Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22
23 struct mempolicy;
24 struct anon_vma;
25 struct anon_vma_chain;
26 struct file_ra_state;
27 struct user_struct;
28 struct writeback_control;
29
30 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
31 extern unsigned long max_mapnr;
32
33 static inline void set_max_mapnr(unsigned long limit)
34 {
35         max_mapnr = limit;
36 }
37 #else
38 static inline void set_max_mapnr(unsigned long limit) { }
39 #endif
40
41 extern unsigned long totalram_pages;
42 extern void * high_memory;
43 extern int page_cluster;
44
45 #ifdef CONFIG_SYSCTL
46 extern int sysctl_legacy_va_layout;
47 #else
48 #define sysctl_legacy_va_layout 0
49 #endif
50
51 #include <asm/page.h>
52 #include <asm/pgtable.h>
53 #include <asm/processor.h>
54
55 #ifndef __pa_symbol
56 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
57 #endif
58
59 /*
60  * To prevent common memory management code establishing
61  * a zero page mapping on a read fault.
62  * This macro should be defined within <asm/pgtable.h>.
63  * s390 does this to prevent multiplexing of hardware bits
64  * related to the physical page in case of virtualization.
65  */
66 #ifndef mm_forbids_zeropage
67 #define mm_forbids_zeropage(X)  (0)
68 #endif
69
70 extern unsigned long sysctl_user_reserve_kbytes;
71 extern unsigned long sysctl_admin_reserve_kbytes;
72
73 extern int sysctl_overcommit_memory;
74 extern int sysctl_overcommit_ratio;
75 extern unsigned long sysctl_overcommit_kbytes;
76
77 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
78                                     size_t *, loff_t *);
79 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
80                                     size_t *, loff_t *);
81
82 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
83
84 /* to align the pointer to the (next) page boundary */
85 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
86
87 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
88 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
89
90 /*
91  * Linux kernel virtual memory manager primitives.
92  * The idea being to have a "virtual" mm in the same way
93  * we have a virtual fs - giving a cleaner interface to the
94  * mm details, and allowing different kinds of memory mappings
95  * (from shared memory to executable loading to arbitrary
96  * mmap() functions).
97  */
98
99 extern struct kmem_cache *vm_area_cachep;
100
101 #ifndef CONFIG_MMU
102 extern struct rb_root nommu_region_tree;
103 extern struct rw_semaphore nommu_region_sem;
104
105 extern unsigned int kobjsize(const void *objp);
106 #endif
107
108 /*
109  * vm_flags in vm_area_struct, see mm_types.h.
110  */
111 #define VM_NONE         0x00000000
112
113 #define VM_READ         0x00000001      /* currently active flags */
114 #define VM_WRITE        0x00000002
115 #define VM_EXEC         0x00000004
116 #define VM_SHARED       0x00000008
117
118 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
119 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
120 #define VM_MAYWRITE     0x00000020
121 #define VM_MAYEXEC      0x00000040
122 #define VM_MAYSHARE     0x00000080
123
124 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
125 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
126 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
127
128 #define VM_LOCKED       0x00002000
129 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
130
131                                         /* Used by sys_madvise() */
132 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
133 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
134
135 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
136 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
137 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
138 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
139 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
140 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
141 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
142 #define VM_ARCH_2       0x02000000
143 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
144
145 #ifdef CONFIG_MEM_SOFT_DIRTY
146 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
147 #else
148 # define VM_SOFTDIRTY   0
149 #endif
150
151 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
152 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
153 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
154 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
155
156 #if defined(CONFIG_X86)
157 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
158 #elif defined(CONFIG_PPC)
159 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
160 #elif defined(CONFIG_PARISC)
161 # define VM_GROWSUP     VM_ARCH_1
162 #elif defined(CONFIG_METAG)
163 # define VM_GROWSUP     VM_ARCH_1
164 #elif defined(CONFIG_IA64)
165 # define VM_GROWSUP     VM_ARCH_1
166 #elif !defined(CONFIG_MMU)
167 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
168 #endif
169
170 #if defined(CONFIG_X86)
171 /* MPX specific bounds table or bounds directory */
172 # define VM_MPX         VM_ARCH_2
173 #endif
174
175 #ifndef VM_GROWSUP
176 # define VM_GROWSUP     VM_NONE
177 #endif
178
179 /* Bits set in the VMA until the stack is in its final location */
180 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
181
182 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
183 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184 #endif
185
186 #ifdef CONFIG_STACK_GROWSUP
187 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188 #else
189 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190 #endif
191
192 /*
193  * Special vmas that are non-mergable, non-mlock()able.
194  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
195  */
196 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
197
198 /* This mask defines which mm->def_flags a process can inherit its parent */
199 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
200
201 /*
202  * mapping from the currently active vm_flags protection bits (the
203  * low four bits) to a page protection mask..
204  */
205 extern pgprot_t protection_map[16];
206
207 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
208 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
209 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
210 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
211 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
212 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
213 #define FAULT_FLAG_TRIED        0x40    /* second try */
214 #define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
215
216 /*
217  * vm_fault is filled by the the pagefault handler and passed to the vma's
218  * ->fault function. The vma's ->fault is responsible for returning a bitmask
219  * of VM_FAULT_xxx flags that give details about how the fault was handled.
220  *
221  * pgoff should be used in favour of virtual_address, if possible. If pgoff
222  * is used, one may implement ->remap_pages to get nonlinear mapping support.
223  */
224 struct vm_fault {
225         unsigned int flags;             /* FAULT_FLAG_xxx flags */
226         pgoff_t pgoff;                  /* Logical page offset based on vma */
227         void __user *virtual_address;   /* Faulting virtual address */
228
229         struct page *page;              /* ->fault handlers should return a
230                                          * page here, unless VM_FAULT_NOPAGE
231                                          * is set (which is also implied by
232                                          * VM_FAULT_ERROR).
233                                          */
234         /* for ->map_pages() only */
235         pgoff_t max_pgoff;              /* map pages for offset from pgoff till
236                                          * max_pgoff inclusive */
237         pte_t *pte;                     /* pte entry associated with ->pgoff */
238 };
239
240 /*
241  * These are the virtual MM functions - opening of an area, closing and
242  * unmapping it (needed to keep files on disk up-to-date etc), pointer
243  * to the functions called when a no-page or a wp-page exception occurs. 
244  */
245 struct vm_operations_struct {
246         void (*open)(struct vm_area_struct * area);
247         void (*close)(struct vm_area_struct * area);
248         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
249         void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
250
251         /* notification that a previously read-only page is about to become
252          * writable, if an error is returned it will cause a SIGBUS */
253         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
254
255         /* called by access_process_vm when get_user_pages() fails, typically
256          * for use by special VMAs that can switch between memory and hardware
257          */
258         int (*access)(struct vm_area_struct *vma, unsigned long addr,
259                       void *buf, int len, int write);
260
261         /* Called by the /proc/PID/maps code to ask the vma whether it
262          * has a special name.  Returning non-NULL will also cause this
263          * vma to be dumped unconditionally. */
264         const char *(*name)(struct vm_area_struct *vma);
265
266 #ifdef CONFIG_NUMA
267         /*
268          * set_policy() op must add a reference to any non-NULL @new mempolicy
269          * to hold the policy upon return.  Caller should pass NULL @new to
270          * remove a policy and fall back to surrounding context--i.e. do not
271          * install a MPOL_DEFAULT policy, nor the task or system default
272          * mempolicy.
273          */
274         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
275
276         /*
277          * get_policy() op must add reference [mpol_get()] to any policy at
278          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
279          * in mm/mempolicy.c will do this automatically.
280          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
281          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
282          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
283          * must return NULL--i.e., do not "fallback" to task or system default
284          * policy.
285          */
286         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
287                                         unsigned long addr);
288         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
289                 const nodemask_t *to, unsigned long flags);
290 #endif
291         /* called by sys_remap_file_pages() to populate non-linear mapping */
292         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
293                            unsigned long size, pgoff_t pgoff);
294 };
295
296 struct mmu_gather;
297 struct inode;
298
299 #define page_private(page)              ((page)->private)
300 #define set_page_private(page, v)       ((page)->private = (v))
301
302 /* It's valid only if the page is free path or free_list */
303 static inline void set_freepage_migratetype(struct page *page, int migratetype)
304 {
305         page->index = migratetype;
306 }
307
308 /* It's valid only if the page is free path or free_list */
309 static inline int get_freepage_migratetype(struct page *page)
310 {
311         return page->index;
312 }
313
314 /*
315  * FIXME: take this include out, include page-flags.h in
316  * files which need it (119 of them)
317  */
318 #include <linux/page-flags.h>
319 #include <linux/huge_mm.h>
320
321 /*
322  * Methods to modify the page usage count.
323  *
324  * What counts for a page usage:
325  * - cache mapping   (page->mapping)
326  * - private data    (page->private)
327  * - page mapped in a task's page tables, each mapping
328  *   is counted separately
329  *
330  * Also, many kernel routines increase the page count before a critical
331  * routine so they can be sure the page doesn't go away from under them.
332  */
333
334 /*
335  * Drop a ref, return true if the refcount fell to zero (the page has no users)
336  */
337 static inline int put_page_testzero(struct page *page)
338 {
339         VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
340         return atomic_dec_and_test(&page->_count);
341 }
342
343 /*
344  * Try to grab a ref unless the page has a refcount of zero, return false if
345  * that is the case.
346  * This can be called when MMU is off so it must not access
347  * any of the virtual mappings.
348  */
349 static inline int get_page_unless_zero(struct page *page)
350 {
351         return atomic_inc_not_zero(&page->_count);
352 }
353
354 /*
355  * Try to drop a ref unless the page has a refcount of one, return false if
356  * that is the case.
357  * This is to make sure that the refcount won't become zero after this drop.
358  * This can be called when MMU is off so it must not access
359  * any of the virtual mappings.
360  */
361 static inline int put_page_unless_one(struct page *page)
362 {
363         return atomic_add_unless(&page->_count, -1, 1);
364 }
365
366 extern int page_is_ram(unsigned long pfn);
367 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
368
369 /* Support for virtually mapped pages */
370 struct page *vmalloc_to_page(const void *addr);
371 unsigned long vmalloc_to_pfn(const void *addr);
372
373 /*
374  * Determine if an address is within the vmalloc range
375  *
376  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
377  * is no special casing required.
378  */
379 static inline int is_vmalloc_addr(const void *x)
380 {
381 #ifdef CONFIG_MMU
382         unsigned long addr = (unsigned long)x;
383
384         return addr >= VMALLOC_START && addr < VMALLOC_END;
385 #else
386         return 0;
387 #endif
388 }
389 #ifdef CONFIG_MMU
390 extern int is_vmalloc_or_module_addr(const void *x);
391 #else
392 static inline int is_vmalloc_or_module_addr(const void *x)
393 {
394         return 0;
395 }
396 #endif
397
398 extern void kvfree(const void *addr);
399
400 static inline void compound_lock(struct page *page)
401 {
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403         VM_BUG_ON_PAGE(PageSlab(page), page);
404         bit_spin_lock(PG_compound_lock, &page->flags);
405 #endif
406 }
407
408 static inline void compound_unlock(struct page *page)
409 {
410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
411         VM_BUG_ON_PAGE(PageSlab(page), page);
412         bit_spin_unlock(PG_compound_lock, &page->flags);
413 #endif
414 }
415
416 static inline unsigned long compound_lock_irqsave(struct page *page)
417 {
418         unsigned long uninitialized_var(flags);
419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
420         local_irq_save(flags);
421         compound_lock(page);
422 #endif
423         return flags;
424 }
425
426 static inline void compound_unlock_irqrestore(struct page *page,
427                                               unsigned long flags)
428 {
429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
430         compound_unlock(page);
431         local_irq_restore(flags);
432 #endif
433 }
434
435 static inline struct page *compound_head_by_tail(struct page *tail)
436 {
437         struct page *head = tail->first_page;
438
439         /*
440          * page->first_page may be a dangling pointer to an old
441          * compound page, so recheck that it is still a tail
442          * page before returning.
443          */
444         smp_rmb();
445         if (likely(PageTail(tail)))
446                 return head;
447         return tail;
448 }
449
450 static inline struct page *compound_head(struct page *page)
451 {
452         if (unlikely(PageTail(page)))
453                 return compound_head_by_tail(page);
454         return page;
455 }
456
457 /*
458  * The atomic page->_mapcount, starts from -1: so that transitions
459  * both from it and to it can be tracked, using atomic_inc_and_test
460  * and atomic_add_negative(-1).
461  */
462 static inline void page_mapcount_reset(struct page *page)
463 {
464         atomic_set(&(page)->_mapcount, -1);
465 }
466
467 static inline int page_mapcount(struct page *page)
468 {
469         return atomic_read(&(page)->_mapcount) + 1;
470 }
471
472 static inline int page_count(struct page *page)
473 {
474         return atomic_read(&compound_head(page)->_count);
475 }
476
477 #ifdef CONFIG_HUGETLB_PAGE
478 extern int PageHeadHuge(struct page *page_head);
479 #else /* CONFIG_HUGETLB_PAGE */
480 static inline int PageHeadHuge(struct page *page_head)
481 {
482         return 0;
483 }
484 #endif /* CONFIG_HUGETLB_PAGE */
485
486 static inline bool __compound_tail_refcounted(struct page *page)
487 {
488         return !PageSlab(page) && !PageHeadHuge(page);
489 }
490
491 /*
492  * This takes a head page as parameter and tells if the
493  * tail page reference counting can be skipped.
494  *
495  * For this to be safe, PageSlab and PageHeadHuge must remain true on
496  * any given page where they return true here, until all tail pins
497  * have been released.
498  */
499 static inline bool compound_tail_refcounted(struct page *page)
500 {
501         VM_BUG_ON_PAGE(!PageHead(page), page);
502         return __compound_tail_refcounted(page);
503 }
504
505 static inline void get_huge_page_tail(struct page *page)
506 {
507         /*
508          * __split_huge_page_refcount() cannot run from under us.
509          */
510         VM_BUG_ON_PAGE(!PageTail(page), page);
511         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
512         VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
513         if (compound_tail_refcounted(page->first_page))
514                 atomic_inc(&page->_mapcount);
515 }
516
517 extern bool __get_page_tail(struct page *page);
518
519 static inline void get_page(struct page *page)
520 {
521         if (unlikely(PageTail(page)))
522                 if (likely(__get_page_tail(page)))
523                         return;
524         /*
525          * Getting a normal page or the head of a compound page
526          * requires to already have an elevated page->_count.
527          */
528         VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
529         atomic_inc(&page->_count);
530 }
531
532 static inline struct page *virt_to_head_page(const void *x)
533 {
534         struct page *page = virt_to_page(x);
535         return compound_head(page);
536 }
537
538 /*
539  * Setup the page count before being freed into the page allocator for
540  * the first time (boot or memory hotplug)
541  */
542 static inline void init_page_count(struct page *page)
543 {
544         atomic_set(&page->_count, 1);
545 }
546
547 /*
548  * PageBuddy() indicate that the page is free and in the buddy system
549  * (see mm/page_alloc.c).
550  *
551  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
552  * -2 so that an underflow of the page_mapcount() won't be mistaken
553  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
554  * efficiently by most CPU architectures.
555  */
556 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
557
558 static inline int PageBuddy(struct page *page)
559 {
560         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
561 }
562
563 static inline void __SetPageBuddy(struct page *page)
564 {
565         VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
566         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
567 }
568
569 static inline void __ClearPageBuddy(struct page *page)
570 {
571         VM_BUG_ON_PAGE(!PageBuddy(page), page);
572         atomic_set(&page->_mapcount, -1);
573 }
574
575 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
576
577 static inline int PageBalloon(struct page *page)
578 {
579         return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
580 }
581
582 static inline void __SetPageBalloon(struct page *page)
583 {
584         VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
585         atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
586 }
587
588 static inline void __ClearPageBalloon(struct page *page)
589 {
590         VM_BUG_ON_PAGE(!PageBalloon(page), page);
591         atomic_set(&page->_mapcount, -1);
592 }
593
594 void put_page(struct page *page);
595 void put_pages_list(struct list_head *pages);
596
597 void split_page(struct page *page, unsigned int order);
598 int split_free_page(struct page *page);
599
600 /*
601  * Compound pages have a destructor function.  Provide a
602  * prototype for that function and accessor functions.
603  * These are _only_ valid on the head of a PG_compound page.
604  */
605 typedef void compound_page_dtor(struct page *);
606
607 static inline void set_compound_page_dtor(struct page *page,
608                                                 compound_page_dtor *dtor)
609 {
610         page[1].lru.next = (void *)dtor;
611 }
612
613 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
614 {
615         return (compound_page_dtor *)page[1].lru.next;
616 }
617
618 static inline int compound_order(struct page *page)
619 {
620         if (!PageHead(page))
621                 return 0;
622         return (unsigned long)page[1].lru.prev;
623 }
624
625 static inline void set_compound_order(struct page *page, unsigned long order)
626 {
627         page[1].lru.prev = (void *)order;
628 }
629
630 #ifdef CONFIG_MMU
631 /*
632  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
633  * servicing faults for write access.  In the normal case, do always want
634  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
635  * that do not have writing enabled, when used by access_process_vm.
636  */
637 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
638 {
639         if (likely(vma->vm_flags & VM_WRITE))
640                 pte = pte_mkwrite(pte);
641         return pte;
642 }
643
644 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
645                 struct page *page, pte_t *pte, bool write, bool anon);
646 #endif
647
648 /*
649  * Multiple processes may "see" the same page. E.g. for untouched
650  * mappings of /dev/null, all processes see the same page full of
651  * zeroes, and text pages of executables and shared libraries have
652  * only one copy in memory, at most, normally.
653  *
654  * For the non-reserved pages, page_count(page) denotes a reference count.
655  *   page_count() == 0 means the page is free. page->lru is then used for
656  *   freelist management in the buddy allocator.
657  *   page_count() > 0  means the page has been allocated.
658  *
659  * Pages are allocated by the slab allocator in order to provide memory
660  * to kmalloc and kmem_cache_alloc. In this case, the management of the
661  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
662  * unless a particular usage is carefully commented. (the responsibility of
663  * freeing the kmalloc memory is the caller's, of course).
664  *
665  * A page may be used by anyone else who does a __get_free_page().
666  * In this case, page_count still tracks the references, and should only
667  * be used through the normal accessor functions. The top bits of page->flags
668  * and page->virtual store page management information, but all other fields
669  * are unused and could be used privately, carefully. The management of this
670  * page is the responsibility of the one who allocated it, and those who have
671  * subsequently been given references to it.
672  *
673  * The other pages (we may call them "pagecache pages") are completely
674  * managed by the Linux memory manager: I/O, buffers, swapping etc.
675  * The following discussion applies only to them.
676  *
677  * A pagecache page contains an opaque `private' member, which belongs to the
678  * page's address_space. Usually, this is the address of a circular list of
679  * the page's disk buffers. PG_private must be set to tell the VM to call
680  * into the filesystem to release these pages.
681  *
682  * A page may belong to an inode's memory mapping. In this case, page->mapping
683  * is the pointer to the inode, and page->index is the file offset of the page,
684  * in units of PAGE_CACHE_SIZE.
685  *
686  * If pagecache pages are not associated with an inode, they are said to be
687  * anonymous pages. These may become associated with the swapcache, and in that
688  * case PG_swapcache is set, and page->private is an offset into the swapcache.
689  *
690  * In either case (swapcache or inode backed), the pagecache itself holds one
691  * reference to the page. Setting PG_private should also increment the
692  * refcount. The each user mapping also has a reference to the page.
693  *
694  * The pagecache pages are stored in a per-mapping radix tree, which is
695  * rooted at mapping->page_tree, and indexed by offset.
696  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
697  * lists, we instead now tag pages as dirty/writeback in the radix tree.
698  *
699  * All pagecache pages may be subject to I/O:
700  * - inode pages may need to be read from disk,
701  * - inode pages which have been modified and are MAP_SHARED may need
702  *   to be written back to the inode on disk,
703  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
704  *   modified may need to be swapped out to swap space and (later) to be read
705  *   back into memory.
706  */
707
708 /*
709  * The zone field is never updated after free_area_init_core()
710  * sets it, so none of the operations on it need to be atomic.
711  */
712
713 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
714 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
715 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
716 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
717 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
718
719 /*
720  * Define the bit shifts to access each section.  For non-existent
721  * sections we define the shift as 0; that plus a 0 mask ensures
722  * the compiler will optimise away reference to them.
723  */
724 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
725 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
726 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
727 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
728
729 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
730 #ifdef NODE_NOT_IN_PAGE_FLAGS
731 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
732 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
733                                                 SECTIONS_PGOFF : ZONES_PGOFF)
734 #else
735 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
736 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
737                                                 NODES_PGOFF : ZONES_PGOFF)
738 #endif
739
740 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
741
742 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
743 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
744 #endif
745
746 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
747 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
748 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
749 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
750 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
751
752 static inline enum zone_type page_zonenum(const struct page *page)
753 {
754         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
755 }
756
757 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
758 #define SECTION_IN_PAGE_FLAGS
759 #endif
760
761 /*
762  * The identification function is mainly used by the buddy allocator for
763  * determining if two pages could be buddies. We are not really identifying
764  * the zone since we could be using the section number id if we do not have
765  * node id available in page flags.
766  * We only guarantee that it will return the same value for two combinable
767  * pages in a zone.
768  */
769 static inline int page_zone_id(struct page *page)
770 {
771         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
772 }
773
774 static inline int zone_to_nid(struct zone *zone)
775 {
776 #ifdef CONFIG_NUMA
777         return zone->node;
778 #else
779         return 0;
780 #endif
781 }
782
783 #ifdef NODE_NOT_IN_PAGE_FLAGS
784 extern int page_to_nid(const struct page *page);
785 #else
786 static inline int page_to_nid(const struct page *page)
787 {
788         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
789 }
790 #endif
791
792 #ifdef CONFIG_NUMA_BALANCING
793 static inline int cpu_pid_to_cpupid(int cpu, int pid)
794 {
795         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
796 }
797
798 static inline int cpupid_to_pid(int cpupid)
799 {
800         return cpupid & LAST__PID_MASK;
801 }
802
803 static inline int cpupid_to_cpu(int cpupid)
804 {
805         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
806 }
807
808 static inline int cpupid_to_nid(int cpupid)
809 {
810         return cpu_to_node(cpupid_to_cpu(cpupid));
811 }
812
813 static inline bool cpupid_pid_unset(int cpupid)
814 {
815         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
816 }
817
818 static inline bool cpupid_cpu_unset(int cpupid)
819 {
820         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
821 }
822
823 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
824 {
825         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
826 }
827
828 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
829 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
830 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
831 {
832         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
833 }
834
835 static inline int page_cpupid_last(struct page *page)
836 {
837         return page->_last_cpupid;
838 }
839 static inline void page_cpupid_reset_last(struct page *page)
840 {
841         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
842 }
843 #else
844 static inline int page_cpupid_last(struct page *page)
845 {
846         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
847 }
848
849 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
850
851 static inline void page_cpupid_reset_last(struct page *page)
852 {
853         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
854
855         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
856         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
857 }
858 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
859 #else /* !CONFIG_NUMA_BALANCING */
860 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
861 {
862         return page_to_nid(page); /* XXX */
863 }
864
865 static inline int page_cpupid_last(struct page *page)
866 {
867         return page_to_nid(page); /* XXX */
868 }
869
870 static inline int cpupid_to_nid(int cpupid)
871 {
872         return -1;
873 }
874
875 static inline int cpupid_to_pid(int cpupid)
876 {
877         return -1;
878 }
879
880 static inline int cpupid_to_cpu(int cpupid)
881 {
882         return -1;
883 }
884
885 static inline int cpu_pid_to_cpupid(int nid, int pid)
886 {
887         return -1;
888 }
889
890 static inline bool cpupid_pid_unset(int cpupid)
891 {
892         return 1;
893 }
894
895 static inline void page_cpupid_reset_last(struct page *page)
896 {
897 }
898
899 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
900 {
901         return false;
902 }
903 #endif /* CONFIG_NUMA_BALANCING */
904
905 static inline struct zone *page_zone(const struct page *page)
906 {
907         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
908 }
909
910 #ifdef SECTION_IN_PAGE_FLAGS
911 static inline void set_page_section(struct page *page, unsigned long section)
912 {
913         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
914         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
915 }
916
917 static inline unsigned long page_to_section(const struct page *page)
918 {
919         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
920 }
921 #endif
922
923 static inline void set_page_zone(struct page *page, enum zone_type zone)
924 {
925         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
926         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
927 }
928
929 static inline void set_page_node(struct page *page, unsigned long node)
930 {
931         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
932         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
933 }
934
935 static inline void set_page_links(struct page *page, enum zone_type zone,
936         unsigned long node, unsigned long pfn)
937 {
938         set_page_zone(page, zone);
939         set_page_node(page, node);
940 #ifdef SECTION_IN_PAGE_FLAGS
941         set_page_section(page, pfn_to_section_nr(pfn));
942 #endif
943 }
944
945 /*
946  * Some inline functions in vmstat.h depend on page_zone()
947  */
948 #include <linux/vmstat.h>
949
950 static __always_inline void *lowmem_page_address(const struct page *page)
951 {
952         return __va(PFN_PHYS(page_to_pfn(page)));
953 }
954
955 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
956 #define HASHED_PAGE_VIRTUAL
957 #endif
958
959 #if defined(WANT_PAGE_VIRTUAL)
960 static inline void *page_address(const struct page *page)
961 {
962         return page->virtual;
963 }
964 static inline void set_page_address(struct page *page, void *address)
965 {
966         page->virtual = address;
967 }
968 #define page_address_init()  do { } while(0)
969 #endif
970
971 #if defined(HASHED_PAGE_VIRTUAL)
972 void *page_address(const struct page *page);
973 void set_page_address(struct page *page, void *virtual);
974 void page_address_init(void);
975 #endif
976
977 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
978 #define page_address(page) lowmem_page_address(page)
979 #define set_page_address(page, address)  do { } while(0)
980 #define page_address_init()  do { } while(0)
981 #endif
982
983 /*
984  * On an anonymous page mapped into a user virtual memory area,
985  * page->mapping points to its anon_vma, not to a struct address_space;
986  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
987  *
988  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
989  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
990  * and then page->mapping points, not to an anon_vma, but to a private
991  * structure which KSM associates with that merged page.  See ksm.h.
992  *
993  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
994  *
995  * Please note that, confusingly, "page_mapping" refers to the inode
996  * address_space which maps the page from disk; whereas "page_mapped"
997  * refers to user virtual address space into which the page is mapped.
998  */
999 #define PAGE_MAPPING_ANON       1
1000 #define PAGE_MAPPING_KSM        2
1001 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1002
1003 extern struct address_space *page_mapping(struct page *page);
1004
1005 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1006 static inline void *page_rmapping(struct page *page)
1007 {
1008         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1009 }
1010
1011 extern struct address_space *__page_file_mapping(struct page *);
1012
1013 static inline
1014 struct address_space *page_file_mapping(struct page *page)
1015 {
1016         if (unlikely(PageSwapCache(page)))
1017                 return __page_file_mapping(page);
1018
1019         return page->mapping;
1020 }
1021
1022 static inline int PageAnon(struct page *page)
1023 {
1024         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1025 }
1026
1027 /*
1028  * Return the pagecache index of the passed page.  Regular pagecache pages
1029  * use ->index whereas swapcache pages use ->private
1030  */
1031 static inline pgoff_t page_index(struct page *page)
1032 {
1033         if (unlikely(PageSwapCache(page)))
1034                 return page_private(page);
1035         return page->index;
1036 }
1037
1038 extern pgoff_t __page_file_index(struct page *page);
1039
1040 /*
1041  * Return the file index of the page. Regular pagecache pages use ->index
1042  * whereas swapcache pages use swp_offset(->private)
1043  */
1044 static inline pgoff_t page_file_index(struct page *page)
1045 {
1046         if (unlikely(PageSwapCache(page)))
1047                 return __page_file_index(page);
1048
1049         return page->index;
1050 }
1051
1052 /*
1053  * Return true if this page is mapped into pagetables.
1054  */
1055 static inline int page_mapped(struct page *page)
1056 {
1057         return atomic_read(&(page)->_mapcount) >= 0;
1058 }
1059
1060 /*
1061  * Different kinds of faults, as returned by handle_mm_fault().
1062  * Used to decide whether a process gets delivered SIGBUS or
1063  * just gets major/minor fault counters bumped up.
1064  */
1065
1066 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1067
1068 #define VM_FAULT_OOM    0x0001
1069 #define VM_FAULT_SIGBUS 0x0002
1070 #define VM_FAULT_MAJOR  0x0004
1071 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1072 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1073 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1074
1075 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1076 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1077 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1078 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1079
1080 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081
1082 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1083                          VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1084
1085 /* Encode hstate index for a hwpoisoned large page */
1086 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1087 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1088
1089 /*
1090  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1091  */
1092 extern void pagefault_out_of_memory(void);
1093
1094 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1095
1096 /*
1097  * Flags passed to show_mem() and show_free_areas() to suppress output in
1098  * various contexts.
1099  */
1100 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1101
1102 extern void show_free_areas(unsigned int flags);
1103 extern bool skip_free_areas_node(unsigned int flags, int nid);
1104
1105 int shmem_zero_setup(struct vm_area_struct *);
1106 #ifdef CONFIG_SHMEM
1107 bool shmem_mapping(struct address_space *mapping);
1108 #else
1109 static inline bool shmem_mapping(struct address_space *mapping)
1110 {
1111         return false;
1112 }
1113 #endif
1114
1115 extern int can_do_mlock(void);
1116 extern int user_shm_lock(size_t, struct user_struct *);
1117 extern void user_shm_unlock(size_t, struct user_struct *);
1118
1119 /*
1120  * Parameter block passed down to zap_pte_range in exceptional cases.
1121  */
1122 struct zap_details {
1123         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
1124         struct address_space *check_mapping;    /* Check page->mapping if set */
1125         pgoff_t first_index;                    /* Lowest page->index to unmap */
1126         pgoff_t last_index;                     /* Highest page->index to unmap */
1127 };
1128
1129 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1130                 pte_t pte);
1131
1132 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1133                 unsigned long size);
1134 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1135                 unsigned long size, struct zap_details *);
1136 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1137                 unsigned long start, unsigned long end);
1138
1139 /**
1140  * mm_walk - callbacks for walk_page_range
1141  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1142  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1143  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1144  *             this handler is required to be able to handle
1145  *             pmd_trans_huge() pmds.  They may simply choose to
1146  *             split_huge_page() instead of handling it explicitly.
1147  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1148  * @pte_hole: if set, called for each hole at all levels
1149  * @hugetlb_entry: if set, called for each hugetlb entry
1150  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1151  *                            is used.
1152  *
1153  * (see walk_page_range for more details)
1154  */
1155 struct mm_walk {
1156         int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1157                          unsigned long next, struct mm_walk *walk);
1158         int (*pud_entry)(pud_t *pud, unsigned long addr,
1159                          unsigned long next, struct mm_walk *walk);
1160         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1161                          unsigned long next, struct mm_walk *walk);
1162         int (*pte_entry)(pte_t *pte, unsigned long addr,
1163                          unsigned long next, struct mm_walk *walk);
1164         int (*pte_hole)(unsigned long addr, unsigned long next,
1165                         struct mm_walk *walk);
1166         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1167                              unsigned long addr, unsigned long next,
1168                              struct mm_walk *walk);
1169         struct mm_struct *mm;
1170         void *private;
1171 };
1172
1173 int walk_page_range(unsigned long addr, unsigned long end,
1174                 struct mm_walk *walk);
1175 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1176                 unsigned long end, unsigned long floor, unsigned long ceiling);
1177 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1178                         struct vm_area_struct *vma);
1179 void unmap_mapping_range(struct address_space *mapping,
1180                 loff_t const holebegin, loff_t const holelen, int even_cows);
1181 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1182         unsigned long *pfn);
1183 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1184                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1185 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1186                         void *buf, int len, int write);
1187
1188 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1189                 loff_t const holebegin, loff_t const holelen)
1190 {
1191         unmap_mapping_range(mapping, holebegin, holelen, 0);
1192 }
1193
1194 extern void truncate_pagecache(struct inode *inode, loff_t new);
1195 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1196 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1197 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1198 int truncate_inode_page(struct address_space *mapping, struct page *page);
1199 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1200 int invalidate_inode_page(struct page *page);
1201
1202 #ifdef CONFIG_MMU
1203 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1204                         unsigned long address, unsigned int flags);
1205 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1206                             unsigned long address, unsigned int fault_flags);
1207 #else
1208 static inline int handle_mm_fault(struct mm_struct *mm,
1209                         struct vm_area_struct *vma, unsigned long address,
1210                         unsigned int flags)
1211 {
1212         /* should never happen if there's no MMU */
1213         BUG();
1214         return VM_FAULT_SIGBUS;
1215 }
1216 static inline int fixup_user_fault(struct task_struct *tsk,
1217                 struct mm_struct *mm, unsigned long address,
1218                 unsigned int fault_flags)
1219 {
1220         /* should never happen if there's no MMU */
1221         BUG();
1222         return -EFAULT;
1223 }
1224 #endif
1225
1226 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1227 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1228                 void *buf, int len, int write);
1229
1230 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1231                       unsigned long start, unsigned long nr_pages,
1232                       unsigned int foll_flags, struct page **pages,
1233                       struct vm_area_struct **vmas, int *nonblocking);
1234 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1235                     unsigned long start, unsigned long nr_pages,
1236                     int write, int force, struct page **pages,
1237                     struct vm_area_struct **vmas);
1238 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1239                         struct page **pages);
1240 struct kvec;
1241 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1242                         struct page **pages);
1243 int get_kernel_page(unsigned long start, int write, struct page **pages);
1244 struct page *get_dump_page(unsigned long addr);
1245
1246 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1247 extern void do_invalidatepage(struct page *page, unsigned int offset,
1248                               unsigned int length);
1249
1250 int __set_page_dirty_nobuffers(struct page *page);
1251 int __set_page_dirty_no_writeback(struct page *page);
1252 int redirty_page_for_writepage(struct writeback_control *wbc,
1253                                 struct page *page);
1254 void account_page_dirtied(struct page *page, struct address_space *mapping);
1255 int set_page_dirty(struct page *page);
1256 int set_page_dirty_lock(struct page *page);
1257 int clear_page_dirty_for_io(struct page *page);
1258 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1259
1260 /* Is the vma a continuation of the stack vma above it? */
1261 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1262 {
1263         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1264 }
1265
1266 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1267                                              unsigned long addr)
1268 {
1269         return (vma->vm_flags & VM_GROWSDOWN) &&
1270                 (vma->vm_start == addr) &&
1271                 !vma_growsdown(vma->vm_prev, addr);
1272 }
1273
1274 /* Is the vma a continuation of the stack vma below it? */
1275 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1276 {
1277         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1278 }
1279
1280 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1281                                            unsigned long addr)
1282 {
1283         return (vma->vm_flags & VM_GROWSUP) &&
1284                 (vma->vm_end == addr) &&
1285                 !vma_growsup(vma->vm_next, addr);
1286 }
1287
1288 extern struct task_struct *task_of_stack(struct task_struct *task,
1289                                 struct vm_area_struct *vma, bool in_group);
1290
1291 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1292                 unsigned long old_addr, struct vm_area_struct *new_vma,
1293                 unsigned long new_addr, unsigned long len,
1294                 bool need_rmap_locks);
1295 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1296                               unsigned long end, pgprot_t newprot,
1297                               int dirty_accountable, int prot_numa);
1298 extern int mprotect_fixup(struct vm_area_struct *vma,
1299                           struct vm_area_struct **pprev, unsigned long start,
1300                           unsigned long end, unsigned long newflags);
1301
1302 /*
1303  * doesn't attempt to fault and will return short.
1304  */
1305 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1306                           struct page **pages);
1307 /*
1308  * per-process(per-mm_struct) statistics.
1309  */
1310 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1311 {
1312         long val = atomic_long_read(&mm->rss_stat.count[member]);
1313
1314 #ifdef SPLIT_RSS_COUNTING
1315         /*
1316          * counter is updated in asynchronous manner and may go to minus.
1317          * But it's never be expected number for users.
1318          */
1319         if (val < 0)
1320                 val = 0;
1321 #endif
1322         return (unsigned long)val;
1323 }
1324
1325 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1326 {
1327         atomic_long_add(value, &mm->rss_stat.count[member]);
1328 }
1329
1330 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1331 {
1332         atomic_long_inc(&mm->rss_stat.count[member]);
1333 }
1334
1335 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1336 {
1337         atomic_long_dec(&mm->rss_stat.count[member]);
1338 }
1339
1340 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1341 {
1342         return get_mm_counter(mm, MM_FILEPAGES) +
1343                 get_mm_counter(mm, MM_ANONPAGES);
1344 }
1345
1346 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1347 {
1348         return max(mm->hiwater_rss, get_mm_rss(mm));
1349 }
1350
1351 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1352 {
1353         return max(mm->hiwater_vm, mm->total_vm);
1354 }
1355
1356 static inline void update_hiwater_rss(struct mm_struct *mm)
1357 {
1358         unsigned long _rss = get_mm_rss(mm);
1359
1360         if ((mm)->hiwater_rss < _rss)
1361                 (mm)->hiwater_rss = _rss;
1362 }
1363
1364 static inline void update_hiwater_vm(struct mm_struct *mm)
1365 {
1366         if (mm->hiwater_vm < mm->total_vm)
1367                 mm->hiwater_vm = mm->total_vm;
1368 }
1369
1370 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1371                                          struct mm_struct *mm)
1372 {
1373         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1374
1375         if (*maxrss < hiwater_rss)
1376                 *maxrss = hiwater_rss;
1377 }
1378
1379 #if defined(SPLIT_RSS_COUNTING)
1380 void sync_mm_rss(struct mm_struct *mm);
1381 #else
1382 static inline void sync_mm_rss(struct mm_struct *mm)
1383 {
1384 }
1385 #endif
1386
1387 int vma_wants_writenotify(struct vm_area_struct *vma);
1388
1389 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1390                                spinlock_t **ptl);
1391 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1392                                     spinlock_t **ptl)
1393 {
1394         pte_t *ptep;
1395         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1396         return ptep;
1397 }
1398
1399 #ifdef __PAGETABLE_PUD_FOLDED
1400 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1401                                                 unsigned long address)
1402 {
1403         return 0;
1404 }
1405 #else
1406 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1407 #endif
1408
1409 #ifdef __PAGETABLE_PMD_FOLDED
1410 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1411                                                 unsigned long address)
1412 {
1413         return 0;
1414 }
1415 #else
1416 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1417 #endif
1418
1419 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1420                 pmd_t *pmd, unsigned long address);
1421 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1422
1423 /*
1424  * The following ifdef needed to get the 4level-fixup.h header to work.
1425  * Remove it when 4level-fixup.h has been removed.
1426  */
1427 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1428 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1429 {
1430         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1431                 NULL: pud_offset(pgd, address);
1432 }
1433
1434 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1435 {
1436         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1437                 NULL: pmd_offset(pud, address);
1438 }
1439 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1440
1441 #if USE_SPLIT_PTE_PTLOCKS
1442 #if ALLOC_SPLIT_PTLOCKS
1443 void __init ptlock_cache_init(void);
1444 extern bool ptlock_alloc(struct page *page);
1445 extern void ptlock_free(struct page *page);
1446
1447 static inline spinlock_t *ptlock_ptr(struct page *page)
1448 {
1449         return page->ptl;
1450 }
1451 #else /* ALLOC_SPLIT_PTLOCKS */
1452 static inline void ptlock_cache_init(void)
1453 {
1454 }
1455
1456 static inline bool ptlock_alloc(struct page *page)
1457 {
1458         return true;
1459 }
1460
1461 static inline void ptlock_free(struct page *page)
1462 {
1463 }
1464
1465 static inline spinlock_t *ptlock_ptr(struct page *page)
1466 {
1467         return &page->ptl;
1468 }
1469 #endif /* ALLOC_SPLIT_PTLOCKS */
1470
1471 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1472 {
1473         return ptlock_ptr(pmd_page(*pmd));
1474 }
1475
1476 static inline bool ptlock_init(struct page *page)
1477 {
1478         /*
1479          * prep_new_page() initialize page->private (and therefore page->ptl)
1480          * with 0. Make sure nobody took it in use in between.
1481          *
1482          * It can happen if arch try to use slab for page table allocation:
1483          * slab code uses page->slab_cache and page->first_page (for tail
1484          * pages), which share storage with page->ptl.
1485          */
1486         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1487         if (!ptlock_alloc(page))
1488                 return false;
1489         spin_lock_init(ptlock_ptr(page));
1490         return true;
1491 }
1492
1493 /* Reset page->mapping so free_pages_check won't complain. */
1494 static inline void pte_lock_deinit(struct page *page)
1495 {
1496         page->mapping = NULL;
1497         ptlock_free(page);
1498 }
1499
1500 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1501 /*
1502  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1503  */
1504 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1505 {
1506         return &mm->page_table_lock;
1507 }
1508 static inline void ptlock_cache_init(void) {}
1509 static inline bool ptlock_init(struct page *page) { return true; }
1510 static inline void pte_lock_deinit(struct page *page) {}
1511 #endif /* USE_SPLIT_PTE_PTLOCKS */
1512
1513 static inline void pgtable_init(void)
1514 {
1515         ptlock_cache_init();
1516         pgtable_cache_init();
1517 }
1518
1519 static inline bool pgtable_page_ctor(struct page *page)
1520 {
1521         inc_zone_page_state(page, NR_PAGETABLE);
1522         return ptlock_init(page);
1523 }
1524
1525 static inline void pgtable_page_dtor(struct page *page)
1526 {
1527         pte_lock_deinit(page);
1528         dec_zone_page_state(page, NR_PAGETABLE);
1529 }
1530
1531 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1532 ({                                                      \
1533         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1534         pte_t *__pte = pte_offset_map(pmd, address);    \
1535         *(ptlp) = __ptl;                                \
1536         spin_lock(__ptl);                               \
1537         __pte;                                          \
1538 })
1539
1540 #define pte_unmap_unlock(pte, ptl)      do {            \
1541         spin_unlock(ptl);                               \
1542         pte_unmap(pte);                                 \
1543 } while (0)
1544
1545 #define pte_alloc_map(mm, vma, pmd, address)                            \
1546         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1547                                                         pmd, address))? \
1548          NULL: pte_offset_map(pmd, address))
1549
1550 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1551         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1552                                                         pmd, address))? \
1553                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1554
1555 #define pte_alloc_kernel(pmd, address)                  \
1556         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1557                 NULL: pte_offset_kernel(pmd, address))
1558
1559 #if USE_SPLIT_PMD_PTLOCKS
1560
1561 static struct page *pmd_to_page(pmd_t *pmd)
1562 {
1563         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1564         return virt_to_page((void *)((unsigned long) pmd & mask));
1565 }
1566
1567 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1568 {
1569         return ptlock_ptr(pmd_to_page(pmd));
1570 }
1571
1572 static inline bool pgtable_pmd_page_ctor(struct page *page)
1573 {
1574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1575         page->pmd_huge_pte = NULL;
1576 #endif
1577         return ptlock_init(page);
1578 }
1579
1580 static inline void pgtable_pmd_page_dtor(struct page *page)
1581 {
1582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1583         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1584 #endif
1585         ptlock_free(page);
1586 }
1587
1588 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1589
1590 #else
1591
1592 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1593 {
1594         return &mm->page_table_lock;
1595 }
1596
1597 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1598 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1599
1600 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1601
1602 #endif
1603
1604 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1605 {
1606         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1607         spin_lock(ptl);
1608         return ptl;
1609 }
1610
1611 extern void free_area_init(unsigned long * zones_size);
1612 extern void free_area_init_node(int nid, unsigned long * zones_size,
1613                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1614 extern void free_initmem(void);
1615
1616 /*
1617  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1618  * into the buddy system. The freed pages will be poisoned with pattern
1619  * "poison" if it's within range [0, UCHAR_MAX].
1620  * Return pages freed into the buddy system.
1621  */
1622 extern unsigned long free_reserved_area(void *start, void *end,
1623                                         int poison, char *s);
1624
1625 #ifdef  CONFIG_HIGHMEM
1626 /*
1627  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1628  * and totalram_pages.
1629  */
1630 extern void free_highmem_page(struct page *page);
1631 #endif
1632
1633 extern void adjust_managed_page_count(struct page *page, long count);
1634 extern void mem_init_print_info(const char *str);
1635
1636 /* Free the reserved page into the buddy system, so it gets managed. */
1637 static inline void __free_reserved_page(struct page *page)
1638 {
1639         ClearPageReserved(page);
1640         init_page_count(page);
1641         __free_page(page);
1642 }
1643
1644 static inline void free_reserved_page(struct page *page)
1645 {
1646         __free_reserved_page(page);
1647         adjust_managed_page_count(page, 1);
1648 }
1649
1650 static inline void mark_page_reserved(struct page *page)
1651 {
1652         SetPageReserved(page);
1653         adjust_managed_page_count(page, -1);
1654 }
1655
1656 /*
1657  * Default method to free all the __init memory into the buddy system.
1658  * The freed pages will be poisoned with pattern "poison" if it's within
1659  * range [0, UCHAR_MAX].
1660  * Return pages freed into the buddy system.
1661  */
1662 static inline unsigned long free_initmem_default(int poison)
1663 {
1664         extern char __init_begin[], __init_end[];
1665
1666         return free_reserved_area(&__init_begin, &__init_end,
1667                                   poison, "unused kernel");
1668 }
1669
1670 static inline unsigned long get_num_physpages(void)
1671 {
1672         int nid;
1673         unsigned long phys_pages = 0;
1674
1675         for_each_online_node(nid)
1676                 phys_pages += node_present_pages(nid);
1677
1678         return phys_pages;
1679 }
1680
1681 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1682 /*
1683  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1684  * zones, allocate the backing mem_map and account for memory holes in a more
1685  * architecture independent manner. This is a substitute for creating the
1686  * zone_sizes[] and zholes_size[] arrays and passing them to
1687  * free_area_init_node()
1688  *
1689  * An architecture is expected to register range of page frames backed by
1690  * physical memory with memblock_add[_node]() before calling
1691  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1692  * usage, an architecture is expected to do something like
1693  *
1694  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1695  *                                                       max_highmem_pfn};
1696  * for_each_valid_physical_page_range()
1697  *      memblock_add_node(base, size, nid)
1698  * free_area_init_nodes(max_zone_pfns);
1699  *
1700  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1701  * registered physical page range.  Similarly
1702  * sparse_memory_present_with_active_regions() calls memory_present() for
1703  * each range when SPARSEMEM is enabled.
1704  *
1705  * See mm/page_alloc.c for more information on each function exposed by
1706  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1707  */
1708 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1709 unsigned long node_map_pfn_alignment(void);
1710 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1711                                                 unsigned long end_pfn);
1712 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1713                                                 unsigned long end_pfn);
1714 extern void get_pfn_range_for_nid(unsigned int nid,
1715                         unsigned long *start_pfn, unsigned long *end_pfn);
1716 extern unsigned long find_min_pfn_with_active_regions(void);
1717 extern void free_bootmem_with_active_regions(int nid,
1718                                                 unsigned long max_low_pfn);
1719 extern void sparse_memory_present_with_active_regions(int nid);
1720
1721 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1722
1723 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1724     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1725 static inline int __early_pfn_to_nid(unsigned long pfn)
1726 {
1727         return 0;
1728 }
1729 #else
1730 /* please see mm/page_alloc.c */
1731 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1732 /* there is a per-arch backend function. */
1733 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1734 #endif
1735
1736 extern void set_dma_reserve(unsigned long new_dma_reserve);
1737 extern void memmap_init_zone(unsigned long, int, unsigned long,
1738                                 unsigned long, enum memmap_context);
1739 extern void setup_per_zone_wmarks(void);
1740 extern int __meminit init_per_zone_wmark_min(void);
1741 extern void mem_init(void);
1742 extern void __init mmap_init(void);
1743 extern void show_mem(unsigned int flags);
1744 extern void si_meminfo(struct sysinfo * val);
1745 extern void si_meminfo_node(struct sysinfo *val, int nid);
1746
1747 extern __printf(3, 4)
1748 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1749
1750 extern void setup_per_cpu_pageset(void);
1751
1752 extern void zone_pcp_update(struct zone *zone);
1753 extern void zone_pcp_reset(struct zone *zone);
1754
1755 /* page_alloc.c */
1756 extern int min_free_kbytes;
1757
1758 /* nommu.c */
1759 extern atomic_long_t mmap_pages_allocated;
1760 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1761
1762 /* interval_tree.c */
1763 void vma_interval_tree_insert(struct vm_area_struct *node,
1764                               struct rb_root *root);
1765 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1766                                     struct vm_area_struct *prev,
1767                                     struct rb_root *root);
1768 void vma_interval_tree_remove(struct vm_area_struct *node,
1769                               struct rb_root *root);
1770 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1771                                 unsigned long start, unsigned long last);
1772 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1773                                 unsigned long start, unsigned long last);
1774
1775 #define vma_interval_tree_foreach(vma, root, start, last)               \
1776         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1777              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1778
1779 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1780                                         struct list_head *list)
1781 {
1782         list_add_tail(&vma->shared.nonlinear, list);
1783 }
1784
1785 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1786                                    struct rb_root *root);
1787 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1788                                    struct rb_root *root);
1789 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1790         struct rb_root *root, unsigned long start, unsigned long last);
1791 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1792         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1793 #ifdef CONFIG_DEBUG_VM_RB
1794 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1795 #endif
1796
1797 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1798         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1799              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1800
1801 /* mmap.c */
1802 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1803 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1804         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1805 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1806         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1807         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1808         struct mempolicy *);
1809 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1810 extern int split_vma(struct mm_struct *,
1811         struct vm_area_struct *, unsigned long addr, int new_below);
1812 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1813 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1814         struct rb_node **, struct rb_node *);
1815 extern void unlink_file_vma(struct vm_area_struct *);
1816 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1817         unsigned long addr, unsigned long len, pgoff_t pgoff,
1818         bool *need_rmap_locks);
1819 extern void exit_mmap(struct mm_struct *);
1820
1821 static inline int check_data_rlimit(unsigned long rlim,
1822                                     unsigned long new,
1823                                     unsigned long start,
1824                                     unsigned long end_data,
1825                                     unsigned long start_data)
1826 {
1827         if (rlim < RLIM_INFINITY) {
1828                 if (((new - start) + (end_data - start_data)) > rlim)
1829                         return -ENOSPC;
1830         }
1831
1832         return 0;
1833 }
1834
1835 extern int mm_take_all_locks(struct mm_struct *mm);
1836 extern void mm_drop_all_locks(struct mm_struct *mm);
1837
1838 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1839 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1840
1841 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1842 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1843                                    unsigned long addr, unsigned long len,
1844                                    unsigned long flags,
1845                                    const struct vm_special_mapping *spec);
1846 /* This is an obsolete alternative to _install_special_mapping. */
1847 extern int install_special_mapping(struct mm_struct *mm,
1848                                    unsigned long addr, unsigned long len,
1849                                    unsigned long flags, struct page **pages);
1850
1851 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1852
1853 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1854         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1855 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1856         unsigned long len, unsigned long prot, unsigned long flags,
1857         unsigned long pgoff, unsigned long *populate);
1858 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1859
1860 #ifdef CONFIG_MMU
1861 extern int __mm_populate(unsigned long addr, unsigned long len,
1862                          int ignore_errors);
1863 static inline void mm_populate(unsigned long addr, unsigned long len)
1864 {
1865         /* Ignore errors */
1866         (void) __mm_populate(addr, len, 1);
1867 }
1868 #else
1869 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1870 #endif
1871
1872 /* These take the mm semaphore themselves */
1873 extern unsigned long vm_brk(unsigned long, unsigned long);
1874 extern int vm_munmap(unsigned long, size_t);
1875 extern unsigned long vm_mmap(struct file *, unsigned long,
1876         unsigned long, unsigned long,
1877         unsigned long, unsigned long);
1878
1879 struct vm_unmapped_area_info {
1880 #define VM_UNMAPPED_AREA_TOPDOWN 1
1881         unsigned long flags;
1882         unsigned long length;
1883         unsigned long low_limit;
1884         unsigned long high_limit;
1885         unsigned long align_mask;
1886         unsigned long align_offset;
1887 };
1888
1889 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1890 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1891
1892 /*
1893  * Search for an unmapped address range.
1894  *
1895  * We are looking for a range that:
1896  * - does not intersect with any VMA;
1897  * - is contained within the [low_limit, high_limit) interval;
1898  * - is at least the desired size.
1899  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1900  */
1901 static inline unsigned long
1902 vm_unmapped_area(struct vm_unmapped_area_info *info)
1903 {
1904         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1905                 return unmapped_area(info);
1906         else
1907                 return unmapped_area_topdown(info);
1908 }
1909
1910 /* truncate.c */
1911 extern void truncate_inode_pages(struct address_space *, loff_t);
1912 extern void truncate_inode_pages_range(struct address_space *,
1913                                        loff_t lstart, loff_t lend);
1914 extern void truncate_inode_pages_final(struct address_space *);
1915
1916 /* generic vm_area_ops exported for stackable file systems */
1917 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1918 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1919 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1920
1921 /* mm/page-writeback.c */
1922 int write_one_page(struct page *page, int wait);
1923 void task_dirty_inc(struct task_struct *tsk);
1924
1925 /* readahead.c */
1926 #define VM_MAX_READAHEAD        128     /* kbytes */
1927 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1928
1929 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1930                         pgoff_t offset, unsigned long nr_to_read);
1931
1932 void page_cache_sync_readahead(struct address_space *mapping,
1933                                struct file_ra_state *ra,
1934                                struct file *filp,
1935                                pgoff_t offset,
1936                                unsigned long size);
1937
1938 void page_cache_async_readahead(struct address_space *mapping,
1939                                 struct file_ra_state *ra,
1940                                 struct file *filp,
1941                                 struct page *pg,
1942                                 pgoff_t offset,
1943                                 unsigned long size);
1944
1945 unsigned long max_sane_readahead(unsigned long nr);
1946
1947 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1948 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1949
1950 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1951 extern int expand_downwards(struct vm_area_struct *vma,
1952                 unsigned long address);
1953 #if VM_GROWSUP
1954 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1955 #else
1956   #define expand_upwards(vma, address) do { } while (0)
1957 #endif
1958
1959 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1960 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1961 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1962                                              struct vm_area_struct **pprev);
1963
1964 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1965    NULL if none.  Assume start_addr < end_addr. */
1966 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1967 {
1968         struct vm_area_struct * vma = find_vma(mm,start_addr);
1969
1970         if (vma && end_addr <= vma->vm_start)
1971                 vma = NULL;
1972         return vma;
1973 }
1974
1975 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1976 {
1977         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1978 }
1979
1980 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1981 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1982                                 unsigned long vm_start, unsigned long vm_end)
1983 {
1984         struct vm_area_struct *vma = find_vma(mm, vm_start);
1985
1986         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1987                 vma = NULL;
1988
1989         return vma;
1990 }
1991
1992 #ifdef CONFIG_MMU
1993 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1994 void vma_set_page_prot(struct vm_area_struct *vma);
1995 #else
1996 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1997 {
1998         return __pgprot(0);
1999 }
2000 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2001 {
2002         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2003 }
2004 #endif
2005
2006 #ifdef CONFIG_NUMA_BALANCING
2007 unsigned long change_prot_numa(struct vm_area_struct *vma,
2008                         unsigned long start, unsigned long end);
2009 #endif
2010
2011 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2012 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2013                         unsigned long pfn, unsigned long size, pgprot_t);
2014 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2015 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2016                         unsigned long pfn);
2017 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2018                         unsigned long pfn);
2019 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2020
2021
2022 struct page *follow_page_mask(struct vm_area_struct *vma,
2023                               unsigned long address, unsigned int foll_flags,
2024                               unsigned int *page_mask);
2025
2026 static inline struct page *follow_page(struct vm_area_struct *vma,
2027                 unsigned long address, unsigned int foll_flags)
2028 {
2029         unsigned int unused_page_mask;
2030         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2031 }
2032
2033 #define FOLL_WRITE      0x01    /* check pte is writable */
2034 #define FOLL_TOUCH      0x02    /* mark page accessed */
2035 #define FOLL_GET        0x04    /* do get_page on page */
2036 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2037 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2038 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2039                                  * and return without waiting upon it */
2040 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
2041 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2042 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2043 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2044 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2045 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2046
2047 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2048                         void *data);
2049 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2050                                unsigned long size, pte_fn_t fn, void *data);
2051
2052 #ifdef CONFIG_PROC_FS
2053 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2054 #else
2055 static inline void vm_stat_account(struct mm_struct *mm,
2056                         unsigned long flags, struct file *file, long pages)
2057 {
2058         mm->total_vm += pages;
2059 }
2060 #endif /* CONFIG_PROC_FS */
2061
2062 #ifdef CONFIG_DEBUG_PAGEALLOC
2063 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2064 #ifdef CONFIG_HIBERNATION
2065 extern bool kernel_page_present(struct page *page);
2066 #endif /* CONFIG_HIBERNATION */
2067 #else
2068 static inline void
2069 kernel_map_pages(struct page *page, int numpages, int enable) {}
2070 #ifdef CONFIG_HIBERNATION
2071 static inline bool kernel_page_present(struct page *page) { return true; }
2072 #endif /* CONFIG_HIBERNATION */
2073 #endif
2074
2075 #ifdef __HAVE_ARCH_GATE_AREA
2076 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2077 extern int in_gate_area_no_mm(unsigned long addr);
2078 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2079 #else
2080 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2081 {
2082         return NULL;
2083 }
2084 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2085 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2086 {
2087         return 0;
2088 }
2089 #endif  /* __HAVE_ARCH_GATE_AREA */
2090
2091 #ifdef CONFIG_SYSCTL
2092 extern int sysctl_drop_caches;
2093 int drop_caches_sysctl_handler(struct ctl_table *, int,
2094                                         void __user *, size_t *, loff_t *);
2095 #endif
2096
2097 unsigned long shrink_slab(struct shrink_control *shrink,
2098                           unsigned long nr_pages_scanned,
2099                           unsigned long lru_pages);
2100
2101 #ifndef CONFIG_MMU
2102 #define randomize_va_space 0
2103 #else
2104 extern int randomize_va_space;
2105 #endif
2106
2107 const char * arch_vma_name(struct vm_area_struct *vma);
2108 void print_vma_addr(char *prefix, unsigned long rip);
2109
2110 void sparse_mem_maps_populate_node(struct page **map_map,
2111                                    unsigned long pnum_begin,
2112                                    unsigned long pnum_end,
2113                                    unsigned long map_count,
2114                                    int nodeid);
2115
2116 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2117 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2118 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2119 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2120 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2121 void *vmemmap_alloc_block(unsigned long size, int node);
2122 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2123 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2124 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2125                                int node);
2126 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2127 void vmemmap_populate_print_last(void);
2128 #ifdef CONFIG_MEMORY_HOTPLUG
2129 void vmemmap_free(unsigned long start, unsigned long end);
2130 #endif
2131 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2132                                   unsigned long size);
2133
2134 enum mf_flags {
2135         MF_COUNT_INCREASED = 1 << 0,
2136         MF_ACTION_REQUIRED = 1 << 1,
2137         MF_MUST_KILL = 1 << 2,
2138         MF_SOFT_OFFLINE = 1 << 3,
2139 };
2140 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2141 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2142 extern int unpoison_memory(unsigned long pfn);
2143 extern int sysctl_memory_failure_early_kill;
2144 extern int sysctl_memory_failure_recovery;
2145 extern void shake_page(struct page *p, int access);
2146 extern atomic_long_t num_poisoned_pages;
2147 extern int soft_offline_page(struct page *page, int flags);
2148
2149 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2150 extern void clear_huge_page(struct page *page,
2151                             unsigned long addr,
2152                             unsigned int pages_per_huge_page);
2153 extern void copy_user_huge_page(struct page *dst, struct page *src,
2154                                 unsigned long addr, struct vm_area_struct *vma,
2155                                 unsigned int pages_per_huge_page);
2156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2157
2158 #ifdef CONFIG_DEBUG_PAGEALLOC
2159 extern unsigned int _debug_guardpage_minorder;
2160
2161 static inline unsigned int debug_guardpage_minorder(void)
2162 {
2163         return _debug_guardpage_minorder;
2164 }
2165
2166 static inline bool page_is_guard(struct page *page)
2167 {
2168         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2169 }
2170 #else
2171 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2172 static inline bool page_is_guard(struct page *page) { return false; }
2173 #endif /* CONFIG_DEBUG_PAGEALLOC */
2174
2175 #if MAX_NUMNODES > 1
2176 void __init setup_nr_node_ids(void);
2177 #else
2178 static inline void setup_nr_node_ids(void) {}
2179 #endif
2180
2181 #endif /* __KERNEL__ */
2182 #endif /* _LINUX_MM_H */