x86/mm/pkeys: Add arch-specific VMA protection bits
[cascardo/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25
26 struct mempolicy;
27 struct anon_vma;
28 struct anon_vma_chain;
29 struct file_ra_state;
30 struct user_struct;
31 struct writeback_control;
32 struct bdi_writeback;
33
34 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
35 extern unsigned long max_mapnr;
36
37 static inline void set_max_mapnr(unsigned long limit)
38 {
39         max_mapnr = limit;
40 }
41 #else
42 static inline void set_max_mapnr(unsigned long limit) { }
43 #endif
44
45 extern unsigned long totalram_pages;
46 extern void * high_memory;
47 extern int page_cluster;
48
49 #ifdef CONFIG_SYSCTL
50 extern int sysctl_legacy_va_layout;
51 #else
52 #define sysctl_legacy_va_layout 0
53 #endif
54
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 extern const int mmap_rnd_bits_min;
57 extern const int mmap_rnd_bits_max;
58 extern int mmap_rnd_bits __read_mostly;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 extern const int mmap_rnd_compat_bits_min;
62 extern const int mmap_rnd_compat_bits_max;
63 extern int mmap_rnd_compat_bits __read_mostly;
64 #endif
65
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/processor.h>
69
70 #ifndef __pa_symbol
71 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
72 #endif
73
74 /*
75  * To prevent common memory management code establishing
76  * a zero page mapping on a read fault.
77  * This macro should be defined within <asm/pgtable.h>.
78  * s390 does this to prevent multiplexing of hardware bits
79  * related to the physical page in case of virtualization.
80  */
81 #ifndef mm_forbids_zeropage
82 #define mm_forbids_zeropage(X)  (0)
83 #endif
84
85 extern unsigned long sysctl_user_reserve_kbytes;
86 extern unsigned long sysctl_admin_reserve_kbytes;
87
88 extern int sysctl_overcommit_memory;
89 extern int sysctl_overcommit_ratio;
90 extern unsigned long sysctl_overcommit_kbytes;
91
92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93                                     size_t *, loff_t *);
94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95                                     size_t *, loff_t *);
96
97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99 /* to align the pointer to the (next) page boundary */
100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105 /*
106  * Linux kernel virtual memory manager primitives.
107  * The idea being to have a "virtual" mm in the same way
108  * we have a virtual fs - giving a cleaner interface to the
109  * mm details, and allowing different kinds of memory mappings
110  * (from shared memory to executable loading to arbitrary
111  * mmap() functions).
112  */
113
114 extern struct kmem_cache *vm_area_cachep;
115
116 #ifndef CONFIG_MMU
117 extern struct rb_root nommu_region_tree;
118 extern struct rw_semaphore nommu_region_sem;
119
120 extern unsigned int kobjsize(const void *objp);
121 #endif
122
123 /*
124  * vm_flags in vm_area_struct, see mm_types.h.
125  */
126 #define VM_NONE         0x00000000
127
128 #define VM_READ         0x00000001      /* currently active flags */
129 #define VM_WRITE        0x00000002
130 #define VM_EXEC         0x00000004
131 #define VM_SHARED       0x00000008
132
133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
135 #define VM_MAYWRITE     0x00000020
136 #define VM_MAYEXEC      0x00000040
137 #define VM_MAYSHARE     0x00000080
138
139 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
140 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
141 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
142 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
143 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
144
145 #define VM_LOCKED       0x00002000
146 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
147
148                                         /* Used by sys_madvise() */
149 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
150 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
151
152 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
153 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
154 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
155 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
156 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
157 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
158 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
159 #define VM_ARCH_2       0x02000000
160 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
161
162 #ifdef CONFIG_MEM_SOFT_DIRTY
163 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
164 #else
165 # define VM_SOFTDIRTY   0
166 #endif
167
168 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
169 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
170 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
171 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
172
173 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
174 #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
175 #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
176 #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
177 #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
178 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
179 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
180 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
181 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
182 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
183
184 #if defined(CONFIG_X86)
185 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
186 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
187 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
188 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
189 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1
190 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
191 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
192 #endif
193 #elif defined(CONFIG_PPC)
194 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
195 #elif defined(CONFIG_PARISC)
196 # define VM_GROWSUP     VM_ARCH_1
197 #elif defined(CONFIG_METAG)
198 # define VM_GROWSUP     VM_ARCH_1
199 #elif defined(CONFIG_IA64)
200 # define VM_GROWSUP     VM_ARCH_1
201 #elif !defined(CONFIG_MMU)
202 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
203 #endif
204
205 #if defined(CONFIG_X86)
206 /* MPX specific bounds table or bounds directory */
207 # define VM_MPX         VM_ARCH_2
208 #endif
209
210 #ifndef VM_GROWSUP
211 # define VM_GROWSUP     VM_NONE
212 #endif
213
214 /* Bits set in the VMA until the stack is in its final location */
215 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
216
217 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
218 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
219 #endif
220
221 #ifdef CONFIG_STACK_GROWSUP
222 #define VM_STACK        VM_GROWSUP
223 #else
224 #define VM_STACK        VM_GROWSDOWN
225 #endif
226
227 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
228
229 /*
230  * Special vmas that are non-mergable, non-mlock()able.
231  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
232  */
233 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
234
235 /* This mask defines which mm->def_flags a process can inherit its parent */
236 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
237
238 /* This mask is used to clear all the VMA flags used by mlock */
239 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
240
241 /*
242  * mapping from the currently active vm_flags protection bits (the
243  * low four bits) to a page protection mask..
244  */
245 extern pgprot_t protection_map[16];
246
247 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
248 #define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
249 #define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
250 #define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
251 #define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
252 #define FAULT_FLAG_TRIED        0x20    /* Second try */
253 #define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
254
255 /*
256  * vm_fault is filled by the the pagefault handler and passed to the vma's
257  * ->fault function. The vma's ->fault is responsible for returning a bitmask
258  * of VM_FAULT_xxx flags that give details about how the fault was handled.
259  *
260  * MM layer fills up gfp_mask for page allocations but fault handler might
261  * alter it if its implementation requires a different allocation context.
262  *
263  * pgoff should be used in favour of virtual_address, if possible.
264  */
265 struct vm_fault {
266         unsigned int flags;             /* FAULT_FLAG_xxx flags */
267         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
268         pgoff_t pgoff;                  /* Logical page offset based on vma */
269         void __user *virtual_address;   /* Faulting virtual address */
270
271         struct page *cow_page;          /* Handler may choose to COW */
272         struct page *page;              /* ->fault handlers should return a
273                                          * page here, unless VM_FAULT_NOPAGE
274                                          * is set (which is also implied by
275                                          * VM_FAULT_ERROR).
276                                          */
277         /* for ->map_pages() only */
278         pgoff_t max_pgoff;              /* map pages for offset from pgoff till
279                                          * max_pgoff inclusive */
280         pte_t *pte;                     /* pte entry associated with ->pgoff */
281 };
282
283 /*
284  * These are the virtual MM functions - opening of an area, closing and
285  * unmapping it (needed to keep files on disk up-to-date etc), pointer
286  * to the functions called when a no-page or a wp-page exception occurs. 
287  */
288 struct vm_operations_struct {
289         void (*open)(struct vm_area_struct * area);
290         void (*close)(struct vm_area_struct * area);
291         int (*mremap)(struct vm_area_struct * area);
292         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
293         int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
294                                                 pmd_t *, unsigned int flags);
295         void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
296
297         /* notification that a previously read-only page is about to become
298          * writable, if an error is returned it will cause a SIGBUS */
299         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
300
301         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
302         int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
303
304         /* called by access_process_vm when get_user_pages() fails, typically
305          * for use by special VMAs that can switch between memory and hardware
306          */
307         int (*access)(struct vm_area_struct *vma, unsigned long addr,
308                       void *buf, int len, int write);
309
310         /* Called by the /proc/PID/maps code to ask the vma whether it
311          * has a special name.  Returning non-NULL will also cause this
312          * vma to be dumped unconditionally. */
313         const char *(*name)(struct vm_area_struct *vma);
314
315 #ifdef CONFIG_NUMA
316         /*
317          * set_policy() op must add a reference to any non-NULL @new mempolicy
318          * to hold the policy upon return.  Caller should pass NULL @new to
319          * remove a policy and fall back to surrounding context--i.e. do not
320          * install a MPOL_DEFAULT policy, nor the task or system default
321          * mempolicy.
322          */
323         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
324
325         /*
326          * get_policy() op must add reference [mpol_get()] to any policy at
327          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
328          * in mm/mempolicy.c will do this automatically.
329          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
330          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
331          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
332          * must return NULL--i.e., do not "fallback" to task or system default
333          * policy.
334          */
335         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
336                                         unsigned long addr);
337 #endif
338         /*
339          * Called by vm_normal_page() for special PTEs to find the
340          * page for @addr.  This is useful if the default behavior
341          * (using pte_page()) would not find the correct page.
342          */
343         struct page *(*find_special_page)(struct vm_area_struct *vma,
344                                           unsigned long addr);
345 };
346
347 struct mmu_gather;
348 struct inode;
349
350 #define page_private(page)              ((page)->private)
351 #define set_page_private(page, v)       ((page)->private = (v))
352
353 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
354 static inline int pmd_devmap(pmd_t pmd)
355 {
356         return 0;
357 }
358 #endif
359
360 /*
361  * FIXME: take this include out, include page-flags.h in
362  * files which need it (119 of them)
363  */
364 #include <linux/page-flags.h>
365 #include <linux/huge_mm.h>
366
367 /*
368  * Methods to modify the page usage count.
369  *
370  * What counts for a page usage:
371  * - cache mapping   (page->mapping)
372  * - private data    (page->private)
373  * - page mapped in a task's page tables, each mapping
374  *   is counted separately
375  *
376  * Also, many kernel routines increase the page count before a critical
377  * routine so they can be sure the page doesn't go away from under them.
378  */
379
380 /*
381  * Drop a ref, return true if the refcount fell to zero (the page has no users)
382  */
383 static inline int put_page_testzero(struct page *page)
384 {
385         VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
386         return atomic_dec_and_test(&page->_count);
387 }
388
389 /*
390  * Try to grab a ref unless the page has a refcount of zero, return false if
391  * that is the case.
392  * This can be called when MMU is off so it must not access
393  * any of the virtual mappings.
394  */
395 static inline int get_page_unless_zero(struct page *page)
396 {
397         return atomic_inc_not_zero(&page->_count);
398 }
399
400 extern int page_is_ram(unsigned long pfn);
401
402 enum {
403         REGION_INTERSECTS,
404         REGION_DISJOINT,
405         REGION_MIXED,
406 };
407
408 int region_intersects(resource_size_t offset, size_t size, const char *type);
409
410 /* Support for virtually mapped pages */
411 struct page *vmalloc_to_page(const void *addr);
412 unsigned long vmalloc_to_pfn(const void *addr);
413
414 /*
415  * Determine if an address is within the vmalloc range
416  *
417  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
418  * is no special casing required.
419  */
420 static inline int is_vmalloc_addr(const void *x)
421 {
422 #ifdef CONFIG_MMU
423         unsigned long addr = (unsigned long)x;
424
425         return addr >= VMALLOC_START && addr < VMALLOC_END;
426 #else
427         return 0;
428 #endif
429 }
430 #ifdef CONFIG_MMU
431 extern int is_vmalloc_or_module_addr(const void *x);
432 #else
433 static inline int is_vmalloc_or_module_addr(const void *x)
434 {
435         return 0;
436 }
437 #endif
438
439 extern void kvfree(const void *addr);
440
441 static inline atomic_t *compound_mapcount_ptr(struct page *page)
442 {
443         return &page[1].compound_mapcount;
444 }
445
446 static inline int compound_mapcount(struct page *page)
447 {
448         if (!PageCompound(page))
449                 return 0;
450         page = compound_head(page);
451         return atomic_read(compound_mapcount_ptr(page)) + 1;
452 }
453
454 /*
455  * The atomic page->_mapcount, starts from -1: so that transitions
456  * both from it and to it can be tracked, using atomic_inc_and_test
457  * and atomic_add_negative(-1).
458  */
459 static inline void page_mapcount_reset(struct page *page)
460 {
461         atomic_set(&(page)->_mapcount, -1);
462 }
463
464 int __page_mapcount(struct page *page);
465
466 static inline int page_mapcount(struct page *page)
467 {
468         VM_BUG_ON_PAGE(PageSlab(page), page);
469
470         if (unlikely(PageCompound(page)))
471                 return __page_mapcount(page);
472         return atomic_read(&page->_mapcount) + 1;
473 }
474
475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
476 int total_mapcount(struct page *page);
477 #else
478 static inline int total_mapcount(struct page *page)
479 {
480         return page_mapcount(page);
481 }
482 #endif
483
484 static inline int page_count(struct page *page)
485 {
486         return atomic_read(&compound_head(page)->_count);
487 }
488
489 static inline struct page *virt_to_head_page(const void *x)
490 {
491         struct page *page = virt_to_page(x);
492
493         return compound_head(page);
494 }
495
496 /*
497  * Setup the page count before being freed into the page allocator for
498  * the first time (boot or memory hotplug)
499  */
500 static inline void init_page_count(struct page *page)
501 {
502         atomic_set(&page->_count, 1);
503 }
504
505 void __put_page(struct page *page);
506
507 void put_pages_list(struct list_head *pages);
508
509 void split_page(struct page *page, unsigned int order);
510 int split_free_page(struct page *page);
511
512 /*
513  * Compound pages have a destructor function.  Provide a
514  * prototype for that function and accessor functions.
515  * These are _only_ valid on the head of a compound page.
516  */
517 typedef void compound_page_dtor(struct page *);
518
519 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
520 enum compound_dtor_id {
521         NULL_COMPOUND_DTOR,
522         COMPOUND_PAGE_DTOR,
523 #ifdef CONFIG_HUGETLB_PAGE
524         HUGETLB_PAGE_DTOR,
525 #endif
526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
527         TRANSHUGE_PAGE_DTOR,
528 #endif
529         NR_COMPOUND_DTORS,
530 };
531 extern compound_page_dtor * const compound_page_dtors[];
532
533 static inline void set_compound_page_dtor(struct page *page,
534                 enum compound_dtor_id compound_dtor)
535 {
536         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
537         page[1].compound_dtor = compound_dtor;
538 }
539
540 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
541 {
542         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
543         return compound_page_dtors[page[1].compound_dtor];
544 }
545
546 static inline unsigned int compound_order(struct page *page)
547 {
548         if (!PageHead(page))
549                 return 0;
550         return page[1].compound_order;
551 }
552
553 static inline void set_compound_order(struct page *page, unsigned int order)
554 {
555         page[1].compound_order = order;
556 }
557
558 void free_compound_page(struct page *page);
559
560 #ifdef CONFIG_MMU
561 /*
562  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
563  * servicing faults for write access.  In the normal case, do always want
564  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
565  * that do not have writing enabled, when used by access_process_vm.
566  */
567 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
568 {
569         if (likely(vma->vm_flags & VM_WRITE))
570                 pte = pte_mkwrite(pte);
571         return pte;
572 }
573
574 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
575                 struct page *page, pte_t *pte, bool write, bool anon);
576 #endif
577
578 /*
579  * Multiple processes may "see" the same page. E.g. for untouched
580  * mappings of /dev/null, all processes see the same page full of
581  * zeroes, and text pages of executables and shared libraries have
582  * only one copy in memory, at most, normally.
583  *
584  * For the non-reserved pages, page_count(page) denotes a reference count.
585  *   page_count() == 0 means the page is free. page->lru is then used for
586  *   freelist management in the buddy allocator.
587  *   page_count() > 0  means the page has been allocated.
588  *
589  * Pages are allocated by the slab allocator in order to provide memory
590  * to kmalloc and kmem_cache_alloc. In this case, the management of the
591  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
592  * unless a particular usage is carefully commented. (the responsibility of
593  * freeing the kmalloc memory is the caller's, of course).
594  *
595  * A page may be used by anyone else who does a __get_free_page().
596  * In this case, page_count still tracks the references, and should only
597  * be used through the normal accessor functions. The top bits of page->flags
598  * and page->virtual store page management information, but all other fields
599  * are unused and could be used privately, carefully. The management of this
600  * page is the responsibility of the one who allocated it, and those who have
601  * subsequently been given references to it.
602  *
603  * The other pages (we may call them "pagecache pages") are completely
604  * managed by the Linux memory manager: I/O, buffers, swapping etc.
605  * The following discussion applies only to them.
606  *
607  * A pagecache page contains an opaque `private' member, which belongs to the
608  * page's address_space. Usually, this is the address of a circular list of
609  * the page's disk buffers. PG_private must be set to tell the VM to call
610  * into the filesystem to release these pages.
611  *
612  * A page may belong to an inode's memory mapping. In this case, page->mapping
613  * is the pointer to the inode, and page->index is the file offset of the page,
614  * in units of PAGE_CACHE_SIZE.
615  *
616  * If pagecache pages are not associated with an inode, they are said to be
617  * anonymous pages. These may become associated with the swapcache, and in that
618  * case PG_swapcache is set, and page->private is an offset into the swapcache.
619  *
620  * In either case (swapcache or inode backed), the pagecache itself holds one
621  * reference to the page. Setting PG_private should also increment the
622  * refcount. The each user mapping also has a reference to the page.
623  *
624  * The pagecache pages are stored in a per-mapping radix tree, which is
625  * rooted at mapping->page_tree, and indexed by offset.
626  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
627  * lists, we instead now tag pages as dirty/writeback in the radix tree.
628  *
629  * All pagecache pages may be subject to I/O:
630  * - inode pages may need to be read from disk,
631  * - inode pages which have been modified and are MAP_SHARED may need
632  *   to be written back to the inode on disk,
633  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
634  *   modified may need to be swapped out to swap space and (later) to be read
635  *   back into memory.
636  */
637
638 /*
639  * The zone field is never updated after free_area_init_core()
640  * sets it, so none of the operations on it need to be atomic.
641  */
642
643 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
644 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
645 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
646 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
647 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
648
649 /*
650  * Define the bit shifts to access each section.  For non-existent
651  * sections we define the shift as 0; that plus a 0 mask ensures
652  * the compiler will optimise away reference to them.
653  */
654 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
655 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
656 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
657 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
658
659 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
660 #ifdef NODE_NOT_IN_PAGE_FLAGS
661 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
662 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
663                                                 SECTIONS_PGOFF : ZONES_PGOFF)
664 #else
665 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
666 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
667                                                 NODES_PGOFF : ZONES_PGOFF)
668 #endif
669
670 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
671
672 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
673 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
674 #endif
675
676 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
677 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
678 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
679 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
680 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
681
682 static inline enum zone_type page_zonenum(const struct page *page)
683 {
684         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
685 }
686
687 #ifdef CONFIG_ZONE_DEVICE
688 void get_zone_device_page(struct page *page);
689 void put_zone_device_page(struct page *page);
690 static inline bool is_zone_device_page(const struct page *page)
691 {
692         return page_zonenum(page) == ZONE_DEVICE;
693 }
694 #else
695 static inline void get_zone_device_page(struct page *page)
696 {
697 }
698 static inline void put_zone_device_page(struct page *page)
699 {
700 }
701 static inline bool is_zone_device_page(const struct page *page)
702 {
703         return false;
704 }
705 #endif
706
707 static inline void get_page(struct page *page)
708 {
709         page = compound_head(page);
710         /*
711          * Getting a normal page or the head of a compound page
712          * requires to already have an elevated page->_count.
713          */
714         VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
715         atomic_inc(&page->_count);
716
717         if (unlikely(is_zone_device_page(page)))
718                 get_zone_device_page(page);
719 }
720
721 static inline void put_page(struct page *page)
722 {
723         page = compound_head(page);
724
725         if (put_page_testzero(page))
726                 __put_page(page);
727
728         if (unlikely(is_zone_device_page(page)))
729                 put_zone_device_page(page);
730 }
731
732 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
733 #define SECTION_IN_PAGE_FLAGS
734 #endif
735
736 /*
737  * The identification function is mainly used by the buddy allocator for
738  * determining if two pages could be buddies. We are not really identifying
739  * the zone since we could be using the section number id if we do not have
740  * node id available in page flags.
741  * We only guarantee that it will return the same value for two combinable
742  * pages in a zone.
743  */
744 static inline int page_zone_id(struct page *page)
745 {
746         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
747 }
748
749 static inline int zone_to_nid(struct zone *zone)
750 {
751 #ifdef CONFIG_NUMA
752         return zone->node;
753 #else
754         return 0;
755 #endif
756 }
757
758 #ifdef NODE_NOT_IN_PAGE_FLAGS
759 extern int page_to_nid(const struct page *page);
760 #else
761 static inline int page_to_nid(const struct page *page)
762 {
763         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
764 }
765 #endif
766
767 #ifdef CONFIG_NUMA_BALANCING
768 static inline int cpu_pid_to_cpupid(int cpu, int pid)
769 {
770         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
771 }
772
773 static inline int cpupid_to_pid(int cpupid)
774 {
775         return cpupid & LAST__PID_MASK;
776 }
777
778 static inline int cpupid_to_cpu(int cpupid)
779 {
780         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
781 }
782
783 static inline int cpupid_to_nid(int cpupid)
784 {
785         return cpu_to_node(cpupid_to_cpu(cpupid));
786 }
787
788 static inline bool cpupid_pid_unset(int cpupid)
789 {
790         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
791 }
792
793 static inline bool cpupid_cpu_unset(int cpupid)
794 {
795         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
796 }
797
798 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
799 {
800         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
801 }
802
803 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
804 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
805 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
806 {
807         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
808 }
809
810 static inline int page_cpupid_last(struct page *page)
811 {
812         return page->_last_cpupid;
813 }
814 static inline void page_cpupid_reset_last(struct page *page)
815 {
816         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
817 }
818 #else
819 static inline int page_cpupid_last(struct page *page)
820 {
821         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
822 }
823
824 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
825
826 static inline void page_cpupid_reset_last(struct page *page)
827 {
828         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
829
830         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
831         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
832 }
833 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
834 #else /* !CONFIG_NUMA_BALANCING */
835 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
836 {
837         return page_to_nid(page); /* XXX */
838 }
839
840 static inline int page_cpupid_last(struct page *page)
841 {
842         return page_to_nid(page); /* XXX */
843 }
844
845 static inline int cpupid_to_nid(int cpupid)
846 {
847         return -1;
848 }
849
850 static inline int cpupid_to_pid(int cpupid)
851 {
852         return -1;
853 }
854
855 static inline int cpupid_to_cpu(int cpupid)
856 {
857         return -1;
858 }
859
860 static inline int cpu_pid_to_cpupid(int nid, int pid)
861 {
862         return -1;
863 }
864
865 static inline bool cpupid_pid_unset(int cpupid)
866 {
867         return 1;
868 }
869
870 static inline void page_cpupid_reset_last(struct page *page)
871 {
872 }
873
874 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
875 {
876         return false;
877 }
878 #endif /* CONFIG_NUMA_BALANCING */
879
880 static inline struct zone *page_zone(const struct page *page)
881 {
882         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
883 }
884
885 #ifdef SECTION_IN_PAGE_FLAGS
886 static inline void set_page_section(struct page *page, unsigned long section)
887 {
888         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
889         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
890 }
891
892 static inline unsigned long page_to_section(const struct page *page)
893 {
894         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
895 }
896 #endif
897
898 static inline void set_page_zone(struct page *page, enum zone_type zone)
899 {
900         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
901         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
902 }
903
904 static inline void set_page_node(struct page *page, unsigned long node)
905 {
906         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
907         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
908 }
909
910 static inline void set_page_links(struct page *page, enum zone_type zone,
911         unsigned long node, unsigned long pfn)
912 {
913         set_page_zone(page, zone);
914         set_page_node(page, node);
915 #ifdef SECTION_IN_PAGE_FLAGS
916         set_page_section(page, pfn_to_section_nr(pfn));
917 #endif
918 }
919
920 #ifdef CONFIG_MEMCG
921 static inline struct mem_cgroup *page_memcg(struct page *page)
922 {
923         return page->mem_cgroup;
924 }
925
926 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
927 {
928         page->mem_cgroup = memcg;
929 }
930 #else
931 static inline struct mem_cgroup *page_memcg(struct page *page)
932 {
933         return NULL;
934 }
935
936 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
937 {
938 }
939 #endif
940
941 /*
942  * Some inline functions in vmstat.h depend on page_zone()
943  */
944 #include <linux/vmstat.h>
945
946 static __always_inline void *lowmem_page_address(const struct page *page)
947 {
948         return __va(PFN_PHYS(page_to_pfn(page)));
949 }
950
951 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
952 #define HASHED_PAGE_VIRTUAL
953 #endif
954
955 #if defined(WANT_PAGE_VIRTUAL)
956 static inline void *page_address(const struct page *page)
957 {
958         return page->virtual;
959 }
960 static inline void set_page_address(struct page *page, void *address)
961 {
962         page->virtual = address;
963 }
964 #define page_address_init()  do { } while(0)
965 #endif
966
967 #if defined(HASHED_PAGE_VIRTUAL)
968 void *page_address(const struct page *page);
969 void set_page_address(struct page *page, void *virtual);
970 void page_address_init(void);
971 #endif
972
973 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
974 #define page_address(page) lowmem_page_address(page)
975 #define set_page_address(page, address)  do { } while(0)
976 #define page_address_init()  do { } while(0)
977 #endif
978
979 extern void *page_rmapping(struct page *page);
980 extern struct anon_vma *page_anon_vma(struct page *page);
981 extern struct address_space *page_mapping(struct page *page);
982
983 extern struct address_space *__page_file_mapping(struct page *);
984
985 static inline
986 struct address_space *page_file_mapping(struct page *page)
987 {
988         if (unlikely(PageSwapCache(page)))
989                 return __page_file_mapping(page);
990
991         return page->mapping;
992 }
993
994 /*
995  * Return the pagecache index of the passed page.  Regular pagecache pages
996  * use ->index whereas swapcache pages use ->private
997  */
998 static inline pgoff_t page_index(struct page *page)
999 {
1000         if (unlikely(PageSwapCache(page)))
1001                 return page_private(page);
1002         return page->index;
1003 }
1004
1005 extern pgoff_t __page_file_index(struct page *page);
1006
1007 /*
1008  * Return the file index of the page. Regular pagecache pages use ->index
1009  * whereas swapcache pages use swp_offset(->private)
1010  */
1011 static inline pgoff_t page_file_index(struct page *page)
1012 {
1013         if (unlikely(PageSwapCache(page)))
1014                 return __page_file_index(page);
1015
1016         return page->index;
1017 }
1018
1019 /*
1020  * Return true if this page is mapped into pagetables.
1021  * For compound page it returns true if any subpage of compound page is mapped.
1022  */
1023 static inline bool page_mapped(struct page *page)
1024 {
1025         int i;
1026         if (likely(!PageCompound(page)))
1027                 return atomic_read(&page->_mapcount) >= 0;
1028         page = compound_head(page);
1029         if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1030                 return true;
1031         for (i = 0; i < hpage_nr_pages(page); i++) {
1032                 if (atomic_read(&page[i]._mapcount) >= 0)
1033                         return true;
1034         }
1035         return false;
1036 }
1037
1038 /*
1039  * Return true only if the page has been allocated with
1040  * ALLOC_NO_WATERMARKS and the low watermark was not
1041  * met implying that the system is under some pressure.
1042  */
1043 static inline bool page_is_pfmemalloc(struct page *page)
1044 {
1045         /*
1046          * Page index cannot be this large so this must be
1047          * a pfmemalloc page.
1048          */
1049         return page->index == -1UL;
1050 }
1051
1052 /*
1053  * Only to be called by the page allocator on a freshly allocated
1054  * page.
1055  */
1056 static inline void set_page_pfmemalloc(struct page *page)
1057 {
1058         page->index = -1UL;
1059 }
1060
1061 static inline void clear_page_pfmemalloc(struct page *page)
1062 {
1063         page->index = 0;
1064 }
1065
1066 /*
1067  * Different kinds of faults, as returned by handle_mm_fault().
1068  * Used to decide whether a process gets delivered SIGBUS or
1069  * just gets major/minor fault counters bumped up.
1070  */
1071
1072 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1073
1074 #define VM_FAULT_OOM    0x0001
1075 #define VM_FAULT_SIGBUS 0x0002
1076 #define VM_FAULT_MAJOR  0x0004
1077 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1078 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1079 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1080 #define VM_FAULT_SIGSEGV 0x0040
1081
1082 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1083 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1084 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1085 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1086
1087 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1088
1089 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1090                          VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1091                          VM_FAULT_FALLBACK)
1092
1093 /* Encode hstate index for a hwpoisoned large page */
1094 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1095 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1096
1097 /*
1098  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1099  */
1100 extern void pagefault_out_of_memory(void);
1101
1102 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1103
1104 /*
1105  * Flags passed to show_mem() and show_free_areas() to suppress output in
1106  * various contexts.
1107  */
1108 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1109
1110 extern void show_free_areas(unsigned int flags);
1111 extern bool skip_free_areas_node(unsigned int flags, int nid);
1112
1113 int shmem_zero_setup(struct vm_area_struct *);
1114 #ifdef CONFIG_SHMEM
1115 bool shmem_mapping(struct address_space *mapping);
1116 #else
1117 static inline bool shmem_mapping(struct address_space *mapping)
1118 {
1119         return false;
1120 }
1121 #endif
1122
1123 extern bool can_do_mlock(void);
1124 extern int user_shm_lock(size_t, struct user_struct *);
1125 extern void user_shm_unlock(size_t, struct user_struct *);
1126
1127 /*
1128  * Parameter block passed down to zap_pte_range in exceptional cases.
1129  */
1130 struct zap_details {
1131         struct address_space *check_mapping;    /* Check page->mapping if set */
1132         pgoff_t first_index;                    /* Lowest page->index to unmap */
1133         pgoff_t last_index;                     /* Highest page->index to unmap */
1134 };
1135
1136 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1137                 pte_t pte);
1138
1139 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1140                 unsigned long size);
1141 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1142                 unsigned long size, struct zap_details *);
1143 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1144                 unsigned long start, unsigned long end);
1145
1146 /**
1147  * mm_walk - callbacks for walk_page_range
1148  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1149  *             this handler is required to be able to handle
1150  *             pmd_trans_huge() pmds.  They may simply choose to
1151  *             split_huge_page() instead of handling it explicitly.
1152  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1153  * @pte_hole: if set, called for each hole at all levels
1154  * @hugetlb_entry: if set, called for each hugetlb entry
1155  * @test_walk: caller specific callback function to determine whether
1156  *             we walk over the current vma or not. A positive returned
1157  *             value means "do page table walk over the current vma,"
1158  *             and a negative one means "abort current page table walk
1159  *             right now." 0 means "skip the current vma."
1160  * @mm:        mm_struct representing the target process of page table walk
1161  * @vma:       vma currently walked (NULL if walking outside vmas)
1162  * @private:   private data for callbacks' usage
1163  *
1164  * (see the comment on walk_page_range() for more details)
1165  */
1166 struct mm_walk {
1167         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1168                          unsigned long next, struct mm_walk *walk);
1169         int (*pte_entry)(pte_t *pte, unsigned long addr,
1170                          unsigned long next, struct mm_walk *walk);
1171         int (*pte_hole)(unsigned long addr, unsigned long next,
1172                         struct mm_walk *walk);
1173         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1174                              unsigned long addr, unsigned long next,
1175                              struct mm_walk *walk);
1176         int (*test_walk)(unsigned long addr, unsigned long next,
1177                         struct mm_walk *walk);
1178         struct mm_struct *mm;
1179         struct vm_area_struct *vma;
1180         void *private;
1181 };
1182
1183 int walk_page_range(unsigned long addr, unsigned long end,
1184                 struct mm_walk *walk);
1185 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1186 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1187                 unsigned long end, unsigned long floor, unsigned long ceiling);
1188 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1189                         struct vm_area_struct *vma);
1190 void unmap_mapping_range(struct address_space *mapping,
1191                 loff_t const holebegin, loff_t const holelen, int even_cows);
1192 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1193         unsigned long *pfn);
1194 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1195                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1196 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1197                         void *buf, int len, int write);
1198
1199 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1200                 loff_t const holebegin, loff_t const holelen)
1201 {
1202         unmap_mapping_range(mapping, holebegin, holelen, 0);
1203 }
1204
1205 extern void truncate_pagecache(struct inode *inode, loff_t new);
1206 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1207 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1208 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1209 int truncate_inode_page(struct address_space *mapping, struct page *page);
1210 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1211 int invalidate_inode_page(struct page *page);
1212
1213 #ifdef CONFIG_MMU
1214 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1215                         unsigned long address, unsigned int flags);
1216 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1217                             unsigned long address, unsigned int fault_flags,
1218                             bool *unlocked);
1219 #else
1220 static inline int handle_mm_fault(struct mm_struct *mm,
1221                         struct vm_area_struct *vma, unsigned long address,
1222                         unsigned int flags)
1223 {
1224         /* should never happen if there's no MMU */
1225         BUG();
1226         return VM_FAULT_SIGBUS;
1227 }
1228 static inline int fixup_user_fault(struct task_struct *tsk,
1229                 struct mm_struct *mm, unsigned long address,
1230                 unsigned int fault_flags, bool *unlocked)
1231 {
1232         /* should never happen if there's no MMU */
1233         BUG();
1234         return -EFAULT;
1235 }
1236 #endif
1237
1238 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1239 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1240                 void *buf, int len, int write);
1241
1242 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1243                       unsigned long start, unsigned long nr_pages,
1244                       unsigned int foll_flags, struct page **pages,
1245                       struct vm_area_struct **vmas, int *nonblocking);
1246 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1247                             unsigned long start, unsigned long nr_pages,
1248                             int write, int force, struct page **pages,
1249                             struct vm_area_struct **vmas);
1250 long get_user_pages6(unsigned long start, unsigned long nr_pages,
1251                             int write, int force, struct page **pages,
1252                             struct vm_area_struct **vmas);
1253 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
1254                     int write, int force, struct page **pages, int *locked);
1255 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1256                                unsigned long start, unsigned long nr_pages,
1257                                int write, int force, struct page **pages,
1258                                unsigned int gup_flags);
1259 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
1260                     int write, int force, struct page **pages);
1261 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1262                         struct page **pages);
1263
1264 /* suppress warnings from use in EXPORT_SYMBOL() */
1265 #ifndef __DISABLE_GUP_DEPRECATED
1266 #define __gup_deprecated __deprecated
1267 #else
1268 #define __gup_deprecated
1269 #endif
1270 /*
1271  * These macros provide backward-compatibility with the old
1272  * get_user_pages() variants which took tsk/mm.  These
1273  * functions/macros provide both compile-time __deprecated so we
1274  * can catch old-style use and not break the build.  The actual
1275  * functions also have WARN_ON()s to let us know at runtime if
1276  * the get_user_pages() should have been the "remote" variant.
1277  *
1278  * These are hideous, but temporary.
1279  *
1280  * If you run into one of these __deprecated warnings, look
1281  * at how you are calling get_user_pages().  If you are calling
1282  * it with current/current->mm as the first two arguments,
1283  * simply remove those arguments.  The behavior will be the same
1284  * as it is now.  If you are calling it on another task, use
1285  * get_user_pages_remote() instead.
1286  *
1287  * Any questions?  Ask Dave Hansen <dave@sr71.net>
1288  */
1289 long
1290 __gup_deprecated
1291 get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1292                 unsigned long start, unsigned long nr_pages,
1293                 int write, int force, struct page **pages,
1294                 struct vm_area_struct **vmas);
1295 #define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...)  \
1296         get_user_pages
1297 #define get_user_pages(...) GUP_MACRO(__VA_ARGS__,      \
1298                 get_user_pages8, x,                     \
1299                 get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
1300
1301 __gup_deprecated
1302 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1303                 unsigned long start, unsigned long nr_pages,
1304                 int write, int force, struct page **pages,
1305                 int *locked);
1306 #define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...)  \
1307         get_user_pages_locked
1308 #define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__,      \
1309                 get_user_pages_locked8, x,                      \
1310                 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
1311
1312 __gup_deprecated
1313 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1314                 unsigned long start, unsigned long nr_pages,
1315                 int write, int force, struct page **pages);
1316 #define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...)    \
1317         get_user_pages_unlocked
1318 #define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__,    \
1319                 get_user_pages_unlocked7, x,                    \
1320                 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
1321
1322 /* Container for pinned pfns / pages */
1323 struct frame_vector {
1324         unsigned int nr_allocated;      /* Number of frames we have space for */
1325         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1326         bool got_ref;           /* Did we pin pages by getting page ref? */
1327         bool is_pfns;           /* Does array contain pages or pfns? */
1328         void *ptrs[0];          /* Array of pinned pfns / pages. Use
1329                                  * pfns_vector_pages() or pfns_vector_pfns()
1330                                  * for access */
1331 };
1332
1333 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1334 void frame_vector_destroy(struct frame_vector *vec);
1335 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1336                      bool write, bool force, struct frame_vector *vec);
1337 void put_vaddr_frames(struct frame_vector *vec);
1338 int frame_vector_to_pages(struct frame_vector *vec);
1339 void frame_vector_to_pfns(struct frame_vector *vec);
1340
1341 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1342 {
1343         return vec->nr_frames;
1344 }
1345
1346 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1347 {
1348         if (vec->is_pfns) {
1349                 int err = frame_vector_to_pages(vec);
1350
1351                 if (err)
1352                         return ERR_PTR(err);
1353         }
1354         return (struct page **)(vec->ptrs);
1355 }
1356
1357 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1358 {
1359         if (!vec->is_pfns)
1360                 frame_vector_to_pfns(vec);
1361         return (unsigned long *)(vec->ptrs);
1362 }
1363
1364 struct kvec;
1365 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1366                         struct page **pages);
1367 int get_kernel_page(unsigned long start, int write, struct page **pages);
1368 struct page *get_dump_page(unsigned long addr);
1369
1370 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1371 extern void do_invalidatepage(struct page *page, unsigned int offset,
1372                               unsigned int length);
1373
1374 int __set_page_dirty_nobuffers(struct page *page);
1375 int __set_page_dirty_no_writeback(struct page *page);
1376 int redirty_page_for_writepage(struct writeback_control *wbc,
1377                                 struct page *page);
1378 void account_page_dirtied(struct page *page, struct address_space *mapping,
1379                           struct mem_cgroup *memcg);
1380 void account_page_cleaned(struct page *page, struct address_space *mapping,
1381                           struct mem_cgroup *memcg, struct bdi_writeback *wb);
1382 int set_page_dirty(struct page *page);
1383 int set_page_dirty_lock(struct page *page);
1384 void cancel_dirty_page(struct page *page);
1385 int clear_page_dirty_for_io(struct page *page);
1386
1387 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1388
1389 /* Is the vma a continuation of the stack vma above it? */
1390 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1391 {
1392         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1393 }
1394
1395 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1396 {
1397         return !vma->vm_ops;
1398 }
1399
1400 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1401                                              unsigned long addr)
1402 {
1403         return (vma->vm_flags & VM_GROWSDOWN) &&
1404                 (vma->vm_start == addr) &&
1405                 !vma_growsdown(vma->vm_prev, addr);
1406 }
1407
1408 /* Is the vma a continuation of the stack vma below it? */
1409 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1410 {
1411         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1412 }
1413
1414 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1415                                            unsigned long addr)
1416 {
1417         return (vma->vm_flags & VM_GROWSUP) &&
1418                 (vma->vm_end == addr) &&
1419                 !vma_growsup(vma->vm_next, addr);
1420 }
1421
1422 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1423
1424 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1425                 unsigned long old_addr, struct vm_area_struct *new_vma,
1426                 unsigned long new_addr, unsigned long len,
1427                 bool need_rmap_locks);
1428 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1429                               unsigned long end, pgprot_t newprot,
1430                               int dirty_accountable, int prot_numa);
1431 extern int mprotect_fixup(struct vm_area_struct *vma,
1432                           struct vm_area_struct **pprev, unsigned long start,
1433                           unsigned long end, unsigned long newflags);
1434
1435 /*
1436  * doesn't attempt to fault and will return short.
1437  */
1438 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1439                           struct page **pages);
1440 /*
1441  * per-process(per-mm_struct) statistics.
1442  */
1443 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1444 {
1445         long val = atomic_long_read(&mm->rss_stat.count[member]);
1446
1447 #ifdef SPLIT_RSS_COUNTING
1448         /*
1449          * counter is updated in asynchronous manner and may go to minus.
1450          * But it's never be expected number for users.
1451          */
1452         if (val < 0)
1453                 val = 0;
1454 #endif
1455         return (unsigned long)val;
1456 }
1457
1458 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1459 {
1460         atomic_long_add(value, &mm->rss_stat.count[member]);
1461 }
1462
1463 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1464 {
1465         atomic_long_inc(&mm->rss_stat.count[member]);
1466 }
1467
1468 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1469 {
1470         atomic_long_dec(&mm->rss_stat.count[member]);
1471 }
1472
1473 /* Optimized variant when page is already known not to be PageAnon */
1474 static inline int mm_counter_file(struct page *page)
1475 {
1476         if (PageSwapBacked(page))
1477                 return MM_SHMEMPAGES;
1478         return MM_FILEPAGES;
1479 }
1480
1481 static inline int mm_counter(struct page *page)
1482 {
1483         if (PageAnon(page))
1484                 return MM_ANONPAGES;
1485         return mm_counter_file(page);
1486 }
1487
1488 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1489 {
1490         return get_mm_counter(mm, MM_FILEPAGES) +
1491                 get_mm_counter(mm, MM_ANONPAGES) +
1492                 get_mm_counter(mm, MM_SHMEMPAGES);
1493 }
1494
1495 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1496 {
1497         return max(mm->hiwater_rss, get_mm_rss(mm));
1498 }
1499
1500 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1501 {
1502         return max(mm->hiwater_vm, mm->total_vm);
1503 }
1504
1505 static inline void update_hiwater_rss(struct mm_struct *mm)
1506 {
1507         unsigned long _rss = get_mm_rss(mm);
1508
1509         if ((mm)->hiwater_rss < _rss)
1510                 (mm)->hiwater_rss = _rss;
1511 }
1512
1513 static inline void update_hiwater_vm(struct mm_struct *mm)
1514 {
1515         if (mm->hiwater_vm < mm->total_vm)
1516                 mm->hiwater_vm = mm->total_vm;
1517 }
1518
1519 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1520 {
1521         mm->hiwater_rss = get_mm_rss(mm);
1522 }
1523
1524 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1525                                          struct mm_struct *mm)
1526 {
1527         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1528
1529         if (*maxrss < hiwater_rss)
1530                 *maxrss = hiwater_rss;
1531 }
1532
1533 #if defined(SPLIT_RSS_COUNTING)
1534 void sync_mm_rss(struct mm_struct *mm);
1535 #else
1536 static inline void sync_mm_rss(struct mm_struct *mm)
1537 {
1538 }
1539 #endif
1540
1541 #ifndef __HAVE_ARCH_PTE_DEVMAP
1542 static inline int pte_devmap(pte_t pte)
1543 {
1544         return 0;
1545 }
1546 #endif
1547
1548 int vma_wants_writenotify(struct vm_area_struct *vma);
1549
1550 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1551                                spinlock_t **ptl);
1552 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1553                                     spinlock_t **ptl)
1554 {
1555         pte_t *ptep;
1556         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1557         return ptep;
1558 }
1559
1560 #ifdef __PAGETABLE_PUD_FOLDED
1561 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1562                                                 unsigned long address)
1563 {
1564         return 0;
1565 }
1566 #else
1567 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1568 #endif
1569
1570 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1571 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1572                                                 unsigned long address)
1573 {
1574         return 0;
1575 }
1576
1577 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1578
1579 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1580 {
1581         return 0;
1582 }
1583
1584 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1585 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1586
1587 #else
1588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1589
1590 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1591 {
1592         atomic_long_set(&mm->nr_pmds, 0);
1593 }
1594
1595 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1596 {
1597         return atomic_long_read(&mm->nr_pmds);
1598 }
1599
1600 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1601 {
1602         atomic_long_inc(&mm->nr_pmds);
1603 }
1604
1605 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1606 {
1607         atomic_long_dec(&mm->nr_pmds);
1608 }
1609 #endif
1610
1611 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1612                 pmd_t *pmd, unsigned long address);
1613 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1614
1615 /*
1616  * The following ifdef needed to get the 4level-fixup.h header to work.
1617  * Remove it when 4level-fixup.h has been removed.
1618  */
1619 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1620 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1621 {
1622         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1623                 NULL: pud_offset(pgd, address);
1624 }
1625
1626 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1627 {
1628         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1629                 NULL: pmd_offset(pud, address);
1630 }
1631 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1632
1633 #if USE_SPLIT_PTE_PTLOCKS
1634 #if ALLOC_SPLIT_PTLOCKS
1635 void __init ptlock_cache_init(void);
1636 extern bool ptlock_alloc(struct page *page);
1637 extern void ptlock_free(struct page *page);
1638
1639 static inline spinlock_t *ptlock_ptr(struct page *page)
1640 {
1641         return page->ptl;
1642 }
1643 #else /* ALLOC_SPLIT_PTLOCKS */
1644 static inline void ptlock_cache_init(void)
1645 {
1646 }
1647
1648 static inline bool ptlock_alloc(struct page *page)
1649 {
1650         return true;
1651 }
1652
1653 static inline void ptlock_free(struct page *page)
1654 {
1655 }
1656
1657 static inline spinlock_t *ptlock_ptr(struct page *page)
1658 {
1659         return &page->ptl;
1660 }
1661 #endif /* ALLOC_SPLIT_PTLOCKS */
1662
1663 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1664 {
1665         return ptlock_ptr(pmd_page(*pmd));
1666 }
1667
1668 static inline bool ptlock_init(struct page *page)
1669 {
1670         /*
1671          * prep_new_page() initialize page->private (and therefore page->ptl)
1672          * with 0. Make sure nobody took it in use in between.
1673          *
1674          * It can happen if arch try to use slab for page table allocation:
1675          * slab code uses page->slab_cache, which share storage with page->ptl.
1676          */
1677         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1678         if (!ptlock_alloc(page))
1679                 return false;
1680         spin_lock_init(ptlock_ptr(page));
1681         return true;
1682 }
1683
1684 /* Reset page->mapping so free_pages_check won't complain. */
1685 static inline void pte_lock_deinit(struct page *page)
1686 {
1687         page->mapping = NULL;
1688         ptlock_free(page);
1689 }
1690
1691 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1692 /*
1693  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1694  */
1695 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1696 {
1697         return &mm->page_table_lock;
1698 }
1699 static inline void ptlock_cache_init(void) {}
1700 static inline bool ptlock_init(struct page *page) { return true; }
1701 static inline void pte_lock_deinit(struct page *page) {}
1702 #endif /* USE_SPLIT_PTE_PTLOCKS */
1703
1704 static inline void pgtable_init(void)
1705 {
1706         ptlock_cache_init();
1707         pgtable_cache_init();
1708 }
1709
1710 static inline bool pgtable_page_ctor(struct page *page)
1711 {
1712         if (!ptlock_init(page))
1713                 return false;
1714         inc_zone_page_state(page, NR_PAGETABLE);
1715         return true;
1716 }
1717
1718 static inline void pgtable_page_dtor(struct page *page)
1719 {
1720         pte_lock_deinit(page);
1721         dec_zone_page_state(page, NR_PAGETABLE);
1722 }
1723
1724 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1725 ({                                                      \
1726         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1727         pte_t *__pte = pte_offset_map(pmd, address);    \
1728         *(ptlp) = __ptl;                                \
1729         spin_lock(__ptl);                               \
1730         __pte;                                          \
1731 })
1732
1733 #define pte_unmap_unlock(pte, ptl)      do {            \
1734         spin_unlock(ptl);                               \
1735         pte_unmap(pte);                                 \
1736 } while (0)
1737
1738 #define pte_alloc_map(mm, vma, pmd, address)                            \
1739         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1740                                                         pmd, address))? \
1741          NULL: pte_offset_map(pmd, address))
1742
1743 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1744         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1745                                                         pmd, address))? \
1746                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1747
1748 #define pte_alloc_kernel(pmd, address)                  \
1749         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1750                 NULL: pte_offset_kernel(pmd, address))
1751
1752 #if USE_SPLIT_PMD_PTLOCKS
1753
1754 static struct page *pmd_to_page(pmd_t *pmd)
1755 {
1756         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1757         return virt_to_page((void *)((unsigned long) pmd & mask));
1758 }
1759
1760 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1761 {
1762         return ptlock_ptr(pmd_to_page(pmd));
1763 }
1764
1765 static inline bool pgtable_pmd_page_ctor(struct page *page)
1766 {
1767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1768         page->pmd_huge_pte = NULL;
1769 #endif
1770         return ptlock_init(page);
1771 }
1772
1773 static inline void pgtable_pmd_page_dtor(struct page *page)
1774 {
1775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1776         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1777 #endif
1778         ptlock_free(page);
1779 }
1780
1781 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1782
1783 #else
1784
1785 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1786 {
1787         return &mm->page_table_lock;
1788 }
1789
1790 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1791 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1792
1793 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1794
1795 #endif
1796
1797 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1798 {
1799         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1800         spin_lock(ptl);
1801         return ptl;
1802 }
1803
1804 extern void free_area_init(unsigned long * zones_size);
1805 extern void free_area_init_node(int nid, unsigned long * zones_size,
1806                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1807 extern void free_initmem(void);
1808
1809 /*
1810  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1811  * into the buddy system. The freed pages will be poisoned with pattern
1812  * "poison" if it's within range [0, UCHAR_MAX].
1813  * Return pages freed into the buddy system.
1814  */
1815 extern unsigned long free_reserved_area(void *start, void *end,
1816                                         int poison, char *s);
1817
1818 #ifdef  CONFIG_HIGHMEM
1819 /*
1820  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1821  * and totalram_pages.
1822  */
1823 extern void free_highmem_page(struct page *page);
1824 #endif
1825
1826 extern void adjust_managed_page_count(struct page *page, long count);
1827 extern void mem_init_print_info(const char *str);
1828
1829 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1830
1831 /* Free the reserved page into the buddy system, so it gets managed. */
1832 static inline void __free_reserved_page(struct page *page)
1833 {
1834         ClearPageReserved(page);
1835         init_page_count(page);
1836         __free_page(page);
1837 }
1838
1839 static inline void free_reserved_page(struct page *page)
1840 {
1841         __free_reserved_page(page);
1842         adjust_managed_page_count(page, 1);
1843 }
1844
1845 static inline void mark_page_reserved(struct page *page)
1846 {
1847         SetPageReserved(page);
1848         adjust_managed_page_count(page, -1);
1849 }
1850
1851 /*
1852  * Default method to free all the __init memory into the buddy system.
1853  * The freed pages will be poisoned with pattern "poison" if it's within
1854  * range [0, UCHAR_MAX].
1855  * Return pages freed into the buddy system.
1856  */
1857 static inline unsigned long free_initmem_default(int poison)
1858 {
1859         extern char __init_begin[], __init_end[];
1860
1861         return free_reserved_area(&__init_begin, &__init_end,
1862                                   poison, "unused kernel");
1863 }
1864
1865 static inline unsigned long get_num_physpages(void)
1866 {
1867         int nid;
1868         unsigned long phys_pages = 0;
1869
1870         for_each_online_node(nid)
1871                 phys_pages += node_present_pages(nid);
1872
1873         return phys_pages;
1874 }
1875
1876 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1877 /*
1878  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1879  * zones, allocate the backing mem_map and account for memory holes in a more
1880  * architecture independent manner. This is a substitute for creating the
1881  * zone_sizes[] and zholes_size[] arrays and passing them to
1882  * free_area_init_node()
1883  *
1884  * An architecture is expected to register range of page frames backed by
1885  * physical memory with memblock_add[_node]() before calling
1886  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1887  * usage, an architecture is expected to do something like
1888  *
1889  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1890  *                                                       max_highmem_pfn};
1891  * for_each_valid_physical_page_range()
1892  *      memblock_add_node(base, size, nid)
1893  * free_area_init_nodes(max_zone_pfns);
1894  *
1895  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1896  * registered physical page range.  Similarly
1897  * sparse_memory_present_with_active_regions() calls memory_present() for
1898  * each range when SPARSEMEM is enabled.
1899  *
1900  * See mm/page_alloc.c for more information on each function exposed by
1901  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1902  */
1903 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1904 unsigned long node_map_pfn_alignment(void);
1905 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1906                                                 unsigned long end_pfn);
1907 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1908                                                 unsigned long end_pfn);
1909 extern void get_pfn_range_for_nid(unsigned int nid,
1910                         unsigned long *start_pfn, unsigned long *end_pfn);
1911 extern unsigned long find_min_pfn_with_active_regions(void);
1912 extern void free_bootmem_with_active_regions(int nid,
1913                                                 unsigned long max_low_pfn);
1914 extern void sparse_memory_present_with_active_regions(int nid);
1915
1916 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1917
1918 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1919     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1920 static inline int __early_pfn_to_nid(unsigned long pfn,
1921                                         struct mminit_pfnnid_cache *state)
1922 {
1923         return 0;
1924 }
1925 #else
1926 /* please see mm/page_alloc.c */
1927 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1928 /* there is a per-arch backend function. */
1929 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1930                                         struct mminit_pfnnid_cache *state);
1931 #endif
1932
1933 extern void set_dma_reserve(unsigned long new_dma_reserve);
1934 extern void memmap_init_zone(unsigned long, int, unsigned long,
1935                                 unsigned long, enum memmap_context);
1936 extern void setup_per_zone_wmarks(void);
1937 extern int __meminit init_per_zone_wmark_min(void);
1938 extern void mem_init(void);
1939 extern void __init mmap_init(void);
1940 extern void show_mem(unsigned int flags);
1941 extern void si_meminfo(struct sysinfo * val);
1942 extern void si_meminfo_node(struct sysinfo *val, int nid);
1943
1944 extern __printf(3, 4)
1945 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1946                 const char *fmt, ...);
1947
1948 extern void setup_per_cpu_pageset(void);
1949
1950 extern void zone_pcp_update(struct zone *zone);
1951 extern void zone_pcp_reset(struct zone *zone);
1952
1953 /* page_alloc.c */
1954 extern int min_free_kbytes;
1955
1956 /* nommu.c */
1957 extern atomic_long_t mmap_pages_allocated;
1958 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1959
1960 /* interval_tree.c */
1961 void vma_interval_tree_insert(struct vm_area_struct *node,
1962                               struct rb_root *root);
1963 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1964                                     struct vm_area_struct *prev,
1965                                     struct rb_root *root);
1966 void vma_interval_tree_remove(struct vm_area_struct *node,
1967                               struct rb_root *root);
1968 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1969                                 unsigned long start, unsigned long last);
1970 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1971                                 unsigned long start, unsigned long last);
1972
1973 #define vma_interval_tree_foreach(vma, root, start, last)               \
1974         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1975              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1976
1977 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1978                                    struct rb_root *root);
1979 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1980                                    struct rb_root *root);
1981 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1982         struct rb_root *root, unsigned long start, unsigned long last);
1983 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1984         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1985 #ifdef CONFIG_DEBUG_VM_RB
1986 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1987 #endif
1988
1989 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1990         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1991              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1992
1993 /* mmap.c */
1994 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1995 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1996         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1997 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1998         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1999         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2000         struct mempolicy *, struct vm_userfaultfd_ctx);
2001 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2002 extern int split_vma(struct mm_struct *,
2003         struct vm_area_struct *, unsigned long addr, int new_below);
2004 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2005 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2006         struct rb_node **, struct rb_node *);
2007 extern void unlink_file_vma(struct vm_area_struct *);
2008 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2009         unsigned long addr, unsigned long len, pgoff_t pgoff,
2010         bool *need_rmap_locks);
2011 extern void exit_mmap(struct mm_struct *);
2012
2013 static inline int check_data_rlimit(unsigned long rlim,
2014                                     unsigned long new,
2015                                     unsigned long start,
2016                                     unsigned long end_data,
2017                                     unsigned long start_data)
2018 {
2019         if (rlim < RLIM_INFINITY) {
2020                 if (((new - start) + (end_data - start_data)) > rlim)
2021                         return -ENOSPC;
2022         }
2023
2024         return 0;
2025 }
2026
2027 extern int mm_take_all_locks(struct mm_struct *mm);
2028 extern void mm_drop_all_locks(struct mm_struct *mm);
2029
2030 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2031 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2032
2033 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2034 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2035
2036 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2037                                    unsigned long addr, unsigned long len,
2038                                    unsigned long flags,
2039                                    const struct vm_special_mapping *spec);
2040 /* This is an obsolete alternative to _install_special_mapping. */
2041 extern int install_special_mapping(struct mm_struct *mm,
2042                                    unsigned long addr, unsigned long len,
2043                                    unsigned long flags, struct page **pages);
2044
2045 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2046
2047 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2048         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2049 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2050         unsigned long len, unsigned long prot, unsigned long flags,
2051         vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2052 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2053
2054 static inline unsigned long
2055 do_mmap_pgoff(struct file *file, unsigned long addr,
2056         unsigned long len, unsigned long prot, unsigned long flags,
2057         unsigned long pgoff, unsigned long *populate)
2058 {
2059         return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2060 }
2061
2062 #ifdef CONFIG_MMU
2063 extern int __mm_populate(unsigned long addr, unsigned long len,
2064                          int ignore_errors);
2065 static inline void mm_populate(unsigned long addr, unsigned long len)
2066 {
2067         /* Ignore errors */
2068         (void) __mm_populate(addr, len, 1);
2069 }
2070 #else
2071 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2072 #endif
2073
2074 /* These take the mm semaphore themselves */
2075 extern unsigned long vm_brk(unsigned long, unsigned long);
2076 extern int vm_munmap(unsigned long, size_t);
2077 extern unsigned long vm_mmap(struct file *, unsigned long,
2078         unsigned long, unsigned long,
2079         unsigned long, unsigned long);
2080
2081 struct vm_unmapped_area_info {
2082 #define VM_UNMAPPED_AREA_TOPDOWN 1
2083         unsigned long flags;
2084         unsigned long length;
2085         unsigned long low_limit;
2086         unsigned long high_limit;
2087         unsigned long align_mask;
2088         unsigned long align_offset;
2089 };
2090
2091 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2092 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2093
2094 /*
2095  * Search for an unmapped address range.
2096  *
2097  * We are looking for a range that:
2098  * - does not intersect with any VMA;
2099  * - is contained within the [low_limit, high_limit) interval;
2100  * - is at least the desired size.
2101  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2102  */
2103 static inline unsigned long
2104 vm_unmapped_area(struct vm_unmapped_area_info *info)
2105 {
2106         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2107                 return unmapped_area_topdown(info);
2108         else
2109                 return unmapped_area(info);
2110 }
2111
2112 /* truncate.c */
2113 extern void truncate_inode_pages(struct address_space *, loff_t);
2114 extern void truncate_inode_pages_range(struct address_space *,
2115                                        loff_t lstart, loff_t lend);
2116 extern void truncate_inode_pages_final(struct address_space *);
2117
2118 /* generic vm_area_ops exported for stackable file systems */
2119 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2120 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2121 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2122
2123 /* mm/page-writeback.c */
2124 int write_one_page(struct page *page, int wait);
2125 void task_dirty_inc(struct task_struct *tsk);
2126
2127 /* readahead.c */
2128 #define VM_MAX_READAHEAD        128     /* kbytes */
2129 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2130
2131 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2132                         pgoff_t offset, unsigned long nr_to_read);
2133
2134 void page_cache_sync_readahead(struct address_space *mapping,
2135                                struct file_ra_state *ra,
2136                                struct file *filp,
2137                                pgoff_t offset,
2138                                unsigned long size);
2139
2140 void page_cache_async_readahead(struct address_space *mapping,
2141                                 struct file_ra_state *ra,
2142                                 struct file *filp,
2143                                 struct page *pg,
2144                                 pgoff_t offset,
2145                                 unsigned long size);
2146
2147 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2148 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2149
2150 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2151 extern int expand_downwards(struct vm_area_struct *vma,
2152                 unsigned long address);
2153 #if VM_GROWSUP
2154 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2155 #else
2156   #define expand_upwards(vma, address) (0)
2157 #endif
2158
2159 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2160 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2161 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2162                                              struct vm_area_struct **pprev);
2163
2164 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2165    NULL if none.  Assume start_addr < end_addr. */
2166 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2167 {
2168         struct vm_area_struct * vma = find_vma(mm,start_addr);
2169
2170         if (vma && end_addr <= vma->vm_start)
2171                 vma = NULL;
2172         return vma;
2173 }
2174
2175 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2176 {
2177         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2178 }
2179
2180 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2181 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2182                                 unsigned long vm_start, unsigned long vm_end)
2183 {
2184         struct vm_area_struct *vma = find_vma(mm, vm_start);
2185
2186         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2187                 vma = NULL;
2188
2189         return vma;
2190 }
2191
2192 #ifdef CONFIG_MMU
2193 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2194 void vma_set_page_prot(struct vm_area_struct *vma);
2195 #else
2196 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2197 {
2198         return __pgprot(0);
2199 }
2200 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2201 {
2202         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2203 }
2204 #endif
2205
2206 #ifdef CONFIG_NUMA_BALANCING
2207 unsigned long change_prot_numa(struct vm_area_struct *vma,
2208                         unsigned long start, unsigned long end);
2209 #endif
2210
2211 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2212 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2213                         unsigned long pfn, unsigned long size, pgprot_t);
2214 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2215 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2216                         unsigned long pfn);
2217 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2218                         unsigned long pfn, pgprot_t pgprot);
2219 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2220                         pfn_t pfn);
2221 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2222
2223
2224 struct page *follow_page_mask(struct vm_area_struct *vma,
2225                               unsigned long address, unsigned int foll_flags,
2226                               unsigned int *page_mask);
2227
2228 static inline struct page *follow_page(struct vm_area_struct *vma,
2229                 unsigned long address, unsigned int foll_flags)
2230 {
2231         unsigned int unused_page_mask;
2232         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2233 }
2234
2235 #define FOLL_WRITE      0x01    /* check pte is writable */
2236 #define FOLL_TOUCH      0x02    /* mark page accessed */
2237 #define FOLL_GET        0x04    /* do get_page on page */
2238 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2239 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2240 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2241                                  * and return without waiting upon it */
2242 #define FOLL_POPULATE   0x40    /* fault in page */
2243 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2244 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2245 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2246 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2247 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2248 #define FOLL_MLOCK      0x1000  /* lock present pages */
2249 #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2250
2251 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2252                         void *data);
2253 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2254                                unsigned long size, pte_fn_t fn, void *data);
2255
2256
2257 #ifdef CONFIG_DEBUG_PAGEALLOC
2258 extern bool _debug_pagealloc_enabled;
2259 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2260
2261 static inline bool debug_pagealloc_enabled(void)
2262 {
2263         return _debug_pagealloc_enabled;
2264 }
2265
2266 static inline void
2267 kernel_map_pages(struct page *page, int numpages, int enable)
2268 {
2269         if (!debug_pagealloc_enabled())
2270                 return;
2271
2272         __kernel_map_pages(page, numpages, enable);
2273 }
2274 #ifdef CONFIG_HIBERNATION
2275 extern bool kernel_page_present(struct page *page);
2276 #endif /* CONFIG_HIBERNATION */
2277 #else
2278 static inline void
2279 kernel_map_pages(struct page *page, int numpages, int enable) {}
2280 #ifdef CONFIG_HIBERNATION
2281 static inline bool kernel_page_present(struct page *page) { return true; }
2282 #endif /* CONFIG_HIBERNATION */
2283 #endif
2284
2285 #ifdef __HAVE_ARCH_GATE_AREA
2286 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2287 extern int in_gate_area_no_mm(unsigned long addr);
2288 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2289 #else
2290 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2291 {
2292         return NULL;
2293 }
2294 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2295 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2296 {
2297         return 0;
2298 }
2299 #endif  /* __HAVE_ARCH_GATE_AREA */
2300
2301 #ifdef CONFIG_SYSCTL
2302 extern int sysctl_drop_caches;
2303 int drop_caches_sysctl_handler(struct ctl_table *, int,
2304                                         void __user *, size_t *, loff_t *);
2305 #endif
2306
2307 void drop_slab(void);
2308 void drop_slab_node(int nid);
2309
2310 #ifndef CONFIG_MMU
2311 #define randomize_va_space 0
2312 #else
2313 extern int randomize_va_space;
2314 #endif
2315
2316 const char * arch_vma_name(struct vm_area_struct *vma);
2317 void print_vma_addr(char *prefix, unsigned long rip);
2318
2319 void sparse_mem_maps_populate_node(struct page **map_map,
2320                                    unsigned long pnum_begin,
2321                                    unsigned long pnum_end,
2322                                    unsigned long map_count,
2323                                    int nodeid);
2324
2325 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2326 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2327 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2328 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2329 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2330 void *vmemmap_alloc_block(unsigned long size, int node);
2331 struct vmem_altmap;
2332 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2333                 struct vmem_altmap *altmap);
2334 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2335 {
2336         return __vmemmap_alloc_block_buf(size, node, NULL);
2337 }
2338
2339 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2340 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2341                                int node);
2342 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2343 void vmemmap_populate_print_last(void);
2344 #ifdef CONFIG_MEMORY_HOTPLUG
2345 void vmemmap_free(unsigned long start, unsigned long end);
2346 #endif
2347 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2348                                   unsigned long size);
2349
2350 enum mf_flags {
2351         MF_COUNT_INCREASED = 1 << 0,
2352         MF_ACTION_REQUIRED = 1 << 1,
2353         MF_MUST_KILL = 1 << 2,
2354         MF_SOFT_OFFLINE = 1 << 3,
2355 };
2356 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2357 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2358 extern int unpoison_memory(unsigned long pfn);
2359 extern int get_hwpoison_page(struct page *page);
2360 #define put_hwpoison_page(page) put_page(page)
2361 extern int sysctl_memory_failure_early_kill;
2362 extern int sysctl_memory_failure_recovery;
2363 extern void shake_page(struct page *p, int access);
2364 extern atomic_long_t num_poisoned_pages;
2365 extern int soft_offline_page(struct page *page, int flags);
2366
2367
2368 /*
2369  * Error handlers for various types of pages.
2370  */
2371 enum mf_result {
2372         MF_IGNORED,     /* Error: cannot be handled */
2373         MF_FAILED,      /* Error: handling failed */
2374         MF_DELAYED,     /* Will be handled later */
2375         MF_RECOVERED,   /* Successfully recovered */
2376 };
2377
2378 enum mf_action_page_type {
2379         MF_MSG_KERNEL,
2380         MF_MSG_KERNEL_HIGH_ORDER,
2381         MF_MSG_SLAB,
2382         MF_MSG_DIFFERENT_COMPOUND,
2383         MF_MSG_POISONED_HUGE,
2384         MF_MSG_HUGE,
2385         MF_MSG_FREE_HUGE,
2386         MF_MSG_UNMAP_FAILED,
2387         MF_MSG_DIRTY_SWAPCACHE,
2388         MF_MSG_CLEAN_SWAPCACHE,
2389         MF_MSG_DIRTY_MLOCKED_LRU,
2390         MF_MSG_CLEAN_MLOCKED_LRU,
2391         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2392         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2393         MF_MSG_DIRTY_LRU,
2394         MF_MSG_CLEAN_LRU,
2395         MF_MSG_TRUNCATED_LRU,
2396         MF_MSG_BUDDY,
2397         MF_MSG_BUDDY_2ND,
2398         MF_MSG_UNKNOWN,
2399 };
2400
2401 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2402 extern void clear_huge_page(struct page *page,
2403                             unsigned long addr,
2404                             unsigned int pages_per_huge_page);
2405 extern void copy_user_huge_page(struct page *dst, struct page *src,
2406                                 unsigned long addr, struct vm_area_struct *vma,
2407                                 unsigned int pages_per_huge_page);
2408 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2409
2410 extern struct page_ext_operations debug_guardpage_ops;
2411 extern struct page_ext_operations page_poisoning_ops;
2412
2413 #ifdef CONFIG_DEBUG_PAGEALLOC
2414 extern unsigned int _debug_guardpage_minorder;
2415 extern bool _debug_guardpage_enabled;
2416
2417 static inline unsigned int debug_guardpage_minorder(void)
2418 {
2419         return _debug_guardpage_minorder;
2420 }
2421
2422 static inline bool debug_guardpage_enabled(void)
2423 {
2424         return _debug_guardpage_enabled;
2425 }
2426
2427 static inline bool page_is_guard(struct page *page)
2428 {
2429         struct page_ext *page_ext;
2430
2431         if (!debug_guardpage_enabled())
2432                 return false;
2433
2434         page_ext = lookup_page_ext(page);
2435         return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2436 }
2437 #else
2438 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2439 static inline bool debug_guardpage_enabled(void) { return false; }
2440 static inline bool page_is_guard(struct page *page) { return false; }
2441 #endif /* CONFIG_DEBUG_PAGEALLOC */
2442
2443 #if MAX_NUMNODES > 1
2444 void __init setup_nr_node_ids(void);
2445 #else
2446 static inline void setup_nr_node_ids(void) {}
2447 #endif
2448
2449 #endif /* __KERNEL__ */
2450 #endif /* _LINUX_MM_H */