Merge tag 'ceph-for-4.8-rc1' of git://github.com/ceph/ceph-client
[cascardo/linux.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(mp, xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent)
439 {
440         struct xlog             *log = mp->m_log;
441         struct xlog_ticket      *tic;
442         int                     need_bytes;
443         int                     error = 0;
444
445         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447         if (XLOG_FORCED_SHUTDOWN(log))
448                 return -EIO;
449
450         XFS_STATS_INC(mp, xs_try_logspace);
451
452         ASSERT(*ticp == NULL);
453         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454                                 KM_SLEEP | KM_MAYFAIL);
455         if (!tic)
456                 return -ENOMEM;
457
458         *ticp = tic;
459
460         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461                                             : tic->t_unit_res);
462
463         trace_xfs_log_reserve(log, tic);
464
465         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466                                       &need_bytes);
467         if (error)
468                 goto out_error;
469
470         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472         trace_xfs_log_reserve_exit(log, tic);
473         xlog_verify_grant_tail(log);
474         return 0;
475
476 out_error:
477         /*
478          * If we are failing, make sure the ticket doesn't have any current
479          * reservations.  We don't want to add this back when the ticket/
480          * transaction gets cancelled.
481          */
482         tic->t_curr_res = 0;
483         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484         return error;
485 }
486
487
488 /*
489  * NOTES:
490  *
491  *      1. currblock field gets updated at startup and after in-core logs
492  *              marked as with WANT_SYNC.
493  */
494
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511         struct xfs_mount        *mp,
512         struct xlog_ticket      *ticket,
513         struct xlog_in_core     **iclog,
514         bool                    regrant)
515 {
516         struct xlog             *log = mp->m_log;
517         xfs_lsn_t               lsn = 0;
518
519         if (XLOG_FORCED_SHUTDOWN(log) ||
520             /*
521              * If nothing was ever written, don't write out commit record.
522              * If we get an error, just continue and give back the log ticket.
523              */
524             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526                 lsn = (xfs_lsn_t) -1;
527                 regrant = false;
528         }
529
530
531         if (!regrant) {
532                 trace_xfs_log_done_nonperm(log, ticket);
533
534                 /*
535                  * Release ticket if not permanent reservation or a specific
536                  * request has been made to release a permanent reservation.
537                  */
538                 xlog_ungrant_log_space(log, ticket);
539         } else {
540                 trace_xfs_log_done_perm(log, ticket);
541
542                 xlog_regrant_reserve_log_space(log, ticket);
543                 /* If this ticket was a permanent reservation and we aren't
544                  * trying to release it, reset the inited flags; so next time
545                  * we write, a start record will be written out.
546                  */
547                 ticket->t_flags |= XLOG_TIC_INITED;
548         }
549
550         xfs_log_ticket_put(ticket);
551         return lsn;
552 }
553
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562         struct xfs_mount        *mp,
563         struct xlog_in_core     *iclog,
564         xfs_log_callback_t      *cb)
565 {
566         int     abortflg;
567
568         spin_lock(&iclog->ic_callback_lock);
569         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570         if (!abortflg) {
571                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573                 cb->cb_next = NULL;
574                 *(iclog->ic_callback_tail) = cb;
575                 iclog->ic_callback_tail = &(cb->cb_next);
576         }
577         spin_unlock(&iclog->ic_callback_lock);
578         return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583         struct xfs_mount        *mp,
584         struct xlog_in_core     *iclog)
585 {
586         if (xlog_state_release_iclog(mp->m_log, iclog)) {
587                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588                 return -EIO;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Mount a log filesystem
596  *
597  * mp           - ubiquitous xfs mount point structure
598  * log_target   - buftarg of on-disk log device
599  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks  - Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606         xfs_mount_t     *mp,
607         xfs_buftarg_t   *log_target,
608         xfs_daddr_t     blk_offset,
609         int             num_bblks)
610 {
611         int             error = 0;
612         int             min_logfsbs;
613
614         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615                 xfs_notice(mp, "Mounting V%d Filesystem",
616                            XFS_SB_VERSION_NUM(&mp->m_sb));
617         } else {
618                 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620                            XFS_SB_VERSION_NUM(&mp->m_sb));
621                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622         }
623
624         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625         if (IS_ERR(mp->m_log)) {
626                 error = PTR_ERR(mp->m_log);
627                 goto out;
628         }
629
630         /*
631          * Validate the given log space and drop a critical message via syslog
632          * if the log size is too small that would lead to some unexpected
633          * situations in transaction log space reservation stage.
634          *
635          * Note: we can't just reject the mount if the validation fails.  This
636          * would mean that people would have to downgrade their kernel just to
637          * remedy the situation as there is no way to grow the log (short of
638          * black magic surgery with xfs_db).
639          *
640          * We can, however, reject mounts for CRC format filesystems, as the
641          * mkfs binary being used to make the filesystem should never create a
642          * filesystem with a log that is too small.
643          */
644         min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646         if (mp->m_sb.sb_logblocks < min_logfsbs) {
647                 xfs_warn(mp,
648                 "Log size %d blocks too small, minimum size is %d blocks",
649                          mp->m_sb.sb_logblocks, min_logfsbs);
650                 error = -EINVAL;
651         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652                 xfs_warn(mp,
653                 "Log size %d blocks too large, maximum size is %lld blocks",
654                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655                 error = -EINVAL;
656         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657                 xfs_warn(mp,
658                 "log size %lld bytes too large, maximum size is %lld bytes",
659                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660                          XFS_MAX_LOG_BYTES);
661                 error = -EINVAL;
662         }
663         if (error) {
664                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666                         ASSERT(0);
667                         goto out_free_log;
668                 }
669                 xfs_crit(mp, "Log size out of supported range.");
670                 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672         }
673
674         /*
675          * Initialize the AIL now we have a log.
676          */
677         error = xfs_trans_ail_init(mp);
678         if (error) {
679                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680                 goto out_free_log;
681         }
682         mp->m_log->l_ailp = mp->m_ail;
683
684         /*
685          * skip log recovery on a norecovery mount.  pretend it all
686          * just worked.
687          */
688         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691                 if (readonly)
692                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694                 error = xlog_recover(mp->m_log);
695
696                 if (readonly)
697                         mp->m_flags |= XFS_MOUNT_RDONLY;
698                 if (error) {
699                         xfs_warn(mp, "log mount/recovery failed: error %d",
700                                 error);
701                         xlog_recover_cancel(mp->m_log);
702                         goto out_destroy_ail;
703                 }
704         }
705
706         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707                                "log");
708         if (error)
709                 goto out_destroy_ail;
710
711         /* Normal transactions can now occur */
712         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714         /*
715          * Now the log has been fully initialised and we know were our
716          * space grant counters are, we can initialise the permanent ticket
717          * needed for delayed logging to work.
718          */
719         xlog_cil_init_post_recovery(mp->m_log);
720
721         return 0;
722
723 out_destroy_ail:
724         xfs_trans_ail_destroy(mp);
725 out_free_log:
726         xlog_dealloc_log(mp->m_log);
727 out:
728         return error;
729 }
730
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743         struct xfs_mount        *mp)
744 {
745         int     error = 0;
746
747         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749                 return 0;
750         }
751
752         error = xlog_recover_finish(mp->m_log);
753         if (!error)
754                 xfs_log_work_queue(mp);
755
756         return error;
757 }
758
759 /*
760  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761  * the log.
762  */
763 int
764 xfs_log_mount_cancel(
765         struct xfs_mount        *mp)
766 {
767         int                     error;
768
769         error = xlog_recover_cancel(mp->m_log);
770         xfs_log_unmount(mp);
771
772         return error;
773 }
774
775 /*
776  * Final log writes as part of unmount.
777  *
778  * Mark the filesystem clean as unmount happens.  Note that during relocation
779  * this routine needs to be executed as part of source-bag while the
780  * deallocation must not be done until source-end.
781  */
782
783 /*
784  * Unmount record used to have a string "Unmount filesystem--" in the
785  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786  * We just write the magic number now since that particular field isn't
787  * currently architecture converted and "Unmount" is a bit foo.
788  * As far as I know, there weren't any dependencies on the old behaviour.
789  */
790
791 static int
792 xfs_log_unmount_write(xfs_mount_t *mp)
793 {
794         struct xlog      *log = mp->m_log;
795         xlog_in_core_t   *iclog;
796 #ifdef DEBUG
797         xlog_in_core_t   *first_iclog;
798 #endif
799         xlog_ticket_t   *tic = NULL;
800         xfs_lsn_t        lsn;
801         int              error;
802
803         /*
804          * Don't write out unmount record on read-only mounts.
805          * Or, if we are doing a forced umount (typically because of IO errors).
806          */
807         if (mp->m_flags & XFS_MOUNT_RDONLY)
808                 return 0;
809
810         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
811         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
812
813 #ifdef DEBUG
814         first_iclog = iclog = log->l_iclog;
815         do {
816                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
817                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
818                         ASSERT(iclog->ic_offset == 0);
819                 }
820                 iclog = iclog->ic_next;
821         } while (iclog != first_iclog);
822 #endif
823         if (! (XLOG_FORCED_SHUTDOWN(log))) {
824                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
825                 if (!error) {
826                         /* the data section must be 32 bit size aligned */
827                         struct {
828                             __uint16_t magic;
829                             __uint16_t pad1;
830                             __uint32_t pad2; /* may as well make it 64 bits */
831                         } magic = {
832                                 .magic = XLOG_UNMOUNT_TYPE,
833                         };
834                         struct xfs_log_iovec reg = {
835                                 .i_addr = &magic,
836                                 .i_len = sizeof(magic),
837                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
838                         };
839                         struct xfs_log_vec vec = {
840                                 .lv_niovecs = 1,
841                                 .lv_iovecp = &reg,
842                         };
843
844                         /* remove inited flag, and account for space used */
845                         tic->t_flags = 0;
846                         tic->t_curr_res -= sizeof(magic);
847                         error = xlog_write(log, &vec, tic, &lsn,
848                                            NULL, XLOG_UNMOUNT_TRANS);
849                         /*
850                          * At this point, we're umounting anyway,
851                          * so there's no point in transitioning log state
852                          * to IOERROR. Just continue...
853                          */
854                 }
855
856                 if (error)
857                         xfs_alert(mp, "%s: unmount record failed", __func__);
858
859
860                 spin_lock(&log->l_icloglock);
861                 iclog = log->l_iclog;
862                 atomic_inc(&iclog->ic_refcnt);
863                 xlog_state_want_sync(log, iclog);
864                 spin_unlock(&log->l_icloglock);
865                 error = xlog_state_release_iclog(log, iclog);
866
867                 spin_lock(&log->l_icloglock);
868                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
869                       iclog->ic_state == XLOG_STATE_DIRTY)) {
870                         if (!XLOG_FORCED_SHUTDOWN(log)) {
871                                 xlog_wait(&iclog->ic_force_wait,
872                                                         &log->l_icloglock);
873                         } else {
874                                 spin_unlock(&log->l_icloglock);
875                         }
876                 } else {
877                         spin_unlock(&log->l_icloglock);
878                 }
879                 if (tic) {
880                         trace_xfs_log_umount_write(log, tic);
881                         xlog_ungrant_log_space(log, tic);
882                         xfs_log_ticket_put(tic);
883                 }
884         } else {
885                 /*
886                  * We're already in forced_shutdown mode, couldn't
887                  * even attempt to write out the unmount transaction.
888                  *
889                  * Go through the motions of sync'ing and releasing
890                  * the iclog, even though no I/O will actually happen,
891                  * we need to wait for other log I/Os that may already
892                  * be in progress.  Do this as a separate section of
893                  * code so we'll know if we ever get stuck here that
894                  * we're in this odd situation of trying to unmount
895                  * a file system that went into forced_shutdown as
896                  * the result of an unmount..
897                  */
898                 spin_lock(&log->l_icloglock);
899                 iclog = log->l_iclog;
900                 atomic_inc(&iclog->ic_refcnt);
901
902                 xlog_state_want_sync(log, iclog);
903                 spin_unlock(&log->l_icloglock);
904                 error =  xlog_state_release_iclog(log, iclog);
905
906                 spin_lock(&log->l_icloglock);
907
908                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
909                         || iclog->ic_state == XLOG_STATE_DIRTY
910                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
911
912                                 xlog_wait(&iclog->ic_force_wait,
913                                                         &log->l_icloglock);
914                 } else {
915                         spin_unlock(&log->l_icloglock);
916                 }
917         }
918
919         return error;
920 }       /* xfs_log_unmount_write */
921
922 /*
923  * Empty the log for unmount/freeze.
924  *
925  * To do this, we first need to shut down the background log work so it is not
926  * trying to cover the log as we clean up. We then need to unpin all objects in
927  * the log so we can then flush them out. Once they have completed their IO and
928  * run the callbacks removing themselves from the AIL, we can write the unmount
929  * record.
930  */
931 void
932 xfs_log_quiesce(
933         struct xfs_mount        *mp)
934 {
935         cancel_delayed_work_sync(&mp->m_log->l_work);
936         xfs_log_force(mp, XFS_LOG_SYNC);
937
938         /*
939          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940          * will push it, xfs_wait_buftarg() will not wait for it. Further,
941          * xfs_buf_iowait() cannot be used because it was pushed with the
942          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943          * the IO to complete.
944          */
945         xfs_ail_push_all_sync(mp->m_ail);
946         xfs_wait_buftarg(mp->m_ddev_targp);
947         xfs_buf_lock(mp->m_sb_bp);
948         xfs_buf_unlock(mp->m_sb_bp);
949
950         xfs_log_unmount_write(mp);
951 }
952
953 /*
954  * Shut down and release the AIL and Log.
955  *
956  * During unmount, we need to ensure we flush all the dirty metadata objects
957  * from the AIL so that the log is empty before we write the unmount record to
958  * the log. Once this is done, we can tear down the AIL and the log.
959  */
960 void
961 xfs_log_unmount(
962         struct xfs_mount        *mp)
963 {
964         xfs_log_quiesce(mp);
965
966         xfs_trans_ail_destroy(mp);
967
968         xfs_sysfs_del(&mp->m_log->l_kobj);
969
970         xlog_dealloc_log(mp->m_log);
971 }
972
973 void
974 xfs_log_item_init(
975         struct xfs_mount        *mp,
976         struct xfs_log_item     *item,
977         int                     type,
978         const struct xfs_item_ops *ops)
979 {
980         item->li_mountp = mp;
981         item->li_ailp = mp->m_ail;
982         item->li_type = type;
983         item->li_ops = ops;
984         item->li_lv = NULL;
985
986         INIT_LIST_HEAD(&item->li_ail);
987         INIT_LIST_HEAD(&item->li_cil);
988 }
989
990 /*
991  * Wake up processes waiting for log space after we have moved the log tail.
992  */
993 void
994 xfs_log_space_wake(
995         struct xfs_mount        *mp)
996 {
997         struct xlog             *log = mp->m_log;
998         int                     free_bytes;
999
1000         if (XLOG_FORCED_SHUTDOWN(log))
1001                 return;
1002
1003         if (!list_empty_careful(&log->l_write_head.waiters)) {
1004                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006                 spin_lock(&log->l_write_head.lock);
1007                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009                 spin_unlock(&log->l_write_head.lock);
1010         }
1011
1012         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015                 spin_lock(&log->l_reserve_head.lock);
1016                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018                 spin_unlock(&log->l_reserve_head.lock);
1019         }
1020 }
1021
1022 /*
1023  * Determine if we have a transaction that has gone to disk that needs to be
1024  * covered. To begin the transition to the idle state firstly the log needs to
1025  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026  * we start attempting to cover the log.
1027  *
1028  * Only if we are then in a state where covering is needed, the caller is
1029  * informed that dummy transactions are required to move the log into the idle
1030  * state.
1031  *
1032  * If there are any items in the AIl or CIL, then we do not want to attempt to
1033  * cover the log as we may be in a situation where there isn't log space
1034  * available to run a dummy transaction and this can lead to deadlocks when the
1035  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036  * there's no point in running a dummy transaction at this point because we
1037  * can't start trying to idle the log until both the CIL and AIL are empty.
1038  */
1039 static int
1040 xfs_log_need_covered(xfs_mount_t *mp)
1041 {
1042         struct xlog     *log = mp->m_log;
1043         int             needed = 0;
1044
1045         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046                 return 0;
1047
1048         if (!xlog_cil_empty(log))
1049                 return 0;
1050
1051         spin_lock(&log->l_icloglock);
1052         switch (log->l_covered_state) {
1053         case XLOG_STATE_COVER_DONE:
1054         case XLOG_STATE_COVER_DONE2:
1055         case XLOG_STATE_COVER_IDLE:
1056                 break;
1057         case XLOG_STATE_COVER_NEED:
1058         case XLOG_STATE_COVER_NEED2:
1059                 if (xfs_ail_min_lsn(log->l_ailp))
1060                         break;
1061                 if (!xlog_iclogs_empty(log))
1062                         break;
1063
1064                 needed = 1;
1065                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1067                 else
1068                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069                 break;
1070         default:
1071                 needed = 1;
1072                 break;
1073         }
1074         spin_unlock(&log->l_icloglock);
1075         return needed;
1076 }
1077
1078 /*
1079  * We may be holding the log iclog lock upon entering this routine.
1080  */
1081 xfs_lsn_t
1082 xlog_assign_tail_lsn_locked(
1083         struct xfs_mount        *mp)
1084 {
1085         struct xlog             *log = mp->m_log;
1086         struct xfs_log_item     *lip;
1087         xfs_lsn_t               tail_lsn;
1088
1089         assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091         /*
1092          * To make sure we always have a valid LSN for the log tail we keep
1093          * track of the last LSN which was committed in log->l_last_sync_lsn,
1094          * and use that when the AIL was empty.
1095          */
1096         lip = xfs_ail_min(mp->m_ail);
1097         if (lip)
1098                 tail_lsn = lip->li_lsn;
1099         else
1100                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102         atomic64_set(&log->l_tail_lsn, tail_lsn);
1103         return tail_lsn;
1104 }
1105
1106 xfs_lsn_t
1107 xlog_assign_tail_lsn(
1108         struct xfs_mount        *mp)
1109 {
1110         xfs_lsn_t               tail_lsn;
1111
1112         spin_lock(&mp->m_ail->xa_lock);
1113         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114         spin_unlock(&mp->m_ail->xa_lock);
1115
1116         return tail_lsn;
1117 }
1118
1119 /*
1120  * Return the space in the log between the tail and the head.  The head
1121  * is passed in the cycle/bytes formal parms.  In the special case where
1122  * the reserve head has wrapped passed the tail, this calculation is no
1123  * longer valid.  In this case, just return 0 which means there is no space
1124  * in the log.  This works for all places where this function is called
1125  * with the reserve head.  Of course, if the write head were to ever
1126  * wrap the tail, we should blow up.  Rather than catch this case here,
1127  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128  *
1129  * This code also handles the case where the reservation head is behind
1130  * the tail.  The details of this case are described below, but the end
1131  * result is that we return the size of the log as the amount of space left.
1132  */
1133 STATIC int
1134 xlog_space_left(
1135         struct xlog     *log,
1136         atomic64_t      *head)
1137 {
1138         int             free_bytes;
1139         int             tail_bytes;
1140         int             tail_cycle;
1141         int             head_cycle;
1142         int             head_bytes;
1143
1144         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146         tail_bytes = BBTOB(tail_bytes);
1147         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149         else if (tail_cycle + 1 < head_cycle)
1150                 return 0;
1151         else if (tail_cycle < head_cycle) {
1152                 ASSERT(tail_cycle == (head_cycle - 1));
1153                 free_bytes = tail_bytes - head_bytes;
1154         } else {
1155                 /*
1156                  * The reservation head is behind the tail.
1157                  * In this case we just want to return the size of the
1158                  * log as the amount of space left.
1159                  */
1160                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161                 xfs_alert(log->l_mp,
1162                           "  tail_cycle = %d, tail_bytes = %d",
1163                           tail_cycle, tail_bytes);
1164                 xfs_alert(log->l_mp,
1165                           "  GH   cycle = %d, GH   bytes = %d",
1166                           head_cycle, head_bytes);
1167                 ASSERT(0);
1168                 free_bytes = log->l_logsize;
1169         }
1170         return free_bytes;
1171 }
1172
1173
1174 /*
1175  * Log function which is called when an io completes.
1176  *
1177  * The log manager needs its own routine, in order to control what
1178  * happens with the buffer after the write completes.
1179  */
1180 static void
1181 xlog_iodone(xfs_buf_t *bp)
1182 {
1183         struct xlog_in_core     *iclog = bp->b_fspriv;
1184         struct xlog             *l = iclog->ic_log;
1185         int                     aborted = 0;
1186
1187         /*
1188          * Race to shutdown the filesystem if we see an error or the iclog is in
1189          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190          * CRC errors into log recovery.
1191          */
1192         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193                            XFS_RANDOM_IODONE_IOERR) ||
1194             iclog->ic_state & XLOG_STATE_IOABORT) {
1195                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1196                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197
1198                 xfs_buf_ioerror_alert(bp, __func__);
1199                 xfs_buf_stale(bp);
1200                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201                 /*
1202                  * This flag will be propagated to the trans-committed
1203                  * callback routines to let them know that the log-commit
1204                  * didn't succeed.
1205                  */
1206                 aborted = XFS_LI_ABORTED;
1207         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208                 aborted = XFS_LI_ABORTED;
1209         }
1210
1211         /* log I/O is always issued ASYNC */
1212         ASSERT(bp->b_flags & XBF_ASYNC);
1213         xlog_state_done_syncing(iclog, aborted);
1214
1215         /*
1216          * drop the buffer lock now that we are done. Nothing references
1217          * the buffer after this, so an unmount waiting on this lock can now
1218          * tear it down safely. As such, it is unsafe to reference the buffer
1219          * (bp) after the unlock as we could race with it being freed.
1220          */
1221         xfs_buf_unlock(bp);
1222 }
1223
1224 /*
1225  * Return size of each in-core log record buffer.
1226  *
1227  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228  *
1229  * If the filesystem blocksize is too large, we may need to choose a
1230  * larger size since the directory code currently logs entire blocks.
1231  */
1232
1233 STATIC void
1234 xlog_get_iclog_buffer_size(
1235         struct xfs_mount        *mp,
1236         struct xlog             *log)
1237 {
1238         int size;
1239         int xhdrs;
1240
1241         if (mp->m_logbufs <= 0)
1242                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243         else
1244                 log->l_iclog_bufs = mp->m_logbufs;
1245
1246         /*
1247          * Buffer size passed in from mount system call.
1248          */
1249         if (mp->m_logbsize > 0) {
1250                 size = log->l_iclog_size = mp->m_logbsize;
1251                 log->l_iclog_size_log = 0;
1252                 while (size != 1) {
1253                         log->l_iclog_size_log++;
1254                         size >>= 1;
1255                 }
1256
1257                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258                         /* # headers = size / 32k
1259                          * one header holds cycles from 32k of data
1260                          */
1261
1262                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264                                 xhdrs++;
1265                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1266                         log->l_iclog_heads = xhdrs;
1267                 } else {
1268                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269                         log->l_iclog_hsize = BBSIZE;
1270                         log->l_iclog_heads = 1;
1271                 }
1272                 goto done;
1273         }
1274
1275         /* All machines use 32kB buffers by default. */
1276         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278
1279         /* the default log size is 16k or 32k which is one header sector */
1280         log->l_iclog_hsize = BBSIZE;
1281         log->l_iclog_heads = 1;
1282
1283 done:
1284         /* are we being asked to make the sizes selected above visible? */
1285         if (mp->m_logbufs == 0)
1286                 mp->m_logbufs = log->l_iclog_bufs;
1287         if (mp->m_logbsize == 0)
1288                 mp->m_logbsize = log->l_iclog_size;
1289 }       /* xlog_get_iclog_buffer_size */
1290
1291
1292 void
1293 xfs_log_work_queue(
1294         struct xfs_mount        *mp)
1295 {
1296         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298 }
1299
1300 /*
1301  * Every sync period we need to unpin all items in the AIL and push them to
1302  * disk. If there is nothing dirty, then we might need to cover the log to
1303  * indicate that the filesystem is idle.
1304  */
1305 static void
1306 xfs_log_worker(
1307         struct work_struct      *work)
1308 {
1309         struct xlog             *log = container_of(to_delayed_work(work),
1310                                                 struct xlog, l_work);
1311         struct xfs_mount        *mp = log->l_mp;
1312
1313         /* dgc: errors ignored - not fatal and nowhere to report them */
1314         if (xfs_log_need_covered(mp)) {
1315                 /*
1316                  * Dump a transaction into the log that contains no real change.
1317                  * This is needed to stamp the current tail LSN into the log
1318                  * during the covering operation.
1319                  *
1320                  * We cannot use an inode here for this - that will push dirty
1321                  * state back up into the VFS and then periodic inode flushing
1322                  * will prevent log covering from making progress. Hence we
1323                  * synchronously log the superblock instead to ensure the
1324                  * superblock is immediately unpinned and can be written back.
1325                  */
1326                 xfs_sync_sb(mp, true);
1327         } else
1328                 xfs_log_force(mp, 0);
1329
1330         /* start pushing all the metadata that is currently dirty */
1331         xfs_ail_push_all(mp->m_ail);
1332
1333         /* queue us up again */
1334         xfs_log_work_queue(mp);
1335 }
1336
1337 /*
1338  * This routine initializes some of the log structure for a given mount point.
1339  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1340  * some other stuff may be filled in too.
1341  */
1342 STATIC struct xlog *
1343 xlog_alloc_log(
1344         struct xfs_mount        *mp,
1345         struct xfs_buftarg      *log_target,
1346         xfs_daddr_t             blk_offset,
1347         int                     num_bblks)
1348 {
1349         struct xlog             *log;
1350         xlog_rec_header_t       *head;
1351         xlog_in_core_t          **iclogp;
1352         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1353         xfs_buf_t               *bp;
1354         int                     i;
1355         int                     error = -ENOMEM;
1356         uint                    log2_size = 0;
1357
1358         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359         if (!log) {
1360                 xfs_warn(mp, "Log allocation failed: No memory!");
1361                 goto out;
1362         }
1363
1364         log->l_mp          = mp;
1365         log->l_targ        = log_target;
1366         log->l_logsize     = BBTOB(num_bblks);
1367         log->l_logBBstart  = blk_offset;
1368         log->l_logBBsize   = num_bblks;
1369         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1371         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1372
1373         log->l_prev_block  = -1;
1374         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1378
1379         xlog_grant_head_init(&log->l_reserve_head);
1380         xlog_grant_head_init(&log->l_write_head);
1381
1382         error = -EFSCORRUPTED;
1383         if (xfs_sb_version_hassector(&mp->m_sb)) {
1384                 log2_size = mp->m_sb.sb_logsectlog;
1385                 if (log2_size < BBSHIFT) {
1386                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387                                 log2_size, BBSHIFT);
1388                         goto out_free_log;
1389                 }
1390
1391                 log2_size -= BBSHIFT;
1392                 if (log2_size > mp->m_sectbb_log) {
1393                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394                                 log2_size, mp->m_sectbb_log);
1395                         goto out_free_log;
1396                 }
1397
1398                 /* for larger sector sizes, must have v2 or external log */
1399                 if (log2_size && log->l_logBBstart > 0 &&
1400                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401                         xfs_warn(mp,
1402                 "log sector size (0x%x) invalid for configuration.",
1403                                 log2_size);
1404                         goto out_free_log;
1405                 }
1406         }
1407         log->l_sectBBsize = 1 << log2_size;
1408
1409         xlog_get_iclog_buffer_size(mp, log);
1410
1411         /*
1412          * Use a NULL block for the extra log buffer used during splits so that
1413          * it will trigger errors if we ever try to do IO on it without first
1414          * having set it up properly.
1415          */
1416         error = -ENOMEM;
1417         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1419         if (!bp)
1420                 goto out_free_log;
1421
1422         /*
1423          * The iclogbuf buffer locks are held over IO but we are not going to do
1424          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1425          * when appropriately.
1426          */
1427         ASSERT(xfs_buf_islocked(bp));
1428         xfs_buf_unlock(bp);
1429
1430         /* use high priority wq for log I/O completion */
1431         bp->b_ioend_wq = mp->m_log_workqueue;
1432         bp->b_iodone = xlog_iodone;
1433         log->l_xbuf = bp;
1434
1435         spin_lock_init(&log->l_icloglock);
1436         init_waitqueue_head(&log->l_flush_wait);
1437
1438         iclogp = &log->l_iclog;
1439         /*
1440          * The amount of memory to allocate for the iclog structure is
1441          * rather funky due to the way the structure is defined.  It is
1442          * done this way so that we can use different sizes for machines
1443          * with different amounts of memory.  See the definition of
1444          * xlog_in_core_t in xfs_log_priv.h for details.
1445          */
1446         ASSERT(log->l_iclog_size >= 4096);
1447         for (i=0; i < log->l_iclog_bufs; i++) {
1448                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449                 if (!*iclogp)
1450                         goto out_free_iclog;
1451
1452                 iclog = *iclogp;
1453                 iclog->ic_prev = prev_iclog;
1454                 prev_iclog = iclog;
1455
1456                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457                                           BTOBB(log->l_iclog_size),
1458                                           XBF_NO_IOACCT);
1459                 if (!bp)
1460                         goto out_free_iclog;
1461
1462                 ASSERT(xfs_buf_islocked(bp));
1463                 xfs_buf_unlock(bp);
1464
1465                 /* use high priority wq for log I/O completion */
1466                 bp->b_ioend_wq = mp->m_log_workqueue;
1467                 bp->b_iodone = xlog_iodone;
1468                 iclog->ic_bp = bp;
1469                 iclog->ic_data = bp->b_addr;
1470 #ifdef DEBUG
1471                 log->l_iclog_bak[i] = &iclog->ic_header;
1472 #endif
1473                 head = &iclog->ic_header;
1474                 memset(head, 0, sizeof(xlog_rec_header_t));
1475                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476                 head->h_version = cpu_to_be32(
1477                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478                 head->h_size = cpu_to_be32(log->l_iclog_size);
1479                 /* new fields */
1480                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1481                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482
1483                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1484                 iclog->ic_state = XLOG_STATE_ACTIVE;
1485                 iclog->ic_log = log;
1486                 atomic_set(&iclog->ic_refcnt, 0);
1487                 spin_lock_init(&iclog->ic_callback_lock);
1488                 iclog->ic_callback_tail = &(iclog->ic_callback);
1489                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1490
1491                 init_waitqueue_head(&iclog->ic_force_wait);
1492                 init_waitqueue_head(&iclog->ic_write_wait);
1493
1494                 iclogp = &iclog->ic_next;
1495         }
1496         *iclogp = log->l_iclog;                 /* complete ring */
1497         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1498
1499         error = xlog_cil_init(log);
1500         if (error)
1501                 goto out_free_iclog;
1502         return log;
1503
1504 out_free_iclog:
1505         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506                 prev_iclog = iclog->ic_next;
1507                 if (iclog->ic_bp)
1508                         xfs_buf_free(iclog->ic_bp);
1509                 kmem_free(iclog);
1510         }
1511         spinlock_destroy(&log->l_icloglock);
1512         xfs_buf_free(log->l_xbuf);
1513 out_free_log:
1514         kmem_free(log);
1515 out:
1516         return ERR_PTR(error);
1517 }       /* xlog_alloc_log */
1518
1519
1520 /*
1521  * Write out the commit record of a transaction associated with the given
1522  * ticket.  Return the lsn of the commit record.
1523  */
1524 STATIC int
1525 xlog_commit_record(
1526         struct xlog             *log,
1527         struct xlog_ticket      *ticket,
1528         struct xlog_in_core     **iclog,
1529         xfs_lsn_t               *commitlsnp)
1530 {
1531         struct xfs_mount *mp = log->l_mp;
1532         int     error;
1533         struct xfs_log_iovec reg = {
1534                 .i_addr = NULL,
1535                 .i_len = 0,
1536                 .i_type = XLOG_REG_TYPE_COMMIT,
1537         };
1538         struct xfs_log_vec vec = {
1539                 .lv_niovecs = 1,
1540                 .lv_iovecp = &reg,
1541         };
1542
1543         ASSERT_ALWAYS(iclog);
1544         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545                                         XLOG_COMMIT_TRANS);
1546         if (error)
1547                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548         return error;
1549 }
1550
1551 /*
1552  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553  * log space.  This code pushes on the lsn which would supposedly free up
1554  * the 25% which we want to leave free.  We may need to adopt a policy which
1555  * pushes on an lsn which is further along in the log once we reach the high
1556  * water mark.  In this manner, we would be creating a low water mark.
1557  */
1558 STATIC void
1559 xlog_grant_push_ail(
1560         struct xlog     *log,
1561         int             need_bytes)
1562 {
1563         xfs_lsn_t       threshold_lsn = 0;
1564         xfs_lsn_t       last_sync_lsn;
1565         int             free_blocks;
1566         int             free_bytes;
1567         int             threshold_block;
1568         int             threshold_cycle;
1569         int             free_threshold;
1570
1571         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572
1573         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574         free_blocks = BTOBBT(free_bytes);
1575
1576         /*
1577          * Set the threshold for the minimum number of free blocks in the
1578          * log to the maximum of what the caller needs, one quarter of the
1579          * log, and 256 blocks.
1580          */
1581         free_threshold = BTOBB(need_bytes);
1582         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1583         free_threshold = MAX(free_threshold, 256);
1584         if (free_blocks >= free_threshold)
1585                 return;
1586
1587         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588                                                 &threshold_block);
1589         threshold_block += free_threshold;
1590         if (threshold_block >= log->l_logBBsize) {
1591                 threshold_block -= log->l_logBBsize;
1592                 threshold_cycle += 1;
1593         }
1594         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595                                         threshold_block);
1596         /*
1597          * Don't pass in an lsn greater than the lsn of the last
1598          * log record known to be on disk. Use a snapshot of the last sync lsn
1599          * so that it doesn't change between the compare and the set.
1600          */
1601         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603                 threshold_lsn = last_sync_lsn;
1604
1605         /*
1606          * Get the transaction layer to kick the dirty buffers out to
1607          * disk asynchronously. No point in trying to do this if
1608          * the filesystem is shutting down.
1609          */
1610         if (!XLOG_FORCED_SHUTDOWN(log))
1611                 xfs_ail_push(log->l_ailp, threshold_lsn);
1612 }
1613
1614 /*
1615  * Stamp cycle number in every block
1616  */
1617 STATIC void
1618 xlog_pack_data(
1619         struct xlog             *log,
1620         struct xlog_in_core     *iclog,
1621         int                     roundoff)
1622 {
1623         int                     i, j, k;
1624         int                     size = iclog->ic_offset + roundoff;
1625         __be32                  cycle_lsn;
1626         char                    *dp;
1627
1628         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629
1630         dp = iclog->ic_datap;
1631         for (i = 0; i < BTOBB(size); i++) {
1632                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633                         break;
1634                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635                 *(__be32 *)dp = cycle_lsn;
1636                 dp += BBSIZE;
1637         }
1638
1639         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1641
1642                 for ( ; i < BTOBB(size); i++) {
1643                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646                         *(__be32 *)dp = cycle_lsn;
1647                         dp += BBSIZE;
1648                 }
1649
1650                 for (i = 1; i < log->l_iclog_heads; i++)
1651                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652         }
1653 }
1654
1655 /*
1656  * Calculate the checksum for a log buffer.
1657  *
1658  * This is a little more complicated than it should be because the various
1659  * headers and the actual data are non-contiguous.
1660  */
1661 __le32
1662 xlog_cksum(
1663         struct xlog             *log,
1664         struct xlog_rec_header  *rhead,
1665         char                    *dp,
1666         int                     size)
1667 {
1668         __uint32_t              crc;
1669
1670         /* first generate the crc for the record header ... */
1671         crc = xfs_start_cksum((char *)rhead,
1672                               sizeof(struct xlog_rec_header),
1673                               offsetof(struct xlog_rec_header, h_crc));
1674
1675         /* ... then for additional cycle data for v2 logs ... */
1676         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678                 int             i;
1679                 int             xheads;
1680
1681                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682                 if (size % XLOG_HEADER_CYCLE_SIZE)
1683                         xheads++;
1684
1685                 for (i = 1; i < xheads; i++) {
1686                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1687                                      sizeof(struct xlog_rec_ext_header));
1688                 }
1689         }
1690
1691         /* ... and finally for the payload */
1692         crc = crc32c(crc, dp, size);
1693
1694         return xfs_end_cksum(crc);
1695 }
1696
1697 /*
1698  * The bdstrat callback function for log bufs. This gives us a central
1699  * place to trap bufs in case we get hit by a log I/O error and need to
1700  * shutdown. Actually, in practice, even when we didn't get a log error,
1701  * we transition the iclogs to IOERROR state *after* flushing all existing
1702  * iclogs to disk. This is because we don't want anymore new transactions to be
1703  * started or completed afterwards.
1704  *
1705  * We lock the iclogbufs here so that we can serialise against IO completion
1706  * during unmount. We might be processing a shutdown triggered during unmount,
1707  * and that can occur asynchronously to the unmount thread, and hence we need to
1708  * ensure that completes before tearing down the iclogbufs. Hence we need to
1709  * hold the buffer lock across the log IO to acheive that.
1710  */
1711 STATIC int
1712 xlog_bdstrat(
1713         struct xfs_buf          *bp)
1714 {
1715         struct xlog_in_core     *iclog = bp->b_fspriv;
1716
1717         xfs_buf_lock(bp);
1718         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1719                 xfs_buf_ioerror(bp, -EIO);
1720                 xfs_buf_stale(bp);
1721                 xfs_buf_ioend(bp);
1722                 /*
1723                  * It would seem logical to return EIO here, but we rely on
1724                  * the log state machine to propagate I/O errors instead of
1725                  * doing it here. Similarly, IO completion will unlock the
1726                  * buffer, so we don't do it here.
1727                  */
1728                 return 0;
1729         }
1730
1731         xfs_buf_submit(bp);
1732         return 0;
1733 }
1734
1735 /*
1736  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1737  * fashion.  Previously, we should have moved the current iclog
1738  * ptr in the log to point to the next available iclog.  This allows further
1739  * write to continue while this code syncs out an iclog ready to go.
1740  * Before an in-core log can be written out, the data section must be scanned
1741  * to save away the 1st word of each BBSIZE block into the header.  We replace
1742  * it with the current cycle count.  Each BBSIZE block is tagged with the
1743  * cycle count because there in an implicit assumption that drives will
1744  * guarantee that entire 512 byte blocks get written at once.  In other words,
1745  * we can't have part of a 512 byte block written and part not written.  By
1746  * tagging each block, we will know which blocks are valid when recovering
1747  * after an unclean shutdown.
1748  *
1749  * This routine is single threaded on the iclog.  No other thread can be in
1750  * this routine with the same iclog.  Changing contents of iclog can there-
1751  * fore be done without grabbing the state machine lock.  Updating the global
1752  * log will require grabbing the lock though.
1753  *
1754  * The entire log manager uses a logical block numbering scheme.  Only
1755  * log_sync (and then only bwrite()) know about the fact that the log may
1756  * not start with block zero on a given device.  The log block start offset
1757  * is added immediately before calling bwrite().
1758  */
1759
1760 STATIC int
1761 xlog_sync(
1762         struct xlog             *log,
1763         struct xlog_in_core     *iclog)
1764 {
1765         xfs_buf_t       *bp;
1766         int             i;
1767         uint            count;          /* byte count of bwrite */
1768         uint            count_init;     /* initial count before roundup */
1769         int             roundoff;       /* roundoff to BB or stripe */
1770         int             split = 0;      /* split write into two regions */
1771         int             error;
1772         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1773         int             size;
1774
1775         XFS_STATS_INC(log->l_mp, xs_log_writes);
1776         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1777
1778         /* Add for LR header */
1779         count_init = log->l_iclog_hsize + iclog->ic_offset;
1780
1781         /* Round out the log write size */
1782         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1783                 /* we have a v2 stripe unit to use */
1784                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1785         } else {
1786                 count = BBTOB(BTOBB(count_init));
1787         }
1788         roundoff = count - count_init;
1789         ASSERT(roundoff >= 0);
1790         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1791                 roundoff < log->l_mp->m_sb.sb_logsunit)
1792                 || 
1793                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1794                  roundoff < BBTOB(1)));
1795
1796         /* move grant heads by roundoff in sync */
1797         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1798         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1799
1800         /* put cycle number in every block */
1801         xlog_pack_data(log, iclog, roundoff); 
1802
1803         /* real byte length */
1804         size = iclog->ic_offset;
1805         if (v2)
1806                 size += roundoff;
1807         iclog->ic_header.h_len = cpu_to_be32(size);
1808
1809         bp = iclog->ic_bp;
1810         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1811
1812         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1813
1814         /* Do we need to split this write into 2 parts? */
1815         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1816                 char            *dptr;
1817
1818                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1819                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1820                 iclog->ic_bwritecnt = 2;
1821
1822                 /*
1823                  * Bump the cycle numbers at the start of each block in the
1824                  * part of the iclog that ends up in the buffer that gets
1825                  * written to the start of the log.
1826                  *
1827                  * Watch out for the header magic number case, though.
1828                  */
1829                 dptr = (char *)&iclog->ic_header + count;
1830                 for (i = 0; i < split; i += BBSIZE) {
1831                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1832                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1833                                 cycle++;
1834                         *(__be32 *)dptr = cpu_to_be32(cycle);
1835
1836                         dptr += BBSIZE;
1837                 }
1838         } else {
1839                 iclog->ic_bwritecnt = 1;
1840         }
1841
1842         /* calculcate the checksum */
1843         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1844                                             iclog->ic_datap, size);
1845 #ifdef DEBUG
1846         /*
1847          * Intentionally corrupt the log record CRC based on the error injection
1848          * frequency, if defined. This facilitates testing log recovery in the
1849          * event of torn writes. Hence, set the IOABORT state to abort the log
1850          * write on I/O completion and shutdown the fs. The subsequent mount
1851          * detects the bad CRC and attempts to recover.
1852          */
1853         if (log->l_badcrc_factor &&
1854             (prandom_u32() % log->l_badcrc_factor == 0)) {
1855                 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1856                 iclog->ic_state |= XLOG_STATE_IOABORT;
1857                 xfs_warn(log->l_mp,
1858         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1859                          be64_to_cpu(iclog->ic_header.h_lsn));
1860         }
1861 #endif
1862
1863         bp->b_io_length = BTOBB(count);
1864         bp->b_fspriv = iclog;
1865         bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1866         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1867
1868         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1869                 bp->b_flags |= XBF_FUA;
1870
1871                 /*
1872                  * Flush the data device before flushing the log to make
1873                  * sure all meta data written back from the AIL actually made
1874                  * it to disk before stamping the new log tail LSN into the
1875                  * log buffer.  For an external log we need to issue the
1876                  * flush explicitly, and unfortunately synchronously here;
1877                  * for an internal log we can simply use the block layer
1878                  * state machine for preflushes.
1879                  */
1880                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1881                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1882                 else
1883                         bp->b_flags |= XBF_FLUSH;
1884         }
1885
1886         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1887         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1888
1889         xlog_verify_iclog(log, iclog, count, true);
1890
1891         /* account for log which doesn't start at block #0 */
1892         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1893
1894         /*
1895          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1896          * is shutting down.
1897          */
1898         error = xlog_bdstrat(bp);
1899         if (error) {
1900                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1901                 return error;
1902         }
1903         if (split) {
1904                 bp = iclog->ic_log->l_xbuf;
1905                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1906                 xfs_buf_associate_memory(bp,
1907                                 (char *)&iclog->ic_header + count, split);
1908                 bp->b_fspriv = iclog;
1909                 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1910                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1911                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1912                         bp->b_flags |= XBF_FUA;
1913
1914                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1915                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1916
1917                 /* account for internal log which doesn't start at block #0 */
1918                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1919                 error = xlog_bdstrat(bp);
1920                 if (error) {
1921                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1922                         return error;
1923                 }
1924         }
1925         return 0;
1926 }       /* xlog_sync */
1927
1928 /*
1929  * Deallocate a log structure
1930  */
1931 STATIC void
1932 xlog_dealloc_log(
1933         struct xlog     *log)
1934 {
1935         xlog_in_core_t  *iclog, *next_iclog;
1936         int             i;
1937
1938         xlog_cil_destroy(log);
1939
1940         /*
1941          * Cycle all the iclogbuf locks to make sure all log IO completion
1942          * is done before we tear down these buffers.
1943          */
1944         iclog = log->l_iclog;
1945         for (i = 0; i < log->l_iclog_bufs; i++) {
1946                 xfs_buf_lock(iclog->ic_bp);
1947                 xfs_buf_unlock(iclog->ic_bp);
1948                 iclog = iclog->ic_next;
1949         }
1950
1951         /*
1952          * Always need to ensure that the extra buffer does not point to memory
1953          * owned by another log buffer before we free it. Also, cycle the lock
1954          * first to ensure we've completed IO on it.
1955          */
1956         xfs_buf_lock(log->l_xbuf);
1957         xfs_buf_unlock(log->l_xbuf);
1958         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1959         xfs_buf_free(log->l_xbuf);
1960
1961         iclog = log->l_iclog;
1962         for (i = 0; i < log->l_iclog_bufs; i++) {
1963                 xfs_buf_free(iclog->ic_bp);
1964                 next_iclog = iclog->ic_next;
1965                 kmem_free(iclog);
1966                 iclog = next_iclog;
1967         }
1968         spinlock_destroy(&log->l_icloglock);
1969
1970         log->l_mp->m_log = NULL;
1971         kmem_free(log);
1972 }       /* xlog_dealloc_log */
1973
1974 /*
1975  * Update counters atomically now that memcpy is done.
1976  */
1977 /* ARGSUSED */
1978 static inline void
1979 xlog_state_finish_copy(
1980         struct xlog             *log,
1981         struct xlog_in_core     *iclog,
1982         int                     record_cnt,
1983         int                     copy_bytes)
1984 {
1985         spin_lock(&log->l_icloglock);
1986
1987         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1988         iclog->ic_offset += copy_bytes;
1989
1990         spin_unlock(&log->l_icloglock);
1991 }       /* xlog_state_finish_copy */
1992
1993
1994
1995
1996 /*
1997  * print out info relating to regions written which consume
1998  * the reservation
1999  */
2000 void
2001 xlog_print_tic_res(
2002         struct xfs_mount        *mp,
2003         struct xlog_ticket      *ticket)
2004 {
2005         uint i;
2006         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2007
2008         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2009 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2010         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2011             REG_TYPE_STR(BFORMAT, "bformat"),
2012             REG_TYPE_STR(BCHUNK, "bchunk"),
2013             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2014             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2015             REG_TYPE_STR(IFORMAT, "iformat"),
2016             REG_TYPE_STR(ICORE, "icore"),
2017             REG_TYPE_STR(IEXT, "iext"),
2018             REG_TYPE_STR(IBROOT, "ibroot"),
2019             REG_TYPE_STR(ILOCAL, "ilocal"),
2020             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2021             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2022             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2023             REG_TYPE_STR(QFORMAT, "qformat"),
2024             REG_TYPE_STR(DQUOT, "dquot"),
2025             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2026             REG_TYPE_STR(LRHEADER, "LR header"),
2027             REG_TYPE_STR(UNMOUNT, "unmount"),
2028             REG_TYPE_STR(COMMIT, "commit"),
2029             REG_TYPE_STR(TRANSHDR, "trans header"),
2030             REG_TYPE_STR(ICREATE, "inode create")
2031         };
2032 #undef REG_TYPE_STR
2033
2034         xfs_warn(mp, "xlog_write: reservation summary:");
2035         xfs_warn(mp, "  unit res    = %d bytes",
2036                  ticket->t_unit_res);
2037         xfs_warn(mp, "  current res = %d bytes",
2038                  ticket->t_curr_res);
2039         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2040                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2041         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2042                  ticket->t_res_num_ophdrs, ophdr_spc);
2043         xfs_warn(mp, "  ophdr + reg = %u bytes",
2044                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2045         xfs_warn(mp, "  num regions = %u",
2046                  ticket->t_res_num);
2047
2048         for (i = 0; i < ticket->t_res_num; i++) {
2049                 uint r_type = ticket->t_res_arr[i].r_type;
2050                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2051                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2052                             "bad-rtype" : res_type_str[r_type]),
2053                             ticket->t_res_arr[i].r_len);
2054         }
2055
2056         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2057                 "xlog_write: reservation ran out. Need to up reservation");
2058         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2059 }
2060
2061 /*
2062  * Calculate the potential space needed by the log vector.  Each region gets
2063  * its own xlog_op_header_t and may need to be double word aligned.
2064  */
2065 static int
2066 xlog_write_calc_vec_length(
2067         struct xlog_ticket      *ticket,
2068         struct xfs_log_vec      *log_vector)
2069 {
2070         struct xfs_log_vec      *lv;
2071         int                     headers = 0;
2072         int                     len = 0;
2073         int                     i;
2074
2075         /* acct for start rec of xact */
2076         if (ticket->t_flags & XLOG_TIC_INITED)
2077                 headers++;
2078
2079         for (lv = log_vector; lv; lv = lv->lv_next) {
2080                 /* we don't write ordered log vectors */
2081                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2082                         continue;
2083
2084                 headers += lv->lv_niovecs;
2085
2086                 for (i = 0; i < lv->lv_niovecs; i++) {
2087                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2088
2089                         len += vecp->i_len;
2090                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2091                 }
2092         }
2093
2094         ticket->t_res_num_ophdrs += headers;
2095         len += headers * sizeof(struct xlog_op_header);
2096
2097         return len;
2098 }
2099
2100 /*
2101  * If first write for transaction, insert start record  We can't be trying to
2102  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2103  */
2104 static int
2105 xlog_write_start_rec(
2106         struct xlog_op_header   *ophdr,
2107         struct xlog_ticket      *ticket)
2108 {
2109         if (!(ticket->t_flags & XLOG_TIC_INITED))
2110                 return 0;
2111
2112         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2113         ophdr->oh_clientid = ticket->t_clientid;
2114         ophdr->oh_len = 0;
2115         ophdr->oh_flags = XLOG_START_TRANS;
2116         ophdr->oh_res2 = 0;
2117
2118         ticket->t_flags &= ~XLOG_TIC_INITED;
2119
2120         return sizeof(struct xlog_op_header);
2121 }
2122
2123 static xlog_op_header_t *
2124 xlog_write_setup_ophdr(
2125         struct xlog             *log,
2126         struct xlog_op_header   *ophdr,
2127         struct xlog_ticket      *ticket,
2128         uint                    flags)
2129 {
2130         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2131         ophdr->oh_clientid = ticket->t_clientid;
2132         ophdr->oh_res2 = 0;
2133
2134         /* are we copying a commit or unmount record? */
2135         ophdr->oh_flags = flags;
2136
2137         /*
2138          * We've seen logs corrupted with bad transaction client ids.  This
2139          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2140          * and shut down the filesystem.
2141          */
2142         switch (ophdr->oh_clientid)  {
2143         case XFS_TRANSACTION:
2144         case XFS_VOLUME:
2145         case XFS_LOG:
2146                 break;
2147         default:
2148                 xfs_warn(log->l_mp,
2149                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2150                         ophdr->oh_clientid, ticket);
2151                 return NULL;
2152         }
2153
2154         return ophdr;
2155 }
2156
2157 /*
2158  * Set up the parameters of the region copy into the log. This has
2159  * to handle region write split across multiple log buffers - this
2160  * state is kept external to this function so that this code can
2161  * be written in an obvious, self documenting manner.
2162  */
2163 static int
2164 xlog_write_setup_copy(
2165         struct xlog_ticket      *ticket,
2166         struct xlog_op_header   *ophdr,
2167         int                     space_available,
2168         int                     space_required,
2169         int                     *copy_off,
2170         int                     *copy_len,
2171         int                     *last_was_partial_copy,
2172         int                     *bytes_consumed)
2173 {
2174         int                     still_to_copy;
2175
2176         still_to_copy = space_required - *bytes_consumed;
2177         *copy_off = *bytes_consumed;
2178
2179         if (still_to_copy <= space_available) {
2180                 /* write of region completes here */
2181                 *copy_len = still_to_copy;
2182                 ophdr->oh_len = cpu_to_be32(*copy_len);
2183                 if (*last_was_partial_copy)
2184                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2185                 *last_was_partial_copy = 0;
2186                 *bytes_consumed = 0;
2187                 return 0;
2188         }
2189
2190         /* partial write of region, needs extra log op header reservation */
2191         *copy_len = space_available;
2192         ophdr->oh_len = cpu_to_be32(*copy_len);
2193         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2194         if (*last_was_partial_copy)
2195                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2196         *bytes_consumed += *copy_len;
2197         (*last_was_partial_copy)++;
2198
2199         /* account for new log op header */
2200         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2201         ticket->t_res_num_ophdrs++;
2202
2203         return sizeof(struct xlog_op_header);
2204 }
2205
2206 static int
2207 xlog_write_copy_finish(
2208         struct xlog             *log,
2209         struct xlog_in_core     *iclog,
2210         uint                    flags,
2211         int                     *record_cnt,
2212         int                     *data_cnt,
2213         int                     *partial_copy,
2214         int                     *partial_copy_len,
2215         int                     log_offset,
2216         struct xlog_in_core     **commit_iclog)
2217 {
2218         if (*partial_copy) {
2219                 /*
2220                  * This iclog has already been marked WANT_SYNC by
2221                  * xlog_state_get_iclog_space.
2222                  */
2223                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2224                 *record_cnt = 0;
2225                 *data_cnt = 0;
2226                 return xlog_state_release_iclog(log, iclog);
2227         }
2228
2229         *partial_copy = 0;
2230         *partial_copy_len = 0;
2231
2232         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2233                 /* no more space in this iclog - push it. */
2234                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2235                 *record_cnt = 0;
2236                 *data_cnt = 0;
2237
2238                 spin_lock(&log->l_icloglock);
2239                 xlog_state_want_sync(log, iclog);
2240                 spin_unlock(&log->l_icloglock);
2241
2242                 if (!commit_iclog)
2243                         return xlog_state_release_iclog(log, iclog);
2244                 ASSERT(flags & XLOG_COMMIT_TRANS);
2245                 *commit_iclog = iclog;
2246         }
2247
2248         return 0;
2249 }
2250
2251 /*
2252  * Write some region out to in-core log
2253  *
2254  * This will be called when writing externally provided regions or when
2255  * writing out a commit record for a given transaction.
2256  *
2257  * General algorithm:
2258  *      1. Find total length of this write.  This may include adding to the
2259  *              lengths passed in.
2260  *      2. Check whether we violate the tickets reservation.
2261  *      3. While writing to this iclog
2262  *          A. Reserve as much space in this iclog as can get
2263  *          B. If this is first write, save away start lsn
2264  *          C. While writing this region:
2265  *              1. If first write of transaction, write start record
2266  *              2. Write log operation header (header per region)
2267  *              3. Find out if we can fit entire region into this iclog
2268  *              4. Potentially, verify destination memcpy ptr
2269  *              5. Memcpy (partial) region
2270  *              6. If partial copy, release iclog; otherwise, continue
2271  *                      copying more regions into current iclog
2272  *      4. Mark want sync bit (in simulation mode)
2273  *      5. Release iclog for potential flush to on-disk log.
2274  *
2275  * ERRORS:
2276  * 1.   Panic if reservation is overrun.  This should never happen since
2277  *      reservation amounts are generated internal to the filesystem.
2278  * NOTES:
2279  * 1. Tickets are single threaded data structures.
2280  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2281  *      syncing routine.  When a single log_write region needs to span
2282  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2283  *      on all log operation writes which don't contain the end of the
2284  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2285  *      operation which contains the end of the continued log_write region.
2286  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2287  *      we don't really know exactly how much space will be used.  As a result,
2288  *      we don't update ic_offset until the end when we know exactly how many
2289  *      bytes have been written out.
2290  */
2291 int
2292 xlog_write(
2293         struct xlog             *log,
2294         struct xfs_log_vec      *log_vector,
2295         struct xlog_ticket      *ticket,
2296         xfs_lsn_t               *start_lsn,
2297         struct xlog_in_core     **commit_iclog,
2298         uint                    flags)
2299 {
2300         struct xlog_in_core     *iclog = NULL;
2301         struct xfs_log_iovec    *vecp;
2302         struct xfs_log_vec      *lv;
2303         int                     len;
2304         int                     index;
2305         int                     partial_copy = 0;
2306         int                     partial_copy_len = 0;
2307         int                     contwr = 0;
2308         int                     record_cnt = 0;
2309         int                     data_cnt = 0;
2310         int                     error;
2311
2312         *start_lsn = 0;
2313
2314         len = xlog_write_calc_vec_length(ticket, log_vector);
2315
2316         /*
2317          * Region headers and bytes are already accounted for.
2318          * We only need to take into account start records and
2319          * split regions in this function.
2320          */
2321         if (ticket->t_flags & XLOG_TIC_INITED)
2322                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323
2324         /*
2325          * Commit record headers need to be accounted for. These
2326          * come in as separate writes so are easy to detect.
2327          */
2328         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2329                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2330
2331         if (ticket->t_curr_res < 0)
2332                 xlog_print_tic_res(log->l_mp, ticket);
2333
2334         index = 0;
2335         lv = log_vector;
2336         vecp = lv->lv_iovecp;
2337         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2338                 void            *ptr;
2339                 int             log_offset;
2340
2341                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2342                                                    &contwr, &log_offset);
2343                 if (error)
2344                         return error;
2345
2346                 ASSERT(log_offset <= iclog->ic_size - 1);
2347                 ptr = iclog->ic_datap + log_offset;
2348
2349                 /* start_lsn is the first lsn written to. That's all we need. */
2350                 if (!*start_lsn)
2351                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2352
2353                 /*
2354                  * This loop writes out as many regions as can fit in the amount
2355                  * of space which was allocated by xlog_state_get_iclog_space().
2356                  */
2357                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2358                         struct xfs_log_iovec    *reg;
2359                         struct xlog_op_header   *ophdr;
2360                         int                     start_rec_copy;
2361                         int                     copy_len;
2362                         int                     copy_off;
2363                         bool                    ordered = false;
2364
2365                         /* ordered log vectors have no regions to write */
2366                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2367                                 ASSERT(lv->lv_niovecs == 0);
2368                                 ordered = true;
2369                                 goto next_lv;
2370                         }
2371
2372                         reg = &vecp[index];
2373                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2374                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2375
2376                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2377                         if (start_rec_copy) {
2378                                 record_cnt++;
2379                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2380                                                    start_rec_copy);
2381                         }
2382
2383                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2384                         if (!ophdr)
2385                                 return -EIO;
2386
2387                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2388                                            sizeof(struct xlog_op_header));
2389
2390                         len += xlog_write_setup_copy(ticket, ophdr,
2391                                                      iclog->ic_size-log_offset,
2392                                                      reg->i_len,
2393                                                      &copy_off, &copy_len,
2394                                                      &partial_copy,
2395                                                      &partial_copy_len);
2396                         xlog_verify_dest_ptr(log, ptr);
2397
2398                         /*
2399                          * Copy region.
2400                          *
2401                          * Unmount records just log an opheader, so can have
2402                          * empty payloads with no data region to copy. Hence we
2403                          * only copy the payload if the vector says it has data
2404                          * to copy.
2405                          */
2406                         ASSERT(copy_len >= 0);
2407                         if (copy_len > 0) {
2408                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2409                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2410                                                    copy_len);
2411                         }
2412                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2413                         record_cnt++;
2414                         data_cnt += contwr ? copy_len : 0;
2415
2416                         error = xlog_write_copy_finish(log, iclog, flags,
2417                                                        &record_cnt, &data_cnt,
2418                                                        &partial_copy,
2419                                                        &partial_copy_len,
2420                                                        log_offset,
2421                                                        commit_iclog);
2422                         if (error)
2423                                 return error;
2424
2425                         /*
2426                          * if we had a partial copy, we need to get more iclog
2427                          * space but we don't want to increment the region
2428                          * index because there is still more is this region to
2429                          * write.
2430                          *
2431                          * If we completed writing this region, and we flushed
2432                          * the iclog (indicated by resetting of the record
2433                          * count), then we also need to get more log space. If
2434                          * this was the last record, though, we are done and
2435                          * can just return.
2436                          */
2437                         if (partial_copy)
2438                                 break;
2439
2440                         if (++index == lv->lv_niovecs) {
2441 next_lv:
2442                                 lv = lv->lv_next;
2443                                 index = 0;
2444                                 if (lv)
2445                                         vecp = lv->lv_iovecp;
2446                         }
2447                         if (record_cnt == 0 && ordered == false) {
2448                                 if (!lv)
2449                                         return 0;
2450                                 break;
2451                         }
2452                 }
2453         }
2454
2455         ASSERT(len == 0);
2456
2457         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2458         if (!commit_iclog)
2459                 return xlog_state_release_iclog(log, iclog);
2460
2461         ASSERT(flags & XLOG_COMMIT_TRANS);
2462         *commit_iclog = iclog;
2463         return 0;
2464 }
2465
2466
2467 /*****************************************************************************
2468  *
2469  *              State Machine functions
2470  *
2471  *****************************************************************************
2472  */
2473
2474 /* Clean iclogs starting from the head.  This ordering must be
2475  * maintained, so an iclog doesn't become ACTIVE beyond one that
2476  * is SYNCING.  This is also required to maintain the notion that we use
2477  * a ordered wait queue to hold off would be writers to the log when every
2478  * iclog is trying to sync to disk.
2479  *
2480  * State Change: DIRTY -> ACTIVE
2481  */
2482 STATIC void
2483 xlog_state_clean_log(
2484         struct xlog *log)
2485 {
2486         xlog_in_core_t  *iclog;
2487         int changed = 0;
2488
2489         iclog = log->l_iclog;
2490         do {
2491                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2492                         iclog->ic_state = XLOG_STATE_ACTIVE;
2493                         iclog->ic_offset       = 0;
2494                         ASSERT(iclog->ic_callback == NULL);
2495                         /*
2496                          * If the number of ops in this iclog indicate it just
2497                          * contains the dummy transaction, we can
2498                          * change state into IDLE (the second time around).
2499                          * Otherwise we should change the state into
2500                          * NEED a dummy.
2501                          * We don't need to cover the dummy.
2502                          */
2503                         if (!changed &&
2504                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2505                                         XLOG_COVER_OPS)) {
2506                                 changed = 1;
2507                         } else {
2508                                 /*
2509                                  * We have two dirty iclogs so start over
2510                                  * This could also be num of ops indicates
2511                                  * this is not the dummy going out.
2512                                  */
2513                                 changed = 2;
2514                         }
2515                         iclog->ic_header.h_num_logops = 0;
2516                         memset(iclog->ic_header.h_cycle_data, 0,
2517                               sizeof(iclog->ic_header.h_cycle_data));
2518                         iclog->ic_header.h_lsn = 0;
2519                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2520                         /* do nothing */;
2521                 else
2522                         break;  /* stop cleaning */
2523                 iclog = iclog->ic_next;
2524         } while (iclog != log->l_iclog);
2525
2526         /* log is locked when we are called */
2527         /*
2528          * Change state for the dummy log recording.
2529          * We usually go to NEED. But we go to NEED2 if the changed indicates
2530          * we are done writing the dummy record.
2531          * If we are done with the second dummy recored (DONE2), then
2532          * we go to IDLE.
2533          */
2534         if (changed) {
2535                 switch (log->l_covered_state) {
2536                 case XLOG_STATE_COVER_IDLE:
2537                 case XLOG_STATE_COVER_NEED:
2538                 case XLOG_STATE_COVER_NEED2:
2539                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2540                         break;
2541
2542                 case XLOG_STATE_COVER_DONE:
2543                         if (changed == 1)
2544                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2545                         else
2546                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2547                         break;
2548
2549                 case XLOG_STATE_COVER_DONE2:
2550                         if (changed == 1)
2551                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2552                         else
2553                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2554                         break;
2555
2556                 default:
2557                         ASSERT(0);
2558                 }
2559         }
2560 }       /* xlog_state_clean_log */
2561
2562 STATIC xfs_lsn_t
2563 xlog_get_lowest_lsn(
2564         struct xlog     *log)
2565 {
2566         xlog_in_core_t  *lsn_log;
2567         xfs_lsn_t       lowest_lsn, lsn;
2568
2569         lsn_log = log->l_iclog;
2570         lowest_lsn = 0;
2571         do {
2572             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2573                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2574                 if ((lsn && !lowest_lsn) ||
2575                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2576                         lowest_lsn = lsn;
2577                 }
2578             }
2579             lsn_log = lsn_log->ic_next;
2580         } while (lsn_log != log->l_iclog);
2581         return lowest_lsn;
2582 }
2583
2584
2585 STATIC void
2586 xlog_state_do_callback(
2587         struct xlog             *log,
2588         int                     aborted,
2589         struct xlog_in_core     *ciclog)
2590 {
2591         xlog_in_core_t     *iclog;
2592         xlog_in_core_t     *first_iclog;        /* used to know when we've
2593                                                  * processed all iclogs once */
2594         xfs_log_callback_t *cb, *cb_next;
2595         int                flushcnt = 0;
2596         xfs_lsn_t          lowest_lsn;
2597         int                ioerrors;    /* counter: iclogs with errors */
2598         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2599         int                funcdidcallbacks; /* flag: function did callbacks */
2600         int                repeats;     /* for issuing console warnings if
2601                                          * looping too many times */
2602         int                wake = 0;
2603
2604         spin_lock(&log->l_icloglock);
2605         first_iclog = iclog = log->l_iclog;
2606         ioerrors = 0;
2607         funcdidcallbacks = 0;
2608         repeats = 0;
2609
2610         do {
2611                 /*
2612                  * Scan all iclogs starting with the one pointed to by the
2613                  * log.  Reset this starting point each time the log is
2614                  * unlocked (during callbacks).
2615                  *
2616                  * Keep looping through iclogs until one full pass is made
2617                  * without running any callbacks.
2618                  */
2619                 first_iclog = log->l_iclog;
2620                 iclog = log->l_iclog;
2621                 loopdidcallbacks = 0;
2622                 repeats++;
2623
2624                 do {
2625
2626                         /* skip all iclogs in the ACTIVE & DIRTY states */
2627                         if (iclog->ic_state &
2628                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2629                                 iclog = iclog->ic_next;
2630                                 continue;
2631                         }
2632
2633                         /*
2634                          * Between marking a filesystem SHUTDOWN and stopping
2635                          * the log, we do flush all iclogs to disk (if there
2636                          * wasn't a log I/O error). So, we do want things to
2637                          * go smoothly in case of just a SHUTDOWN  w/o a
2638                          * LOG_IO_ERROR.
2639                          */
2640                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2641                                 /*
2642                                  * Can only perform callbacks in order.  Since
2643                                  * this iclog is not in the DONE_SYNC/
2644                                  * DO_CALLBACK state, we skip the rest and
2645                                  * just try to clean up.  If we set our iclog
2646                                  * to DO_CALLBACK, we will not process it when
2647                                  * we retry since a previous iclog is in the
2648                                  * CALLBACK and the state cannot change since
2649                                  * we are holding the l_icloglock.
2650                                  */
2651                                 if (!(iclog->ic_state &
2652                                         (XLOG_STATE_DONE_SYNC |
2653                                                  XLOG_STATE_DO_CALLBACK))) {
2654                                         if (ciclog && (ciclog->ic_state ==
2655                                                         XLOG_STATE_DONE_SYNC)) {
2656                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2657                                         }
2658                                         break;
2659                                 }
2660                                 /*
2661                                  * We now have an iclog that is in either the
2662                                  * DO_CALLBACK or DONE_SYNC states. The other
2663                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2664                                  * caught by the above if and are going to
2665                                  * clean (i.e. we aren't doing their callbacks)
2666                                  * see the above if.
2667                                  */
2668
2669                                 /*
2670                                  * We will do one more check here to see if we
2671                                  * have chased our tail around.
2672                                  */
2673
2674                                 lowest_lsn = xlog_get_lowest_lsn(log);
2675                                 if (lowest_lsn &&
2676                                     XFS_LSN_CMP(lowest_lsn,
2677                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2678                                         iclog = iclog->ic_next;
2679                                         continue; /* Leave this iclog for
2680                                                    * another thread */
2681                                 }
2682
2683                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2684
2685
2686                                 /*
2687                                  * Completion of a iclog IO does not imply that
2688                                  * a transaction has completed, as transactions
2689                                  * can be large enough to span many iclogs. We
2690                                  * cannot change the tail of the log half way
2691                                  * through a transaction as this may be the only
2692                                  * transaction in the log and moving th etail to
2693                                  * point to the middle of it will prevent
2694                                  * recovery from finding the start of the
2695                                  * transaction. Hence we should only update the
2696                                  * last_sync_lsn if this iclog contains
2697                                  * transaction completion callbacks on it.
2698                                  *
2699                                  * We have to do this before we drop the
2700                                  * icloglock to ensure we are the only one that
2701                                  * can update it.
2702                                  */
2703                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2704                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2705                                 if (iclog->ic_callback)
2706                                         atomic64_set(&log->l_last_sync_lsn,
2707                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2708
2709                         } else
2710                                 ioerrors++;
2711
2712                         spin_unlock(&log->l_icloglock);
2713
2714                         /*
2715                          * Keep processing entries in the callback list until
2716                          * we come around and it is empty.  We need to
2717                          * atomically see that the list is empty and change the
2718                          * state to DIRTY so that we don't miss any more
2719                          * callbacks being added.
2720                          */
2721                         spin_lock(&iclog->ic_callback_lock);
2722                         cb = iclog->ic_callback;
2723                         while (cb) {
2724                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2725                                 iclog->ic_callback = NULL;
2726                                 spin_unlock(&iclog->ic_callback_lock);
2727
2728                                 /* perform callbacks in the order given */
2729                                 for (; cb; cb = cb_next) {
2730                                         cb_next = cb->cb_next;
2731                                         cb->cb_func(cb->cb_arg, aborted);
2732                                 }
2733                                 spin_lock(&iclog->ic_callback_lock);
2734                                 cb = iclog->ic_callback;
2735                         }
2736
2737                         loopdidcallbacks++;
2738                         funcdidcallbacks++;
2739
2740                         spin_lock(&log->l_icloglock);
2741                         ASSERT(iclog->ic_callback == NULL);
2742                         spin_unlock(&iclog->ic_callback_lock);
2743                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2744                                 iclog->ic_state = XLOG_STATE_DIRTY;
2745
2746                         /*
2747                          * Transition from DIRTY to ACTIVE if applicable.
2748                          * NOP if STATE_IOERROR.
2749                          */
2750                         xlog_state_clean_log(log);
2751
2752                         /* wake up threads waiting in xfs_log_force() */
2753                         wake_up_all(&iclog->ic_force_wait);
2754
2755                         iclog = iclog->ic_next;
2756                 } while (first_iclog != iclog);
2757
2758                 if (repeats > 5000) {
2759                         flushcnt += repeats;
2760                         repeats = 0;
2761                         xfs_warn(log->l_mp,
2762                                 "%s: possible infinite loop (%d iterations)",
2763                                 __func__, flushcnt);
2764                 }
2765         } while (!ioerrors && loopdidcallbacks);
2766
2767 #ifdef DEBUG
2768         /*
2769          * Make one last gasp attempt to see if iclogs are being left in limbo.
2770          * If the above loop finds an iclog earlier than the current iclog and
2771          * in one of the syncing states, the current iclog is put into
2772          * DO_CALLBACK and the callbacks are deferred to the completion of the
2773          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2774          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2775          * states.
2776          *
2777          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2778          * for ic_state == SYNCING.
2779          */
2780         if (funcdidcallbacks) {
2781                 first_iclog = iclog = log->l_iclog;
2782                 do {
2783                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2784                         /*
2785                          * Terminate the loop if iclogs are found in states
2786                          * which will cause other threads to clean up iclogs.
2787                          *
2788                          * SYNCING - i/o completion will go through logs
2789                          * DONE_SYNC - interrupt thread should be waiting for
2790                          *              l_icloglock
2791                          * IOERROR - give up hope all ye who enter here
2792                          */
2793                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2794                             iclog->ic_state & XLOG_STATE_SYNCING ||
2795                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2796                             iclog->ic_state == XLOG_STATE_IOERROR )
2797                                 break;
2798                         iclog = iclog->ic_next;
2799                 } while (first_iclog != iclog);
2800         }
2801 #endif
2802
2803         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2804                 wake = 1;
2805         spin_unlock(&log->l_icloglock);
2806
2807         if (wake)
2808                 wake_up_all(&log->l_flush_wait);
2809 }
2810
2811
2812 /*
2813  * Finish transitioning this iclog to the dirty state.
2814  *
2815  * Make sure that we completely execute this routine only when this is
2816  * the last call to the iclog.  There is a good chance that iclog flushes,
2817  * when we reach the end of the physical log, get turned into 2 separate
2818  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2819  * routine.  By using the reference count bwritecnt, we guarantee that only
2820  * the second completion goes through.
2821  *
2822  * Callbacks could take time, so they are done outside the scope of the
2823  * global state machine log lock.
2824  */
2825 STATIC void
2826 xlog_state_done_syncing(
2827         xlog_in_core_t  *iclog,
2828         int             aborted)
2829 {
2830         struct xlog        *log = iclog->ic_log;
2831
2832         spin_lock(&log->l_icloglock);
2833
2834         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2835                iclog->ic_state == XLOG_STATE_IOERROR);
2836         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2838
2839
2840         /*
2841          * If we got an error, either on the first buffer, or in the case of
2842          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2843          * and none should ever be attempted to be written to disk
2844          * again.
2845          */
2846         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2847                 if (--iclog->ic_bwritecnt == 1) {
2848                         spin_unlock(&log->l_icloglock);
2849                         return;
2850                 }
2851                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2852         }
2853
2854         /*
2855          * Someone could be sleeping prior to writing out the next
2856          * iclog buffer, we wake them all, one will get to do the
2857          * I/O, the others get to wait for the result.
2858          */
2859         wake_up_all(&iclog->ic_write_wait);
2860         spin_unlock(&log->l_icloglock);
2861         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2862 }       /* xlog_state_done_syncing */
2863
2864
2865 /*
2866  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2867  * sleep.  We wait on the flush queue on the head iclog as that should be
2868  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2869  * we will wait here and all new writes will sleep until a sync completes.
2870  *
2871  * The in-core logs are used in a circular fashion. They are not used
2872  * out-of-order even when an iclog past the head is free.
2873  *
2874  * return:
2875  *      * log_offset where xlog_write() can start writing into the in-core
2876  *              log's data space.
2877  *      * in-core log pointer to which xlog_write() should write.
2878  *      * boolean indicating this is a continued write to an in-core log.
2879  *              If this is the last write, then the in-core log's offset field
2880  *              needs to be incremented, depending on the amount of data which
2881  *              is copied.
2882  */
2883 STATIC int
2884 xlog_state_get_iclog_space(
2885         struct xlog             *log,
2886         int                     len,
2887         struct xlog_in_core     **iclogp,
2888         struct xlog_ticket      *ticket,
2889         int                     *continued_write,
2890         int                     *logoffsetp)
2891 {
2892         int               log_offset;
2893         xlog_rec_header_t *head;
2894         xlog_in_core_t    *iclog;
2895         int               error;
2896
2897 restart:
2898         spin_lock(&log->l_icloglock);
2899         if (XLOG_FORCED_SHUTDOWN(log)) {
2900                 spin_unlock(&log->l_icloglock);
2901                 return -EIO;
2902         }
2903
2904         iclog = log->l_iclog;
2905         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2906                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2907
2908                 /* Wait for log writes to have flushed */
2909                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2910                 goto restart;
2911         }
2912
2913         head = &iclog->ic_header;
2914
2915         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2916         log_offset = iclog->ic_offset;
2917
2918         /* On the 1st write to an iclog, figure out lsn.  This works
2919          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2920          * committing to.  If the offset is set, that's how many blocks
2921          * must be written.
2922          */
2923         if (log_offset == 0) {
2924                 ticket->t_curr_res -= log->l_iclog_hsize;
2925                 xlog_tic_add_region(ticket,
2926                                     log->l_iclog_hsize,
2927                                     XLOG_REG_TYPE_LRHEADER);
2928                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2929                 head->h_lsn = cpu_to_be64(
2930                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2931                 ASSERT(log->l_curr_block >= 0);
2932         }
2933
2934         /* If there is enough room to write everything, then do it.  Otherwise,
2935          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2936          * bit is on, so this will get flushed out.  Don't update ic_offset
2937          * until you know exactly how many bytes get copied.  Therefore, wait
2938          * until later to update ic_offset.
2939          *
2940          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2941          * can fit into remaining data section.
2942          */
2943         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2944                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2945
2946                 /*
2947                  * If I'm the only one writing to this iclog, sync it to disk.
2948                  * We need to do an atomic compare and decrement here to avoid
2949                  * racing with concurrent atomic_dec_and_lock() calls in
2950                  * xlog_state_release_iclog() when there is more than one
2951                  * reference to the iclog.
2952                  */
2953                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2954                         /* we are the only one */
2955                         spin_unlock(&log->l_icloglock);
2956                         error = xlog_state_release_iclog(log, iclog);
2957                         if (error)
2958                                 return error;
2959                 } else {
2960                         spin_unlock(&log->l_icloglock);
2961                 }
2962                 goto restart;
2963         }
2964
2965         /* Do we have enough room to write the full amount in the remainder
2966          * of this iclog?  Or must we continue a write on the next iclog and
2967          * mark this iclog as completely taken?  In the case where we switch
2968          * iclogs (to mark it taken), this particular iclog will release/sync
2969          * to disk in xlog_write().
2970          */
2971         if (len <= iclog->ic_size - iclog->ic_offset) {
2972                 *continued_write = 0;
2973                 iclog->ic_offset += len;
2974         } else {
2975                 *continued_write = 1;
2976                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2977         }
2978         *iclogp = iclog;
2979
2980         ASSERT(iclog->ic_offset <= iclog->ic_size);
2981         spin_unlock(&log->l_icloglock);
2982
2983         *logoffsetp = log_offset;
2984         return 0;
2985 }       /* xlog_state_get_iclog_space */
2986
2987 /* The first cnt-1 times through here we don't need to
2988  * move the grant write head because the permanent
2989  * reservation has reserved cnt times the unit amount.
2990  * Release part of current permanent unit reservation and
2991  * reset current reservation to be one units worth.  Also
2992  * move grant reservation head forward.
2993  */
2994 STATIC void
2995 xlog_regrant_reserve_log_space(
2996         struct xlog             *log,
2997         struct xlog_ticket      *ticket)
2998 {
2999         trace_xfs_log_regrant_reserve_enter(log, ticket);
3000
3001         if (ticket->t_cnt > 0)
3002                 ticket->t_cnt--;
3003
3004         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3005                                         ticket->t_curr_res);
3006         xlog_grant_sub_space(log, &log->l_write_head.grant,
3007                                         ticket->t_curr_res);
3008         ticket->t_curr_res = ticket->t_unit_res;
3009         xlog_tic_reset_res(ticket);
3010
3011         trace_xfs_log_regrant_reserve_sub(log, ticket);
3012
3013         /* just return if we still have some of the pre-reserved space */
3014         if (ticket->t_cnt > 0)
3015                 return;
3016
3017         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3018                                         ticket->t_unit_res);
3019
3020         trace_xfs_log_regrant_reserve_exit(log, ticket);
3021
3022         ticket->t_curr_res = ticket->t_unit_res;
3023         xlog_tic_reset_res(ticket);
3024 }       /* xlog_regrant_reserve_log_space */
3025
3026
3027 /*
3028  * Give back the space left from a reservation.
3029  *
3030  * All the information we need to make a correct determination of space left
3031  * is present.  For non-permanent reservations, things are quite easy.  The
3032  * count should have been decremented to zero.  We only need to deal with the
3033  * space remaining in the current reservation part of the ticket.  If the
3034  * ticket contains a permanent reservation, there may be left over space which
3035  * needs to be released.  A count of N means that N-1 refills of the current
3036  * reservation can be done before we need to ask for more space.  The first
3037  * one goes to fill up the first current reservation.  Once we run out of
3038  * space, the count will stay at zero and the only space remaining will be
3039  * in the current reservation field.
3040  */
3041 STATIC void
3042 xlog_ungrant_log_space(
3043         struct xlog             *log,
3044         struct xlog_ticket      *ticket)
3045 {
3046         int     bytes;
3047
3048         if (ticket->t_cnt > 0)
3049                 ticket->t_cnt--;
3050
3051         trace_xfs_log_ungrant_enter(log, ticket);
3052         trace_xfs_log_ungrant_sub(log, ticket);
3053
3054         /*
3055          * If this is a permanent reservation ticket, we may be able to free
3056          * up more space based on the remaining count.
3057          */
3058         bytes = ticket->t_curr_res;
3059         if (ticket->t_cnt > 0) {
3060                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3061                 bytes += ticket->t_unit_res*ticket->t_cnt;
3062         }
3063
3064         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3065         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3066
3067         trace_xfs_log_ungrant_exit(log, ticket);
3068
3069         xfs_log_space_wake(log->l_mp);
3070 }
3071
3072 /*
3073  * Flush iclog to disk if this is the last reference to the given iclog and
3074  * the WANT_SYNC bit is set.
3075  *
3076  * When this function is entered, the iclog is not necessarily in the
3077  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3078  *
3079  *
3080  */
3081 STATIC int
3082 xlog_state_release_iclog(
3083         struct xlog             *log,
3084         struct xlog_in_core     *iclog)
3085 {
3086         int             sync = 0;       /* do we sync? */
3087
3088         if (iclog->ic_state & XLOG_STATE_IOERROR)
3089                 return -EIO;
3090
3091         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3092         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3093                 return 0;
3094
3095         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3096                 spin_unlock(&log->l_icloglock);
3097                 return -EIO;
3098         }
3099         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3100                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3101
3102         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3103                 /* update tail before writing to iclog */
3104                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3105                 sync++;
3106                 iclog->ic_state = XLOG_STATE_SYNCING;
3107                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3108                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3109                 /* cycle incremented when incrementing curr_block */
3110         }
3111         spin_unlock(&log->l_icloglock);
3112
3113         /*
3114          * We let the log lock go, so it's possible that we hit a log I/O
3115          * error or some other SHUTDOWN condition that marks the iclog
3116          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3117          * this iclog has consistent data, so we ignore IOERROR
3118          * flags after this point.
3119          */
3120         if (sync)
3121                 return xlog_sync(log, iclog);
3122         return 0;
3123 }       /* xlog_state_release_iclog */
3124
3125
3126 /*
3127  * This routine will mark the current iclog in the ring as WANT_SYNC
3128  * and move the current iclog pointer to the next iclog in the ring.
3129  * When this routine is called from xlog_state_get_iclog_space(), the
3130  * exact size of the iclog has not yet been determined.  All we know is
3131  * that every data block.  We have run out of space in this log record.
3132  */
3133 STATIC void
3134 xlog_state_switch_iclogs(
3135         struct xlog             *log,
3136         struct xlog_in_core     *iclog,
3137         int                     eventual_size)
3138 {
3139         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3140         if (!eventual_size)
3141                 eventual_size = iclog->ic_offset;
3142         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3143         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3144         log->l_prev_block = log->l_curr_block;
3145         log->l_prev_cycle = log->l_curr_cycle;
3146
3147         /* roll log?: ic_offset changed later */
3148         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3149
3150         /* Round up to next log-sunit */
3151         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3152             log->l_mp->m_sb.sb_logsunit > 1) {
3153                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3154                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3155         }
3156
3157         if (log->l_curr_block >= log->l_logBBsize) {
3158                 /*
3159                  * Rewind the current block before the cycle is bumped to make
3160                  * sure that the combined LSN never transiently moves forward
3161                  * when the log wraps to the next cycle. This is to support the
3162                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3163                  * other cases should acquire l_icloglock.
3164                  */
3165                 log->l_curr_block -= log->l_logBBsize;
3166                 ASSERT(log->l_curr_block >= 0);
3167                 smp_wmb();
3168                 log->l_curr_cycle++;
3169                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3170                         log->l_curr_cycle++;
3171         }
3172         ASSERT(iclog == log->l_iclog);
3173         log->l_iclog = iclog->ic_next;
3174 }       /* xlog_state_switch_iclogs */
3175
3176 /*
3177  * Write out all data in the in-core log as of this exact moment in time.
3178  *
3179  * Data may be written to the in-core log during this call.  However,
3180  * we don't guarantee this data will be written out.  A change from past
3181  * implementation means this routine will *not* write out zero length LRs.
3182  *
3183  * Basically, we try and perform an intelligent scan of the in-core logs.
3184  * If we determine there is no flushable data, we just return.  There is no
3185  * flushable data if:
3186  *
3187  *      1. the current iclog is active and has no data; the previous iclog
3188  *              is in the active or dirty state.
3189  *      2. the current iclog is drity, and the previous iclog is in the
3190  *              active or dirty state.
3191  *
3192  * We may sleep if:
3193  *
3194  *      1. the current iclog is not in the active nor dirty state.
3195  *      2. the current iclog dirty, and the previous iclog is not in the
3196  *              active nor dirty state.
3197  *      3. the current iclog is active, and there is another thread writing
3198  *              to this particular iclog.
3199  *      4. a) the current iclog is active and has no other writers
3200  *         b) when we return from flushing out this iclog, it is still
3201  *              not in the active nor dirty state.
3202  */
3203 int
3204 _xfs_log_force(
3205         struct xfs_mount        *mp,
3206         uint                    flags,
3207         int                     *log_flushed)
3208 {
3209         struct xlog             *log = mp->m_log;
3210         struct xlog_in_core     *iclog;
3211         xfs_lsn_t               lsn;
3212
3213         XFS_STATS_INC(mp, xs_log_force);
3214
3215         xlog_cil_force(log);
3216
3217         spin_lock(&log->l_icloglock);
3218
3219         iclog = log->l_iclog;
3220         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3221                 spin_unlock(&log->l_icloglock);
3222                 return -EIO;
3223         }
3224
3225         /* If the head iclog is not active nor dirty, we just attach
3226          * ourselves to the head and go to sleep.
3227          */
3228         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3229             iclog->ic_state == XLOG_STATE_DIRTY) {
3230                 /*
3231                  * If the head is dirty or (active and empty), then
3232                  * we need to look at the previous iclog.  If the previous
3233                  * iclog is active or dirty we are done.  There is nothing
3234                  * to sync out.  Otherwise, we attach ourselves to the
3235                  * previous iclog and go to sleep.
3236                  */
3237                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3238                     (atomic_read(&iclog->ic_refcnt) == 0
3239                      && iclog->ic_offset == 0)) {
3240                         iclog = iclog->ic_prev;
3241                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3242                             iclog->ic_state == XLOG_STATE_DIRTY)
3243                                 goto no_sleep;
3244                         else
3245                                 goto maybe_sleep;
3246                 } else {
3247                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3248                                 /* We are the only one with access to this
3249                                  * iclog.  Flush it out now.  There should
3250                                  * be a roundoff of zero to show that someone
3251                                  * has already taken care of the roundoff from
3252                                  * the previous sync.
3253                                  */
3254                                 atomic_inc(&iclog->ic_refcnt);
3255                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3256                                 xlog_state_switch_iclogs(log, iclog, 0);
3257                                 spin_unlock(&log->l_icloglock);
3258
3259                                 if (xlog_state_release_iclog(log, iclog))
3260                                         return -EIO;
3261
3262                                 if (log_flushed)
3263                                         *log_flushed = 1;
3264                                 spin_lock(&log->l_icloglock);
3265                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3266                                     iclog->ic_state != XLOG_STATE_DIRTY)
3267                                         goto maybe_sleep;
3268                                 else
3269                                         goto no_sleep;
3270                         } else {
3271                                 /* Someone else is writing to this iclog.
3272                                  * Use its call to flush out the data.  However,
3273                                  * the other thread may not force out this LR,
3274                                  * so we mark it WANT_SYNC.
3275                                  */
3276                                 xlog_state_switch_iclogs(log, iclog, 0);
3277                                 goto maybe_sleep;
3278                         }
3279                 }
3280         }
3281
3282         /* By the time we come around again, the iclog could've been filled
3283          * which would give it another lsn.  If we have a new lsn, just
3284          * return because the relevant data has been flushed.
3285          */
3286 maybe_sleep:
3287         if (flags & XFS_LOG_SYNC) {
3288                 /*
3289                  * We must check if we're shutting down here, before
3290                  * we wait, while we're holding the l_icloglock.
3291                  * Then we check again after waking up, in case our
3292                  * sleep was disturbed by a bad news.
3293                  */
3294                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3295                         spin_unlock(&log->l_icloglock);
3296                         return -EIO;
3297                 }
3298                 XFS_STATS_INC(mp, xs_log_force_sleep);
3299                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3300                 /*
3301                  * No need to grab the log lock here since we're
3302                  * only deciding whether or not to return EIO
3303                  * and the memory read should be atomic.
3304                  */
3305                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3306                         return -EIO;
3307                 if (log_flushed)
3308                         *log_flushed = 1;
3309         } else {
3310
3311 no_sleep:
3312                 spin_unlock(&log->l_icloglock);
3313         }
3314         return 0;
3315 }
3316
3317 /*
3318  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3319  * about errors or whether the log was flushed or not. This is the normal
3320  * interface to use when trying to unpin items or move the log forward.
3321  */
3322 void
3323 xfs_log_force(
3324         xfs_mount_t     *mp,
3325         uint            flags)
3326 {
3327         int     error;
3328
3329         trace_xfs_log_force(mp, 0, _RET_IP_);
3330         error = _xfs_log_force(mp, flags, NULL);
3331         if (error)
3332                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3333 }
3334
3335 /*
3336  * Force the in-core log to disk for a specific LSN.
3337  *
3338  * Find in-core log with lsn.
3339  *      If it is in the DIRTY state, just return.
3340  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3341  *              state and go to sleep or return.
3342  *      If it is in any other state, go to sleep or return.
3343  *
3344  * Synchronous forces are implemented with a signal variable. All callers
3345  * to force a given lsn to disk will wait on a the sv attached to the
3346  * specific in-core log.  When given in-core log finally completes its
3347  * write to disk, that thread will wake up all threads waiting on the
3348  * sv.
3349  */
3350 int
3351 _xfs_log_force_lsn(
3352         struct xfs_mount        *mp,
3353         xfs_lsn_t               lsn,
3354         uint                    flags,
3355         int                     *log_flushed)
3356 {
3357         struct xlog             *log = mp->m_log;
3358         struct xlog_in_core     *iclog;
3359         int                     already_slept = 0;
3360
3361         ASSERT(lsn != 0);
3362
3363         XFS_STATS_INC(mp, xs_log_force);
3364
3365         lsn = xlog_cil_force_lsn(log, lsn);
3366         if (lsn == NULLCOMMITLSN)
3367                 return 0;
3368
3369 try_again:
3370         spin_lock(&log->l_icloglock);
3371         iclog = log->l_iclog;
3372         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3373                 spin_unlock(&log->l_icloglock);
3374                 return -EIO;
3375         }
3376
3377         do {
3378                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3379                         iclog = iclog->ic_next;
3380                         continue;
3381                 }
3382
3383                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3384                         spin_unlock(&log->l_icloglock);
3385                         return 0;
3386                 }
3387
3388                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3389                         /*
3390                          * We sleep here if we haven't already slept (e.g.
3391                          * this is the first time we've looked at the correct
3392                          * iclog buf) and the buffer before us is going to
3393                          * be sync'ed. The reason for this is that if we
3394                          * are doing sync transactions here, by waiting for
3395                          * the previous I/O to complete, we can allow a few
3396                          * more transactions into this iclog before we close
3397                          * it down.
3398                          *
3399                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3400                          * up the refcnt so we can release the log (which
3401                          * drops the ref count).  The state switch keeps new
3402                          * transaction commits from using this buffer.  When
3403                          * the current commits finish writing into the buffer,
3404                          * the refcount will drop to zero and the buffer will
3405                          * go out then.
3406                          */
3407                         if (!already_slept &&
3408                             (iclog->ic_prev->ic_state &
3409                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3410                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3411
3412                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3413
3414                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3415                                                         &log->l_icloglock);
3416                                 if (log_flushed)
3417                                         *log_flushed = 1;
3418                                 already_slept = 1;
3419                                 goto try_again;
3420                         }
3421                         atomic_inc(&iclog->ic_refcnt);
3422                         xlog_state_switch_iclogs(log, iclog, 0);
3423                         spin_unlock(&log->l_icloglock);
3424                         if (xlog_state_release_iclog(log, iclog))
3425                                 return -EIO;
3426                         if (log_flushed)
3427                                 *log_flushed = 1;
3428                         spin_lock(&log->l_icloglock);
3429                 }
3430
3431                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3432                     !(iclog->ic_state &
3433                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3434                         /*
3435                          * Don't wait on completion if we know that we've
3436                          * gotten a log write error.
3437                          */
3438                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3439                                 spin_unlock(&log->l_icloglock);
3440                                 return -EIO;
3441                         }
3442                         XFS_STATS_INC(mp, xs_log_force_sleep);
3443                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3444                         /*
3445                          * No need to grab the log lock here since we're
3446                          * only deciding whether or not to return EIO
3447                          * and the memory read should be atomic.
3448                          */
3449                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3450                                 return -EIO;
3451
3452                         if (log_flushed)
3453                                 *log_flushed = 1;
3454                 } else {                /* just return */
3455                         spin_unlock(&log->l_icloglock);
3456                 }
3457
3458                 return 0;
3459         } while (iclog != log->l_iclog);
3460
3461         spin_unlock(&log->l_icloglock);
3462         return 0;
3463 }
3464
3465 /*
3466  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3467  * about errors or whether the log was flushed or not. This is the normal
3468  * interface to use when trying to unpin items or move the log forward.
3469  */
3470 void
3471 xfs_log_force_lsn(
3472         xfs_mount_t     *mp,
3473         xfs_lsn_t       lsn,
3474         uint            flags)
3475 {
3476         int     error;
3477
3478         trace_xfs_log_force(mp, lsn, _RET_IP_);
3479         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3480         if (error)
3481                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3482 }
3483
3484 /*
3485  * Called when we want to mark the current iclog as being ready to sync to
3486  * disk.
3487  */
3488 STATIC void
3489 xlog_state_want_sync(
3490         struct xlog             *log,
3491         struct xlog_in_core     *iclog)
3492 {
3493         assert_spin_locked(&log->l_icloglock);
3494
3495         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3496                 xlog_state_switch_iclogs(log, iclog, 0);
3497         } else {
3498                 ASSERT(iclog->ic_state &
3499                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3500         }
3501 }
3502
3503
3504 /*****************************************************************************
3505  *
3506  *              TICKET functions
3507  *
3508  *****************************************************************************
3509  */
3510
3511 /*
3512  * Free a used ticket when its refcount falls to zero.
3513  */
3514 void
3515 xfs_log_ticket_put(
3516         xlog_ticket_t   *ticket)
3517 {
3518         ASSERT(atomic_read(&ticket->t_ref) > 0);
3519         if (atomic_dec_and_test(&ticket->t_ref))
3520                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3521 }
3522
3523 xlog_ticket_t *
3524 xfs_log_ticket_get(
3525         xlog_ticket_t   *ticket)
3526 {
3527         ASSERT(atomic_read(&ticket->t_ref) > 0);
3528         atomic_inc(&ticket->t_ref);
3529         return ticket;
3530 }
3531
3532 /*
3533  * Figure out the total log space unit (in bytes) that would be
3534  * required for a log ticket.
3535  */
3536 int
3537 xfs_log_calc_unit_res(
3538         struct xfs_mount        *mp,
3539         int                     unit_bytes)
3540 {
3541         struct xlog             *log = mp->m_log;
3542         int                     iclog_space;
3543         uint                    num_headers;
3544
3545         /*
3546          * Permanent reservations have up to 'cnt'-1 active log operations
3547          * in the log.  A unit in this case is the amount of space for one
3548          * of these log operations.  Normal reservations have a cnt of 1
3549          * and their unit amount is the total amount of space required.
3550          *
3551          * The following lines of code account for non-transaction data
3552          * which occupy space in the on-disk log.
3553          *
3554          * Normal form of a transaction is:
3555          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3556          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3557          *
3558          * We need to account for all the leadup data and trailer data
3559          * around the transaction data.
3560          * And then we need to account for the worst case in terms of using
3561          * more space.
3562          * The worst case will happen if:
3563          * - the placement of the transaction happens to be such that the
3564          *   roundoff is at its maximum
3565          * - the transaction data is synced before the commit record is synced
3566          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3567          *   Therefore the commit record is in its own Log Record.
3568          *   This can happen as the commit record is called with its
3569          *   own region to xlog_write().
3570          *   This then means that in the worst case, roundoff can happen for
3571          *   the commit-rec as well.
3572          *   The commit-rec is smaller than padding in this scenario and so it is
3573          *   not added separately.
3574          */
3575
3576         /* for trans header */
3577         unit_bytes += sizeof(xlog_op_header_t);
3578         unit_bytes += sizeof(xfs_trans_header_t);
3579
3580         /* for start-rec */
3581         unit_bytes += sizeof(xlog_op_header_t);
3582
3583         /*
3584          * for LR headers - the space for data in an iclog is the size minus
3585          * the space used for the headers. If we use the iclog size, then we
3586          * undercalculate the number of headers required.
3587          *
3588          * Furthermore - the addition of op headers for split-recs might
3589          * increase the space required enough to require more log and op
3590          * headers, so take that into account too.
3591          *
3592          * IMPORTANT: This reservation makes the assumption that if this
3593          * transaction is the first in an iclog and hence has the LR headers
3594          * accounted to it, then the remaining space in the iclog is
3595          * exclusively for this transaction.  i.e. if the transaction is larger
3596          * than the iclog, it will be the only thing in that iclog.
3597          * Fundamentally, this means we must pass the entire log vector to
3598          * xlog_write to guarantee this.
3599          */
3600         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3601         num_headers = howmany(unit_bytes, iclog_space);
3602
3603         /* for split-recs - ophdrs added when data split over LRs */
3604         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3605
3606         /* add extra header reservations if we overrun */
3607         while (!num_headers ||
3608                howmany(unit_bytes, iclog_space) > num_headers) {
3609                 unit_bytes += sizeof(xlog_op_header_t);
3610                 num_headers++;
3611         }
3612         unit_bytes += log->l_iclog_hsize * num_headers;
3613
3614         /* for commit-rec LR header - note: padding will subsume the ophdr */
3615         unit_bytes += log->l_iclog_hsize;
3616
3617         /* for roundoff padding for transaction data and one for commit record */
3618         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3619                 /* log su roundoff */
3620                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3621         } else {
3622                 /* BB roundoff */
3623                 unit_bytes += 2 * BBSIZE;
3624         }
3625
3626         return unit_bytes;
3627 }
3628
3629 /*
3630  * Allocate and initialise a new log ticket.
3631  */
3632 struct xlog_ticket *
3633 xlog_ticket_alloc(
3634         struct xlog             *log,
3635         int                     unit_bytes,
3636         int                     cnt,
3637         char                    client,
3638         bool                    permanent,
3639         xfs_km_flags_t          alloc_flags)
3640 {
3641         struct xlog_ticket      *tic;
3642         int                     unit_res;
3643
3644         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3645         if (!tic)
3646                 return NULL;
3647
3648         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3649
3650         atomic_set(&tic->t_ref, 1);
3651         tic->t_task             = current;
3652         INIT_LIST_HEAD(&tic->t_queue);
3653         tic->t_unit_res         = unit_res;
3654         tic->t_curr_res         = unit_res;
3655         tic->t_cnt              = cnt;
3656         tic->t_ocnt             = cnt;
3657         tic->t_tid              = prandom_u32();
3658         tic->t_clientid         = client;
3659         tic->t_flags            = XLOG_TIC_INITED;
3660         if (permanent)
3661                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3662
3663         xlog_tic_reset_res(tic);
3664
3665         return tic;
3666 }
3667
3668
3669 /******************************************************************************
3670  *
3671  *              Log debug routines
3672  *
3673  ******************************************************************************
3674  */
3675 #if defined(DEBUG)
3676 /*
3677  * Make sure that the destination ptr is within the valid data region of
3678  * one of the iclogs.  This uses backup pointers stored in a different
3679  * part of the log in case we trash the log structure.
3680  */
3681 void
3682 xlog_verify_dest_ptr(
3683         struct xlog     *log,
3684         void            *ptr)
3685 {
3686         int i;
3687         int good_ptr = 0;
3688
3689         for (i = 0; i < log->l_iclog_bufs; i++) {
3690                 if (ptr >= log->l_iclog_bak[i] &&
3691                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3692                         good_ptr++;
3693         }
3694
3695         if (!good_ptr)
3696                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3697 }
3698
3699 /*
3700  * Check to make sure the grant write head didn't just over lap the tail.  If
3701  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3702  * the cycles differ by exactly one and check the byte count.
3703  *
3704  * This check is run unlocked, so can give false positives. Rather than assert
3705  * on failures, use a warn-once flag and a panic tag to allow the admin to
3706  * determine if they want to panic the machine when such an error occurs. For
3707  * debug kernels this will have the same effect as using an assert but, unlinke
3708  * an assert, it can be turned off at runtime.
3709  */
3710 STATIC void
3711 xlog_verify_grant_tail(
3712         struct xlog     *log)
3713 {
3714         int             tail_cycle, tail_blocks;
3715         int             cycle, space;
3716
3717         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3718         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3719         if (tail_cycle != cycle) {
3720                 if (cycle - 1 != tail_cycle &&
3721                     !(log->l_flags & XLOG_TAIL_WARN)) {
3722                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3723                                 "%s: cycle - 1 != tail_cycle", __func__);
3724                         log->l_flags |= XLOG_TAIL_WARN;
3725                 }
3726
3727                 if (space > BBTOB(tail_blocks) &&
3728                     !(log->l_flags & XLOG_TAIL_WARN)) {
3729                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3730                                 "%s: space > BBTOB(tail_blocks)", __func__);
3731                         log->l_flags |= XLOG_TAIL_WARN;
3732                 }
3733         }
3734 }
3735
3736 /* check if it will fit */
3737 STATIC void
3738 xlog_verify_tail_lsn(
3739         struct xlog             *log,
3740         struct xlog_in_core     *iclog,
3741         xfs_lsn_t               tail_lsn)
3742 {
3743     int blocks;
3744
3745     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3746         blocks =
3747             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3748         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3749                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3750     } else {
3751         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3752
3753         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3754                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3755
3756         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3757         if (blocks < BTOBB(iclog->ic_offset) + 1)
3758                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3759     }
3760 }       /* xlog_verify_tail_lsn */
3761
3762 /*
3763  * Perform a number of checks on the iclog before writing to disk.
3764  *
3765  * 1. Make sure the iclogs are still circular
3766  * 2. Make sure we have a good magic number
3767  * 3. Make sure we don't have magic numbers in the data
3768  * 4. Check fields of each log operation header for:
3769  *      A. Valid client identifier
3770  *      B. tid ptr value falls in valid ptr space (user space code)
3771  *      C. Length in log record header is correct according to the
3772  *              individual operation headers within record.
3773  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3774  *      log, check the preceding blocks of the physical log to make sure all
3775  *      the cycle numbers agree with the current cycle number.
3776  */
3777 STATIC void
3778 xlog_verify_iclog(
3779         struct xlog             *log,
3780         struct xlog_in_core     *iclog,
3781         int                     count,
3782         bool                    syncing)
3783 {
3784         xlog_op_header_t        *ophead;
3785         xlog_in_core_t          *icptr;
3786         xlog_in_core_2_t        *xhdr;
3787         void                    *base_ptr, *ptr, *p;
3788         ptrdiff_t               field_offset;
3789         __uint8_t               clientid;
3790         int                     len, i, j, k, op_len;
3791         int                     idx;
3792
3793         /* check validity of iclog pointers */
3794         spin_lock(&log->l_icloglock);
3795         icptr = log->l_iclog;
3796         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3797                 ASSERT(icptr);
3798
3799         if (icptr != log->l_iclog)
3800                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3801         spin_unlock(&log->l_icloglock);
3802
3803         /* check log magic numbers */
3804         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3805                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3806
3807         base_ptr = ptr = &iclog->ic_header;
3808         p = &iclog->ic_header;
3809         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3810                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3811                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3812                                 __func__);
3813         }
3814
3815         /* check fields */
3816         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3817         base_ptr = ptr = iclog->ic_datap;
3818         ophead = ptr;
3819         xhdr = iclog->ic_data;
3820         for (i = 0; i < len; i++) {
3821                 ophead = ptr;
3822
3823                 /* clientid is only 1 byte */
3824                 p = &ophead->oh_clientid;
3825                 field_offset = p - base_ptr;
3826                 if (!syncing || (field_offset & 0x1ff)) {
3827                         clientid = ophead->oh_clientid;
3828                 } else {
3829                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3830                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3831                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3832                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3833                                 clientid = xlog_get_client_id(
3834                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3835                         } else {
3836                                 clientid = xlog_get_client_id(
3837                                         iclog->ic_header.h_cycle_data[idx]);
3838                         }
3839                 }
3840                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3841                         xfs_warn(log->l_mp,
3842                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3843                                 __func__, clientid, ophead,
3844                                 (unsigned long)field_offset);
3845
3846                 /* check length */
3847                 p = &ophead->oh_len;
3848                 field_offset = p - base_ptr;
3849                 if (!syncing || (field_offset & 0x1ff)) {
3850                         op_len = be32_to_cpu(ophead->oh_len);
3851                 } else {
3852                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3853                                     (uintptr_t)iclog->ic_datap);
3854                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3855                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3856                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3857                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3858                         } else {
3859                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3860                         }
3861                 }
3862                 ptr += sizeof(xlog_op_header_t) + op_len;
3863         }
3864 }       /* xlog_verify_iclog */
3865 #endif
3866
3867 /*
3868  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3869  */
3870 STATIC int
3871 xlog_state_ioerror(
3872         struct xlog     *log)
3873 {
3874         xlog_in_core_t  *iclog, *ic;
3875
3876         iclog = log->l_iclog;
3877         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3878                 /*
3879                  * Mark all the incore logs IOERROR.
3880                  * From now on, no log flushes will result.
3881                  */
3882                 ic = iclog;
3883                 do {
3884                         ic->ic_state = XLOG_STATE_IOERROR;
3885                         ic = ic->ic_next;
3886                 } while (ic != iclog);
3887                 return 0;
3888         }
3889         /*
3890          * Return non-zero, if state transition has already happened.
3891          */
3892         return 1;
3893 }
3894
3895 /*
3896  * This is called from xfs_force_shutdown, when we're forcibly
3897  * shutting down the filesystem, typically because of an IO error.
3898  * Our main objectives here are to make sure that:
3899  *      a. if !logerror, flush the logs to disk. Anything modified
3900  *         after this is ignored.
3901  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3902  *         parties to find out, 'atomically'.
3903  *      c. those who're sleeping on log reservations, pinned objects and
3904  *          other resources get woken up, and be told the bad news.
3905  *      d. nothing new gets queued up after (b) and (c) are done.
3906  *
3907  * Note: for the !logerror case we need to flush the regions held in memory out
3908  * to disk first. This needs to be done before the log is marked as shutdown,
3909  * otherwise the iclog writes will fail.
3910  */
3911 int
3912 xfs_log_force_umount(
3913         struct xfs_mount        *mp,
3914         int                     logerror)
3915 {
3916         struct xlog     *log;
3917         int             retval;
3918
3919         log = mp->m_log;
3920
3921         /*
3922          * If this happens during log recovery, don't worry about
3923          * locking; the log isn't open for business yet.
3924          */
3925         if (!log ||
3926             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3927                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3928                 if (mp->m_sb_bp)
3929                         mp->m_sb_bp->b_flags |= XBF_DONE;
3930                 return 0;
3931         }
3932
3933         /*
3934          * Somebody could've already done the hard work for us.
3935          * No need to get locks for this.
3936          */
3937         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3938                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3939                 return 1;
3940         }
3941
3942         /*
3943          * Flush all the completed transactions to disk before marking the log
3944          * being shut down. We need to do it in this order to ensure that
3945          * completed operations are safely on disk before we shut down, and that
3946          * we don't have to issue any buffer IO after the shutdown flags are set
3947          * to guarantee this.
3948          */
3949         if (!logerror)
3950                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3951
3952         /*
3953          * mark the filesystem and the as in a shutdown state and wake
3954          * everybody up to tell them the bad news.
3955          */
3956         spin_lock(&log->l_icloglock);
3957         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3958         if (mp->m_sb_bp)
3959                 mp->m_sb_bp->b_flags |= XBF_DONE;
3960
3961         /*
3962          * Mark the log and the iclogs with IO error flags to prevent any
3963          * further log IO from being issued or completed.
3964          */
3965         log->l_flags |= XLOG_IO_ERROR;
3966         retval = xlog_state_ioerror(log);
3967         spin_unlock(&log->l_icloglock);
3968
3969         /*
3970          * We don't want anybody waiting for log reservations after this. That
3971          * means we have to wake up everybody queued up on reserveq as well as
3972          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3973          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3974          * action is protected by the grant locks.
3975          */
3976         xlog_grant_head_wake_all(&log->l_reserve_head);
3977         xlog_grant_head_wake_all(&log->l_write_head);
3978
3979         /*
3980          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3981          * as if the log writes were completed. The abort handling in the log
3982          * item committed callback functions will do this again under lock to
3983          * avoid races.
3984          */
3985         wake_up_all(&log->l_cilp->xc_commit_wait);
3986         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3987
3988 #ifdef XFSERRORDEBUG
3989         {
3990                 xlog_in_core_t  *iclog;
3991
3992                 spin_lock(&log->l_icloglock);
3993                 iclog = log->l_iclog;
3994                 do {
3995                         ASSERT(iclog->ic_callback == 0);
3996                         iclog = iclog->ic_next;
3997                 } while (iclog != log->l_iclog);
3998                 spin_unlock(&log->l_icloglock);
3999         }
4000 #endif
4001         /* return non-zero if log IOERROR transition had already happened */
4002         return retval;
4003 }
4004
4005 STATIC int
4006 xlog_iclogs_empty(
4007         struct xlog     *log)
4008 {
4009         xlog_in_core_t  *iclog;
4010
4011         iclog = log->l_iclog;
4012         do {
4013                 /* endianness does not matter here, zero is zero in
4014                  * any language.
4015                  */
4016                 if (iclog->ic_header.h_num_logops)
4017                         return 0;
4018                 iclog = iclog->ic_next;
4019         } while (iclog != log->l_iclog);
4020         return 1;
4021 }
4022
4023 /*
4024  * Verify that an LSN stamped into a piece of metadata is valid. This is
4025  * intended for use in read verifiers on v5 superblocks.
4026  */
4027 bool
4028 xfs_log_check_lsn(
4029         struct xfs_mount        *mp,
4030         xfs_lsn_t               lsn)
4031 {
4032         struct xlog             *log = mp->m_log;
4033         bool                    valid;
4034
4035         /*
4036          * norecovery mode skips mount-time log processing and unconditionally
4037          * resets the in-core LSN. We can't validate in this mode, but
4038          * modifications are not allowed anyways so just return true.
4039          */
4040         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4041                 return true;
4042
4043         /*
4044          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4045          * handled by recovery and thus safe to ignore here.
4046          */
4047         if (lsn == NULLCOMMITLSN)
4048                 return true;
4049
4050         valid = xlog_valid_lsn(mp->m_log, lsn);
4051
4052         /* warn the user about what's gone wrong before verifier failure */
4053         if (!valid) {
4054                 spin_lock(&log->l_icloglock);
4055                 xfs_warn(mp,
4056 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4057 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4058                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4059                          log->l_curr_cycle, log->l_curr_block);
4060                 spin_unlock(&log->l_icloglock);
4061         }
4062
4063         return valid;
4064 }