spi: spidev_fdx: Add support for Dual/Quad SPI Transfers
[cascardo/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34         max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66                                     size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68                                     size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79  * Linux kernel virtual memory manager primitives.
80  * The idea being to have a "virtual" mm in the same way
81  * we have a virtual fs - giving a cleaner interface to the
82  * mm details, and allowing different kinds of memory mappings
83  * (from shared memory to executable loading to arbitrary
84  * mmap() functions).
85  */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97  * vm_flags in vm_area_struct, see mm_types.h.
98  */
99 #define VM_NONE         0x00000000
100
101 #define VM_READ         0x00000001      /* currently active flags */
102 #define VM_WRITE        0x00000002
103 #define VM_EXEC         0x00000004
104 #define VM_SHARED       0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
108 #define VM_MAYWRITE     0x00000020
109 #define VM_MAYEXEC      0x00000040
110 #define VM_MAYSHARE     0x00000080
111
112 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
113 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED       0x00002000
117 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
118
119                                         /* Used by sys_madvise() */
120 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
121 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
125 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
126 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
127 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
128 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
130 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY   0
136 #endif
137
138 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP     VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP     VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP     VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP     VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175  * Special vmas that are non-mergable, non-mlock()able.
176  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177  */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
179
180 /*
181  * mapping from the currently active vm_flags protection bits (the
182  * low four bits) to a page protection mask..
183  */
184 extern pgprot_t protection_map[16];
185
186 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
187 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
188 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
189 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
190 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
191 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
192 #define FAULT_FLAG_TRIED        0x40    /* second try */
193 #define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
194
195 /*
196  * vm_fault is filled by the the pagefault handler and passed to the vma's
197  * ->fault function. The vma's ->fault is responsible for returning a bitmask
198  * of VM_FAULT_xxx flags that give details about how the fault was handled.
199  *
200  * pgoff should be used in favour of virtual_address, if possible. If pgoff
201  * is used, one may implement ->remap_pages to get nonlinear mapping support.
202  */
203 struct vm_fault {
204         unsigned int flags;             /* FAULT_FLAG_xxx flags */
205         pgoff_t pgoff;                  /* Logical page offset based on vma */
206         void __user *virtual_address;   /* Faulting virtual address */
207
208         struct page *page;              /* ->fault handlers should return a
209                                          * page here, unless VM_FAULT_NOPAGE
210                                          * is set (which is also implied by
211                                          * VM_FAULT_ERROR).
212                                          */
213 };
214
215 /*
216  * These are the virtual MM functions - opening of an area, closing and
217  * unmapping it (needed to keep files on disk up-to-date etc), pointer
218  * to the functions called when a no-page or a wp-page exception occurs. 
219  */
220 struct vm_operations_struct {
221         void (*open)(struct vm_area_struct * area);
222         void (*close)(struct vm_area_struct * area);
223         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
224
225         /* notification that a previously read-only page is about to become
226          * writable, if an error is returned it will cause a SIGBUS */
227         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
228
229         /* called by access_process_vm when get_user_pages() fails, typically
230          * for use by special VMAs that can switch between memory and hardware
231          */
232         int (*access)(struct vm_area_struct *vma, unsigned long addr,
233                       void *buf, int len, int write);
234 #ifdef CONFIG_NUMA
235         /*
236          * set_policy() op must add a reference to any non-NULL @new mempolicy
237          * to hold the policy upon return.  Caller should pass NULL @new to
238          * remove a policy and fall back to surrounding context--i.e. do not
239          * install a MPOL_DEFAULT policy, nor the task or system default
240          * mempolicy.
241          */
242         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
243
244         /*
245          * get_policy() op must add reference [mpol_get()] to any policy at
246          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
247          * in mm/mempolicy.c will do this automatically.
248          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251          * must return NULL--i.e., do not "fallback" to task or system default
252          * policy.
253          */
254         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255                                         unsigned long addr);
256         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257                 const nodemask_t *to, unsigned long flags);
258 #endif
259         /* called by sys_remap_file_pages() to populate non-linear mapping */
260         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261                            unsigned long size, pgoff_t pgoff);
262 };
263
264 struct mmu_gather;
265 struct inode;
266
267 #define page_private(page)              ((page)->private)
268 #define set_page_private(page, v)       ((page)->private = (v))
269
270 /* It's valid only if the page is free path or free_list */
271 static inline void set_freepage_migratetype(struct page *page, int migratetype)
272 {
273         page->index = migratetype;
274 }
275
276 /* It's valid only if the page is free path or free_list */
277 static inline int get_freepage_migratetype(struct page *page)
278 {
279         return page->index;
280 }
281
282 /*
283  * FIXME: take this include out, include page-flags.h in
284  * files which need it (119 of them)
285  */
286 #include <linux/page-flags.h>
287 #include <linux/huge_mm.h>
288
289 /*
290  * Methods to modify the page usage count.
291  *
292  * What counts for a page usage:
293  * - cache mapping   (page->mapping)
294  * - private data    (page->private)
295  * - page mapped in a task's page tables, each mapping
296  *   is counted separately
297  *
298  * Also, many kernel routines increase the page count before a critical
299  * routine so they can be sure the page doesn't go away from under them.
300  */
301
302 /*
303  * Drop a ref, return true if the refcount fell to zero (the page has no users)
304  */
305 static inline int put_page_testzero(struct page *page)
306 {
307         VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
308         return atomic_dec_and_test(&page->_count);
309 }
310
311 /*
312  * Try to grab a ref unless the page has a refcount of zero, return false if
313  * that is the case.
314  * This can be called when MMU is off so it must not access
315  * any of the virtual mappings.
316  */
317 static inline int get_page_unless_zero(struct page *page)
318 {
319         return atomic_inc_not_zero(&page->_count);
320 }
321
322 /*
323  * Try to drop a ref unless the page has a refcount of one, return false if
324  * that is the case.
325  * This is to make sure that the refcount won't become zero after this drop.
326  * This can be called when MMU is off so it must not access
327  * any of the virtual mappings.
328  */
329 static inline int put_page_unless_one(struct page *page)
330 {
331         return atomic_add_unless(&page->_count, -1, 1);
332 }
333
334 extern int page_is_ram(unsigned long pfn);
335
336 /* Support for virtually mapped pages */
337 struct page *vmalloc_to_page(const void *addr);
338 unsigned long vmalloc_to_pfn(const void *addr);
339
340 /*
341  * Determine if an address is within the vmalloc range
342  *
343  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344  * is no special casing required.
345  */
346 static inline int is_vmalloc_addr(const void *x)
347 {
348 #ifdef CONFIG_MMU
349         unsigned long addr = (unsigned long)x;
350
351         return addr >= VMALLOC_START && addr < VMALLOC_END;
352 #else
353         return 0;
354 #endif
355 }
356 #ifdef CONFIG_MMU
357 extern int is_vmalloc_or_module_addr(const void *x);
358 #else
359 static inline int is_vmalloc_or_module_addr(const void *x)
360 {
361         return 0;
362 }
363 #endif
364
365 static inline void compound_lock(struct page *page)
366 {
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368         VM_BUG_ON_PAGE(PageSlab(page), page);
369         bit_spin_lock(PG_compound_lock, &page->flags);
370 #endif
371 }
372
373 static inline void compound_unlock(struct page *page)
374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376         VM_BUG_ON_PAGE(PageSlab(page), page);
377         bit_spin_unlock(PG_compound_lock, &page->flags);
378 #endif
379 }
380
381 static inline unsigned long compound_lock_irqsave(struct page *page)
382 {
383         unsigned long uninitialized_var(flags);
384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
385         local_irq_save(flags);
386         compound_lock(page);
387 #endif
388         return flags;
389 }
390
391 static inline void compound_unlock_irqrestore(struct page *page,
392                                               unsigned long flags)
393 {
394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395         compound_unlock(page);
396         local_irq_restore(flags);
397 #endif
398 }
399
400 static inline struct page *compound_head(struct page *page)
401 {
402         if (unlikely(PageTail(page)))
403                 return page->first_page;
404         return page;
405 }
406
407 /*
408  * The atomic page->_mapcount, starts from -1: so that transitions
409  * both from it and to it can be tracked, using atomic_inc_and_test
410  * and atomic_add_negative(-1).
411  */
412 static inline void page_mapcount_reset(struct page *page)
413 {
414         atomic_set(&(page)->_mapcount, -1);
415 }
416
417 static inline int page_mapcount(struct page *page)
418 {
419         return atomic_read(&(page)->_mapcount) + 1;
420 }
421
422 static inline int page_count(struct page *page)
423 {
424         return atomic_read(&compound_head(page)->_count);
425 }
426
427 #ifdef CONFIG_HUGETLB_PAGE
428 extern int PageHeadHuge(struct page *page_head);
429 #else /* CONFIG_HUGETLB_PAGE */
430 static inline int PageHeadHuge(struct page *page_head)
431 {
432         return 0;
433 }
434 #endif /* CONFIG_HUGETLB_PAGE */
435
436 static inline bool __compound_tail_refcounted(struct page *page)
437 {
438         return !PageSlab(page) && !PageHeadHuge(page);
439 }
440
441 /*
442  * This takes a head page as parameter and tells if the
443  * tail page reference counting can be skipped.
444  *
445  * For this to be safe, PageSlab and PageHeadHuge must remain true on
446  * any given page where they return true here, until all tail pins
447  * have been released.
448  */
449 static inline bool compound_tail_refcounted(struct page *page)
450 {
451         VM_BUG_ON_PAGE(!PageHead(page), page);
452         return __compound_tail_refcounted(page);
453 }
454
455 static inline void get_huge_page_tail(struct page *page)
456 {
457         /*
458          * __split_huge_page_refcount() cannot run from under us.
459          */
460         VM_BUG_ON_PAGE(!PageTail(page), page);
461         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
462         VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
463         if (compound_tail_refcounted(page->first_page))
464                 atomic_inc(&page->_mapcount);
465 }
466
467 extern bool __get_page_tail(struct page *page);
468
469 static inline void get_page(struct page *page)
470 {
471         if (unlikely(PageTail(page)))
472                 if (likely(__get_page_tail(page)))
473                         return;
474         /*
475          * Getting a normal page or the head of a compound page
476          * requires to already have an elevated page->_count.
477          */
478         VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
479         atomic_inc(&page->_count);
480 }
481
482 static inline struct page *virt_to_head_page(const void *x)
483 {
484         struct page *page = virt_to_page(x);
485         return compound_head(page);
486 }
487
488 /*
489  * Setup the page count before being freed into the page allocator for
490  * the first time (boot or memory hotplug)
491  */
492 static inline void init_page_count(struct page *page)
493 {
494         atomic_set(&page->_count, 1);
495 }
496
497 /*
498  * PageBuddy() indicate that the page is free and in the buddy system
499  * (see mm/page_alloc.c).
500  *
501  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
502  * -2 so that an underflow of the page_mapcount() won't be mistaken
503  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
504  * efficiently by most CPU architectures.
505  */
506 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
507
508 static inline int PageBuddy(struct page *page)
509 {
510         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
511 }
512
513 static inline void __SetPageBuddy(struct page *page)
514 {
515         VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
516         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
517 }
518
519 static inline void __ClearPageBuddy(struct page *page)
520 {
521         VM_BUG_ON_PAGE(!PageBuddy(page), page);
522         atomic_set(&page->_mapcount, -1);
523 }
524
525 void put_page(struct page *page);
526 void put_pages_list(struct list_head *pages);
527
528 void split_page(struct page *page, unsigned int order);
529 int split_free_page(struct page *page);
530
531 /*
532  * Compound pages have a destructor function.  Provide a
533  * prototype for that function and accessor functions.
534  * These are _only_ valid on the head of a PG_compound page.
535  */
536 typedef void compound_page_dtor(struct page *);
537
538 static inline void set_compound_page_dtor(struct page *page,
539                                                 compound_page_dtor *dtor)
540 {
541         page[1].lru.next = (void *)dtor;
542 }
543
544 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
545 {
546         return (compound_page_dtor *)page[1].lru.next;
547 }
548
549 static inline int compound_order(struct page *page)
550 {
551         if (!PageHead(page))
552                 return 0;
553         return (unsigned long)page[1].lru.prev;
554 }
555
556 static inline void set_compound_order(struct page *page, unsigned long order)
557 {
558         page[1].lru.prev = (void *)order;
559 }
560
561 #ifdef CONFIG_MMU
562 /*
563  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
564  * servicing faults for write access.  In the normal case, do always want
565  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
566  * that do not have writing enabled, when used by access_process_vm.
567  */
568 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
569 {
570         if (likely(vma->vm_flags & VM_WRITE))
571                 pte = pte_mkwrite(pte);
572         return pte;
573 }
574 #endif
575
576 /*
577  * Multiple processes may "see" the same page. E.g. for untouched
578  * mappings of /dev/null, all processes see the same page full of
579  * zeroes, and text pages of executables and shared libraries have
580  * only one copy in memory, at most, normally.
581  *
582  * For the non-reserved pages, page_count(page) denotes a reference count.
583  *   page_count() == 0 means the page is free. page->lru is then used for
584  *   freelist management in the buddy allocator.
585  *   page_count() > 0  means the page has been allocated.
586  *
587  * Pages are allocated by the slab allocator in order to provide memory
588  * to kmalloc and kmem_cache_alloc. In this case, the management of the
589  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
590  * unless a particular usage is carefully commented. (the responsibility of
591  * freeing the kmalloc memory is the caller's, of course).
592  *
593  * A page may be used by anyone else who does a __get_free_page().
594  * In this case, page_count still tracks the references, and should only
595  * be used through the normal accessor functions. The top bits of page->flags
596  * and page->virtual store page management information, but all other fields
597  * are unused and could be used privately, carefully. The management of this
598  * page is the responsibility of the one who allocated it, and those who have
599  * subsequently been given references to it.
600  *
601  * The other pages (we may call them "pagecache pages") are completely
602  * managed by the Linux memory manager: I/O, buffers, swapping etc.
603  * The following discussion applies only to them.
604  *
605  * A pagecache page contains an opaque `private' member, which belongs to the
606  * page's address_space. Usually, this is the address of a circular list of
607  * the page's disk buffers. PG_private must be set to tell the VM to call
608  * into the filesystem to release these pages.
609  *
610  * A page may belong to an inode's memory mapping. In this case, page->mapping
611  * is the pointer to the inode, and page->index is the file offset of the page,
612  * in units of PAGE_CACHE_SIZE.
613  *
614  * If pagecache pages are not associated with an inode, they are said to be
615  * anonymous pages. These may become associated with the swapcache, and in that
616  * case PG_swapcache is set, and page->private is an offset into the swapcache.
617  *
618  * In either case (swapcache or inode backed), the pagecache itself holds one
619  * reference to the page. Setting PG_private should also increment the
620  * refcount. The each user mapping also has a reference to the page.
621  *
622  * The pagecache pages are stored in a per-mapping radix tree, which is
623  * rooted at mapping->page_tree, and indexed by offset.
624  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
625  * lists, we instead now tag pages as dirty/writeback in the radix tree.
626  *
627  * All pagecache pages may be subject to I/O:
628  * - inode pages may need to be read from disk,
629  * - inode pages which have been modified and are MAP_SHARED may need
630  *   to be written back to the inode on disk,
631  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
632  *   modified may need to be swapped out to swap space and (later) to be read
633  *   back into memory.
634  */
635
636 /*
637  * The zone field is never updated after free_area_init_core()
638  * sets it, so none of the operations on it need to be atomic.
639  */
640
641 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
642 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
643 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
644 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
645 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
646
647 /*
648  * Define the bit shifts to access each section.  For non-existent
649  * sections we define the shift as 0; that plus a 0 mask ensures
650  * the compiler will optimise away reference to them.
651  */
652 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
653 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
654 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
655 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
656
657 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
658 #ifdef NODE_NOT_IN_PAGE_FLAGS
659 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
660 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
661                                                 SECTIONS_PGOFF : ZONES_PGOFF)
662 #else
663 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
664 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
665                                                 NODES_PGOFF : ZONES_PGOFF)
666 #endif
667
668 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
669
670 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
671 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
672 #endif
673
674 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
675 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
676 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
677 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_WIDTH) - 1)
678 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
679
680 static inline enum zone_type page_zonenum(const struct page *page)
681 {
682         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
683 }
684
685 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
686 #define SECTION_IN_PAGE_FLAGS
687 #endif
688
689 /*
690  * The identification function is mainly used by the buddy allocator for
691  * determining if two pages could be buddies. We are not really identifying
692  * the zone since we could be using the section number id if we do not have
693  * node id available in page flags.
694  * We only guarantee that it will return the same value for two combinable
695  * pages in a zone.
696  */
697 static inline int page_zone_id(struct page *page)
698 {
699         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
700 }
701
702 static inline int zone_to_nid(struct zone *zone)
703 {
704 #ifdef CONFIG_NUMA
705         return zone->node;
706 #else
707         return 0;
708 #endif
709 }
710
711 #ifdef NODE_NOT_IN_PAGE_FLAGS
712 extern int page_to_nid(const struct page *page);
713 #else
714 static inline int page_to_nid(const struct page *page)
715 {
716         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
717 }
718 #endif
719
720 #ifdef CONFIG_NUMA_BALANCING
721 static inline int cpu_pid_to_cpupid(int cpu, int pid)
722 {
723         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
724 }
725
726 static inline int cpupid_to_pid(int cpupid)
727 {
728         return cpupid & LAST__PID_MASK;
729 }
730
731 static inline int cpupid_to_cpu(int cpupid)
732 {
733         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
734 }
735
736 static inline int cpupid_to_nid(int cpupid)
737 {
738         return cpu_to_node(cpupid_to_cpu(cpupid));
739 }
740
741 static inline bool cpupid_pid_unset(int cpupid)
742 {
743         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
744 }
745
746 static inline bool cpupid_cpu_unset(int cpupid)
747 {
748         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
749 }
750
751 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
752 {
753         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
754 }
755
756 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
757 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
758 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
759 {
760         return xchg(&page->_last_cpupid, cpupid);
761 }
762
763 static inline int page_cpupid_last(struct page *page)
764 {
765         return page->_last_cpupid;
766 }
767 static inline void page_cpupid_reset_last(struct page *page)
768 {
769         page->_last_cpupid = -1;
770 }
771 #else
772 static inline int page_cpupid_last(struct page *page)
773 {
774         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
775 }
776
777 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
778
779 static inline void page_cpupid_reset_last(struct page *page)
780 {
781         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
782
783         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
784         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
785 }
786 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
787 #else /* !CONFIG_NUMA_BALANCING */
788 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
789 {
790         return page_to_nid(page); /* XXX */
791 }
792
793 static inline int page_cpupid_last(struct page *page)
794 {
795         return page_to_nid(page); /* XXX */
796 }
797
798 static inline int cpupid_to_nid(int cpupid)
799 {
800         return -1;
801 }
802
803 static inline int cpupid_to_pid(int cpupid)
804 {
805         return -1;
806 }
807
808 static inline int cpupid_to_cpu(int cpupid)
809 {
810         return -1;
811 }
812
813 static inline int cpu_pid_to_cpupid(int nid, int pid)
814 {
815         return -1;
816 }
817
818 static inline bool cpupid_pid_unset(int cpupid)
819 {
820         return 1;
821 }
822
823 static inline void page_cpupid_reset_last(struct page *page)
824 {
825 }
826
827 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
828 {
829         return false;
830 }
831 #endif /* CONFIG_NUMA_BALANCING */
832
833 static inline struct zone *page_zone(const struct page *page)
834 {
835         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
836 }
837
838 #ifdef SECTION_IN_PAGE_FLAGS
839 static inline void set_page_section(struct page *page, unsigned long section)
840 {
841         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
842         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
843 }
844
845 static inline unsigned long page_to_section(const struct page *page)
846 {
847         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
848 }
849 #endif
850
851 static inline void set_page_zone(struct page *page, enum zone_type zone)
852 {
853         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
854         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
855 }
856
857 static inline void set_page_node(struct page *page, unsigned long node)
858 {
859         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
860         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
861 }
862
863 static inline void set_page_links(struct page *page, enum zone_type zone,
864         unsigned long node, unsigned long pfn)
865 {
866         set_page_zone(page, zone);
867         set_page_node(page, node);
868 #ifdef SECTION_IN_PAGE_FLAGS
869         set_page_section(page, pfn_to_section_nr(pfn));
870 #endif
871 }
872
873 /*
874  * Some inline functions in vmstat.h depend on page_zone()
875  */
876 #include <linux/vmstat.h>
877
878 static __always_inline void *lowmem_page_address(const struct page *page)
879 {
880         return __va(PFN_PHYS(page_to_pfn(page)));
881 }
882
883 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
884 #define HASHED_PAGE_VIRTUAL
885 #endif
886
887 #if defined(WANT_PAGE_VIRTUAL)
888 static inline void *page_address(const struct page *page)
889 {
890         return page->virtual;
891 }
892 static inline void set_page_address(struct page *page, void *address)
893 {
894         page->virtual = address;
895 }
896 #define page_address_init()  do { } while(0)
897 #endif
898
899 #if defined(HASHED_PAGE_VIRTUAL)
900 void *page_address(const struct page *page);
901 void set_page_address(struct page *page, void *virtual);
902 void page_address_init(void);
903 #endif
904
905 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
906 #define page_address(page) lowmem_page_address(page)
907 #define set_page_address(page, address)  do { } while(0)
908 #define page_address_init()  do { } while(0)
909 #endif
910
911 /*
912  * On an anonymous page mapped into a user virtual memory area,
913  * page->mapping points to its anon_vma, not to a struct address_space;
914  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
915  *
916  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
917  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
918  * and then page->mapping points, not to an anon_vma, but to a private
919  * structure which KSM associates with that merged page.  See ksm.h.
920  *
921  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
922  *
923  * Please note that, confusingly, "page_mapping" refers to the inode
924  * address_space which maps the page from disk; whereas "page_mapped"
925  * refers to user virtual address space into which the page is mapped.
926  */
927 #define PAGE_MAPPING_ANON       1
928 #define PAGE_MAPPING_KSM        2
929 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
930
931 extern struct address_space *page_mapping(struct page *page);
932
933 /* Neutral page->mapping pointer to address_space or anon_vma or other */
934 static inline void *page_rmapping(struct page *page)
935 {
936         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
937 }
938
939 extern struct address_space *__page_file_mapping(struct page *);
940
941 static inline
942 struct address_space *page_file_mapping(struct page *page)
943 {
944         if (unlikely(PageSwapCache(page)))
945                 return __page_file_mapping(page);
946
947         return page->mapping;
948 }
949
950 static inline int PageAnon(struct page *page)
951 {
952         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
953 }
954
955 /*
956  * Return the pagecache index of the passed page.  Regular pagecache pages
957  * use ->index whereas swapcache pages use ->private
958  */
959 static inline pgoff_t page_index(struct page *page)
960 {
961         if (unlikely(PageSwapCache(page)))
962                 return page_private(page);
963         return page->index;
964 }
965
966 extern pgoff_t __page_file_index(struct page *page);
967
968 /*
969  * Return the file index of the page. Regular pagecache pages use ->index
970  * whereas swapcache pages use swp_offset(->private)
971  */
972 static inline pgoff_t page_file_index(struct page *page)
973 {
974         if (unlikely(PageSwapCache(page)))
975                 return __page_file_index(page);
976
977         return page->index;
978 }
979
980 /*
981  * Return true if this page is mapped into pagetables.
982  */
983 static inline int page_mapped(struct page *page)
984 {
985         return atomic_read(&(page)->_mapcount) >= 0;
986 }
987
988 /*
989  * Different kinds of faults, as returned by handle_mm_fault().
990  * Used to decide whether a process gets delivered SIGBUS or
991  * just gets major/minor fault counters bumped up.
992  */
993
994 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
995
996 #define VM_FAULT_OOM    0x0001
997 #define VM_FAULT_SIGBUS 0x0002
998 #define VM_FAULT_MAJOR  0x0004
999 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1000 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1001 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1002
1003 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1004 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1005 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1006 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1007
1008 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1009
1010 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1011                          VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1012
1013 /* Encode hstate index for a hwpoisoned large page */
1014 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1015 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1016
1017 /*
1018  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1019  */
1020 extern void pagefault_out_of_memory(void);
1021
1022 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1023
1024 /*
1025  * Flags passed to show_mem() and show_free_areas() to suppress output in
1026  * various contexts.
1027  */
1028 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1029
1030 extern void show_free_areas(unsigned int flags);
1031 extern bool skip_free_areas_node(unsigned int flags, int nid);
1032
1033 int shmem_zero_setup(struct vm_area_struct *);
1034
1035 extern int can_do_mlock(void);
1036 extern int user_shm_lock(size_t, struct user_struct *);
1037 extern void user_shm_unlock(size_t, struct user_struct *);
1038
1039 /*
1040  * Parameter block passed down to zap_pte_range in exceptional cases.
1041  */
1042 struct zap_details {
1043         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
1044         struct address_space *check_mapping;    /* Check page->mapping if set */
1045         pgoff_t first_index;                    /* Lowest page->index to unmap */
1046         pgoff_t last_index;                     /* Highest page->index to unmap */
1047 };
1048
1049 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1050                 pte_t pte);
1051
1052 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1053                 unsigned long size);
1054 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1055                 unsigned long size, struct zap_details *);
1056 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1057                 unsigned long start, unsigned long end);
1058
1059 /**
1060  * mm_walk - callbacks for walk_page_range
1061  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1062  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1063  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1064  *             this handler is required to be able to handle
1065  *             pmd_trans_huge() pmds.  They may simply choose to
1066  *             split_huge_page() instead of handling it explicitly.
1067  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1068  * @pte_hole: if set, called for each hole at all levels
1069  * @hugetlb_entry: if set, called for each hugetlb entry
1070  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1071  *                            is used.
1072  *
1073  * (see walk_page_range for more details)
1074  */
1075 struct mm_walk {
1076         int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1077                          unsigned long next, struct mm_walk *walk);
1078         int (*pud_entry)(pud_t *pud, unsigned long addr,
1079                          unsigned long next, struct mm_walk *walk);
1080         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1081                          unsigned long next, struct mm_walk *walk);
1082         int (*pte_entry)(pte_t *pte, unsigned long addr,
1083                          unsigned long next, struct mm_walk *walk);
1084         int (*pte_hole)(unsigned long addr, unsigned long next,
1085                         struct mm_walk *walk);
1086         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1087                              unsigned long addr, unsigned long next,
1088                              struct mm_walk *walk);
1089         struct mm_struct *mm;
1090         void *private;
1091 };
1092
1093 int walk_page_range(unsigned long addr, unsigned long end,
1094                 struct mm_walk *walk);
1095 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1096                 unsigned long end, unsigned long floor, unsigned long ceiling);
1097 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1098                         struct vm_area_struct *vma);
1099 void unmap_mapping_range(struct address_space *mapping,
1100                 loff_t const holebegin, loff_t const holelen, int even_cows);
1101 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1102         unsigned long *pfn);
1103 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1104                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1105 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1106                         void *buf, int len, int write);
1107
1108 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1109                 loff_t const holebegin, loff_t const holelen)
1110 {
1111         unmap_mapping_range(mapping, holebegin, holelen, 0);
1112 }
1113
1114 extern void truncate_pagecache(struct inode *inode, loff_t new);
1115 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1116 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1117 int truncate_inode_page(struct address_space *mapping, struct page *page);
1118 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1119 int invalidate_inode_page(struct page *page);
1120
1121 #ifdef CONFIG_MMU
1122 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1123                         unsigned long address, unsigned int flags);
1124 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1125                             unsigned long address, unsigned int fault_flags);
1126 #else
1127 static inline int handle_mm_fault(struct mm_struct *mm,
1128                         struct vm_area_struct *vma, unsigned long address,
1129                         unsigned int flags)
1130 {
1131         /* should never happen if there's no MMU */
1132         BUG();
1133         return VM_FAULT_SIGBUS;
1134 }
1135 static inline int fixup_user_fault(struct task_struct *tsk,
1136                 struct mm_struct *mm, unsigned long address,
1137                 unsigned int fault_flags)
1138 {
1139         /* should never happen if there's no MMU */
1140         BUG();
1141         return -EFAULT;
1142 }
1143 #endif
1144
1145 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1146 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1147                 void *buf, int len, int write);
1148
1149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1150                       unsigned long start, unsigned long nr_pages,
1151                       unsigned int foll_flags, struct page **pages,
1152                       struct vm_area_struct **vmas, int *nonblocking);
1153 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1154                     unsigned long start, unsigned long nr_pages,
1155                     int write, int force, struct page **pages,
1156                     struct vm_area_struct **vmas);
1157 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1158                         struct page **pages);
1159 struct kvec;
1160 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1161                         struct page **pages);
1162 int get_kernel_page(unsigned long start, int write, struct page **pages);
1163 struct page *get_dump_page(unsigned long addr);
1164
1165 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1166 extern void do_invalidatepage(struct page *page, unsigned int offset,
1167                               unsigned int length);
1168
1169 int __set_page_dirty_nobuffers(struct page *page);
1170 int __set_page_dirty_no_writeback(struct page *page);
1171 int redirty_page_for_writepage(struct writeback_control *wbc,
1172                                 struct page *page);
1173 void account_page_dirtied(struct page *page, struct address_space *mapping);
1174 void account_page_writeback(struct page *page);
1175 int set_page_dirty(struct page *page);
1176 int set_page_dirty_lock(struct page *page);
1177 int clear_page_dirty_for_io(struct page *page);
1178
1179 /* Is the vma a continuation of the stack vma above it? */
1180 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1181 {
1182         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1183 }
1184
1185 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1186                                              unsigned long addr)
1187 {
1188         return (vma->vm_flags & VM_GROWSDOWN) &&
1189                 (vma->vm_start == addr) &&
1190                 !vma_growsdown(vma->vm_prev, addr);
1191 }
1192
1193 /* Is the vma a continuation of the stack vma below it? */
1194 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1195 {
1196         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1197 }
1198
1199 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1200                                            unsigned long addr)
1201 {
1202         return (vma->vm_flags & VM_GROWSUP) &&
1203                 (vma->vm_end == addr) &&
1204                 !vma_growsup(vma->vm_next, addr);
1205 }
1206
1207 extern pid_t
1208 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1209
1210 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1211                 unsigned long old_addr, struct vm_area_struct *new_vma,
1212                 unsigned long new_addr, unsigned long len,
1213                 bool need_rmap_locks);
1214 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1215                               unsigned long end, pgprot_t newprot,
1216                               int dirty_accountable, int prot_numa);
1217 extern int mprotect_fixup(struct vm_area_struct *vma,
1218                           struct vm_area_struct **pprev, unsigned long start,
1219                           unsigned long end, unsigned long newflags);
1220
1221 /*
1222  * doesn't attempt to fault and will return short.
1223  */
1224 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1225                           struct page **pages);
1226 /*
1227  * per-process(per-mm_struct) statistics.
1228  */
1229 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1230 {
1231         long val = atomic_long_read(&mm->rss_stat.count[member]);
1232
1233 #ifdef SPLIT_RSS_COUNTING
1234         /*
1235          * counter is updated in asynchronous manner and may go to minus.
1236          * But it's never be expected number for users.
1237          */
1238         if (val < 0)
1239                 val = 0;
1240 #endif
1241         return (unsigned long)val;
1242 }
1243
1244 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1245 {
1246         atomic_long_add(value, &mm->rss_stat.count[member]);
1247 }
1248
1249 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1250 {
1251         atomic_long_inc(&mm->rss_stat.count[member]);
1252 }
1253
1254 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1255 {
1256         atomic_long_dec(&mm->rss_stat.count[member]);
1257 }
1258
1259 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1260 {
1261         return get_mm_counter(mm, MM_FILEPAGES) +
1262                 get_mm_counter(mm, MM_ANONPAGES);
1263 }
1264
1265 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1266 {
1267         return max(mm->hiwater_rss, get_mm_rss(mm));
1268 }
1269
1270 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1271 {
1272         return max(mm->hiwater_vm, mm->total_vm);
1273 }
1274
1275 static inline void update_hiwater_rss(struct mm_struct *mm)
1276 {
1277         unsigned long _rss = get_mm_rss(mm);
1278
1279         if ((mm)->hiwater_rss < _rss)
1280                 (mm)->hiwater_rss = _rss;
1281 }
1282
1283 static inline void update_hiwater_vm(struct mm_struct *mm)
1284 {
1285         if (mm->hiwater_vm < mm->total_vm)
1286                 mm->hiwater_vm = mm->total_vm;
1287 }
1288
1289 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1290                                          struct mm_struct *mm)
1291 {
1292         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1293
1294         if (*maxrss < hiwater_rss)
1295                 *maxrss = hiwater_rss;
1296 }
1297
1298 #if defined(SPLIT_RSS_COUNTING)
1299 void sync_mm_rss(struct mm_struct *mm);
1300 #else
1301 static inline void sync_mm_rss(struct mm_struct *mm)
1302 {
1303 }
1304 #endif
1305
1306 int vma_wants_writenotify(struct vm_area_struct *vma);
1307
1308 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1309                                spinlock_t **ptl);
1310 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1311                                     spinlock_t **ptl)
1312 {
1313         pte_t *ptep;
1314         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1315         return ptep;
1316 }
1317
1318 #ifdef __PAGETABLE_PUD_FOLDED
1319 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1320                                                 unsigned long address)
1321 {
1322         return 0;
1323 }
1324 #else
1325 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1326 #endif
1327
1328 #ifdef __PAGETABLE_PMD_FOLDED
1329 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1330                                                 unsigned long address)
1331 {
1332         return 0;
1333 }
1334 #else
1335 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1336 #endif
1337
1338 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1339                 pmd_t *pmd, unsigned long address);
1340 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1341
1342 /*
1343  * The following ifdef needed to get the 4level-fixup.h header to work.
1344  * Remove it when 4level-fixup.h has been removed.
1345  */
1346 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1347 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1348 {
1349         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1350                 NULL: pud_offset(pgd, address);
1351 }
1352
1353 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1354 {
1355         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1356                 NULL: pmd_offset(pud, address);
1357 }
1358 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1359
1360 #if USE_SPLIT_PTE_PTLOCKS
1361 #if ALLOC_SPLIT_PTLOCKS
1362 void __init ptlock_cache_init(void);
1363 extern bool ptlock_alloc(struct page *page);
1364 extern void ptlock_free(struct page *page);
1365
1366 static inline spinlock_t *ptlock_ptr(struct page *page)
1367 {
1368         return page->ptl;
1369 }
1370 #else /* ALLOC_SPLIT_PTLOCKS */
1371 static inline void ptlock_cache_init(void)
1372 {
1373 }
1374
1375 static inline bool ptlock_alloc(struct page *page)
1376 {
1377         return true;
1378 }
1379
1380 static inline void ptlock_free(struct page *page)
1381 {
1382 }
1383
1384 static inline spinlock_t *ptlock_ptr(struct page *page)
1385 {
1386         return &page->ptl;
1387 }
1388 #endif /* ALLOC_SPLIT_PTLOCKS */
1389
1390 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1391 {
1392         return ptlock_ptr(pmd_page(*pmd));
1393 }
1394
1395 static inline bool ptlock_init(struct page *page)
1396 {
1397         /*
1398          * prep_new_page() initialize page->private (and therefore page->ptl)
1399          * with 0. Make sure nobody took it in use in between.
1400          *
1401          * It can happen if arch try to use slab for page table allocation:
1402          * slab code uses page->slab_cache and page->first_page (for tail
1403          * pages), which share storage with page->ptl.
1404          */
1405         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1406         if (!ptlock_alloc(page))
1407                 return false;
1408         spin_lock_init(ptlock_ptr(page));
1409         return true;
1410 }
1411
1412 /* Reset page->mapping so free_pages_check won't complain. */
1413 static inline void pte_lock_deinit(struct page *page)
1414 {
1415         page->mapping = NULL;
1416         ptlock_free(page);
1417 }
1418
1419 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1420 /*
1421  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1422  */
1423 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1424 {
1425         return &mm->page_table_lock;
1426 }
1427 static inline void ptlock_cache_init(void) {}
1428 static inline bool ptlock_init(struct page *page) { return true; }
1429 static inline void pte_lock_deinit(struct page *page) {}
1430 #endif /* USE_SPLIT_PTE_PTLOCKS */
1431
1432 static inline void pgtable_init(void)
1433 {
1434         ptlock_cache_init();
1435         pgtable_cache_init();
1436 }
1437
1438 static inline bool pgtable_page_ctor(struct page *page)
1439 {
1440         inc_zone_page_state(page, NR_PAGETABLE);
1441         return ptlock_init(page);
1442 }
1443
1444 static inline void pgtable_page_dtor(struct page *page)
1445 {
1446         pte_lock_deinit(page);
1447         dec_zone_page_state(page, NR_PAGETABLE);
1448 }
1449
1450 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1451 ({                                                      \
1452         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1453         pte_t *__pte = pte_offset_map(pmd, address);    \
1454         *(ptlp) = __ptl;                                \
1455         spin_lock(__ptl);                               \
1456         __pte;                                          \
1457 })
1458
1459 #define pte_unmap_unlock(pte, ptl)      do {            \
1460         spin_unlock(ptl);                               \
1461         pte_unmap(pte);                                 \
1462 } while (0)
1463
1464 #define pte_alloc_map(mm, vma, pmd, address)                            \
1465         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1466                                                         pmd, address))? \
1467          NULL: pte_offset_map(pmd, address))
1468
1469 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1470         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1471                                                         pmd, address))? \
1472                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1473
1474 #define pte_alloc_kernel(pmd, address)                  \
1475         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1476                 NULL: pte_offset_kernel(pmd, address))
1477
1478 #if USE_SPLIT_PMD_PTLOCKS
1479
1480 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1481 {
1482         return ptlock_ptr(virt_to_page(pmd));
1483 }
1484
1485 static inline bool pgtable_pmd_page_ctor(struct page *page)
1486 {
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488         page->pmd_huge_pte = NULL;
1489 #endif
1490         return ptlock_init(page);
1491 }
1492
1493 static inline void pgtable_pmd_page_dtor(struct page *page)
1494 {
1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1497 #endif
1498         ptlock_free(page);
1499 }
1500
1501 #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1502
1503 #else
1504
1505 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1506 {
1507         return &mm->page_table_lock;
1508 }
1509
1510 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1511 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1512
1513 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1514
1515 #endif
1516
1517 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1518 {
1519         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1520         spin_lock(ptl);
1521         return ptl;
1522 }
1523
1524 extern void free_area_init(unsigned long * zones_size);
1525 extern void free_area_init_node(int nid, unsigned long * zones_size,
1526                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1527 extern void free_initmem(void);
1528
1529 /*
1530  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1531  * into the buddy system. The freed pages will be poisoned with pattern
1532  * "poison" if it's within range [0, UCHAR_MAX].
1533  * Return pages freed into the buddy system.
1534  */
1535 extern unsigned long free_reserved_area(void *start, void *end,
1536                                         int poison, char *s);
1537
1538 #ifdef  CONFIG_HIGHMEM
1539 /*
1540  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1541  * and totalram_pages.
1542  */
1543 extern void free_highmem_page(struct page *page);
1544 #endif
1545
1546 extern void adjust_managed_page_count(struct page *page, long count);
1547 extern void mem_init_print_info(const char *str);
1548
1549 /* Free the reserved page into the buddy system, so it gets managed. */
1550 static inline void __free_reserved_page(struct page *page)
1551 {
1552         ClearPageReserved(page);
1553         init_page_count(page);
1554         __free_page(page);
1555 }
1556
1557 static inline void free_reserved_page(struct page *page)
1558 {
1559         __free_reserved_page(page);
1560         adjust_managed_page_count(page, 1);
1561 }
1562
1563 static inline void mark_page_reserved(struct page *page)
1564 {
1565         SetPageReserved(page);
1566         adjust_managed_page_count(page, -1);
1567 }
1568
1569 /*
1570  * Default method to free all the __init memory into the buddy system.
1571  * The freed pages will be poisoned with pattern "poison" if it's within
1572  * range [0, UCHAR_MAX].
1573  * Return pages freed into the buddy system.
1574  */
1575 static inline unsigned long free_initmem_default(int poison)
1576 {
1577         extern char __init_begin[], __init_end[];
1578
1579         return free_reserved_area(&__init_begin, &__init_end,
1580                                   poison, "unused kernel");
1581 }
1582
1583 static inline unsigned long get_num_physpages(void)
1584 {
1585         int nid;
1586         unsigned long phys_pages = 0;
1587
1588         for_each_online_node(nid)
1589                 phys_pages += node_present_pages(nid);
1590
1591         return phys_pages;
1592 }
1593
1594 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1595 /*
1596  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1597  * zones, allocate the backing mem_map and account for memory holes in a more
1598  * architecture independent manner. This is a substitute for creating the
1599  * zone_sizes[] and zholes_size[] arrays and passing them to
1600  * free_area_init_node()
1601  *
1602  * An architecture is expected to register range of page frames backed by
1603  * physical memory with memblock_add[_node]() before calling
1604  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1605  * usage, an architecture is expected to do something like
1606  *
1607  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1608  *                                                       max_highmem_pfn};
1609  * for_each_valid_physical_page_range()
1610  *      memblock_add_node(base, size, nid)
1611  * free_area_init_nodes(max_zone_pfns);
1612  *
1613  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1614  * registered physical page range.  Similarly
1615  * sparse_memory_present_with_active_regions() calls memory_present() for
1616  * each range when SPARSEMEM is enabled.
1617  *
1618  * See mm/page_alloc.c for more information on each function exposed by
1619  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1620  */
1621 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1622 unsigned long node_map_pfn_alignment(void);
1623 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1624                                                 unsigned long end_pfn);
1625 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1626                                                 unsigned long end_pfn);
1627 extern void get_pfn_range_for_nid(unsigned int nid,
1628                         unsigned long *start_pfn, unsigned long *end_pfn);
1629 extern unsigned long find_min_pfn_with_active_regions(void);
1630 extern void free_bootmem_with_active_regions(int nid,
1631                                                 unsigned long max_low_pfn);
1632 extern void sparse_memory_present_with_active_regions(int nid);
1633
1634 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1635
1636 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1637     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1638 static inline int __early_pfn_to_nid(unsigned long pfn)
1639 {
1640         return 0;
1641 }
1642 #else
1643 /* please see mm/page_alloc.c */
1644 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1645 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1646 /* there is a per-arch backend function. */
1647 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1648 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1649 #endif
1650
1651 extern void set_dma_reserve(unsigned long new_dma_reserve);
1652 extern void memmap_init_zone(unsigned long, int, unsigned long,
1653                                 unsigned long, enum memmap_context);
1654 extern void setup_per_zone_wmarks(void);
1655 extern int __meminit init_per_zone_wmark_min(void);
1656 extern void mem_init(void);
1657 extern void __init mmap_init(void);
1658 extern void show_mem(unsigned int flags);
1659 extern void si_meminfo(struct sysinfo * val);
1660 extern void si_meminfo_node(struct sysinfo *val, int nid);
1661
1662 extern __printf(3, 4)
1663 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1664
1665 extern void setup_per_cpu_pageset(void);
1666
1667 extern void zone_pcp_update(struct zone *zone);
1668 extern void zone_pcp_reset(struct zone *zone);
1669
1670 /* page_alloc.c */
1671 extern int min_free_kbytes;
1672
1673 /* nommu.c */
1674 extern atomic_long_t mmap_pages_allocated;
1675 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1676
1677 /* interval_tree.c */
1678 void vma_interval_tree_insert(struct vm_area_struct *node,
1679                               struct rb_root *root);
1680 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1681                                     struct vm_area_struct *prev,
1682                                     struct rb_root *root);
1683 void vma_interval_tree_remove(struct vm_area_struct *node,
1684                               struct rb_root *root);
1685 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1686                                 unsigned long start, unsigned long last);
1687 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1688                                 unsigned long start, unsigned long last);
1689
1690 #define vma_interval_tree_foreach(vma, root, start, last)               \
1691         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1692              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1693
1694 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1695                                         struct list_head *list)
1696 {
1697         list_add_tail(&vma->shared.nonlinear, list);
1698 }
1699
1700 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1701                                    struct rb_root *root);
1702 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1703                                    struct rb_root *root);
1704 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1705         struct rb_root *root, unsigned long start, unsigned long last);
1706 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1707         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1708 #ifdef CONFIG_DEBUG_VM_RB
1709 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1710 #endif
1711
1712 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1713         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1714              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1715
1716 /* mmap.c */
1717 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1718 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1719         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1720 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1721         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1722         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1723         struct mempolicy *);
1724 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1725 extern int split_vma(struct mm_struct *,
1726         struct vm_area_struct *, unsigned long addr, int new_below);
1727 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1728 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1729         struct rb_node **, struct rb_node *);
1730 extern void unlink_file_vma(struct vm_area_struct *);
1731 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1732         unsigned long addr, unsigned long len, pgoff_t pgoff,
1733         bool *need_rmap_locks);
1734 extern void exit_mmap(struct mm_struct *);
1735
1736 extern int mm_take_all_locks(struct mm_struct *mm);
1737 extern void mm_drop_all_locks(struct mm_struct *mm);
1738
1739 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1740 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1741
1742 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1743 extern int install_special_mapping(struct mm_struct *mm,
1744                                    unsigned long addr, unsigned long len,
1745                                    unsigned long flags, struct page **pages);
1746
1747 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1748
1749 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1750         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1751 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1752         unsigned long len, unsigned long prot, unsigned long flags,
1753         unsigned long pgoff, unsigned long *populate);
1754 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1755
1756 #ifdef CONFIG_MMU
1757 extern int __mm_populate(unsigned long addr, unsigned long len,
1758                          int ignore_errors);
1759 static inline void mm_populate(unsigned long addr, unsigned long len)
1760 {
1761         /* Ignore errors */
1762         (void) __mm_populate(addr, len, 1);
1763 }
1764 #else
1765 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1766 #endif
1767
1768 /* These take the mm semaphore themselves */
1769 extern unsigned long vm_brk(unsigned long, unsigned long);
1770 extern int vm_munmap(unsigned long, size_t);
1771 extern unsigned long vm_mmap(struct file *, unsigned long,
1772         unsigned long, unsigned long,
1773         unsigned long, unsigned long);
1774
1775 struct vm_unmapped_area_info {
1776 #define VM_UNMAPPED_AREA_TOPDOWN 1
1777         unsigned long flags;
1778         unsigned long length;
1779         unsigned long low_limit;
1780         unsigned long high_limit;
1781         unsigned long align_mask;
1782         unsigned long align_offset;
1783 };
1784
1785 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1786 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1787
1788 /*
1789  * Search for an unmapped address range.
1790  *
1791  * We are looking for a range that:
1792  * - does not intersect with any VMA;
1793  * - is contained within the [low_limit, high_limit) interval;
1794  * - is at least the desired size.
1795  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1796  */
1797 static inline unsigned long
1798 vm_unmapped_area(struct vm_unmapped_area_info *info)
1799 {
1800         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1801                 return unmapped_area(info);
1802         else
1803                 return unmapped_area_topdown(info);
1804 }
1805
1806 /* truncate.c */
1807 extern void truncate_inode_pages(struct address_space *, loff_t);
1808 extern void truncate_inode_pages_range(struct address_space *,
1809                                        loff_t lstart, loff_t lend);
1810
1811 /* generic vm_area_ops exported for stackable file systems */
1812 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1813 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1814
1815 /* mm/page-writeback.c */
1816 int write_one_page(struct page *page, int wait);
1817 void task_dirty_inc(struct task_struct *tsk);
1818
1819 /* readahead.c */
1820 #define VM_MAX_READAHEAD        128     /* kbytes */
1821 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1822
1823 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1824                         pgoff_t offset, unsigned long nr_to_read);
1825
1826 void page_cache_sync_readahead(struct address_space *mapping,
1827                                struct file_ra_state *ra,
1828                                struct file *filp,
1829                                pgoff_t offset,
1830                                unsigned long size);
1831
1832 void page_cache_async_readahead(struct address_space *mapping,
1833                                 struct file_ra_state *ra,
1834                                 struct file *filp,
1835                                 struct page *pg,
1836                                 pgoff_t offset,
1837                                 unsigned long size);
1838
1839 unsigned long max_sane_readahead(unsigned long nr);
1840 unsigned long ra_submit(struct file_ra_state *ra,
1841                         struct address_space *mapping,
1842                         struct file *filp);
1843
1844 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1845 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1846
1847 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1848 extern int expand_downwards(struct vm_area_struct *vma,
1849                 unsigned long address);
1850 #if VM_GROWSUP
1851 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1852 #else
1853   #define expand_upwards(vma, address) do { } while (0)
1854 #endif
1855
1856 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1857 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1858 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1859                                              struct vm_area_struct **pprev);
1860
1861 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1862    NULL if none.  Assume start_addr < end_addr. */
1863 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1864 {
1865         struct vm_area_struct * vma = find_vma(mm,start_addr);
1866
1867         if (vma && end_addr <= vma->vm_start)
1868                 vma = NULL;
1869         return vma;
1870 }
1871
1872 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1873 {
1874         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1875 }
1876
1877 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1878 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1879                                 unsigned long vm_start, unsigned long vm_end)
1880 {
1881         struct vm_area_struct *vma = find_vma(mm, vm_start);
1882
1883         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1884                 vma = NULL;
1885
1886         return vma;
1887 }
1888
1889 #ifdef CONFIG_MMU
1890 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1891 #else
1892 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1893 {
1894         return __pgprot(0);
1895 }
1896 #endif
1897
1898 #ifdef CONFIG_NUMA_BALANCING
1899 unsigned long change_prot_numa(struct vm_area_struct *vma,
1900                         unsigned long start, unsigned long end);
1901 #endif
1902
1903 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1904 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1905                         unsigned long pfn, unsigned long size, pgprot_t);
1906 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1907 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908                         unsigned long pfn);
1909 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1910                         unsigned long pfn);
1911 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1912
1913
1914 struct page *follow_page_mask(struct vm_area_struct *vma,
1915                               unsigned long address, unsigned int foll_flags,
1916                               unsigned int *page_mask);
1917
1918 static inline struct page *follow_page(struct vm_area_struct *vma,
1919                 unsigned long address, unsigned int foll_flags)
1920 {
1921         unsigned int unused_page_mask;
1922         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1923 }
1924
1925 #define FOLL_WRITE      0x01    /* check pte is writable */
1926 #define FOLL_TOUCH      0x02    /* mark page accessed */
1927 #define FOLL_GET        0x04    /* do get_page on page */
1928 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1929 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1930 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1931                                  * and return without waiting upon it */
1932 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1933 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1934 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1935 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1936 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1937
1938 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1939                         void *data);
1940 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1941                                unsigned long size, pte_fn_t fn, void *data);
1942
1943 #ifdef CONFIG_PROC_FS
1944 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1945 #else
1946 static inline void vm_stat_account(struct mm_struct *mm,
1947                         unsigned long flags, struct file *file, long pages)
1948 {
1949         mm->total_vm += pages;
1950 }
1951 #endif /* CONFIG_PROC_FS */
1952
1953 #ifdef CONFIG_DEBUG_PAGEALLOC
1954 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1955 #ifdef CONFIG_HIBERNATION
1956 extern bool kernel_page_present(struct page *page);
1957 #endif /* CONFIG_HIBERNATION */
1958 #else
1959 static inline void
1960 kernel_map_pages(struct page *page, int numpages, int enable) {}
1961 #ifdef CONFIG_HIBERNATION
1962 static inline bool kernel_page_present(struct page *page) { return true; }
1963 #endif /* CONFIG_HIBERNATION */
1964 #endif
1965
1966 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1967 #ifdef  __HAVE_ARCH_GATE_AREA
1968 int in_gate_area_no_mm(unsigned long addr);
1969 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1970 #else
1971 int in_gate_area_no_mm(unsigned long addr);
1972 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1973 #endif  /* __HAVE_ARCH_GATE_AREA */
1974
1975 #ifdef CONFIG_SYSCTL
1976 extern int sysctl_drop_caches;
1977 int drop_caches_sysctl_handler(struct ctl_table *, int,
1978                                         void __user *, size_t *, loff_t *);
1979 #endif
1980
1981 unsigned long shrink_slab(struct shrink_control *shrink,
1982                           unsigned long nr_pages_scanned,
1983                           unsigned long lru_pages);
1984
1985 #ifndef CONFIG_MMU
1986 #define randomize_va_space 0
1987 #else
1988 extern int randomize_va_space;
1989 #endif
1990
1991 const char * arch_vma_name(struct vm_area_struct *vma);
1992 void print_vma_addr(char *prefix, unsigned long rip);
1993
1994 void sparse_mem_maps_populate_node(struct page **map_map,
1995                                    unsigned long pnum_begin,
1996                                    unsigned long pnum_end,
1997                                    unsigned long map_count,
1998                                    int nodeid);
1999
2000 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2001 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2002 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2003 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2004 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2005 void *vmemmap_alloc_block(unsigned long size, int node);
2006 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2007 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2008 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2009                                int node);
2010 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2011 void vmemmap_populate_print_last(void);
2012 #ifdef CONFIG_MEMORY_HOTPLUG
2013 void vmemmap_free(unsigned long start, unsigned long end);
2014 #endif
2015 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2016                                   unsigned long size);
2017
2018 enum mf_flags {
2019         MF_COUNT_INCREASED = 1 << 0,
2020         MF_ACTION_REQUIRED = 1 << 1,
2021         MF_MUST_KILL = 1 << 2,
2022         MF_SOFT_OFFLINE = 1 << 3,
2023 };
2024 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2025 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2026 extern int unpoison_memory(unsigned long pfn);
2027 extern int sysctl_memory_failure_early_kill;
2028 extern int sysctl_memory_failure_recovery;
2029 extern void shake_page(struct page *p, int access);
2030 extern atomic_long_t num_poisoned_pages;
2031 extern int soft_offline_page(struct page *page, int flags);
2032
2033 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2034 extern void clear_huge_page(struct page *page,
2035                             unsigned long addr,
2036                             unsigned int pages_per_huge_page);
2037 extern void copy_user_huge_page(struct page *dst, struct page *src,
2038                                 unsigned long addr, struct vm_area_struct *vma,
2039                                 unsigned int pages_per_huge_page);
2040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2041
2042 #ifdef CONFIG_DEBUG_PAGEALLOC
2043 extern unsigned int _debug_guardpage_minorder;
2044
2045 static inline unsigned int debug_guardpage_minorder(void)
2046 {
2047         return _debug_guardpage_minorder;
2048 }
2049
2050 static inline bool page_is_guard(struct page *page)
2051 {
2052         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2053 }
2054 #else
2055 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2056 static inline bool page_is_guard(struct page *page) { return false; }
2057 #endif /* CONFIG_DEBUG_PAGEALLOC */
2058
2059 #if MAX_NUMNODES > 1
2060 void __init setup_nr_node_ids(void);
2061 #else
2062 static inline void setup_nr_node_ids(void) {}
2063 #endif
2064
2065 #endif /* __KERNEL__ */
2066 #endif /* _LINUX_MM_H */