur->bc_rec = *low_rec;
4775         cur->bc_ops->init_rec_from_cur(cur, &rec);
4776         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4777
4778         /* Enforce low key < high key. */
4779         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4780                 return -EINVAL;
4781
4782         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4783                 return xfs_btree_simple_query_range(cur, &low_key,
4784                                 &high_key, fn, priv);
4785         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4786                         fn, priv);
4787 }