crypto: api - Optimise away crypto_yield when hard preemption is on
[cascardo/linux.git] / include / crypto / algapi.h
1 /*
2  * Cryptographic API for algorithms (i.e., low-level API).
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option) 
9  * any later version.
10  *
11  */
12 #ifndef _CRYPTO_ALGAPI_H
13 #define _CRYPTO_ALGAPI_H
14
15 #include <linux/crypto.h>
16 #include <linux/list.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/skbuff.h>
20
21 struct crypto_aead;
22 struct crypto_instance;
23 struct module;
24 struct rtattr;
25 struct seq_file;
26
27 struct crypto_type {
28         unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
29         unsigned int (*extsize)(struct crypto_alg *alg);
30         int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
31         int (*init_tfm)(struct crypto_tfm *tfm);
32         void (*show)(struct seq_file *m, struct crypto_alg *alg);
33         int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
34         struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
35         void (*free)(struct crypto_instance *inst);
36
37         unsigned int type;
38         unsigned int maskclear;
39         unsigned int maskset;
40         unsigned int tfmsize;
41 };
42
43 struct crypto_instance {
44         struct crypto_alg alg;
45
46         struct crypto_template *tmpl;
47         struct hlist_node list;
48
49         void *__ctx[] CRYPTO_MINALIGN_ATTR;
50 };
51
52 struct crypto_template {
53         struct list_head list;
54         struct hlist_head instances;
55         struct module *module;
56
57         struct crypto_instance *(*alloc)(struct rtattr **tb);
58         void (*free)(struct crypto_instance *inst);
59         int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
60
61         char name[CRYPTO_MAX_ALG_NAME];
62 };
63
64 struct crypto_spawn {
65         struct list_head list;
66         struct crypto_alg *alg;
67         struct crypto_instance *inst;
68         const struct crypto_type *frontend;
69         u32 mask;
70 };
71
72 struct crypto_queue {
73         struct list_head list;
74         struct list_head *backlog;
75
76         unsigned int qlen;
77         unsigned int max_qlen;
78 };
79
80 struct scatter_walk {
81         struct scatterlist *sg;
82         unsigned int offset;
83 };
84
85 struct blkcipher_walk {
86         union {
87                 struct {
88                         struct page *page;
89                         unsigned long offset;
90                 } phys;
91
92                 struct {
93                         u8 *page;
94                         u8 *addr;
95                 } virt;
96         } src, dst;
97
98         struct scatter_walk in;
99         unsigned int nbytes;
100
101         struct scatter_walk out;
102         unsigned int total;
103
104         void *page;
105         u8 *buffer;
106         u8 *iv;
107         unsigned int ivsize;
108
109         int flags;
110         unsigned int walk_blocksize;
111         unsigned int cipher_blocksize;
112         unsigned int alignmask;
113 };
114
115 struct ablkcipher_walk {
116         struct {
117                 struct page *page;
118                 unsigned int offset;
119         } src, dst;
120
121         struct scatter_walk     in;
122         unsigned int            nbytes;
123         struct scatter_walk     out;
124         unsigned int            total;
125         struct list_head        buffers;
126         u8                      *iv_buffer;
127         u8                      *iv;
128         int                     flags;
129         unsigned int            blocksize;
130 };
131
132 #define ENGINE_NAME_LEN 30
133 /*
134  * struct crypto_engine - crypto hardware engine
135  * @name: the engine name
136  * @idling: the engine is entering idle state
137  * @busy: request pump is busy
138  * @running: the engine is on working
139  * @cur_req_prepared: current request is prepared
140  * @list: link with the global crypto engine list
141  * @queue_lock: spinlock to syncronise access to request queue
142  * @queue: the crypto queue of the engine
143  * @rt: whether this queue is set to run as a realtime task
144  * @prepare_crypt_hardware: a request will soon arrive from the queue
145  * so the subsystem requests the driver to prepare the hardware
146  * by issuing this call
147  * @unprepare_crypt_hardware: there are currently no more requests on the
148  * queue so the subsystem notifies the driver that it may relax the
149  * hardware by issuing this call
150  * @prepare_request: do some prepare if need before handle the current request
151  * @unprepare_request: undo any work done by prepare_message()
152  * @crypt_one_request: do encryption for current request
153  * @kworker: thread struct for request pump
154  * @kworker_task: pointer to task for request pump kworker thread
155  * @pump_requests: work struct for scheduling work to the request pump
156  * @priv_data: the engine private data
157  * @cur_req: the current request which is on processing
158  */
159 struct crypto_engine {
160         char                    name[ENGINE_NAME_LEN];
161         bool                    idling;
162         bool                    busy;
163         bool                    running;
164         bool                    cur_req_prepared;
165
166         struct list_head        list;
167         spinlock_t              queue_lock;
168         struct crypto_queue     queue;
169
170         bool                    rt;
171
172         int (*prepare_crypt_hardware)(struct crypto_engine *engine);
173         int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
174
175         int (*prepare_request)(struct crypto_engine *engine,
176                                struct ablkcipher_request *req);
177         int (*unprepare_request)(struct crypto_engine *engine,
178                                  struct ablkcipher_request *req);
179         int (*crypt_one_request)(struct crypto_engine *engine,
180                                  struct ablkcipher_request *req);
181
182         struct kthread_worker           kworker;
183         struct task_struct              *kworker_task;
184         struct kthread_work             pump_requests;
185
186         void                            *priv_data;
187         struct ablkcipher_request       *cur_req;
188 };
189
190 int crypto_transfer_request(struct crypto_engine *engine,
191                             struct ablkcipher_request *req, bool need_pump);
192 int crypto_transfer_request_to_engine(struct crypto_engine *engine,
193                                       struct ablkcipher_request *req);
194 void crypto_finalize_request(struct crypto_engine *engine,
195                              struct ablkcipher_request *req, int err);
196 int crypto_engine_start(struct crypto_engine *engine);
197 int crypto_engine_stop(struct crypto_engine *engine);
198 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
199 int crypto_engine_exit(struct crypto_engine *engine);
200
201 extern const struct crypto_type crypto_ablkcipher_type;
202 extern const struct crypto_type crypto_blkcipher_type;
203
204 void crypto_mod_put(struct crypto_alg *alg);
205
206 int crypto_register_template(struct crypto_template *tmpl);
207 void crypto_unregister_template(struct crypto_template *tmpl);
208 struct crypto_template *crypto_lookup_template(const char *name);
209
210 int crypto_register_instance(struct crypto_template *tmpl,
211                              struct crypto_instance *inst);
212 int crypto_unregister_instance(struct crypto_instance *inst);
213
214 int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
215                       struct crypto_instance *inst, u32 mask);
216 int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
217                        struct crypto_instance *inst,
218                        const struct crypto_type *frontend);
219 int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
220                       u32 type, u32 mask);
221
222 void crypto_drop_spawn(struct crypto_spawn *spawn);
223 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
224                                     u32 mask);
225 void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
226
227 static inline void crypto_set_spawn(struct crypto_spawn *spawn,
228                                     struct crypto_instance *inst)
229 {
230         spawn->inst = inst;
231 }
232
233 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
234 int crypto_check_attr_type(struct rtattr **tb, u32 type);
235 const char *crypto_attr_alg_name(struct rtattr *rta);
236 struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
237                                     const struct crypto_type *frontend,
238                                     u32 type, u32 mask);
239
240 static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
241                                                  u32 type, u32 mask)
242 {
243         return crypto_attr_alg2(rta, NULL, type, mask);
244 }
245
246 int crypto_attr_u32(struct rtattr *rta, u32 *num);
247 int crypto_inst_setname(struct crypto_instance *inst, const char *name,
248                         struct crypto_alg *alg);
249 void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
250                              unsigned int head);
251 struct crypto_instance *crypto_alloc_instance(const char *name,
252                                               struct crypto_alg *alg);
253
254 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
255 int crypto_enqueue_request(struct crypto_queue *queue,
256                            struct crypto_async_request *request);
257 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
258 int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
259 static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
260 {
261         return queue->qlen;
262 }
263
264 /* These functions require the input/output to be aligned as u32. */
265 void crypto_inc(u8 *a, unsigned int size);
266 void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
267
268 int blkcipher_walk_done(struct blkcipher_desc *desc,
269                         struct blkcipher_walk *walk, int err);
270 int blkcipher_walk_virt(struct blkcipher_desc *desc,
271                         struct blkcipher_walk *walk);
272 int blkcipher_walk_phys(struct blkcipher_desc *desc,
273                         struct blkcipher_walk *walk);
274 int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
275                               struct blkcipher_walk *walk,
276                               unsigned int blocksize);
277 int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
278                                    struct blkcipher_walk *walk,
279                                    struct crypto_aead *tfm,
280                                    unsigned int blocksize);
281
282 int ablkcipher_walk_done(struct ablkcipher_request *req,
283                          struct ablkcipher_walk *walk, int err);
284 int ablkcipher_walk_phys(struct ablkcipher_request *req,
285                          struct ablkcipher_walk *walk);
286 void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
287
288 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
289 {
290         return PTR_ALIGN(crypto_tfm_ctx(tfm),
291                          crypto_tfm_alg_alignmask(tfm) + 1);
292 }
293
294 static inline struct crypto_instance *crypto_tfm_alg_instance(
295         struct crypto_tfm *tfm)
296 {
297         return container_of(tfm->__crt_alg, struct crypto_instance, alg);
298 }
299
300 static inline void *crypto_instance_ctx(struct crypto_instance *inst)
301 {
302         return inst->__ctx;
303 }
304
305 static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
306         struct crypto_ablkcipher *tfm)
307 {
308         return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
309 }
310
311 static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
312 {
313         return crypto_tfm_ctx(&tfm->base);
314 }
315
316 static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
317 {
318         return crypto_tfm_ctx_aligned(&tfm->base);
319 }
320
321 static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
322         struct crypto_spawn *spawn)
323 {
324         u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
325         u32 mask = CRYPTO_ALG_TYPE_MASK;
326
327         return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
328 }
329
330 static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
331 {
332         return crypto_tfm_ctx(&tfm->base);
333 }
334
335 static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
336 {
337         return crypto_tfm_ctx_aligned(&tfm->base);
338 }
339
340 static inline struct crypto_cipher *crypto_spawn_cipher(
341         struct crypto_spawn *spawn)
342 {
343         u32 type = CRYPTO_ALG_TYPE_CIPHER;
344         u32 mask = CRYPTO_ALG_TYPE_MASK;
345
346         return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
347 }
348
349 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
350 {
351         return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
352 }
353
354 static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
355                                        struct scatterlist *dst,
356                                        struct scatterlist *src,
357                                        unsigned int nbytes)
358 {
359         walk->in.sg = src;
360         walk->out.sg = dst;
361         walk->total = nbytes;
362 }
363
364 static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
365                                         struct scatterlist *dst,
366                                         struct scatterlist *src,
367                                         unsigned int nbytes)
368 {
369         walk->in.sg = src;
370         walk->out.sg = dst;
371         walk->total = nbytes;
372         INIT_LIST_HEAD(&walk->buffers);
373 }
374
375 static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
376 {
377         if (unlikely(!list_empty(&walk->buffers)))
378                 __ablkcipher_walk_complete(walk);
379 }
380
381 static inline struct crypto_async_request *crypto_get_backlog(
382         struct crypto_queue *queue)
383 {
384         return queue->backlog == &queue->list ? NULL :
385                container_of(queue->backlog, struct crypto_async_request, list);
386 }
387
388 static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
389                                              struct ablkcipher_request *request)
390 {
391         return crypto_enqueue_request(queue, &request->base);
392 }
393
394 static inline struct ablkcipher_request *ablkcipher_dequeue_request(
395         struct crypto_queue *queue)
396 {
397         return ablkcipher_request_cast(crypto_dequeue_request(queue));
398 }
399
400 static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
401 {
402         return req->__ctx;
403 }
404
405 static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
406                                           struct crypto_ablkcipher *tfm)
407 {
408         return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
409 }
410
411 static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
412                                                      u32 type, u32 mask)
413 {
414         return crypto_attr_alg(tb[1], type, mask);
415 }
416
417 /*
418  * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
419  * Otherwise returns zero.
420  */
421 static inline int crypto_requires_sync(u32 type, u32 mask)
422 {
423         return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
424 }
425
426 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
427
428 /**
429  * crypto_memneq - Compare two areas of memory without leaking
430  *                 timing information.
431  *
432  * @a: One area of memory
433  * @b: Another area of memory
434  * @size: The size of the area.
435  *
436  * Returns 0 when data is equal, 1 otherwise.
437  */
438 static inline int crypto_memneq(const void *a, const void *b, size_t size)
439 {
440         return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
441 }
442
443 static inline void crypto_yield(u32 flags)
444 {
445 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
446         if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
447                 cond_resched();
448 #endif
449 }
450
451 #endif  /* _CRYPTO_ALGAPI_H */