Merge branch 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / include / linux / rculist.h
1 #ifndef _LINUX_RCULIST_H
2 #define _LINUX_RCULIST_H
3
4 #ifdef __KERNEL__
5
6 /*
7  * RCU-protected list version
8  */
9 #include <linux/list.h>
10 #include <linux/rcupdate.h>
11
12 /*
13  * Why is there no list_empty_rcu()?  Because list_empty() serves this
14  * purpose.  The list_empty() function fetches the RCU-protected pointer
15  * and compares it to the address of the list head, but neither dereferences
16  * this pointer itself nor provides this pointer to the caller.  Therefore,
17  * it is not necessary to use rcu_dereference(), so that list_empty() can
18  * be used anywhere you would want to use a list_empty_rcu().
19  */
20
21 /*
22  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
23  * @list: list to be initialized
24  *
25  * You should instead use INIT_LIST_HEAD() for normal initialization and
26  * cleanup tasks, when readers have no access to the list being initialized.
27  * However, if the list being initialized is visible to readers, you
28  * need to keep the compiler from being too mischievous.
29  */
30 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
31 {
32         WRITE_ONCE(list->next, list);
33         WRITE_ONCE(list->prev, list);
34 }
35
36 /*
37  * return the ->next pointer of a list_head in an rcu safe
38  * way, we must not access it directly
39  */
40 #define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
41
42 /*
43  * Insert a new entry between two known consecutive entries.
44  *
45  * This is only for internal list manipulation where we know
46  * the prev/next entries already!
47  */
48 #ifndef CONFIG_DEBUG_LIST
49 static inline void __list_add_rcu(struct list_head *new,
50                 struct list_head *prev, struct list_head *next)
51 {
52         new->next = next;
53         new->prev = prev;
54         rcu_assign_pointer(list_next_rcu(prev), new);
55         next->prev = new;
56 }
57 #else
58 void __list_add_rcu(struct list_head *new,
59                     struct list_head *prev, struct list_head *next);
60 #endif
61
62 /**
63  * list_add_rcu - add a new entry to rcu-protected list
64  * @new: new entry to be added
65  * @head: list head to add it after
66  *
67  * Insert a new entry after the specified head.
68  * This is good for implementing stacks.
69  *
70  * The caller must take whatever precautions are necessary
71  * (such as holding appropriate locks) to avoid racing
72  * with another list-mutation primitive, such as list_add_rcu()
73  * or list_del_rcu(), running on this same list.
74  * However, it is perfectly legal to run concurrently with
75  * the _rcu list-traversal primitives, such as
76  * list_for_each_entry_rcu().
77  */
78 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
79 {
80         __list_add_rcu(new, head, head->next);
81 }
82
83 /**
84  * list_add_tail_rcu - add a new entry to rcu-protected list
85  * @new: new entry to be added
86  * @head: list head to add it before
87  *
88  * Insert a new entry before the specified head.
89  * This is useful for implementing queues.
90  *
91  * The caller must take whatever precautions are necessary
92  * (such as holding appropriate locks) to avoid racing
93  * with another list-mutation primitive, such as list_add_tail_rcu()
94  * or list_del_rcu(), running on this same list.
95  * However, it is perfectly legal to run concurrently with
96  * the _rcu list-traversal primitives, such as
97  * list_for_each_entry_rcu().
98  */
99 static inline void list_add_tail_rcu(struct list_head *new,
100                                         struct list_head *head)
101 {
102         __list_add_rcu(new, head->prev, head);
103 }
104
105 /**
106  * list_del_rcu - deletes entry from list without re-initialization
107  * @entry: the element to delete from the list.
108  *
109  * Note: list_empty() on entry does not return true after this,
110  * the entry is in an undefined state. It is useful for RCU based
111  * lockfree traversal.
112  *
113  * In particular, it means that we can not poison the forward
114  * pointers that may still be used for walking the list.
115  *
116  * The caller must take whatever precautions are necessary
117  * (such as holding appropriate locks) to avoid racing
118  * with another list-mutation primitive, such as list_del_rcu()
119  * or list_add_rcu(), running on this same list.
120  * However, it is perfectly legal to run concurrently with
121  * the _rcu list-traversal primitives, such as
122  * list_for_each_entry_rcu().
123  *
124  * Note that the caller is not permitted to immediately free
125  * the newly deleted entry.  Instead, either synchronize_rcu()
126  * or call_rcu() must be used to defer freeing until an RCU
127  * grace period has elapsed.
128  */
129 static inline void list_del_rcu(struct list_head *entry)
130 {
131         __list_del_entry(entry);
132         entry->prev = LIST_POISON2;
133 }
134
135 /**
136  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
137  * @n: the element to delete from the hash list.
138  *
139  * Note: list_unhashed() on the node return true after this. It is
140  * useful for RCU based read lockfree traversal if the writer side
141  * must know if the list entry is still hashed or already unhashed.
142  *
143  * In particular, it means that we can not poison the forward pointers
144  * that may still be used for walking the hash list and we can only
145  * zero the pprev pointer so list_unhashed() will return true after
146  * this.
147  *
148  * The caller must take whatever precautions are necessary (such as
149  * holding appropriate locks) to avoid racing with another
150  * list-mutation primitive, such as hlist_add_head_rcu() or
151  * hlist_del_rcu(), running on this same list.  However, it is
152  * perfectly legal to run concurrently with the _rcu list-traversal
153  * primitives, such as hlist_for_each_entry_rcu().
154  */
155 static inline void hlist_del_init_rcu(struct hlist_node *n)
156 {
157         if (!hlist_unhashed(n)) {
158                 __hlist_del(n);
159                 n->pprev = NULL;
160         }
161 }
162
163 /**
164  * list_replace_rcu - replace old entry by new one
165  * @old : the element to be replaced
166  * @new : the new element to insert
167  *
168  * The @old entry will be replaced with the @new entry atomically.
169  * Note: @old should not be empty.
170  */
171 static inline void list_replace_rcu(struct list_head *old,
172                                 struct list_head *new)
173 {
174         new->next = old->next;
175         new->prev = old->prev;
176         rcu_assign_pointer(list_next_rcu(new->prev), new);
177         new->next->prev = new;
178         old->prev = LIST_POISON2;
179 }
180
181 /**
182  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
183  * @list:       the RCU-protected list to splice
184  * @prev:       points to the last element of the existing list
185  * @next:       points to the first element of the existing list
186  * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
187  *
188  * The list pointed to by @prev and @next can be RCU-read traversed
189  * concurrently with this function.
190  *
191  * Note that this function blocks.
192  *
193  * Important note: the caller must take whatever action is necessary to prevent
194  * any other updates to the existing list.  In principle, it is possible to
195  * modify the list as soon as sync() begins execution. If this sort of thing
196  * becomes necessary, an alternative version based on call_rcu() could be
197  * created.  But only if -really- needed -- there is no shortage of RCU API
198  * members.
199  */
200 static inline void __list_splice_init_rcu(struct list_head *list,
201                                           struct list_head *prev,
202                                           struct list_head *next,
203                                           void (*sync)(void))
204 {
205         struct list_head *first = list->next;
206         struct list_head *last = list->prev;
207
208         /*
209          * "first" and "last" tracking list, so initialize it.  RCU readers
210          * have access to this list, so we must use INIT_LIST_HEAD_RCU()
211          * instead of INIT_LIST_HEAD().
212          */
213
214         INIT_LIST_HEAD_RCU(list);
215
216         /*
217          * At this point, the list body still points to the source list.
218          * Wait for any readers to finish using the list before splicing
219          * the list body into the new list.  Any new readers will see
220          * an empty list.
221          */
222
223         sync();
224
225         /*
226          * Readers are finished with the source list, so perform splice.
227          * The order is important if the new list is global and accessible
228          * to concurrent RCU readers.  Note that RCU readers are not
229          * permitted to traverse the prev pointers without excluding
230          * this function.
231          */
232
233         last->next = next;
234         rcu_assign_pointer(list_next_rcu(prev), first);
235         first->prev = prev;
236         next->prev = last;
237 }
238
239 /**
240  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
241  *                        designed for stacks.
242  * @list:       the RCU-protected list to splice
243  * @head:       the place in the existing list to splice the first list into
244  * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
245  */
246 static inline void list_splice_init_rcu(struct list_head *list,
247                                         struct list_head *head,
248                                         void (*sync)(void))
249 {
250         if (!list_empty(list))
251                 __list_splice_init_rcu(list, head, head->next, sync);
252 }
253
254 /**
255  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
256  *                             list, designed for queues.
257  * @list:       the RCU-protected list to splice
258  * @head:       the place in the existing list to splice the first list into
259  * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
260  */
261 static inline void list_splice_tail_init_rcu(struct list_head *list,
262                                              struct list_head *head,
263                                              void (*sync)(void))
264 {
265         if (!list_empty(list))
266                 __list_splice_init_rcu(list, head->prev, head, sync);
267 }
268
269 /**
270  * list_entry_rcu - get the struct for this entry
271  * @ptr:        the &struct list_head pointer.
272  * @type:       the type of the struct this is embedded in.
273  * @member:     the name of the list_head within the struct.
274  *
275  * This primitive may safely run concurrently with the _rcu list-mutation
276  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
277  */
278 #define list_entry_rcu(ptr, type, member) \
279         container_of(lockless_dereference(ptr), type, member)
280
281 /**
282  * Where are list_empty_rcu() and list_first_entry_rcu()?
283  *
284  * Implementing those functions following their counterparts list_empty() and
285  * list_first_entry() is not advisable because they lead to subtle race
286  * conditions as the following snippet shows:
287  *
288  * if (!list_empty_rcu(mylist)) {
289  *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
290  *      do_something(bar);
291  * }
292  *
293  * The list may not be empty when list_empty_rcu checks it, but it may be when
294  * list_first_entry_rcu rereads the ->next pointer.
295  *
296  * Rereading the ->next pointer is not a problem for list_empty() and
297  * list_first_entry() because they would be protected by a lock that blocks
298  * writers.
299  *
300  * See list_first_or_null_rcu for an alternative.
301  */
302
303 /**
304  * list_first_or_null_rcu - get the first element from a list
305  * @ptr:        the list head to take the element from.
306  * @type:       the type of the struct this is embedded in.
307  * @member:     the name of the list_head within the struct.
308  *
309  * Note that if the list is empty, it returns NULL.
310  *
311  * This primitive may safely run concurrently with the _rcu list-mutation
312  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
313  */
314 #define list_first_or_null_rcu(ptr, type, member) \
315 ({ \
316         struct list_head *__ptr = (ptr); \
317         struct list_head *__next = READ_ONCE(__ptr->next); \
318         likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
319 })
320
321 /**
322  * list_next_or_null_rcu - get the first element from a list
323  * @head:       the head for the list.
324  * @ptr:        the list head to take the next element from.
325  * @type:       the type of the struct this is embedded in.
326  * @member:     the name of the list_head within the struct.
327  *
328  * Note that if the ptr is at the end of the list, NULL is returned.
329  *
330  * This primitive may safely run concurrently with the _rcu list-mutation
331  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
332  */
333 #define list_next_or_null_rcu(head, ptr, type, member) \
334 ({ \
335         struct list_head *__head = (head); \
336         struct list_head *__ptr = (ptr); \
337         struct list_head *__next = READ_ONCE(__ptr->next); \
338         likely(__next != __head) ? list_entry_rcu(__next, type, \
339                                                   member) : NULL; \
340 })
341
342 /**
343  * list_for_each_entry_rcu      -       iterate over rcu list of given type
344  * @pos:        the type * to use as a loop cursor.
345  * @head:       the head for your list.
346  * @member:     the name of the list_head within the struct.
347  *
348  * This list-traversal primitive may safely run concurrently with
349  * the _rcu list-mutation primitives such as list_add_rcu()
350  * as long as the traversal is guarded by rcu_read_lock().
351  */
352 #define list_for_each_entry_rcu(pos, head, member) \
353         for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
354                 &pos->member != (head); \
355                 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
356
357 /**
358  * list_entry_lockless - get the struct for this entry
359  * @ptr:        the &struct list_head pointer.
360  * @type:       the type of the struct this is embedded in.
361  * @member:     the name of the list_head within the struct.
362  *
363  * This primitive may safely run concurrently with the _rcu list-mutation
364  * primitives such as list_add_rcu(), but requires some implicit RCU
365  * read-side guarding.  One example is running within a special
366  * exception-time environment where preemption is disabled and where
367  * lockdep cannot be invoked (in which case updaters must use RCU-sched,
368  * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
369  * example is when items are added to the list, but never deleted.
370  */
371 #define list_entry_lockless(ptr, type, member) \
372         container_of((typeof(ptr))lockless_dereference(ptr), type, member)
373
374 /**
375  * list_for_each_entry_lockless - iterate over rcu list of given type
376  * @pos:        the type * to use as a loop cursor.
377  * @head:       the head for your list.
378  * @member:     the name of the list_struct within the struct.
379  *
380  * This primitive may safely run concurrently with the _rcu list-mutation
381  * primitives such as list_add_rcu(), but requires some implicit RCU
382  * read-side guarding.  One example is running within a special
383  * exception-time environment where preemption is disabled and where
384  * lockdep cannot be invoked (in which case updaters must use RCU-sched,
385  * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
386  * example is when items are added to the list, but never deleted.
387  */
388 #define list_for_each_entry_lockless(pos, head, member) \
389         for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
390              &pos->member != (head); \
391              pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
392
393 /**
394  * list_for_each_entry_continue_rcu - continue iteration over list of given type
395  * @pos:        the type * to use as a loop cursor.
396  * @head:       the head for your list.
397  * @member:     the name of the list_head within the struct.
398  *
399  * Continue to iterate over list of given type, continuing after
400  * the current position.
401  */
402 #define list_for_each_entry_continue_rcu(pos, head, member)             \
403         for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
404              &pos->member != (head);    \
405              pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
406
407 /**
408  * hlist_del_rcu - deletes entry from hash list without re-initialization
409  * @n: the element to delete from the hash list.
410  *
411  * Note: list_unhashed() on entry does not return true after this,
412  * the entry is in an undefined state. It is useful for RCU based
413  * lockfree traversal.
414  *
415  * In particular, it means that we can not poison the forward
416  * pointers that may still be used for walking the hash list.
417  *
418  * The caller must take whatever precautions are necessary
419  * (such as holding appropriate locks) to avoid racing
420  * with another list-mutation primitive, such as hlist_add_head_rcu()
421  * or hlist_del_rcu(), running on this same list.
422  * However, it is perfectly legal to run concurrently with
423  * the _rcu list-traversal primitives, such as
424  * hlist_for_each_entry().
425  */
426 static inline void hlist_del_rcu(struct hlist_node *n)
427 {
428         __hlist_del(n);
429         n->pprev = LIST_POISON2;
430 }
431
432 /**
433  * hlist_replace_rcu - replace old entry by new one
434  * @old : the element to be replaced
435  * @new : the new element to insert
436  *
437  * The @old entry will be replaced with the @new entry atomically.
438  */
439 static inline void hlist_replace_rcu(struct hlist_node *old,
440                                         struct hlist_node *new)
441 {
442         struct hlist_node *next = old->next;
443
444         new->next = next;
445         new->pprev = old->pprev;
446         rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
447         if (next)
448                 new->next->pprev = &new->next;
449         old->pprev = LIST_POISON2;
450 }
451
452 /*
453  * return the first or the next element in an RCU protected hlist
454  */
455 #define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
456 #define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
457 #define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
458
459 /**
460  * hlist_add_head_rcu
461  * @n: the element to add to the hash list.
462  * @h: the list to add to.
463  *
464  * Description:
465  * Adds the specified element to the specified hlist,
466  * while permitting racing traversals.
467  *
468  * The caller must take whatever precautions are necessary
469  * (such as holding appropriate locks) to avoid racing
470  * with another list-mutation primitive, such as hlist_add_head_rcu()
471  * or hlist_del_rcu(), running on this same list.
472  * However, it is perfectly legal to run concurrently with
473  * the _rcu list-traversal primitives, such as
474  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
475  * problems on Alpha CPUs.  Regardless of the type of CPU, the
476  * list-traversal primitive must be guarded by rcu_read_lock().
477  */
478 static inline void hlist_add_head_rcu(struct hlist_node *n,
479                                         struct hlist_head *h)
480 {
481         struct hlist_node *first = h->first;
482
483         n->next = first;
484         n->pprev = &h->first;
485         rcu_assign_pointer(hlist_first_rcu(h), n);
486         if (first)
487                 first->pprev = &n->next;
488 }
489
490 /**
491  * hlist_add_tail_rcu
492  * @n: the element to add to the hash list.
493  * @h: the list to add to.
494  *
495  * Description:
496  * Adds the specified element to the specified hlist,
497  * while permitting racing traversals.
498  *
499  * The caller must take whatever precautions are necessary
500  * (such as holding appropriate locks) to avoid racing
501  * with another list-mutation primitive, such as hlist_add_head_rcu()
502  * or hlist_del_rcu(), running on this same list.
503  * However, it is perfectly legal to run concurrently with
504  * the _rcu list-traversal primitives, such as
505  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
506  * problems on Alpha CPUs.  Regardless of the type of CPU, the
507  * list-traversal primitive must be guarded by rcu_read_lock().
508  */
509 static inline void hlist_add_tail_rcu(struct hlist_node *n,
510                                       struct hlist_head *h)
511 {
512         struct hlist_node *i, *last = NULL;
513
514         for (i = hlist_first_rcu(h); i; i = hlist_next_rcu(i))
515                 last = i;
516
517         if (last) {
518                 n->next = last->next;
519                 n->pprev = &last->next;
520                 rcu_assign_pointer(hlist_next_rcu(last), n);
521         } else {
522                 hlist_add_head_rcu(n, h);
523         }
524 }
525
526 /**
527  * hlist_add_before_rcu
528  * @n: the new element to add to the hash list.
529  * @next: the existing element to add the new element before.
530  *
531  * Description:
532  * Adds the specified element to the specified hlist
533  * before the specified node while permitting racing traversals.
534  *
535  * The caller must take whatever precautions are necessary
536  * (such as holding appropriate locks) to avoid racing
537  * with another list-mutation primitive, such as hlist_add_head_rcu()
538  * or hlist_del_rcu(), running on this same list.
539  * However, it is perfectly legal to run concurrently with
540  * the _rcu list-traversal primitives, such as
541  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
542  * problems on Alpha CPUs.
543  */
544 static inline void hlist_add_before_rcu(struct hlist_node *n,
545                                         struct hlist_node *next)
546 {
547         n->pprev = next->pprev;
548         n->next = next;
549         rcu_assign_pointer(hlist_pprev_rcu(n), n);
550         next->pprev = &n->next;
551 }
552
553 /**
554  * hlist_add_behind_rcu
555  * @n: the new element to add to the hash list.
556  * @prev: the existing element to add the new element after.
557  *
558  * Description:
559  * Adds the specified element to the specified hlist
560  * after the specified node while permitting racing traversals.
561  *
562  * The caller must take whatever precautions are necessary
563  * (such as holding appropriate locks) to avoid racing
564  * with another list-mutation primitive, such as hlist_add_head_rcu()
565  * or hlist_del_rcu(), running on this same list.
566  * However, it is perfectly legal to run concurrently with
567  * the _rcu list-traversal primitives, such as
568  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
569  * problems on Alpha CPUs.
570  */
571 static inline void hlist_add_behind_rcu(struct hlist_node *n,
572                                         struct hlist_node *prev)
573 {
574         n->next = prev->next;
575         n->pprev = &prev->next;
576         rcu_assign_pointer(hlist_next_rcu(prev), n);
577         if (n->next)
578                 n->next->pprev = &n->next;
579 }
580
581 #define __hlist_for_each_rcu(pos, head)                         \
582         for (pos = rcu_dereference(hlist_first_rcu(head));      \
583              pos;                                               \
584              pos = rcu_dereference(hlist_next_rcu(pos)))
585
586 /**
587  * hlist_for_each_entry_rcu - iterate over rcu list of given type
588  * @pos:        the type * to use as a loop cursor.
589  * @head:       the head for your list.
590  * @member:     the name of the hlist_node within the struct.
591  *
592  * This list-traversal primitive may safely run concurrently with
593  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
594  * as long as the traversal is guarded by rcu_read_lock().
595  */
596 #define hlist_for_each_entry_rcu(pos, head, member)                     \
597         for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
598                         typeof(*(pos)), member);                        \
599                 pos;                                                    \
600                 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
601                         &(pos)->member)), typeof(*(pos)), member))
602
603 /**
604  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
605  * @pos:        the type * to use as a loop cursor.
606  * @head:       the head for your list.
607  * @member:     the name of the hlist_node within the struct.
608  *
609  * This list-traversal primitive may safely run concurrently with
610  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
611  * as long as the traversal is guarded by rcu_read_lock().
612  *
613  * This is the same as hlist_for_each_entry_rcu() except that it does
614  * not do any RCU debugging or tracing.
615  */
616 #define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
617         for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
618                         typeof(*(pos)), member);                        \
619                 pos;                                                    \
620                 pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
621                         &(pos)->member)), typeof(*(pos)), member))
622
623 /**
624  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
625  * @pos:        the type * to use as a loop cursor.
626  * @head:       the head for your list.
627  * @member:     the name of the hlist_node within the struct.
628  *
629  * This list-traversal primitive may safely run concurrently with
630  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
631  * as long as the traversal is guarded by rcu_read_lock().
632  */
633 #define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
634         for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
635                         typeof(*(pos)), member);                        \
636                 pos;                                                    \
637                 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
638                         &(pos)->member)), typeof(*(pos)), member))
639
640 /**
641  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
642  * @pos:        the type * to use as a loop cursor.
643  * @member:     the name of the hlist_node within the struct.
644  */
645 #define hlist_for_each_entry_continue_rcu(pos, member)                  \
646         for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
647                         &(pos)->member)), typeof(*(pos)), member);      \
648              pos;                                                       \
649              pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
650                         &(pos)->member)), typeof(*(pos)), member))
651
652 /**
653  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
654  * @pos:        the type * to use as a loop cursor.
655  * @member:     the name of the hlist_node within the struct.
656  */
657 #define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
658         for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
659                         &(pos)->member)), typeof(*(pos)), member);      \
660              pos;                                                       \
661              pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
662                         &(pos)->member)), typeof(*(pos)), member))
663
664 /**
665  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
666  * @pos:        the type * to use as a loop cursor.
667  * @member:     the name of the hlist_node within the struct.
668  */
669 #define hlist_for_each_entry_from_rcu(pos, member)                      \
670         for (; pos;                                                     \
671              pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
672                         &(pos)->member)), typeof(*(pos)), member))
673
674 #endif  /* __KERNEL__ */
675 #endif