xen-netback: re-import canonical netif header
[cascardo/linux.git] / include / xen / interface / io / netif.h
1 /******************************************************************************
2  * xen_netif.h
3  *
4  * Unified network-device I/O interface for Xen guest OSes.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Copyright (c) 2003-2004, Keir Fraser
25  */
26
27 #ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
28 #define __XEN_PUBLIC_IO_XEN_NETIF_H__
29
30 #include "ring.h"
31 #include "../grant_table.h"
32
33 /*
34  * Older implementation of Xen network frontend / backend has an
35  * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
36  * ring slots a skb can use. Netfront / netback may not work as
37  * expected when frontend and backend have different MAX_SKB_FRAGS.
38  *
39  * A better approach is to add mechanism for netfront / netback to
40  * negotiate this value. However we cannot fix all possible
41  * frontends, so we need to define a value which states the minimum
42  * slots backend must support.
43  *
44  * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
45  * (18), which is proved to work with most frontends. Any new backend
46  * which doesn't negotiate with frontend should expect frontend to
47  * send a valid packet using slots up to this value.
48  */
49 #define XEN_NETIF_NR_SLOTS_MIN 18
50
51 /*
52  * Notifications after enqueuing any type of message should be conditional on
53  * the appropriate req_event or rsp_event field in the shared ring.
54  * If the client sends notification for rx requests then it should specify
55  * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
56  * that it cannot safely queue packets (as it may not be kicked to send them).
57  */
58
59 /*
60  * "feature-split-event-channels" is introduced to separate guest TX
61  * and RX notification. Backend either doesn't support this feature or
62  * advertises it via xenstore as 0 (disabled) or 1 (enabled).
63  *
64  * To make use of this feature, frontend should allocate two event
65  * channels for TX and RX, advertise them to backend as
66  * "event-channel-tx" and "event-channel-rx" respectively. If frontend
67  * doesn't want to use this feature, it just writes "event-channel"
68  * node as before.
69  */
70
71 /*
72  * Multiple transmit and receive queues:
73  * If supported, the backend will write the key "multi-queue-max-queues" to
74  * the directory for that vif, and set its value to the maximum supported
75  * number of queues.
76  * Frontends that are aware of this feature and wish to use it can write the
77  * key "multi-queue-num-queues", set to the number they wish to use, which
78  * must be greater than zero, and no more than the value reported by the backend
79  * in "multi-queue-max-queues".
80  *
81  * Queues replicate the shared rings and event channels.
82  * "feature-split-event-channels" may optionally be used when using
83  * multiple queues, but is not mandatory.
84  *
85  * Each queue consists of one shared ring pair, i.e. there must be the same
86  * number of tx and rx rings.
87  *
88  * For frontends requesting just one queue, the usual event-channel and
89  * ring-ref keys are written as before, simplifying the backend processing
90  * to avoid distinguishing between a frontend that doesn't understand the
91  * multi-queue feature, and one that does, but requested only one queue.
92  *
93  * Frontends requesting two or more queues must not write the toplevel
94  * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
95  * instead writing those keys under sub-keys having the name "queue-N" where
96  * N is the integer ID of the queue for which those keys belong. Queues
97  * are indexed from zero. For example, a frontend with two queues and split
98  * event channels must write the following set of queue-related keys:
99  *
100  * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
101  * /local/domain/1/device/vif/0/queue-0 = ""
102  * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
103  * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
104  * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
105  * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
106  * /local/domain/1/device/vif/0/queue-1 = ""
107  * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
108  * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
109  * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
110  * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
111  *
112  * If there is any inconsistency in the XenStore data, the backend may
113  * choose not to connect any queues, instead treating the request as an
114  * error. This includes scenarios where more (or fewer) queues were
115  * requested than the frontend provided details for.
116  *
117  * Mapping of packets to queues is considered to be a function of the
118  * transmitting system (backend or frontend) and is not negotiated
119  * between the two. Guests are free to transmit packets on any queue
120  * they choose, provided it has been set up correctly. Guests must be
121  * prepared to receive packets on any queue they have requested be set up.
122  */
123
124 /*
125  * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
126  * offload off or on. If it is missing then the feature is assumed to be on.
127  * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
128  * offload on or off. If it is missing then the feature is assumed to be off.
129  */
130
131 /*
132  * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
133  * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
134  * frontends nor backends are assumed to be capable unless the flags are
135  * present.
136  */
137
138 /*
139  * "feature-multicast-control" and "feature-dynamic-multicast-control"
140  * advertise the capability to filter ethernet multicast packets in the
141  * backend. If the frontend wishes to take advantage of this feature then
142  * it may set "request-multicast-control". If the backend only advertises
143  * "feature-multicast-control" then "request-multicast-control" must be set
144  * before the frontend moves into the connected state. The backend will
145  * sample the value on this state transition and any subsequent change in
146  * value will have no effect. However, if the backend also advertises
147  * "feature-dynamic-multicast-control" then "request-multicast-control"
148  * may be set by the frontend at any time. In this case, the backend will
149  * watch the value and re-sample on watch events.
150  *
151  * If the sampled value of "request-multicast-control" is set then the
152  * backend transmit side should no longer flood multicast packets to the
153  * frontend, it should instead drop any multicast packet that does not
154  * match in a filter list.
155  * The list is amended by the frontend by sending dummy transmit requests
156  * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
157  * specified below.
158  * Note that the filter list may be amended even if the sampled value of
159  * "request-multicast-control" is not set, however the filter should only
160  * be applied if it is set.
161  */
162
163 /*
164  * Control ring
165  * ============
166  *
167  * Some features, such as hashing (detailed below), require a
168  * significant amount of out-of-band data to be passed from frontend to
169  * backend. Use of xenstore is not suitable for large quantities of data
170  * because of quota limitations and so a dedicated 'control ring' is used.
171  * The ability of the backend to use a control ring is advertised by
172  * setting:
173  *
174  * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
175  *
176  * The frontend provides a control ring to the backend by setting:
177  *
178  * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
179  * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
180  *
181  * where <gref> is the grant reference of the shared page used to
182  * implement the control ring and <port> is an event channel to be used
183  * as a mailbox interrupt. These keys must be set before the frontend
184  * moves into the connected state.
185  *
186  * The control ring uses a fixed request/response message size and is
187  * balanced (i.e. one request to one response), so operationally it is much
188  * the same as a transmit or receive ring.
189  * Note that there is no requirement that responses are issued in the same
190  * order as requests.
191  */
192
193 /*
194  * Hash types
195  * ==========
196  *
197  * For the purposes of the definitions below, 'Packet[]' is an array of
198  * octets containing an IP packet without options, 'Array[X..Y]' means a
199  * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
200  * used to indicate concatenation of arrays.
201  */
202
203 /*
204  * A hash calculated over an IP version 4 header as follows:
205  *
206  * Buffer[0..8] = Packet[12..15] (source address) +
207  *                Packet[16..19] (destination address)
208  *
209  * Result = Hash(Buffer, 8)
210  */
211 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
212 #define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
213         (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
214
215 /*
216  * A hash calculated over an IP version 4 header and TCP header as
217  * follows:
218  *
219  * Buffer[0..12] = Packet[12..15] (source address) +
220  *                 Packet[16..19] (destination address) +
221  *                 Packet[20..21] (source port) +
222  *                 Packet[22..23] (destination port)
223  *
224  * Result = Hash(Buffer, 12)
225  */
226 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
227 #define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
228         (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
229
230 /*
231  * A hash calculated over an IP version 6 header as follows:
232  *
233  * Buffer[0..32] = Packet[8..23]  (source address ) +
234  *                 Packet[24..39] (destination address)
235  *
236  * Result = Hash(Buffer, 32)
237  */
238 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
239 #define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
240         (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
241
242 /*
243  * A hash calculated over an IP version 6 header and TCP header as
244  * follows:
245  *
246  * Buffer[0..36] = Packet[8..23]  (source address) +
247  *                 Packet[24..39] (destination address) +
248  *                 Packet[40..41] (source port) +
249  *                 Packet[42..43] (destination port)
250  *
251  * Result = Hash(Buffer, 36)
252  */
253 #define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
254 #define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
255         (1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
256
257 /*
258  * Hash algorithms
259  * ===============
260  */
261
262 #define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
263
264 /*
265  * Toeplitz hash:
266  */
267
268 #define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
269
270 /*
271  * This algorithm uses a 'key' as well as the data buffer itself.
272  * (Buffer[] and Key[] are treated as shift-registers where the MSB of
273  * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
274  * is the 'right-most').
275  *
276  * Value = 0
277  * For number of bits in Buffer[]
278  *    If (left-most bit of Buffer[] is 1)
279  *        Value ^= left-most 32 bits of Key[]
280  *    Key[] << 1
281  *    Buffer[] << 1
282  *
283  * The code below is provided for convenience where an operating system
284  * does not already provide an implementation.
285  */
286 #ifdef XEN_NETIF_DEFINE_TOEPLITZ
287 static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
288                                         unsigned int keylen,
289                                         const uint8_t *buf, unsigned int buflen)
290 {
291         unsigned int keyi, bufi;
292         uint64_t prefix = 0;
293         uint64_t hash = 0;
294
295         /* Pre-load prefix with the first 8 bytes of the key */
296         for (keyi = 0; keyi < 8; keyi++) {
297                 prefix <<= 8;
298                 prefix |= (keyi < keylen) ? key[keyi] : 0;
299         }
300
301         for (bufi = 0; bufi < buflen; bufi++) {
302                 uint8_t byte = buf[bufi];
303                 unsigned int bit;
304
305                 for (bit = 0; bit < 8; bit++) {
306                         if (byte & 0x80)
307                                 hash ^= prefix;
308                         prefix <<= 1;
309                         byte <<= 1;
310                 }
311
312                 /*
313                  * 'prefix' has now been left-shifted by 8, so
314                  * OR in the next byte.
315                  */
316                 prefix |= (keyi < keylen) ? key[keyi] : 0;
317                 keyi++;
318         }
319
320         /* The valid part of the hash is in the upper 32 bits. */
321         return hash >> 32;
322 }
323 #endif                          /* XEN_NETIF_DEFINE_TOEPLITZ */
324
325 /*
326  * Control requests (struct xen_netif_ctrl_request)
327  * ================================================
328  *
329  * All requests have the following format:
330  *
331  *    0     1     2     3     4     5     6     7  octet
332  * +-----+-----+-----+-----+-----+-----+-----+-----+
333  * |    id     |   type    |         data[0]       |
334  * +-----+-----+-----+-----+-----+-----+-----+-----+
335  * |         data[1]       |         data[2]       |
336  * +-----+-----+-----+-----+-----------------------+
337  *
338  * id: the request identifier, echoed in response.
339  * type: the type of request (see below)
340  * data[]: any data associated with the request (determined by type)
341  */
342
343 struct xen_netif_ctrl_request {
344         uint16_t id;
345         uint16_t type;
346
347 #define XEN_NETIF_CTRL_TYPE_INVALID               0
348 #define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
349 #define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
350 #define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
351 #define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
352 #define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
353 #define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
354 #define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
355
356         uint32_t data[3];
357 };
358
359 /*
360  * Control responses (struct xen_netif_ctrl_response)
361  * ==================================================
362  *
363  * All responses have the following format:
364  *
365  *    0     1     2     3     4     5     6     7  octet
366  * +-----+-----+-----+-----+-----+-----+-----+-----+
367  * |    id     |   type    |         status        |
368  * +-----+-----+-----+-----+-----+-----+-----+-----+
369  * |         data          |
370  * +-----+-----+-----+-----+
371  *
372  * id: the corresponding request identifier
373  * type: the type of the corresponding request
374  * status: the status of request processing
375  * data: any data associated with the response (determined by type and
376  *       status)
377  */
378
379 struct xen_netif_ctrl_response {
380         uint16_t id;
381         uint16_t type;
382         uint32_t status;
383
384 #define XEN_NETIF_CTRL_STATUS_SUCCESS           0
385 #define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
386 #define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
387 #define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
388
389         uint32_t data;
390 };
391
392 /*
393  * Control messages
394  * ================
395  *
396  * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
397  * --------------------------------------
398  *
399  * This is sent by the frontend to set the desired hash algorithm.
400  *
401  * Request:
402  *
403  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
404  *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
405  *  data[1] = 0
406  *  data[2] = 0
407  *
408  * Response:
409  *
410  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
411  *                                                     supported
412  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
413  *                                                     supported
414  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
415  *
416  * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
417  *       hashing and the backend is free to choose how it steers packets
418  *       to queues (which is the default behaviour).
419  *
420  * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
421  * ----------------------------------
422  *
423  * This is sent by the frontend to query the types of hash supported by
424  * the backend.
425  *
426  * Request:
427  *
428  *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
429  *  data[0] = 0
430  *  data[1] = 0
431  *  data[2] = 0
432  *
433  * Response:
434  *
435  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
436  *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
437  *  data   = supported hash types (if operation was successful)
438  *
439  * NOTE: A valid hash algorithm must be selected before this operation can
440  *       succeed.
441  *
442  * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
443  * ----------------------------------
444  *
445  * This is sent by the frontend to set the types of hash that the backend
446  * should calculate. (See above for hash type definitions).
447  * Note that the 'maximal' type of hash should always be chosen. For
448  * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
449  * the latter hash type should be calculated for any TCP packet and the
450  * former only calculated for non-TCP packets.
451  *
452  * Request:
453  *
454  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
455  *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
456  *  data[1] = 0
457  *  data[2] = 0
458  *
459  * Response:
460  *
461  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
462  *                                                     supported
463  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
464  *                                                     value is invalid or
465  *                                                     unsupported
466  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
467  *  data   = 0
468  *
469  * NOTE: A valid hash algorithm must be selected before this operation can
470  *       succeed.
471  *       Also, setting data[0] to zero disables hashing and the backend
472  *       is free to choose how it steers packets to queues.
473  *
474  * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
475  * --------------------------------
476  *
477  * This is sent by the frontend to set the key of the hash if the algorithm
478  * requires it. (See hash algorithms above).
479  *
480  * Request:
481  *
482  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
483  *  data[0] = grant reference of page containing the key (assumed to
484  *            start at beginning of grant)
485  *  data[1] = size of key in octets
486  *  data[2] = 0
487  *
488  * Response:
489  *
490  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
491  *                                                     supported
492  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
493  *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
494  *                                                     than the backend
495  *                                                     supports
496  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
497  *  data   = 0
498  *
499  * NOTE: Any key octets not specified are assumed to be zero (the key
500  *       is assumed to be empty by default) and specifying a new key
501  *       invalidates any previous key, hence specifying a key size of
502  *       zero will clear the key (which ensures that the calculated hash
503  *       will always be zero).
504  *       The maximum size of key is algorithm and backend specific, but
505  *       is also limited by the single grant reference.
506  *       The grant reference may be read-only and must remain valid until
507  *       the response has been processed.
508  *
509  * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
510  * -----------------------------------------
511  *
512  * This is sent by the frontend to query the maximum size of mapping
513  * table supported by the backend. The size is specified in terms of
514  * table entries.
515  *
516  * Request:
517  *
518  *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
519  *  data[0] = 0
520  *  data[1] = 0
521  *  data[2] = 0
522  *
523  * Response:
524  *
525  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
526  *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
527  *  data   = maximum number of entries allowed in the mapping table
528  *           (if operation was successful) or zero if a mapping table is
529  *           not supported (i.e. hash mapping is done only by modular
530  *           arithmetic).
531  *
532  * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
533  * -------------------------------------
534  *
535  * This is sent by the frontend to set the actual size of the mapping
536  * table to be used by the backend. The size is specified in terms of
537  * table entries.
538  * Any previous table is invalidated by this message and any new table
539  * is assumed to be zero filled.
540  *
541  * Request:
542  *
543  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
544  *  data[0] = number of entries in mapping table
545  *  data[1] = 0
546  *  data[2] = 0
547  *
548  * Response:
549  *
550  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
551  *                                                     supported
552  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
553  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
554  *  data   = 0
555  *
556  * NOTE: Setting data[0] to 0 means that hash mapping should be done
557  *       using modular arithmetic.
558  *
559  * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
560  * ------------------------------------
561  *
562  * This is sent by the frontend to set the content of the table mapping
563  * hash value to queue number. The backend should calculate the hash from
564  * the packet header, use it as an index into the table (modulo the size
565  * of the table) and then steer the packet to the queue number found at
566  * that index.
567  *
568  * Request:
569  *
570  *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
571  *  data[0] = grant reference of page containing the mapping (sub-)table
572  *            (assumed to start at beginning of grant)
573  *  data[1] = size of (sub-)table in entries
574  *  data[2] = offset, in entries, of sub-table within overall table
575  *
576  * Response:
577  *
578  *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
579  *                                                     supported
580  *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
581  *                                                     is invalid
582  *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
583  *                                                     than the backend
584  *                                                     supports
585  *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
586  *  data   = 0
587  *
588  * NOTE: The overall table has the following format:
589  *
590  *          0     1     2     3     4     5     6     7  octet
591  *       +-----+-----+-----+-----+-----+-----+-----+-----+
592  *       |       mapping[0]      |       mapping[1]      |
593  *       +-----+-----+-----+-----+-----+-----+-----+-----+
594  *       |                       .                       |
595  *       |                       .                       |
596  *       |                       .                       |
597  *       +-----+-----+-----+-----+-----+-----+-----+-----+
598  *       |      mapping[N-2]     |      mapping[N-1]     |
599  *       +-----+-----+-----+-----+-----+-----+-----+-----+
600  *
601  *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
602  *       message and each  mapping must specifies a queue between 0 and
603  *       "multi-queue-num-queues" (see above).
604  *       The backend may support a mapping table larger than can be
605  *       mapped by a single grant reference. Thus sub-tables within a
606  *       larger table can be individually set by sending multiple messages
607  *       with differing offset values. Specifying a new sub-table does not
608  *       invalidate any table data outside that range.
609  *       The grant reference may be read-only and must remain valid until
610  *       the response has been processed.
611  */
612
613 DEFINE_RING_TYPES(xen_netif_ctrl,
614                   struct xen_netif_ctrl_request,
615                   struct xen_netif_ctrl_response);
616
617 /*
618  * Guest transmit
619  * ==============
620  *
621  * This is the 'wire' format for transmit (frontend -> backend) packets:
622  *
623  *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
624  *                                    size = total packet size
625  * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
626  *                                     XEN_NETTXF_extra_info)
627  *  ...
628  * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
629  *                                     XEN_NETIF_EXTRA_MORE)
630  *  ...
631  *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
632  *                                     XEN_NETTXF_more_data - flags on preceding
633  *                                     extras are not relevant here)
634  *                                    flags = 0
635  *                                    size = fragment size
636  *
637  * NOTE:
638  *
639  * This format slightly is different from that used for receive
640  * (backend -> frontend) packets. Specifically, in a multi-fragment
641  * packet the actual size of fragment 1 can only be determined by
642  * subtracting the sizes of fragments 2..N from the total packet size.
643  *
644  * Ring slot size is 12 octets, however not all request/response
645  * structs use the full size.
646  *
647  * tx request data (xen_netif_tx_request_t)
648  * ------------------------------------
649  *
650  *    0     1     2     3     4     5     6     7  octet
651  * +-----+-----+-----+-----+-----+-----+-----+-----+
652  * | grant ref             | offset    | flags     |
653  * +-----+-----+-----+-----+-----+-----+-----+-----+
654  * | id        | size      |
655  * +-----+-----+-----+-----+
656  *
657  * grant ref: Reference to buffer page.
658  * offset: Offset within buffer page.
659  * flags: XEN_NETTXF_*.
660  * id: request identifier, echoed in response.
661  * size: packet size in bytes.
662  *
663  * tx response (xen_netif_tx_response_t)
664  * ---------------------------------
665  *
666  *    0     1     2     3     4     5     6     7  octet
667  * +-----+-----+-----+-----+-----+-----+-----+-----+
668  * | id        | status    | unused                |
669  * +-----+-----+-----+-----+-----+-----+-----+-----+
670  * | unused                |
671  * +-----+-----+-----+-----+
672  *
673  * id: reflects id in transmit request
674  * status: XEN_NETIF_RSP_*
675  *
676  * Guest receive
677  * =============
678  *
679  * This is the 'wire' format for receive (backend -> frontend) packets:
680  *
681  *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
682  *                                    size = fragment size
683  * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
684  *                                     XEN_NETRXF_extra_info)
685  *  ...
686  * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
687  *                                     XEN_NETIF_EXTRA_MORE)
688  *  ...
689  *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
690  *                                     XEN_NETRXF_more_data - flags on preceding
691  *                                     extras are not relevant here)
692  *                                    flags = 0
693  *                                    size = fragment size
694  *
695  * NOTE:
696  *
697  * This format slightly is different from that used for transmit
698  * (frontend -> backend) packets. Specifically, in a multi-fragment
699  * packet the size of the packet can only be determined by summing the
700  * sizes of fragments 1..N.
701  *
702  * Ring slot size is 8 octets.
703  *
704  * rx request (xen_netif_rx_request_t)
705  * -------------------------------
706  *
707  *    0     1     2     3     4     5     6     7  octet
708  * +-----+-----+-----+-----+-----+-----+-----+-----+
709  * | id        | pad       | gref                  |
710  * +-----+-----+-----+-----+-----+-----+-----+-----+
711  *
712  * id: request identifier, echoed in response.
713  * gref: reference to incoming granted frame.
714  *
715  * rx response (xen_netif_rx_response_t)
716  * ---------------------------------
717  *
718  *    0     1     2     3     4     5     6     7  octet
719  * +-----+-----+-----+-----+-----+-----+-----+-----+
720  * | id        | offset    | flags     | status    |
721  * +-----+-----+-----+-----+-----+-----+-----+-----+
722  *
723  * id: reflects id in receive request
724  * offset: offset in page of start of received packet
725  * flags: XEN_NETRXF_*
726  * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
727  *
728  * NOTE: Historically, to support GSO on the frontend receive side, Linux
729  *       netfront does not make use of the rx response id (because, as
730  *       described below, extra info structures overlay the id field).
731  *       Instead it assumes that responses always appear in the same ring
732  *       slot as their corresponding request. Thus, to maintain
733  *       compatibility, backends must make sure this is the case.
734  *
735  * Extra Info
736  * ==========
737  *
738  * Can be present if initial request or response has NET{T,R}XF_extra_info,
739  * or previous extra request has XEN_NETIF_EXTRA_MORE.
740  *
741  * The struct therefore needs to fit into either a tx or rx slot and
742  * is therefore limited to 8 octets.
743  *
744  * NOTE: Because extra info data overlays the usual request/response
745  *       structures, there is no id information in the opposite direction.
746  *       So, if an extra info overlays an rx response the frontend can
747  *       assume that it is in the same ring slot as the request that was
748  *       consumed to make the slot available, and the backend must ensure
749  *       this assumption is true.
750  *
751  * extra info (xen_netif_extra_info_t)
752  * -------------------------------
753  *
754  * General format:
755  *
756  *    0     1     2     3     4     5     6     7  octet
757  * +-----+-----+-----+-----+-----+-----+-----+-----+
758  * |type |flags| type specific data                |
759  * +-----+-----+-----+-----+-----+-----+-----+-----+
760  * | padding for tx        |
761  * +-----+-----+-----+-----+
762  *
763  * type: XEN_NETIF_EXTRA_TYPE_*
764  * flags: XEN_NETIF_EXTRA_FLAG_*
765  * padding for tx: present only in the tx case due to 8 octet limit
766  *                 from rx case. Not shown in type specific entries
767  *                 below.
768  *
769  * XEN_NETIF_EXTRA_TYPE_GSO:
770  *
771  *    0     1     2     3     4     5     6     7  octet
772  * +-----+-----+-----+-----+-----+-----+-----+-----+
773  * |type |flags| size      |type | pad | features  |
774  * +-----+-----+-----+-----+-----+-----+-----+-----+
775  *
776  * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
777  * flags: XEN_NETIF_EXTRA_FLAG_*
778  * size: Maximum payload size of each segment. For example,
779  *       for TCP this is just the path MSS.
780  * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
781  *       the packet and any extra features required to segment the
782  *       packet properly.
783  * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
784  *           features required to process this packet, such as ECN
785  *           support for TCPv4.
786  *
787  * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
788  *
789  *    0     1     2     3     4     5     6     7  octet
790  * +-----+-----+-----+-----+-----+-----+-----+-----+
791  * |type |flags| addr                              |
792  * +-----+-----+-----+-----+-----+-----+-----+-----+
793  *
794  * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
795  * flags: XEN_NETIF_EXTRA_FLAG_*
796  * addr: address to add/remove
797  *
798  * XEN_NETIF_EXTRA_TYPE_HASH:
799  *
800  * A backend that supports teoplitz hashing is assumed to accept
801  * this type of extra info in transmit packets.
802  * A frontend that enables hashing is assumed to accept
803  * this type of extra info in receive packets.
804  *
805  *    0     1     2     3     4     5     6     7  octet
806  * +-----+-----+-----+-----+-----+-----+-----+-----+
807  * |type |flags|htype| alg |LSB ---- value ---- MSB|
808  * +-----+-----+-----+-----+-----+-----+-----+-----+
809  *
810  * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
811  * flags: XEN_NETIF_EXTRA_FLAG_*
812  * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
813  * alg: The algorithm used to calculate the hash (one of
814  *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
815  * value: Hash value
816  */
817
818 /* Protocol checksum field is blank in the packet (hardware offload)? */
819 #define _XEN_NETTXF_csum_blank     (0)
820 #define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
821
822 /* Packet data has been validated against protocol checksum. */
823 #define _XEN_NETTXF_data_validated (1)
824 #define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
825
826 /* Packet continues in the next request descriptor. */
827 #define _XEN_NETTXF_more_data      (2)
828 #define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
829
830 /* Packet to be followed by extra descriptor(s). */
831 #define _XEN_NETTXF_extra_info     (3)
832 #define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
833
834 #define XEN_NETIF_MAX_TX_SIZE 0xFFFF
835 struct xen_netif_tx_request {
836         grant_ref_t gref;
837         uint16_t offset;
838         uint16_t flags;
839         uint16_t id;
840         uint16_t size;
841 };
842
843 /* Types of xen_netif_extra_info descriptors. */
844 #define XEN_NETIF_EXTRA_TYPE_NONE      (0)      /* Never used - invalid */
845 #define XEN_NETIF_EXTRA_TYPE_GSO       (1)      /* u.gso */
846 #define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)      /* u.mcast */
847 #define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)      /* u.mcast */
848 #define XEN_NETIF_EXTRA_TYPE_HASH      (4)      /* u.hash */
849 #define XEN_NETIF_EXTRA_TYPE_MAX       (5)
850
851 /* xen_netif_extra_info_t flags. */
852 #define _XEN_NETIF_EXTRA_FLAG_MORE (0)
853 #define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
854
855 /* GSO types */
856 #define XEN_NETIF_GSO_TYPE_NONE         (0)
857 #define XEN_NETIF_GSO_TYPE_TCPV4        (1)
858 #define XEN_NETIF_GSO_TYPE_TCPV6        (2)
859
860 /*
861  * This structure needs to fit within both xen_netif_tx_request_t and
862  * xen_netif_rx_response_t for compatibility.
863  */
864 struct xen_netif_extra_info {
865         uint8_t type;
866         uint8_t flags;
867         union {
868                 struct {
869                         uint16_t size;
870                         uint8_t type;
871                         uint8_t pad;
872                         uint16_t features;
873                 } gso;
874                 struct {
875                         uint8_t addr[6];
876                 } mcast;
877                 struct {
878                         uint8_t type;
879                         uint8_t algorithm;
880                         uint8_t value[4];
881                 } hash;
882                 uint16_t pad[3];
883         } u;
884 };
885
886 struct xen_netif_tx_response {
887         uint16_t id;
888         int16_t status;
889 };
890
891 struct xen_netif_rx_request {
892         uint16_t id;            /* Echoed in response message.        */
893         uint16_t pad;
894         grant_ref_t gref;
895 };
896
897 /* Packet data has been validated against protocol checksum. */
898 #define _XEN_NETRXF_data_validated (0)
899 #define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
900
901 /* Protocol checksum field is blank in the packet (hardware offload)? */
902 #define _XEN_NETRXF_csum_blank     (1)
903 #define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
904
905 /* Packet continues in the next request descriptor. */
906 #define _XEN_NETRXF_more_data      (2)
907 #define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
908
909 /* Packet to be followed by extra descriptor(s). */
910 #define _XEN_NETRXF_extra_info     (3)
911 #define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
912
913 /* Packet has GSO prefix. Deprecated but included for compatibility */
914 #define _XEN_NETRXF_gso_prefix     (4)
915 #define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
916
917 struct xen_netif_rx_response {
918         uint16_t id;
919         uint16_t offset;
920         uint16_t flags;
921         int16_t status;
922 };
923
924 /*
925  * Generate xen_netif ring structures and types.
926  */
927
928 DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
929                   struct xen_netif_tx_response);
930 DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
931                   struct xen_netif_rx_response);
932
933 #define XEN_NETIF_RSP_DROPPED         -2
934 #define XEN_NETIF_RSP_ERROR           -1
935 #define XEN_NETIF_RSP_OKAY             0
936 /* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
937 #define XEN_NETIF_RSP_NULL             1
938
939 #endif