gfs2: Initialize atime of I_NEW inodes
[cascardo/linux.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 /* UDP Tunnel offloads */
65 struct udp_tunnel_info;
66 struct bpf_prog;
67
68 void netdev_set_default_ethtool_ops(struct net_device *dev,
69                                     const struct ethtool_ops *ops);
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
73 #define NET_RX_DROP             1       /* packet dropped */
74
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously; in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
89  * others are propagated to higher layers.
90  */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS        0x00
94 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
95 #define NET_XMIT_CN             0x02    /* congestion notification      */
96 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
97
98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
99  * indicates that the device will soon be dropping packets, or already drops
100  * some packets of the same priority; prompting us to send less aggressively. */
101 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
102 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
103
104 /* Driver transmit return codes */
105 #define NETDEV_TX_MASK          0xf0
106
107 enum netdev_tx {
108         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
109         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
110         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
111 };
112 typedef enum netdev_tx netdev_tx_t;
113
114 /*
115  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
116  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
117  */
118 static inline bool dev_xmit_complete(int rc)
119 {
120         /*
121          * Positive cases with an skb consumed by a driver:
122          * - successful transmission (rc == NETDEV_TX_OK)
123          * - error while transmitting (rc < 0)
124          * - error while queueing to a different device (rc & NET_XMIT_MASK)
125          */
126         if (likely(rc < NET_XMIT_MASK))
127                 return true;
128
129         return false;
130 }
131
132 /*
133  *      Compute the worst-case header length according to the protocols
134  *      used.
135  */
136
137 #if defined(CONFIG_HYPERV_NET)
138 # define LL_MAX_HEADER 128
139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
140 # if defined(CONFIG_MAC80211_MESH)
141 #  define LL_MAX_HEADER 128
142 # else
143 #  define LL_MAX_HEADER 96
144 # endif
145 #else
146 # define LL_MAX_HEADER 32
147 #endif
148
149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
150     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
151 #define MAX_HEADER LL_MAX_HEADER
152 #else
153 #define MAX_HEADER (LL_MAX_HEADER + 48)
154 #endif
155
156 /*
157  *      Old network device statistics. Fields are native words
158  *      (unsigned long) so they can be read and written atomically.
159  */
160
161 struct net_device_stats {
162         unsigned long   rx_packets;
163         unsigned long   tx_packets;
164         unsigned long   rx_bytes;
165         unsigned long   tx_bytes;
166         unsigned long   rx_errors;
167         unsigned long   tx_errors;
168         unsigned long   rx_dropped;
169         unsigned long   tx_dropped;
170         unsigned long   multicast;
171         unsigned long   collisions;
172         unsigned long   rx_length_errors;
173         unsigned long   rx_over_errors;
174         unsigned long   rx_crc_errors;
175         unsigned long   rx_frame_errors;
176         unsigned long   rx_fifo_errors;
177         unsigned long   rx_missed_errors;
178         unsigned long   tx_aborted_errors;
179         unsigned long   tx_carrier_errors;
180         unsigned long   tx_fifo_errors;
181         unsigned long   tx_heartbeat_errors;
182         unsigned long   tx_window_errors;
183         unsigned long   rx_compressed;
184         unsigned long   tx_compressed;
185 };
186
187
188 #include <linux/cache.h>
189 #include <linux/skbuff.h>
190
191 #ifdef CONFIG_RPS
192 #include <linux/static_key.h>
193 extern struct static_key rps_needed;
194 #endif
195
196 struct neighbour;
197 struct neigh_parms;
198 struct sk_buff;
199
200 struct netdev_hw_addr {
201         struct list_head        list;
202         unsigned char           addr[MAX_ADDR_LEN];
203         unsigned char           type;
204 #define NETDEV_HW_ADDR_T_LAN            1
205 #define NETDEV_HW_ADDR_T_SAN            2
206 #define NETDEV_HW_ADDR_T_SLAVE          3
207 #define NETDEV_HW_ADDR_T_UNICAST        4
208 #define NETDEV_HW_ADDR_T_MULTICAST      5
209         bool                    global_use;
210         int                     sync_cnt;
211         int                     refcount;
212         int                     synced;
213         struct rcu_head         rcu_head;
214 };
215
216 struct netdev_hw_addr_list {
217         struct list_head        list;
218         int                     count;
219 };
220
221 #define netdev_hw_addr_list_count(l) ((l)->count)
222 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
223 #define netdev_hw_addr_list_for_each(ha, l) \
224         list_for_each_entry(ha, &(l)->list, list)
225
226 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
227 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
228 #define netdev_for_each_uc_addr(ha, dev) \
229         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
230
231 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
232 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
233 #define netdev_for_each_mc_addr(ha, dev) \
234         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
235
236 struct hh_cache {
237         u16             hh_len;
238         u16             __pad;
239         seqlock_t       hh_lock;
240
241         /* cached hardware header; allow for machine alignment needs.        */
242 #define HH_DATA_MOD     16
243 #define HH_DATA_OFF(__len) \
244         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
245 #define HH_DATA_ALIGN(__len) \
246         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
247         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
248 };
249
250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
251  * Alternative is:
252  *   dev->hard_header_len ? (dev->hard_header_len +
253  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
254  *
255  * We could use other alignment values, but we must maintain the
256  * relationship HH alignment <= LL alignment.
257  */
258 #define LL_RESERVED_SPACE(dev) \
259         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262
263 struct header_ops {
264         int     (*create) (struct sk_buff *skb, struct net_device *dev,
265                            unsigned short type, const void *daddr,
266                            const void *saddr, unsigned int len);
267         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
268         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269         void    (*cache_update)(struct hh_cache *hh,
270                                 const struct net_device *dev,
271                                 const unsigned char *haddr);
272         bool    (*validate)(const char *ll_header, unsigned int len);
273 };
274
275 /* These flag bits are private to the generic network queueing
276  * layer; they may not be explicitly referenced by any other
277  * code.
278  */
279
280 enum netdev_state_t {
281         __LINK_STATE_START,
282         __LINK_STATE_PRESENT,
283         __LINK_STATE_NOCARRIER,
284         __LINK_STATE_LINKWATCH_PENDING,
285         __LINK_STATE_DORMANT,
286 };
287
288
289 /*
290  * This structure holds boot-time configured netdevice settings. They
291  * are then used in the device probing.
292  */
293 struct netdev_boot_setup {
294         char name[IFNAMSIZ];
295         struct ifmap map;
296 };
297 #define NETDEV_BOOT_SETUP_MAX 8
298
299 int __init netdev_boot_setup(char *str);
300
301 /*
302  * Structure for NAPI scheduling similar to tasklet but with weighting
303  */
304 struct napi_struct {
305         /* The poll_list must only be managed by the entity which
306          * changes the state of the NAPI_STATE_SCHED bit.  This means
307          * whoever atomically sets that bit can add this napi_struct
308          * to the per-CPU poll_list, and whoever clears that bit
309          * can remove from the list right before clearing the bit.
310          */
311         struct list_head        poll_list;
312
313         unsigned long           state;
314         int                     weight;
315         unsigned int            gro_count;
316         int                     (*poll)(struct napi_struct *, int);
317 #ifdef CONFIG_NETPOLL
318         spinlock_t              poll_lock;
319         int                     poll_owner;
320 #endif
321         struct net_device       *dev;
322         struct sk_buff          *gro_list;
323         struct sk_buff          *skb;
324         struct hrtimer          timer;
325         struct list_head        dev_list;
326         struct hlist_node       napi_hash_node;
327         unsigned int            napi_id;
328 };
329
330 enum {
331         NAPI_STATE_SCHED,       /* Poll is scheduled */
332         NAPI_STATE_DISABLE,     /* Disable pending */
333         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
334         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
335         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
336 };
337
338 enum gro_result {
339         GRO_MERGED,
340         GRO_MERGED_FREE,
341         GRO_HELD,
342         GRO_NORMAL,
343         GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed the skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other way.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler decides the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387
388 enum rx_handler_result {
389         RX_HANDLER_CONSUMED,
390         RX_HANDLER_ANOTHER,
391         RX_HANDLER_EXACT,
392         RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398 void __napi_schedule_irqoff(struct napi_struct *n);
399
400 static inline bool napi_disable_pending(struct napi_struct *n)
401 {
402         return test_bit(NAPI_STATE_DISABLE, &n->state);
403 }
404
405 /**
406  *      napi_schedule_prep - check if NAPI can be scheduled
407  *      @n: NAPI context
408  *
409  * Test if NAPI routine is already running, and if not mark
410  * it as running.  This is used as a condition variable to
411  * insure only one NAPI poll instance runs.  We also make
412  * sure there is no pending NAPI disable.
413  */
414 static inline bool napi_schedule_prep(struct napi_struct *n)
415 {
416         return !napi_disable_pending(n) &&
417                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
418 }
419
420 /**
421  *      napi_schedule - schedule NAPI poll
422  *      @n: NAPI context
423  *
424  * Schedule NAPI poll routine to be called if it is not already
425  * running.
426  */
427 static inline void napi_schedule(struct napi_struct *n)
428 {
429         if (napi_schedule_prep(n))
430                 __napi_schedule(n);
431 }
432
433 /**
434  *      napi_schedule_irqoff - schedule NAPI poll
435  *      @n: NAPI context
436  *
437  * Variant of napi_schedule(), assuming hard irqs are masked.
438  */
439 static inline void napi_schedule_irqoff(struct napi_struct *n)
440 {
441         if (napi_schedule_prep(n))
442                 __napi_schedule_irqoff(n);
443 }
444
445 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
446 static inline bool napi_reschedule(struct napi_struct *napi)
447 {
448         if (napi_schedule_prep(napi)) {
449                 __napi_schedule(napi);
450                 return true;
451         }
452         return false;
453 }
454
455 void __napi_complete(struct napi_struct *n);
456 void napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *      napi_complete - NAPI processing complete
459  *      @n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  */
464 static inline void napi_complete(struct napi_struct *n)
465 {
466         return napi_complete_done(n, 0);
467 }
468
469 /**
470  *      napi_hash_add - add a NAPI to global hashtable
471  *      @napi: NAPI context
472  *
473  * Generate a new napi_id and store a @napi under it in napi_hash.
474  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
475  * Note: This is normally automatically done from netif_napi_add(),
476  * so might disappear in a future Linux version.
477  */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481  *      napi_hash_del - remove a NAPI from global table
482  *      @napi: NAPI context
483  *
484  * Warning: caller must observe RCU grace period
485  * before freeing memory containing @napi, if
486  * this function returns true.
487  * Note: core networking stack automatically calls it
488  * from netif_napi_del().
489  * Drivers might want to call this helper to combine all
490  * the needed RCU grace periods into a single one.
491  */
492 bool napi_hash_del(struct napi_struct *napi);
493
494 /**
495  *      napi_disable - prevent NAPI from scheduling
496  *      @n: NAPI context
497  *
498  * Stop NAPI from being scheduled on this context.
499  * Waits till any outstanding processing completes.
500  */
501 void napi_disable(struct napi_struct *n);
502
503 /**
504  *      napi_enable - enable NAPI scheduling
505  *      @n: NAPI context
506  *
507  * Resume NAPI from being scheduled on this context.
508  * Must be paired with napi_disable.
509  */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513         smp_mb__before_atomic();
514         clear_bit(NAPI_STATE_SCHED, &n->state);
515         clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517
518 /**
519  *      napi_synchronize - wait until NAPI is not running
520  *      @n: NAPI context
521  *
522  * Wait until NAPI is done being scheduled on this context.
523  * Waits till any outstanding processing completes but
524  * does not disable future activations.
525  */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528         if (IS_ENABLED(CONFIG_SMP))
529                 while (test_bit(NAPI_STATE_SCHED, &n->state))
530                         msleep(1);
531         else
532                 barrier();
533 }
534
535 enum netdev_queue_state_t {
536         __QUEUE_STATE_DRV_XOFF,
537         __QUEUE_STATE_STACK_XOFF,
538         __QUEUE_STATE_FROZEN,
539 };
540
541 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
544
545 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547                                         QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549                                         QUEUE_STATE_FROZEN)
550
551 /*
552  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
553  * netif_tx_* functions below are used to manipulate this flag.  The
554  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555  * queue independently.  The netif_xmit_*stopped functions below are called
556  * to check if the queue has been stopped by the driver or stack (either
557  * of the XOFF bits are set in the state).  Drivers should not need to call
558  * netif_xmit*stopped functions, they should only be using netif_tx_*.
559  */
560
561 struct netdev_queue {
562 /*
563  * read-mostly part
564  */
565         struct net_device       *dev;
566         struct Qdisc __rcu      *qdisc;
567         struct Qdisc            *qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569         struct kobject          kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572         int                     numa_node;
573 #endif
574         unsigned long           tx_maxrate;
575         /*
576          * Number of TX timeouts for this queue
577          * (/sys/class/net/DEV/Q/trans_timeout)
578          */
579         unsigned long           trans_timeout;
580 /*
581  * write-mostly part
582  */
583         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
584         int                     xmit_lock_owner;
585         /*
586          * Time (in jiffies) of last Tx
587          */
588         unsigned long           trans_start;
589
590         unsigned long           state;
591
592 #ifdef CONFIG_BQL
593         struct dql              dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600         return q->numa_node;
601 #else
602         return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609         q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615  * This structure holds an RPS map which can be of variable length.  The
616  * map is an array of CPUs.
617  */
618 struct rps_map {
619         unsigned int len;
620         struct rcu_head rcu;
621         u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627  * tail pointer for that CPU's input queue at the time of last enqueue, and
628  * a hardware filter index.
629  */
630 struct rps_dev_flow {
631         u16 cpu;
632         u16 filter;
633         unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638  * The rps_dev_flow_table structure contains a table of flow mappings.
639  */
640 struct rps_dev_flow_table {
641         unsigned int mask;
642         struct rcu_head rcu;
643         struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646     ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649  * The rps_sock_flow_table contains mappings of flows to the last CPU
650  * on which they were processed by the application (set in recvmsg).
651  * Each entry is a 32bit value. Upper part is the high-order bits
652  * of flow hash, lower part is CPU number.
653  * rps_cpu_mask is used to partition the space, depending on number of
654  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656  * meaning we use 32-6=26 bits for the hash.
657  */
658 struct rps_sock_flow_table {
659         u32     mask;
660
661         u32     ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671                                         u32 hash)
672 {
673         if (table && hash) {
674                 unsigned int index = hash & table->mask;
675                 u32 val = hash & ~rps_cpu_mask;
676
677                 /* We only give a hint, preemption can change CPU under us */
678                 val |= raw_smp_processor_id();
679
680                 if (table->ents[index] != val)
681                         table->ents[index] = val;
682         }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687                          u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694         struct rps_map __rcu            *rps_map;
695         struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697         struct kobject                  kobj;
698         struct net_device               *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702  * RX queue sysfs structures and functions.
703  */
704 struct rx_queue_attribute {
705         struct attribute attr;
706         ssize_t (*show)(struct netdev_rx_queue *queue,
707             struct rx_queue_attribute *attr, char *buf);
708         ssize_t (*store)(struct netdev_rx_queue *queue,
709             struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714  * This structure holds an XPS map which can be of variable length.  The
715  * map is an array of queues.
716  */
717 struct xps_map {
718         unsigned int len;
719         unsigned int alloc_len;
720         struct rcu_head rcu;
721         u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725        - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
729  */
730 struct xps_dev_maps {
731         struct rcu_head rcu;
732         struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
735     (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE    16
739 #define TC_BITMASK      15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742         u16 count;
743         u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748  * This structure is to hold information about the device
749  * configured to run FCoE protocol stack.
750  */
751 struct netdev_fcoe_hbainfo {
752         char    manufacturer[64];
753         char    serial_number[64];
754         char    hardware_version[64];
755         char    driver_version[64];
756         char    optionrom_version[64];
757         char    firmware_version[64];
758         char    model[256];
759         char    model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766  * physical item (port for example) used by a netdevice.
767  */
768 struct netdev_phys_item_id {
769         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770         unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774                                             struct netdev_phys_item_id *b)
775 {
776         return a->id_len == b->id_len &&
777                memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781                                        struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784  * that are being passed to the netdevice through the setup_tc op.
785  */
786 enum {
787         TC_SETUP_MQPRIO,
788         TC_SETUP_CLSU32,
789         TC_SETUP_CLSFLOWER,
790         TC_SETUP_MATCHALL,
791 };
792
793 struct tc_cls_u32_offload;
794
795 struct tc_to_netdev {
796         unsigned int type;
797         union {
798                 u8 tc;
799                 struct tc_cls_u32_offload *cls_u32;
800                 struct tc_cls_flower_offload *cls_flower;
801                 struct tc_cls_matchall_offload *cls_mall;
802         };
803 };
804
805 /* These structures hold the attributes of xdp state that are being passed
806  * to the netdevice through the xdp op.
807  */
808 enum xdp_netdev_command {
809         /* Set or clear a bpf program used in the earliest stages of packet
810          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
811          * is responsible for calling bpf_prog_put on any old progs that are
812          * stored. In case of error, the callee need not release the new prog
813          * reference, but on success it takes ownership and must bpf_prog_put
814          * when it is no longer used.
815          */
816         XDP_SETUP_PROG,
817         /* Check if a bpf program is set on the device.  The callee should
818          * return true if a program is currently attached and running.
819          */
820         XDP_QUERY_PROG,
821 };
822
823 struct netdev_xdp {
824         enum xdp_netdev_command command;
825         union {
826                 /* XDP_SETUP_PROG */
827                 struct bpf_prog *prog;
828                 /* XDP_QUERY_PROG */
829                 bool prog_attached;
830         };
831 };
832
833 /*
834  * This structure defines the management hooks for network devices.
835  * The following hooks can be defined; unless noted otherwise, they are
836  * optional and can be filled with a null pointer.
837  *
838  * int (*ndo_init)(struct net_device *dev);
839  *     This function is called once when a network device is registered.
840  *     The network device can use this for any late stage initialization
841  *     or semantic validation. It can fail with an error code which will
842  *     be propagated back to register_netdev.
843  *
844  * void (*ndo_uninit)(struct net_device *dev);
845  *     This function is called when device is unregistered or when registration
846  *     fails. It is not called if init fails.
847  *
848  * int (*ndo_open)(struct net_device *dev);
849  *     This function is called when a network device transitions to the up
850  *     state.
851  *
852  * int (*ndo_stop)(struct net_device *dev);
853  *     This function is called when a network device transitions to the down
854  *     state.
855  *
856  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
857  *                               struct net_device *dev);
858  *      Called when a packet needs to be transmitted.
859  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
860  *      the queue before that can happen; it's for obsolete devices and weird
861  *      corner cases, but the stack really does a non-trivial amount
862  *      of useless work if you return NETDEV_TX_BUSY.
863  *      Required; cannot be NULL.
864  *
865  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
866  *              netdev_features_t features);
867  *      Adjusts the requested feature flags according to device-specific
868  *      constraints, and returns the resulting flags. Must not modify
869  *      the device state.
870  *
871  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
872  *                         void *accel_priv, select_queue_fallback_t fallback);
873  *      Called to decide which queue to use when device supports multiple
874  *      transmit queues.
875  *
876  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
877  *      This function is called to allow device receiver to make
878  *      changes to configuration when multicast or promiscuous is enabled.
879  *
880  * void (*ndo_set_rx_mode)(struct net_device *dev);
881  *      This function is called device changes address list filtering.
882  *      If driver handles unicast address filtering, it should set
883  *      IFF_UNICAST_FLT in its priv_flags.
884  *
885  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
886  *      This function  is called when the Media Access Control address
887  *      needs to be changed. If this interface is not defined, the
888  *      MAC address can not be changed.
889  *
890  * int (*ndo_validate_addr)(struct net_device *dev);
891  *      Test if Media Access Control address is valid for the device.
892  *
893  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
894  *      Called when a user requests an ioctl which can't be handled by
895  *      the generic interface code. If not defined ioctls return
896  *      not supported error code.
897  *
898  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
899  *      Used to set network devices bus interface parameters. This interface
900  *      is retained for legacy reasons; new devices should use the bus
901  *      interface (PCI) for low level management.
902  *
903  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
904  *      Called when a user wants to change the Maximum Transfer Unit
905  *      of a device. If not defined, any request to change MTU will
906  *      will return an error.
907  *
908  * void (*ndo_tx_timeout)(struct net_device *dev);
909  *      Callback used when the transmitter has not made any progress
910  *      for dev->watchdog ticks.
911  *
912  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
913  *                      struct rtnl_link_stats64 *storage);
914  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
915  *      Called when a user wants to get the network device usage
916  *      statistics. Drivers must do one of the following:
917  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
918  *         rtnl_link_stats64 structure passed by the caller.
919  *      2. Define @ndo_get_stats to update a net_device_stats structure
920  *         (which should normally be dev->stats) and return a pointer to
921  *         it. The structure may be changed asynchronously only if each
922  *         field is written atomically.
923  *      3. Update dev->stats asynchronously and atomically, and define
924  *         neither operation.
925  *
926  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
927  *      If device supports VLAN filtering this function is called when a
928  *      VLAN id is registered.
929  *
930  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
931  *      If device supports VLAN filtering this function is called when a
932  *      VLAN id is unregistered.
933  *
934  * void (*ndo_poll_controller)(struct net_device *dev);
935  *
936  *      SR-IOV management functions.
937  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
938  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
939  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
940  *                        int max_tx_rate);
941  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
942  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
943  * int (*ndo_get_vf_config)(struct net_device *dev,
944  *                          int vf, struct ifla_vf_info *ivf);
945  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
946  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
947  *                        struct nlattr *port[]);
948  *
949  *      Enable or disable the VF ability to query its RSS Redirection Table and
950  *      Hash Key. This is needed since on some devices VF share this information
951  *      with PF and querying it may introduce a theoretical security risk.
952  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
953  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
954  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
955  *      Called to setup 'tc' number of traffic classes in the net device. This
956  *      is always called from the stack with the rtnl lock held and netif tx
957  *      queues stopped. This allows the netdevice to perform queue management
958  *      safely.
959  *
960  *      Fiber Channel over Ethernet (FCoE) offload functions.
961  * int (*ndo_fcoe_enable)(struct net_device *dev);
962  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
963  *      so the underlying device can perform whatever needed configuration or
964  *      initialization to support acceleration of FCoE traffic.
965  *
966  * int (*ndo_fcoe_disable)(struct net_device *dev);
967  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
968  *      so the underlying device can perform whatever needed clean-ups to
969  *      stop supporting acceleration of FCoE traffic.
970  *
971  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
972  *                           struct scatterlist *sgl, unsigned int sgc);
973  *      Called when the FCoE Initiator wants to initialize an I/O that
974  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
975  *      perform necessary setup and returns 1 to indicate the device is set up
976  *      successfully to perform DDP on this I/O, otherwise this returns 0.
977  *
978  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
979  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
980  *      indicated by the FC exchange id 'xid', so the underlying device can
981  *      clean up and reuse resources for later DDP requests.
982  *
983  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
984  *                            struct scatterlist *sgl, unsigned int sgc);
985  *      Called when the FCoE Target wants to initialize an I/O that
986  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
987  *      perform necessary setup and returns 1 to indicate the device is set up
988  *      successfully to perform DDP on this I/O, otherwise this returns 0.
989  *
990  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
991  *                             struct netdev_fcoe_hbainfo *hbainfo);
992  *      Called when the FCoE Protocol stack wants information on the underlying
993  *      device. This information is utilized by the FCoE protocol stack to
994  *      register attributes with Fiber Channel management service as per the
995  *      FC-GS Fabric Device Management Information(FDMI) specification.
996  *
997  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
998  *      Called when the underlying device wants to override default World Wide
999  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1000  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1001  *      protocol stack to use.
1002  *
1003  *      RFS acceleration.
1004  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1005  *                          u16 rxq_index, u32 flow_id);
1006  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1007  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1008  *      Return the filter ID on success, or a negative error code.
1009  *
1010  *      Slave management functions (for bridge, bonding, etc).
1011  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1012  *      Called to make another netdev an underling.
1013  *
1014  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1015  *      Called to release previously enslaved netdev.
1016  *
1017  *      Feature/offload setting functions.
1018  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1019  *      Called to update device configuration to new features. Passed
1020  *      feature set might be less than what was returned by ndo_fix_features()).
1021  *      Must return >0 or -errno if it changed dev->features itself.
1022  *
1023  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1024  *                    struct net_device *dev,
1025  *                    const unsigned char *addr, u16 vid, u16 flags)
1026  *      Adds an FDB entry to dev for addr.
1027  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1028  *                    struct net_device *dev,
1029  *                    const unsigned char *addr, u16 vid)
1030  *      Deletes the FDB entry from dev coresponding to addr.
1031  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1032  *                     struct net_device *dev, struct net_device *filter_dev,
1033  *                     int idx)
1034  *      Used to add FDB entries to dump requests. Implementers should add
1035  *      entries to skb and update idx with the number of entries.
1036  *
1037  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1038  *                           u16 flags)
1039  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1040  *                           struct net_device *dev, u32 filter_mask,
1041  *                           int nlflags)
1042  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1043  *                           u16 flags);
1044  *
1045  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1046  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1047  *      which do not represent real hardware may define this to allow their
1048  *      userspace components to manage their virtual carrier state. Devices
1049  *      that determine carrier state from physical hardware properties (eg
1050  *      network cables) or protocol-dependent mechanisms (eg
1051  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1052  *
1053  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1054  *                             struct netdev_phys_item_id *ppid);
1055  *      Called to get ID of physical port of this device. If driver does
1056  *      not implement this, it is assumed that the hw is not able to have
1057  *      multiple net devices on single physical port.
1058  *
1059  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1060  *                            struct udp_tunnel_info *ti);
1061  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1062  *      address family that a UDP tunnel is listnening to. It is called only
1063  *      when a new port starts listening. The operation is protected by the
1064  *      RTNL.
1065  *
1066  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1067  *                            struct udp_tunnel_info *ti);
1068  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1069  *      address family that the UDP tunnel is not listening to anymore. The
1070  *      operation is protected by the RTNL.
1071  *
1072  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1073  *                               struct net_device *dev)
1074  *      Called by upper layer devices to accelerate switching or other
1075  *      station functionality into hardware. 'pdev is the lowerdev
1076  *      to use for the offload and 'dev' is the net device that will
1077  *      back the offload. Returns a pointer to the private structure
1078  *      the upper layer will maintain.
1079  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1080  *      Called by upper layer device to delete the station created
1081  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1082  *      the station and priv is the structure returned by the add
1083  *      operation.
1084  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1085  *                                    struct net_device *dev,
1086  *                                    void *priv);
1087  *      Callback to use for xmit over the accelerated station. This
1088  *      is used in place of ndo_start_xmit on accelerated net
1089  *      devices.
1090  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1091  *                                         struct net_device *dev
1092  *                                         netdev_features_t features);
1093  *      Called by core transmit path to determine if device is capable of
1094  *      performing offload operations on a given packet. This is to give
1095  *      the device an opportunity to implement any restrictions that cannot
1096  *      be otherwise expressed by feature flags. The check is called with
1097  *      the set of features that the stack has calculated and it returns
1098  *      those the driver believes to be appropriate.
1099  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1100  *                           int queue_index, u32 maxrate);
1101  *      Called when a user wants to set a max-rate limitation of specific
1102  *      TX queue.
1103  * int (*ndo_get_iflink)(const struct net_device *dev);
1104  *      Called to get the iflink value of this device.
1105  * void (*ndo_change_proto_down)(struct net_device *dev,
1106  *                               bool proto_down);
1107  *      This function is used to pass protocol port error state information
1108  *      to the switch driver. The switch driver can react to the proto_down
1109  *      by doing a phys down on the associated switch port.
1110  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1111  *      This function is used to get egress tunnel information for given skb.
1112  *      This is useful for retrieving outer tunnel header parameters while
1113  *      sampling packet.
1114  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1115  *      This function is used to specify the headroom that the skb must
1116  *      consider when allocation skb during packet reception. Setting
1117  *      appropriate rx headroom value allows avoiding skb head copy on
1118  *      forward. Setting a negative value resets the rx headroom to the
1119  *      default value.
1120  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1121  *      This function is used to set or query state related to XDP on the
1122  *      netdevice. See definition of enum xdp_netdev_command for details.
1123  *
1124  */
1125 struct net_device_ops {
1126         int                     (*ndo_init)(struct net_device *dev);
1127         void                    (*ndo_uninit)(struct net_device *dev);
1128         int                     (*ndo_open)(struct net_device *dev);
1129         int                     (*ndo_stop)(struct net_device *dev);
1130         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1131                                                   struct net_device *dev);
1132         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1133                                                       struct net_device *dev,
1134                                                       netdev_features_t features);
1135         u16                     (*ndo_select_queue)(struct net_device *dev,
1136                                                     struct sk_buff *skb,
1137                                                     void *accel_priv,
1138                                                     select_queue_fallback_t fallback);
1139         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1140                                                        int flags);
1141         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1142         int                     (*ndo_set_mac_address)(struct net_device *dev,
1143                                                        void *addr);
1144         int                     (*ndo_validate_addr)(struct net_device *dev);
1145         int                     (*ndo_do_ioctl)(struct net_device *dev,
1146                                                 struct ifreq *ifr, int cmd);
1147         int                     (*ndo_set_config)(struct net_device *dev,
1148                                                   struct ifmap *map);
1149         int                     (*ndo_change_mtu)(struct net_device *dev,
1150                                                   int new_mtu);
1151         int                     (*ndo_neigh_setup)(struct net_device *dev,
1152                                                    struct neigh_parms *);
1153         void                    (*ndo_tx_timeout) (struct net_device *dev);
1154
1155         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1156                                                      struct rtnl_link_stats64 *storage);
1157         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158
1159         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1160                                                        __be16 proto, u16 vid);
1161         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1162                                                         __be16 proto, u16 vid);
1163 #ifdef CONFIG_NET_POLL_CONTROLLER
1164         void                    (*ndo_poll_controller)(struct net_device *dev);
1165         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1166                                                      struct netpoll_info *info);
1167         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1168 #endif
1169 #ifdef CONFIG_NET_RX_BUSY_POLL
1170         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1171 #endif
1172         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1173                                                   int queue, u8 *mac);
1174         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1175                                                    int queue, u16 vlan, u8 qos);
1176         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1177                                                    int vf, int min_tx_rate,
1178                                                    int max_tx_rate);
1179         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1180                                                        int vf, bool setting);
1181         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1182                                                     int vf, bool setting);
1183         int                     (*ndo_get_vf_config)(struct net_device *dev,
1184                                                      int vf,
1185                                                      struct ifla_vf_info *ivf);
1186         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1187                                                          int vf, int link_state);
1188         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1189                                                     int vf,
1190                                                     struct ifla_vf_stats
1191                                                     *vf_stats);
1192         int                     (*ndo_set_vf_port)(struct net_device *dev,
1193                                                    int vf,
1194                                                    struct nlattr *port[]);
1195         int                     (*ndo_get_vf_port)(struct net_device *dev,
1196                                                    int vf, struct sk_buff *skb);
1197         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1198                                                    int vf, u64 guid,
1199                                                    int guid_type);
1200         int                     (*ndo_set_vf_rss_query_en)(
1201                                                    struct net_device *dev,
1202                                                    int vf, bool setting);
1203         int                     (*ndo_setup_tc)(struct net_device *dev,
1204                                                 u32 handle,
1205                                                 __be16 protocol,
1206                                                 struct tc_to_netdev *tc);
1207 #if IS_ENABLED(CONFIG_FCOE)
1208         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1209         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1210         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1211                                                       u16 xid,
1212                                                       struct scatterlist *sgl,
1213                                                       unsigned int sgc);
1214         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1215                                                      u16 xid);
1216         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1217                                                        u16 xid,
1218                                                        struct scatterlist *sgl,
1219                                                        unsigned int sgc);
1220         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1221                                                         struct netdev_fcoe_hbainfo *hbainfo);
1222 #endif
1223
1224 #if IS_ENABLED(CONFIG_LIBFCOE)
1225 #define NETDEV_FCOE_WWNN 0
1226 #define NETDEV_FCOE_WWPN 1
1227         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1228                                                     u64 *wwn, int type);
1229 #endif
1230
1231 #ifdef CONFIG_RFS_ACCEL
1232         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1233                                                      const struct sk_buff *skb,
1234                                                      u16 rxq_index,
1235                                                      u32 flow_id);
1236 #endif
1237         int                     (*ndo_add_slave)(struct net_device *dev,
1238                                                  struct net_device *slave_dev);
1239         int                     (*ndo_del_slave)(struct net_device *dev,
1240                                                  struct net_device *slave_dev);
1241         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1242                                                     netdev_features_t features);
1243         int                     (*ndo_set_features)(struct net_device *dev,
1244                                                     netdev_features_t features);
1245         int                     (*ndo_neigh_construct)(struct net_device *dev,
1246                                                        struct neighbour *n);
1247         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1248                                                      struct neighbour *n);
1249
1250         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1251                                                struct nlattr *tb[],
1252                                                struct net_device *dev,
1253                                                const unsigned char *addr,
1254                                                u16 vid,
1255                                                u16 flags);
1256         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1257                                                struct nlattr *tb[],
1258                                                struct net_device *dev,
1259                                                const unsigned char *addr,
1260                                                u16 vid);
1261         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1262                                                 struct netlink_callback *cb,
1263                                                 struct net_device *dev,
1264                                                 struct net_device *filter_dev,
1265                                                 int idx);
1266
1267         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1268                                                       struct nlmsghdr *nlh,
1269                                                       u16 flags);
1270         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1271                                                       u32 pid, u32 seq,
1272                                                       struct net_device *dev,
1273                                                       u32 filter_mask,
1274                                                       int nlflags);
1275         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1276                                                       struct nlmsghdr *nlh,
1277                                                       u16 flags);
1278         int                     (*ndo_change_carrier)(struct net_device *dev,
1279                                                       bool new_carrier);
1280         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1281                                                         struct netdev_phys_item_id *ppid);
1282         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1283                                                           char *name, size_t len);
1284         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1285                                                       struct udp_tunnel_info *ti);
1286         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1287                                                       struct udp_tunnel_info *ti);
1288         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1289                                                         struct net_device *dev);
1290         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1291                                                         void *priv);
1292
1293         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1294                                                         struct net_device *dev,
1295                                                         void *priv);
1296         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1297         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1298                                                       int queue_index,
1299                                                       u32 maxrate);
1300         int                     (*ndo_get_iflink)(const struct net_device *dev);
1301         int                     (*ndo_change_proto_down)(struct net_device *dev,
1302                                                          bool proto_down);
1303         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1304                                                        struct sk_buff *skb);
1305         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1306                                                        int needed_headroom);
1307         int                     (*ndo_xdp)(struct net_device *dev,
1308                                            struct netdev_xdp *xdp);
1309 };
1310
1311 /**
1312  * enum net_device_priv_flags - &struct net_device priv_flags
1313  *
1314  * These are the &struct net_device, they are only set internally
1315  * by drivers and used in the kernel. These flags are invisible to
1316  * userspace; this means that the order of these flags can change
1317  * during any kernel release.
1318  *
1319  * You should have a pretty good reason to be extending these flags.
1320  *
1321  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1322  * @IFF_EBRIDGE: Ethernet bridging device
1323  * @IFF_BONDING: bonding master or slave
1324  * @IFF_ISATAP: ISATAP interface (RFC4214)
1325  * @IFF_WAN_HDLC: WAN HDLC device
1326  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1327  *      release skb->dst
1328  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1329  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1330  * @IFF_MACVLAN_PORT: device used as macvlan port
1331  * @IFF_BRIDGE_PORT: device used as bridge port
1332  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1333  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1334  * @IFF_UNICAST_FLT: Supports unicast filtering
1335  * @IFF_TEAM_PORT: device used as team port
1336  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1337  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1338  *      change when it's running
1339  * @IFF_MACVLAN: Macvlan device
1340  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1341  *      underlying stacked devices
1342  * @IFF_IPVLAN_MASTER: IPvlan master device
1343  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1344  * @IFF_L3MDEV_MASTER: device is an L3 master device
1345  * @IFF_NO_QUEUE: device can run without qdisc attached
1346  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1347  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1348  * @IFF_TEAM: device is a team device
1349  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1350  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1351  *      entity (i.e. the master device for bridged veth)
1352  * @IFF_MACSEC: device is a MACsec device
1353  */
1354 enum netdev_priv_flags {
1355         IFF_802_1Q_VLAN                 = 1<<0,
1356         IFF_EBRIDGE                     = 1<<1,
1357         IFF_BONDING                     = 1<<2,
1358         IFF_ISATAP                      = 1<<3,
1359         IFF_WAN_HDLC                    = 1<<4,
1360         IFF_XMIT_DST_RELEASE            = 1<<5,
1361         IFF_DONT_BRIDGE                 = 1<<6,
1362         IFF_DISABLE_NETPOLL             = 1<<7,
1363         IFF_MACVLAN_PORT                = 1<<8,
1364         IFF_BRIDGE_PORT                 = 1<<9,
1365         IFF_OVS_DATAPATH                = 1<<10,
1366         IFF_TX_SKB_SHARING              = 1<<11,
1367         IFF_UNICAST_FLT                 = 1<<12,
1368         IFF_TEAM_PORT                   = 1<<13,
1369         IFF_SUPP_NOFCS                  = 1<<14,
1370         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1371         IFF_MACVLAN                     = 1<<16,
1372         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1373         IFF_IPVLAN_MASTER               = 1<<18,
1374         IFF_IPVLAN_SLAVE                = 1<<19,
1375         IFF_L3MDEV_MASTER               = 1<<20,
1376         IFF_NO_QUEUE                    = 1<<21,
1377         IFF_OPENVSWITCH                 = 1<<22,
1378         IFF_L3MDEV_SLAVE                = 1<<23,
1379         IFF_TEAM                        = 1<<24,
1380         IFF_RXFH_CONFIGURED             = 1<<25,
1381         IFF_PHONY_HEADROOM              = 1<<26,
1382         IFF_MACSEC                      = 1<<27,
1383 };
1384
1385 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1386 #define IFF_EBRIDGE                     IFF_EBRIDGE
1387 #define IFF_BONDING                     IFF_BONDING
1388 #define IFF_ISATAP                      IFF_ISATAP
1389 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1390 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1391 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1392 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1393 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1394 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1395 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1396 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1397 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1398 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1399 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1400 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1401 #define IFF_MACVLAN                     IFF_MACVLAN
1402 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1403 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1404 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1405 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1406 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1407 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1408 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1409 #define IFF_TEAM                        IFF_TEAM
1410 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1411 #define IFF_MACSEC                      IFF_MACSEC
1412
1413 /**
1414  *      struct net_device - The DEVICE structure.
1415  *              Actually, this whole structure is a big mistake.  It mixes I/O
1416  *              data with strictly "high-level" data, and it has to know about
1417  *              almost every data structure used in the INET module.
1418  *
1419  *      @name:  This is the first field of the "visible" part of this structure
1420  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1421  *              of the interface.
1422  *
1423  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1424  *      @ifalias:       SNMP alias
1425  *      @mem_end:       Shared memory end
1426  *      @mem_start:     Shared memory start
1427  *      @base_addr:     Device I/O address
1428  *      @irq:           Device IRQ number
1429  *
1430  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1431  *
1432  *      @state:         Generic network queuing layer state, see netdev_state_t
1433  *      @dev_list:      The global list of network devices
1434  *      @napi_list:     List entry used for polling NAPI devices
1435  *      @unreg_list:    List entry  when we are unregistering the
1436  *                      device; see the function unregister_netdev
1437  *      @close_list:    List entry used when we are closing the device
1438  *      @ptype_all:     Device-specific packet handlers for all protocols
1439  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1440  *
1441  *      @adj_list:      Directly linked devices, like slaves for bonding
1442  *      @all_adj_list:  All linked devices, *including* neighbours
1443  *      @features:      Currently active device features
1444  *      @hw_features:   User-changeable features
1445  *
1446  *      @wanted_features:       User-requested features
1447  *      @vlan_features:         Mask of features inheritable by VLAN devices
1448  *
1449  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1450  *                              This field indicates what encapsulation
1451  *                              offloads the hardware is capable of doing,
1452  *                              and drivers will need to set them appropriately.
1453  *
1454  *      @mpls_features: Mask of features inheritable by MPLS
1455  *
1456  *      @ifindex:       interface index
1457  *      @group:         The group the device belongs to
1458  *
1459  *      @stats:         Statistics struct, which was left as a legacy, use
1460  *                      rtnl_link_stats64 instead
1461  *
1462  *      @rx_dropped:    Dropped packets by core network,
1463  *                      do not use this in drivers
1464  *      @tx_dropped:    Dropped packets by core network,
1465  *                      do not use this in drivers
1466  *      @rx_nohandler:  nohandler dropped packets by core network on
1467  *                      inactive devices, do not use this in drivers
1468  *
1469  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1470  *                              instead of ioctl,
1471  *                              see <net/iw_handler.h> for details.
1472  *      @wireless_data: Instance data managed by the core of wireless extensions
1473  *
1474  *      @netdev_ops:    Includes several pointers to callbacks,
1475  *                      if one wants to override the ndo_*() functions
1476  *      @ethtool_ops:   Management operations
1477  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1478  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1479  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1480  *                      of Layer 2 headers.
1481  *
1482  *      @flags:         Interface flags (a la BSD)
1483  *      @priv_flags:    Like 'flags' but invisible to userspace,
1484  *                      see if.h for the definitions
1485  *      @gflags:        Global flags ( kept as legacy )
1486  *      @padded:        How much padding added by alloc_netdev()
1487  *      @operstate:     RFC2863 operstate
1488  *      @link_mode:     Mapping policy to operstate
1489  *      @if_port:       Selectable AUI, TP, ...
1490  *      @dma:           DMA channel
1491  *      @mtu:           Interface MTU value
1492  *      @type:          Interface hardware type
1493  *      @hard_header_len: Maximum hardware header length.
1494  *
1495  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1496  *                        cases can this be guaranteed
1497  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1498  *                        cases can this be guaranteed. Some cases also use
1499  *                        LL_MAX_HEADER instead to allocate the skb
1500  *
1501  *      interface address info:
1502  *
1503  *      @perm_addr:             Permanent hw address
1504  *      @addr_assign_type:      Hw address assignment type
1505  *      @addr_len:              Hardware address length
1506  *      @neigh_priv_len:        Used in neigh_alloc()
1507  *      @dev_id:                Used to differentiate devices that share
1508  *                              the same link layer address
1509  *      @dev_port:              Used to differentiate devices that share
1510  *                              the same function
1511  *      @addr_list_lock:        XXX: need comments on this one
1512  *      @uc_promisc:            Counter that indicates promiscuous mode
1513  *                              has been enabled due to the need to listen to
1514  *                              additional unicast addresses in a device that
1515  *                              does not implement ndo_set_rx_mode()
1516  *      @uc:                    unicast mac addresses
1517  *      @mc:                    multicast mac addresses
1518  *      @dev_addrs:             list of device hw addresses
1519  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1520  *      @promiscuity:           Number of times the NIC is told to work in
1521  *                              promiscuous mode; if it becomes 0 the NIC will
1522  *                              exit promiscuous mode
1523  *      @allmulti:              Counter, enables or disables allmulticast mode
1524  *
1525  *      @vlan_info:     VLAN info
1526  *      @dsa_ptr:       dsa specific data
1527  *      @tipc_ptr:      TIPC specific data
1528  *      @atalk_ptr:     AppleTalk link
1529  *      @ip_ptr:        IPv4 specific data
1530  *      @dn_ptr:        DECnet specific data
1531  *      @ip6_ptr:       IPv6 specific data
1532  *      @ax25_ptr:      AX.25 specific data
1533  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1534  *
1535  *      @last_rx:       Time of last Rx
1536  *      @dev_addr:      Hw address (before bcast,
1537  *                      because most packets are unicast)
1538  *
1539  *      @_rx:                   Array of RX queues
1540  *      @num_rx_queues:         Number of RX queues
1541  *                              allocated at register_netdev() time
1542  *      @real_num_rx_queues:    Number of RX queues currently active in device
1543  *
1544  *      @rx_handler:            handler for received packets
1545  *      @rx_handler_data:       XXX: need comments on this one
1546  *      @ingress_queue:         XXX: need comments on this one
1547  *      @broadcast:             hw bcast address
1548  *
1549  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1550  *                      indexed by RX queue number. Assigned by driver.
1551  *                      This must only be set if the ndo_rx_flow_steer
1552  *                      operation is defined
1553  *      @index_hlist:           Device index hash chain
1554  *
1555  *      @_tx:                   Array of TX queues
1556  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1557  *      @real_num_tx_queues:    Number of TX queues currently active in device
1558  *      @qdisc:                 Root qdisc from userspace point of view
1559  *      @tx_queue_len:          Max frames per queue allowed
1560  *      @tx_global_lock:        XXX: need comments on this one
1561  *
1562  *      @xps_maps:      XXX: need comments on this one
1563  *
1564  *      @offload_fwd_mark:      Offload device fwding mark
1565  *
1566  *      @watchdog_timeo:        Represents the timeout that is used by
1567  *                              the watchdog (see dev_watchdog())
1568  *      @watchdog_timer:        List of timers
1569  *
1570  *      @pcpu_refcnt:           Number of references to this device
1571  *      @todo_list:             Delayed register/unregister
1572  *      @link_watch_list:       XXX: need comments on this one
1573  *
1574  *      @reg_state:             Register/unregister state machine
1575  *      @dismantle:             Device is going to be freed
1576  *      @rtnl_link_state:       This enum represents the phases of creating
1577  *                              a new link
1578  *
1579  *      @destructor:            Called from unregister,
1580  *                              can be used to call free_netdev
1581  *      @npinfo:                XXX: need comments on this one
1582  *      @nd_net:                Network namespace this network device is inside
1583  *
1584  *      @ml_priv:       Mid-layer private
1585  *      @lstats:        Loopback statistics
1586  *      @tstats:        Tunnel statistics
1587  *      @dstats:        Dummy statistics
1588  *      @vstats:        Virtual ethernet statistics
1589  *
1590  *      @garp_port:     GARP
1591  *      @mrp_port:      MRP
1592  *
1593  *      @dev:           Class/net/name entry
1594  *      @sysfs_groups:  Space for optional device, statistics and wireless
1595  *                      sysfs groups
1596  *
1597  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1598  *      @rtnl_link_ops: Rtnl_link_ops
1599  *
1600  *      @gso_max_size:  Maximum size of generic segmentation offload
1601  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1602  *                      NIC for GSO
1603  *
1604  *      @dcbnl_ops:     Data Center Bridging netlink ops
1605  *      @num_tc:        Number of traffic classes in the net device
1606  *      @tc_to_txq:     XXX: need comments on this one
1607  *      @prio_tc_map    XXX: need comments on this one
1608  *
1609  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1610  *
1611  *      @priomap:       XXX: need comments on this one
1612  *      @phydev:        Physical device may attach itself
1613  *                      for hardware timestamping
1614  *
1615  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1616  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1617  *
1618  *      @proto_down:    protocol port state information can be sent to the
1619  *                      switch driver and used to set the phys state of the
1620  *                      switch port.
1621  *
1622  *      FIXME: cleanup struct net_device such that network protocol info
1623  *      moves out.
1624  */
1625
1626 struct net_device {
1627         char                    name[IFNAMSIZ];
1628         struct hlist_node       name_hlist;
1629         char                    *ifalias;
1630         /*
1631          *      I/O specific fields
1632          *      FIXME: Merge these and struct ifmap into one
1633          */
1634         unsigned long           mem_end;
1635         unsigned long           mem_start;
1636         unsigned long           base_addr;
1637         int                     irq;
1638
1639         atomic_t                carrier_changes;
1640
1641         /*
1642          *      Some hardware also needs these fields (state,dev_list,
1643          *      napi_list,unreg_list,close_list) but they are not
1644          *      part of the usual set specified in Space.c.
1645          */
1646
1647         unsigned long           state;
1648
1649         struct list_head        dev_list;
1650         struct list_head        napi_list;
1651         struct list_head        unreg_list;
1652         struct list_head        close_list;
1653         struct list_head        ptype_all;
1654         struct list_head        ptype_specific;
1655
1656         struct {
1657                 struct list_head upper;
1658                 struct list_head lower;
1659         } adj_list;
1660
1661         struct {
1662                 struct list_head upper;
1663                 struct list_head lower;
1664         } all_adj_list;
1665
1666         netdev_features_t       features;
1667         netdev_features_t       hw_features;
1668         netdev_features_t       wanted_features;
1669         netdev_features_t       vlan_features;
1670         netdev_features_t       hw_enc_features;
1671         netdev_features_t       mpls_features;
1672         netdev_features_t       gso_partial_features;
1673
1674         int                     ifindex;
1675         int                     group;
1676
1677         struct net_device_stats stats;
1678
1679         atomic_long_t           rx_dropped;
1680         atomic_long_t           tx_dropped;
1681         atomic_long_t           rx_nohandler;
1682
1683 #ifdef CONFIG_WIRELESS_EXT
1684         const struct iw_handler_def *wireless_handlers;
1685         struct iw_public_data   *wireless_data;
1686 #endif
1687         const struct net_device_ops *netdev_ops;
1688         const struct ethtool_ops *ethtool_ops;
1689 #ifdef CONFIG_NET_SWITCHDEV
1690         const struct switchdev_ops *switchdev_ops;
1691 #endif
1692 #ifdef CONFIG_NET_L3_MASTER_DEV
1693         const struct l3mdev_ops *l3mdev_ops;
1694 #endif
1695 #if IS_ENABLED(CONFIG_IPV6)
1696         const struct ndisc_ops *ndisc_ops;
1697 #endif
1698
1699         const struct header_ops *header_ops;
1700
1701         unsigned int            flags;
1702         unsigned int            priv_flags;
1703
1704         unsigned short          gflags;
1705         unsigned short          padded;
1706
1707         unsigned char           operstate;
1708         unsigned char           link_mode;
1709
1710         unsigned char           if_port;
1711         unsigned char           dma;
1712
1713         unsigned int            mtu;
1714         unsigned short          type;
1715         unsigned short          hard_header_len;
1716
1717         unsigned short          needed_headroom;
1718         unsigned short          needed_tailroom;
1719
1720         /* Interface address info. */
1721         unsigned char           perm_addr[MAX_ADDR_LEN];
1722         unsigned char           addr_assign_type;
1723         unsigned char           addr_len;
1724         unsigned short          neigh_priv_len;
1725         unsigned short          dev_id;
1726         unsigned short          dev_port;
1727         spinlock_t              addr_list_lock;
1728         unsigned char           name_assign_type;
1729         bool                    uc_promisc;
1730         struct netdev_hw_addr_list      uc;
1731         struct netdev_hw_addr_list      mc;
1732         struct netdev_hw_addr_list      dev_addrs;
1733
1734 #ifdef CONFIG_SYSFS
1735         struct kset             *queues_kset;
1736 #endif
1737         unsigned int            promiscuity;
1738         unsigned int            allmulti;
1739
1740
1741         /* Protocol-specific pointers */
1742
1743 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1744         struct vlan_info __rcu  *vlan_info;
1745 #endif
1746 #if IS_ENABLED(CONFIG_NET_DSA)
1747         struct dsa_switch_tree  *dsa_ptr;
1748 #endif
1749 #if IS_ENABLED(CONFIG_TIPC)
1750         struct tipc_bearer __rcu *tipc_ptr;
1751 #endif
1752         void                    *atalk_ptr;
1753         struct in_device __rcu  *ip_ptr;
1754         struct dn_dev __rcu     *dn_ptr;
1755         struct inet6_dev __rcu  *ip6_ptr;
1756         void                    *ax25_ptr;
1757         struct wireless_dev     *ieee80211_ptr;
1758         struct wpan_dev         *ieee802154_ptr;
1759 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1760         struct mpls_dev __rcu   *mpls_ptr;
1761 #endif
1762
1763 /*
1764  * Cache lines mostly used on receive path (including eth_type_trans())
1765  */
1766         unsigned long           last_rx;
1767
1768         /* Interface address info used in eth_type_trans() */
1769         unsigned char           *dev_addr;
1770
1771 #ifdef CONFIG_SYSFS
1772         struct netdev_rx_queue  *_rx;
1773
1774         unsigned int            num_rx_queues;
1775         unsigned int            real_num_rx_queues;
1776 #endif
1777
1778         unsigned long           gro_flush_timeout;
1779         rx_handler_func_t __rcu *rx_handler;
1780         void __rcu              *rx_handler_data;
1781
1782 #ifdef CONFIG_NET_CLS_ACT
1783         struct tcf_proto __rcu  *ingress_cl_list;
1784 #endif
1785         struct netdev_queue __rcu *ingress_queue;
1786 #ifdef CONFIG_NETFILTER_INGRESS
1787         struct list_head        nf_hooks_ingress;
1788 #endif
1789
1790         unsigned char           broadcast[MAX_ADDR_LEN];
1791 #ifdef CONFIG_RFS_ACCEL
1792         struct cpu_rmap         *rx_cpu_rmap;
1793 #endif
1794         struct hlist_node       index_hlist;
1795
1796 /*
1797  * Cache lines mostly used on transmit path
1798  */
1799         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1800         unsigned int            num_tx_queues;
1801         unsigned int            real_num_tx_queues;
1802         struct Qdisc            *qdisc;
1803         unsigned long           tx_queue_len;
1804         spinlock_t              tx_global_lock;
1805         int                     watchdog_timeo;
1806
1807 #ifdef CONFIG_XPS
1808         struct xps_dev_maps __rcu *xps_maps;
1809 #endif
1810 #ifdef CONFIG_NET_CLS_ACT
1811         struct tcf_proto __rcu  *egress_cl_list;
1812 #endif
1813 #ifdef CONFIG_NET_SWITCHDEV
1814         u32                     offload_fwd_mark;
1815 #endif
1816
1817         /* These may be needed for future network-power-down code. */
1818         struct timer_list       watchdog_timer;
1819
1820         int __percpu            *pcpu_refcnt;
1821         struct list_head        todo_list;
1822
1823         struct list_head        link_watch_list;
1824
1825         enum { NETREG_UNINITIALIZED=0,
1826                NETREG_REGISTERED,       /* completed register_netdevice */
1827                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1828                NETREG_UNREGISTERED,     /* completed unregister todo */
1829                NETREG_RELEASED,         /* called free_netdev */
1830                NETREG_DUMMY,            /* dummy device for NAPI poll */
1831         } reg_state:8;
1832
1833         bool dismantle;
1834
1835         enum {
1836                 RTNL_LINK_INITIALIZED,
1837                 RTNL_LINK_INITIALIZING,
1838         } rtnl_link_state:16;
1839
1840         void (*destructor)(struct net_device *dev);
1841
1842 #ifdef CONFIG_NETPOLL
1843         struct netpoll_info __rcu       *npinfo;
1844 #endif
1845
1846         possible_net_t                  nd_net;
1847
1848         /* mid-layer private */
1849         union {
1850                 void                                    *ml_priv;
1851                 struct pcpu_lstats __percpu             *lstats;
1852                 struct pcpu_sw_netstats __percpu        *tstats;
1853                 struct pcpu_dstats __percpu             *dstats;
1854                 struct pcpu_vstats __percpu             *vstats;
1855         };
1856
1857         struct garp_port __rcu  *garp_port;
1858         struct mrp_port __rcu   *mrp_port;
1859
1860         struct device           dev;
1861         const struct attribute_group *sysfs_groups[4];
1862         const struct attribute_group *sysfs_rx_queue_group;
1863
1864         const struct rtnl_link_ops *rtnl_link_ops;
1865
1866         /* for setting kernel sock attribute on TCP connection setup */
1867 #define GSO_MAX_SIZE            65536
1868         unsigned int            gso_max_size;
1869 #define GSO_MAX_SEGS            65535
1870         u16                     gso_max_segs;
1871
1872 #ifdef CONFIG_DCB
1873         const struct dcbnl_rtnl_ops *dcbnl_ops;
1874 #endif
1875         u8                      num_tc;
1876         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1877         u8                      prio_tc_map[TC_BITMASK + 1];
1878
1879 #if IS_ENABLED(CONFIG_FCOE)
1880         unsigned int            fcoe_ddp_xid;
1881 #endif
1882 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1883         struct netprio_map __rcu *priomap;
1884 #endif
1885         struct phy_device       *phydev;
1886         struct lock_class_key   *qdisc_tx_busylock;
1887         struct lock_class_key   *qdisc_running_key;
1888         bool                    proto_down;
1889 };
1890 #define to_net_dev(d) container_of(d, struct net_device, dev)
1891
1892 #define NETDEV_ALIGN            32
1893
1894 static inline
1895 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1896 {
1897         return dev->prio_tc_map[prio & TC_BITMASK];
1898 }
1899
1900 static inline
1901 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1902 {
1903         if (tc >= dev->num_tc)
1904                 return -EINVAL;
1905
1906         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1907         return 0;
1908 }
1909
1910 static inline
1911 void netdev_reset_tc(struct net_device *dev)
1912 {
1913         dev->num_tc = 0;
1914         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1915         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1916 }
1917
1918 static inline
1919 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1920 {
1921         if (tc >= dev->num_tc)
1922                 return -EINVAL;
1923
1924         dev->tc_to_txq[tc].count = count;
1925         dev->tc_to_txq[tc].offset = offset;
1926         return 0;
1927 }
1928
1929 static inline
1930 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1931 {
1932         if (num_tc > TC_MAX_QUEUE)
1933                 return -EINVAL;
1934
1935         dev->num_tc = num_tc;
1936         return 0;
1937 }
1938
1939 static inline
1940 int netdev_get_num_tc(struct net_device *dev)
1941 {
1942         return dev->num_tc;
1943 }
1944
1945 static inline
1946 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1947                                          unsigned int index)
1948 {
1949         return &dev->_tx[index];
1950 }
1951
1952 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1953                                                     const struct sk_buff *skb)
1954 {
1955         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1956 }
1957
1958 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1959                                             void (*f)(struct net_device *,
1960                                                       struct netdev_queue *,
1961                                                       void *),
1962                                             void *arg)
1963 {
1964         unsigned int i;
1965
1966         for (i = 0; i < dev->num_tx_queues; i++)
1967                 f(dev, &dev->_tx[i], arg);
1968 }
1969
1970 #define netdev_lockdep_set_classes(dev)                         \
1971 {                                                               \
1972         static struct lock_class_key qdisc_tx_busylock_key;     \
1973         static struct lock_class_key qdisc_running_key;         \
1974         static struct lock_class_key qdisc_xmit_lock_key;       \
1975         static struct lock_class_key dev_addr_list_lock_key;    \
1976         unsigned int i;                                         \
1977                                                                 \
1978         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1979         (dev)->qdisc_running_key = &qdisc_running_key;          \
1980         lockdep_set_class(&(dev)->addr_list_lock,               \
1981                           &dev_addr_list_lock_key);             \
1982         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1983                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1984                                   &qdisc_xmit_lock_key);        \
1985 }
1986
1987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1988                                     struct sk_buff *skb,
1989                                     void *accel_priv);
1990
1991 /* returns the headroom that the master device needs to take in account
1992  * when forwarding to this dev
1993  */
1994 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1995 {
1996         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1997 }
1998
1999 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2000 {
2001         if (dev->netdev_ops->ndo_set_rx_headroom)
2002                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2003 }
2004
2005 /* set the device rx headroom to the dev's default */
2006 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2007 {
2008         netdev_set_rx_headroom(dev, -1);
2009 }
2010
2011 /*
2012  * Net namespace inlines
2013  */
2014 static inline
2015 struct net *dev_net(const struct net_device *dev)
2016 {
2017         return read_pnet(&dev->nd_net);
2018 }
2019
2020 static inline
2021 void dev_net_set(struct net_device *dev, struct net *net)
2022 {
2023         write_pnet(&dev->nd_net, net);
2024 }
2025
2026 static inline bool netdev_uses_dsa(struct net_device *dev)
2027 {
2028 #if IS_ENABLED(CONFIG_NET_DSA)
2029         if (dev->dsa_ptr != NULL)
2030                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2031 #endif
2032         return false;
2033 }
2034
2035 /**
2036  *      netdev_priv - access network device private data
2037  *      @dev: network device
2038  *
2039  * Get network device private data
2040  */
2041 static inline void *netdev_priv(const struct net_device *dev)
2042 {
2043         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2044 }
2045
2046 /* Set the sysfs physical device reference for the network logical device
2047  * if set prior to registration will cause a symlink during initialization.
2048  */
2049 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2050
2051 /* Set the sysfs device type for the network logical device to allow
2052  * fine-grained identification of different network device types. For
2053  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2054  */
2055 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2056
2057 /* Default NAPI poll() weight
2058  * Device drivers are strongly advised to not use bigger value
2059  */
2060 #define NAPI_POLL_WEIGHT 64
2061
2062 /**
2063  *      netif_napi_add - initialize a NAPI context
2064  *      @dev:  network device
2065  *      @napi: NAPI context
2066  *      @poll: polling function
2067  *      @weight: default weight
2068  *
2069  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2070  * *any* of the other NAPI-related functions.
2071  */
2072 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2073                     int (*poll)(struct napi_struct *, int), int weight);
2074
2075 /**
2076  *      netif_tx_napi_add - initialize a NAPI context
2077  *      @dev:  network device
2078  *      @napi: NAPI context
2079  *      @poll: polling function
2080  *      @weight: default weight
2081  *
2082  * This variant of netif_napi_add() should be used from drivers using NAPI
2083  * to exclusively poll a TX queue.
2084  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2085  */
2086 static inline void netif_tx_napi_add(struct net_device *dev,
2087                                      struct napi_struct *napi,
2088                                      int (*poll)(struct napi_struct *, int),
2089                                      int weight)
2090 {
2091         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2092         netif_napi_add(dev, napi, poll, weight);
2093 }
2094
2095 /**
2096  *  netif_napi_del - remove a NAPI context
2097  *  @napi: NAPI context
2098  *
2099  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2100  */
2101 void netif_napi_del(struct napi_struct *napi);
2102
2103 struct napi_gro_cb {
2104         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2105         void    *frag0;
2106
2107         /* Length of frag0. */
2108         unsigned int frag0_len;
2109
2110         /* This indicates where we are processing relative to skb->data. */
2111         int     data_offset;
2112
2113         /* This is non-zero if the packet cannot be merged with the new skb. */
2114         u16     flush;
2115
2116         /* Save the IP ID here and check when we get to the transport layer */
2117         u16     flush_id;
2118
2119         /* Number of segments aggregated. */
2120         u16     count;
2121
2122         /* Start offset for remote checksum offload */
2123         u16     gro_remcsum_start;
2124
2125         /* jiffies when first packet was created/queued */
2126         unsigned long age;
2127
2128         /* Used in ipv6_gro_receive() and foo-over-udp */
2129         u16     proto;
2130
2131         /* This is non-zero if the packet may be of the same flow. */
2132         u8      same_flow:1;
2133
2134         /* Used in tunnel GRO receive */
2135         u8      encap_mark:1;
2136
2137         /* GRO checksum is valid */
2138         u8      csum_valid:1;
2139
2140         /* Number of checksums via CHECKSUM_UNNECESSARY */
2141         u8      csum_cnt:3;
2142
2143         /* Free the skb? */
2144         u8      free:2;
2145 #define NAPI_GRO_FREE             1
2146 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2147
2148         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2149         u8      is_ipv6:1;
2150
2151         /* Used in GRE, set in fou/gue_gro_receive */
2152         u8      is_fou:1;
2153
2154         /* Used to determine if flush_id can be ignored */
2155         u8      is_atomic:1;
2156
2157         /* 5 bit hole */
2158
2159         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160         __wsum  csum;
2161
2162         /* used in skb_gro_receive() slow path */
2163         struct sk_buff *last;
2164 };
2165
2166 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167
2168 struct packet_type {
2169         __be16                  type;   /* This is really htons(ether_type). */
2170         struct net_device       *dev;   /* NULL is wildcarded here           */
2171         int                     (*func) (struct sk_buff *,
2172                                          struct net_device *,
2173                                          struct packet_type *,
2174                                          struct net_device *);
2175         bool                    (*id_match)(struct packet_type *ptype,
2176                                             struct sock *sk);
2177         void                    *af_packet_priv;
2178         struct list_head        list;
2179 };
2180
2181 struct offload_callbacks {
2182         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2183                                                 netdev_features_t features);
2184         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2185                                                  struct sk_buff *skb);
2186         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2187 };
2188
2189 struct packet_offload {
2190         __be16                   type;  /* This is really htons(ether_type). */
2191         u16                      priority;
2192         struct offload_callbacks callbacks;
2193         struct list_head         list;
2194 };
2195
2196 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2197 struct pcpu_sw_netstats {
2198         u64     rx_packets;
2199         u64     rx_bytes;
2200         u64     tx_packets;
2201         u64     tx_bytes;
2202         struct u64_stats_sync   syncp;
2203 };
2204
2205 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2206 ({                                                                      \
2207         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2208         if (pcpu_stats) {                                               \
2209                 int __cpu;                                              \
2210                 for_each_possible_cpu(__cpu) {                          \
2211                         typeof(type) *stat;                             \
2212                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2213                         u64_stats_init(&stat->syncp);                   \
2214                 }                                                       \
2215         }                                                               \
2216         pcpu_stats;                                                     \
2217 })
2218
2219 #define netdev_alloc_pcpu_stats(type)                                   \
2220         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2221
2222 enum netdev_lag_tx_type {
2223         NETDEV_LAG_TX_TYPE_UNKNOWN,
2224         NETDEV_LAG_TX_TYPE_RANDOM,
2225         NETDEV_LAG_TX_TYPE_BROADCAST,
2226         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2227         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2228         NETDEV_LAG_TX_TYPE_HASH,
2229 };
2230
2231 struct netdev_lag_upper_info {
2232         enum netdev_lag_tx_type tx_type;
2233 };
2234
2235 struct netdev_lag_lower_state_info {
2236         u8 link_up : 1,
2237            tx_enabled : 1;
2238 };
2239
2240 #include <linux/notifier.h>
2241
2242 /* netdevice notifier chain. Please remember to update the rtnetlink
2243  * notification exclusion list in rtnetlink_event() when adding new
2244  * types.
2245  */
2246 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2247 #define NETDEV_DOWN     0x0002
2248 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2249                                    detected a hardware crash and restarted
2250                                    - we can use this eg to kick tcp sessions
2251                                    once done */
2252 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2253 #define NETDEV_REGISTER 0x0005
2254 #define NETDEV_UNREGISTER       0x0006
2255 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2256 #define NETDEV_CHANGEADDR       0x0008
2257 #define NETDEV_GOING_DOWN       0x0009
2258 #define NETDEV_CHANGENAME       0x000A
2259 #define NETDEV_FEAT_CHANGE      0x000B
2260 #define NETDEV_BONDING_FAILOVER 0x000C
2261 #define NETDEV_PRE_UP           0x000D
2262 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2263 #define NETDEV_POST_TYPE_CHANGE 0x000F
2264 #define NETDEV_POST_INIT        0x0010
2265 #define NETDEV_UNREGISTER_FINAL 0x0011
2266 #define NETDEV_RELEASE          0x0012
2267 #define NETDEV_NOTIFY_PEERS     0x0013
2268 #define NETDEV_JOIN             0x0014
2269 #define NETDEV_CHANGEUPPER      0x0015
2270 #define NETDEV_RESEND_IGMP      0x0016
2271 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2272 #define NETDEV_CHANGEINFODATA   0x0018
2273 #define NETDEV_BONDING_INFO     0x0019
2274 #define NETDEV_PRECHANGEUPPER   0x001A
2275 #define NETDEV_CHANGELOWERSTATE 0x001B
2276 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2277 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2278
2279 int register_netdevice_notifier(struct notifier_block *nb);
2280 int unregister_netdevice_notifier(struct notifier_block *nb);
2281
2282 struct netdev_notifier_info {
2283         struct net_device *dev;
2284 };
2285
2286 struct netdev_notifier_change_info {
2287         struct netdev_notifier_info info; /* must be first */
2288         unsigned int flags_changed;
2289 };
2290
2291 struct netdev_notifier_changeupper_info {
2292         struct netdev_notifier_info info; /* must be first */
2293         struct net_device *upper_dev; /* new upper dev */
2294         bool master; /* is upper dev master */
2295         bool linking; /* is the notification for link or unlink */
2296         void *upper_info; /* upper dev info */
2297 };
2298
2299 struct netdev_notifier_changelowerstate_info {
2300         struct netdev_notifier_info info; /* must be first */
2301         void *lower_state_info; /* is lower dev state */
2302 };
2303
2304 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2305                                              struct net_device *dev)
2306 {
2307         info->dev = dev;
2308 }
2309
2310 static inline struct net_device *
2311 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2312 {
2313         return info->dev;
2314 }
2315
2316 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2317
2318
2319 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2320
2321 #define for_each_netdev(net, d)         \
2322                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2323 #define for_each_netdev_reverse(net, d) \
2324                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2325 #define for_each_netdev_rcu(net, d)             \
2326                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2327 #define for_each_netdev_safe(net, d, n) \
2328                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2329 #define for_each_netdev_continue(net, d)                \
2330                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2331 #define for_each_netdev_continue_rcu(net, d)            \
2332         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2333 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2334                 for_each_netdev_rcu(&init_net, slave)   \
2335                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2336 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2337
2338 static inline struct net_device *next_net_device(struct net_device *dev)
2339 {
2340         struct list_head *lh;
2341         struct net *net;
2342
2343         net = dev_net(dev);
2344         lh = dev->dev_list.next;
2345         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2346 }
2347
2348 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2349 {
2350         struct list_head *lh;
2351         struct net *net;
2352
2353         net = dev_net(dev);
2354         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2355         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2356 }
2357
2358 static inline struct net_device *first_net_device(struct net *net)
2359 {
2360         return list_empty(&net->dev_base_head) ? NULL :
2361                 net_device_entry(net->dev_base_head.next);
2362 }
2363
2364 static inline struct net_device *first_net_device_rcu(struct net *net)
2365 {
2366         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2367
2368         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2369 }
2370
2371 int netdev_boot_setup_check(struct net_device *dev);
2372 unsigned long netdev_boot_base(const char *prefix, int unit);
2373 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2374                                        const char *hwaddr);
2375 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2377 void dev_add_pack(struct packet_type *pt);
2378 void dev_remove_pack(struct packet_type *pt);
2379 void __dev_remove_pack(struct packet_type *pt);
2380 void dev_add_offload(struct packet_offload *po);
2381 void dev_remove_offload(struct packet_offload *po);
2382
2383 int dev_get_iflink(const struct net_device *dev);
2384 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2385 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2386                                       unsigned short mask);
2387 struct net_device *dev_get_by_name(struct net *net, const char *name);
2388 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2389 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2390 int dev_alloc_name(struct net_device *dev, const char *name);
2391 int dev_open(struct net_device *dev);
2392 int dev_close(struct net_device *dev);
2393 int dev_close_many(struct list_head *head, bool unlink);
2394 void dev_disable_lro(struct net_device *dev);
2395 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2396 int dev_queue_xmit(struct sk_buff *skb);
2397 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2398 int register_netdevice(struct net_device *dev);
2399 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2400 void unregister_netdevice_many(struct list_head *head);
2401 static inline void unregister_netdevice(struct net_device *dev)
2402 {
2403         unregister_netdevice_queue(dev, NULL);
2404 }
2405
2406 int netdev_refcnt_read(const struct net_device *dev);
2407 void free_netdev(struct net_device *dev);
2408 void netdev_freemem(struct net_device *dev);
2409 void synchronize_net(void);
2410 int init_dummy_netdev(struct net_device *dev);
2411
2412 DECLARE_PER_CPU(int, xmit_recursion);
2413 #define XMIT_RECURSION_LIMIT    10
2414
2415 static inline int dev_recursion_level(void)
2416 {
2417         return this_cpu_read(xmit_recursion);
2418 }
2419
2420 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2421 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2422 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2423 int netdev_get_name(struct net *net, char *name, int ifindex);
2424 int dev_restart(struct net_device *dev);
2425 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2426
2427 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2428 {
2429         return NAPI_GRO_CB(skb)->data_offset;
2430 }
2431
2432 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2433 {
2434         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2435 }
2436
2437 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2438 {
2439         NAPI_GRO_CB(skb)->data_offset += len;
2440 }
2441
2442 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2443                                         unsigned int offset)
2444 {
2445         return NAPI_GRO_CB(skb)->frag0 + offset;
2446 }
2447
2448 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2449 {
2450         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2451 }
2452
2453 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2454                                         unsigned int offset)
2455 {
2456         if (!pskb_may_pull(skb, hlen))
2457                 return NULL;
2458
2459         NAPI_GRO_CB(skb)->frag0 = NULL;
2460         NAPI_GRO_CB(skb)->frag0_len = 0;
2461         return skb->data + offset;
2462 }
2463
2464 static inline void *skb_gro_network_header(struct sk_buff *skb)
2465 {
2466         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2467                skb_network_offset(skb);
2468 }
2469
2470 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2471                                         const void *start, unsigned int len)
2472 {
2473         if (NAPI_GRO_CB(skb)->csum_valid)
2474                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2475                                                   csum_partial(start, len, 0));
2476 }
2477
2478 /* GRO checksum functions. These are logical equivalents of the normal
2479  * checksum functions (in skbuff.h) except that they operate on the GRO
2480  * offsets and fields in sk_buff.
2481  */
2482
2483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2484
2485 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2486 {
2487         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2488 }
2489
2490 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2491                                                       bool zero_okay,
2492                                                       __sum16 check)
2493 {
2494         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2495                 skb_checksum_start_offset(skb) <
2496                  skb_gro_offset(skb)) &&
2497                 !skb_at_gro_remcsum_start(skb) &&
2498                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2499                 (!zero_okay || check));
2500 }
2501
2502 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2503                                                            __wsum psum)
2504 {
2505         if (NAPI_GRO_CB(skb)->csum_valid &&
2506             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2507                 return 0;
2508
2509         NAPI_GRO_CB(skb)->csum = psum;
2510
2511         return __skb_gro_checksum_complete(skb);
2512 }
2513
2514 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2515 {
2516         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2517                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2518                 NAPI_GRO_CB(skb)->csum_cnt--;
2519         } else {
2520                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2521                  * verified a new top level checksum or an encapsulated one
2522                  * during GRO. This saves work if we fallback to normal path.
2523                  */
2524                 __skb_incr_checksum_unnecessary(skb);
2525         }
2526 }
2527
2528 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2529                                     compute_pseudo)                     \
2530 ({                                                                      \
2531         __sum16 __ret = 0;                                              \
2532         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2533                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2534                                 compute_pseudo(skb, proto));            \
2535         if (__ret)                                                      \
2536                 __skb_mark_checksum_bad(skb);                           \
2537         else                                                            \
2538                 skb_gro_incr_csum_unnecessary(skb);                     \
2539         __ret;                                                          \
2540 })
2541
2542 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2543         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2544
2545 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2546                                              compute_pseudo)            \
2547         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2548
2549 #define skb_gro_checksum_simple_validate(skb)                           \
2550         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2551
2552 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2553 {
2554         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2555                 !NAPI_GRO_CB(skb)->csum_valid);
2556 }
2557
2558 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2559                                               __sum16 check, __wsum pseudo)
2560 {
2561         NAPI_GRO_CB(skb)->csum = ~pseudo;
2562         NAPI_GRO_CB(skb)->csum_valid = 1;
2563 }
2564
2565 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2566 do {                                                                    \
2567         if (__skb_gro_checksum_convert_check(skb))                      \
2568                 __skb_gro_checksum_convert(skb, check,                  \
2569                                            compute_pseudo(skb, proto)); \
2570 } while (0)
2571
2572 struct gro_remcsum {
2573         int offset;
2574         __wsum delta;
2575 };
2576
2577 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2578 {
2579         grc->offset = 0;
2580         grc->delta = 0;
2581 }
2582
2583 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2584                                             unsigned int off, size_t hdrlen,
2585                                             int start, int offset,
2586                                             struct gro_remcsum *grc,
2587                                             bool nopartial)
2588 {
2589         __wsum delta;
2590         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2591
2592         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2593
2594         if (!nopartial) {
2595                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2596                 return ptr;
2597         }
2598
2599         ptr = skb_gro_header_fast(skb, off);
2600         if (skb_gro_header_hard(skb, off + plen)) {
2601                 ptr = skb_gro_header_slow(skb, off + plen, off);
2602                 if (!ptr)
2603                         return NULL;
2604         }
2605
2606         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2607                                start, offset);
2608
2609         /* Adjust skb->csum since we changed the packet */
2610         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2611
2612         grc->offset = off + hdrlen + offset;
2613         grc->delta = delta;
2614
2615         return ptr;
2616 }
2617
2618 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2619                                            struct gro_remcsum *grc)
2620 {
2621         void *ptr;
2622         size_t plen = grc->offset + sizeof(u16);
2623
2624         if (!grc->delta)
2625                 return;
2626
2627         ptr = skb_gro_header_fast(skb, grc->offset);
2628         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2629                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2630                 if (!ptr)
2631                         return;
2632         }
2633
2634         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2635 }
2636
2637 struct skb_csum_offl_spec {
2638         __u16           ipv4_okay:1,
2639                         ipv6_okay:1,
2640                         encap_okay:1,
2641                         ip_options_okay:1,
2642                         ext_hdrs_okay:1,
2643                         tcp_okay:1,
2644                         udp_okay:1,
2645                         sctp_okay:1,
2646                         vlan_okay:1,
2647                         no_encapped_ipv6:1,
2648                         no_not_encapped:1;
2649 };
2650
2651 bool __skb_csum_offload_chk(struct sk_buff *skb,
2652                             const struct skb_csum_offl_spec *spec,
2653                             bool *csum_encapped,
2654                             bool csum_help);
2655
2656 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2657                                         const struct skb_csum_offl_spec *spec,
2658                                         bool *csum_encapped,
2659                                         bool csum_help)
2660 {
2661         if (skb->ip_summed != CHECKSUM_PARTIAL)
2662                 return false;
2663
2664         return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2665 }
2666
2667 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2668                                              const struct skb_csum_offl_spec *spec)
2669 {
2670         bool csum_encapped;
2671
2672         return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2673 }
2674
2675 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2676 {
2677         static const struct skb_csum_offl_spec csum_offl_spec = {
2678                 .ipv4_okay = 1,
2679                 .ip_options_okay = 1,
2680                 .ipv6_okay = 1,
2681                 .vlan_okay = 1,
2682                 .tcp_okay = 1,
2683                 .udp_okay = 1,
2684         };
2685
2686         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2687 }
2688
2689 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2690 {
2691         static const struct skb_csum_offl_spec csum_offl_spec = {
2692                 .ipv4_okay = 1,
2693                 .ip_options_okay = 1,
2694                 .tcp_okay = 1,
2695                 .udp_okay = 1,
2696                 .vlan_okay = 1,
2697         };
2698
2699         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2700 }
2701
2702 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2703                                   unsigned short type,
2704                                   const void *daddr, const void *saddr,
2705                                   unsigned int len)
2706 {
2707         if (!dev->header_ops || !dev->header_ops->create)
2708                 return 0;
2709
2710         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2711 }
2712
2713 static inline int dev_parse_header(const struct sk_buff *skb,
2714                                    unsigned char *haddr)
2715 {
2716         const struct net_device *dev = skb->dev;
2717
2718         if (!dev->header_ops || !dev->header_ops->parse)
2719                 return 0;
2720         return dev->header_ops->parse(skb, haddr);
2721 }
2722
2723 /* ll_header must have at least hard_header_len allocated */
2724 static inline bool dev_validate_header(const struct net_device *dev,
2725                                        char *ll_header, int len)
2726 {
2727         if (likely(len >= dev->hard_header_len))
2728                 return true;
2729
2730         if (capable(CAP_SYS_RAWIO)) {
2731                 memset(ll_header + len, 0, dev->hard_header_len - len);
2732                 return true;
2733         }
2734
2735         if (dev->header_ops && dev->header_ops->validate)
2736                 return dev->header_ops->validate(ll_header, len);
2737
2738         return false;
2739 }
2740
2741 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2742 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2743 static inline int unregister_gifconf(unsigned int family)
2744 {
2745         return register_gifconf(family, NULL);
2746 }
2747
2748 #ifdef CONFIG_NET_FLOW_LIMIT
2749 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2750 struct sd_flow_limit {
2751         u64                     count;
2752         unsigned int            num_buckets;
2753         unsigned int            history_head;
2754         u16                     history[FLOW_LIMIT_HISTORY];
2755         u8                      buckets[];
2756 };
2757
2758 extern int netdev_flow_limit_table_len;
2759 #endif /* CONFIG_NET_FLOW_LIMIT */
2760
2761 /*
2762  * Incoming packets are placed on per-CPU queues
2763  */
2764 struct softnet_data {
2765         struct list_head        poll_list;
2766         struct sk_buff_head     process_queue;
2767
2768         /* stats */
2769         unsigned int            processed;
2770         unsigned int            time_squeeze;
2771         unsigned int            received_rps;
2772 #ifdef CONFIG_RPS
2773         struct softnet_data     *rps_ipi_list;
2774 #endif
2775 #ifdef CONFIG_NET_FLOW_LIMIT
2776         struct sd_flow_limit __rcu *flow_limit;
2777 #endif
2778         struct Qdisc            *output_queue;
2779         struct Qdisc            **output_queue_tailp;
2780         struct sk_buff          *completion_queue;
2781
2782 #ifdef CONFIG_RPS
2783         /* input_queue_head should be written by cpu owning this struct,
2784          * and only read by other cpus. Worth using a cache line.
2785          */
2786         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2787
2788         /* Elements below can be accessed between CPUs for RPS/RFS */
2789         struct call_single_data csd ____cacheline_aligned_in_smp;
2790         struct softnet_data     *rps_ipi_next;
2791         unsigned int            cpu;
2792         unsigned int            input_queue_tail;
2793 #endif
2794         unsigned int            dropped;
2795         struct sk_buff_head     input_pkt_queue;
2796         struct napi_struct      backlog;
2797
2798 };
2799
2800 static inline void input_queue_head_incr(struct softnet_data *sd)
2801 {
2802 #ifdef CONFIG_RPS
2803         sd->input_queue_head++;
2804 #endif
2805 }
2806
2807 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2808                                               unsigned int *qtail)
2809 {
2810 #ifdef CONFIG_RPS
2811         *qtail = ++sd->input_queue_tail;
2812 #endif
2813 }
2814
2815 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2816
2817 void __netif_schedule(struct Qdisc *q);
2818 void netif_schedule_queue(struct netdev_queue *txq);
2819
2820 static inline void netif_tx_schedule_all(struct net_device *dev)
2821 {
2822         unsigned int i;
2823
2824         for (i = 0; i < dev->num_tx_queues; i++)
2825                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2826 }
2827
2828 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2829 {
2830         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2831 }
2832
2833 /**
2834  *      netif_start_queue - allow transmit
2835  *      @dev: network device
2836  *
2837  *      Allow upper layers to call the device hard_start_xmit routine.
2838  */
2839 static inline void netif_start_queue(struct net_device *dev)
2840 {
2841         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2842 }
2843
2844 static inline void netif_tx_start_all_queues(struct net_device *dev)
2845 {
2846         unsigned int i;
2847
2848         for (i = 0; i < dev->num_tx_queues; i++) {
2849                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2850                 netif_tx_start_queue(txq);
2851         }
2852 }
2853
2854 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2855
2856 /**
2857  *      netif_wake_queue - restart transmit
2858  *      @dev: network device
2859  *
2860  *      Allow upper layers to call the device hard_start_xmit routine.
2861  *      Used for flow control when transmit resources are available.
2862  */
2863 static inline void netif_wake_queue(struct net_device *dev)
2864 {
2865         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2866 }
2867
2868 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2869 {
2870         unsigned int i;
2871
2872         for (i = 0; i < dev->num_tx_queues; i++) {
2873                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2874                 netif_tx_wake_queue(txq);
2875         }
2876 }
2877
2878 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2879 {
2880         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2881 }
2882
2883 /**
2884  *      netif_stop_queue - stop transmitted packets
2885  *      @dev: network device
2886  *
2887  *      Stop upper layers calling the device hard_start_xmit routine.
2888  *      Used for flow control when transmit resources are unavailable.
2889  */
2890 static inline void netif_stop_queue(struct net_device *dev)
2891 {
2892         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2893 }
2894
2895 void netif_tx_stop_all_queues(struct net_device *dev);
2896
2897 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2898 {
2899         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2900 }
2901
2902 /**
2903  *      netif_queue_stopped - test if transmit queue is flowblocked
2904  *      @dev: network device
2905  *
2906  *      Test if transmit queue on device is currently unable to send.
2907  */
2908 static inline bool netif_queue_stopped(const struct net_device *dev)
2909 {
2910         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2911 }
2912
2913 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2914 {
2915         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2916 }
2917
2918 static inline bool
2919 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2920 {
2921         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2922 }
2923
2924 static inline bool
2925 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2926 {
2927         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2928 }
2929
2930 /**
2931  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2932  *      @dev_queue: pointer to transmit queue
2933  *
2934  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2935  * to give appropriate hint to the CPU.
2936  */
2937 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2938 {
2939 #ifdef CONFIG_BQL
2940         prefetchw(&dev_queue->dql.num_queued);
2941 #endif
2942 }
2943
2944 /**
2945  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2946  *      @dev_queue: pointer to transmit queue
2947  *
2948  * BQL enabled drivers might use this helper in their TX completion path,
2949  * to give appropriate hint to the CPU.
2950  */
2951 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2952 {
2953 #ifdef CONFIG_BQL
2954         prefetchw(&dev_queue->dql.limit);
2955 #endif
2956 }
2957
2958 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2959                                         unsigned int bytes)
2960 {
2961 #ifdef CONFIG_BQL
2962         dql_queued(&dev_queue->dql, bytes);
2963
2964         if (likely(dql_avail(&dev_queue->dql) >= 0))
2965                 return;
2966
2967         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2968
2969         /*
2970          * The XOFF flag must be set before checking the dql_avail below,
2971          * because in netdev_tx_completed_queue we update the dql_completed
2972          * before checking the XOFF flag.
2973          */
2974         smp_mb();
2975
2976         /* check again in case another CPU has just made room avail */
2977         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2978                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2979 #endif
2980 }
2981
2982 /**
2983  *      netdev_sent_queue - report the number of bytes queued to hardware
2984  *      @dev: network device
2985  *      @bytes: number of bytes queued to the hardware device queue
2986  *
2987  *      Report the number of bytes queued for sending/completion to the network
2988  *      device hardware queue. @bytes should be a good approximation and should
2989  *      exactly match netdev_completed_queue() @bytes
2990  */
2991 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2992 {
2993         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2994 }
2995
2996 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2997                                              unsigned int pkts, unsigned int bytes)
2998 {
2999 #ifdef CONFIG_BQL
3000         if (unlikely(!bytes))
3001                 return;
3002
3003         dql_completed(&dev_queue->dql, bytes);
3004
3005         /*
3006          * Without the memory barrier there is a small possiblity that
3007          * netdev_tx_sent_queue will miss the update and cause the queue to
3008          * be stopped forever
3009          */
3010         smp_mb();
3011
3012         if (dql_avail(&dev_queue->dql) < 0)
3013                 return;
3014
3015         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3016                 netif_schedule_queue(dev_queue);
3017 #endif
3018 }
3019
3020 /**
3021  *      netdev_completed_queue - report bytes and packets completed by device
3022  *      @dev: network device
3023  *      @pkts: actual number of packets sent over the medium
3024  *      @bytes: actual number of bytes sent over the medium
3025  *
3026  *      Report the number of bytes and packets transmitted by the network device
3027  *      hardware queue over the physical medium, @bytes must exactly match the
3028  *      @bytes amount passed to netdev_sent_queue()
3029  */
3030 static inline void netdev_completed_queue(struct net_device *dev,
3031                                           unsigned int pkts, unsigned int bytes)
3032 {
3033         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3034 }
3035
3036 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3037 {
3038 #ifdef CONFIG_BQL
3039         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3040         dql_reset(&q->dql);
3041 #endif
3042 }
3043
3044 /**
3045  *      netdev_reset_queue - reset the packets and bytes count of a network device
3046  *      @dev_queue: network device
3047  *
3048  *      Reset the bytes and packet count of a network device and clear the
3049  *      software flow control OFF bit for this network device
3050  */
3051 static inline void netdev_reset_queue(struct net_device *dev_queue)
3052 {
3053         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3054 }
3055
3056 /**
3057  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3058  *      @dev: network device
3059  *      @queue_index: given tx queue index
3060  *
3061  *      Returns 0 if given tx queue index >= number of device tx queues,
3062  *      otherwise returns the originally passed tx queue index.
3063  */
3064 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3065 {
3066         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3067                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3068                                      dev->name, queue_index,
3069                                      dev->real_num_tx_queues);
3070                 return 0;
3071         }
3072
3073         return queue_index;
3074 }
3075
3076 /**
3077  *      netif_running - test if up
3078  *      @dev: network device
3079  *
3080  *      Test if the device has been brought up.
3081  */
3082 static inline bool netif_running(const struct net_device *dev)
3083 {
3084         return test_bit(__LINK_STATE_START, &dev->state);
3085 }
3086
3087 /*
3088  * Routines to manage the subqueues on a device.  We only need start,
3089  * stop, and a check if it's stopped.  All other device management is
3090  * done at the overall netdevice level.
3091  * Also test the device if we're multiqueue.
3092  */
3093
3094 /**
3095  *      netif_start_subqueue - allow sending packets on subqueue
3096  *      @dev: network device
3097  *      @queue_index: sub queue index
3098  *
3099  * Start individual transmit queue of a device with multiple transmit queues.
3100  */
3101 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3102 {
3103         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104
3105         netif_tx_start_queue(txq);
3106 }
3107
3108 /**
3109  *      netif_stop_subqueue - stop sending packets on subqueue
3110  *      @dev: network device
3111  *      @queue_index: sub queue index
3112  *
3113  * Stop individual transmit queue of a device with multiple transmit queues.
3114  */
3115 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3116 {
3117         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3118         netif_tx_stop_queue(txq);
3119 }
3120
3121 /**
3122  *      netif_subqueue_stopped - test status of subqueue
3123  *      @dev: network device
3124  *      @queue_index: sub queue index
3125  *
3126  * Check individual transmit queue of a device with multiple transmit queues.
3127  */
3128 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3129                                             u16 queue_index)
3130 {
3131         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132
3133         return netif_tx_queue_stopped(txq);
3134 }
3135
3136 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3137                                           struct sk_buff *skb)
3138 {
3139         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3140 }
3141
3142 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3143
3144 #ifdef CONFIG_XPS
3145 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146                         u16 index);
3147 #else
3148 static inline int netif_set_xps_queue(struct net_device *dev,
3149                                       const struct cpumask *mask,
3150                                       u16 index)
3151 {
3152         return 0;
3153 }
3154 #endif
3155
3156 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157                   unsigned int num_tx_queues);
3158
3159 /*
3160  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161  * as a distribution range limit for the returned value.
3162  */
3163 static inline u16 skb_tx_hash(const struct net_device *dev,
3164                               struct sk_buff *skb)
3165 {
3166         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167 }
3168
3169 /**
3170  *      netif_is_multiqueue - test if device has multiple transmit queues
3171  *      @dev: network device
3172  *
3173  * Check if device has multiple transmit queues
3174  */
3175 static inline bool netif_is_multiqueue(const struct net_device *dev)
3176 {
3177         return dev->num_tx_queues > 1;
3178 }
3179
3180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181
3182 #ifdef CONFIG_SYSFS
3183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184 #else
3185 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186                                                 unsigned int rxq)
3187 {
3188         return 0;
3189 }
3190 #endif
3191
3192 #ifdef CONFIG_SYSFS
3193 static inline unsigned int get_netdev_rx_queue_index(
3194                 struct netdev_rx_queue *queue)
3195 {
3196         struct net_device *dev = queue->dev;
3197         int index = queue - dev->_rx;
3198
3199         BUG_ON(index >= dev->num_rx_queues);
3200         return index;
3201 }
3202 #endif
3203
3204 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3205 int netif_get_num_default_rss_queues(void);
3206
3207 enum skb_free_reason {
3208         SKB_REASON_CONSUMED,
3209         SKB_REASON_DROPPED,
3210 };
3211
3212 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214
3215 /*
3216  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217  * interrupt context or with hardware interrupts being disabled.
3218  * (in_irq() || irqs_disabled())
3219  *
3220  * We provide four helpers that can be used in following contexts :
3221  *
3222  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223  *  replacing kfree_skb(skb)
3224  *
3225  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226  *  Typically used in place of consume_skb(skb) in TX completion path
3227  *
3228  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229  *  replacing kfree_skb(skb)
3230  *
3231  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232  *  and consumed a packet. Used in place of consume_skb(skb)
3233  */
3234 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235 {
3236         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237 }
3238
3239 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240 {
3241         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242 }
3243
3244 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245 {
3246         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247 }
3248
3249 static inline void dev_consume_skb_any(struct sk_buff *skb)
3250 {
3251         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252 }
3253
3254 int netif_rx(struct sk_buff *skb);
3255 int netif_rx_ni(struct sk_buff *skb);
3256 int netif_receive_skb(struct sk_buff *skb);
3257 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260 gro_result_t napi_gro_frags(struct napi_struct *napi);
3261 struct packet_offload *gro_find_receive_by_type(__be16 type);
3262 struct packet_offload *gro_find_complete_by_type(__be16 type);
3263
3264 static inline void napi_free_frags(struct napi_struct *napi)
3265 {
3266         kfree_skb(napi->skb);
3267         napi->skb = NULL;
3268 }
3269
3270 int netdev_rx_handler_register(struct net_device *dev,
3271                                rx_handler_func_t *rx_handler,
3272                                void *rx_handler_data);
3273 void netdev_rx_handler_unregister(struct net_device *dev);
3274
3275 bool dev_valid_name(const char *name);
3276 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3277 int dev_ethtool(struct net *net, struct ifreq *);
3278 unsigned int dev_get_flags(const struct net_device *);
3279 int __dev_change_flags(struct net_device *, unsigned int flags);
3280 int dev_change_flags(struct net_device *, unsigned int);
3281 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3282                         unsigned int gchanges);
3283 int dev_change_name(struct net_device *, const char *);
3284 int dev_set_alias(struct net_device *, const char *, size_t);
3285 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3286 int dev_set_mtu(struct net_device *, int);
3287 void dev_set_group(struct net_device *, int);
3288 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3289 int dev_change_carrier(struct net_device *, bool new_carrier);
3290 int dev_get_phys_port_id(struct net_device *dev,
3291                          struct netdev_phys_item_id *ppid);
3292 int dev_get_phys_port_name(struct net_device *dev,
3293                            char *name, size_t len);
3294 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3295 int dev_change_xdp_fd(struct net_device *dev, int fd);
3296 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3297 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3298                                     struct netdev_queue *txq, int *ret);
3299 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 bool is_skb_forwardable(const struct net_device *dev,
3302                         const struct sk_buff *skb);
3303
3304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3305
3306 extern int              netdev_budget;
3307
3308 /* Called by rtnetlink.c:rtnl_unlock() */
3309 void netdev_run_todo(void);
3310
3311 /**
3312  *      dev_put - release reference to device
3313  *      @dev: network device
3314  *
3315  * Release reference to device to allow it to be freed.
3316  */
3317 static inline void dev_put(struct net_device *dev)
3318 {
3319         this_cpu_dec(*dev->pcpu_refcnt);
3320 }
3321
3322 /**
3323  *      dev_hold - get reference to device
3324  *      @dev: network device
3325  *
3326  * Hold reference to device to keep it from being freed.
3327  */
3328 static inline void dev_hold(struct net_device *dev)
3329 {
3330         this_cpu_inc(*dev->pcpu_refcnt);
3331 }
3332
3333 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3334  * and _off may be called from IRQ context, but it is caller
3335  * who is responsible for serialization of these calls.
3336  *
3337  * The name carrier is inappropriate, these functions should really be
3338  * called netif_lowerlayer_*() because they represent the state of any
3339  * kind of lower layer not just hardware media.
3340  */
3341
3342 void linkwatch_init_dev(struct net_device *dev);
3343 void linkwatch_fire_event(struct net_device *dev);
3344 void linkwatch_forget_dev(struct net_device *dev);
3345
3346 /**
3347  *      netif_carrier_ok - test if carrier present
3348  *      @dev: network device
3349  *
3350  * Check if carrier is present on device
3351  */
3352 static inline bool netif_carrier_ok(const struct net_device *dev)
3353 {
3354         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3355 }
3356
3357 unsigned long dev_trans_start(struct net_device *dev);
3358
3359 void __netdev_watchdog_up(struct net_device *dev);
3360
3361 void netif_carrier_on(struct net_device *dev);
3362
3363 void netif_carrier_off(struct net_device *dev);
3364
3365 /**
3366  *      netif_dormant_on - mark device as dormant.
3367  *      @dev: network device
3368  *
3369  * Mark device as dormant (as per RFC2863).
3370  *
3371  * The dormant state indicates that the relevant interface is not
3372  * actually in a condition to pass packets (i.e., it is not 'up') but is
3373  * in a "pending" state, waiting for some external event.  For "on-
3374  * demand" interfaces, this new state identifies the situation where the
3375  * interface is waiting for events to place it in the up state.
3376  */
3377 static inline void netif_dormant_on(struct net_device *dev)
3378 {
3379         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3380                 linkwatch_fire_event(dev);
3381 }
3382
3383 /**
3384  *      netif_dormant_off - set device as not dormant.
3385  *      @dev: network device
3386  *
3387  * Device is not in dormant state.
3388  */
3389 static inline void netif_dormant_off(struct net_device *dev)
3390 {
3391         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3392                 linkwatch_fire_event(dev);
3393 }
3394
3395 /**
3396  *      netif_dormant - test if carrier present
3397  *      @dev: network device
3398  *
3399  * Check if carrier is present on device
3400  */
3401 static inline bool netif_dormant(const struct net_device *dev)
3402 {
3403         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3404 }
3405
3406
3407 /**
3408  *      netif_oper_up - test if device is operational
3409  *      @dev: network device
3410  *
3411  * Check if carrier is operational
3412  */
3413 static inline bool netif_oper_up(const struct net_device *dev)
3414 {
3415         return (dev->operstate == IF_OPER_UP ||
3416                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3417 }
3418
3419 /**
3420  *      netif_device_present - is device available or removed
3421  *      @dev: network device
3422  *
3423  * Check if device has not been removed from system.
3424  */
3425 static inline bool netif_device_present(struct net_device *dev)
3426 {
3427         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3428 }
3429
3430 void netif_device_detach(struct net_device *dev);
3431
3432 void netif_device_attach(struct net_device *dev);
3433
3434 /*
3435  * Network interface message level settings
3436  */
3437
3438 enum {
3439         NETIF_MSG_DRV           = 0x0001,
3440         NETIF_MSG_PROBE         = 0x0002,
3441         NETIF_MSG_LINK          = 0x0004,
3442         NETIF_MSG_TIMER         = 0x0008,
3443         NETIF_MSG_IFDOWN        = 0x0010,
3444         NETIF_MSG_IFUP          = 0x0020,
3445         NETIF_MSG_RX_ERR        = 0x0040,
3446         NETIF_MSG_TX_ERR        = 0x0080,
3447         NETIF_MSG_TX_QUEUED     = 0x0100,
3448         NETIF_MSG_INTR          = 0x0200,
3449         NETIF_MSG_TX_DONE       = 0x0400,
3450         NETIF_MSG_RX_STATUS     = 0x0800,
3451         NETIF_MSG_PKTDATA       = 0x1000,
3452         NETIF_MSG_HW            = 0x2000,
3453         NETIF_MSG_WOL           = 0x4000,
3454 };
3455
3456 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3457 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3458 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3459 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3460 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3461 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3462 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3463 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3464 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3465 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3466 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3467 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3468 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3469 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3470 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3471
3472 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3473 {
3474         /* use default */
3475         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3476                 return default_msg_enable_bits;
3477         if (debug_value == 0)   /* no output */
3478                 return 0;
3479         /* set low N bits */
3480         return (1 << debug_value) - 1;
3481 }
3482
3483 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3484 {
3485         spin_lock(&txq->_xmit_lock);
3486         txq->xmit_lock_owner = cpu;
3487 }
3488
3489 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3490 {
3491         spin_lock_bh(&txq->_xmit_lock);
3492         txq->xmit_lock_owner = smp_processor_id();
3493 }
3494
3495 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3496 {
3497         bool ok = spin_trylock(&txq->_xmit_lock);
3498         if (likely(ok))
3499                 txq->xmit_lock_owner = smp_processor_id();
3500         return ok;
3501 }
3502
3503 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3504 {
3505         txq->xmit_lock_owner = -1;
3506         spin_unlock(&txq->_xmit_lock);
3507 }
3508
3509 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3510 {
3511         txq->xmit_lock_owner = -1;
3512         spin_unlock_bh(&txq->_xmit_lock);
3513 }
3514
3515 static inline void txq_trans_update(struct netdev_queue *txq)
3516 {
3517         if (txq->xmit_lock_owner != -1)
3518                 txq->trans_start = jiffies;
3519 }
3520
3521 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3522 static inline void netif_trans_update(struct net_device *dev)
3523 {
3524         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3525
3526         if (txq->trans_start != jiffies)
3527                 txq->trans_start = jiffies;
3528 }
3529
3530 /**
3531  *      netif_tx_lock - grab network device transmit lock
3532  *      @dev: network device
3533  *
3534  * Get network device transmit lock
3535  */
3536 static inline void netif_tx_lock(struct net_device *dev)
3537 {
3538         unsigned int i;
3539         int cpu;
3540
3541         spin_lock(&dev->tx_global_lock);
3542         cpu = smp_processor_id();
3543         for (i = 0; i < dev->num_tx_queues; i++) {
3544                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3545
3546                 /* We are the only thread of execution doing a
3547                  * freeze, but we have to grab the _xmit_lock in
3548                  * order to synchronize with threads which are in
3549                  * the ->hard_start_xmit() handler and already
3550                  * checked the frozen bit.
3551                  */
3552                 __netif_tx_lock(txq, cpu);
3553                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3554                 __netif_tx_unlock(txq);
3555         }
3556 }
3557
3558 static inline void netif_tx_lock_bh(struct net_device *dev)
3559 {
3560         local_bh_disable();
3561         netif_tx_lock(dev);
3562 }
3563
3564 static inline void netif_tx_unlock(struct net_device *dev)
3565 {
3566         unsigned int i;
3567
3568         for (i = 0; i < dev->num_tx_queues; i++) {
3569                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3570
3571                 /* No need to grab the _xmit_lock here.  If the
3572                  * queue is not stopped for another reason, we
3573                  * force a schedule.
3574                  */
3575                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3576                 netif_schedule_queue(txq);
3577         }
3578         spin_unlock(&dev->tx_global_lock);
3579 }
3580
3581 static inline void netif_tx_unlock_bh(struct net_device *dev)
3582 {
3583         netif_tx_unlock(dev);
3584         local_bh_enable();
3585 }
3586
3587 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3588         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3589                 __netif_tx_lock(txq, cpu);              \
3590         }                                               \
3591 }
3592
3593 #define HARD_TX_TRYLOCK(dev, txq)                       \
3594         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3595                 __netif_tx_trylock(txq) :               \
3596                 true )
3597
3598 #define HARD_TX_UNLOCK(dev, txq) {                      \
3599         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3600                 __netif_tx_unlock(txq);                 \
3601         }                                               \
3602 }
3603
3604 static inline void netif_tx_disable(struct net_device *dev)
3605 {
3606         unsigned int i;
3607         int cpu;
3608
3609         local_bh_disable();
3610         cpu = smp_processor_id();
3611         for (i = 0; i < dev->num_tx_queues; i++) {
3612                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3613
3614                 __netif_tx_lock(txq, cpu);
3615                 netif_tx_stop_queue(txq);
3616                 __netif_tx_unlock(txq);
3617         }
3618         local_bh_enable();
3619 }
3620
3621 static inline void netif_addr_lock(struct net_device *dev)
3622 {
3623         spin_lock(&dev->addr_list_lock);
3624 }
3625
3626 static inline void netif_addr_lock_nested(struct net_device *dev)
3627 {
3628         int subclass = SINGLE_DEPTH_NESTING;
3629
3630         if (dev->netdev_ops->ndo_get_lock_subclass)
3631                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3632
3633         spin_lock_nested(&dev->addr_list_lock, subclass);
3634 }
3635
3636 static inline void netif_addr_lock_bh(struct net_device *dev)
3637 {
3638         spin_lock_bh(&dev->addr_list_lock);
3639 }
3640
3641 static inline void netif_addr_unlock(struct net_device *dev)
3642 {
3643         spin_unlock(&dev->addr_list_lock);
3644 }
3645
3646 static inline void netif_addr_unlock_bh(struct net_device *dev)
3647 {
3648         spin_unlock_bh(&dev->addr_list_lock);
3649 }
3650
3651 /*
3652  * dev_addrs walker. Should be used only for read access. Call with
3653  * rcu_read_lock held.
3654  */
3655 #define for_each_dev_addr(dev, ha) \
3656                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3657
3658 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3659
3660 void ether_setup(struct net_device *dev);
3661
3662 /* Support for loadable net-drivers */
3663 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3664                                     unsigned char name_assign_type,
3665                                     void (*setup)(struct net_device *),
3666                                     unsigned int txqs, unsigned int rxqs);
3667 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3668         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3669
3670 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3671         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3672                          count)
3673
3674 int register_netdev(struct net_device *dev);
3675 void unregister_netdev(struct net_device *dev);
3676
3677 /* General hardware address lists handling functions */
3678 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3679                    struct netdev_hw_addr_list *from_list, int addr_len);
3680 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3681                       struct netdev_hw_addr_list *from_list, int addr_len);
3682 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3683                        struct net_device *dev,
3684                        int (*sync)(struct net_device *, const unsigned char *),
3685                        int (*unsync)(struct net_device *,
3686                                      const unsigned char *));
3687 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3688                           struct net_device *dev,
3689                           int (*unsync)(struct net_device *,
3690                                         const unsigned char *));
3691 void __hw_addr_init(struct netdev_hw_addr_list *list);
3692
3693 /* Functions used for device addresses handling */
3694 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3695                  unsigned char addr_type);
3696 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3697                  unsigned char addr_type);
3698 void dev_addr_flush(struct net_device *dev);
3699 int dev_addr_init(struct net_device *dev);
3700
3701 /* Functions used for unicast addresses handling */
3702 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3704 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3705 int dev_uc_sync(struct net_device *to, struct net_device *from);
3706 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3707 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3708 void dev_uc_flush(struct net_device *dev);
3709 void dev_uc_init(struct net_device *dev);
3710
3711 /**
3712  *  __dev_uc_sync - Synchonize device's unicast list
3713  *  @dev:  device to sync
3714  *  @sync: function to call if address should be added
3715  *  @unsync: function to call if address should be removed
3716  *
3717  *  Add newly added addresses to the interface, and release
3718  *  addresses that have been deleted.
3719  */
3720 static inline int __dev_uc_sync(struct net_device *dev,
3721                                 int (*sync)(struct net_device *,
3722                                             const unsigned char *),
3723                                 int (*unsync)(struct net_device *,
3724                                               const unsigned char *))
3725 {
3726         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3727 }
3728
3729 /**
3730  *  __dev_uc_unsync - Remove synchronized addresses from device
3731  *  @dev:  device to sync
3732  *  @unsync: function to call if address should be removed
3733  *
3734  *  Remove all addresses that were added to the device by dev_uc_sync().
3735  */
3736 static inline void __dev_uc_unsync(struct net_device *dev,
3737                                    int (*unsync)(struct net_device *,
3738                                                  const unsigned char *))
3739 {
3740         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3741 }
3742
3743 /* Functions used for multicast addresses handling */
3744 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_sync(struct net_device *to, struct net_device *from);
3750 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3751 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3752 void dev_mc_flush(struct net_device *dev);
3753 void dev_mc_init(struct net_device *dev);
3754
3755 /**
3756  *  __dev_mc_sync - Synchonize device's multicast list
3757  *  @dev:  device to sync
3758  *  @sync: function to call if address should be added
3759  *  @unsync: function to call if address should be removed
3760  *
3761  *  Add newly added addresses to the interface, and release
3762  *  addresses that have been deleted.
3763  */
3764 static inline int __dev_mc_sync(struct net_device *dev,
3765                                 int (*sync)(struct net_device *,
3766                                             const unsigned char *),
3767                                 int (*unsync)(struct net_device *,
3768                                               const unsigned char *))
3769 {
3770         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3771 }
3772
3773 /**
3774  *  __dev_mc_unsync - Remove synchronized addresses from device
3775  *  @dev:  device to sync
3776  *  @unsync: function to call if address should be removed
3777  *
3778  *  Remove all addresses that were added to the device by dev_mc_sync().
3779  */
3780 static inline void __dev_mc_unsync(struct net_device *dev,
3781                                    int (*unsync)(struct net_device *,
3782                                                  const unsigned char *))
3783 {
3784         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3785 }
3786
3787 /* Functions used for secondary unicast and multicast support */
3788 void dev_set_rx_mode(struct net_device *dev);
3789 void __dev_set_rx_mode(struct net_device *dev);
3790 int dev_set_promiscuity(struct net_device *dev, int inc);
3791 int dev_set_allmulti(struct net_device *dev, int inc);
3792 void netdev_state_change(struct net_device *dev);
3793 void netdev_notify_peers(struct net_device *dev);
3794 void netdev_features_change(struct net_device *dev);
3795 /* Load a device via the kmod */
3796 void dev_load(struct net *net, const char *name);
3797 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3798                                         struct rtnl_link_stats64 *storage);
3799 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3800                              const struct net_device_stats *netdev_stats);
3801
3802 extern int              netdev_max_backlog;
3803 extern int              netdev_tstamp_prequeue;
3804 extern int              weight_p;
3805
3806 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3807 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3808                                                      struct list_head **iter);
3809 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3810                                                      struct list_head **iter);
3811
3812 /* iterate through upper list, must be called under RCU read lock */
3813 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3814         for (iter = &(dev)->adj_list.upper, \
3815              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3816              updev; \
3817              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3818
3819 /* iterate through upper list, must be called under RCU read lock */
3820 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3821         for (iter = &(dev)->all_adj_list.upper, \
3822              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3823              updev; \
3824              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3825
3826 void *netdev_lower_get_next_private(struct net_device *dev,
3827                                     struct list_head **iter);
3828 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3829                                         struct list_head **iter);
3830
3831 #define netdev_for_each_lower_private(dev, priv, iter) \
3832         for (iter = (dev)->adj_list.lower.next, \
3833              priv = netdev_lower_get_next_private(dev, &(iter)); \
3834              priv; \
3835              priv = netdev_lower_get_next_private(dev, &(iter)))
3836
3837 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3838         for (iter = &(dev)->adj_list.lower, \
3839              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3840              priv; \
3841              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3842
3843 void *netdev_lower_get_next(struct net_device *dev,
3844                                 struct list_head **iter);
3845
3846 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3847         for (iter = (dev)->adj_list.lower.next, \
3848              ldev = netdev_lower_get_next(dev, &(iter)); \
3849              ldev; \
3850              ldev = netdev_lower_get_next(dev, &(iter)))
3851
3852 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3853                                              struct list_head **iter);
3854 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3855                                                  struct list_head **iter);
3856
3857 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3858         for (iter = (dev)->all_adj_list.lower.next, \
3859              ldev = netdev_all_lower_get_next(dev, &(iter)); \
3860              ldev; \
3861              ldev = netdev_all_lower_get_next(dev, &(iter)))
3862
3863 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3864         for (iter = (dev)->all_adj_list.lower.next, \
3865              ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3866              ldev; \
3867              ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3868
3869 void *netdev_adjacent_get_private(struct list_head *adj_list);
3870 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3871 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3873 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3874 int netdev_master_upper_dev_link(struct net_device *dev,
3875                                  struct net_device *upper_dev,
3876                                  void *upper_priv, void *upper_info);
3877 void netdev_upper_dev_unlink(struct net_device *dev,
3878                              struct net_device *upper_dev);
3879 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3880 void *netdev_lower_dev_get_private(struct net_device *dev,
3881                                    struct net_device *lower_dev);
3882 void netdev_lower_state_changed(struct net_device *lower_dev,
3883                                 void *lower_state_info);
3884 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3885                                            struct neighbour *n);
3886 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3887                                           struct neighbour *n);
3888
3889 /* RSS keys are 40 or 52 bytes long */
3890 #define NETDEV_RSS_KEY_LEN 52
3891 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3892 void netdev_rss_key_fill(void *buffer, size_t len);
3893
3894 int dev_get_nest_level(struct net_device *dev,
3895                        bool (*type_check)(const struct net_device *dev));
3896 int skb_checksum_help(struct sk_buff *skb);
3897 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3898                                   netdev_features_t features, bool tx_path);
3899 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3900                                     netdev_features_t features);
3901
3902 struct netdev_bonding_info {
3903         ifslave slave;
3904         ifbond  master;
3905 };
3906
3907 struct netdev_notifier_bonding_info {
3908         struct netdev_notifier_info info; /* must be first */
3909         struct netdev_bonding_info  bonding_info;
3910 };
3911
3912 void netdev_bonding_info_change(struct net_device *dev,
3913                                 struct netdev_bonding_info *bonding_info);
3914
3915 static inline
3916 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3917 {
3918         return __skb_gso_segment(skb, features, true);
3919 }
3920 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3921
3922 static inline bool can_checksum_protocol(netdev_features_t features,
3923                                          __be16 protocol)
3924 {
3925         if (protocol == htons(ETH_P_FCOE))
3926                 return !!(features & NETIF_F_FCOE_CRC);
3927
3928         /* Assume this is an IP checksum (not SCTP CRC) */
3929
3930         if (features & NETIF_F_HW_CSUM) {
3931                 /* Can checksum everything */
3932                 return true;
3933         }
3934
3935         switch (protocol) {
3936         case htons(ETH_P_IP):
3937                 return !!(features & NETIF_F_IP_CSUM);
3938         case htons(ETH_P_IPV6):
3939                 return !!(features & NETIF_F_IPV6_CSUM);
3940         default:
3941                 return false;
3942         }
3943 }
3944
3945 /* Map an ethertype into IP protocol if possible */
3946 static inline int eproto_to_ipproto(int eproto)
3947 {
3948         switch (eproto) {
3949         case htons(ETH_P_IP):
3950                 return IPPROTO_IP;
3951         case htons(ETH_P_IPV6):
3952                 return IPPROTO_IPV6;
3953         default:
3954                 return -1;
3955         }
3956 }
3957
3958 #ifdef CONFIG_BUG
3959 void netdev_rx_csum_fault(struct net_device *dev);
3960 #else
3961 static inline void netdev_rx_csum_fault(struct net_device *dev)
3962 {
3963 }
3964 #endif
3965 /* rx skb timestamps */
3966 void net_enable_timestamp(void);
3967 void net_disable_timestamp(void);
3968
3969 #ifdef CONFIG_PROC_FS
3970 int __init dev_proc_init(void);
3971 #else
3972 #define dev_proc_init() 0
3973 #endif
3974
3975 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3976                                               struct sk_buff *skb, struct net_device *dev,
3977                                               bool more)
3978 {
3979         skb->xmit_more = more ? 1 : 0;
3980         return ops->ndo_start_xmit(skb, dev);
3981 }
3982
3983 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3984                                             struct netdev_queue *txq, bool more)
3985 {
3986         const struct net_device_ops *ops = dev->netdev_ops;
3987         int rc;
3988
3989         rc = __netdev_start_xmit(ops, skb, dev, more);
3990         if (rc == NETDEV_TX_OK)
3991                 txq_trans_update(txq);
3992
3993         return rc;
3994 }
3995
3996 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3997                                 const void *ns);
3998 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3999                                  const void *ns);
4000
4001 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4002 {
4003         return netdev_class_create_file_ns(class_attr, NULL);
4004 }
4005
4006 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4007 {
4008         netdev_class_remove_file_ns(class_attr, NULL);
4009 }
4010
4011 extern struct kobj_ns_type_operations net_ns_type_operations;
4012
4013 const char *netdev_drivername(const struct net_device *dev);
4014
4015 void linkwatch_run_queue(void);
4016
4017 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4018                                                           netdev_features_t f2)
4019 {
4020         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4021                 if (f1 & NETIF_F_HW_CSUM)
4022                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4023                 else
4024                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4025         }
4026
4027         return f1 & f2;
4028 }
4029
4030 static inline netdev_features_t netdev_get_wanted_features(
4031         struct net_device *dev)
4032 {
4033         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4034 }
4035 netdev_features_t netdev_increment_features(netdev_features_t all,
4036         netdev_features_t one, netdev_features_t mask);
4037
4038 /* Allow TSO being used on stacked device :
4039  * Performing the GSO segmentation before last device
4040  * is a performance improvement.
4041  */
4042 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4043                                                         netdev_features_t mask)
4044 {
4045         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4046 }
4047
4048 int __netdev_update_features(struct net_device *dev);
4049 void netdev_update_features(struct net_device *dev);
4050 void netdev_change_features(struct net_device *dev);
4051
4052 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4053                                         struct net_device *dev);
4054
4055 netdev_features_t passthru_features_check(struct sk_buff *skb,
4056                                           struct net_device *dev,
4057                                           netdev_features_t features);
4058 netdev_features_t netif_skb_features(struct sk_buff *skb);
4059
4060 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4061 {
4062         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4063
4064         /* check flags correspondence */
4065         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4066         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4067         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4068         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4069         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4070         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4071         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4072         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4073         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4074         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4075         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4076         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4077         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4078         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4079         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4080         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4081
4082         return (features & feature) == feature;
4083 }
4084
4085 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4086 {
4087         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4088                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4089 }
4090
4091 static inline bool netif_needs_gso(struct sk_buff *skb,
4092                                    netdev_features_t features)
4093 {
4094         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4095                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4096                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4097 }
4098
4099 static inline void netif_set_gso_max_size(struct net_device *dev,
4100                                           unsigned int size)
4101 {
4102         dev->gso_max_size = size;
4103 }
4104
4105 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4106                                         int pulled_hlen, u16 mac_offset,
4107                                         int mac_len)
4108 {
4109         skb->protocol = protocol;
4110         skb->encapsulation = 1;
4111         skb_push(skb, pulled_hlen);
4112         skb_reset_transport_header(skb);
4113         skb->mac_header = mac_offset;
4114         skb->network_header = skb->mac_header + mac_len;
4115         skb->mac_len = mac_len;
4116 }
4117
4118 static inline bool netif_is_macsec(const struct net_device *dev)
4119 {
4120         return dev->priv_flags & IFF_MACSEC;
4121 }
4122
4123 static inline bool netif_is_macvlan(const struct net_device *dev)
4124 {
4125         return dev->priv_flags & IFF_MACVLAN;
4126 }
4127
4128 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4129 {
4130         return dev->priv_flags & IFF_MACVLAN_PORT;
4131 }
4132
4133 static inline bool netif_is_ipvlan(const struct net_device *dev)
4134 {
4135         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4136 }
4137
4138 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4139 {
4140         return dev->priv_flags & IFF_IPVLAN_MASTER;
4141 }
4142
4143 static inline bool netif_is_bond_master(const struct net_device *dev)
4144 {
4145         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4146 }
4147
4148 static inline bool netif_is_bond_slave(const struct net_device *dev)
4149 {
4150         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4151 }
4152
4153 static inline bool netif_supports_nofcs(struct net_device *dev)
4154 {
4155         return dev->priv_flags & IFF_SUPP_NOFCS;
4156 }
4157
4158 static inline bool netif_is_l3_master(const struct net_device *dev)
4159 {
4160         return dev->priv_flags & IFF_L3MDEV_MASTER;
4161 }
4162
4163 static inline bool netif_is_l3_slave(const struct net_device *dev)
4164 {
4165         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4166 }
4167
4168 static inline bool netif_is_bridge_master(const struct net_device *dev)
4169 {
4170         return dev->priv_flags & IFF_EBRIDGE;
4171 }
4172
4173 static inline bool netif_is_bridge_port(const struct net_device *dev)
4174 {
4175         return dev->priv_flags & IFF_BRIDGE_PORT;
4176 }
4177
4178 static inline bool netif_is_ovs_master(const struct net_device *dev)
4179 {
4180         return dev->priv_flags & IFF_OPENVSWITCH;
4181 }
4182
4183 static inline bool netif_is_team_master(const struct net_device *dev)
4184 {
4185         return dev->priv_flags & IFF_TEAM;
4186 }
4187
4188 static inline bool netif_is_team_port(const struct net_device *dev)
4189 {
4190         return dev->priv_flags & IFF_TEAM_PORT;
4191 }
4192
4193 static inline bool netif_is_lag_master(const struct net_device *dev)
4194 {
4195         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4196 }
4197
4198 static inline bool netif_is_lag_port(const struct net_device *dev)
4199 {
4200         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4201 }
4202
4203 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4204 {
4205         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4206 }
4207
4208 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4209 static inline void netif_keep_dst(struct net_device *dev)
4210 {
4211         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4212 }
4213
4214 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4215 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4216 {
4217         /* TODO: reserve and use an additional IFF bit, if we get more users */
4218         return dev->priv_flags & IFF_MACSEC;
4219 }
4220
4221 extern struct pernet_operations __net_initdata loopback_net_ops;
4222
4223 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4224
4225 /* netdev_printk helpers, similar to dev_printk */
4226
4227 static inline const char *netdev_name(const struct net_device *dev)
4228 {
4229         if (!dev->name[0] || strchr(dev->name, '%'))
4230                 return "(unnamed net_device)";
4231         return dev->name;
4232 }
4233
4234 static inline const char *netdev_reg_state(const struct net_device *dev)
4235 {
4236         switch (dev->reg_state) {
4237         case NETREG_UNINITIALIZED: return " (uninitialized)";
4238         case NETREG_REGISTERED: return "";
4239         case NETREG_UNREGISTERING: return " (unregistering)";
4240         case NETREG_UNREGISTERED: return " (unregistered)";
4241         case NETREG_RELEASED: return " (released)";
4242         case NETREG_DUMMY: return " (dummy)";
4243         }
4244
4245         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4246         return " (unknown)";
4247 }
4248
4249 __printf(3, 4)
4250 void netdev_printk(const char *level, const struct net_device *dev,
4251                    const char *format, ...);
4252 __printf(2, 3)
4253 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4254 __printf(2, 3)
4255 void netdev_alert(const struct net_device *dev, const char *format, ...);
4256 __printf(2, 3)
4257 void netdev_crit(const struct net_device *dev, const char *format, ...);
4258 __printf(2, 3)
4259 void netdev_err(const struct net_device *dev, const char *format, ...);
4260 __printf(2, 3)
4261 void netdev_warn(const struct net_device *dev, const char *format, ...);
4262 __printf(2, 3)
4263 void netdev_notice(const struct net_device *dev, const char *format, ...);
4264 __printf(2, 3)
4265 void netdev_info(const struct net_device *dev, const char *format, ...);
4266
4267 #define MODULE_ALIAS_NETDEV(device) \
4268         MODULE_ALIAS("netdev-" device)
4269
4270 #if defined(CONFIG_DYNAMIC_DEBUG)
4271 #define netdev_dbg(__dev, format, args...)                      \
4272 do {                                                            \
4273         dynamic_netdev_dbg(__dev, format, ##args);              \
4274 } while (0)
4275 #elif defined(DEBUG)
4276 #define netdev_dbg(__dev, format, args...)                      \
4277         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4278 #else
4279 #define netdev_dbg(__dev, format, args...)                      \
4280 ({                                                              \
4281         if (0)                                                  \
4282                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4283 })
4284 #endif
4285
4286 #if defined(VERBOSE_DEBUG)
4287 #define netdev_vdbg     netdev_dbg
4288 #else
4289
4290 #define netdev_vdbg(dev, format, args...)                       \
4291 ({                                                              \
4292         if (0)                                                  \
4293                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4294         0;                                                      \
4295 })
4296 #endif
4297
4298 /*
4299  * netdev_WARN() acts like dev_printk(), but with the key difference
4300  * of using a WARN/WARN_ON to get the message out, including the
4301  * file/line information and a backtrace.
4302  */
4303 #define netdev_WARN(dev, format, args...)                       \
4304         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4305              netdev_reg_state(dev), ##args)
4306
4307 /* netif printk helpers, similar to netdev_printk */
4308
4309 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4310 do {                                                            \
4311         if (netif_msg_##type(priv))                             \
4312                 netdev_printk(level, (dev), fmt, ##args);       \
4313 } while (0)
4314
4315 #define netif_level(level, priv, type, dev, fmt, args...)       \
4316 do {                                                            \
4317         if (netif_msg_##type(priv))                             \
4318                 netdev_##level(dev, fmt, ##args);               \
4319 } while (0)
4320
4321 #define netif_emerg(priv, type, dev, fmt, args...)              \
4322         netif_level(emerg, priv, type, dev, fmt, ##args)
4323 #define netif_alert(priv, type, dev, fmt, args...)              \
4324         netif_level(alert, priv, type, dev, fmt, ##args)
4325 #define netif_crit(priv, type, dev, fmt, args...)               \
4326         netif_level(crit, priv, type, dev, fmt, ##args)
4327 #define netif_err(priv, type, dev, fmt, args...)                \
4328         netif_level(err, priv, type, dev, fmt, ##args)
4329 #define netif_warn(priv, type, dev, fmt, args...)               \
4330         netif_level(warn, priv, type, dev, fmt, ##args)
4331 #define netif_notice(priv, type, dev, fmt, args...)             \
4332         netif_level(notice, priv, type, dev, fmt, ##args)
4333 #define netif_info(priv, type, dev, fmt, args...)               \
4334         netif_level(info, priv, type, dev, fmt, ##args)
4335
4336 #if defined(CONFIG_DYNAMIC_DEBUG)
4337 #define netif_dbg(priv, type, netdev, format, args...)          \
4338 do {                                                            \
4339         if (netif_msg_##type(priv))                             \
4340                 dynamic_netdev_dbg(netdev, format, ##args);     \
4341 } while (0)
4342 #elif defined(DEBUG)
4343 #define netif_dbg(priv, type, dev, format, args...)             \
4344         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4345 #else
4346 #define netif_dbg(priv, type, dev, format, args...)                     \
4347 ({                                                                      \
4348         if (0)                                                          \
4349                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4350         0;                                                              \
4351 })
4352 #endif
4353
4354 #if defined(VERBOSE_DEBUG)
4355 #define netif_vdbg      netif_dbg
4356 #else
4357 #define netif_vdbg(priv, type, dev, format, args...)            \
4358 ({                                                              \
4359         if (0)                                                  \
4360                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4361         0;                                                      \
4362 })
4363 #endif
4364
4365 /*
4366  *      The list of packet types we will receive (as opposed to discard)
4367  *      and the routines to invoke.
4368  *
4369  *      Why 16. Because with 16 the only overlap we get on a hash of the
4370  *      low nibble of the protocol value is RARP/SNAP/X.25.
4371  *
4372  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4373  *             sure which should go first, but I bet it won't make much
4374  *             difference if we are running VLANs.  The good news is that
4375  *             this protocol won't be in the list unless compiled in, so
4376  *             the average user (w/out VLANs) will not be adversely affected.
4377  *             --BLG
4378  *
4379  *              0800    IP
4380  *              8100    802.1Q VLAN
4381  *              0001    802.3
4382  *              0002    AX.25
4383  *              0004    802.2
4384  *              8035    RARP
4385  *              0005    SNAP
4386  *              0805    X.25
4387  *              0806    ARP
4388  *              8137    IPX
4389  *              0009    Localtalk
4390  *              86DD    IPv6
4391  */
4392 #define PTYPE_HASH_SIZE (16)
4393 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4394
4395 #endif  /* _LINUX_NETDEVICE_H */