f45929ce815725d868261e9a2585ac53d0c8f128
[cascardo/linux.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66                                     const struct ethtool_ops *ops);
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
70 #define NET_RX_DROP             1       /* packet dropped */
71
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously; in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
86  * others are propagated to higher layers.
87  */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS        0x00
91 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
92 #define NET_XMIT_CN             0x02    /* congestion notification      */
93 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
94 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK          0xf0
104
105 enum netdev_tx {
106         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
107         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
108         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118         /*
119          * Positive cases with an skb consumed by a driver:
120          * - successful transmission (rc == NETDEV_TX_OK)
121          * - error while transmitting (rc < 0)
122          * - error while queueing to a different device (rc & NET_XMIT_MASK)
123          */
124         if (likely(rc < NET_XMIT_MASK))
125                 return true;
126
127         return false;
128 }
129
130 /*
131  *      Compute the worst-case header length according to the protocols
132  *      used.
133  */
134
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 #  define LL_MAX_HEADER 128
140 # else
141 #  define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153
154 /*
155  *      Old network device statistics. Fields are native words
156  *      (unsigned long) so they can be read and written atomically.
157  */
158
159 struct net_device_stats {
160         unsigned long   rx_packets;
161         unsigned long   tx_packets;
162         unsigned long   rx_bytes;
163         unsigned long   tx_bytes;
164         unsigned long   rx_errors;
165         unsigned long   tx_errors;
166         unsigned long   rx_dropped;
167         unsigned long   tx_dropped;
168         unsigned long   multicast;
169         unsigned long   collisions;
170         unsigned long   rx_length_errors;
171         unsigned long   rx_over_errors;
172         unsigned long   rx_crc_errors;
173         unsigned long   rx_frame_errors;
174         unsigned long   rx_fifo_errors;
175         unsigned long   rx_missed_errors;
176         unsigned long   tx_aborted_errors;
177         unsigned long   tx_carrier_errors;
178         unsigned long   tx_fifo_errors;
179         unsigned long   tx_heartbeat_errors;
180         unsigned long   tx_window_errors;
181         unsigned long   rx_compressed;
182         unsigned long   tx_compressed;
183 };
184
185
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197
198 struct netdev_hw_addr {
199         struct list_head        list;
200         unsigned char           addr[MAX_ADDR_LEN];
201         unsigned char           type;
202 #define NETDEV_HW_ADDR_T_LAN            1
203 #define NETDEV_HW_ADDR_T_SAN            2
204 #define NETDEV_HW_ADDR_T_SLAVE          3
205 #define NETDEV_HW_ADDR_T_UNICAST        4
206 #define NETDEV_HW_ADDR_T_MULTICAST      5
207         bool                    global_use;
208         int                     sync_cnt;
209         int                     refcount;
210         int                     synced;
211         struct rcu_head         rcu_head;
212 };
213
214 struct netdev_hw_addr_list {
215         struct list_head        list;
216         int                     count;
217 };
218
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222         list_for_each_entry(ha, &(l)->list, list)
223
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234 struct hh_cache {
235         u16             hh_len;
236         u16             __pad;
237         seqlock_t       hh_lock;
238
239         /* cached hardware header; allow for machine alignment needs.        */
240 #define HH_DATA_MOD     16
241 #define HH_DATA_OFF(__len) \
242         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247
248 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
249  * Alternative is:
250  *   dev->hard_header_len ? (dev->hard_header_len +
251  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261 struct header_ops {
262         int     (*create) (struct sk_buff *skb, struct net_device *dev,
263                            unsigned short type, const void *daddr,
264                            const void *saddr, unsigned int len);
265         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267         void    (*cache_update)(struct hh_cache *hh,
268                                 const struct net_device *dev,
269                                 const unsigned char *haddr);
270         bool    (*validate)(const char *ll_header, unsigned int len);
271 };
272
273 /* These flag bits are private to the generic network queueing
274  * layer; they may not be explicitly referenced by any other
275  * code.
276  */
277
278 enum netdev_state_t {
279         __LINK_STATE_START,
280         __LINK_STATE_PRESENT,
281         __LINK_STATE_NOCARRIER,
282         __LINK_STATE_LINKWATCH_PENDING,
283         __LINK_STATE_DORMANT,
284 };
285
286
287 /*
288  * This structure holds boot-time configured netdevice settings. They
289  * are then used in the device probing.
290  */
291 struct netdev_boot_setup {
292         char name[IFNAMSIZ];
293         struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296
297 int __init netdev_boot_setup(char *str);
298
299 /*
300  * Structure for NAPI scheduling similar to tasklet but with weighting
301  */
302 struct napi_struct {
303         /* The poll_list must only be managed by the entity which
304          * changes the state of the NAPI_STATE_SCHED bit.  This means
305          * whoever atomically sets that bit can add this napi_struct
306          * to the per-CPU poll_list, and whoever clears that bit
307          * can remove from the list right before clearing the bit.
308          */
309         struct list_head        poll_list;
310
311         unsigned long           state;
312         int                     weight;
313         unsigned int            gro_count;
314         int                     (*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316         spinlock_t              poll_lock;
317         int                     poll_owner;
318 #endif
319         struct net_device       *dev;
320         struct sk_buff          *gro_list;
321         struct sk_buff          *skb;
322         struct hrtimer          timer;
323         struct list_head        dev_list;
324         struct hlist_node       napi_hash_node;
325         unsigned int            napi_id;
326 };
327
328 enum {
329         NAPI_STATE_SCHED,       /* Poll is scheduled */
330         NAPI_STATE_DISABLE,     /* Disable pending */
331         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
332         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
333         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
334 };
335
336 enum gro_result {
337         GRO_MERGED,
338         GRO_MERGED_FREE,
339         GRO_HELD,
340         GRO_NORMAL,
341         GRO_DROP,
342 };
343 typedef enum gro_result gro_result_t;
344
345 /*
346  * enum rx_handler_result - Possible return values for rx_handlers.
347  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
348  * further.
349  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
350  * case skb->dev was changed by rx_handler.
351  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
352  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
353  *
354  * rx_handlers are functions called from inside __netif_receive_skb(), to do
355  * special processing of the skb, prior to delivery to protocol handlers.
356  *
357  * Currently, a net_device can only have a single rx_handler registered. Trying
358  * to register a second rx_handler will return -EBUSY.
359  *
360  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
361  * To unregister a rx_handler on a net_device, use
362  * netdev_rx_handler_unregister().
363  *
364  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
365  * do with the skb.
366  *
367  * If the rx_handler consumed the skb in some way, it should return
368  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
369  * the skb to be delivered in some other way.
370  *
371  * If the rx_handler changed skb->dev, to divert the skb to another
372  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
373  * new device will be called if it exists.
374  *
375  * If the rx_handler decides the skb should be ignored, it should return
376  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
377  * are registered on exact device (ptype->dev == skb->dev).
378  *
379  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
380  * delivered, it should return RX_HANDLER_PASS.
381  *
382  * A device without a registered rx_handler will behave as if rx_handler
383  * returned RX_HANDLER_PASS.
384  */
385
386 enum rx_handler_result {
387         RX_HANDLER_CONSUMED,
388         RX_HANDLER_ANOTHER,
389         RX_HANDLER_EXACT,
390         RX_HANDLER_PASS,
391 };
392 typedef enum rx_handler_result rx_handler_result_t;
393 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
394
395 void __napi_schedule(struct napi_struct *n);
396 void __napi_schedule_irqoff(struct napi_struct *n);
397
398 static inline bool napi_disable_pending(struct napi_struct *n)
399 {
400         return test_bit(NAPI_STATE_DISABLE, &n->state);
401 }
402
403 /**
404  *      napi_schedule_prep - check if NAPI can be scheduled
405  *      @n: NAPI context
406  *
407  * Test if NAPI routine is already running, and if not mark
408  * it as running.  This is used as a condition variable to
409  * insure only one NAPI poll instance runs.  We also make
410  * sure there is no pending NAPI disable.
411  */
412 static inline bool napi_schedule_prep(struct napi_struct *n)
413 {
414         return !napi_disable_pending(n) &&
415                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
416 }
417
418 /**
419  *      napi_schedule - schedule NAPI poll
420  *      @n: NAPI context
421  *
422  * Schedule NAPI poll routine to be called if it is not already
423  * running.
424  */
425 static inline void napi_schedule(struct napi_struct *n)
426 {
427         if (napi_schedule_prep(n))
428                 __napi_schedule(n);
429 }
430
431 /**
432  *      napi_schedule_irqoff - schedule NAPI poll
433  *      @n: NAPI context
434  *
435  * Variant of napi_schedule(), assuming hard irqs are masked.
436  */
437 static inline void napi_schedule_irqoff(struct napi_struct *n)
438 {
439         if (napi_schedule_prep(n))
440                 __napi_schedule_irqoff(n);
441 }
442
443 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
444 static inline bool napi_reschedule(struct napi_struct *napi)
445 {
446         if (napi_schedule_prep(napi)) {
447                 __napi_schedule(napi);
448                 return true;
449         }
450         return false;
451 }
452
453 void __napi_complete(struct napi_struct *n);
454 void napi_complete_done(struct napi_struct *n, int work_done);
455 /**
456  *      napi_complete - NAPI processing complete
457  *      @n: NAPI context
458  *
459  * Mark NAPI processing as complete.
460  * Consider using napi_complete_done() instead.
461  */
462 static inline void napi_complete(struct napi_struct *n)
463 {
464         return napi_complete_done(n, 0);
465 }
466
467 /**
468  *      napi_hash_add - add a NAPI to global hashtable
469  *      @napi: NAPI context
470  *
471  * Generate a new napi_id and store a @napi under it in napi_hash.
472  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
473  * Note: This is normally automatically done from netif_napi_add(),
474  * so might disappear in a future Linux version.
475  */
476 void napi_hash_add(struct napi_struct *napi);
477
478 /**
479  *      napi_hash_del - remove a NAPI from global table
480  *      @napi: NAPI context
481  *
482  * Warning: caller must observe RCU grace period
483  * before freeing memory containing @napi, if
484  * this function returns true.
485  * Note: core networking stack automatically calls it
486  * from netif_napi_del().
487  * Drivers might want to call this helper to combine all
488  * the needed RCU grace periods into a single one.
489  */
490 bool napi_hash_del(struct napi_struct *napi);
491
492 /**
493  *      napi_disable - prevent NAPI from scheduling
494  *      @n: NAPI context
495  *
496  * Stop NAPI from being scheduled on this context.
497  * Waits till any outstanding processing completes.
498  */
499 void napi_disable(struct napi_struct *n);
500
501 /**
502  *      napi_enable - enable NAPI scheduling
503  *      @n: NAPI context
504  *
505  * Resume NAPI from being scheduled on this context.
506  * Must be paired with napi_disable.
507  */
508 static inline void napi_enable(struct napi_struct *n)
509 {
510         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
511         smp_mb__before_atomic();
512         clear_bit(NAPI_STATE_SCHED, &n->state);
513         clear_bit(NAPI_STATE_NPSVC, &n->state);
514 }
515
516 /**
517  *      napi_synchronize - wait until NAPI is not running
518  *      @n: NAPI context
519  *
520  * Wait until NAPI is done being scheduled on this context.
521  * Waits till any outstanding processing completes but
522  * does not disable future activations.
523  */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526         if (IS_ENABLED(CONFIG_SMP))
527                 while (test_bit(NAPI_STATE_SCHED, &n->state))
528                         msleep(1);
529         else
530                 barrier();
531 }
532
533 enum netdev_queue_state_t {
534         __QUEUE_STATE_DRV_XOFF,
535         __QUEUE_STATE_STACK_XOFF,
536         __QUEUE_STATE_FROZEN,
537 };
538
539 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
540 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
542
543 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545                                         QUEUE_STATE_FROZEN)
546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547                                         QUEUE_STATE_FROZEN)
548
549 /*
550  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
551  * netif_tx_* functions below are used to manipulate this flag.  The
552  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553  * queue independently.  The netif_xmit_*stopped functions below are called
554  * to check if the queue has been stopped by the driver or stack (either
555  * of the XOFF bits are set in the state).  Drivers should not need to call
556  * netif_xmit*stopped functions, they should only be using netif_tx_*.
557  */
558
559 struct netdev_queue {
560 /*
561  * read-mostly part
562  */
563         struct net_device       *dev;
564         struct Qdisc __rcu      *qdisc;
565         struct Qdisc            *qdisc_sleeping;
566 #ifdef CONFIG_SYSFS
567         struct kobject          kobj;
568 #endif
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570         int                     numa_node;
571 #endif
572         unsigned long           tx_maxrate;
573         /*
574          * Number of TX timeouts for this queue
575          * (/sys/class/net/DEV/Q/trans_timeout)
576          */
577         unsigned long           trans_timeout;
578 /*
579  * write-mostly part
580  */
581         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
582         int                     xmit_lock_owner;
583         /*
584          * Time (in jiffies) of last Tx
585          */
586         unsigned long           trans_start;
587
588         unsigned long           state;
589
590 #ifdef CONFIG_BQL
591         struct dql              dql;
592 #endif
593 } ____cacheline_aligned_in_smp;
594
595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
596 {
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598         return q->numa_node;
599 #else
600         return NUMA_NO_NODE;
601 #endif
602 }
603
604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
605 {
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607         q->numa_node = node;
608 #endif
609 }
610
611 #ifdef CONFIG_RPS
612 /*
613  * This structure holds an RPS map which can be of variable length.  The
614  * map is an array of CPUs.
615  */
616 struct rps_map {
617         unsigned int len;
618         struct rcu_head rcu;
619         u16 cpus[0];
620 };
621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622
623 /*
624  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
625  * tail pointer for that CPU's input queue at the time of last enqueue, and
626  * a hardware filter index.
627  */
628 struct rps_dev_flow {
629         u16 cpu;
630         u16 filter;
631         unsigned int last_qtail;
632 };
633 #define RPS_NO_FILTER 0xffff
634
635 /*
636  * The rps_dev_flow_table structure contains a table of flow mappings.
637  */
638 struct rps_dev_flow_table {
639         unsigned int mask;
640         struct rcu_head rcu;
641         struct rps_dev_flow flows[0];
642 };
643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
644     ((_num) * sizeof(struct rps_dev_flow)))
645
646 /*
647  * The rps_sock_flow_table contains mappings of flows to the last CPU
648  * on which they were processed by the application (set in recvmsg).
649  * Each entry is a 32bit value. Upper part is the high-order bits
650  * of flow hash, lower part is CPU number.
651  * rps_cpu_mask is used to partition the space, depending on number of
652  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
653  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
654  * meaning we use 32-6=26 bits for the hash.
655  */
656 struct rps_sock_flow_table {
657         u32     mask;
658
659         u32     ents[0] ____cacheline_aligned_in_smp;
660 };
661 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
662
663 #define RPS_NO_CPU 0xffff
664
665 extern u32 rps_cpu_mask;
666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
667
668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
669                                         u32 hash)
670 {
671         if (table && hash) {
672                 unsigned int index = hash & table->mask;
673                 u32 val = hash & ~rps_cpu_mask;
674
675                 /* We only give a hint, preemption can change CPU under us */
676                 val |= raw_smp_processor_id();
677
678                 if (table->ents[index] != val)
679                         table->ents[index] = val;
680         }
681 }
682
683 #ifdef CONFIG_RFS_ACCEL
684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
685                          u16 filter_id);
686 #endif
687 #endif /* CONFIG_RPS */
688
689 /* This structure contains an instance of an RX queue. */
690 struct netdev_rx_queue {
691 #ifdef CONFIG_RPS
692         struct rps_map __rcu            *rps_map;
693         struct rps_dev_flow_table __rcu *rps_flow_table;
694 #endif
695         struct kobject                  kobj;
696         struct net_device               *dev;
697 } ____cacheline_aligned_in_smp;
698
699 /*
700  * RX queue sysfs structures and functions.
701  */
702 struct rx_queue_attribute {
703         struct attribute attr;
704         ssize_t (*show)(struct netdev_rx_queue *queue,
705             struct rx_queue_attribute *attr, char *buf);
706         ssize_t (*store)(struct netdev_rx_queue *queue,
707             struct rx_queue_attribute *attr, const char *buf, size_t len);
708 };
709
710 #ifdef CONFIG_XPS
711 /*
712  * This structure holds an XPS map which can be of variable length.  The
713  * map is an array of queues.
714  */
715 struct xps_map {
716         unsigned int len;
717         unsigned int alloc_len;
718         struct rcu_head rcu;
719         u16 queues[0];
720 };
721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
723        - sizeof(struct xps_map)) / sizeof(u16))
724
725 /*
726  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
727  */
728 struct xps_dev_maps {
729         struct rcu_head rcu;
730         struct xps_map __rcu *cpu_map[0];
731 };
732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
733     (nr_cpu_ids * sizeof(struct xps_map *)))
734 #endif /* CONFIG_XPS */
735
736 #define TC_MAX_QUEUE    16
737 #define TC_BITMASK      15
738 /* HW offloaded queuing disciplines txq count and offset maps */
739 struct netdev_tc_txq {
740         u16 count;
741         u16 offset;
742 };
743
744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
745 /*
746  * This structure is to hold information about the device
747  * configured to run FCoE protocol stack.
748  */
749 struct netdev_fcoe_hbainfo {
750         char    manufacturer[64];
751         char    serial_number[64];
752         char    hardware_version[64];
753         char    driver_version[64];
754         char    optionrom_version[64];
755         char    firmware_version[64];
756         char    model[256];
757         char    model_description[256];
758 };
759 #endif
760
761 #define MAX_PHYS_ITEM_ID_LEN 32
762
763 /* This structure holds a unique identifier to identify some
764  * physical item (port for example) used by a netdevice.
765  */
766 struct netdev_phys_item_id {
767         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
768         unsigned char id_len;
769 };
770
771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
772                                             struct netdev_phys_item_id *b)
773 {
774         return a->id_len == b->id_len &&
775                memcmp(a->id, b->id, a->id_len) == 0;
776 }
777
778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
779                                        struct sk_buff *skb);
780
781 /* These structures hold the attributes of qdisc and classifiers
782  * that are being passed to the netdevice through the setup_tc op.
783  */
784 enum {
785         TC_SETUP_MQPRIO,
786         TC_SETUP_CLSU32,
787         TC_SETUP_CLSFLOWER,
788 };
789
790 struct tc_cls_u32_offload;
791
792 struct tc_to_netdev {
793         unsigned int type;
794         union {
795                 u8 tc;
796                 struct tc_cls_u32_offload *cls_u32;
797                 struct tc_cls_flower_offload *cls_flower;
798         };
799 };
800
801
802 /*
803  * This structure defines the management hooks for network devices.
804  * The following hooks can be defined; unless noted otherwise, they are
805  * optional and can be filled with a null pointer.
806  *
807  * int (*ndo_init)(struct net_device *dev);
808  *     This function is called once when a network device is registered.
809  *     The network device can use this for any late stage initialization
810  *     or semantic validation. It can fail with an error code which will
811  *     be propagated back to register_netdev.
812  *
813  * void (*ndo_uninit)(struct net_device *dev);
814  *     This function is called when device is unregistered or when registration
815  *     fails. It is not called if init fails.
816  *
817  * int (*ndo_open)(struct net_device *dev);
818  *     This function is called when a network device transitions to the up
819  *     state.
820  *
821  * int (*ndo_stop)(struct net_device *dev);
822  *     This function is called when a network device transitions to the down
823  *     state.
824  *
825  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
826  *                               struct net_device *dev);
827  *      Called when a packet needs to be transmitted.
828  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
829  *      the queue before that can happen; it's for obsolete devices and weird
830  *      corner cases, but the stack really does a non-trivial amount
831  *      of useless work if you return NETDEV_TX_BUSY.
832  *      Required; cannot be NULL.
833  *
834  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
835  *              netdev_features_t features);
836  *      Adjusts the requested feature flags according to device-specific
837  *      constraints, and returns the resulting flags. Must not modify
838  *      the device state.
839  *
840  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
841  *                         void *accel_priv, select_queue_fallback_t fallback);
842  *      Called to decide which queue to use when device supports multiple
843  *      transmit queues.
844  *
845  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
846  *      This function is called to allow device receiver to make
847  *      changes to configuration when multicast or promiscuous is enabled.
848  *
849  * void (*ndo_set_rx_mode)(struct net_device *dev);
850  *      This function is called device changes address list filtering.
851  *      If driver handles unicast address filtering, it should set
852  *      IFF_UNICAST_FLT in its priv_flags.
853  *
854  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
855  *      This function  is called when the Media Access Control address
856  *      needs to be changed. If this interface is not defined, the
857  *      MAC address can not be changed.
858  *
859  * int (*ndo_validate_addr)(struct net_device *dev);
860  *      Test if Media Access Control address is valid for the device.
861  *
862  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
863  *      Called when a user requests an ioctl which can't be handled by
864  *      the generic interface code. If not defined ioctls return
865  *      not supported error code.
866  *
867  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
868  *      Used to set network devices bus interface parameters. This interface
869  *      is retained for legacy reasons; new devices should use the bus
870  *      interface (PCI) for low level management.
871  *
872  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
873  *      Called when a user wants to change the Maximum Transfer Unit
874  *      of a device. If not defined, any request to change MTU will
875  *      will return an error.
876  *
877  * void (*ndo_tx_timeout)(struct net_device *dev);
878  *      Callback used when the transmitter has not made any progress
879  *      for dev->watchdog ticks.
880  *
881  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
882  *                      struct rtnl_link_stats64 *storage);
883  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
884  *      Called when a user wants to get the network device usage
885  *      statistics. Drivers must do one of the following:
886  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
887  *         rtnl_link_stats64 structure passed by the caller.
888  *      2. Define @ndo_get_stats to update a net_device_stats structure
889  *         (which should normally be dev->stats) and return a pointer to
890  *         it. The structure may be changed asynchronously only if each
891  *         field is written atomically.
892  *      3. Update dev->stats asynchronously and atomically, and define
893  *         neither operation.
894  *
895  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
896  *      If device supports VLAN filtering this function is called when a
897  *      VLAN id is registered.
898  *
899  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
900  *      If device supports VLAN filtering this function is called when a
901  *      VLAN id is unregistered.
902  *
903  * void (*ndo_poll_controller)(struct net_device *dev);
904  *
905  *      SR-IOV management functions.
906  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
907  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
908  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
909  *                        int max_tx_rate);
910  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
911  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
912  * int (*ndo_get_vf_config)(struct net_device *dev,
913  *                          int vf, struct ifla_vf_info *ivf);
914  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
915  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
916  *                        struct nlattr *port[]);
917  *
918  *      Enable or disable the VF ability to query its RSS Redirection Table and
919  *      Hash Key. This is needed since on some devices VF share this information
920  *      with PF and querying it may introduce a theoretical security risk.
921  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
922  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
923  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
924  *      Called to setup 'tc' number of traffic classes in the net device. This
925  *      is always called from the stack with the rtnl lock held and netif tx
926  *      queues stopped. This allows the netdevice to perform queue management
927  *      safely.
928  *
929  *      Fiber Channel over Ethernet (FCoE) offload functions.
930  * int (*ndo_fcoe_enable)(struct net_device *dev);
931  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
932  *      so the underlying device can perform whatever needed configuration or
933  *      initialization to support acceleration of FCoE traffic.
934  *
935  * int (*ndo_fcoe_disable)(struct net_device *dev);
936  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
937  *      so the underlying device can perform whatever needed clean-ups to
938  *      stop supporting acceleration of FCoE traffic.
939  *
940  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
941  *                           struct scatterlist *sgl, unsigned int sgc);
942  *      Called when the FCoE Initiator wants to initialize an I/O that
943  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
944  *      perform necessary setup and returns 1 to indicate the device is set up
945  *      successfully to perform DDP on this I/O, otherwise this returns 0.
946  *
947  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
948  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
949  *      indicated by the FC exchange id 'xid', so the underlying device can
950  *      clean up and reuse resources for later DDP requests.
951  *
952  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
953  *                            struct scatterlist *sgl, unsigned int sgc);
954  *      Called when the FCoE Target wants to initialize an I/O that
955  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
956  *      perform necessary setup and returns 1 to indicate the device is set up
957  *      successfully to perform DDP on this I/O, otherwise this returns 0.
958  *
959  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
960  *                             struct netdev_fcoe_hbainfo *hbainfo);
961  *      Called when the FCoE Protocol stack wants information on the underlying
962  *      device. This information is utilized by the FCoE protocol stack to
963  *      register attributes with Fiber Channel management service as per the
964  *      FC-GS Fabric Device Management Information(FDMI) specification.
965  *
966  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
967  *      Called when the underlying device wants to override default World Wide
968  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
969  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
970  *      protocol stack to use.
971  *
972  *      RFS acceleration.
973  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
974  *                          u16 rxq_index, u32 flow_id);
975  *      Set hardware filter for RFS.  rxq_index is the target queue index;
976  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
977  *      Return the filter ID on success, or a negative error code.
978  *
979  *      Slave management functions (for bridge, bonding, etc).
980  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
981  *      Called to make another netdev an underling.
982  *
983  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
984  *      Called to release previously enslaved netdev.
985  *
986  *      Feature/offload setting functions.
987  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
988  *      Called to update device configuration to new features. Passed
989  *      feature set might be less than what was returned by ndo_fix_features()).
990  *      Must return >0 or -errno if it changed dev->features itself.
991  *
992  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
993  *                    struct net_device *dev,
994  *                    const unsigned char *addr, u16 vid, u16 flags)
995  *      Adds an FDB entry to dev for addr.
996  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
997  *                    struct net_device *dev,
998  *                    const unsigned char *addr, u16 vid)
999  *      Deletes the FDB entry from dev coresponding to addr.
1000  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1001  *                     struct net_device *dev, struct net_device *filter_dev,
1002  *                     int idx)
1003  *      Used to add FDB entries to dump requests. Implementers should add
1004  *      entries to skb and update idx with the number of entries.
1005  *
1006  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1007  *                           u16 flags)
1008  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1009  *                           struct net_device *dev, u32 filter_mask,
1010  *                           int nlflags)
1011  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1012  *                           u16 flags);
1013  *
1014  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1015  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1016  *      which do not represent real hardware may define this to allow their
1017  *      userspace components to manage their virtual carrier state. Devices
1018  *      that determine carrier state from physical hardware properties (eg
1019  *      network cables) or protocol-dependent mechanisms (eg
1020  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1021  *
1022  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1023  *                             struct netdev_phys_item_id *ppid);
1024  *      Called to get ID of physical port of this device. If driver does
1025  *      not implement this, it is assumed that the hw is not able to have
1026  *      multiple net devices on single physical port.
1027  *
1028  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1029  *                            sa_family_t sa_family, __be16 port);
1030  *      Called by vxlan to notify a driver about the UDP port and socket
1031  *      address family that vxlan is listening to. It is called only when
1032  *      a new port starts listening. The operation is protected by the
1033  *      vxlan_net->sock_lock.
1034  *
1035  * void (*ndo_add_geneve_port)(struct net_device *dev,
1036  *                             sa_family_t sa_family, __be16 port);
1037  *      Called by geneve to notify a driver about the UDP port and socket
1038  *      address family that geneve is listnening to. It is called only when
1039  *      a new port starts listening. The operation is protected by the
1040  *      geneve_net->sock_lock.
1041  *
1042  * void (*ndo_del_geneve_port)(struct net_device *dev,
1043  *                             sa_family_t sa_family, __be16 port);
1044  *      Called by geneve to notify the driver about a UDP port and socket
1045  *      address family that geneve is not listening to anymore. The operation
1046  *      is protected by the geneve_net->sock_lock.
1047  *
1048  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1049  *                            sa_family_t sa_family, __be16 port);
1050  *      Called by vxlan to notify the driver about a UDP port and socket
1051  *      address family that vxlan is not listening to anymore. The operation
1052  *      is protected by the vxlan_net->sock_lock.
1053  *
1054  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1055  *                               struct net_device *dev)
1056  *      Called by upper layer devices to accelerate switching or other
1057  *      station functionality into hardware. 'pdev is the lowerdev
1058  *      to use for the offload and 'dev' is the net device that will
1059  *      back the offload. Returns a pointer to the private structure
1060  *      the upper layer will maintain.
1061  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1062  *      Called by upper layer device to delete the station created
1063  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1064  *      the station and priv is the structure returned by the add
1065  *      operation.
1066  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1067  *                                    struct net_device *dev,
1068  *                                    void *priv);
1069  *      Callback to use for xmit over the accelerated station. This
1070  *      is used in place of ndo_start_xmit on accelerated net
1071  *      devices.
1072  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1073  *                                         struct net_device *dev
1074  *                                         netdev_features_t features);
1075  *      Called by core transmit path to determine if device is capable of
1076  *      performing offload operations on a given packet. This is to give
1077  *      the device an opportunity to implement any restrictions that cannot
1078  *      be otherwise expressed by feature flags. The check is called with
1079  *      the set of features that the stack has calculated and it returns
1080  *      those the driver believes to be appropriate.
1081  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1082  *                           int queue_index, u32 maxrate);
1083  *      Called when a user wants to set a max-rate limitation of specific
1084  *      TX queue.
1085  * int (*ndo_get_iflink)(const struct net_device *dev);
1086  *      Called to get the iflink value of this device.
1087  * void (*ndo_change_proto_down)(struct net_device *dev,
1088  *                               bool proto_down);
1089  *      This function is used to pass protocol port error state information
1090  *      to the switch driver. The switch driver can react to the proto_down
1091  *      by doing a phys down on the associated switch port.
1092  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1093  *      This function is used to get egress tunnel information for given skb.
1094  *      This is useful for retrieving outer tunnel header parameters while
1095  *      sampling packet.
1096  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1097  *      This function is used to specify the headroom that the skb must
1098  *      consider when allocation skb during packet reception. Setting
1099  *      appropriate rx headroom value allows avoiding skb head copy on
1100  *      forward. Setting a negative value resets the rx headroom to the
1101  *      default value.
1102  *
1103  */
1104 struct net_device_ops {
1105         int                     (*ndo_init)(struct net_device *dev);
1106         void                    (*ndo_uninit)(struct net_device *dev);
1107         int                     (*ndo_open)(struct net_device *dev);
1108         int                     (*ndo_stop)(struct net_device *dev);
1109         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1110                                                   struct net_device *dev);
1111         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1112                                                       struct net_device *dev,
1113                                                       netdev_features_t features);
1114         u16                     (*ndo_select_queue)(struct net_device *dev,
1115                                                     struct sk_buff *skb,
1116                                                     void *accel_priv,
1117                                                     select_queue_fallback_t fallback);
1118         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1119                                                        int flags);
1120         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1121         int                     (*ndo_set_mac_address)(struct net_device *dev,
1122                                                        void *addr);
1123         int                     (*ndo_validate_addr)(struct net_device *dev);
1124         int                     (*ndo_do_ioctl)(struct net_device *dev,
1125                                                 struct ifreq *ifr, int cmd);
1126         int                     (*ndo_set_config)(struct net_device *dev,
1127                                                   struct ifmap *map);
1128         int                     (*ndo_change_mtu)(struct net_device *dev,
1129                                                   int new_mtu);
1130         int                     (*ndo_neigh_setup)(struct net_device *dev,
1131                                                    struct neigh_parms *);
1132         void                    (*ndo_tx_timeout) (struct net_device *dev);
1133
1134         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1135                                                      struct rtnl_link_stats64 *storage);
1136         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1137
1138         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1139                                                        __be16 proto, u16 vid);
1140         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1141                                                         __be16 proto, u16 vid);
1142 #ifdef CONFIG_NET_POLL_CONTROLLER
1143         void                    (*ndo_poll_controller)(struct net_device *dev);
1144         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1145                                                      struct netpoll_info *info);
1146         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1147 #endif
1148 #ifdef CONFIG_NET_RX_BUSY_POLL
1149         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1150 #endif
1151         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1152                                                   int queue, u8 *mac);
1153         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1154                                                    int queue, u16 vlan, u8 qos);
1155         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1156                                                    int vf, int min_tx_rate,
1157                                                    int max_tx_rate);
1158         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1159                                                        int vf, bool setting);
1160         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1161                                                     int vf, bool setting);
1162         int                     (*ndo_get_vf_config)(struct net_device *dev,
1163                                                      int vf,
1164                                                      struct ifla_vf_info *ivf);
1165         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1166                                                          int vf, int link_state);
1167         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1168                                                     int vf,
1169                                                     struct ifla_vf_stats
1170                                                     *vf_stats);
1171         int                     (*ndo_set_vf_port)(struct net_device *dev,
1172                                                    int vf,
1173                                                    struct nlattr *port[]);
1174         int                     (*ndo_get_vf_port)(struct net_device *dev,
1175                                                    int vf, struct sk_buff *skb);
1176         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1177                                                    int vf, u64 guid,
1178                                                    int guid_type);
1179         int                     (*ndo_set_vf_rss_query_en)(
1180                                                    struct net_device *dev,
1181                                                    int vf, bool setting);
1182         int                     (*ndo_setup_tc)(struct net_device *dev,
1183                                                 u32 handle,
1184                                                 __be16 protocol,
1185                                                 struct tc_to_netdev *tc);
1186 #if IS_ENABLED(CONFIG_FCOE)
1187         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1188         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1189         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1190                                                       u16 xid,
1191                                                       struct scatterlist *sgl,
1192                                                       unsigned int sgc);
1193         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1194                                                      u16 xid);
1195         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1196                                                        u16 xid,
1197                                                        struct scatterlist *sgl,
1198                                                        unsigned int sgc);
1199         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1200                                                         struct netdev_fcoe_hbainfo *hbainfo);
1201 #endif
1202
1203 #if IS_ENABLED(CONFIG_LIBFCOE)
1204 #define NETDEV_FCOE_WWNN 0
1205 #define NETDEV_FCOE_WWPN 1
1206         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1207                                                     u64 *wwn, int type);
1208 #endif
1209
1210 #ifdef CONFIG_RFS_ACCEL
1211         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1212                                                      const struct sk_buff *skb,
1213                                                      u16 rxq_index,
1214                                                      u32 flow_id);
1215 #endif
1216         int                     (*ndo_add_slave)(struct net_device *dev,
1217                                                  struct net_device *slave_dev);
1218         int                     (*ndo_del_slave)(struct net_device *dev,
1219                                                  struct net_device *slave_dev);
1220         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1221                                                     netdev_features_t features);
1222         int                     (*ndo_set_features)(struct net_device *dev,
1223                                                     netdev_features_t features);
1224         int                     (*ndo_neigh_construct)(struct neighbour *n);
1225         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1226
1227         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1228                                                struct nlattr *tb[],
1229                                                struct net_device *dev,
1230                                                const unsigned char *addr,
1231                                                u16 vid,
1232                                                u16 flags);
1233         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1234                                                struct nlattr *tb[],
1235                                                struct net_device *dev,
1236                                                const unsigned char *addr,
1237                                                u16 vid);
1238         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1239                                                 struct netlink_callback *cb,
1240                                                 struct net_device *dev,
1241                                                 struct net_device *filter_dev,
1242                                                 int idx);
1243
1244         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1245                                                       struct nlmsghdr *nlh,
1246                                                       u16 flags);
1247         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1248                                                       u32 pid, u32 seq,
1249                                                       struct net_device *dev,
1250                                                       u32 filter_mask,
1251                                                       int nlflags);
1252         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1253                                                       struct nlmsghdr *nlh,
1254                                                       u16 flags);
1255         int                     (*ndo_change_carrier)(struct net_device *dev,
1256                                                       bool new_carrier);
1257         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1258                                                         struct netdev_phys_item_id *ppid);
1259         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1260                                                           char *name, size_t len);
1261         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1262                                                       sa_family_t sa_family,
1263                                                       __be16 port);
1264         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1265                                                       sa_family_t sa_family,
1266                                                       __be16 port);
1267         void                    (*ndo_add_geneve_port)(struct  net_device *dev,
1268                                                        sa_family_t sa_family,
1269                                                        __be16 port);
1270         void                    (*ndo_del_geneve_port)(struct  net_device *dev,
1271                                                        sa_family_t sa_family,
1272                                                        __be16 port);
1273         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1274                                                         struct net_device *dev);
1275         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1276                                                         void *priv);
1277
1278         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1279                                                         struct net_device *dev,
1280                                                         void *priv);
1281         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1282         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1283                                                       int queue_index,
1284                                                       u32 maxrate);
1285         int                     (*ndo_get_iflink)(const struct net_device *dev);
1286         int                     (*ndo_change_proto_down)(struct net_device *dev,
1287                                                          bool proto_down);
1288         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1289                                                        struct sk_buff *skb);
1290         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1291                                                        int needed_headroom);
1292 };
1293
1294 /**
1295  * enum net_device_priv_flags - &struct net_device priv_flags
1296  *
1297  * These are the &struct net_device, they are only set internally
1298  * by drivers and used in the kernel. These flags are invisible to
1299  * userspace; this means that the order of these flags can change
1300  * during any kernel release.
1301  *
1302  * You should have a pretty good reason to be extending these flags.
1303  *
1304  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1305  * @IFF_EBRIDGE: Ethernet bridging device
1306  * @IFF_BONDING: bonding master or slave
1307  * @IFF_ISATAP: ISATAP interface (RFC4214)
1308  * @IFF_WAN_HDLC: WAN HDLC device
1309  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1310  *      release skb->dst
1311  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1312  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1313  * @IFF_MACVLAN_PORT: device used as macvlan port
1314  * @IFF_BRIDGE_PORT: device used as bridge port
1315  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1316  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1317  * @IFF_UNICAST_FLT: Supports unicast filtering
1318  * @IFF_TEAM_PORT: device used as team port
1319  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1320  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1321  *      change when it's running
1322  * @IFF_MACVLAN: Macvlan device
1323  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1324  *      underlying stacked devices
1325  * @IFF_IPVLAN_MASTER: IPvlan master device
1326  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1327  * @IFF_L3MDEV_MASTER: device is an L3 master device
1328  * @IFF_NO_QUEUE: device can run without qdisc attached
1329  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1330  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1331  * @IFF_TEAM: device is a team device
1332  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1333  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1334  *      entity (i.e. the master device for bridged veth)
1335  * @IFF_MACSEC: device is a MACsec device
1336  */
1337 enum netdev_priv_flags {
1338         IFF_802_1Q_VLAN                 = 1<<0,
1339         IFF_EBRIDGE                     = 1<<1,
1340         IFF_BONDING                     = 1<<2,
1341         IFF_ISATAP                      = 1<<3,
1342         IFF_WAN_HDLC                    = 1<<4,
1343         IFF_XMIT_DST_RELEASE            = 1<<5,
1344         IFF_DONT_BRIDGE                 = 1<<6,
1345         IFF_DISABLE_NETPOLL             = 1<<7,
1346         IFF_MACVLAN_PORT                = 1<<8,
1347         IFF_BRIDGE_PORT                 = 1<<9,
1348         IFF_OVS_DATAPATH                = 1<<10,
1349         IFF_TX_SKB_SHARING              = 1<<11,
1350         IFF_UNICAST_FLT                 = 1<<12,
1351         IFF_TEAM_PORT                   = 1<<13,
1352         IFF_SUPP_NOFCS                  = 1<<14,
1353         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1354         IFF_MACVLAN                     = 1<<16,
1355         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1356         IFF_IPVLAN_MASTER               = 1<<18,
1357         IFF_IPVLAN_SLAVE                = 1<<19,
1358         IFF_L3MDEV_MASTER               = 1<<20,
1359         IFF_NO_QUEUE                    = 1<<21,
1360         IFF_OPENVSWITCH                 = 1<<22,
1361         IFF_L3MDEV_SLAVE                = 1<<23,
1362         IFF_TEAM                        = 1<<24,
1363         IFF_RXFH_CONFIGURED             = 1<<25,
1364         IFF_PHONY_HEADROOM              = 1<<26,
1365         IFF_MACSEC                      = 1<<27,
1366 };
1367
1368 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1369 #define IFF_EBRIDGE                     IFF_EBRIDGE
1370 #define IFF_BONDING                     IFF_BONDING
1371 #define IFF_ISATAP                      IFF_ISATAP
1372 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1373 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1374 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1375 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1376 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1377 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1378 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1379 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1380 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1381 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1382 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1383 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1384 #define IFF_MACVLAN                     IFF_MACVLAN
1385 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1386 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1387 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1388 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1389 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1390 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1391 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1392 #define IFF_TEAM                        IFF_TEAM
1393 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1394 #define IFF_MACSEC                      IFF_MACSEC
1395
1396 /**
1397  *      struct net_device - The DEVICE structure.
1398  *              Actually, this whole structure is a big mistake.  It mixes I/O
1399  *              data with strictly "high-level" data, and it has to know about
1400  *              almost every data structure used in the INET module.
1401  *
1402  *      @name:  This is the first field of the "visible" part of this structure
1403  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1404  *              of the interface.
1405  *
1406  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1407  *      @ifalias:       SNMP alias
1408  *      @mem_end:       Shared memory end
1409  *      @mem_start:     Shared memory start
1410  *      @base_addr:     Device I/O address
1411  *      @irq:           Device IRQ number
1412  *
1413  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1414  *
1415  *      @state:         Generic network queuing layer state, see netdev_state_t
1416  *      @dev_list:      The global list of network devices
1417  *      @napi_list:     List entry used for polling NAPI devices
1418  *      @unreg_list:    List entry  when we are unregistering the
1419  *                      device; see the function unregister_netdev
1420  *      @close_list:    List entry used when we are closing the device
1421  *      @ptype_all:     Device-specific packet handlers for all protocols
1422  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1423  *
1424  *      @adj_list:      Directly linked devices, like slaves for bonding
1425  *      @all_adj_list:  All linked devices, *including* neighbours
1426  *      @features:      Currently active device features
1427  *      @hw_features:   User-changeable features
1428  *
1429  *      @wanted_features:       User-requested features
1430  *      @vlan_features:         Mask of features inheritable by VLAN devices
1431  *
1432  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1433  *                              This field indicates what encapsulation
1434  *                              offloads the hardware is capable of doing,
1435  *                              and drivers will need to set them appropriately.
1436  *
1437  *      @mpls_features: Mask of features inheritable by MPLS
1438  *
1439  *      @ifindex:       interface index
1440  *      @group:         The group the device belongs to
1441  *
1442  *      @stats:         Statistics struct, which was left as a legacy, use
1443  *                      rtnl_link_stats64 instead
1444  *
1445  *      @rx_dropped:    Dropped packets by core network,
1446  *                      do not use this in drivers
1447  *      @tx_dropped:    Dropped packets by core network,
1448  *                      do not use this in drivers
1449  *      @rx_nohandler:  nohandler dropped packets by core network on
1450  *                      inactive devices, do not use this in drivers
1451  *
1452  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1453  *                              instead of ioctl,
1454  *                              see <net/iw_handler.h> for details.
1455  *      @wireless_data: Instance data managed by the core of wireless extensions
1456  *
1457  *      @netdev_ops:    Includes several pointers to callbacks,
1458  *                      if one wants to override the ndo_*() functions
1459  *      @ethtool_ops:   Management operations
1460  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1461  *                      of Layer 2 headers.
1462  *
1463  *      @flags:         Interface flags (a la BSD)
1464  *      @priv_flags:    Like 'flags' but invisible to userspace,
1465  *                      see if.h for the definitions
1466  *      @gflags:        Global flags ( kept as legacy )
1467  *      @padded:        How much padding added by alloc_netdev()
1468  *      @operstate:     RFC2863 operstate
1469  *      @link_mode:     Mapping policy to operstate
1470  *      @if_port:       Selectable AUI, TP, ...
1471  *      @dma:           DMA channel
1472  *      @mtu:           Interface MTU value
1473  *      @type:          Interface hardware type
1474  *      @hard_header_len: Maximum hardware header length.
1475  *
1476  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1477  *                        cases can this be guaranteed
1478  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1479  *                        cases can this be guaranteed. Some cases also use
1480  *                        LL_MAX_HEADER instead to allocate the skb
1481  *
1482  *      interface address info:
1483  *
1484  *      @perm_addr:             Permanent hw address
1485  *      @addr_assign_type:      Hw address assignment type
1486  *      @addr_len:              Hardware address length
1487  *      @neigh_priv_len;        Used in neigh_alloc(),
1488  *                              initialized only in atm/clip.c
1489  *      @dev_id:                Used to differentiate devices that share
1490  *                              the same link layer address
1491  *      @dev_port:              Used to differentiate devices that share
1492  *                              the same function
1493  *      @addr_list_lock:        XXX: need comments on this one
1494  *      @uc_promisc:            Counter that indicates promiscuous mode
1495  *                              has been enabled due to the need to listen to
1496  *                              additional unicast addresses in a device that
1497  *                              does not implement ndo_set_rx_mode()
1498  *      @uc:                    unicast mac addresses
1499  *      @mc:                    multicast mac addresses
1500  *      @dev_addrs:             list of device hw addresses
1501  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1502  *      @promiscuity:           Number of times the NIC is told to work in
1503  *                              promiscuous mode; if it becomes 0 the NIC will
1504  *                              exit promiscuous mode
1505  *      @allmulti:              Counter, enables or disables allmulticast mode
1506  *
1507  *      @vlan_info:     VLAN info
1508  *      @dsa_ptr:       dsa specific data
1509  *      @tipc_ptr:      TIPC specific data
1510  *      @atalk_ptr:     AppleTalk link
1511  *      @ip_ptr:        IPv4 specific data
1512  *      @dn_ptr:        DECnet specific data
1513  *      @ip6_ptr:       IPv6 specific data
1514  *      @ax25_ptr:      AX.25 specific data
1515  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1516  *
1517  *      @last_rx:       Time of last Rx
1518  *      @dev_addr:      Hw address (before bcast,
1519  *                      because most packets are unicast)
1520  *
1521  *      @_rx:                   Array of RX queues
1522  *      @num_rx_queues:         Number of RX queues
1523  *                              allocated at register_netdev() time
1524  *      @real_num_rx_queues:    Number of RX queues currently active in device
1525  *
1526  *      @rx_handler:            handler for received packets
1527  *      @rx_handler_data:       XXX: need comments on this one
1528  *      @ingress_queue:         XXX: need comments on this one
1529  *      @broadcast:             hw bcast address
1530  *
1531  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1532  *                      indexed by RX queue number. Assigned by driver.
1533  *                      This must only be set if the ndo_rx_flow_steer
1534  *                      operation is defined
1535  *      @index_hlist:           Device index hash chain
1536  *
1537  *      @_tx:                   Array of TX queues
1538  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1539  *      @real_num_tx_queues:    Number of TX queues currently active in device
1540  *      @qdisc:                 Root qdisc from userspace point of view
1541  *      @tx_queue_len:          Max frames per queue allowed
1542  *      @tx_global_lock:        XXX: need comments on this one
1543  *
1544  *      @xps_maps:      XXX: need comments on this one
1545  *
1546  *      @offload_fwd_mark:      Offload device fwding mark
1547  *
1548  *      @watchdog_timeo:        Represents the timeout that is used by
1549  *                              the watchdog (see dev_watchdog())
1550  *      @watchdog_timer:        List of timers
1551  *
1552  *      @pcpu_refcnt:           Number of references to this device
1553  *      @todo_list:             Delayed register/unregister
1554  *      @link_watch_list:       XXX: need comments on this one
1555  *
1556  *      @reg_state:             Register/unregister state machine
1557  *      @dismantle:             Device is going to be freed
1558  *      @rtnl_link_state:       This enum represents the phases of creating
1559  *                              a new link
1560  *
1561  *      @destructor:            Called from unregister,
1562  *                              can be used to call free_netdev
1563  *      @npinfo:                XXX: need comments on this one
1564  *      @nd_net:                Network namespace this network device is inside
1565  *
1566  *      @ml_priv:       Mid-layer private
1567  *      @lstats:        Loopback statistics
1568  *      @tstats:        Tunnel statistics
1569  *      @dstats:        Dummy statistics
1570  *      @vstats:        Virtual ethernet statistics
1571  *
1572  *      @garp_port:     GARP
1573  *      @mrp_port:      MRP
1574  *
1575  *      @dev:           Class/net/name entry
1576  *      @sysfs_groups:  Space for optional device, statistics and wireless
1577  *                      sysfs groups
1578  *
1579  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1580  *      @rtnl_link_ops: Rtnl_link_ops
1581  *
1582  *      @gso_max_size:  Maximum size of generic segmentation offload
1583  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1584  *                      NIC for GSO
1585  *
1586  *      @dcbnl_ops:     Data Center Bridging netlink ops
1587  *      @num_tc:        Number of traffic classes in the net device
1588  *      @tc_to_txq:     XXX: need comments on this one
1589  *      @prio_tc_map    XXX: need comments on this one
1590  *
1591  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1592  *
1593  *      @priomap:       XXX: need comments on this one
1594  *      @phydev:        Physical device may attach itself
1595  *                      for hardware timestamping
1596  *
1597  *      @qdisc_tx_busylock:     XXX: need comments on this one
1598  *
1599  *      @proto_down:    protocol port state information can be sent to the
1600  *                      switch driver and used to set the phys state of the
1601  *                      switch port.
1602  *
1603  *      FIXME: cleanup struct net_device such that network protocol info
1604  *      moves out.
1605  */
1606
1607 struct net_device {
1608         char                    name[IFNAMSIZ];
1609         struct hlist_node       name_hlist;
1610         char                    *ifalias;
1611         /*
1612          *      I/O specific fields
1613          *      FIXME: Merge these and struct ifmap into one
1614          */
1615         unsigned long           mem_end;
1616         unsigned long           mem_start;
1617         unsigned long           base_addr;
1618         int                     irq;
1619
1620         atomic_t                carrier_changes;
1621
1622         /*
1623          *      Some hardware also needs these fields (state,dev_list,
1624          *      napi_list,unreg_list,close_list) but they are not
1625          *      part of the usual set specified in Space.c.
1626          */
1627
1628         unsigned long           state;
1629
1630         struct list_head        dev_list;
1631         struct list_head        napi_list;
1632         struct list_head        unreg_list;
1633         struct list_head        close_list;
1634         struct list_head        ptype_all;
1635         struct list_head        ptype_specific;
1636
1637         struct {
1638                 struct list_head upper;
1639                 struct list_head lower;
1640         } adj_list;
1641
1642         struct {
1643                 struct list_head upper;
1644                 struct list_head lower;
1645         } all_adj_list;
1646
1647         netdev_features_t       features;
1648         netdev_features_t       hw_features;
1649         netdev_features_t       wanted_features;
1650         netdev_features_t       vlan_features;
1651         netdev_features_t       hw_enc_features;
1652         netdev_features_t       mpls_features;
1653         netdev_features_t       gso_partial_features;
1654
1655         int                     ifindex;
1656         int                     group;
1657
1658         struct net_device_stats stats;
1659
1660         atomic_long_t           rx_dropped;
1661         atomic_long_t           tx_dropped;
1662         atomic_long_t           rx_nohandler;
1663
1664 #ifdef CONFIG_WIRELESS_EXT
1665         const struct iw_handler_def *wireless_handlers;
1666         struct iw_public_data   *wireless_data;
1667 #endif
1668         const struct net_device_ops *netdev_ops;
1669         const struct ethtool_ops *ethtool_ops;
1670 #ifdef CONFIG_NET_SWITCHDEV
1671         const struct switchdev_ops *switchdev_ops;
1672 #endif
1673 #ifdef CONFIG_NET_L3_MASTER_DEV
1674         const struct l3mdev_ops *l3mdev_ops;
1675 #endif
1676
1677         const struct header_ops *header_ops;
1678
1679         unsigned int            flags;
1680         unsigned int            priv_flags;
1681
1682         unsigned short          gflags;
1683         unsigned short          padded;
1684
1685         unsigned char           operstate;
1686         unsigned char           link_mode;
1687
1688         unsigned char           if_port;
1689         unsigned char           dma;
1690
1691         unsigned int            mtu;
1692         unsigned short          type;
1693         unsigned short          hard_header_len;
1694
1695         unsigned short          needed_headroom;
1696         unsigned short          needed_tailroom;
1697
1698         /* Interface address info. */
1699         unsigned char           perm_addr[MAX_ADDR_LEN];
1700         unsigned char           addr_assign_type;
1701         unsigned char           addr_len;
1702         unsigned short          neigh_priv_len;
1703         unsigned short          dev_id;
1704         unsigned short          dev_port;
1705         spinlock_t              addr_list_lock;
1706         unsigned char           name_assign_type;
1707         bool                    uc_promisc;
1708         struct netdev_hw_addr_list      uc;
1709         struct netdev_hw_addr_list      mc;
1710         struct netdev_hw_addr_list      dev_addrs;
1711
1712 #ifdef CONFIG_SYSFS
1713         struct kset             *queues_kset;
1714 #endif
1715         unsigned int            promiscuity;
1716         unsigned int            allmulti;
1717
1718
1719         /* Protocol-specific pointers */
1720
1721 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1722         struct vlan_info __rcu  *vlan_info;
1723 #endif
1724 #if IS_ENABLED(CONFIG_NET_DSA)
1725         struct dsa_switch_tree  *dsa_ptr;
1726 #endif
1727 #if IS_ENABLED(CONFIG_TIPC)
1728         struct tipc_bearer __rcu *tipc_ptr;
1729 #endif
1730         void                    *atalk_ptr;
1731         struct in_device __rcu  *ip_ptr;
1732         struct dn_dev __rcu     *dn_ptr;
1733         struct inet6_dev __rcu  *ip6_ptr;
1734         void                    *ax25_ptr;
1735         struct wireless_dev     *ieee80211_ptr;
1736         struct wpan_dev         *ieee802154_ptr;
1737 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1738         struct mpls_dev __rcu   *mpls_ptr;
1739 #endif
1740
1741 /*
1742  * Cache lines mostly used on receive path (including eth_type_trans())
1743  */
1744         unsigned long           last_rx;
1745
1746         /* Interface address info used in eth_type_trans() */
1747         unsigned char           *dev_addr;
1748
1749 #ifdef CONFIG_SYSFS
1750         struct netdev_rx_queue  *_rx;
1751
1752         unsigned int            num_rx_queues;
1753         unsigned int            real_num_rx_queues;
1754 #endif
1755
1756         unsigned long           gro_flush_timeout;
1757         rx_handler_func_t __rcu *rx_handler;
1758         void __rcu              *rx_handler_data;
1759
1760 #ifdef CONFIG_NET_CLS_ACT
1761         struct tcf_proto __rcu  *ingress_cl_list;
1762 #endif
1763         struct netdev_queue __rcu *ingress_queue;
1764 #ifdef CONFIG_NETFILTER_INGRESS
1765         struct list_head        nf_hooks_ingress;
1766 #endif
1767
1768         unsigned char           broadcast[MAX_ADDR_LEN];
1769 #ifdef CONFIG_RFS_ACCEL
1770         struct cpu_rmap         *rx_cpu_rmap;
1771 #endif
1772         struct hlist_node       index_hlist;
1773
1774 /*
1775  * Cache lines mostly used on transmit path
1776  */
1777         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1778         unsigned int            num_tx_queues;
1779         unsigned int            real_num_tx_queues;
1780         struct Qdisc            *qdisc;
1781         unsigned long           tx_queue_len;
1782         spinlock_t              tx_global_lock;
1783         int                     watchdog_timeo;
1784
1785 #ifdef CONFIG_XPS
1786         struct xps_dev_maps __rcu *xps_maps;
1787 #endif
1788 #ifdef CONFIG_NET_CLS_ACT
1789         struct tcf_proto __rcu  *egress_cl_list;
1790 #endif
1791 #ifdef CONFIG_NET_SWITCHDEV
1792         u32                     offload_fwd_mark;
1793 #endif
1794
1795         /* These may be needed for future network-power-down code. */
1796         struct timer_list       watchdog_timer;
1797
1798         int __percpu            *pcpu_refcnt;
1799         struct list_head        todo_list;
1800
1801         struct list_head        link_watch_list;
1802
1803         enum { NETREG_UNINITIALIZED=0,
1804                NETREG_REGISTERED,       /* completed register_netdevice */
1805                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1806                NETREG_UNREGISTERED,     /* completed unregister todo */
1807                NETREG_RELEASED,         /* called free_netdev */
1808                NETREG_DUMMY,            /* dummy device for NAPI poll */
1809         } reg_state:8;
1810
1811         bool dismantle;
1812
1813         enum {
1814                 RTNL_LINK_INITIALIZED,
1815                 RTNL_LINK_INITIALIZING,
1816         } rtnl_link_state:16;
1817
1818         void (*destructor)(struct net_device *dev);
1819
1820 #ifdef CONFIG_NETPOLL
1821         struct netpoll_info __rcu       *npinfo;
1822 #endif
1823
1824         possible_net_t                  nd_net;
1825
1826         /* mid-layer private */
1827         union {
1828                 void                                    *ml_priv;
1829                 struct pcpu_lstats __percpu             *lstats;
1830                 struct pcpu_sw_netstats __percpu        *tstats;
1831                 struct pcpu_dstats __percpu             *dstats;
1832                 struct pcpu_vstats __percpu             *vstats;
1833         };
1834
1835         struct garp_port __rcu  *garp_port;
1836         struct mrp_port __rcu   *mrp_port;
1837
1838         struct device           dev;
1839         const struct attribute_group *sysfs_groups[4];
1840         const struct attribute_group *sysfs_rx_queue_group;
1841
1842         const struct rtnl_link_ops *rtnl_link_ops;
1843
1844         /* for setting kernel sock attribute on TCP connection setup */
1845 #define GSO_MAX_SIZE            65536
1846         unsigned int            gso_max_size;
1847 #define GSO_MAX_SEGS            65535
1848         u16                     gso_max_segs;
1849
1850 #ifdef CONFIG_DCB
1851         const struct dcbnl_rtnl_ops *dcbnl_ops;
1852 #endif
1853         u8                      num_tc;
1854         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1855         u8                      prio_tc_map[TC_BITMASK + 1];
1856
1857 #if IS_ENABLED(CONFIG_FCOE)
1858         unsigned int            fcoe_ddp_xid;
1859 #endif
1860 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1861         struct netprio_map __rcu *priomap;
1862 #endif
1863         struct phy_device       *phydev;
1864         struct lock_class_key   *qdisc_tx_busylock;
1865         bool                    proto_down;
1866 };
1867 #define to_net_dev(d) container_of(d, struct net_device, dev)
1868
1869 #define NETDEV_ALIGN            32
1870
1871 static inline
1872 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1873 {
1874         return dev->prio_tc_map[prio & TC_BITMASK];
1875 }
1876
1877 static inline
1878 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1879 {
1880         if (tc >= dev->num_tc)
1881                 return -EINVAL;
1882
1883         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1884         return 0;
1885 }
1886
1887 static inline
1888 void netdev_reset_tc(struct net_device *dev)
1889 {
1890         dev->num_tc = 0;
1891         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1892         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1893 }
1894
1895 static inline
1896 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1897 {
1898         if (tc >= dev->num_tc)
1899                 return -EINVAL;
1900
1901         dev->tc_to_txq[tc].count = count;
1902         dev->tc_to_txq[tc].offset = offset;
1903         return 0;
1904 }
1905
1906 static inline
1907 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1908 {
1909         if (num_tc > TC_MAX_QUEUE)
1910                 return -EINVAL;
1911
1912         dev->num_tc = num_tc;
1913         return 0;
1914 }
1915
1916 static inline
1917 int netdev_get_num_tc(struct net_device *dev)
1918 {
1919         return dev->num_tc;
1920 }
1921
1922 static inline
1923 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1924                                          unsigned int index)
1925 {
1926         return &dev->_tx[index];
1927 }
1928
1929 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1930                                                     const struct sk_buff *skb)
1931 {
1932         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1933 }
1934
1935 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1936                                             void (*f)(struct net_device *,
1937                                                       struct netdev_queue *,
1938                                                       void *),
1939                                             void *arg)
1940 {
1941         unsigned int i;
1942
1943         for (i = 0; i < dev->num_tx_queues; i++)
1944                 f(dev, &dev->_tx[i], arg);
1945 }
1946
1947 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1948                                     struct sk_buff *skb,
1949                                     void *accel_priv);
1950
1951 /* returns the headroom that the master device needs to take in account
1952  * when forwarding to this dev
1953  */
1954 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1955 {
1956         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1957 }
1958
1959 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1960 {
1961         if (dev->netdev_ops->ndo_set_rx_headroom)
1962                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1963 }
1964
1965 /* set the device rx headroom to the dev's default */
1966 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1967 {
1968         netdev_set_rx_headroom(dev, -1);
1969 }
1970
1971 /*
1972  * Net namespace inlines
1973  */
1974 static inline
1975 struct net *dev_net(const struct net_device *dev)
1976 {
1977         return read_pnet(&dev->nd_net);
1978 }
1979
1980 static inline
1981 void dev_net_set(struct net_device *dev, struct net *net)
1982 {
1983         write_pnet(&dev->nd_net, net);
1984 }
1985
1986 static inline bool netdev_uses_dsa(struct net_device *dev)
1987 {
1988 #if IS_ENABLED(CONFIG_NET_DSA)
1989         if (dev->dsa_ptr != NULL)
1990                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1991 #endif
1992         return false;
1993 }
1994
1995 /**
1996  *      netdev_priv - access network device private data
1997  *      @dev: network device
1998  *
1999  * Get network device private data
2000  */
2001 static inline void *netdev_priv(const struct net_device *dev)
2002 {
2003         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2004 }
2005
2006 /* Set the sysfs physical device reference for the network logical device
2007  * if set prior to registration will cause a symlink during initialization.
2008  */
2009 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2010
2011 /* Set the sysfs device type for the network logical device to allow
2012  * fine-grained identification of different network device types. For
2013  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2014  */
2015 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2016
2017 /* Default NAPI poll() weight
2018  * Device drivers are strongly advised to not use bigger value
2019  */
2020 #define NAPI_POLL_WEIGHT 64
2021
2022 /**
2023  *      netif_napi_add - initialize a NAPI context
2024  *      @dev:  network device
2025  *      @napi: NAPI context
2026  *      @poll: polling function
2027  *      @weight: default weight
2028  *
2029  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2030  * *any* of the other NAPI-related functions.
2031  */
2032 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2033                     int (*poll)(struct napi_struct *, int), int weight);
2034
2035 /**
2036  *      netif_tx_napi_add - initialize a NAPI context
2037  *      @dev:  network device
2038  *      @napi: NAPI context
2039  *      @poll: polling function
2040  *      @weight: default weight
2041  *
2042  * This variant of netif_napi_add() should be used from drivers using NAPI
2043  * to exclusively poll a TX queue.
2044  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2045  */
2046 static inline void netif_tx_napi_add(struct net_device *dev,
2047                                      struct napi_struct *napi,
2048                                      int (*poll)(struct napi_struct *, int),
2049                                      int weight)
2050 {
2051         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2052         netif_napi_add(dev, napi, poll, weight);
2053 }
2054
2055 /**
2056  *  netif_napi_del - remove a NAPI context
2057  *  @napi: NAPI context
2058  *
2059  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2060  */
2061 void netif_napi_del(struct napi_struct *napi);
2062
2063 struct napi_gro_cb {
2064         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2065         void    *frag0;
2066
2067         /* Length of frag0. */
2068         unsigned int frag0_len;
2069
2070         /* This indicates where we are processing relative to skb->data. */
2071         int     data_offset;
2072
2073         /* This is non-zero if the packet cannot be merged with the new skb. */
2074         u16     flush;
2075
2076         /* Save the IP ID here and check when we get to the transport layer */
2077         u16     flush_id;
2078
2079         /* Number of segments aggregated. */
2080         u16     count;
2081
2082         /* Start offset for remote checksum offload */
2083         u16     gro_remcsum_start;
2084
2085         /* jiffies when first packet was created/queued */
2086         unsigned long age;
2087
2088         /* Used in ipv6_gro_receive() and foo-over-udp */
2089         u16     proto;
2090
2091         /* This is non-zero if the packet may be of the same flow. */
2092         u8      same_flow:1;
2093
2094         /* Used in tunnel GRO receive */
2095         u8      encap_mark:1;
2096
2097         /* GRO checksum is valid */
2098         u8      csum_valid:1;
2099
2100         /* Number of checksums via CHECKSUM_UNNECESSARY */
2101         u8      csum_cnt:3;
2102
2103         /* Free the skb? */
2104         u8      free:2;
2105 #define NAPI_GRO_FREE             1
2106 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2107
2108         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2109         u8      is_ipv6:1;
2110
2111         /* Used in GRE, set in fou/gue_gro_receive */
2112         u8      is_fou:1;
2113
2114         /* Used to determine if flush_id can be ignored */
2115         u8      is_atomic:1;
2116
2117         /* 5 bit hole */
2118
2119         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2120         __wsum  csum;
2121
2122         /* used in skb_gro_receive() slow path */
2123         struct sk_buff *last;
2124 };
2125
2126 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2127
2128 struct packet_type {
2129         __be16                  type;   /* This is really htons(ether_type). */
2130         struct net_device       *dev;   /* NULL is wildcarded here           */
2131         int                     (*func) (struct sk_buff *,
2132                                          struct net_device *,
2133                                          struct packet_type *,
2134                                          struct net_device *);
2135         bool                    (*id_match)(struct packet_type *ptype,
2136                                             struct sock *sk);
2137         void                    *af_packet_priv;
2138         struct list_head        list;
2139 };
2140
2141 struct offload_callbacks {
2142         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2143                                                 netdev_features_t features);
2144         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2145                                                  struct sk_buff *skb);
2146         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2147 };
2148
2149 struct packet_offload {
2150         __be16                   type;  /* This is really htons(ether_type). */
2151         u16                      priority;
2152         struct offload_callbacks callbacks;
2153         struct list_head         list;
2154 };
2155
2156 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2157 struct pcpu_sw_netstats {
2158         u64     rx_packets;
2159         u64     rx_bytes;
2160         u64     tx_packets;
2161         u64     tx_bytes;
2162         struct u64_stats_sync   syncp;
2163 };
2164
2165 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2166 ({                                                                      \
2167         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2168         if (pcpu_stats) {                                               \
2169                 int __cpu;                                              \
2170                 for_each_possible_cpu(__cpu) {                          \
2171                         typeof(type) *stat;                             \
2172                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2173                         u64_stats_init(&stat->syncp);                   \
2174                 }                                                       \
2175         }                                                               \
2176         pcpu_stats;                                                     \
2177 })
2178
2179 #define netdev_alloc_pcpu_stats(type)                                   \
2180         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2181
2182 enum netdev_lag_tx_type {
2183         NETDEV_LAG_TX_TYPE_UNKNOWN,
2184         NETDEV_LAG_TX_TYPE_RANDOM,
2185         NETDEV_LAG_TX_TYPE_BROADCAST,
2186         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2187         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2188         NETDEV_LAG_TX_TYPE_HASH,
2189 };
2190
2191 struct netdev_lag_upper_info {
2192         enum netdev_lag_tx_type tx_type;
2193 };
2194
2195 struct netdev_lag_lower_state_info {
2196         u8 link_up : 1,
2197            tx_enabled : 1;
2198 };
2199
2200 #include <linux/notifier.h>
2201
2202 /* netdevice notifier chain. Please remember to update the rtnetlink
2203  * notification exclusion list in rtnetlink_event() when adding new
2204  * types.
2205  */
2206 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2207 #define NETDEV_DOWN     0x0002
2208 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2209                                    detected a hardware crash and restarted
2210                                    - we can use this eg to kick tcp sessions
2211                                    once done */
2212 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2213 #define NETDEV_REGISTER 0x0005
2214 #define NETDEV_UNREGISTER       0x0006
2215 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2216 #define NETDEV_CHANGEADDR       0x0008
2217 #define NETDEV_GOING_DOWN       0x0009
2218 #define NETDEV_CHANGENAME       0x000A
2219 #define NETDEV_FEAT_CHANGE      0x000B
2220 #define NETDEV_BONDING_FAILOVER 0x000C
2221 #define NETDEV_PRE_UP           0x000D
2222 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2223 #define NETDEV_POST_TYPE_CHANGE 0x000F
2224 #define NETDEV_POST_INIT        0x0010
2225 #define NETDEV_UNREGISTER_FINAL 0x0011
2226 #define NETDEV_RELEASE          0x0012
2227 #define NETDEV_NOTIFY_PEERS     0x0013
2228 #define NETDEV_JOIN             0x0014
2229 #define NETDEV_CHANGEUPPER      0x0015
2230 #define NETDEV_RESEND_IGMP      0x0016
2231 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2232 #define NETDEV_CHANGEINFODATA   0x0018
2233 #define NETDEV_BONDING_INFO     0x0019
2234 #define NETDEV_PRECHANGEUPPER   0x001A
2235 #define NETDEV_CHANGELOWERSTATE 0x001B
2236 #define NETDEV_OFFLOAD_PUSH_VXLAN       0x001C
2237 #define NETDEV_OFFLOAD_PUSH_GENEVE      0x001D
2238
2239 int register_netdevice_notifier(struct notifier_block *nb);
2240 int unregister_netdevice_notifier(struct notifier_block *nb);
2241
2242 struct netdev_notifier_info {
2243         struct net_device *dev;
2244 };
2245
2246 struct netdev_notifier_change_info {
2247         struct netdev_notifier_info info; /* must be first */
2248         unsigned int flags_changed;
2249 };
2250
2251 struct netdev_notifier_changeupper_info {
2252         struct netdev_notifier_info info; /* must be first */
2253         struct net_device *upper_dev; /* new upper dev */
2254         bool master; /* is upper dev master */
2255         bool linking; /* is the notification for link or unlink */
2256         void *upper_info; /* upper dev info */
2257 };
2258
2259 struct netdev_notifier_changelowerstate_info {
2260         struct netdev_notifier_info info; /* must be first */
2261         void *lower_state_info; /* is lower dev state */
2262 };
2263
2264 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2265                                              struct net_device *dev)
2266 {
2267         info->dev = dev;
2268 }
2269
2270 static inline struct net_device *
2271 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2272 {
2273         return info->dev;
2274 }
2275
2276 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2277
2278
2279 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2280
2281 #define for_each_netdev(net, d)         \
2282                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2283 #define for_each_netdev_reverse(net, d) \
2284                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2285 #define for_each_netdev_rcu(net, d)             \
2286                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2287 #define for_each_netdev_safe(net, d, n) \
2288                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2289 #define for_each_netdev_continue(net, d)                \
2290                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2291 #define for_each_netdev_continue_rcu(net, d)            \
2292         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2293 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2294                 for_each_netdev_rcu(&init_net, slave)   \
2295                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2296 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2297
2298 static inline struct net_device *next_net_device(struct net_device *dev)
2299 {
2300         struct list_head *lh;
2301         struct net *net;
2302
2303         net = dev_net(dev);
2304         lh = dev->dev_list.next;
2305         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2306 }
2307
2308 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2309 {
2310         struct list_head *lh;
2311         struct net *net;
2312
2313         net = dev_net(dev);
2314         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2315         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2316 }
2317
2318 static inline struct net_device *first_net_device(struct net *net)
2319 {
2320         return list_empty(&net->dev_base_head) ? NULL :
2321                 net_device_entry(net->dev_base_head.next);
2322 }
2323
2324 static inline struct net_device *first_net_device_rcu(struct net *net)
2325 {
2326         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2327
2328         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2329 }
2330
2331 int netdev_boot_setup_check(struct net_device *dev);
2332 unsigned long netdev_boot_base(const char *prefix, int unit);
2333 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2334                                        const char *hwaddr);
2335 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2336 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2337 void dev_add_pack(struct packet_type *pt);
2338 void dev_remove_pack(struct packet_type *pt);
2339 void __dev_remove_pack(struct packet_type *pt);
2340 void dev_add_offload(struct packet_offload *po);
2341 void dev_remove_offload(struct packet_offload *po);
2342
2343 int dev_get_iflink(const struct net_device *dev);
2344 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2345 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2346                                       unsigned short mask);
2347 struct net_device *dev_get_by_name(struct net *net, const char *name);
2348 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2349 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2350 int dev_alloc_name(struct net_device *dev, const char *name);
2351 int dev_open(struct net_device *dev);
2352 int dev_close(struct net_device *dev);
2353 int dev_close_many(struct list_head *head, bool unlink);
2354 void dev_disable_lro(struct net_device *dev);
2355 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2356 int dev_queue_xmit(struct sk_buff *skb);
2357 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2358 int register_netdevice(struct net_device *dev);
2359 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2360 void unregister_netdevice_many(struct list_head *head);
2361 static inline void unregister_netdevice(struct net_device *dev)
2362 {
2363         unregister_netdevice_queue(dev, NULL);
2364 }
2365
2366 int netdev_refcnt_read(const struct net_device *dev);
2367 void free_netdev(struct net_device *dev);
2368 void netdev_freemem(struct net_device *dev);
2369 void synchronize_net(void);
2370 int init_dummy_netdev(struct net_device *dev);
2371
2372 DECLARE_PER_CPU(int, xmit_recursion);
2373 static inline int dev_recursion_level(void)
2374 {
2375         return this_cpu_read(xmit_recursion);
2376 }
2377
2378 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2379 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2380 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2381 int netdev_get_name(struct net *net, char *name, int ifindex);
2382 int dev_restart(struct net_device *dev);
2383 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2384
2385 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2386 {
2387         return NAPI_GRO_CB(skb)->data_offset;
2388 }
2389
2390 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2391 {
2392         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2393 }
2394
2395 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2396 {
2397         NAPI_GRO_CB(skb)->data_offset += len;
2398 }
2399
2400 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2401                                         unsigned int offset)
2402 {
2403         return NAPI_GRO_CB(skb)->frag0 + offset;
2404 }
2405
2406 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2407 {
2408         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2409 }
2410
2411 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2412                                         unsigned int offset)
2413 {
2414         if (!pskb_may_pull(skb, hlen))
2415                 return NULL;
2416
2417         NAPI_GRO_CB(skb)->frag0 = NULL;
2418         NAPI_GRO_CB(skb)->frag0_len = 0;
2419         return skb->data + offset;
2420 }
2421
2422 static inline void *skb_gro_network_header(struct sk_buff *skb)
2423 {
2424         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2425                skb_network_offset(skb);
2426 }
2427
2428 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2429                                         const void *start, unsigned int len)
2430 {
2431         if (NAPI_GRO_CB(skb)->csum_valid)
2432                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2433                                                   csum_partial(start, len, 0));
2434 }
2435
2436 /* GRO checksum functions. These are logical equivalents of the normal
2437  * checksum functions (in skbuff.h) except that they operate on the GRO
2438  * offsets and fields in sk_buff.
2439  */
2440
2441 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2442
2443 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2444 {
2445         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2446 }
2447
2448 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2449                                                       bool zero_okay,
2450                                                       __sum16 check)
2451 {
2452         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2453                 skb_checksum_start_offset(skb) <
2454                  skb_gro_offset(skb)) &&
2455                 !skb_at_gro_remcsum_start(skb) &&
2456                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2457                 (!zero_okay || check));
2458 }
2459
2460 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2461                                                            __wsum psum)
2462 {
2463         if (NAPI_GRO_CB(skb)->csum_valid &&
2464             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2465                 return 0;
2466
2467         NAPI_GRO_CB(skb)->csum = psum;
2468
2469         return __skb_gro_checksum_complete(skb);
2470 }
2471
2472 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2473 {
2474         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2475                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2476                 NAPI_GRO_CB(skb)->csum_cnt--;
2477         } else {
2478                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2479                  * verified a new top level checksum or an encapsulated one
2480                  * during GRO. This saves work if we fallback to normal path.
2481                  */
2482                 __skb_incr_checksum_unnecessary(skb);
2483         }
2484 }
2485
2486 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2487                                     compute_pseudo)                     \
2488 ({                                                                      \
2489         __sum16 __ret = 0;                                              \
2490         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2491                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2492                                 compute_pseudo(skb, proto));            \
2493         if (__ret)                                                      \
2494                 __skb_mark_checksum_bad(skb);                           \
2495         else                                                            \
2496                 skb_gro_incr_csum_unnecessary(skb);                     \
2497         __ret;                                                          \
2498 })
2499
2500 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2501         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2502
2503 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2504                                              compute_pseudo)            \
2505         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2506
2507 #define skb_gro_checksum_simple_validate(skb)                           \
2508         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2509
2510 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2511 {
2512         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2513                 !NAPI_GRO_CB(skb)->csum_valid);
2514 }
2515
2516 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2517                                               __sum16 check, __wsum pseudo)
2518 {
2519         NAPI_GRO_CB(skb)->csum = ~pseudo;
2520         NAPI_GRO_CB(skb)->csum_valid = 1;
2521 }
2522
2523 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2524 do {                                                                    \
2525         if (__skb_gro_checksum_convert_check(skb))                      \
2526                 __skb_gro_checksum_convert(skb, check,                  \
2527                                            compute_pseudo(skb, proto)); \
2528 } while (0)
2529
2530 struct gro_remcsum {
2531         int offset;
2532         __wsum delta;
2533 };
2534
2535 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2536 {
2537         grc->offset = 0;
2538         grc->delta = 0;
2539 }
2540
2541 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2542                                             unsigned int off, size_t hdrlen,
2543                                             int start, int offset,
2544                                             struct gro_remcsum *grc,
2545                                             bool nopartial)
2546 {
2547         __wsum delta;
2548         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2549
2550         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2551
2552         if (!nopartial) {
2553                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2554                 return ptr;
2555         }
2556
2557         ptr = skb_gro_header_fast(skb, off);
2558         if (skb_gro_header_hard(skb, off + plen)) {
2559                 ptr = skb_gro_header_slow(skb, off + plen, off);
2560                 if (!ptr)
2561                         return NULL;
2562         }
2563
2564         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2565                                start, offset);
2566
2567         /* Adjust skb->csum since we changed the packet */
2568         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2569
2570         grc->offset = off + hdrlen + offset;
2571         grc->delta = delta;
2572
2573         return ptr;
2574 }
2575
2576 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2577                                            struct gro_remcsum *grc)
2578 {
2579         void *ptr;
2580         size_t plen = grc->offset + sizeof(u16);
2581
2582         if (!grc->delta)
2583                 return;
2584
2585         ptr = skb_gro_header_fast(skb, grc->offset);
2586         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2587                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2588                 if (!ptr)
2589                         return;
2590         }
2591
2592         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2593 }
2594
2595 struct skb_csum_offl_spec {
2596         __u16           ipv4_okay:1,
2597                         ipv6_okay:1,
2598                         encap_okay:1,
2599                         ip_options_okay:1,
2600                         ext_hdrs_okay:1,
2601                         tcp_okay:1,
2602                         udp_okay:1,
2603                         sctp_okay:1,
2604                         vlan_okay:1,
2605                         no_encapped_ipv6:1,
2606                         no_not_encapped:1;
2607 };
2608
2609 bool __skb_csum_offload_chk(struct sk_buff *skb,
2610                             const struct skb_csum_offl_spec *spec,
2611                             bool *csum_encapped,
2612                             bool csum_help);
2613
2614 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2615                                         const struct skb_csum_offl_spec *spec,
2616                                         bool *csum_encapped,
2617                                         bool csum_help)
2618 {
2619         if (skb->ip_summed != CHECKSUM_PARTIAL)
2620                 return false;
2621
2622         return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2623 }
2624
2625 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2626                                              const struct skb_csum_offl_spec *spec)
2627 {
2628         bool csum_encapped;
2629
2630         return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2631 }
2632
2633 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2634 {
2635         static const struct skb_csum_offl_spec csum_offl_spec = {
2636                 .ipv4_okay = 1,
2637                 .ip_options_okay = 1,
2638                 .ipv6_okay = 1,
2639                 .vlan_okay = 1,
2640                 .tcp_okay = 1,
2641                 .udp_okay = 1,
2642         };
2643
2644         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2645 }
2646
2647 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2648 {
2649         static const struct skb_csum_offl_spec csum_offl_spec = {
2650                 .ipv4_okay = 1,
2651                 .ip_options_okay = 1,
2652                 .tcp_okay = 1,
2653                 .udp_okay = 1,
2654                 .vlan_okay = 1,
2655         };
2656
2657         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2658 }
2659
2660 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2661                                   unsigned short type,
2662                                   const void *daddr, const void *saddr,
2663                                   unsigned int len)
2664 {
2665         if (!dev->header_ops || !dev->header_ops->create)
2666                 return 0;
2667
2668         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2669 }
2670
2671 static inline int dev_parse_header(const struct sk_buff *skb,
2672                                    unsigned char *haddr)
2673 {
2674         const struct net_device *dev = skb->dev;
2675
2676         if (!dev->header_ops || !dev->header_ops->parse)
2677                 return 0;
2678         return dev->header_ops->parse(skb, haddr);
2679 }
2680
2681 /* ll_header must have at least hard_header_len allocated */
2682 static inline bool dev_validate_header(const struct net_device *dev,
2683                                        char *ll_header, int len)
2684 {
2685         if (likely(len >= dev->hard_header_len))
2686                 return true;
2687
2688         if (capable(CAP_SYS_RAWIO)) {
2689                 memset(ll_header + len, 0, dev->hard_header_len - len);
2690                 return true;
2691         }
2692
2693         if (dev->header_ops && dev->header_ops->validate)
2694                 return dev->header_ops->validate(ll_header, len);
2695
2696         return false;
2697 }
2698
2699 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2700 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2701 static inline int unregister_gifconf(unsigned int family)
2702 {
2703         return register_gifconf(family, NULL);
2704 }
2705
2706 #ifdef CONFIG_NET_FLOW_LIMIT
2707 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2708 struct sd_flow_limit {
2709         u64                     count;
2710         unsigned int            num_buckets;
2711         unsigned int            history_head;
2712         u16                     history[FLOW_LIMIT_HISTORY];
2713         u8                      buckets[];
2714 };
2715
2716 extern int netdev_flow_limit_table_len;
2717 #endif /* CONFIG_NET_FLOW_LIMIT */
2718
2719 /*
2720  * Incoming packets are placed on per-CPU queues
2721  */
2722 struct softnet_data {
2723         struct list_head        poll_list;
2724         struct sk_buff_head     process_queue;
2725
2726         /* stats */
2727         unsigned int            processed;
2728         unsigned int            time_squeeze;
2729         unsigned int            received_rps;
2730 #ifdef CONFIG_RPS
2731         struct softnet_data     *rps_ipi_list;
2732 #endif
2733 #ifdef CONFIG_NET_FLOW_LIMIT
2734         struct sd_flow_limit __rcu *flow_limit;
2735 #endif
2736         struct Qdisc            *output_queue;
2737         struct Qdisc            **output_queue_tailp;
2738         struct sk_buff          *completion_queue;
2739
2740 #ifdef CONFIG_RPS
2741         /* input_queue_head should be written by cpu owning this struct,
2742          * and only read by other cpus. Worth using a cache line.
2743          */
2744         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2745
2746         /* Elements below can be accessed between CPUs for RPS/RFS */
2747         struct call_single_data csd ____cacheline_aligned_in_smp;
2748         struct softnet_data     *rps_ipi_next;
2749         unsigned int            cpu;
2750         unsigned int            input_queue_tail;
2751 #endif
2752         unsigned int            dropped;
2753         struct sk_buff_head     input_pkt_queue;
2754         struct napi_struct      backlog;
2755
2756 };
2757
2758 static inline void input_queue_head_incr(struct softnet_data *sd)
2759 {
2760 #ifdef CONFIG_RPS
2761         sd->input_queue_head++;
2762 #endif
2763 }
2764
2765 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2766                                               unsigned int *qtail)
2767 {
2768 #ifdef CONFIG_RPS
2769         *qtail = ++sd->input_queue_tail;
2770 #endif
2771 }
2772
2773 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2774
2775 void __netif_schedule(struct Qdisc *q);
2776 void netif_schedule_queue(struct netdev_queue *txq);
2777
2778 static inline void netif_tx_schedule_all(struct net_device *dev)
2779 {
2780         unsigned int i;
2781
2782         for (i = 0; i < dev->num_tx_queues; i++)
2783                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2784 }
2785
2786 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2787 {
2788         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2789 }
2790
2791 /**
2792  *      netif_start_queue - allow transmit
2793  *      @dev: network device
2794  *
2795  *      Allow upper layers to call the device hard_start_xmit routine.
2796  */
2797 static inline void netif_start_queue(struct net_device *dev)
2798 {
2799         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2800 }
2801
2802 static inline void netif_tx_start_all_queues(struct net_device *dev)
2803 {
2804         unsigned int i;
2805
2806         for (i = 0; i < dev->num_tx_queues; i++) {
2807                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2808                 netif_tx_start_queue(txq);
2809         }
2810 }
2811
2812 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2813
2814 /**
2815  *      netif_wake_queue - restart transmit
2816  *      @dev: network device
2817  *
2818  *      Allow upper layers to call the device hard_start_xmit routine.
2819  *      Used for flow control when transmit resources are available.
2820  */
2821 static inline void netif_wake_queue(struct net_device *dev)
2822 {
2823         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2824 }
2825
2826 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2827 {
2828         unsigned int i;
2829
2830         for (i = 0; i < dev->num_tx_queues; i++) {
2831                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2832                 netif_tx_wake_queue(txq);
2833         }
2834 }
2835
2836 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2837 {
2838         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2839 }
2840
2841 /**
2842  *      netif_stop_queue - stop transmitted packets
2843  *      @dev: network device
2844  *
2845  *      Stop upper layers calling the device hard_start_xmit routine.
2846  *      Used for flow control when transmit resources are unavailable.
2847  */
2848 static inline void netif_stop_queue(struct net_device *dev)
2849 {
2850         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2851 }
2852
2853 void netif_tx_stop_all_queues(struct net_device *dev);
2854
2855 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2856 {
2857         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2858 }
2859
2860 /**
2861  *      netif_queue_stopped - test if transmit queue is flowblocked
2862  *      @dev: network device
2863  *
2864  *      Test if transmit queue on device is currently unable to send.
2865  */
2866 static inline bool netif_queue_stopped(const struct net_device *dev)
2867 {
2868         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2869 }
2870
2871 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2872 {
2873         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2874 }
2875
2876 static inline bool
2877 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2878 {
2879         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2880 }
2881
2882 static inline bool
2883 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2884 {
2885         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2886 }
2887
2888 /**
2889  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2890  *      @dev_queue: pointer to transmit queue
2891  *
2892  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2893  * to give appropriate hint to the CPU.
2894  */
2895 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2896 {
2897 #ifdef CONFIG_BQL
2898         prefetchw(&dev_queue->dql.num_queued);
2899 #endif
2900 }
2901
2902 /**
2903  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2904  *      @dev_queue: pointer to transmit queue
2905  *
2906  * BQL enabled drivers might use this helper in their TX completion path,
2907  * to give appropriate hint to the CPU.
2908  */
2909 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2910 {
2911 #ifdef CONFIG_BQL
2912         prefetchw(&dev_queue->dql.limit);
2913 #endif
2914 }
2915
2916 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2917                                         unsigned int bytes)
2918 {
2919 #ifdef CONFIG_BQL
2920         dql_queued(&dev_queue->dql, bytes);
2921
2922         if (likely(dql_avail(&dev_queue->dql) >= 0))
2923                 return;
2924
2925         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2926
2927         /*
2928          * The XOFF flag must be set before checking the dql_avail below,
2929          * because in netdev_tx_completed_queue we update the dql_completed
2930          * before checking the XOFF flag.
2931          */
2932         smp_mb();
2933
2934         /* check again in case another CPU has just made room avail */
2935         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2936                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2937 #endif
2938 }
2939
2940 /**
2941  *      netdev_sent_queue - report the number of bytes queued to hardware
2942  *      @dev: network device
2943  *      @bytes: number of bytes queued to the hardware device queue
2944  *
2945  *      Report the number of bytes queued for sending/completion to the network
2946  *      device hardware queue. @bytes should be a good approximation and should
2947  *      exactly match netdev_completed_queue() @bytes
2948  */
2949 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2950 {
2951         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2952 }
2953
2954 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2955                                              unsigned int pkts, unsigned int bytes)
2956 {
2957 #ifdef CONFIG_BQL
2958         if (unlikely(!bytes))
2959                 return;
2960
2961         dql_completed(&dev_queue->dql, bytes);
2962
2963         /*
2964          * Without the memory barrier there is a small possiblity that
2965          * netdev_tx_sent_queue will miss the update and cause the queue to
2966          * be stopped forever
2967          */
2968         smp_mb();
2969
2970         if (dql_avail(&dev_queue->dql) < 0)
2971                 return;
2972
2973         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2974                 netif_schedule_queue(dev_queue);
2975 #endif
2976 }
2977
2978 /**
2979  *      netdev_completed_queue - report bytes and packets completed by device
2980  *      @dev: network device
2981  *      @pkts: actual number of packets sent over the medium
2982  *      @bytes: actual number of bytes sent over the medium
2983  *
2984  *      Report the number of bytes and packets transmitted by the network device
2985  *      hardware queue over the physical medium, @bytes must exactly match the
2986  *      @bytes amount passed to netdev_sent_queue()
2987  */
2988 static inline void netdev_completed_queue(struct net_device *dev,
2989                                           unsigned int pkts, unsigned int bytes)
2990 {
2991         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2992 }
2993
2994 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2995 {
2996 #ifdef CONFIG_BQL
2997         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2998         dql_reset(&q->dql);
2999 #endif
3000 }
3001
3002 /**
3003  *      netdev_reset_queue - reset the packets and bytes count of a network device
3004  *      @dev_queue: network device
3005  *
3006  *      Reset the bytes and packet count of a network device and clear the
3007  *      software flow control OFF bit for this network device
3008  */
3009 static inline void netdev_reset_queue(struct net_device *dev_queue)
3010 {
3011         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3012 }
3013
3014 /**
3015  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3016  *      @dev: network device
3017  *      @queue_index: given tx queue index
3018  *
3019  *      Returns 0 if given tx queue index >= number of device tx queues,
3020  *      otherwise returns the originally passed tx queue index.
3021  */
3022 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3023 {
3024         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3025                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3026                                      dev->name, queue_index,
3027                                      dev->real_num_tx_queues);
3028                 return 0;
3029         }
3030
3031         return queue_index;
3032 }
3033
3034 /**
3035  *      netif_running - test if up
3036  *      @dev: network device
3037  *
3038  *      Test if the device has been brought up.
3039  */
3040 static inline bool netif_running(const struct net_device *dev)
3041 {
3042         return test_bit(__LINK_STATE_START, &dev->state);
3043 }
3044
3045 /*
3046  * Routines to manage the subqueues on a device.  We only need start,
3047  * stop, and a check if it's stopped.  All other device management is
3048  * done at the overall netdevice level.
3049  * Also test the device if we're multiqueue.
3050  */
3051
3052 /**
3053  *      netif_start_subqueue - allow sending packets on subqueue
3054  *      @dev: network device
3055  *      @queue_index: sub queue index
3056  *
3057  * Start individual transmit queue of a device with multiple transmit queues.
3058  */
3059 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3060 {
3061         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3062
3063         netif_tx_start_queue(txq);
3064 }
3065
3066 /**
3067  *      netif_stop_subqueue - stop sending packets on subqueue
3068  *      @dev: network device
3069  *      @queue_index: sub queue index
3070  *
3071  * Stop individual transmit queue of a device with multiple transmit queues.
3072  */
3073 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3074 {
3075         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3076         netif_tx_stop_queue(txq);
3077 }
3078
3079 /**
3080  *      netif_subqueue_stopped - test status of subqueue
3081  *      @dev: network device
3082  *      @queue_index: sub queue index
3083  *
3084  * Check individual transmit queue of a device with multiple transmit queues.
3085  */
3086 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3087                                             u16 queue_index)
3088 {
3089         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3090
3091         return netif_tx_queue_stopped(txq);
3092 }
3093
3094 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3095                                           struct sk_buff *skb)
3096 {
3097         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3098 }
3099
3100 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3101
3102 #ifdef CONFIG_XPS
3103 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3104                         u16 index);
3105 #else
3106 static inline int netif_set_xps_queue(struct net_device *dev,
3107                                       const struct cpumask *mask,
3108                                       u16 index)
3109 {
3110         return 0;
3111 }
3112 #endif
3113
3114 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3115                   unsigned int num_tx_queues);
3116
3117 /*
3118  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3119  * as a distribution range limit for the returned value.
3120  */
3121 static inline u16 skb_tx_hash(const struct net_device *dev,
3122                               struct sk_buff *skb)
3123 {
3124         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3125 }
3126
3127 /**
3128  *      netif_is_multiqueue - test if device has multiple transmit queues
3129  *      @dev: network device
3130  *
3131  * Check if device has multiple transmit queues
3132  */
3133 static inline bool netif_is_multiqueue(const struct net_device *dev)
3134 {
3135         return dev->num_tx_queues > 1;
3136 }
3137
3138 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3139
3140 #ifdef CONFIG_SYSFS
3141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3142 #else
3143 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3144                                                 unsigned int rxq)
3145 {
3146         return 0;
3147 }
3148 #endif
3149
3150 #ifdef CONFIG_SYSFS
3151 static inline unsigned int get_netdev_rx_queue_index(
3152                 struct netdev_rx_queue *queue)
3153 {
3154         struct net_device *dev = queue->dev;
3155         int index = queue - dev->_rx;
3156
3157         BUG_ON(index >= dev->num_rx_queues);
3158         return index;
3159 }
3160 #endif
3161
3162 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3163 int netif_get_num_default_rss_queues(void);
3164
3165 enum skb_free_reason {
3166         SKB_REASON_CONSUMED,
3167         SKB_REASON_DROPPED,
3168 };
3169
3170 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3171 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3172
3173 /*
3174  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3175  * interrupt context or with hardware interrupts being disabled.
3176  * (in_irq() || irqs_disabled())
3177  *
3178  * We provide four helpers that can be used in following contexts :
3179  *
3180  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3181  *  replacing kfree_skb(skb)
3182  *
3183  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3184  *  Typically used in place of consume_skb(skb) in TX completion path
3185  *
3186  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3187  *  replacing kfree_skb(skb)
3188  *
3189  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3190  *  and consumed a packet. Used in place of consume_skb(skb)
3191  */
3192 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3193 {
3194         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3195 }
3196
3197 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3198 {
3199         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3200 }
3201
3202 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3203 {
3204         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3205 }
3206
3207 static inline void dev_consume_skb_any(struct sk_buff *skb)
3208 {
3209         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3210 }
3211
3212 int netif_rx(struct sk_buff *skb);
3213 int netif_rx_ni(struct sk_buff *skb);
3214 int netif_receive_skb(struct sk_buff *skb);
3215 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3216 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3217 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3218 gro_result_t napi_gro_frags(struct napi_struct *napi);
3219 struct packet_offload *gro_find_receive_by_type(__be16 type);
3220 struct packet_offload *gro_find_complete_by_type(__be16 type);
3221
3222 static inline void napi_free_frags(struct napi_struct *napi)
3223 {
3224         kfree_skb(napi->skb);
3225         napi->skb = NULL;
3226 }
3227
3228 int netdev_rx_handler_register(struct net_device *dev,
3229                                rx_handler_func_t *rx_handler,
3230                                void *rx_handler_data);
3231 void netdev_rx_handler_unregister(struct net_device *dev);
3232
3233 bool dev_valid_name(const char *name);
3234 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3235 int dev_ethtool(struct net *net, struct ifreq *);
3236 unsigned int dev_get_flags(const struct net_device *);
3237 int __dev_change_flags(struct net_device *, unsigned int flags);
3238 int dev_change_flags(struct net_device *, unsigned int);
3239 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3240                         unsigned int gchanges);
3241 int dev_change_name(struct net_device *, const char *);
3242 int dev_set_alias(struct net_device *, const char *, size_t);
3243 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3244 int dev_set_mtu(struct net_device *, int);
3245 void dev_set_group(struct net_device *, int);
3246 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3247 int dev_change_carrier(struct net_device *, bool new_carrier);
3248 int dev_get_phys_port_id(struct net_device *dev,
3249                          struct netdev_phys_item_id *ppid);
3250 int dev_get_phys_port_name(struct net_device *dev,
3251                            char *name, size_t len);
3252 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3253 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3254 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3255                                     struct netdev_queue *txq, int *ret);
3256 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3257 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3258 bool is_skb_forwardable(const struct net_device *dev,
3259                         const struct sk_buff *skb);
3260
3261 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3262
3263 extern int              netdev_budget;
3264
3265 /* Called by rtnetlink.c:rtnl_unlock() */
3266 void netdev_run_todo(void);
3267
3268 /**
3269  *      dev_put - release reference to device
3270  *      @dev: network device
3271  *
3272  * Release reference to device to allow it to be freed.
3273  */
3274 static inline void dev_put(struct net_device *dev)
3275 {
3276         this_cpu_dec(*dev->pcpu_refcnt);
3277 }
3278
3279 /**
3280  *      dev_hold - get reference to device
3281  *      @dev: network device
3282  *
3283  * Hold reference to device to keep it from being freed.
3284  */
3285 static inline void dev_hold(struct net_device *dev)
3286 {
3287         this_cpu_inc(*dev->pcpu_refcnt);
3288 }
3289
3290 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3291  * and _off may be called from IRQ context, but it is caller
3292  * who is responsible for serialization of these calls.
3293  *
3294  * The name carrier is inappropriate, these functions should really be
3295  * called netif_lowerlayer_*() because they represent the state of any
3296  * kind of lower layer not just hardware media.
3297  */
3298
3299 void linkwatch_init_dev(struct net_device *dev);
3300 void linkwatch_fire_event(struct net_device *dev);
3301 void linkwatch_forget_dev(struct net_device *dev);
3302
3303 /**
3304  *      netif_carrier_ok - test if carrier present
3305  *      @dev: network device
3306  *
3307  * Check if carrier is present on device
3308  */
3309 static inline bool netif_carrier_ok(const struct net_device *dev)
3310 {
3311         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3312 }
3313
3314 unsigned long dev_trans_start(struct net_device *dev);
3315
3316 void __netdev_watchdog_up(struct net_device *dev);
3317
3318 void netif_carrier_on(struct net_device *dev);
3319
3320 void netif_carrier_off(struct net_device *dev);
3321
3322 /**
3323  *      netif_dormant_on - mark device as dormant.
3324  *      @dev: network device
3325  *
3326  * Mark device as dormant (as per RFC2863).
3327  *
3328  * The dormant state indicates that the relevant interface is not
3329  * actually in a condition to pass packets (i.e., it is not 'up') but is
3330  * in a "pending" state, waiting for some external event.  For "on-
3331  * demand" interfaces, this new state identifies the situation where the
3332  * interface is waiting for events to place it in the up state.
3333  */
3334 static inline void netif_dormant_on(struct net_device *dev)
3335 {
3336         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3337                 linkwatch_fire_event(dev);
3338 }
3339
3340 /**
3341  *      netif_dormant_off - set device as not dormant.
3342  *      @dev: network device
3343  *
3344  * Device is not in dormant state.
3345  */
3346 static inline void netif_dormant_off(struct net_device *dev)
3347 {
3348         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3349                 linkwatch_fire_event(dev);
3350 }
3351
3352 /**
3353  *      netif_dormant - test if carrier present
3354  *      @dev: network device
3355  *
3356  * Check if carrier is present on device
3357  */
3358 static inline bool netif_dormant(const struct net_device *dev)
3359 {
3360         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3361 }
3362
3363
3364 /**
3365  *      netif_oper_up - test if device is operational
3366  *      @dev: network device
3367  *
3368  * Check if carrier is operational
3369  */
3370 static inline bool netif_oper_up(const struct net_device *dev)
3371 {
3372         return (dev->operstate == IF_OPER_UP ||
3373                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3374 }
3375
3376 /**
3377  *      netif_device_present - is device available or removed
3378  *      @dev: network device
3379  *
3380  * Check if device has not been removed from system.
3381  */
3382 static inline bool netif_device_present(struct net_device *dev)
3383 {
3384         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3385 }
3386
3387 void netif_device_detach(struct net_device *dev);
3388
3389 void netif_device_attach(struct net_device *dev);
3390
3391 /*
3392  * Network interface message level settings
3393  */
3394
3395 enum {
3396         NETIF_MSG_DRV           = 0x0001,
3397         NETIF_MSG_PROBE         = 0x0002,
3398         NETIF_MSG_LINK          = 0x0004,
3399         NETIF_MSG_TIMER         = 0x0008,
3400         NETIF_MSG_IFDOWN        = 0x0010,
3401         NETIF_MSG_IFUP          = 0x0020,
3402         NETIF_MSG_RX_ERR        = 0x0040,
3403         NETIF_MSG_TX_ERR        = 0x0080,
3404         NETIF_MSG_TX_QUEUED     = 0x0100,
3405         NETIF_MSG_INTR          = 0x0200,
3406         NETIF_MSG_TX_DONE       = 0x0400,
3407         NETIF_MSG_RX_STATUS     = 0x0800,
3408         NETIF_MSG_PKTDATA       = 0x1000,
3409         NETIF_MSG_HW            = 0x2000,
3410         NETIF_MSG_WOL           = 0x4000,
3411 };
3412
3413 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3414 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3415 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3416 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3417 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3418 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3419 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3420 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3421 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3422 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3423 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3424 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3425 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3426 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3427 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3428
3429 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3430 {
3431         /* use default */
3432         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3433                 return default_msg_enable_bits;
3434         if (debug_value == 0)   /* no output */
3435                 return 0;
3436         /* set low N bits */
3437         return (1 << debug_value) - 1;
3438 }
3439
3440 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3441 {
3442         spin_lock(&txq->_xmit_lock);
3443         txq->xmit_lock_owner = cpu;
3444 }
3445
3446 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3447 {
3448         spin_lock_bh(&txq->_xmit_lock);
3449         txq->xmit_lock_owner = smp_processor_id();
3450 }
3451
3452 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3453 {
3454         bool ok = spin_trylock(&txq->_xmit_lock);
3455         if (likely(ok))
3456                 txq->xmit_lock_owner = smp_processor_id();
3457         return ok;
3458 }
3459
3460 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3461 {
3462         txq->xmit_lock_owner = -1;
3463         spin_unlock(&txq->_xmit_lock);
3464 }
3465
3466 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3467 {
3468         txq->xmit_lock_owner = -1;
3469         spin_unlock_bh(&txq->_xmit_lock);
3470 }
3471
3472 static inline void txq_trans_update(struct netdev_queue *txq)
3473 {
3474         if (txq->xmit_lock_owner != -1)
3475                 txq->trans_start = jiffies;
3476 }
3477
3478 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3479 static inline void netif_trans_update(struct net_device *dev)
3480 {
3481         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3482
3483         if (txq->trans_start != jiffies)
3484                 txq->trans_start = jiffies;
3485 }
3486
3487 /**
3488  *      netif_tx_lock - grab network device transmit lock
3489  *      @dev: network device
3490  *
3491  * Get network device transmit lock
3492  */
3493 static inline void netif_tx_lock(struct net_device *dev)
3494 {
3495         unsigned int i;
3496         int cpu;
3497
3498         spin_lock(&dev->tx_global_lock);
3499         cpu = smp_processor_id();
3500         for (i = 0; i < dev->num_tx_queues; i++) {
3501                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3502
3503                 /* We are the only thread of execution doing a
3504                  * freeze, but we have to grab the _xmit_lock in
3505                  * order to synchronize with threads which are in
3506                  * the ->hard_start_xmit() handler and already
3507                  * checked the frozen bit.
3508                  */
3509                 __netif_tx_lock(txq, cpu);
3510                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3511                 __netif_tx_unlock(txq);
3512         }
3513 }
3514
3515 static inline void netif_tx_lock_bh(struct net_device *dev)
3516 {
3517         local_bh_disable();
3518         netif_tx_lock(dev);
3519 }
3520
3521 static inline void netif_tx_unlock(struct net_device *dev)
3522 {
3523         unsigned int i;
3524
3525         for (i = 0; i < dev->num_tx_queues; i++) {
3526                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3527
3528                 /* No need to grab the _xmit_lock here.  If the
3529                  * queue is not stopped for another reason, we
3530                  * force a schedule.
3531                  */
3532                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3533                 netif_schedule_queue(txq);
3534         }
3535         spin_unlock(&dev->tx_global_lock);
3536 }
3537
3538 static inline void netif_tx_unlock_bh(struct net_device *dev)
3539 {
3540         netif_tx_unlock(dev);
3541         local_bh_enable();
3542 }
3543
3544 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3545         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3546                 __netif_tx_lock(txq, cpu);              \
3547         }                                               \
3548 }
3549
3550 #define HARD_TX_TRYLOCK(dev, txq)                       \
3551         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3552                 __netif_tx_trylock(txq) :               \
3553                 true )
3554
3555 #define HARD_TX_UNLOCK(dev, txq) {                      \
3556         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3557                 __netif_tx_unlock(txq);                 \
3558         }                                               \
3559 }
3560
3561 static inline void netif_tx_disable(struct net_device *dev)
3562 {
3563         unsigned int i;
3564         int cpu;
3565
3566         local_bh_disable();
3567         cpu = smp_processor_id();
3568         for (i = 0; i < dev->num_tx_queues; i++) {
3569                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3570
3571                 __netif_tx_lock(txq, cpu);
3572                 netif_tx_stop_queue(txq);
3573                 __netif_tx_unlock(txq);
3574         }
3575         local_bh_enable();
3576 }
3577
3578 static inline void netif_addr_lock(struct net_device *dev)
3579 {
3580         spin_lock(&dev->addr_list_lock);
3581 }
3582
3583 static inline void netif_addr_lock_nested(struct net_device *dev)
3584 {
3585         int subclass = SINGLE_DEPTH_NESTING;
3586
3587         if (dev->netdev_ops->ndo_get_lock_subclass)
3588                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3589
3590         spin_lock_nested(&dev->addr_list_lock, subclass);
3591 }
3592
3593 static inline void netif_addr_lock_bh(struct net_device *dev)
3594 {
3595         spin_lock_bh(&dev->addr_list_lock);
3596 }
3597
3598 static inline void netif_addr_unlock(struct net_device *dev)
3599 {
3600         spin_unlock(&dev->addr_list_lock);
3601 }
3602
3603 static inline void netif_addr_unlock_bh(struct net_device *dev)
3604 {
3605         spin_unlock_bh(&dev->addr_list_lock);
3606 }
3607
3608 /*
3609  * dev_addrs walker. Should be used only for read access. Call with
3610  * rcu_read_lock held.
3611  */
3612 #define for_each_dev_addr(dev, ha) \
3613                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3614
3615 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3616
3617 void ether_setup(struct net_device *dev);
3618
3619 /* Support for loadable net-drivers */
3620 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3621                                     unsigned char name_assign_type,
3622                                     void (*setup)(struct net_device *),
3623                                     unsigned int txqs, unsigned int rxqs);
3624 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3625         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3626
3627 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3628         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3629                          count)
3630
3631 int register_netdev(struct net_device *dev);
3632 void unregister_netdev(struct net_device *dev);
3633
3634 /* General hardware address lists handling functions */
3635 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3636                    struct netdev_hw_addr_list *from_list, int addr_len);
3637 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3638                       struct netdev_hw_addr_list *from_list, int addr_len);
3639 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3640                        struct net_device *dev,
3641                        int (*sync)(struct net_device *, const unsigned char *),
3642                        int (*unsync)(struct net_device *,
3643                                      const unsigned char *));
3644 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3645                           struct net_device *dev,
3646                           int (*unsync)(struct net_device *,
3647                                         const unsigned char *));
3648 void __hw_addr_init(struct netdev_hw_addr_list *list);
3649
3650 /* Functions used for device addresses handling */
3651 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3652                  unsigned char addr_type);
3653 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3654                  unsigned char addr_type);
3655 void dev_addr_flush(struct net_device *dev);
3656 int dev_addr_init(struct net_device *dev);
3657
3658 /* Functions used for unicast addresses handling */
3659 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3660 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3661 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3662 int dev_uc_sync(struct net_device *to, struct net_device *from);
3663 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3664 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3665 void dev_uc_flush(struct net_device *dev);
3666 void dev_uc_init(struct net_device *dev);
3667
3668 /**
3669  *  __dev_uc_sync - Synchonize device's unicast list
3670  *  @dev:  device to sync
3671  *  @sync: function to call if address should be added
3672  *  @unsync: function to call if address should be removed
3673  *
3674  *  Add newly added addresses to the interface, and release
3675  *  addresses that have been deleted.
3676  */
3677 static inline int __dev_uc_sync(struct net_device *dev,
3678                                 int (*sync)(struct net_device *,
3679                                             const unsigned char *),
3680                                 int (*unsync)(struct net_device *,
3681                                               const unsigned char *))
3682 {
3683         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3684 }
3685
3686 /**
3687  *  __dev_uc_unsync - Remove synchronized addresses from device
3688  *  @dev:  device to sync
3689  *  @unsync: function to call if address should be removed
3690  *
3691  *  Remove all addresses that were added to the device by dev_uc_sync().
3692  */
3693 static inline void __dev_uc_unsync(struct net_device *dev,
3694                                    int (*unsync)(struct net_device *,
3695                                                  const unsigned char *))
3696 {
3697         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3698 }
3699
3700 /* Functions used for multicast addresses handling */
3701 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3702 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3703 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3704 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3705 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3706 int dev_mc_sync(struct net_device *to, struct net_device *from);
3707 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3708 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3709 void dev_mc_flush(struct net_device *dev);
3710 void dev_mc_init(struct net_device *dev);
3711
3712 /**
3713  *  __dev_mc_sync - Synchonize device's multicast list
3714  *  @dev:  device to sync
3715  *  @sync: function to call if address should be added
3716  *  @unsync: function to call if address should be removed
3717  *
3718  *  Add newly added addresses to the interface, and release
3719  *  addresses that have been deleted.
3720  */
3721 static inline int __dev_mc_sync(struct net_device *dev,
3722                                 int (*sync)(struct net_device *,
3723                                             const unsigned char *),
3724                                 int (*unsync)(struct net_device *,
3725                                               const unsigned char *))
3726 {
3727         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3728 }
3729
3730 /**
3731  *  __dev_mc_unsync - Remove synchronized addresses from device
3732  *  @dev:  device to sync
3733  *  @unsync: function to call if address should be removed
3734  *
3735  *  Remove all addresses that were added to the device by dev_mc_sync().
3736  */
3737 static inline void __dev_mc_unsync(struct net_device *dev,
3738                                    int (*unsync)(struct net_device *,
3739                                                  const unsigned char *))
3740 {
3741         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3742 }
3743
3744 /* Functions used for secondary unicast and multicast support */
3745 void dev_set_rx_mode(struct net_device *dev);
3746 void __dev_set_rx_mode(struct net_device *dev);
3747 int dev_set_promiscuity(struct net_device *dev, int inc);
3748 int dev_set_allmulti(struct net_device *dev, int inc);
3749 void netdev_state_change(struct net_device *dev);
3750 void netdev_notify_peers(struct net_device *dev);
3751 void netdev_features_change(struct net_device *dev);
3752 /* Load a device via the kmod */
3753 void dev_load(struct net *net, const char *name);
3754 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3755                                         struct rtnl_link_stats64 *storage);
3756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3757                              const struct net_device_stats *netdev_stats);
3758
3759 extern int              netdev_max_backlog;
3760 extern int              netdev_tstamp_prequeue;
3761 extern int              weight_p;
3762
3763 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3764 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3765                                                      struct list_head **iter);
3766 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3767                                                      struct list_head **iter);
3768
3769 /* iterate through upper list, must be called under RCU read lock */
3770 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3771         for (iter = &(dev)->adj_list.upper, \
3772              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3773              updev; \
3774              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3775
3776 /* iterate through upper list, must be called under RCU read lock */
3777 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3778         for (iter = &(dev)->all_adj_list.upper, \
3779              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3780              updev; \
3781              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3782
3783 void *netdev_lower_get_next_private(struct net_device *dev,
3784                                     struct list_head **iter);
3785 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3786                                         struct list_head **iter);
3787
3788 #define netdev_for_each_lower_private(dev, priv, iter) \
3789         for (iter = (dev)->adj_list.lower.next, \
3790              priv = netdev_lower_get_next_private(dev, &(iter)); \
3791              priv; \
3792              priv = netdev_lower_get_next_private(dev, &(iter)))
3793
3794 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3795         for (iter = &(dev)->adj_list.lower, \
3796              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3797              priv; \
3798              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3799
3800 void *netdev_lower_get_next(struct net_device *dev,
3801                                 struct list_head **iter);
3802 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3803         for (iter = (dev)->adj_list.lower.next, \
3804              ldev = netdev_lower_get_next(dev, &(iter)); \
3805              ldev; \
3806              ldev = netdev_lower_get_next(dev, &(iter)))
3807
3808 void *netdev_adjacent_get_private(struct list_head *adj_list);
3809 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3810 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3811 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3812 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3813 int netdev_master_upper_dev_link(struct net_device *dev,
3814                                  struct net_device *upper_dev,
3815                                  void *upper_priv, void *upper_info);
3816 void netdev_upper_dev_unlink(struct net_device *dev,
3817                              struct net_device *upper_dev);
3818 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3819 void *netdev_lower_dev_get_private(struct net_device *dev,
3820                                    struct net_device *lower_dev);
3821 void netdev_lower_state_changed(struct net_device *lower_dev,
3822                                 void *lower_state_info);
3823
3824 /* RSS keys are 40 or 52 bytes long */
3825 #define NETDEV_RSS_KEY_LEN 52
3826 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3827 void netdev_rss_key_fill(void *buffer, size_t len);
3828
3829 int dev_get_nest_level(struct net_device *dev,
3830                        bool (*type_check)(const struct net_device *dev));
3831 int skb_checksum_help(struct sk_buff *skb);
3832 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3833                                   netdev_features_t features, bool tx_path);
3834 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3835                                     netdev_features_t features);
3836
3837 struct netdev_bonding_info {
3838         ifslave slave;
3839         ifbond  master;
3840 };
3841
3842 struct netdev_notifier_bonding_info {
3843         struct netdev_notifier_info info; /* must be first */
3844         struct netdev_bonding_info  bonding_info;
3845 };
3846
3847 void netdev_bonding_info_change(struct net_device *dev,
3848                                 struct netdev_bonding_info *bonding_info);
3849
3850 static inline
3851 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3852 {
3853         return __skb_gso_segment(skb, features, true);
3854 }
3855 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3856
3857 static inline bool can_checksum_protocol(netdev_features_t features,
3858                                          __be16 protocol)
3859 {
3860         if (protocol == htons(ETH_P_FCOE))
3861                 return !!(features & NETIF_F_FCOE_CRC);
3862
3863         /* Assume this is an IP checksum (not SCTP CRC) */
3864
3865         if (features & NETIF_F_HW_CSUM) {
3866                 /* Can checksum everything */
3867                 return true;
3868         }
3869
3870         switch (protocol) {
3871         case htons(ETH_P_IP):
3872                 return !!(features & NETIF_F_IP_CSUM);
3873         case htons(ETH_P_IPV6):
3874                 return !!(features & NETIF_F_IPV6_CSUM);
3875         default:
3876                 return false;
3877         }
3878 }
3879
3880 /* Map an ethertype into IP protocol if possible */
3881 static inline int eproto_to_ipproto(int eproto)
3882 {
3883         switch (eproto) {
3884         case htons(ETH_P_IP):
3885                 return IPPROTO_IP;
3886         case htons(ETH_P_IPV6):
3887                 return IPPROTO_IPV6;
3888         default:
3889                 return -1;
3890         }
3891 }
3892
3893 #ifdef CONFIG_BUG
3894 void netdev_rx_csum_fault(struct net_device *dev);
3895 #else
3896 static inline void netdev_rx_csum_fault(struct net_device *dev)
3897 {
3898 }
3899 #endif
3900 /* rx skb timestamps */
3901 void net_enable_timestamp(void);
3902 void net_disable_timestamp(void);
3903
3904 #ifdef CONFIG_PROC_FS
3905 int __init dev_proc_init(void);
3906 #else
3907 #define dev_proc_init() 0
3908 #endif
3909
3910 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3911                                               struct sk_buff *skb, struct net_device *dev,
3912                                               bool more)
3913 {
3914         skb->xmit_more = more ? 1 : 0;
3915         return ops->ndo_start_xmit(skb, dev);
3916 }
3917
3918 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3919                                             struct netdev_queue *txq, bool more)
3920 {
3921         const struct net_device_ops *ops = dev->netdev_ops;
3922         int rc;
3923
3924         rc = __netdev_start_xmit(ops, skb, dev, more);
3925         if (rc == NETDEV_TX_OK)
3926                 txq_trans_update(txq);
3927
3928         return rc;
3929 }
3930
3931 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3932                                 const void *ns);
3933 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3934                                  const void *ns);
3935
3936 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3937 {
3938         return netdev_class_create_file_ns(class_attr, NULL);
3939 }
3940
3941 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3942 {
3943         netdev_class_remove_file_ns(class_attr, NULL);
3944 }
3945
3946 extern struct kobj_ns_type_operations net_ns_type_operations;
3947
3948 const char *netdev_drivername(const struct net_device *dev);
3949
3950 void linkwatch_run_queue(void);
3951
3952 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3953                                                           netdev_features_t f2)
3954 {
3955         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3956                 if (f1 & NETIF_F_HW_CSUM)
3957                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3958                 else
3959                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3960         }
3961
3962         return f1 & f2;
3963 }
3964
3965 static inline netdev_features_t netdev_get_wanted_features(
3966         struct net_device *dev)
3967 {
3968         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3969 }
3970 netdev_features_t netdev_increment_features(netdev_features_t all,
3971         netdev_features_t one, netdev_features_t mask);
3972
3973 /* Allow TSO being used on stacked device :
3974  * Performing the GSO segmentation before last device
3975  * is a performance improvement.
3976  */
3977 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3978                                                         netdev_features_t mask)
3979 {
3980         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3981 }
3982
3983 int __netdev_update_features(struct net_device *dev);
3984 void netdev_update_features(struct net_device *dev);
3985 void netdev_change_features(struct net_device *dev);
3986
3987 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3988                                         struct net_device *dev);
3989
3990 netdev_features_t passthru_features_check(struct sk_buff *skb,
3991                                           struct net_device *dev,
3992                                           netdev_features_t features);
3993 netdev_features_t netif_skb_features(struct sk_buff *skb);
3994
3995 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3996 {
3997         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
3998
3999         /* check flags correspondence */
4000         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4001         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4002         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4003         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4004         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4005         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4006         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4007         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4008         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4009         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4010         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4011         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4012         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4013         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4014         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4015
4016         return (features & feature) == feature;
4017 }
4018
4019 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4020 {
4021         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4022                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4023 }
4024
4025 static inline bool netif_needs_gso(struct sk_buff *skb,
4026                                    netdev_features_t features)
4027 {
4028         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4029                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4030                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4031 }
4032
4033 static inline void netif_set_gso_max_size(struct net_device *dev,
4034                                           unsigned int size)
4035 {
4036         dev->gso_max_size = size;
4037 }
4038
4039 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4040                                         int pulled_hlen, u16 mac_offset,
4041                                         int mac_len)
4042 {
4043         skb->protocol = protocol;
4044         skb->encapsulation = 1;
4045         skb_push(skb, pulled_hlen);
4046         skb_reset_transport_header(skb);
4047         skb->mac_header = mac_offset;
4048         skb->network_header = skb->mac_header + mac_len;
4049         skb->mac_len = mac_len;
4050 }
4051
4052 static inline bool netif_is_macsec(const struct net_device *dev)
4053 {
4054         return dev->priv_flags & IFF_MACSEC;
4055 }
4056
4057 static inline bool netif_is_macvlan(const struct net_device *dev)
4058 {
4059         return dev->priv_flags & IFF_MACVLAN;
4060 }
4061
4062 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4063 {
4064         return dev->priv_flags & IFF_MACVLAN_PORT;
4065 }
4066
4067 static inline bool netif_is_ipvlan(const struct net_device *dev)
4068 {
4069         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4070 }
4071
4072 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4073 {
4074         return dev->priv_flags & IFF_IPVLAN_MASTER;
4075 }
4076
4077 static inline bool netif_is_bond_master(const struct net_device *dev)
4078 {
4079         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4080 }
4081
4082 static inline bool netif_is_bond_slave(const struct net_device *dev)
4083 {
4084         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4085 }
4086
4087 static inline bool netif_supports_nofcs(struct net_device *dev)
4088 {
4089         return dev->priv_flags & IFF_SUPP_NOFCS;
4090 }
4091
4092 static inline bool netif_is_l3_master(const struct net_device *dev)
4093 {
4094         return dev->priv_flags & IFF_L3MDEV_MASTER;
4095 }
4096
4097 static inline bool netif_is_l3_slave(const struct net_device *dev)
4098 {
4099         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4100 }
4101
4102 static inline bool netif_is_bridge_master(const struct net_device *dev)
4103 {
4104         return dev->priv_flags & IFF_EBRIDGE;
4105 }
4106
4107 static inline bool netif_is_bridge_port(const struct net_device *dev)
4108 {
4109         return dev->priv_flags & IFF_BRIDGE_PORT;
4110 }
4111
4112 static inline bool netif_is_ovs_master(const struct net_device *dev)
4113 {
4114         return dev->priv_flags & IFF_OPENVSWITCH;
4115 }
4116
4117 static inline bool netif_is_team_master(const struct net_device *dev)
4118 {
4119         return dev->priv_flags & IFF_TEAM;
4120 }
4121
4122 static inline bool netif_is_team_port(const struct net_device *dev)
4123 {
4124         return dev->priv_flags & IFF_TEAM_PORT;
4125 }
4126
4127 static inline bool netif_is_lag_master(const struct net_device *dev)
4128 {
4129         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4130 }
4131
4132 static inline bool netif_is_lag_port(const struct net_device *dev)
4133 {
4134         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4135 }
4136
4137 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4138 {
4139         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4140 }
4141
4142 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4143 static inline void netif_keep_dst(struct net_device *dev)
4144 {
4145         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4146 }
4147
4148 extern struct pernet_operations __net_initdata loopback_net_ops;
4149
4150 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4151
4152 /* netdev_printk helpers, similar to dev_printk */
4153
4154 static inline const char *netdev_name(const struct net_device *dev)
4155 {
4156         if (!dev->name[0] || strchr(dev->name, '%'))
4157                 return "(unnamed net_device)";
4158         return dev->name;
4159 }
4160
4161 static inline const char *netdev_reg_state(const struct net_device *dev)
4162 {
4163         switch (dev->reg_state) {
4164         case NETREG_UNINITIALIZED: return " (uninitialized)";
4165         case NETREG_REGISTERED: return "";
4166         case NETREG_UNREGISTERING: return " (unregistering)";
4167         case NETREG_UNREGISTERED: return " (unregistered)";
4168         case NETREG_RELEASED: return " (released)";
4169         case NETREG_DUMMY: return " (dummy)";
4170         }
4171
4172         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4173         return " (unknown)";
4174 }
4175
4176 __printf(3, 4)
4177 void netdev_printk(const char *level, const struct net_device *dev,
4178                    const char *format, ...);
4179 __printf(2, 3)
4180 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4181 __printf(2, 3)
4182 void netdev_alert(const struct net_device *dev, const char *format, ...);
4183 __printf(2, 3)
4184 void netdev_crit(const struct net_device *dev, const char *format, ...);
4185 __printf(2, 3)
4186 void netdev_err(const struct net_device *dev, const char *format, ...);
4187 __printf(2, 3)
4188 void netdev_warn(const struct net_device *dev, const char *format, ...);
4189 __printf(2, 3)
4190 void netdev_notice(const struct net_device *dev, const char *format, ...);
4191 __printf(2, 3)
4192 void netdev_info(const struct net_device *dev, const char *format, ...);
4193
4194 #define MODULE_ALIAS_NETDEV(device) \
4195         MODULE_ALIAS("netdev-" device)
4196
4197 #if defined(CONFIG_DYNAMIC_DEBUG)
4198 #define netdev_dbg(__dev, format, args...)                      \
4199 do {                                                            \
4200         dynamic_netdev_dbg(__dev, format, ##args);              \
4201 } while (0)
4202 #elif defined(DEBUG)
4203 #define netdev_dbg(__dev, format, args...)                      \
4204         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4205 #else
4206 #define netdev_dbg(__dev, format, args...)                      \
4207 ({                                                              \
4208         if (0)                                                  \
4209                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4210 })
4211 #endif
4212
4213 #if defined(VERBOSE_DEBUG)
4214 #define netdev_vdbg     netdev_dbg
4215 #else
4216
4217 #define netdev_vdbg(dev, format, args...)                       \
4218 ({                                                              \
4219         if (0)                                                  \
4220                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4221         0;                                                      \
4222 })
4223 #endif
4224
4225 /*
4226  * netdev_WARN() acts like dev_printk(), but with the key difference
4227  * of using a WARN/WARN_ON to get the message out, including the
4228  * file/line information and a backtrace.
4229  */
4230 #define netdev_WARN(dev, format, args...)                       \
4231         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4232              netdev_reg_state(dev), ##args)
4233
4234 /* netif printk helpers, similar to netdev_printk */
4235
4236 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4237 do {                                                            \
4238         if (netif_msg_##type(priv))                             \
4239                 netdev_printk(level, (dev), fmt, ##args);       \
4240 } while (0)
4241
4242 #define netif_level(level, priv, type, dev, fmt, args...)       \
4243 do {                                                            \
4244         if (netif_msg_##type(priv))                             \
4245                 netdev_##level(dev, fmt, ##args);               \
4246 } while (0)
4247
4248 #define netif_emerg(priv, type, dev, fmt, args...)              \
4249         netif_level(emerg, priv, type, dev, fmt, ##args)
4250 #define netif_alert(priv, type, dev, fmt, args...)              \
4251         netif_level(alert, priv, type, dev, fmt, ##args)
4252 #define netif_crit(priv, type, dev, fmt, args...)               \
4253         netif_level(crit, priv, type, dev, fmt, ##args)
4254 #define netif_err(priv, type, dev, fmt, args...)                \
4255         netif_level(err, priv, type, dev, fmt, ##args)
4256 #define netif_warn(priv, type, dev, fmt, args...)               \
4257         netif_level(warn, priv, type, dev, fmt, ##args)
4258 #define netif_notice(priv, type, dev, fmt, args...)             \
4259         netif_level(notice, priv, type, dev, fmt, ##args)
4260 #define netif_info(priv, type, dev, fmt, args...)               \
4261         netif_level(info, priv, type, dev, fmt, ##args)
4262
4263 #if defined(CONFIG_DYNAMIC_DEBUG)
4264 #define netif_dbg(priv, type, netdev, format, args...)          \
4265 do {                                                            \
4266         if (netif_msg_##type(priv))                             \
4267                 dynamic_netdev_dbg(netdev, format, ##args);     \
4268 } while (0)
4269 #elif defined(DEBUG)
4270 #define netif_dbg(priv, type, dev, format, args...)             \
4271         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4272 #else
4273 #define netif_dbg(priv, type, dev, format, args...)                     \
4274 ({                                                                      \
4275         if (0)                                                          \
4276                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4277         0;                                                              \
4278 })
4279 #endif
4280
4281 #if defined(VERBOSE_DEBUG)
4282 #define netif_vdbg      netif_dbg
4283 #else
4284 #define netif_vdbg(priv, type, dev, format, args...)            \
4285 ({                                                              \
4286         if (0)                                                  \
4287                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4288         0;                                                      \
4289 })
4290 #endif
4291
4292 /*
4293  *      The list of packet types we will receive (as opposed to discard)
4294  *      and the routines to invoke.
4295  *
4296  *      Why 16. Because with 16 the only overlap we get on a hash of the
4297  *      low nibble of the protocol value is RARP/SNAP/X.25.
4298  *
4299  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4300  *             sure which should go first, but I bet it won't make much
4301  *             difference if we are running VLANs.  The good news is that
4302  *             this protocol won't be in the list unless compiled in, so
4303  *             the average user (w/out VLANs) will not be adversely affected.
4304  *             --BLG
4305  *
4306  *              0800    IP
4307  *              8100    802.1Q VLAN
4308  *              0001    802.3
4309  *              0002    AX.25
4310  *              0004    802.2
4311  *              8035    RARP
4312  *              0005    SNAP
4313  *              0805    X.25
4314  *              0806    ARP
4315  *              8137    IPX
4316  *              0009    Localtalk
4317  *              86DD    IPv6
4318  */
4319 #define PTYPE_HASH_SIZE (16)
4320 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4321
4322 #endif  /* _LINUX_NETDEVICE_H */