s390/mm: implement software dirty bits
[cascardo/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12                                  unsigned long address, pte_t *ptep,
13                                  pte_t entry, int dirty);
14 #endif
15
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18                                  unsigned long address, pmd_t *pmdp,
19                                  pmd_t entry, int dirty);
20 #endif
21
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24                                             unsigned long address,
25                                             pte_t *ptep)
26 {
27         pte_t pte = *ptep;
28         int r = 1;
29         if (!pte_young(pte))
30                 r = 0;
31         else
32                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33         return r;
34 }
35 #endif
36
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40                                             unsigned long address,
41                                             pmd_t *pmdp)
42 {
43         pmd_t pmd = *pmdp;
44         int r = 1;
45         if (!pmd_young(pmd))
46                 r = 0;
47         else
48                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49         return r;
50 }
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53                                             unsigned long address,
54                                             pmd_t *pmdp)
55 {
56         BUG();
57         return 0;
58 }
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64                            unsigned long address, pte_t *ptep);
65 #endif
66
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69                            unsigned long address, pmd_t *pmdp);
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74                                        unsigned long address,
75                                        pte_t *ptep)
76 {
77         pte_t pte = *ptep;
78         pte_clear(mm, address, ptep);
79         return pte;
80 }
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86                                        unsigned long address,
87                                        pmd_t *pmdp)
88 {
89         pmd_t pmd = *pmdp;
90         pmd_clear(pmdp);
91         return pmd;
92 }
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94 #endif
95
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98                                             unsigned long address, pte_t *ptep,
99                                             int full)
100 {
101         pte_t pte;
102         pte = ptep_get_and_clear(mm, address, ptep);
103         return pte;
104 }
105 #endif
106
107 /*
108  * Some architectures may be able to avoid expensive synchronization
109  * primitives when modifications are made to PTE's which are already
110  * not present, or in the process of an address space destruction.
111  */
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114                                               unsigned long address,
115                                               pte_t *ptep,
116                                               int full)
117 {
118         pte_clear(mm, address, ptep);
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124                               unsigned long address,
125                               pte_t *ptep);
126 #endif
127
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130                               unsigned long address,
131                               pmd_t *pmdp);
132 #endif
133
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 struct mm_struct;
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137 {
138         pte_t old_pte = *ptep;
139         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140 }
141 #endif
142
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146                                       unsigned long address, pmd_t *pmdp)
147 {
148         pmd_t old_pmd = *pmdp;
149         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150 }
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153                                       unsigned long address, pmd_t *pmdp)
154 {
155         BUG();
156 }
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #endif
159
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162                                  unsigned long address, pmd_t *pmdp);
163 #endif
164
165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167 #endif
168
169 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171 #endif
172
173 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
174 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
175                             pmd_t *pmdp);
176 #endif
177
178 #ifndef __HAVE_ARCH_PTE_SAME
179 static inline int pte_same(pte_t pte_a, pte_t pte_b)
180 {
181         return pte_val(pte_a) == pte_val(pte_b);
182 }
183 #endif
184
185 #ifndef __HAVE_ARCH_PMD_SAME
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188 {
189         return pmd_val(pmd_a) == pmd_val(pmd_b);
190 }
191 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
192 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
193 {
194         BUG();
195         return 0;
196 }
197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198 #endif
199
200 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
201 #define page_test_and_clear_young(pfn) (0)
202 #endif
203
204 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
205 #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
206 #endif
207
208 #ifndef __HAVE_ARCH_MOVE_PTE
209 #define move_pte(pte, prot, old_addr, new_addr) (pte)
210 #endif
211
212 #ifndef pte_accessible
213 # define pte_accessible(pte)            ((void)(pte),1)
214 #endif
215
216 #ifndef flush_tlb_fix_spurious_fault
217 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
218 #endif
219
220 #ifndef pgprot_noncached
221 #define pgprot_noncached(prot)  (prot)
222 #endif
223
224 #ifndef pgprot_writecombine
225 #define pgprot_writecombine pgprot_noncached
226 #endif
227
228 /*
229  * When walking page tables, get the address of the next boundary,
230  * or the end address of the range if that comes earlier.  Although no
231  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
232  */
233
234 #define pgd_addr_end(addr, end)                                         \
235 ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
236         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
237 })
238
239 #ifndef pud_addr_end
240 #define pud_addr_end(addr, end)                                         \
241 ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
242         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
243 })
244 #endif
245
246 #ifndef pmd_addr_end
247 #define pmd_addr_end(addr, end)                                         \
248 ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
249         (__boundary - 1 < (end) - 1)? __boundary: (end);                \
250 })
251 #endif
252
253 /*
254  * When walking page tables, we usually want to skip any p?d_none entries;
255  * and any p?d_bad entries - reporting the error before resetting to none.
256  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
257  */
258 void pgd_clear_bad(pgd_t *);
259 void pud_clear_bad(pud_t *);
260 void pmd_clear_bad(pmd_t *);
261
262 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
263 {
264         if (pgd_none(*pgd))
265                 return 1;
266         if (unlikely(pgd_bad(*pgd))) {
267                 pgd_clear_bad(pgd);
268                 return 1;
269         }
270         return 0;
271 }
272
273 static inline int pud_none_or_clear_bad(pud_t *pud)
274 {
275         if (pud_none(*pud))
276                 return 1;
277         if (unlikely(pud_bad(*pud))) {
278                 pud_clear_bad(pud);
279                 return 1;
280         }
281         return 0;
282 }
283
284 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
285 {
286         if (pmd_none(*pmd))
287                 return 1;
288         if (unlikely(pmd_bad(*pmd))) {
289                 pmd_clear_bad(pmd);
290                 return 1;
291         }
292         return 0;
293 }
294
295 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
296                                              unsigned long addr,
297                                              pte_t *ptep)
298 {
299         /*
300          * Get the current pte state, but zero it out to make it
301          * non-present, preventing the hardware from asynchronously
302          * updating it.
303          */
304         return ptep_get_and_clear(mm, addr, ptep);
305 }
306
307 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
308                                              unsigned long addr,
309                                              pte_t *ptep, pte_t pte)
310 {
311         /*
312          * The pte is non-present, so there's no hardware state to
313          * preserve.
314          */
315         set_pte_at(mm, addr, ptep, pte);
316 }
317
318 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
319 /*
320  * Start a pte protection read-modify-write transaction, which
321  * protects against asynchronous hardware modifications to the pte.
322  * The intention is not to prevent the hardware from making pte
323  * updates, but to prevent any updates it may make from being lost.
324  *
325  * This does not protect against other software modifications of the
326  * pte; the appropriate pte lock must be held over the transation.
327  *
328  * Note that this interface is intended to be batchable, meaning that
329  * ptep_modify_prot_commit may not actually update the pte, but merely
330  * queue the update to be done at some later time.  The update must be
331  * actually committed before the pte lock is released, however.
332  */
333 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
334                                            unsigned long addr,
335                                            pte_t *ptep)
336 {
337         return __ptep_modify_prot_start(mm, addr, ptep);
338 }
339
340 /*
341  * Commit an update to a pte, leaving any hardware-controlled bits in
342  * the PTE unmodified.
343  */
344 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
345                                            unsigned long addr,
346                                            pte_t *ptep, pte_t pte)
347 {
348         __ptep_modify_prot_commit(mm, addr, ptep, pte);
349 }
350 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
351 #endif /* CONFIG_MMU */
352
353 /*
354  * A facility to provide lazy MMU batching.  This allows PTE updates and
355  * page invalidations to be delayed until a call to leave lazy MMU mode
356  * is issued.  Some architectures may benefit from doing this, and it is
357  * beneficial for both shadow and direct mode hypervisors, which may batch
358  * the PTE updates which happen during this window.  Note that using this
359  * interface requires that read hazards be removed from the code.  A read
360  * hazard could result in the direct mode hypervisor case, since the actual
361  * write to the page tables may not yet have taken place, so reads though
362  * a raw PTE pointer after it has been modified are not guaranteed to be
363  * up to date.  This mode can only be entered and left under the protection of
364  * the page table locks for all page tables which may be modified.  In the UP
365  * case, this is required so that preemption is disabled, and in the SMP case,
366  * it must synchronize the delayed page table writes properly on other CPUs.
367  */
368 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
369 #define arch_enter_lazy_mmu_mode()      do {} while (0)
370 #define arch_leave_lazy_mmu_mode()      do {} while (0)
371 #define arch_flush_lazy_mmu_mode()      do {} while (0)
372 #endif
373
374 /*
375  * A facility to provide batching of the reload of page tables and
376  * other process state with the actual context switch code for
377  * paravirtualized guests.  By convention, only one of the batched
378  * update (lazy) modes (CPU, MMU) should be active at any given time,
379  * entry should never be nested, and entry and exits should always be
380  * paired.  This is for sanity of maintaining and reasoning about the
381  * kernel code.  In this case, the exit (end of the context switch) is
382  * in architecture-specific code, and so doesn't need a generic
383  * definition.
384  */
385 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
386 #define arch_start_context_switch(prev) do {} while (0)
387 #endif
388
389 #ifndef __HAVE_PFNMAP_TRACKING
390 /*
391  * Interfaces that can be used by architecture code to keep track of
392  * memory type of pfn mappings specified by the remap_pfn_range,
393  * vm_insert_pfn.
394  */
395
396 /*
397  * track_pfn_remap is called when a _new_ pfn mapping is being established
398  * by remap_pfn_range() for physical range indicated by pfn and size.
399  */
400 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
401                                   unsigned long pfn, unsigned long addr,
402                                   unsigned long size)
403 {
404         return 0;
405 }
406
407 /*
408  * track_pfn_insert is called when a _new_ single pfn is established
409  * by vm_insert_pfn().
410  */
411 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
412                                    unsigned long pfn)
413 {
414         return 0;
415 }
416
417 /*
418  * track_pfn_copy is called when vma that is covering the pfnmap gets
419  * copied through copy_page_range().
420  */
421 static inline int track_pfn_copy(struct vm_area_struct *vma)
422 {
423         return 0;
424 }
425
426 /*
427  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
428  * untrack can be called for a specific region indicated by pfn and size or
429  * can be for the entire vma (in which case pfn, size are zero).
430  */
431 static inline void untrack_pfn(struct vm_area_struct *vma,
432                                unsigned long pfn, unsigned long size)
433 {
434 }
435 #else
436 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
437                            unsigned long pfn, unsigned long addr,
438                            unsigned long size);
439 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
440                             unsigned long pfn);
441 extern int track_pfn_copy(struct vm_area_struct *vma);
442 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
443                         unsigned long size);
444 #endif
445
446 #ifdef __HAVE_COLOR_ZERO_PAGE
447 static inline int is_zero_pfn(unsigned long pfn)
448 {
449         extern unsigned long zero_pfn;
450         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
451         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
452 }
453
454 #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
455
456 #else
457 static inline int is_zero_pfn(unsigned long pfn)
458 {
459         extern unsigned long zero_pfn;
460         return pfn == zero_pfn;
461 }
462
463 static inline unsigned long my_zero_pfn(unsigned long addr)
464 {
465         extern unsigned long zero_pfn;
466         return zero_pfn;
467 }
468 #endif
469
470 #ifdef CONFIG_MMU
471
472 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
473 static inline int pmd_trans_huge(pmd_t pmd)
474 {
475         return 0;
476 }
477 static inline int pmd_trans_splitting(pmd_t pmd)
478 {
479         return 0;
480 }
481 #ifndef __HAVE_ARCH_PMD_WRITE
482 static inline int pmd_write(pmd_t pmd)
483 {
484         BUG();
485         return 0;
486 }
487 #endif /* __HAVE_ARCH_PMD_WRITE */
488 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
489
490 #ifndef pmd_read_atomic
491 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
492 {
493         /*
494          * Depend on compiler for an atomic pmd read. NOTE: this is
495          * only going to work, if the pmdval_t isn't larger than
496          * an unsigned long.
497          */
498         return *pmdp;
499 }
500 #endif
501
502 /*
503  * This function is meant to be used by sites walking pagetables with
504  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
505  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
506  * into a null pmd and the transhuge page fault can convert a null pmd
507  * into an hugepmd or into a regular pmd (if the hugepage allocation
508  * fails). While holding the mmap_sem in read mode the pmd becomes
509  * stable and stops changing under us only if it's not null and not a
510  * transhuge pmd. When those races occurs and this function makes a
511  * difference vs the standard pmd_none_or_clear_bad, the result is
512  * undefined so behaving like if the pmd was none is safe (because it
513  * can return none anyway). The compiler level barrier() is critically
514  * important to compute the two checks atomically on the same pmdval.
515  *
516  * For 32bit kernels with a 64bit large pmd_t this automatically takes
517  * care of reading the pmd atomically to avoid SMP race conditions
518  * against pmd_populate() when the mmap_sem is hold for reading by the
519  * caller (a special atomic read not done by "gcc" as in the generic
520  * version above, is also needed when THP is disabled because the page
521  * fault can populate the pmd from under us).
522  */
523 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
524 {
525         pmd_t pmdval = pmd_read_atomic(pmd);
526         /*
527          * The barrier will stabilize the pmdval in a register or on
528          * the stack so that it will stop changing under the code.
529          *
530          * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
531          * pmd_read_atomic is allowed to return a not atomic pmdval
532          * (for example pointing to an hugepage that has never been
533          * mapped in the pmd). The below checks will only care about
534          * the low part of the pmd with 32bit PAE x86 anyway, with the
535          * exception of pmd_none(). So the important thing is that if
536          * the low part of the pmd is found null, the high part will
537          * be also null or the pmd_none() check below would be
538          * confused.
539          */
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541         barrier();
542 #endif
543         if (pmd_none(pmdval))
544                 return 1;
545         if (unlikely(pmd_bad(pmdval))) {
546                 if (!pmd_trans_huge(pmdval))
547                         pmd_clear_bad(pmd);
548                 return 1;
549         }
550         return 0;
551 }
552
553 /*
554  * This is a noop if Transparent Hugepage Support is not built into
555  * the kernel. Otherwise it is equivalent to
556  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
557  * places that already verified the pmd is not none and they want to
558  * walk ptes while holding the mmap sem in read mode (write mode don't
559  * need this). If THP is not enabled, the pmd can't go away under the
560  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
561  * run a pmd_trans_unstable before walking the ptes after
562  * split_huge_page_pmd returns (because it may have run when the pmd
563  * become null, but then a page fault can map in a THP and not a
564  * regular page).
565  */
566 static inline int pmd_trans_unstable(pmd_t *pmd)
567 {
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569         return pmd_none_or_trans_huge_or_clear_bad(pmd);
570 #else
571         return 0;
572 #endif
573 }
574
575 #ifdef CONFIG_NUMA_BALANCING
576 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
577 /*
578  * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
579  * same bit too). It's set only when _PAGE_PRESET is not set and it's
580  * never set if _PAGE_PRESENT is set.
581  *
582  * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
583  * fault triggers on those regions if pte/pmd_numa returns true
584  * (because _PAGE_PRESENT is not set).
585  */
586 #ifndef pte_numa
587 static inline int pte_numa(pte_t pte)
588 {
589         return (pte_flags(pte) &
590                 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
591 }
592 #endif
593
594 #ifndef pmd_numa
595 static inline int pmd_numa(pmd_t pmd)
596 {
597         return (pmd_flags(pmd) &
598                 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
599 }
600 #endif
601
602 /*
603  * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
604  * because they're called by the NUMA hinting minor page fault. If we
605  * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
606  * would be forced to set it later while filling the TLB after we
607  * return to userland. That would trigger a second write to memory
608  * that we optimize away by setting _PAGE_ACCESSED here.
609  */
610 #ifndef pte_mknonnuma
611 static inline pte_t pte_mknonnuma(pte_t pte)
612 {
613         pte = pte_clear_flags(pte, _PAGE_NUMA);
614         return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
615 }
616 #endif
617
618 #ifndef pmd_mknonnuma
619 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
620 {
621         pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
622         return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
623 }
624 #endif
625
626 #ifndef pte_mknuma
627 static inline pte_t pte_mknuma(pte_t pte)
628 {
629         pte = pte_set_flags(pte, _PAGE_NUMA);
630         return pte_clear_flags(pte, _PAGE_PRESENT);
631 }
632 #endif
633
634 #ifndef pmd_mknuma
635 static inline pmd_t pmd_mknuma(pmd_t pmd)
636 {
637         pmd = pmd_set_flags(pmd, _PAGE_NUMA);
638         return pmd_clear_flags(pmd, _PAGE_PRESENT);
639 }
640 #endif
641 #else
642 extern int pte_numa(pte_t pte);
643 extern int pmd_numa(pmd_t pmd);
644 extern pte_t pte_mknonnuma(pte_t pte);
645 extern pmd_t pmd_mknonnuma(pmd_t pmd);
646 extern pte_t pte_mknuma(pte_t pte);
647 extern pmd_t pmd_mknuma(pmd_t pmd);
648 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
649 #else
650 static inline int pmd_numa(pmd_t pmd)
651 {
652         return 0;
653 }
654
655 static inline int pte_numa(pte_t pte)
656 {
657         return 0;
658 }
659
660 static inline pte_t pte_mknonnuma(pte_t pte)
661 {
662         return pte;
663 }
664
665 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
666 {
667         return pmd;
668 }
669
670 static inline pte_t pte_mknuma(pte_t pte)
671 {
672         return pte;
673 }
674
675 static inline pmd_t pmd_mknuma(pmd_t pmd)
676 {
677         return pmd;
678 }
679 #endif /* CONFIG_NUMA_BALANCING */
680
681 #endif /* CONFIG_MMU */
682
683 #endif /* !__ASSEMBLY__ */
684
685 #endif /* _ASM_GENERIC_PGTABLE_H */