crypto: prefix module autoloading with "crypto-"
[cascardo/linux.git] / include / linux / crypto.h
1 /*
2  * Scatterlist Cryptographic API.
3  *
4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7  *
8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9  * and Nettle, by Niels Möller.
10  * 
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option) 
14  * any later version.
15  *
16  */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27
28 /*
29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30  * arbitrary modules to be loaded. Loading from userspace may still need the
31  * unprefixed names, so retains those aliases as well.
32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34  * expands twice on the same line. Instead, use a separate base name for the
35  * alias.
36  */
37 #define MODULE_ALIAS_CRYPTO(name)       \
38                 __MODULE_INFO(alias, alias_userspace, name);    \
39                 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41 /*
42  * Algorithm masks and types.
43  */
44 #define CRYPTO_ALG_TYPE_MASK            0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER          0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS        0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD            0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER       0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER      0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER       0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST          0x00000008
52 #define CRYPTO_ALG_TYPE_HASH            0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH           0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH           0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG             0x0000000c
56 #define CRYPTO_ALG_TYPE_PCOMPRESS       0x0000000f
57
58 #define CRYPTO_ALG_TYPE_HASH_MASK       0x0000000e
59 #define CRYPTO_ALG_TYPE_AHASH_MASK      0x0000000c
60 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK  0x0000000c
61
62 #define CRYPTO_ALG_LARVAL               0x00000010
63 #define CRYPTO_ALG_DEAD                 0x00000020
64 #define CRYPTO_ALG_DYING                0x00000040
65 #define CRYPTO_ALG_ASYNC                0x00000080
66
67 /*
68  * Set this bit if and only if the algorithm requires another algorithm of
69  * the same type to handle corner cases.
70  */
71 #define CRYPTO_ALG_NEED_FALLBACK        0x00000100
72
73 /*
74  * This bit is set for symmetric key ciphers that have already been wrapped
75  * with a generic IV generator to prevent them from being wrapped again.
76  */
77 #define CRYPTO_ALG_GENIV                0x00000200
78
79 /*
80  * Set if the algorithm has passed automated run-time testing.  Note that
81  * if there is no run-time testing for a given algorithm it is considered
82  * to have passed.
83  */
84
85 #define CRYPTO_ALG_TESTED               0x00000400
86
87 /*
88  * Set if the algorithm is an instance that is build from templates.
89  */
90 #define CRYPTO_ALG_INSTANCE             0x00000800
91
92 /* Set this bit if the algorithm provided is hardware accelerated but
93  * not available to userspace via instruction set or so.
94  */
95 #define CRYPTO_ALG_KERN_DRIVER_ONLY     0x00001000
96
97 /*
98  * Transform masks and values (for crt_flags).
99  */
100 #define CRYPTO_TFM_REQ_MASK             0x000fff00
101 #define CRYPTO_TFM_RES_MASK             0xfff00000
102
103 #define CRYPTO_TFM_REQ_WEAK_KEY         0x00000100
104 #define CRYPTO_TFM_REQ_MAY_SLEEP        0x00000200
105 #define CRYPTO_TFM_REQ_MAY_BACKLOG      0x00000400
106 #define CRYPTO_TFM_RES_WEAK_KEY         0x00100000
107 #define CRYPTO_TFM_RES_BAD_KEY_LEN      0x00200000
108 #define CRYPTO_TFM_RES_BAD_KEY_SCHED    0x00400000
109 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN    0x00800000
110 #define CRYPTO_TFM_RES_BAD_FLAGS        0x01000000
111
112 /*
113  * Miscellaneous stuff.
114  */
115 #define CRYPTO_MAX_ALG_NAME             64
116
117 /*
118  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
119  * declaration) is used to ensure that the crypto_tfm context structure is
120  * aligned correctly for the given architecture so that there are no alignment
121  * faults for C data types.  In particular, this is required on platforms such
122  * as arm where pointers are 32-bit aligned but there are data types such as
123  * u64 which require 64-bit alignment.
124  */
125 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
126
127 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
128
129 struct scatterlist;
130 struct crypto_ablkcipher;
131 struct crypto_async_request;
132 struct crypto_aead;
133 struct crypto_blkcipher;
134 struct crypto_hash;
135 struct crypto_rng;
136 struct crypto_tfm;
137 struct crypto_type;
138 struct aead_givcrypt_request;
139 struct skcipher_givcrypt_request;
140
141 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
142
143 /**
144  * DOC: Block Cipher Context Data Structures
145  *
146  * These data structures define the operating context for each block cipher
147  * type.
148  */
149
150 struct crypto_async_request {
151         struct list_head list;
152         crypto_completion_t complete;
153         void *data;
154         struct crypto_tfm *tfm;
155
156         u32 flags;
157 };
158
159 struct ablkcipher_request {
160         struct crypto_async_request base;
161
162         unsigned int nbytes;
163
164         void *info;
165
166         struct scatterlist *src;
167         struct scatterlist *dst;
168
169         void *__ctx[] CRYPTO_MINALIGN_ATTR;
170 };
171
172 /**
173  *      struct aead_request - AEAD request
174  *      @base: Common attributes for async crypto requests
175  *      @assoclen: Length in bytes of associated data for authentication
176  *      @cryptlen: Length of data to be encrypted or decrypted
177  *      @iv: Initialisation vector
178  *      @assoc: Associated data
179  *      @src: Source data
180  *      @dst: Destination data
181  *      @__ctx: Start of private context data
182  */
183 struct aead_request {
184         struct crypto_async_request base;
185
186         unsigned int assoclen;
187         unsigned int cryptlen;
188
189         u8 *iv;
190
191         struct scatterlist *assoc;
192         struct scatterlist *src;
193         struct scatterlist *dst;
194
195         void *__ctx[] CRYPTO_MINALIGN_ATTR;
196 };
197
198 struct blkcipher_desc {
199         struct crypto_blkcipher *tfm;
200         void *info;
201         u32 flags;
202 };
203
204 struct cipher_desc {
205         struct crypto_tfm *tfm;
206         void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
207         unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
208                              const u8 *src, unsigned int nbytes);
209         void *info;
210 };
211
212 struct hash_desc {
213         struct crypto_hash *tfm;
214         u32 flags;
215 };
216
217 /**
218  * DOC: Block Cipher Algorithm Definitions
219  *
220  * These data structures define modular crypto algorithm implementations,
221  * managed via crypto_register_alg() and crypto_unregister_alg().
222  */
223
224 /**
225  * struct ablkcipher_alg - asynchronous block cipher definition
226  * @min_keysize: Minimum key size supported by the transformation. This is the
227  *               smallest key length supported by this transformation algorithm.
228  *               This must be set to one of the pre-defined values as this is
229  *               not hardware specific. Possible values for this field can be
230  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
231  * @max_keysize: Maximum key size supported by the transformation. This is the
232  *               largest key length supported by this transformation algorithm.
233  *               This must be set to one of the pre-defined values as this is
234  *               not hardware specific. Possible values for this field can be
235  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
236  * @setkey: Set key for the transformation. This function is used to either
237  *          program a supplied key into the hardware or store the key in the
238  *          transformation context for programming it later. Note that this
239  *          function does modify the transformation context. This function can
240  *          be called multiple times during the existence of the transformation
241  *          object, so one must make sure the key is properly reprogrammed into
242  *          the hardware. This function is also responsible for checking the key
243  *          length for validity. In case a software fallback was put in place in
244  *          the @cra_init call, this function might need to use the fallback if
245  *          the algorithm doesn't support all of the key sizes.
246  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
247  *           the supplied scatterlist containing the blocks of data. The crypto
248  *           API consumer is responsible for aligning the entries of the
249  *           scatterlist properly and making sure the chunks are correctly
250  *           sized. In case a software fallback was put in place in the
251  *           @cra_init call, this function might need to use the fallback if
252  *           the algorithm doesn't support all of the key sizes. In case the
253  *           key was stored in transformation context, the key might need to be
254  *           re-programmed into the hardware in this function. This function
255  *           shall not modify the transformation context, as this function may
256  *           be called in parallel with the same transformation object.
257  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
258  *           and the conditions are exactly the same.
259  * @givencrypt: Update the IV for encryption. With this function, a cipher
260  *              implementation may provide the function on how to update the IV
261  *              for encryption.
262  * @givdecrypt: Update the IV for decryption. This is the reverse of
263  *              @givencrypt .
264  * @geniv: The transformation implementation may use an "IV generator" provided
265  *         by the kernel crypto API. Several use cases have a predefined
266  *         approach how IVs are to be updated. For such use cases, the kernel
267  *         crypto API provides ready-to-use implementations that can be
268  *         referenced with this variable.
269  * @ivsize: IV size applicable for transformation. The consumer must provide an
270  *          IV of exactly that size to perform the encrypt or decrypt operation.
271  *
272  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
273  * mandatory and must be filled.
274  */
275 struct ablkcipher_alg {
276         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
277                       unsigned int keylen);
278         int (*encrypt)(struct ablkcipher_request *req);
279         int (*decrypt)(struct ablkcipher_request *req);
280         int (*givencrypt)(struct skcipher_givcrypt_request *req);
281         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
282
283         const char *geniv;
284
285         unsigned int min_keysize;
286         unsigned int max_keysize;
287         unsigned int ivsize;
288 };
289
290 /**
291  * struct aead_alg - AEAD cipher definition
292  * @maxauthsize: Set the maximum authentication tag size supported by the
293  *               transformation. A transformation may support smaller tag sizes.
294  *               As the authentication tag is a message digest to ensure the
295  *               integrity of the encrypted data, a consumer typically wants the
296  *               largest authentication tag possible as defined by this
297  *               variable.
298  * @setauthsize: Set authentication size for the AEAD transformation. This
299  *               function is used to specify the consumer requested size of the
300  *               authentication tag to be either generated by the transformation
301  *               during encryption or the size of the authentication tag to be
302  *               supplied during the decryption operation. This function is also
303  *               responsible for checking the authentication tag size for
304  *               validity.
305  * @setkey: see struct ablkcipher_alg
306  * @encrypt: see struct ablkcipher_alg
307  * @decrypt: see struct ablkcipher_alg
308  * @givencrypt: see struct ablkcipher_alg
309  * @givdecrypt: see struct ablkcipher_alg
310  * @geniv: see struct ablkcipher_alg
311  * @ivsize: see struct ablkcipher_alg
312  *
313  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
314  * mandatory and must be filled.
315  */
316 struct aead_alg {
317         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
318                       unsigned int keylen);
319         int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
320         int (*encrypt)(struct aead_request *req);
321         int (*decrypt)(struct aead_request *req);
322         int (*givencrypt)(struct aead_givcrypt_request *req);
323         int (*givdecrypt)(struct aead_givcrypt_request *req);
324
325         const char *geniv;
326
327         unsigned int ivsize;
328         unsigned int maxauthsize;
329 };
330
331 /**
332  * struct blkcipher_alg - synchronous block cipher definition
333  * @min_keysize: see struct ablkcipher_alg
334  * @max_keysize: see struct ablkcipher_alg
335  * @setkey: see struct ablkcipher_alg
336  * @encrypt: see struct ablkcipher_alg
337  * @decrypt: see struct ablkcipher_alg
338  * @geniv: see struct ablkcipher_alg
339  * @ivsize: see struct ablkcipher_alg
340  *
341  * All fields except @geniv and @ivsize are mandatory and must be filled.
342  */
343 struct blkcipher_alg {
344         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
345                       unsigned int keylen);
346         int (*encrypt)(struct blkcipher_desc *desc,
347                        struct scatterlist *dst, struct scatterlist *src,
348                        unsigned int nbytes);
349         int (*decrypt)(struct blkcipher_desc *desc,
350                        struct scatterlist *dst, struct scatterlist *src,
351                        unsigned int nbytes);
352
353         const char *geniv;
354
355         unsigned int min_keysize;
356         unsigned int max_keysize;
357         unsigned int ivsize;
358 };
359
360 /**
361  * struct cipher_alg - single-block symmetric ciphers definition
362  * @cia_min_keysize: Minimum key size supported by the transformation. This is
363  *                   the smallest key length supported by this transformation
364  *                   algorithm. This must be set to one of the pre-defined
365  *                   values as this is not hardware specific. Possible values
366  *                   for this field can be found via git grep "_MIN_KEY_SIZE"
367  *                   include/crypto/
368  * @cia_max_keysize: Maximum key size supported by the transformation. This is
369  *                  the largest key length supported by this transformation
370  *                  algorithm. This must be set to one of the pre-defined values
371  *                  as this is not hardware specific. Possible values for this
372  *                  field can be found via git grep "_MAX_KEY_SIZE"
373  *                  include/crypto/
374  * @cia_setkey: Set key for the transformation. This function is used to either
375  *              program a supplied key into the hardware or store the key in the
376  *              transformation context for programming it later. Note that this
377  *              function does modify the transformation context. This function
378  *              can be called multiple times during the existence of the
379  *              transformation object, so one must make sure the key is properly
380  *              reprogrammed into the hardware. This function is also
381  *              responsible for checking the key length for validity.
382  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
383  *               single block of data, which must be @cra_blocksize big. This
384  *               always operates on a full @cra_blocksize and it is not possible
385  *               to encrypt a block of smaller size. The supplied buffers must
386  *               therefore also be at least of @cra_blocksize size. Both the
387  *               input and output buffers are always aligned to @cra_alignmask.
388  *               In case either of the input or output buffer supplied by user
389  *               of the crypto API is not aligned to @cra_alignmask, the crypto
390  *               API will re-align the buffers. The re-alignment means that a
391  *               new buffer will be allocated, the data will be copied into the
392  *               new buffer, then the processing will happen on the new buffer,
393  *               then the data will be copied back into the original buffer and
394  *               finally the new buffer will be freed. In case a software
395  *               fallback was put in place in the @cra_init call, this function
396  *               might need to use the fallback if the algorithm doesn't support
397  *               all of the key sizes. In case the key was stored in
398  *               transformation context, the key might need to be re-programmed
399  *               into the hardware in this function. This function shall not
400  *               modify the transformation context, as this function may be
401  *               called in parallel with the same transformation object.
402  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
403  *               @cia_encrypt, and the conditions are exactly the same.
404  *
405  * All fields are mandatory and must be filled.
406  */
407 struct cipher_alg {
408         unsigned int cia_min_keysize;
409         unsigned int cia_max_keysize;
410         int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
411                           unsigned int keylen);
412         void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
413         void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
414 };
415
416 struct compress_alg {
417         int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
418                             unsigned int slen, u8 *dst, unsigned int *dlen);
419         int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
420                               unsigned int slen, u8 *dst, unsigned int *dlen);
421 };
422
423 /**
424  * struct rng_alg - random number generator definition
425  * @rng_make_random: The function defined by this variable obtains a random
426  *                   number. The random number generator transform must generate
427  *                   the random number out of the context provided with this
428  *                   call.
429  * @rng_reset: Reset of the random number generator by clearing the entire state.
430  *             With the invocation of this function call, the random number
431  *             generator shall completely reinitialize its state. If the random
432  *             number generator requires a seed for setting up a new state,
433  *             the seed must be provided by the consumer while invoking this
434  *             function. The required size of the seed is defined with
435  *             @seedsize .
436  * @seedsize: The seed size required for a random number generator
437  *            initialization defined with this variable. Some random number
438  *            generators like the SP800-90A DRBG does not require a seed as the
439  *            seeding is implemented internally without the need of support by
440  *            the consumer. In this case, the seed size is set to zero.
441  */
442 struct rng_alg {
443         int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata,
444                                unsigned int dlen);
445         int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
446
447         unsigned int seedsize;
448 };
449
450
451 #define cra_ablkcipher  cra_u.ablkcipher
452 #define cra_aead        cra_u.aead
453 #define cra_blkcipher   cra_u.blkcipher
454 #define cra_cipher      cra_u.cipher
455 #define cra_compress    cra_u.compress
456 #define cra_rng         cra_u.rng
457
458 /**
459  * struct crypto_alg - definition of a cryptograpic cipher algorithm
460  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461  *             CRYPTO_ALG_* flags for the flags which go in here. Those are
462  *             used for fine-tuning the description of the transformation
463  *             algorithm.
464  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465  *                 of the smallest possible unit which can be transformed with
466  *                 this algorithm. The users must respect this value.
467  *                 In case of HASH transformation, it is possible for a smaller
468  *                 block than @cra_blocksize to be passed to the crypto API for
469  *                 transformation, in case of any other transformation type, an
470  *                 error will be returned upon any attempt to transform smaller
471  *                 than @cra_blocksize chunks.
472  * @cra_ctxsize: Size of the operational context of the transformation. This
473  *               value informs the kernel crypto API about the memory size
474  *               needed to be allocated for the transformation context.
475  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476  *                 buffer containing the input data for the algorithm must be
477  *                 aligned to this alignment mask. The data buffer for the
478  *                 output data must be aligned to this alignment mask. Note that
479  *                 the Crypto API will do the re-alignment in software, but
480  *                 only under special conditions and there is a performance hit.
481  *                 The re-alignment happens at these occasions for different
482  *                 @cra_u types: cipher -- For both input data and output data
483  *                 buffer; ahash -- For output hash destination buf; shash --
484  *                 For output hash destination buf.
485  *                 This is needed on hardware which is flawed by design and
486  *                 cannot pick data from arbitrary addresses.
487  * @cra_priority: Priority of this transformation implementation. In case
488  *                multiple transformations with same @cra_name are available to
489  *                the Crypto API, the kernel will use the one with highest
490  *                @cra_priority.
491  * @cra_name: Generic name (usable by multiple implementations) of the
492  *            transformation algorithm. This is the name of the transformation
493  *            itself. This field is used by the kernel when looking up the
494  *            providers of particular transformation.
495  * @cra_driver_name: Unique name of the transformation provider. This is the
496  *                   name of the provider of the transformation. This can be any
497  *                   arbitrary value, but in the usual case, this contains the
498  *                   name of the chip or provider and the name of the
499  *                   transformation algorithm.
500  * @cra_type: Type of the cryptographic transformation. This is a pointer to
501  *            struct crypto_type, which implements callbacks common for all
502  *            trasnformation types. There are multiple options:
503  *            &crypto_blkcipher_type, &crypto_ablkcipher_type,
504  *            &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
505  *            This field might be empty. In that case, there are no common
506  *            callbacks. This is the case for: cipher, compress, shash.
507  * @cra_u: Callbacks implementing the transformation. This is a union of
508  *         multiple structures. Depending on the type of transformation selected
509  *         by @cra_type and @cra_flags above, the associated structure must be
510  *         filled with callbacks. This field might be empty. This is the case
511  *         for ahash, shash.
512  * @cra_init: Initialize the cryptographic transformation object. This function
513  *            is used to initialize the cryptographic transformation object.
514  *            This function is called only once at the instantiation time, right
515  *            after the transformation context was allocated. In case the
516  *            cryptographic hardware has some special requirements which need to
517  *            be handled by software, this function shall check for the precise
518  *            requirement of the transformation and put any software fallbacks
519  *            in place.
520  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521  *            counterpart to @cra_init, used to remove various changes set in
522  *            @cra_init.
523  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
524  * @cra_list: internally used
525  * @cra_users: internally used
526  * @cra_refcnt: internally used
527  * @cra_destroy: internally used
528  *
529  * The struct crypto_alg describes a generic Crypto API algorithm and is common
530  * for all of the transformations. Any variable not documented here shall not
531  * be used by a cipher implementation as it is internal to the Crypto API.
532  */
533 struct crypto_alg {
534         struct list_head cra_list;
535         struct list_head cra_users;
536
537         u32 cra_flags;
538         unsigned int cra_blocksize;
539         unsigned int cra_ctxsize;
540         unsigned int cra_alignmask;
541
542         int cra_priority;
543         atomic_t cra_refcnt;
544
545         char cra_name[CRYPTO_MAX_ALG_NAME];
546         char cra_driver_name[CRYPTO_MAX_ALG_NAME];
547
548         const struct crypto_type *cra_type;
549
550         union {
551                 struct ablkcipher_alg ablkcipher;
552                 struct aead_alg aead;
553                 struct blkcipher_alg blkcipher;
554                 struct cipher_alg cipher;
555                 struct compress_alg compress;
556                 struct rng_alg rng;
557         } cra_u;
558
559         int (*cra_init)(struct crypto_tfm *tfm);
560         void (*cra_exit)(struct crypto_tfm *tfm);
561         void (*cra_destroy)(struct crypto_alg *alg);
562         
563         struct module *cra_module;
564 };
565
566 /*
567  * Algorithm registration interface.
568  */
569 int crypto_register_alg(struct crypto_alg *alg);
570 int crypto_unregister_alg(struct crypto_alg *alg);
571 int crypto_register_algs(struct crypto_alg *algs, int count);
572 int crypto_unregister_algs(struct crypto_alg *algs, int count);
573
574 /*
575  * Algorithm query interface.
576  */
577 int crypto_has_alg(const char *name, u32 type, u32 mask);
578
579 /*
580  * Transforms: user-instantiated objects which encapsulate algorithms
581  * and core processing logic.  Managed via crypto_alloc_*() and
582  * crypto_free_*(), as well as the various helpers below.
583  */
584
585 struct ablkcipher_tfm {
586         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
587                       unsigned int keylen);
588         int (*encrypt)(struct ablkcipher_request *req);
589         int (*decrypt)(struct ablkcipher_request *req);
590         int (*givencrypt)(struct skcipher_givcrypt_request *req);
591         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
592
593         struct crypto_ablkcipher *base;
594
595         unsigned int ivsize;
596         unsigned int reqsize;
597 };
598
599 struct aead_tfm {
600         int (*setkey)(struct crypto_aead *tfm, const u8 *key,
601                       unsigned int keylen);
602         int (*encrypt)(struct aead_request *req);
603         int (*decrypt)(struct aead_request *req);
604         int (*givencrypt)(struct aead_givcrypt_request *req);
605         int (*givdecrypt)(struct aead_givcrypt_request *req);
606
607         struct crypto_aead *base;
608
609         unsigned int ivsize;
610         unsigned int authsize;
611         unsigned int reqsize;
612 };
613
614 struct blkcipher_tfm {
615         void *iv;
616         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
617                       unsigned int keylen);
618         int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
619                        struct scatterlist *src, unsigned int nbytes);
620         int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
621                        struct scatterlist *src, unsigned int nbytes);
622 };
623
624 struct cipher_tfm {
625         int (*cit_setkey)(struct crypto_tfm *tfm,
626                           const u8 *key, unsigned int keylen);
627         void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
628         void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
629 };
630
631 struct hash_tfm {
632         int (*init)(struct hash_desc *desc);
633         int (*update)(struct hash_desc *desc,
634                       struct scatterlist *sg, unsigned int nsg);
635         int (*final)(struct hash_desc *desc, u8 *out);
636         int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
637                       unsigned int nsg, u8 *out);
638         int (*setkey)(struct crypto_hash *tfm, const u8 *key,
639                       unsigned int keylen);
640         unsigned int digestsize;
641 };
642
643 struct compress_tfm {
644         int (*cot_compress)(struct crypto_tfm *tfm,
645                             const u8 *src, unsigned int slen,
646                             u8 *dst, unsigned int *dlen);
647         int (*cot_decompress)(struct crypto_tfm *tfm,
648                               const u8 *src, unsigned int slen,
649                               u8 *dst, unsigned int *dlen);
650 };
651
652 struct rng_tfm {
653         int (*rng_gen_random)(struct crypto_rng *tfm, u8 *rdata,
654                               unsigned int dlen);
655         int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
656 };
657
658 #define crt_ablkcipher  crt_u.ablkcipher
659 #define crt_aead        crt_u.aead
660 #define crt_blkcipher   crt_u.blkcipher
661 #define crt_cipher      crt_u.cipher
662 #define crt_hash        crt_u.hash
663 #define crt_compress    crt_u.compress
664 #define crt_rng         crt_u.rng
665
666 struct crypto_tfm {
667
668         u32 crt_flags;
669         
670         union {
671                 struct ablkcipher_tfm ablkcipher;
672                 struct aead_tfm aead;
673                 struct blkcipher_tfm blkcipher;
674                 struct cipher_tfm cipher;
675                 struct hash_tfm hash;
676                 struct compress_tfm compress;
677                 struct rng_tfm rng;
678         } crt_u;
679
680         void (*exit)(struct crypto_tfm *tfm);
681         
682         struct crypto_alg *__crt_alg;
683
684         void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
685 };
686
687 struct crypto_ablkcipher {
688         struct crypto_tfm base;
689 };
690
691 struct crypto_aead {
692         struct crypto_tfm base;
693 };
694
695 struct crypto_blkcipher {
696         struct crypto_tfm base;
697 };
698
699 struct crypto_cipher {
700         struct crypto_tfm base;
701 };
702
703 struct crypto_comp {
704         struct crypto_tfm base;
705 };
706
707 struct crypto_hash {
708         struct crypto_tfm base;
709 };
710
711 struct crypto_rng {
712         struct crypto_tfm base;
713 };
714
715 enum {
716         CRYPTOA_UNSPEC,
717         CRYPTOA_ALG,
718         CRYPTOA_TYPE,
719         CRYPTOA_U32,
720         __CRYPTOA_MAX,
721 };
722
723 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
724
725 /* Maximum number of (rtattr) parameters for each template. */
726 #define CRYPTO_MAX_ATTRS 32
727
728 struct crypto_attr_alg {
729         char name[CRYPTO_MAX_ALG_NAME];
730 };
731
732 struct crypto_attr_type {
733         u32 type;
734         u32 mask;
735 };
736
737 struct crypto_attr_u32 {
738         u32 num;
739 };
740
741 /* 
742  * Transform user interface.
743  */
744  
745 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
746 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
747
748 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
749 {
750         return crypto_destroy_tfm(tfm, tfm);
751 }
752
753 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
754
755 /*
756  * Transform helpers which query the underlying algorithm.
757  */
758 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
759 {
760         return tfm->__crt_alg->cra_name;
761 }
762
763 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
764 {
765         return tfm->__crt_alg->cra_driver_name;
766 }
767
768 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
769 {
770         return tfm->__crt_alg->cra_priority;
771 }
772
773 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
774 {
775         return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
776 }
777
778 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
779 {
780         return tfm->__crt_alg->cra_blocksize;
781 }
782
783 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
784 {
785         return tfm->__crt_alg->cra_alignmask;
786 }
787
788 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
789 {
790         return tfm->crt_flags;
791 }
792
793 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
794 {
795         tfm->crt_flags |= flags;
796 }
797
798 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
799 {
800         tfm->crt_flags &= ~flags;
801 }
802
803 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
804 {
805         return tfm->__crt_ctx;
806 }
807
808 static inline unsigned int crypto_tfm_ctx_alignment(void)
809 {
810         struct crypto_tfm *tfm;
811         return __alignof__(tfm->__crt_ctx);
812 }
813
814 /*
815  * API wrappers.
816  */
817 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
818         struct crypto_tfm *tfm)
819 {
820         return (struct crypto_ablkcipher *)tfm;
821 }
822
823 static inline u32 crypto_skcipher_type(u32 type)
824 {
825         type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
826         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
827         return type;
828 }
829
830 static inline u32 crypto_skcipher_mask(u32 mask)
831 {
832         mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
833         mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
834         return mask;
835 }
836
837 /**
838  * DOC: Asynchronous Block Cipher API
839  *
840  * Asynchronous block cipher API is used with the ciphers of type
841  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
842  *
843  * Asynchronous cipher operations imply that the function invocation for a
844  * cipher request returns immediately before the completion of the operation.
845  * The cipher request is scheduled as a separate kernel thread and therefore
846  * load-balanced on the different CPUs via the process scheduler. To allow
847  * the kernel crypto API to inform the caller about the completion of a cipher
848  * request, the caller must provide a callback function. That function is
849  * invoked with the cipher handle when the request completes.
850  *
851  * To support the asynchronous operation, additional information than just the
852  * cipher handle must be supplied to the kernel crypto API. That additional
853  * information is given by filling in the ablkcipher_request data structure.
854  *
855  * For the asynchronous block cipher API, the state is maintained with the tfm
856  * cipher handle. A single tfm can be used across multiple calls and in
857  * parallel. For asynchronous block cipher calls, context data supplied and
858  * only used by the caller can be referenced the request data structure in
859  * addition to the IV used for the cipher request. The maintenance of such
860  * state information would be important for a crypto driver implementer to
861  * have, because when calling the callback function upon completion of the
862  * cipher operation, that callback function may need some information about
863  * which operation just finished if it invoked multiple in parallel. This
864  * state information is unused by the kernel crypto API.
865  */
866
867 /**
868  * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
869  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
870  *            ablkcipher cipher
871  * @type: specifies the type of the cipher
872  * @mask: specifies the mask for the cipher
873  *
874  * Allocate a cipher handle for an ablkcipher. The returned struct
875  * crypto_ablkcipher is the cipher handle that is required for any subsequent
876  * API invocation for that ablkcipher.
877  *
878  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
879  *         of an error, PTR_ERR() returns the error code.
880  */
881 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
882                                                   u32 type, u32 mask);
883
884 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
885         struct crypto_ablkcipher *tfm)
886 {
887         return &tfm->base;
888 }
889
890 /**
891  * crypto_free_ablkcipher() - zeroize and free cipher handle
892  * @tfm: cipher handle to be freed
893  */
894 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
895 {
896         crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
897 }
898
899 /**
900  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
901  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
902  *            ablkcipher
903  * @type: specifies the type of the cipher
904  * @mask: specifies the mask for the cipher
905  *
906  * Return: true when the ablkcipher is known to the kernel crypto API; false
907  *         otherwise
908  */
909 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
910                                         u32 mask)
911 {
912         return crypto_has_alg(alg_name, crypto_skcipher_type(type),
913                               crypto_skcipher_mask(mask));
914 }
915
916 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
917         struct crypto_ablkcipher *tfm)
918 {
919         return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
920 }
921
922 /**
923  * crypto_ablkcipher_ivsize() - obtain IV size
924  * @tfm: cipher handle
925  *
926  * The size of the IV for the ablkcipher referenced by the cipher handle is
927  * returned. This IV size may be zero if the cipher does not need an IV.
928  *
929  * Return: IV size in bytes
930  */
931 static inline unsigned int crypto_ablkcipher_ivsize(
932         struct crypto_ablkcipher *tfm)
933 {
934         return crypto_ablkcipher_crt(tfm)->ivsize;
935 }
936
937 /**
938  * crypto_ablkcipher_blocksize() - obtain block size of cipher
939  * @tfm: cipher handle
940  *
941  * The block size for the ablkcipher referenced with the cipher handle is
942  * returned. The caller may use that information to allocate appropriate
943  * memory for the data returned by the encryption or decryption operation
944  *
945  * Return: block size of cipher
946  */
947 static inline unsigned int crypto_ablkcipher_blocksize(
948         struct crypto_ablkcipher *tfm)
949 {
950         return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
951 }
952
953 static inline unsigned int crypto_ablkcipher_alignmask(
954         struct crypto_ablkcipher *tfm)
955 {
956         return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
957 }
958
959 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
960 {
961         return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
962 }
963
964 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
965                                                u32 flags)
966 {
967         crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
968 }
969
970 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
971                                                  u32 flags)
972 {
973         crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
974 }
975
976 /**
977  * crypto_ablkcipher_setkey() - set key for cipher
978  * @tfm: cipher handle
979  * @key: buffer holding the key
980  * @keylen: length of the key in bytes
981  *
982  * The caller provided key is set for the ablkcipher referenced by the cipher
983  * handle.
984  *
985  * Note, the key length determines the cipher type. Many block ciphers implement
986  * different cipher modes depending on the key size, such as AES-128 vs AES-192
987  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
988  * is performed.
989  *
990  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
991  */
992 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
993                                            const u8 *key, unsigned int keylen)
994 {
995         struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
996
997         return crt->setkey(crt->base, key, keylen);
998 }
999
1000 /**
1001  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1002  * @req: ablkcipher_request out of which the cipher handle is to be obtained
1003  *
1004  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1005  * data structure.
1006  *
1007  * Return: crypto_ablkcipher handle
1008  */
1009 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1010         struct ablkcipher_request *req)
1011 {
1012         return __crypto_ablkcipher_cast(req->base.tfm);
1013 }
1014
1015 /**
1016  * crypto_ablkcipher_encrypt() - encrypt plaintext
1017  * @req: reference to the ablkcipher_request handle that holds all information
1018  *       needed to perform the cipher operation
1019  *
1020  * Encrypt plaintext data using the ablkcipher_request handle. That data
1021  * structure and how it is filled with data is discussed with the
1022  * ablkcipher_request_* functions.
1023  *
1024  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1025  */
1026 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1027 {
1028         struct ablkcipher_tfm *crt =
1029                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1030         return crt->encrypt(req);
1031 }
1032
1033 /**
1034  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1035  * @req: reference to the ablkcipher_request handle that holds all information
1036  *       needed to perform the cipher operation
1037  *
1038  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1039  * structure and how it is filled with data is discussed with the
1040  * ablkcipher_request_* functions.
1041  *
1042  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1043  */
1044 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1045 {
1046         struct ablkcipher_tfm *crt =
1047                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1048         return crt->decrypt(req);
1049 }
1050
1051 /**
1052  * DOC: Asynchronous Cipher Request Handle
1053  *
1054  * The ablkcipher_request data structure contains all pointers to data
1055  * required for the asynchronous cipher operation. This includes the cipher
1056  * handle (which can be used by multiple ablkcipher_request instances), pointer
1057  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1058  * as a handle to the ablkcipher_request_* API calls in a similar way as
1059  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1060  */
1061
1062 /**
1063  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1064  * @tfm: cipher handle
1065  *
1066  * Return: number of bytes
1067  */
1068 static inline unsigned int crypto_ablkcipher_reqsize(
1069         struct crypto_ablkcipher *tfm)
1070 {
1071         return crypto_ablkcipher_crt(tfm)->reqsize;
1072 }
1073
1074 /**
1075  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1076  * @req: request handle to be modified
1077  * @tfm: cipher handle that shall be added to the request handle
1078  *
1079  * Allow the caller to replace the existing ablkcipher handle in the request
1080  * data structure with a different one.
1081  */
1082 static inline void ablkcipher_request_set_tfm(
1083         struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1084 {
1085         req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1086 }
1087
1088 static inline struct ablkcipher_request *ablkcipher_request_cast(
1089         struct crypto_async_request *req)
1090 {
1091         return container_of(req, struct ablkcipher_request, base);
1092 }
1093
1094 /**
1095  * ablkcipher_request_alloc() - allocate request data structure
1096  * @tfm: cipher handle to be registered with the request
1097  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1098  *
1099  * Allocate the request data structure that must be used with the ablkcipher
1100  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1101  * handle is registered in the request data structure.
1102  *
1103  * Return: allocated request handle in case of success; IS_ERR() is true in case
1104  *         of an error, PTR_ERR() returns the error code.
1105  */
1106 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1107         struct crypto_ablkcipher *tfm, gfp_t gfp)
1108 {
1109         struct ablkcipher_request *req;
1110
1111         req = kmalloc(sizeof(struct ablkcipher_request) +
1112                       crypto_ablkcipher_reqsize(tfm), gfp);
1113
1114         if (likely(req))
1115                 ablkcipher_request_set_tfm(req, tfm);
1116
1117         return req;
1118 }
1119
1120 /**
1121  * ablkcipher_request_free() - zeroize and free request data structure
1122  * @req: request data structure cipher handle to be freed
1123  */
1124 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1125 {
1126         kzfree(req);
1127 }
1128
1129 /**
1130  * ablkcipher_request_set_callback() - set asynchronous callback function
1131  * @req: request handle
1132  * @flags: specify zero or an ORing of the flags
1133  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1134  *         increase the wait queue beyond the initial maximum size;
1135  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136  * @compl: callback function pointer to be registered with the request handle
1137  * @data: The data pointer refers to memory that is not used by the kernel
1138  *        crypto API, but provided to the callback function for it to use. Here,
1139  *        the caller can provide a reference to memory the callback function can
1140  *        operate on. As the callback function is invoked asynchronously to the
1141  *        related functionality, it may need to access data structures of the
1142  *        related functionality which can be referenced using this pointer. The
1143  *        callback function can access the memory via the "data" field in the
1144  *        crypto_async_request data structure provided to the callback function.
1145  *
1146  * This function allows setting the callback function that is triggered once the
1147  * cipher operation completes.
1148  *
1149  * The callback function is registered with the ablkcipher_request handle and
1150  * must comply with the following template:
1151  *
1152  *      void callback_function(struct crypto_async_request *req, int error)
1153  */
1154 static inline void ablkcipher_request_set_callback(
1155         struct ablkcipher_request *req,
1156         u32 flags, crypto_completion_t compl, void *data)
1157 {
1158         req->base.complete = compl;
1159         req->base.data = data;
1160         req->base.flags = flags;
1161 }
1162
1163 /**
1164  * ablkcipher_request_set_crypt() - set data buffers
1165  * @req: request handle
1166  * @src: source scatter / gather list
1167  * @dst: destination scatter / gather list
1168  * @nbytes: number of bytes to process from @src
1169  * @iv: IV for the cipher operation which must comply with the IV size defined
1170  *      by crypto_ablkcipher_ivsize
1171  *
1172  * This function allows setting of the source data and destination data
1173  * scatter / gather lists.
1174  *
1175  * For encryption, the source is treated as the plaintext and the
1176  * destination is the ciphertext. For a decryption operation, the use is
1177  * reversed: the source is the ciphertext and the destination is the plaintext.
1178  */
1179 static inline void ablkcipher_request_set_crypt(
1180         struct ablkcipher_request *req,
1181         struct scatterlist *src, struct scatterlist *dst,
1182         unsigned int nbytes, void *iv)
1183 {
1184         req->src = src;
1185         req->dst = dst;
1186         req->nbytes = nbytes;
1187         req->info = iv;
1188 }
1189
1190 /**
1191  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
1192  *
1193  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
1194  * (listed as type "aead" in /proc/crypto)
1195  *
1196  * The most prominent examples for this type of encryption is GCM and CCM.
1197  * However, the kernel supports other types of AEAD ciphers which are defined
1198  * with the following cipher string:
1199  *
1200  *      authenc(keyed message digest, block cipher)
1201  *
1202  * For example: authenc(hmac(sha256), cbc(aes))
1203  *
1204  * The example code provided for the asynchronous block cipher operation
1205  * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
1206  * the *aead* pendants discussed in the following. In addtion, for the AEAD
1207  * operation, the aead_request_set_assoc function must be used to set the
1208  * pointer to the associated data memory location before performing the
1209  * encryption or decryption operation. In case of an encryption, the associated
1210  * data memory is filled during the encryption operation. For decryption, the
1211  * associated data memory must contain data that is used to verify the integrity
1212  * of the decrypted data. Another deviation from the asynchronous block cipher
1213  * operation is that the caller should explicitly check for -EBADMSG of the
1214  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
1215  * a breach in the integrity of the message. In essence, that -EBADMSG error
1216  * code is the key bonus an AEAD cipher has over "standard" block chaining
1217  * modes.
1218  */
1219
1220 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
1221 {
1222         return (struct crypto_aead *)tfm;
1223 }
1224
1225 /**
1226  * crypto_alloc_aead() - allocate AEAD cipher handle
1227  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1228  *           AEAD cipher
1229  * @type: specifies the type of the cipher
1230  * @mask: specifies the mask for the cipher
1231  *
1232  * Allocate a cipher handle for an AEAD. The returned struct
1233  * crypto_aead is the cipher handle that is required for any subsequent
1234  * API invocation for that AEAD.
1235  *
1236  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1237  *         of an error, PTR_ERR() returns the error code.
1238  */
1239 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
1240
1241 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
1242 {
1243         return &tfm->base;
1244 }
1245
1246 /**
1247  * crypto_free_aead() - zeroize and free aead handle
1248  * @tfm: cipher handle to be freed
1249  */
1250 static inline void crypto_free_aead(struct crypto_aead *tfm)
1251 {
1252         crypto_free_tfm(crypto_aead_tfm(tfm));
1253 }
1254
1255 static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
1256 {
1257         return &crypto_aead_tfm(tfm)->crt_aead;
1258 }
1259
1260 /**
1261  * crypto_aead_ivsize() - obtain IV size
1262  * @tfm: cipher handle
1263  *
1264  * The size of the IV for the aead referenced by the cipher handle is
1265  * returned. This IV size may be zero if the cipher does not need an IV.
1266  *
1267  * Return: IV size in bytes
1268  */
1269 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
1270 {
1271         return crypto_aead_crt(tfm)->ivsize;
1272 }
1273
1274 /**
1275  * crypto_aead_authsize() - obtain maximum authentication data size
1276  * @tfm: cipher handle
1277  *
1278  * The maximum size of the authentication data for the AEAD cipher referenced
1279  * by the AEAD cipher handle is returned. The authentication data size may be
1280  * zero if the cipher implements a hard-coded maximum.
1281  *
1282  * The authentication data may also be known as "tag value".
1283  *
1284  * Return: authentication data size / tag size in bytes
1285  */
1286 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
1287 {
1288         return crypto_aead_crt(tfm)->authsize;
1289 }
1290
1291 /**
1292  * crypto_aead_blocksize() - obtain block size of cipher
1293  * @tfm: cipher handle
1294  *
1295  * The block size for the AEAD referenced with the cipher handle is returned.
1296  * The caller may use that information to allocate appropriate memory for the
1297  * data returned by the encryption or decryption operation
1298  *
1299  * Return: block size of cipher
1300  */
1301 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
1302 {
1303         return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
1304 }
1305
1306 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
1307 {
1308         return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
1309 }
1310
1311 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
1312 {
1313         return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
1314 }
1315
1316 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
1317 {
1318         crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
1319 }
1320
1321 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
1322 {
1323         crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
1324 }
1325
1326 /**
1327  * crypto_aead_setkey() - set key for cipher
1328  * @tfm: cipher handle
1329  * @key: buffer holding the key
1330  * @keylen: length of the key in bytes
1331  *
1332  * The caller provided key is set for the AEAD referenced by the cipher
1333  * handle.
1334  *
1335  * Note, the key length determines the cipher type. Many block ciphers implement
1336  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1337  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1338  * is performed.
1339  *
1340  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1341  */
1342 static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1343                                      unsigned int keylen)
1344 {
1345         struct aead_tfm *crt = crypto_aead_crt(tfm);
1346
1347         return crt->setkey(crt->base, key, keylen);
1348 }
1349
1350 /**
1351  * crypto_aead_setauthsize() - set authentication data size
1352  * @tfm: cipher handle
1353  * @authsize: size of the authentication data / tag in bytes
1354  *
1355  * Set the authentication data size / tag size. AEAD requires an authentication
1356  * tag (or MAC) in addition to the associated data.
1357  *
1358  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1359  */
1360 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
1361
1362 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
1363 {
1364         return __crypto_aead_cast(req->base.tfm);
1365 }
1366
1367 /**
1368  * crypto_aead_encrypt() - encrypt plaintext
1369  * @req: reference to the aead_request handle that holds all information
1370  *       needed to perform the cipher operation
1371  *
1372  * Encrypt plaintext data using the aead_request handle. That data structure
1373  * and how it is filled with data is discussed with the aead_request_*
1374  * functions.
1375  *
1376  * IMPORTANT NOTE The encryption operation creates the authentication data /
1377  *                tag. That data is concatenated with the created ciphertext.
1378  *                The ciphertext memory size is therefore the given number of
1379  *                block cipher blocks + the size defined by the
1380  *                crypto_aead_setauthsize invocation. The caller must ensure
1381  *                that sufficient memory is available for the ciphertext and
1382  *                the authentication tag.
1383  *
1384  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1385  */
1386 static inline int crypto_aead_encrypt(struct aead_request *req)
1387 {
1388         return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
1389 }
1390
1391 /**
1392  * crypto_aead_decrypt() - decrypt ciphertext
1393  * @req: reference to the ablkcipher_request handle that holds all information
1394  *       needed to perform the cipher operation
1395  *
1396  * Decrypt ciphertext data using the aead_request handle. That data structure
1397  * and how it is filled with data is discussed with the aead_request_*
1398  * functions.
1399  *
1400  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
1401  *                authentication data / tag. That authentication data / tag
1402  *                must have the size defined by the crypto_aead_setauthsize
1403  *                invocation.
1404  *
1405  *
1406  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
1407  *         cipher operation performs the authentication of the data during the
1408  *         decryption operation. Therefore, the function returns this error if
1409  *         the authentication of the ciphertext was unsuccessful (i.e. the
1410  *         integrity of the ciphertext or the associated data was violated);
1411  *         < 0 if an error occurred.
1412  */
1413 static inline int crypto_aead_decrypt(struct aead_request *req)
1414 {
1415         return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
1416 }
1417
1418 /**
1419  * DOC: Asynchronous AEAD Request Handle
1420  *
1421  * The aead_request data structure contains all pointers to data required for
1422  * the AEAD cipher operation. This includes the cipher handle (which can be
1423  * used by multiple aead_request instances), pointer to plaintext and
1424  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
1425  * aead_request_* API calls in a similar way as AEAD handle to the
1426  * crypto_aead_* API calls.
1427  */
1428
1429 /**
1430  * crypto_aead_reqsize() - obtain size of the request data structure
1431  * @tfm: cipher handle
1432  *
1433  * Return: number of bytes
1434  */
1435 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
1436 {
1437         return crypto_aead_crt(tfm)->reqsize;
1438 }
1439
1440 /**
1441  * aead_request_set_tfm() - update cipher handle reference in request
1442  * @req: request handle to be modified
1443  * @tfm: cipher handle that shall be added to the request handle
1444  *
1445  * Allow the caller to replace the existing aead handle in the request
1446  * data structure with a different one.
1447  */
1448 static inline void aead_request_set_tfm(struct aead_request *req,
1449                                         struct crypto_aead *tfm)
1450 {
1451         req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
1452 }
1453
1454 /**
1455  * aead_request_alloc() - allocate request data structure
1456  * @tfm: cipher handle to be registered with the request
1457  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1458  *
1459  * Allocate the request data structure that must be used with the AEAD
1460  * encrypt and decrypt API calls. During the allocation, the provided aead
1461  * handle is registered in the request data structure.
1462  *
1463  * Return: allocated request handle in case of success; IS_ERR() is true in case
1464  *         of an error, PTR_ERR() returns the error code.
1465  */
1466 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
1467                                                       gfp_t gfp)
1468 {
1469         struct aead_request *req;
1470
1471         req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
1472
1473         if (likely(req))
1474                 aead_request_set_tfm(req, tfm);
1475
1476         return req;
1477 }
1478
1479 /**
1480  * aead_request_free() - zeroize and free request data structure
1481  * @req: request data structure cipher handle to be freed
1482  */
1483 static inline void aead_request_free(struct aead_request *req)
1484 {
1485         kzfree(req);
1486 }
1487
1488 /**
1489  * aead_request_set_callback() - set asynchronous callback function
1490  * @req: request handle
1491  * @flags: specify zero or an ORing of the flags
1492  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1493  *         increase the wait queue beyond the initial maximum size;
1494  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1495  * @compl: callback function pointer to be registered with the request handle
1496  * @data: The data pointer refers to memory that is not used by the kernel
1497  *        crypto API, but provided to the callback function for it to use. Here,
1498  *        the caller can provide a reference to memory the callback function can
1499  *        operate on. As the callback function is invoked asynchronously to the
1500  *        related functionality, it may need to access data structures of the
1501  *        related functionality which can be referenced using this pointer. The
1502  *        callback function can access the memory via the "data" field in the
1503  *        crypto_async_request data structure provided to the callback function.
1504  *
1505  * Setting the callback function that is triggered once the cipher operation
1506  * completes
1507  *
1508  * The callback function is registered with the aead_request handle and
1509  * must comply with the following template:
1510  *
1511  *      void callback_function(struct crypto_async_request *req, int error)
1512  */
1513 static inline void aead_request_set_callback(struct aead_request *req,
1514                                              u32 flags,
1515                                              crypto_completion_t compl,
1516                                              void *data)
1517 {
1518         req->base.complete = compl;
1519         req->base.data = data;
1520         req->base.flags = flags;
1521 }
1522
1523 /**
1524  * aead_request_set_crypt - set data buffers
1525  * @req: request handle
1526  * @src: source scatter / gather list
1527  * @dst: destination scatter / gather list
1528  * @cryptlen: number of bytes to process from @src
1529  * @iv: IV for the cipher operation which must comply with the IV size defined
1530  *      by crypto_aead_ivsize()
1531  *
1532  * Setting the source data and destination data scatter / gather lists.
1533  *
1534  * For encryption, the source is treated as the plaintext and the
1535  * destination is the ciphertext. For a decryption operation, the use is
1536  * reversed: the source is the ciphertext and the destination is the plaintext.
1537  *
1538  * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
1539  *                the caller must concatenate the ciphertext followed by the
1540  *                authentication tag and provide the entire data stream to the
1541  *                decryption operation (i.e. the data length used for the
1542  *                initialization of the scatterlist and the data length for the
1543  *                decryption operation is identical). For encryption, however,
1544  *                the authentication tag is created while encrypting the data.
1545  *                The destination buffer must hold sufficient space for the
1546  *                ciphertext and the authentication tag while the encryption
1547  *                invocation must only point to the plaintext data size. The
1548  *                following code snippet illustrates the memory usage
1549  *                buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
1550  *                sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
1551  *                aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
1552  */
1553 static inline void aead_request_set_crypt(struct aead_request *req,
1554                                           struct scatterlist *src,
1555                                           struct scatterlist *dst,
1556                                           unsigned int cryptlen, u8 *iv)
1557 {
1558         req->src = src;
1559         req->dst = dst;
1560         req->cryptlen = cryptlen;
1561         req->iv = iv;
1562 }
1563
1564 /**
1565  * aead_request_set_assoc() - set the associated data scatter / gather list
1566  * @req: request handle
1567  * @assoc: associated data scatter / gather list
1568  * @assoclen: number of bytes to process from @assoc
1569  *
1570  * For encryption, the memory is filled with the associated data. For
1571  * decryption, the memory must point to the associated data.
1572  */
1573 static inline void aead_request_set_assoc(struct aead_request *req,
1574                                           struct scatterlist *assoc,
1575                                           unsigned int assoclen)
1576 {
1577         req->assoc = assoc;
1578         req->assoclen = assoclen;
1579 }
1580
1581 /**
1582  * DOC: Synchronous Block Cipher API
1583  *
1584  * The synchronous block cipher API is used with the ciphers of type
1585  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1586  *
1587  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1588  * used in multiple calls and in parallel, this info should not be changeable
1589  * (unless a lock is used). This applies, for example, to the symmetric key.
1590  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1591  * structure for synchronous blkcipher api. So, its the only state info that can
1592  * be kept for synchronous calls without using a big lock across a tfm.
1593  *
1594  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1595  * consisting of a template (a block chaining mode) and a single block cipher
1596  * primitive (e.g. AES).
1597  *
1598  * The plaintext data buffer and the ciphertext data buffer are pointed to
1599  * by using scatter/gather lists. The cipher operation is performed
1600  * on all segments of the provided scatter/gather lists.
1601  *
1602  * The kernel crypto API supports a cipher operation "in-place" which means that
1603  * the caller may provide the same scatter/gather list for the plaintext and
1604  * cipher text. After the completion of the cipher operation, the plaintext
1605  * data is replaced with the ciphertext data in case of an encryption and vice
1606  * versa for a decryption. The caller must ensure that the scatter/gather lists
1607  * for the output data point to sufficiently large buffers, i.e. multiples of
1608  * the block size of the cipher.
1609  */
1610
1611 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1612         struct crypto_tfm *tfm)
1613 {
1614         return (struct crypto_blkcipher *)tfm;
1615 }
1616
1617 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1618         struct crypto_tfm *tfm)
1619 {
1620         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1621         return __crypto_blkcipher_cast(tfm);
1622 }
1623
1624 /**
1625  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1626  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1627  *            blkcipher cipher
1628  * @type: specifies the type of the cipher
1629  * @mask: specifies the mask for the cipher
1630  *
1631  * Allocate a cipher handle for a block cipher. The returned struct
1632  * crypto_blkcipher is the cipher handle that is required for any subsequent
1633  * API invocation for that block cipher.
1634  *
1635  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1636  *         of an error, PTR_ERR() returns the error code.
1637  */
1638 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1639         const char *alg_name, u32 type, u32 mask)
1640 {
1641         type &= ~CRYPTO_ALG_TYPE_MASK;
1642         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1643         mask |= CRYPTO_ALG_TYPE_MASK;
1644
1645         return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1646 }
1647
1648 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1649         struct crypto_blkcipher *tfm)
1650 {
1651         return &tfm->base;
1652 }
1653
1654 /**
1655  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1656  * @tfm: cipher handle to be freed
1657  */
1658 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1659 {
1660         crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1661 }
1662
1663 /**
1664  * crypto_has_blkcipher() - Search for the availability of a block cipher
1665  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1666  *            block cipher
1667  * @type: specifies the type of the cipher
1668  * @mask: specifies the mask for the cipher
1669  *
1670  * Return: true when the block cipher is known to the kernel crypto API; false
1671  *         otherwise
1672  */
1673 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1674 {
1675         type &= ~CRYPTO_ALG_TYPE_MASK;
1676         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1677         mask |= CRYPTO_ALG_TYPE_MASK;
1678
1679         return crypto_has_alg(alg_name, type, mask);
1680 }
1681
1682 /**
1683  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1684  * @tfm: cipher handle
1685  *
1686  * Return: The character string holding the name of the cipher
1687  */
1688 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1689 {
1690         return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1691 }
1692
1693 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1694         struct crypto_blkcipher *tfm)
1695 {
1696         return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1697 }
1698
1699 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1700         struct crypto_blkcipher *tfm)
1701 {
1702         return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1703 }
1704
1705 /**
1706  * crypto_blkcipher_ivsize() - obtain IV size
1707  * @tfm: cipher handle
1708  *
1709  * The size of the IV for the block cipher referenced by the cipher handle is
1710  * returned. This IV size may be zero if the cipher does not need an IV.
1711  *
1712  * Return: IV size in bytes
1713  */
1714 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1715 {
1716         return crypto_blkcipher_alg(tfm)->ivsize;
1717 }
1718
1719 /**
1720  * crypto_blkcipher_blocksize() - obtain block size of cipher
1721  * @tfm: cipher handle
1722  *
1723  * The block size for the block cipher referenced with the cipher handle is
1724  * returned. The caller may use that information to allocate appropriate
1725  * memory for the data returned by the encryption or decryption operation.
1726  *
1727  * Return: block size of cipher
1728  */
1729 static inline unsigned int crypto_blkcipher_blocksize(
1730         struct crypto_blkcipher *tfm)
1731 {
1732         return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1733 }
1734
1735 static inline unsigned int crypto_blkcipher_alignmask(
1736         struct crypto_blkcipher *tfm)
1737 {
1738         return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1739 }
1740
1741 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1742 {
1743         return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1744 }
1745
1746 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1747                                               u32 flags)
1748 {
1749         crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1750 }
1751
1752 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1753                                                 u32 flags)
1754 {
1755         crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1756 }
1757
1758 /**
1759  * crypto_blkcipher_setkey() - set key for cipher
1760  * @tfm: cipher handle
1761  * @key: buffer holding the key
1762  * @keylen: length of the key in bytes
1763  *
1764  * The caller provided key is set for the block cipher referenced by the cipher
1765  * handle.
1766  *
1767  * Note, the key length determines the cipher type. Many block ciphers implement
1768  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1769  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1770  * is performed.
1771  *
1772  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1773  */
1774 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1775                                           const u8 *key, unsigned int keylen)
1776 {
1777         return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1778                                                  key, keylen);
1779 }
1780
1781 /**
1782  * crypto_blkcipher_encrypt() - encrypt plaintext
1783  * @desc: reference to the block cipher handle with meta data
1784  * @dst: scatter/gather list that is filled by the cipher operation with the
1785  *      ciphertext
1786  * @src: scatter/gather list that holds the plaintext
1787  * @nbytes: number of bytes of the plaintext to encrypt.
1788  *
1789  * Encrypt plaintext data using the IV set by the caller with a preceding
1790  * call of crypto_blkcipher_set_iv.
1791  *
1792  * The blkcipher_desc data structure must be filled by the caller and can
1793  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1794  * with the block cipher handle; desc.flags is filled with either
1795  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1796  *
1797  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1798  */
1799 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1800                                            struct scatterlist *dst,
1801                                            struct scatterlist *src,
1802                                            unsigned int nbytes)
1803 {
1804         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1805         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1806 }
1807
1808 /**
1809  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1810  * @desc: reference to the block cipher handle with meta data
1811  * @dst: scatter/gather list that is filled by the cipher operation with the
1812  *      ciphertext
1813  * @src: scatter/gather list that holds the plaintext
1814  * @nbytes: number of bytes of the plaintext to encrypt.
1815  *
1816  * Encrypt plaintext data with the use of an IV that is solely used for this
1817  * cipher operation. Any previously set IV is not used.
1818  *
1819  * The blkcipher_desc data structure must be filled by the caller and can
1820  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1821  * with the block cipher handle; desc.info is filled with the IV to be used for
1822  * the current operation; desc.flags is filled with either
1823  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1824  *
1825  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1826  */
1827 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1828                                               struct scatterlist *dst,
1829                                               struct scatterlist *src,
1830                                               unsigned int nbytes)
1831 {
1832         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1833 }
1834
1835 /**
1836  * crypto_blkcipher_decrypt() - decrypt ciphertext
1837  * @desc: reference to the block cipher handle with meta data
1838  * @dst: scatter/gather list that is filled by the cipher operation with the
1839  *      plaintext
1840  * @src: scatter/gather list that holds the ciphertext
1841  * @nbytes: number of bytes of the ciphertext to decrypt.
1842  *
1843  * Decrypt ciphertext data using the IV set by the caller with a preceding
1844  * call of crypto_blkcipher_set_iv.
1845  *
1846  * The blkcipher_desc data structure must be filled by the caller as documented
1847  * for the crypto_blkcipher_encrypt call above.
1848  *
1849  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1850  *
1851  */
1852 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1853                                            struct scatterlist *dst,
1854                                            struct scatterlist *src,
1855                                            unsigned int nbytes)
1856 {
1857         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1858         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1859 }
1860
1861 /**
1862  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1863  * @desc: reference to the block cipher handle with meta data
1864  * @dst: scatter/gather list that is filled by the cipher operation with the
1865  *      plaintext
1866  * @src: scatter/gather list that holds the ciphertext
1867  * @nbytes: number of bytes of the ciphertext to decrypt.
1868  *
1869  * Decrypt ciphertext data with the use of an IV that is solely used for this
1870  * cipher operation. Any previously set IV is not used.
1871  *
1872  * The blkcipher_desc data structure must be filled by the caller as documented
1873  * for the crypto_blkcipher_encrypt_iv call above.
1874  *
1875  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1876  */
1877 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1878                                               struct scatterlist *dst,
1879                                               struct scatterlist *src,
1880                                               unsigned int nbytes)
1881 {
1882         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1883 }
1884
1885 /**
1886  * crypto_blkcipher_set_iv() - set IV for cipher
1887  * @tfm: cipher handle
1888  * @src: buffer holding the IV
1889  * @len: length of the IV in bytes
1890  *
1891  * The caller provided IV is set for the block cipher referenced by the cipher
1892  * handle.
1893  */
1894 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1895                                            const u8 *src, unsigned int len)
1896 {
1897         memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1898 }
1899
1900 /**
1901  * crypto_blkcipher_get_iv() - obtain IV from cipher
1902  * @tfm: cipher handle
1903  * @dst: buffer filled with the IV
1904  * @len: length of the buffer dst
1905  *
1906  * The caller can obtain the IV set for the block cipher referenced by the
1907  * cipher handle and store it into the user-provided buffer. If the buffer
1908  * has an insufficient space, the IV is truncated to fit the buffer.
1909  */
1910 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1911                                            u8 *dst, unsigned int len)
1912 {
1913         memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1914 }
1915
1916 /**
1917  * DOC: Single Block Cipher API
1918  *
1919  * The single block cipher API is used with the ciphers of type
1920  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1921  *
1922  * Using the single block cipher API calls, operations with the basic cipher
1923  * primitive can be implemented. These cipher primitives exclude any block
1924  * chaining operations including IV handling.
1925  *
1926  * The purpose of this single block cipher API is to support the implementation
1927  * of templates or other concepts that only need to perform the cipher operation
1928  * on one block at a time. Templates invoke the underlying cipher primitive
1929  * block-wise and process either the input or the output data of these cipher
1930  * operations.
1931  */
1932
1933 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1934 {
1935         return (struct crypto_cipher *)tfm;
1936 }
1937
1938 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1939 {
1940         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1941         return __crypto_cipher_cast(tfm);
1942 }
1943
1944 /**
1945  * crypto_alloc_cipher() - allocate single block cipher handle
1946  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1947  *           single block cipher
1948  * @type: specifies the type of the cipher
1949  * @mask: specifies the mask for the cipher
1950  *
1951  * Allocate a cipher handle for a single block cipher. The returned struct
1952  * crypto_cipher is the cipher handle that is required for any subsequent API
1953  * invocation for that single block cipher.
1954  *
1955  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1956  *         of an error, PTR_ERR() returns the error code.
1957  */
1958 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1959                                                         u32 type, u32 mask)
1960 {
1961         type &= ~CRYPTO_ALG_TYPE_MASK;
1962         type |= CRYPTO_ALG_TYPE_CIPHER;
1963         mask |= CRYPTO_ALG_TYPE_MASK;
1964
1965         return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1966 }
1967
1968 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1969 {
1970         return &tfm->base;
1971 }
1972
1973 /**
1974  * crypto_free_cipher() - zeroize and free the single block cipher handle
1975  * @tfm: cipher handle to be freed
1976  */
1977 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1978 {
1979         crypto_free_tfm(crypto_cipher_tfm(tfm));
1980 }
1981
1982 /**
1983  * crypto_has_cipher() - Search for the availability of a single block cipher
1984  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1985  *           single block cipher
1986  * @type: specifies the type of the cipher
1987  * @mask: specifies the mask for the cipher
1988  *
1989  * Return: true when the single block cipher is known to the kernel crypto API;
1990  *         false otherwise
1991  */
1992 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1993 {
1994         type &= ~CRYPTO_ALG_TYPE_MASK;
1995         type |= CRYPTO_ALG_TYPE_CIPHER;
1996         mask |= CRYPTO_ALG_TYPE_MASK;
1997
1998         return crypto_has_alg(alg_name, type, mask);
1999 }
2000
2001 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
2002 {
2003         return &crypto_cipher_tfm(tfm)->crt_cipher;
2004 }
2005
2006 /**
2007  * crypto_cipher_blocksize() - obtain block size for cipher
2008  * @tfm: cipher handle
2009  *
2010  * The block size for the single block cipher referenced with the cipher handle
2011  * tfm is returned. The caller may use that information to allocate appropriate
2012  * memory for the data returned by the encryption or decryption operation
2013  *
2014  * Return: block size of cipher
2015  */
2016 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
2017 {
2018         return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
2019 }
2020
2021 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
2022 {
2023         return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
2024 }
2025
2026 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
2027 {
2028         return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
2029 }
2030
2031 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
2032                                            u32 flags)
2033 {
2034         crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
2035 }
2036
2037 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
2038                                              u32 flags)
2039 {
2040         crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
2041 }
2042
2043 /**
2044  * crypto_cipher_setkey() - set key for cipher
2045  * @tfm: cipher handle
2046  * @key: buffer holding the key
2047  * @keylen: length of the key in bytes
2048  *
2049  * The caller provided key is set for the single block cipher referenced by the
2050  * cipher handle.
2051  *
2052  * Note, the key length determines the cipher type. Many block ciphers implement
2053  * different cipher modes depending on the key size, such as AES-128 vs AES-192
2054  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
2055  * is performed.
2056  *
2057  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2058  */
2059 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
2060                                        const u8 *key, unsigned int keylen)
2061 {
2062         return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
2063                                                   key, keylen);
2064 }
2065
2066 /**
2067  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
2068  * @tfm: cipher handle
2069  * @dst: points to the buffer that will be filled with the ciphertext
2070  * @src: buffer holding the plaintext to be encrypted
2071  *
2072  * Invoke the encryption operation of one block. The caller must ensure that
2073  * the plaintext and ciphertext buffers are at least one block in size.
2074  */
2075 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
2076                                              u8 *dst, const u8 *src)
2077 {
2078         crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
2079                                                 dst, src);
2080 }
2081
2082 /**
2083  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
2084  * @tfm: cipher handle
2085  * @dst: points to the buffer that will be filled with the plaintext
2086  * @src: buffer holding the ciphertext to be decrypted
2087  *
2088  * Invoke the decryption operation of one block. The caller must ensure that
2089  * the plaintext and ciphertext buffers are at least one block in size.
2090  */
2091 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
2092                                              u8 *dst, const u8 *src)
2093 {
2094         crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
2095                                                 dst, src);
2096 }
2097
2098 /**
2099  * DOC: Synchronous Message Digest API
2100  *
2101  * The synchronous message digest API is used with the ciphers of type
2102  * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
2103  */
2104
2105 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
2106 {
2107         return (struct crypto_hash *)tfm;
2108 }
2109
2110 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
2111 {
2112         BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
2113                CRYPTO_ALG_TYPE_HASH_MASK);
2114         return __crypto_hash_cast(tfm);
2115 }
2116
2117 /**
2118  * crypto_alloc_hash() - allocate synchronous message digest handle
2119  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2120  *            message digest cipher
2121  * @type: specifies the type of the cipher
2122  * @mask: specifies the mask for the cipher
2123  *
2124  * Allocate a cipher handle for a message digest. The returned struct
2125  * crypto_hash is the cipher handle that is required for any subsequent
2126  * API invocation for that message digest.
2127  *
2128  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
2129  * of an error, PTR_ERR() returns the error code.
2130  */
2131 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
2132                                                     u32 type, u32 mask)
2133 {
2134         type &= ~CRYPTO_ALG_TYPE_MASK;
2135         mask &= ~CRYPTO_ALG_TYPE_MASK;
2136         type |= CRYPTO_ALG_TYPE_HASH;
2137         mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2138
2139         return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
2140 }
2141
2142 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
2143 {
2144         return &tfm->base;
2145 }
2146
2147 /**
2148  * crypto_free_hash() - zeroize and free message digest handle
2149  * @tfm: cipher handle to be freed
2150  */
2151 static inline void crypto_free_hash(struct crypto_hash *tfm)
2152 {
2153         crypto_free_tfm(crypto_hash_tfm(tfm));
2154 }
2155
2156 /**
2157  * crypto_has_hash() - Search for the availability of a message digest
2158  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2159  *            message digest cipher
2160  * @type: specifies the type of the cipher
2161  * @mask: specifies the mask for the cipher
2162  *
2163  * Return: true when the message digest cipher is known to the kernel crypto
2164  *         API; false otherwise
2165  */
2166 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
2167 {
2168         type &= ~CRYPTO_ALG_TYPE_MASK;
2169         mask &= ~CRYPTO_ALG_TYPE_MASK;
2170         type |= CRYPTO_ALG_TYPE_HASH;
2171         mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2172
2173         return crypto_has_alg(alg_name, type, mask);
2174 }
2175
2176 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
2177 {
2178         return &crypto_hash_tfm(tfm)->crt_hash;
2179 }
2180
2181 /**
2182  * crypto_hash_blocksize() - obtain block size for message digest
2183  * @tfm: cipher handle
2184  *
2185  * The block size for the message digest cipher referenced with the cipher
2186  * handle is returned.
2187  *
2188  * Return: block size of cipher
2189  */
2190 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
2191 {
2192         return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
2193 }
2194
2195 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
2196 {
2197         return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
2198 }
2199
2200 /**
2201  * crypto_hash_digestsize() - obtain message digest size
2202  * @tfm: cipher handle
2203  *
2204  * The size for the message digest created by the message digest cipher
2205  * referenced with the cipher handle is returned.
2206  *
2207  * Return: message digest size
2208  */
2209 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
2210 {
2211         return crypto_hash_crt(tfm)->digestsize;
2212 }
2213
2214 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
2215 {
2216         return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
2217 }
2218
2219 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
2220 {
2221         crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
2222 }
2223
2224 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
2225 {
2226         crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
2227 }
2228
2229 /**
2230  * crypto_hash_init() - (re)initialize message digest handle
2231  * @desc: cipher request handle that to be filled by caller --
2232  *        desc.tfm is filled with the hash cipher handle;
2233  *        desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
2234  *
2235  * The call (re-)initializes the message digest referenced by the hash cipher
2236  * request handle. Any potentially existing state created by previous
2237  * operations is discarded.
2238  *
2239  * Return: 0 if the message digest initialization was successful; < 0 if an
2240  *         error occurred
2241  */
2242 static inline int crypto_hash_init(struct hash_desc *desc)
2243 {
2244         return crypto_hash_crt(desc->tfm)->init(desc);
2245 }
2246
2247 /**
2248  * crypto_hash_update() - add data to message digest for processing
2249  * @desc: cipher request handle
2250  * @sg: scatter / gather list pointing to the data to be added to the message
2251  *      digest
2252  * @nbytes: number of bytes to be processed from @sg
2253  *
2254  * Updates the message digest state of the cipher handle pointed to by the
2255  * hash cipher request handle with the input data pointed to by the
2256  * scatter/gather list.
2257  *
2258  * Return: 0 if the message digest update was successful; < 0 if an error
2259  *         occurred
2260  */
2261 static inline int crypto_hash_update(struct hash_desc *desc,
2262                                      struct scatterlist *sg,
2263                                      unsigned int nbytes)
2264 {
2265         return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
2266 }
2267
2268 /**
2269  * crypto_hash_final() - calculate message digest
2270  * @desc: cipher request handle
2271  * @out: message digest output buffer -- The caller must ensure that the out
2272  *       buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
2273  *       function).
2274  *
2275  * Finalize the message digest operation and create the message digest
2276  * based on all data added to the cipher handle. The message digest is placed
2277  * into the output buffer.
2278  *
2279  * Return: 0 if the message digest creation was successful; < 0 if an error
2280  *         occurred
2281  */
2282 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
2283 {
2284         return crypto_hash_crt(desc->tfm)->final(desc, out);
2285 }
2286
2287 /**
2288  * crypto_hash_digest() - calculate message digest for a buffer
2289  * @desc: see crypto_hash_final()
2290  * @sg: see crypto_hash_update()
2291  * @nbytes:  see crypto_hash_update()
2292  * @out: see crypto_hash_final()
2293  *
2294  * This function is a "short-hand" for the function calls of crypto_hash_init,
2295  * crypto_hash_update and crypto_hash_final. The parameters have the same
2296  * meaning as discussed for those separate three functions.
2297  *
2298  * Return: 0 if the message digest creation was successful; < 0 if an error
2299  *         occurred
2300  */
2301 static inline int crypto_hash_digest(struct hash_desc *desc,
2302                                      struct scatterlist *sg,
2303                                      unsigned int nbytes, u8 *out)
2304 {
2305         return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
2306 }
2307
2308 /**
2309  * crypto_hash_setkey() - set key for message digest
2310  * @hash: cipher handle
2311  * @key: buffer holding the key
2312  * @keylen: length of the key in bytes
2313  *
2314  * The caller provided key is set for the message digest cipher. The cipher
2315  * handle must point to a keyed hash in order for this function to succeed.
2316  *
2317  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2318  */
2319 static inline int crypto_hash_setkey(struct crypto_hash *hash,
2320                                      const u8 *key, unsigned int keylen)
2321 {
2322         return crypto_hash_crt(hash)->setkey(hash, key, keylen);
2323 }
2324
2325 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
2326 {
2327         return (struct crypto_comp *)tfm;
2328 }
2329
2330 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
2331 {
2332         BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
2333                CRYPTO_ALG_TYPE_MASK);
2334         return __crypto_comp_cast(tfm);
2335 }
2336
2337 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
2338                                                     u32 type, u32 mask)
2339 {
2340         type &= ~CRYPTO_ALG_TYPE_MASK;
2341         type |= CRYPTO_ALG_TYPE_COMPRESS;
2342         mask |= CRYPTO_ALG_TYPE_MASK;
2343
2344         return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
2345 }
2346
2347 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
2348 {
2349         return &tfm->base;
2350 }
2351
2352 static inline void crypto_free_comp(struct crypto_comp *tfm)
2353 {
2354         crypto_free_tfm(crypto_comp_tfm(tfm));
2355 }
2356
2357 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
2358 {
2359         type &= ~CRYPTO_ALG_TYPE_MASK;
2360         type |= CRYPTO_ALG_TYPE_COMPRESS;
2361         mask |= CRYPTO_ALG_TYPE_MASK;
2362
2363         return crypto_has_alg(alg_name, type, mask);
2364 }
2365
2366 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
2367 {
2368         return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
2369 }
2370
2371 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
2372 {
2373         return &crypto_comp_tfm(tfm)->crt_compress;
2374 }
2375
2376 static inline int crypto_comp_compress(struct crypto_comp *tfm,
2377                                        const u8 *src, unsigned int slen,
2378                                        u8 *dst, unsigned int *dlen)
2379 {
2380         return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
2381                                                   src, slen, dst, dlen);
2382 }
2383
2384 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
2385                                          const u8 *src, unsigned int slen,
2386                                          u8 *dst, unsigned int *dlen)
2387 {
2388         return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
2389                                                     src, slen, dst, dlen);
2390 }
2391
2392 #endif  /* _LINUX_CRYPTO_H */
2393