x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / include / crypto / rng.h
1 /*
2  * RNG: Random Number Generator  algorithms under the crypto API
3  *
4  * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com>
5  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  *
12  */
13
14 #ifndef _CRYPTO_RNG_H
15 #define _CRYPTO_RNG_H
16
17 #include <linux/crypto.h>
18
19 struct crypto_rng;
20
21 /**
22  * struct rng_alg - random number generator definition
23  *
24  * @generate:   The function defined by this variable obtains a
25  *              random number. The random number generator transform
26  *              must generate the random number out of the context
27  *              provided with this call, plus any additional data
28  *              if provided to the call.
29  * @seed:       Seed or reseed the random number generator.  With the
30  *              invocation of this function call, the random number
31  *              generator shall become ready for generation.  If the
32  *              random number generator requires a seed for setting
33  *              up a new state, the seed must be provided by the
34  *              consumer while invoking this function. The required
35  *              size of the seed is defined with @seedsize .
36  * @set_ent:    Set entropy that would otherwise be obtained from
37  *              entropy source.  Internal use only.
38  * @seedsize:   The seed size required for a random number generator
39  *              initialization defined with this variable. Some
40  *              random number generators does not require a seed
41  *              as the seeding is implemented internally without
42  *              the need of support by the consumer. In this case,
43  *              the seed size is set to zero.
44  * @base:       Common crypto API algorithm data structure.
45  */
46 struct rng_alg {
47         int (*generate)(struct crypto_rng *tfm,
48                         const u8 *src, unsigned int slen,
49                         u8 *dst, unsigned int dlen);
50         int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen);
51         void (*set_ent)(struct crypto_rng *tfm, const u8 *data,
52                         unsigned int len);
53
54         unsigned int seedsize;
55
56         struct crypto_alg base;
57 };
58
59 struct crypto_rng {
60         struct crypto_tfm base;
61 };
62
63 extern struct crypto_rng *crypto_default_rng;
64
65 int crypto_get_default_rng(void);
66 void crypto_put_default_rng(void);
67
68 /**
69  * DOC: Random number generator API
70  *
71  * The random number generator API is used with the ciphers of type
72  * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto)
73  */
74
75 /**
76  * crypto_alloc_rng() -- allocate RNG handle
77  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
78  *            message digest cipher
79  * @type: specifies the type of the cipher
80  * @mask: specifies the mask for the cipher
81  *
82  * Allocate a cipher handle for a random number generator. The returned struct
83  * crypto_rng is the cipher handle that is required for any subsequent
84  * API invocation for that random number generator.
85  *
86  * For all random number generators, this call creates a new private copy of
87  * the random number generator that does not share a state with other
88  * instances. The only exception is the "krng" random number generator which
89  * is a kernel crypto API use case for the get_random_bytes() function of the
90  * /dev/random driver.
91  *
92  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
93  *         of an error, PTR_ERR() returns the error code.
94  */
95 struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask);
96
97 static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm)
98 {
99         return &tfm->base;
100 }
101
102 /**
103  * crypto_rng_alg - obtain name of RNG
104  * @tfm: cipher handle
105  *
106  * Return the generic name (cra_name) of the initialized random number generator
107  *
108  * Return: generic name string
109  */
110 static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm)
111 {
112         return container_of(crypto_rng_tfm(tfm)->__crt_alg,
113                             struct rng_alg, base);
114 }
115
116 /**
117  * crypto_free_rng() - zeroize and free RNG handle
118  * @tfm: cipher handle to be freed
119  */
120 static inline void crypto_free_rng(struct crypto_rng *tfm)
121 {
122         crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm));
123 }
124
125 /**
126  * crypto_rng_generate() - get random number
127  * @tfm: cipher handle
128  * @src: Input buffer holding additional data, may be NULL
129  * @slen: Length of additional data
130  * @dst: output buffer holding the random numbers
131  * @dlen: length of the output buffer
132  *
133  * This function fills the caller-allocated buffer with random
134  * numbers using the random number generator referenced by the
135  * cipher handle.
136  *
137  * Return: 0 function was successful; < 0 if an error occurred
138  */
139 static inline int crypto_rng_generate(struct crypto_rng *tfm,
140                                       const u8 *src, unsigned int slen,
141                                       u8 *dst, unsigned int dlen)
142 {
143         return crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen);
144 }
145
146 /**
147  * crypto_rng_get_bytes() - get random number
148  * @tfm: cipher handle
149  * @rdata: output buffer holding the random numbers
150  * @dlen: length of the output buffer
151  *
152  * This function fills the caller-allocated buffer with random numbers using the
153  * random number generator referenced by the cipher handle.
154  *
155  * Return: 0 function was successful; < 0 if an error occurred
156  */
157 static inline int crypto_rng_get_bytes(struct crypto_rng *tfm,
158                                        u8 *rdata, unsigned int dlen)
159 {
160         return crypto_rng_generate(tfm, NULL, 0, rdata, dlen);
161 }
162
163 /**
164  * crypto_rng_reset() - re-initialize the RNG
165  * @tfm: cipher handle
166  * @seed: seed input data
167  * @slen: length of the seed input data
168  *
169  * The reset function completely re-initializes the random number generator
170  * referenced by the cipher handle by clearing the current state. The new state
171  * is initialized with the caller provided seed or automatically, depending
172  * on the random number generator type (the ANSI X9.31 RNG requires
173  * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding).
174  * The seed is provided as a parameter to this function call. The provided seed
175  * should have the length of the seed size defined for the random number
176  * generator as defined by crypto_rng_seedsize.
177  *
178  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
179  */
180 int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed,
181                      unsigned int slen);
182
183 /**
184  * crypto_rng_seedsize() - obtain seed size of RNG
185  * @tfm: cipher handle
186  *
187  * The function returns the seed size for the random number generator
188  * referenced by the cipher handle. This value may be zero if the random
189  * number generator does not implement or require a reseeding. For example,
190  * the SP800-90A DRBGs implement an automated reseeding after reaching a
191  * pre-defined threshold.
192  *
193  * Return: seed size for the random number generator
194  */
195 static inline int crypto_rng_seedsize(struct crypto_rng *tfm)
196 {
197         return crypto_rng_alg(tfm)->seedsize;
198 }
199
200 #endif