Merge tag 'zte-defconfig64-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29         int                             (*is_in_guest)(void);
30         int                             (*is_user_mode)(void);
31         unsigned long                   (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60         __u64                           nr;
61         __u64                           ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65         struct perf_callchain_entry *entry;
66         u32                         max_stack;
67         u32                         nr;
68         short                       contexts;
69         bool                        contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73                                      unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76         union {
77                 struct perf_raw_frag    *next;
78                 unsigned long           pad;
79         };
80         perf_copy_f                     copy;
81         void                            *data;
82         u32                             size;
83 } __packed;
84
85 struct perf_raw_record {
86         struct perf_raw_frag            frag;
87         u32                             size;
88 };
89
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100         __u64                           nr;
101         struct perf_branch_entry        entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110         u64             config; /* register value */
111         unsigned int    reg;    /* register address or index */
112         int             alloc;  /* extra register already allocated */
113         int             idx;    /* index in shared_regs->regs[] */
114 };
115
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121         union {
122                 struct { /* hardware */
123                         u64             config;
124                         u64             last_tag;
125                         unsigned long   config_base;
126                         unsigned long   event_base;
127                         int             event_base_rdpmc;
128                         int             idx;
129                         int             last_cpu;
130                         int             flags;
131
132                         struct hw_perf_event_extra extra_reg;
133                         struct hw_perf_event_extra branch_reg;
134                 };
135                 struct { /* software */
136                         struct hrtimer  hrtimer;
137                 };
138                 struct { /* tracepoint */
139                         /* for tp_event->class */
140                         struct list_head        tp_list;
141                 };
142                 struct { /* intel_cqm */
143                         int                     cqm_state;
144                         u32                     cqm_rmid;
145                         int                     is_group_event;
146                         struct list_head        cqm_events_entry;
147                         struct list_head        cqm_groups_entry;
148                         struct list_head        cqm_group_entry;
149                 };
150                 struct { /* itrace */
151                         int                     itrace_started;
152                 };
153                 struct { /* amd_power */
154                         u64     pwr_acc;
155                         u64     ptsc;
156                 };
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158                 struct { /* breakpoint */
159                         /*
160                          * Crufty hack to avoid the chicken and egg
161                          * problem hw_breakpoint has with context
162                          * creation and event initalization.
163                          */
164                         struct arch_hw_breakpoint       info;
165                         struct list_head                bp_list;
166                 };
167 #endif
168         };
169         /*
170          * If the event is a per task event, this will point to the task in
171          * question. See the comment in perf_event_alloc().
172          */
173         struct task_struct              *target;
174
175         /*
176          * PMU would store hardware filter configuration
177          * here.
178          */
179         void                            *addr_filters;
180
181         /* Last sync'ed generation of filters */
182         unsigned long                   addr_filters_gen;
183
184 /*
185  * hw_perf_event::state flags; used to track the PERF_EF_* state.
186  */
187 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH           0x04
190
191         int                             state;
192
193         /*
194          * The last observed hardware counter value, updated with a
195          * local64_cmpxchg() such that pmu::read() can be called nested.
196          */
197         local64_t                       prev_count;
198
199         /*
200          * The period to start the next sample with.
201          */
202         u64                             sample_period;
203
204         /*
205          * The period we started this sample with.
206          */
207         u64                             last_period;
208
209         /*
210          * However much is left of the current period; note that this is
211          * a full 64bit value and allows for generation of periods longer
212          * than hardware might allow.
213          */
214         local64_t                       period_left;
215
216         /*
217          * State for throttling the event, see __perf_event_overflow() and
218          * perf_adjust_freq_unthr_context().
219          */
220         u64                             interrupts_seq;
221         u64                             interrupts;
222
223         /*
224          * State for freq target events, see __perf_event_overflow() and
225          * perf_adjust_freq_unthr_context().
226          */
227         u64                             freq_time_stamp;
228         u64                             freq_count_stamp;
229 #endif
230 };
231
232 struct perf_event;
233
234 /*
235  * Common implementation detail of pmu::{start,commit,cancel}_txn
236  */
237 #define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
239
240 /**
241  * pmu::capabilities flags
242  */
243 #define PERF_PMU_CAP_NO_INTERRUPT               0x01
244 #define PERF_PMU_CAP_NO_NMI                     0x02
245 #define PERF_PMU_CAP_AUX_NO_SG                  0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF           0x08
247 #define PERF_PMU_CAP_EXCLUSIVE                  0x10
248 #define PERF_PMU_CAP_ITRACE                     0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x40
250
251 /**
252  * struct pmu - generic performance monitoring unit
253  */
254 struct pmu {
255         struct list_head                entry;
256
257         struct module                   *module;
258         struct device                   *dev;
259         const struct attribute_group    **attr_groups;
260         const char                      *name;
261         int                             type;
262
263         /*
264          * various common per-pmu feature flags
265          */
266         int                             capabilities;
267
268         int * __percpu                  pmu_disable_count;
269         struct perf_cpu_context * __percpu pmu_cpu_context;
270         atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
271         int                             task_ctx_nr;
272         int                             hrtimer_interval_ms;
273
274         /* number of address filters this PMU can do */
275         unsigned int                    nr_addr_filters;
276
277         /*
278          * Fully disable/enable this PMU, can be used to protect from the PMI
279          * as well as for lazy/batch writing of the MSRs.
280          */
281         void (*pmu_enable)              (struct pmu *pmu); /* optional */
282         void (*pmu_disable)             (struct pmu *pmu); /* optional */
283
284         /*
285          * Try and initialize the event for this PMU.
286          *
287          * Returns:
288          *  -ENOENT     -- @event is not for this PMU
289          *
290          *  -ENODEV     -- @event is for this PMU but PMU not present
291          *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
292          *  -EINVAL     -- @event is for this PMU but @event is not valid
293          *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294          *  -EACCESS    -- @event is for this PMU, @event is valid, but no privilidges
295          *
296          *  0           -- @event is for this PMU and valid
297          *
298          * Other error return values are allowed.
299          */
300         int (*event_init)               (struct perf_event *event);
301
302         /*
303          * Notification that the event was mapped or unmapped.  Called
304          * in the context of the mapping task.
305          */
306         void (*event_mapped)            (struct perf_event *event); /*optional*/
307         void (*event_unmapped)          (struct perf_event *event); /*optional*/
308
309         /*
310          * Flags for ->add()/->del()/ ->start()/->stop(). There are
311          * matching hw_perf_event::state flags.
312          */
313 #define PERF_EF_START   0x01            /* start the counter when adding    */
314 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
315 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
316
317         /*
318          * Adds/Removes a counter to/from the PMU, can be done inside a
319          * transaction, see the ->*_txn() methods.
320          *
321          * The add/del callbacks will reserve all hardware resources required
322          * to service the event, this includes any counter constraint
323          * scheduling etc.
324          *
325          * Called with IRQs disabled and the PMU disabled on the CPU the event
326          * is on.
327          *
328          * ->add() called without PERF_EF_START should result in the same state
329          *  as ->add() followed by ->stop().
330          *
331          * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332          *  ->stop() that must deal with already being stopped without
333          *  PERF_EF_UPDATE.
334          */
335         int  (*add)                     (struct perf_event *event, int flags);
336         void (*del)                     (struct perf_event *event, int flags);
337
338         /*
339          * Starts/Stops a counter present on the PMU.
340          *
341          * The PMI handler should stop the counter when perf_event_overflow()
342          * returns !0. ->start() will be used to continue.
343          *
344          * Also used to change the sample period.
345          *
346          * Called with IRQs disabled and the PMU disabled on the CPU the event
347          * is on -- will be called from NMI context with the PMU generates
348          * NMIs.
349          *
350          * ->stop() with PERF_EF_UPDATE will read the counter and update
351          *  period/count values like ->read() would.
352          *
353          * ->start() with PERF_EF_RELOAD will reprogram the the counter
354          *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355          */
356         void (*start)                   (struct perf_event *event, int flags);
357         void (*stop)                    (struct perf_event *event, int flags);
358
359         /*
360          * Updates the counter value of the event.
361          *
362          * For sampling capable PMUs this will also update the software period
363          * hw_perf_event::period_left field.
364          */
365         void (*read)                    (struct perf_event *event);
366
367         /*
368          * Group events scheduling is treated as a transaction, add
369          * group events as a whole and perform one schedulability test.
370          * If the test fails, roll back the whole group
371          *
372          * Start the transaction, after this ->add() doesn't need to
373          * do schedulability tests.
374          *
375          * Optional.
376          */
377         void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
378         /*
379          * If ->start_txn() disabled the ->add() schedulability test
380          * then ->commit_txn() is required to perform one. On success
381          * the transaction is closed. On error the transaction is kept
382          * open until ->cancel_txn() is called.
383          *
384          * Optional.
385          */
386         int  (*commit_txn)              (struct pmu *pmu);
387         /*
388          * Will cancel the transaction, assumes ->del() is called
389          * for each successful ->add() during the transaction.
390          *
391          * Optional.
392          */
393         void (*cancel_txn)              (struct pmu *pmu);
394
395         /*
396          * Will return the value for perf_event_mmap_page::index for this event,
397          * if no implementation is provided it will default to: event->hw.idx + 1.
398          */
399         int (*event_idx)                (struct perf_event *event); /*optional */
400
401         /*
402          * context-switches callback
403          */
404         void (*sched_task)              (struct perf_event_context *ctx,
405                                         bool sched_in);
406         /*
407          * PMU specific data size
408          */
409         size_t                          task_ctx_size;
410
411
412         /*
413          * Return the count value for a counter.
414          */
415         u64 (*count)                    (struct perf_event *event); /*optional*/
416
417         /*
418          * Set up pmu-private data structures for an AUX area
419          */
420         void *(*setup_aux)              (int cpu, void **pages,
421                                          int nr_pages, bool overwrite);
422                                         /* optional */
423
424         /*
425          * Free pmu-private AUX data structures
426          */
427         void (*free_aux)                (void *aux); /* optional */
428
429         /*
430          * Validate address range filters: make sure the HW supports the
431          * requested configuration and number of filters; return 0 if the
432          * supplied filters are valid, -errno otherwise.
433          *
434          * Runs in the context of the ioctl()ing process and is not serialized
435          * with the rest of the PMU callbacks.
436          */
437         int (*addr_filters_validate)    (struct list_head *filters);
438                                         /* optional */
439
440         /*
441          * Synchronize address range filter configuration:
442          * translate hw-agnostic filters into hardware configuration in
443          * event::hw::addr_filters.
444          *
445          * Runs as a part of filter sync sequence that is done in ->start()
446          * callback by calling perf_event_addr_filters_sync().
447          *
448          * May (and should) traverse event::addr_filters::list, for which its
449          * caller provides necessary serialization.
450          */
451         void (*addr_filters_sync)       (struct perf_event *event);
452                                         /* optional */
453
454         /*
455          * Filter events for PMU-specific reasons.
456          */
457         int (*filter_match)             (struct perf_event *event); /* optional */
458 };
459
460 /**
461  * struct perf_addr_filter - address range filter definition
462  * @entry:      event's filter list linkage
463  * @inode:      object file's inode for file-based filters
464  * @offset:     filter range offset
465  * @size:       filter range size
466  * @range:      1: range, 0: address
467  * @filter:     1: filter/start, 0: stop
468  *
469  * This is a hardware-agnostic filter configuration as specified by the user.
470  */
471 struct perf_addr_filter {
472         struct list_head        entry;
473         struct inode            *inode;
474         unsigned long           offset;
475         unsigned long           size;
476         unsigned int            range   : 1,
477                                 filter  : 1;
478 };
479
480 /**
481  * struct perf_addr_filters_head - container for address range filters
482  * @list:       list of filters for this event
483  * @lock:       spinlock that serializes accesses to the @list and event's
484  *              (and its children's) filter generations.
485  *
486  * A child event will use parent's @list (and therefore @lock), so they are
487  * bundled together; see perf_event_addr_filters().
488  */
489 struct perf_addr_filters_head {
490         struct list_head        list;
491         raw_spinlock_t          lock;
492 };
493
494 /**
495  * enum perf_event_active_state - the states of a event
496  */
497 enum perf_event_active_state {
498         PERF_EVENT_STATE_DEAD           = -4,
499         PERF_EVENT_STATE_EXIT           = -3,
500         PERF_EVENT_STATE_ERROR          = -2,
501         PERF_EVENT_STATE_OFF            = -1,
502         PERF_EVENT_STATE_INACTIVE       =  0,
503         PERF_EVENT_STATE_ACTIVE         =  1,
504 };
505
506 struct file;
507 struct perf_sample_data;
508
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510                                         struct perf_sample_data *,
511                                         struct pt_regs *regs);
512
513 enum perf_group_flag {
514         PERF_GROUP_SOFTWARE             = 0x1,
515 };
516
517 #define SWEVENT_HLIST_BITS              8
518 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
519
520 struct swevent_hlist {
521         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
522         struct rcu_head                 rcu_head;
523 };
524
525 #define PERF_ATTACH_CONTEXT     0x01
526 #define PERF_ATTACH_GROUP       0x02
527 #define PERF_ATTACH_TASK        0x04
528 #define PERF_ATTACH_TASK_DATA   0x08
529
530 struct perf_cgroup;
531 struct ring_buffer;
532
533 struct pmu_event_list {
534         raw_spinlock_t          lock;
535         struct list_head        list;
536 };
537
538 /**
539  * struct perf_event - performance event kernel representation:
540  */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543         /*
544          * entry onto perf_event_context::event_list;
545          *   modifications require ctx->lock
546          *   RCU safe iterations.
547          */
548         struct list_head                event_entry;
549
550         /*
551          * XXX: group_entry and sibling_list should be mutually exclusive;
552          * either you're a sibling on a group, or you're the group leader.
553          * Rework the code to always use the same list element.
554          *
555          * Locked for modification by both ctx->mutex and ctx->lock; holding
556          * either sufficies for read.
557          */
558         struct list_head                group_entry;
559         struct list_head                sibling_list;
560
561         /*
562          * We need storage to track the entries in perf_pmu_migrate_context; we
563          * cannot use the event_entry because of RCU and we want to keep the
564          * group in tact which avoids us using the other two entries.
565          */
566         struct list_head                migrate_entry;
567
568         struct hlist_node               hlist_entry;
569         struct list_head                active_entry;
570         int                             nr_siblings;
571         int                             group_flags;
572         struct perf_event               *group_leader;
573         struct pmu                      *pmu;
574         void                            *pmu_private;
575
576         enum perf_event_active_state    state;
577         unsigned int                    attach_state;
578         local64_t                       count;
579         atomic64_t                      child_count;
580
581         /*
582          * These are the total time in nanoseconds that the event
583          * has been enabled (i.e. eligible to run, and the task has
584          * been scheduled in, if this is a per-task event)
585          * and running (scheduled onto the CPU), respectively.
586          *
587          * They are computed from tstamp_enabled, tstamp_running and
588          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
589          */
590         u64                             total_time_enabled;
591         u64                             total_time_running;
592
593         /*
594          * These are timestamps used for computing total_time_enabled
595          * and total_time_running when the event is in INACTIVE or
596          * ACTIVE state, measured in nanoseconds from an arbitrary point
597          * in time.
598          * tstamp_enabled: the notional time when the event was enabled
599          * tstamp_running: the notional time when the event was scheduled on
600          * tstamp_stopped: in INACTIVE state, the notional time when the
601          *      event was scheduled off.
602          */
603         u64                             tstamp_enabled;
604         u64                             tstamp_running;
605         u64                             tstamp_stopped;
606
607         /*
608          * timestamp shadows the actual context timing but it can
609          * be safely used in NMI interrupt context. It reflects the
610          * context time as it was when the event was last scheduled in.
611          *
612          * ctx_time already accounts for ctx->timestamp. Therefore to
613          * compute ctx_time for a sample, simply add perf_clock().
614          */
615         u64                             shadow_ctx_time;
616
617         struct perf_event_attr          attr;
618         u16                             header_size;
619         u16                             id_header_size;
620         u16                             read_size;
621         struct hw_perf_event            hw;
622
623         struct perf_event_context       *ctx;
624         atomic_long_t                   refcount;
625
626         /*
627          * These accumulate total time (in nanoseconds) that children
628          * events have been enabled and running, respectively.
629          */
630         atomic64_t                      child_total_time_enabled;
631         atomic64_t                      child_total_time_running;
632
633         /*
634          * Protect attach/detach and child_list:
635          */
636         struct mutex                    child_mutex;
637         struct list_head                child_list;
638         struct perf_event               *parent;
639
640         int                             oncpu;
641         int                             cpu;
642
643         struct list_head                owner_entry;
644         struct task_struct              *owner;
645
646         /* mmap bits */
647         struct mutex                    mmap_mutex;
648         atomic_t                        mmap_count;
649
650         struct ring_buffer              *rb;
651         struct list_head                rb_entry;
652         unsigned long                   rcu_batches;
653         int                             rcu_pending;
654
655         /* poll related */
656         wait_queue_head_t               waitq;
657         struct fasync_struct            *fasync;
658
659         /* delayed work for NMIs and such */
660         int                             pending_wakeup;
661         int                             pending_kill;
662         int                             pending_disable;
663         struct irq_work                 pending;
664
665         atomic_t                        event_limit;
666
667         /* address range filters */
668         struct perf_addr_filters_head   addr_filters;
669         /* vma address array for file-based filders */
670         unsigned long                   *addr_filters_offs;
671         unsigned long                   addr_filters_gen;
672
673         void (*destroy)(struct perf_event *);
674         struct rcu_head                 rcu_head;
675
676         struct pid_namespace            *ns;
677         u64                             id;
678
679         u64                             (*clock)(void);
680         perf_overflow_handler_t         overflow_handler;
681         void                            *overflow_handler_context;
682
683 #ifdef CONFIG_EVENT_TRACING
684         struct trace_event_call         *tp_event;
685         struct event_filter             *filter;
686 #ifdef CONFIG_FUNCTION_TRACER
687         struct ftrace_ops               ftrace_ops;
688 #endif
689 #endif
690
691 #ifdef CONFIG_CGROUP_PERF
692         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
693         int                             cgrp_defer_enabled;
694 #endif
695
696         struct list_head                sb_list;
697 #endif /* CONFIG_PERF_EVENTS */
698 };
699
700 /**
701  * struct perf_event_context - event context structure
702  *
703  * Used as a container for task events and CPU events as well:
704  */
705 struct perf_event_context {
706         struct pmu                      *pmu;
707         /*
708          * Protect the states of the events in the list,
709          * nr_active, and the list:
710          */
711         raw_spinlock_t                  lock;
712         /*
713          * Protect the list of events.  Locking either mutex or lock
714          * is sufficient to ensure the list doesn't change; to change
715          * the list you need to lock both the mutex and the spinlock.
716          */
717         struct mutex                    mutex;
718
719         struct list_head                active_ctx_list;
720         struct list_head                pinned_groups;
721         struct list_head                flexible_groups;
722         struct list_head                event_list;
723         int                             nr_events;
724         int                             nr_active;
725         int                             is_active;
726         int                             nr_stat;
727         int                             nr_freq;
728         int                             rotate_disable;
729         atomic_t                        refcount;
730         struct task_struct              *task;
731
732         /*
733          * Context clock, runs when context enabled.
734          */
735         u64                             time;
736         u64                             timestamp;
737
738         /*
739          * These fields let us detect when two contexts have both
740          * been cloned (inherited) from a common ancestor.
741          */
742         struct perf_event_context       *parent_ctx;
743         u64                             parent_gen;
744         u64                             generation;
745         int                             pin_count;
746 #ifdef CONFIG_CGROUP_PERF
747         int                             nr_cgroups;      /* cgroup evts */
748 #endif
749         void                            *task_ctx_data; /* pmu specific data */
750         struct rcu_head                 rcu_head;
751 };
752
753 /*
754  * Number of contexts where an event can trigger:
755  *      task, softirq, hardirq, nmi.
756  */
757 #define PERF_NR_CONTEXTS        4
758
759 /**
760  * struct perf_event_cpu_context - per cpu event context structure
761  */
762 struct perf_cpu_context {
763         struct perf_event_context       ctx;
764         struct perf_event_context       *task_ctx;
765         int                             active_oncpu;
766         int                             exclusive;
767
768         raw_spinlock_t                  hrtimer_lock;
769         struct hrtimer                  hrtimer;
770         ktime_t                         hrtimer_interval;
771         unsigned int                    hrtimer_active;
772
773         struct pmu                      *unique_pmu;
774 #ifdef CONFIG_CGROUP_PERF
775         struct perf_cgroup              *cgrp;
776 #endif
777 };
778
779 struct perf_output_handle {
780         struct perf_event               *event;
781         struct ring_buffer              *rb;
782         unsigned long                   wakeup;
783         unsigned long                   size;
784         union {
785                 void                    *addr;
786                 unsigned long           head;
787         };
788         int                             page;
789 };
790
791 #ifdef CONFIG_CGROUP_PERF
792
793 /*
794  * perf_cgroup_info keeps track of time_enabled for a cgroup.
795  * This is a per-cpu dynamically allocated data structure.
796  */
797 struct perf_cgroup_info {
798         u64                             time;
799         u64                             timestamp;
800 };
801
802 struct perf_cgroup {
803         struct cgroup_subsys_state      css;
804         struct perf_cgroup_info __percpu *info;
805 };
806
807 /*
808  * Must ensure cgroup is pinned (css_get) before calling
809  * this function. In other words, we cannot call this function
810  * if there is no cgroup event for the current CPU context.
811  */
812 static inline struct perf_cgroup *
813 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
814 {
815         return container_of(task_css_check(task, perf_event_cgrp_id,
816                                            ctx ? lockdep_is_held(&ctx->lock)
817                                                : true),
818                             struct perf_cgroup, css);
819 }
820 #endif /* CONFIG_CGROUP_PERF */
821
822 #ifdef CONFIG_PERF_EVENTS
823
824 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
825                                    struct perf_event *event);
826 extern void perf_aux_output_end(struct perf_output_handle *handle,
827                                 unsigned long size, bool truncated);
828 extern int perf_aux_output_skip(struct perf_output_handle *handle,
829                                 unsigned long size);
830 extern void *perf_get_aux(struct perf_output_handle *handle);
831
832 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
833 extern void perf_pmu_unregister(struct pmu *pmu);
834
835 extern int perf_num_counters(void);
836 extern const char *perf_pmu_name(void);
837 extern void __perf_event_task_sched_in(struct task_struct *prev,
838                                        struct task_struct *task);
839 extern void __perf_event_task_sched_out(struct task_struct *prev,
840                                         struct task_struct *next);
841 extern int perf_event_init_task(struct task_struct *child);
842 extern void perf_event_exit_task(struct task_struct *child);
843 extern void perf_event_free_task(struct task_struct *task);
844 extern void perf_event_delayed_put(struct task_struct *task);
845 extern struct file *perf_event_get(unsigned int fd);
846 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
847 extern void perf_event_print_debug(void);
848 extern void perf_pmu_disable(struct pmu *pmu);
849 extern void perf_pmu_enable(struct pmu *pmu);
850 extern void perf_sched_cb_dec(struct pmu *pmu);
851 extern void perf_sched_cb_inc(struct pmu *pmu);
852 extern int perf_event_task_disable(void);
853 extern int perf_event_task_enable(void);
854 extern int perf_event_refresh(struct perf_event *event, int refresh);
855 extern void perf_event_update_userpage(struct perf_event *event);
856 extern int perf_event_release_kernel(struct perf_event *event);
857 extern struct perf_event *
858 perf_event_create_kernel_counter(struct perf_event_attr *attr,
859                                 int cpu,
860                                 struct task_struct *task,
861                                 perf_overflow_handler_t callback,
862                                 void *context);
863 extern void perf_pmu_migrate_context(struct pmu *pmu,
864                                 int src_cpu, int dst_cpu);
865 extern u64 perf_event_read_local(struct perf_event *event);
866 extern u64 perf_event_read_value(struct perf_event *event,
867                                  u64 *enabled, u64 *running);
868
869
870 struct perf_sample_data {
871         /*
872          * Fields set by perf_sample_data_init(), group so as to
873          * minimize the cachelines touched.
874          */
875         u64                             addr;
876         struct perf_raw_record          *raw;
877         struct perf_branch_stack        *br_stack;
878         u64                             period;
879         u64                             weight;
880         u64                             txn;
881         union  perf_mem_data_src        data_src;
882
883         /*
884          * The other fields, optionally {set,used} by
885          * perf_{prepare,output}_sample().
886          */
887         u64                             type;
888         u64                             ip;
889         struct {
890                 u32     pid;
891                 u32     tid;
892         }                               tid_entry;
893         u64                             time;
894         u64                             id;
895         u64                             stream_id;
896         struct {
897                 u32     cpu;
898                 u32     reserved;
899         }                               cpu_entry;
900         struct perf_callchain_entry     *callchain;
901
902         /*
903          * regs_user may point to task_pt_regs or to regs_user_copy, depending
904          * on arch details.
905          */
906         struct perf_regs                regs_user;
907         struct pt_regs                  regs_user_copy;
908
909         struct perf_regs                regs_intr;
910         u64                             stack_user_size;
911 } ____cacheline_aligned;
912
913 /* default value for data source */
914 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
915                     PERF_MEM_S(LVL, NA)   |\
916                     PERF_MEM_S(SNOOP, NA) |\
917                     PERF_MEM_S(LOCK, NA)  |\
918                     PERF_MEM_S(TLB, NA))
919
920 static inline void perf_sample_data_init(struct perf_sample_data *data,
921                                          u64 addr, u64 period)
922 {
923         /* remaining struct members initialized in perf_prepare_sample() */
924         data->addr = addr;
925         data->raw  = NULL;
926         data->br_stack = NULL;
927         data->period = period;
928         data->weight = 0;
929         data->data_src.val = PERF_MEM_NA;
930         data->txn = 0;
931 }
932
933 extern void perf_output_sample(struct perf_output_handle *handle,
934                                struct perf_event_header *header,
935                                struct perf_sample_data *data,
936                                struct perf_event *event);
937 extern void perf_prepare_sample(struct perf_event_header *header,
938                                 struct perf_sample_data *data,
939                                 struct perf_event *event,
940                                 struct pt_regs *regs);
941
942 extern int perf_event_overflow(struct perf_event *event,
943                                  struct perf_sample_data *data,
944                                  struct pt_regs *regs);
945
946 extern void perf_event_output_forward(struct perf_event *event,
947                                      struct perf_sample_data *data,
948                                      struct pt_regs *regs);
949 extern void perf_event_output_backward(struct perf_event *event,
950                                        struct perf_sample_data *data,
951                                        struct pt_regs *regs);
952 extern void perf_event_output(struct perf_event *event,
953                               struct perf_sample_data *data,
954                               struct pt_regs *regs);
955
956 static inline bool
957 is_default_overflow_handler(struct perf_event *event)
958 {
959         if (likely(event->overflow_handler == perf_event_output_forward))
960                 return true;
961         if (unlikely(event->overflow_handler == perf_event_output_backward))
962                 return true;
963         return false;
964 }
965
966 extern void
967 perf_event_header__init_id(struct perf_event_header *header,
968                            struct perf_sample_data *data,
969                            struct perf_event *event);
970 extern void
971 perf_event__output_id_sample(struct perf_event *event,
972                              struct perf_output_handle *handle,
973                              struct perf_sample_data *sample);
974
975 extern void
976 perf_log_lost_samples(struct perf_event *event, u64 lost);
977
978 static inline bool is_sampling_event(struct perf_event *event)
979 {
980         return event->attr.sample_period != 0;
981 }
982
983 /*
984  * Return 1 for a software event, 0 for a hardware event
985  */
986 static inline int is_software_event(struct perf_event *event)
987 {
988         return event->pmu->task_ctx_nr == perf_sw_context;
989 }
990
991 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
992
993 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
994 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
995
996 #ifndef perf_arch_fetch_caller_regs
997 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
998 #endif
999
1000 /*
1001  * Take a snapshot of the regs. Skip ip and frame pointer to
1002  * the nth caller. We only need a few of the regs:
1003  * - ip for PERF_SAMPLE_IP
1004  * - cs for user_mode() tests
1005  * - bp for callchains
1006  * - eflags, for future purposes, just in case
1007  */
1008 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1009 {
1010         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1011 }
1012
1013 static __always_inline void
1014 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1015 {
1016         if (static_key_false(&perf_swevent_enabled[event_id]))
1017                 __perf_sw_event(event_id, nr, regs, addr);
1018 }
1019
1020 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1021
1022 /*
1023  * 'Special' version for the scheduler, it hard assumes no recursion,
1024  * which is guaranteed by us not actually scheduling inside other swevents
1025  * because those disable preemption.
1026  */
1027 static __always_inline void
1028 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1029 {
1030         if (static_key_false(&perf_swevent_enabled[event_id])) {
1031                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1032
1033                 perf_fetch_caller_regs(regs);
1034                 ___perf_sw_event(event_id, nr, regs, addr);
1035         }
1036 }
1037
1038 extern struct static_key_false perf_sched_events;
1039
1040 static __always_inline bool
1041 perf_sw_migrate_enabled(void)
1042 {
1043         if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1044                 return true;
1045         return false;
1046 }
1047
1048 static inline void perf_event_task_migrate(struct task_struct *task)
1049 {
1050         if (perf_sw_migrate_enabled())
1051                 task->sched_migrated = 1;
1052 }
1053
1054 static inline void perf_event_task_sched_in(struct task_struct *prev,
1055                                             struct task_struct *task)
1056 {
1057         if (static_branch_unlikely(&perf_sched_events))
1058                 __perf_event_task_sched_in(prev, task);
1059
1060         if (perf_sw_migrate_enabled() && task->sched_migrated) {
1061                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1062
1063                 perf_fetch_caller_regs(regs);
1064                 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1065                 task->sched_migrated = 0;
1066         }
1067 }
1068
1069 static inline void perf_event_task_sched_out(struct task_struct *prev,
1070                                              struct task_struct *next)
1071 {
1072         perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1073
1074         if (static_branch_unlikely(&perf_sched_events))
1075                 __perf_event_task_sched_out(prev, next);
1076 }
1077
1078 static inline u64 __perf_event_count(struct perf_event *event)
1079 {
1080         return local64_read(&event->count) + atomic64_read(&event->child_count);
1081 }
1082
1083 extern void perf_event_mmap(struct vm_area_struct *vma);
1084 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1085 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1086 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1087
1088 extern void perf_event_exec(void);
1089 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1090 extern void perf_event_fork(struct task_struct *tsk);
1091
1092 /* Callchains */
1093 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1094
1095 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1096 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1097 extern struct perf_callchain_entry *
1098 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1099                    u32 max_stack, bool crosstask, bool add_mark);
1100 extern int get_callchain_buffers(int max_stack);
1101 extern void put_callchain_buffers(void);
1102
1103 extern int sysctl_perf_event_max_stack;
1104 extern int sysctl_perf_event_max_contexts_per_stack;
1105
1106 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1107 {
1108         if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1109                 struct perf_callchain_entry *entry = ctx->entry;
1110                 entry->ip[entry->nr++] = ip;
1111                 ++ctx->contexts;
1112                 return 0;
1113         } else {
1114                 ctx->contexts_maxed = true;
1115                 return -1; /* no more room, stop walking the stack */
1116         }
1117 }
1118
1119 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1120 {
1121         if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1122                 struct perf_callchain_entry *entry = ctx->entry;
1123                 entry->ip[entry->nr++] = ip;
1124                 ++ctx->nr;
1125                 return 0;
1126         } else {
1127                 return -1; /* no more room, stop walking the stack */
1128         }
1129 }
1130
1131 extern int sysctl_perf_event_paranoid;
1132 extern int sysctl_perf_event_mlock;
1133 extern int sysctl_perf_event_sample_rate;
1134 extern int sysctl_perf_cpu_time_max_percent;
1135
1136 extern void perf_sample_event_took(u64 sample_len_ns);
1137
1138 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1139                 void __user *buffer, size_t *lenp,
1140                 loff_t *ppos);
1141 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1142                 void __user *buffer, size_t *lenp,
1143                 loff_t *ppos);
1144
1145 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1146                                  void __user *buffer, size_t *lenp, loff_t *ppos);
1147
1148 static inline bool perf_paranoid_tracepoint_raw(void)
1149 {
1150         return sysctl_perf_event_paranoid > -1;
1151 }
1152
1153 static inline bool perf_paranoid_cpu(void)
1154 {
1155         return sysctl_perf_event_paranoid > 0;
1156 }
1157
1158 static inline bool perf_paranoid_kernel(void)
1159 {
1160         return sysctl_perf_event_paranoid > 1;
1161 }
1162
1163 extern void perf_event_init(void);
1164 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1165                           int entry_size, struct pt_regs *regs,
1166                           struct hlist_head *head, int rctx,
1167                           struct task_struct *task);
1168 extern void perf_bp_event(struct perf_event *event, void *data);
1169
1170 #ifndef perf_misc_flags
1171 # define perf_misc_flags(regs) \
1172                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1173 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1174 #endif
1175
1176 static inline bool has_branch_stack(struct perf_event *event)
1177 {
1178         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1179 }
1180
1181 static inline bool needs_branch_stack(struct perf_event *event)
1182 {
1183         return event->attr.branch_sample_type != 0;
1184 }
1185
1186 static inline bool has_aux(struct perf_event *event)
1187 {
1188         return event->pmu->setup_aux;
1189 }
1190
1191 static inline bool is_write_backward(struct perf_event *event)
1192 {
1193         return !!event->attr.write_backward;
1194 }
1195
1196 static inline bool has_addr_filter(struct perf_event *event)
1197 {
1198         return event->pmu->nr_addr_filters;
1199 }
1200
1201 /*
1202  * An inherited event uses parent's filters
1203  */
1204 static inline struct perf_addr_filters_head *
1205 perf_event_addr_filters(struct perf_event *event)
1206 {
1207         struct perf_addr_filters_head *ifh = &event->addr_filters;
1208
1209         if (event->parent)
1210                 ifh = &event->parent->addr_filters;
1211
1212         return ifh;
1213 }
1214
1215 extern void perf_event_addr_filters_sync(struct perf_event *event);
1216
1217 extern int perf_output_begin(struct perf_output_handle *handle,
1218                              struct perf_event *event, unsigned int size);
1219 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1220                                     struct perf_event *event,
1221                                     unsigned int size);
1222 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1223                                       struct perf_event *event,
1224                                       unsigned int size);
1225
1226 extern void perf_output_end(struct perf_output_handle *handle);
1227 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1228                              const void *buf, unsigned int len);
1229 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1230                                      unsigned int len);
1231 extern int perf_swevent_get_recursion_context(void);
1232 extern void perf_swevent_put_recursion_context(int rctx);
1233 extern u64 perf_swevent_set_period(struct perf_event *event);
1234 extern void perf_event_enable(struct perf_event *event);
1235 extern void perf_event_disable(struct perf_event *event);
1236 extern void perf_event_disable_local(struct perf_event *event);
1237 extern void perf_event_task_tick(void);
1238 #else /* !CONFIG_PERF_EVENTS: */
1239 static inline void *
1240 perf_aux_output_begin(struct perf_output_handle *handle,
1241                       struct perf_event *event)                         { return NULL; }
1242 static inline void
1243 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1244                     bool truncated)                                     { }
1245 static inline int
1246 perf_aux_output_skip(struct perf_output_handle *handle,
1247                      unsigned long size)                                { return -EINVAL; }
1248 static inline void *
1249 perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1250 static inline void
1251 perf_event_task_migrate(struct task_struct *task)                       { }
1252 static inline void
1253 perf_event_task_sched_in(struct task_struct *prev,
1254                          struct task_struct *task)                      { }
1255 static inline void
1256 perf_event_task_sched_out(struct task_struct *prev,
1257                           struct task_struct *next)                     { }
1258 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1259 static inline void perf_event_exit_task(struct task_struct *child)      { }
1260 static inline void perf_event_free_task(struct task_struct *task)       { }
1261 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1262 static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1263 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1264 {
1265         return ERR_PTR(-EINVAL);
1266 }
1267 static inline u64 perf_event_read_local(struct perf_event *event)       { return -EINVAL; }
1268 static inline void perf_event_print_debug(void)                         { }
1269 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1270 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1271 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1272 {
1273         return -EINVAL;
1274 }
1275
1276 static inline void
1277 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1278 static inline void
1279 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
1280 static inline void
1281 perf_bp_event(struct perf_event *event, void *data)                     { }
1282
1283 static inline int perf_register_guest_info_callbacks
1284 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1285 static inline int perf_unregister_guest_info_callbacks
1286 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1287
1288 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1289 static inline void perf_event_exec(void)                                { }
1290 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1291 static inline void perf_event_fork(struct task_struct *tsk)             { }
1292 static inline void perf_event_init(void)                                { }
1293 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1294 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1295 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1296 static inline void perf_event_enable(struct perf_event *event)          { }
1297 static inline void perf_event_disable(struct perf_event *event)         { }
1298 static inline int __perf_event_disable(void *info)                      { return -1; }
1299 static inline void perf_event_task_tick(void)                           { }
1300 static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1301 #endif
1302
1303 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1304 extern void perf_restore_debug_store(void);
1305 #else
1306 static inline void perf_restore_debug_store(void)                       { }
1307 #endif
1308
1309 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1310 {
1311         return frag->pad < sizeof(u64);
1312 }
1313
1314 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1315
1316 struct perf_pmu_events_attr {
1317         struct device_attribute attr;
1318         u64 id;
1319         const char *event_str;
1320 };
1321
1322 struct perf_pmu_events_ht_attr {
1323         struct device_attribute                 attr;
1324         u64                                     id;
1325         const char                              *event_str_ht;
1326         const char                              *event_str_noht;
1327 };
1328
1329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1330                               char *page);
1331
1332 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1333 static struct perf_pmu_events_attr _var = {                             \
1334         .attr = __ATTR(_name, 0444, _show, NULL),                       \
1335         .id   =  _id,                                                   \
1336 };
1337
1338 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1339 static struct perf_pmu_events_attr _var = {                                 \
1340         .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1341         .id             = 0,                                                \
1342         .event_str      = _str,                                             \
1343 };
1344
1345 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1346 static ssize_t                                                          \
1347 _name##_show(struct device *dev,                                        \
1348                                struct device_attribute *attr,           \
1349                                char *page)                              \
1350 {                                                                       \
1351         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1352         return sprintf(page, _format "\n");                             \
1353 }                                                                       \
1354                                                                         \
1355 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1356
1357 /* Performance counter hotplug functions */
1358 #ifdef CONFIG_PERF_EVENTS
1359 int perf_event_init_cpu(unsigned int cpu);
1360 int perf_event_exit_cpu(unsigned int cpu);
1361 #else
1362 #define perf_event_init_cpu     NULL
1363 #define perf_event_exit_cpu     NULL
1364 #endif
1365
1366 #endif /* _LINUX_PERF_EVENT_H */