perf/abi: Change the errno for sampling event not supported in hardware
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE         100000
366 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379         u64 tmp = perf_sample_period_ns;
380
381         tmp *= sysctl_perf_cpu_time_max_percent;
382         tmp = div_u64(tmp, 100);
383         if (!tmp)
384                 tmp = 1;
385
386         WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392                 void __user *buffer, size_t *lenp,
393                 loff_t *ppos)
394 {
395         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397         if (ret || !write)
398                 return ret;
399
400         /*
401          * If throttling is disabled don't allow the write:
402          */
403         if (sysctl_perf_cpu_time_max_percent == 100 ||
404             sysctl_perf_cpu_time_max_percent == 0)
405                 return -EINVAL;
406
407         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409         update_perf_cpu_limits();
410
411         return 0;
412 }
413
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417                                 void __user *buffer, size_t *lenp,
418                                 loff_t *ppos)
419 {
420         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422         if (ret || !write)
423                 return ret;
424
425         if (sysctl_perf_cpu_time_max_percent == 100 ||
426             sysctl_perf_cpu_time_max_percent == 0) {
427                 printk(KERN_WARNING
428                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429                 WRITE_ONCE(perf_sample_allowed_ns, 0);
430         } else {
431                 update_perf_cpu_limits();
432         }
433
434         return 0;
435 }
436
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445
446 static u64 __report_avg;
447 static u64 __report_allowed;
448
449 static void perf_duration_warn(struct irq_work *w)
450 {
451         printk_ratelimited(KERN_WARNING
452                 "perf: interrupt took too long (%lld > %lld), lowering "
453                 "kernel.perf_event_max_sample_rate to %d\n",
454                 __report_avg, __report_allowed,
455                 sysctl_perf_event_sample_rate);
456 }
457
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463         u64 running_len;
464         u64 avg_len;
465         u32 max;
466
467         if (max_len == 0)
468                 return;
469
470         /* Decay the counter by 1 average sample. */
471         running_len = __this_cpu_read(running_sample_length);
472         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473         running_len += sample_len_ns;
474         __this_cpu_write(running_sample_length, running_len);
475
476         /*
477          * Note: this will be biased artifically low until we have
478          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479          * from having to maintain a count.
480          */
481         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482         if (avg_len <= max_len)
483                 return;
484
485         __report_avg = avg_len;
486         __report_allowed = max_len;
487
488         /*
489          * Compute a throttle threshold 25% below the current duration.
490          */
491         avg_len += avg_len / 4;
492         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493         if (avg_len < max)
494                 max /= (u32)avg_len;
495         else
496                 max = 1;
497
498         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499         WRITE_ONCE(max_samples_per_tick, max);
500
501         sysctl_perf_event_sample_rate = max * HZ;
502         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503
504         if (!irq_work_queue(&perf_duration_work)) {
505                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506                              "kernel.perf_event_max_sample_rate to %d\n",
507                              __report_avg, __report_allowed,
508                              sysctl_perf_event_sample_rate);
509         }
510 }
511
512 static atomic64_t perf_event_id;
513
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515                               enum event_type_t event_type);
516
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518                              enum event_type_t event_type,
519                              struct task_struct *task);
520
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523
524 void __weak perf_event_print_debug(void)        { }
525
526 extern __weak const char *perf_pmu_name(void)
527 {
528         return "pmu";
529 }
530
531 static inline u64 perf_clock(void)
532 {
533         return local_clock();
534 }
535
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538         return event->clock();
539 }
540
541 #ifdef CONFIG_CGROUP_PERF
542
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546         struct perf_event_context *ctx = event->ctx;
547         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
549         /* @event doesn't care about cgroup */
550         if (!event->cgrp)
551                 return true;
552
553         /* wants specific cgroup scope but @cpuctx isn't associated with any */
554         if (!cpuctx->cgrp)
555                 return false;
556
557         /*
558          * Cgroup scoping is recursive.  An event enabled for a cgroup is
559          * also enabled for all its descendant cgroups.  If @cpuctx's
560          * cgroup is a descendant of @event's (the test covers identity
561          * case), it's a match.
562          */
563         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564                                     event->cgrp->css.cgroup);
565 }
566
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569         css_put(&event->cgrp->css);
570         event->cgrp = NULL;
571 }
572
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575         return event->cgrp != NULL;
576 }
577
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580         struct perf_cgroup_info *t;
581
582         t = per_cpu_ptr(event->cgrp->info, event->cpu);
583         return t->time;
584 }
585
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588         struct perf_cgroup_info *info;
589         u64 now;
590
591         now = perf_clock();
592
593         info = this_cpu_ptr(cgrp->info);
594
595         info->time += now - info->timestamp;
596         info->timestamp = now;
597 }
598
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602         if (cgrp_out)
603                 __update_cgrp_time(cgrp_out);
604 }
605
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608         struct perf_cgroup *cgrp;
609
610         /*
611          * ensure we access cgroup data only when needed and
612          * when we know the cgroup is pinned (css_get)
613          */
614         if (!is_cgroup_event(event))
615                 return;
616
617         cgrp = perf_cgroup_from_task(current, event->ctx);
618         /*
619          * Do not update time when cgroup is not active
620          */
621         if (cgrp == event->cgrp)
622                 __update_cgrp_time(event->cgrp);
623 }
624
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627                           struct perf_event_context *ctx)
628 {
629         struct perf_cgroup *cgrp;
630         struct perf_cgroup_info *info;
631
632         /*
633          * ctx->lock held by caller
634          * ensure we do not access cgroup data
635          * unless we have the cgroup pinned (css_get)
636          */
637         if (!task || !ctx->nr_cgroups)
638                 return;
639
640         cgrp = perf_cgroup_from_task(task, ctx);
641         info = this_cpu_ptr(cgrp->info);
642         info->timestamp = ctx->timestamp;
643 }
644
645 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
647
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656         struct perf_cpu_context *cpuctx;
657         struct pmu *pmu;
658         unsigned long flags;
659
660         /*
661          * disable interrupts to avoid geting nr_cgroup
662          * changes via __perf_event_disable(). Also
663          * avoids preemption.
664          */
665         local_irq_save(flags);
666
667         /*
668          * we reschedule only in the presence of cgroup
669          * constrained events.
670          */
671
672         list_for_each_entry_rcu(pmu, &pmus, entry) {
673                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674                 if (cpuctx->unique_pmu != pmu)
675                         continue; /* ensure we process each cpuctx once */
676
677                 /*
678                  * perf_cgroup_events says at least one
679                  * context on this CPU has cgroup events.
680                  *
681                  * ctx->nr_cgroups reports the number of cgroup
682                  * events for a context.
683                  */
684                 if (cpuctx->ctx.nr_cgroups > 0) {
685                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686                         perf_pmu_disable(cpuctx->ctx.pmu);
687
688                         if (mode & PERF_CGROUP_SWOUT) {
689                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690                                 /*
691                                  * must not be done before ctxswout due
692                                  * to event_filter_match() in event_sched_out()
693                                  */
694                                 cpuctx->cgrp = NULL;
695                         }
696
697                         if (mode & PERF_CGROUP_SWIN) {
698                                 WARN_ON_ONCE(cpuctx->cgrp);
699                                 /*
700                                  * set cgrp before ctxsw in to allow
701                                  * event_filter_match() to not have to pass
702                                  * task around
703                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
704                                  * because cgorup events are only per-cpu
705                                  */
706                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708                         }
709                         perf_pmu_enable(cpuctx->ctx.pmu);
710                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711                 }
712         }
713
714         local_irq_restore(flags);
715 }
716
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718                                          struct task_struct *next)
719 {
720         struct perf_cgroup *cgrp1;
721         struct perf_cgroup *cgrp2 = NULL;
722
723         rcu_read_lock();
724         /*
725          * we come here when we know perf_cgroup_events > 0
726          * we do not need to pass the ctx here because we know
727          * we are holding the rcu lock
728          */
729         cgrp1 = perf_cgroup_from_task(task, NULL);
730         cgrp2 = perf_cgroup_from_task(next, NULL);
731
732         /*
733          * only schedule out current cgroup events if we know
734          * that we are switching to a different cgroup. Otherwise,
735          * do no touch the cgroup events.
736          */
737         if (cgrp1 != cgrp2)
738                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739
740         rcu_read_unlock();
741 }
742
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744                                         struct task_struct *task)
745 {
746         struct perf_cgroup *cgrp1;
747         struct perf_cgroup *cgrp2 = NULL;
748
749         rcu_read_lock();
750         /*
751          * we come here when we know perf_cgroup_events > 0
752          * we do not need to pass the ctx here because we know
753          * we are holding the rcu lock
754          */
755         cgrp1 = perf_cgroup_from_task(task, NULL);
756         cgrp2 = perf_cgroup_from_task(prev, NULL);
757
758         /*
759          * only need to schedule in cgroup events if we are changing
760          * cgroup during ctxsw. Cgroup events were not scheduled
761          * out of ctxsw out if that was not the case.
762          */
763         if (cgrp1 != cgrp2)
764                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765
766         rcu_read_unlock();
767 }
768
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770                                       struct perf_event_attr *attr,
771                                       struct perf_event *group_leader)
772 {
773         struct perf_cgroup *cgrp;
774         struct cgroup_subsys_state *css;
775         struct fd f = fdget(fd);
776         int ret = 0;
777
778         if (!f.file)
779                 return -EBADF;
780
781         css = css_tryget_online_from_dir(f.file->f_path.dentry,
782                                          &perf_event_cgrp_subsys);
783         if (IS_ERR(css)) {
784                 ret = PTR_ERR(css);
785                 goto out;
786         }
787
788         cgrp = container_of(css, struct perf_cgroup, css);
789         event->cgrp = cgrp;
790
791         /*
792          * all events in a group must monitor
793          * the same cgroup because a task belongs
794          * to only one perf cgroup at a time
795          */
796         if (group_leader && group_leader->cgrp != cgrp) {
797                 perf_detach_cgroup(event);
798                 ret = -EINVAL;
799         }
800 out:
801         fdput(f);
802         return ret;
803 }
804
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808         struct perf_cgroup_info *t;
809         t = per_cpu_ptr(event->cgrp->info, event->cpu);
810         event->shadow_ctx_time = now - t->timestamp;
811 }
812
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816         /*
817          * when the current task's perf cgroup does not match
818          * the event's, we need to remember to call the
819          * perf_mark_enable() function the first time a task with
820          * a matching perf cgroup is scheduled in.
821          */
822         if (is_cgroup_event(event) && !perf_cgroup_match(event))
823                 event->cgrp_defer_enabled = 1;
824 }
825
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828                          struct perf_event_context *ctx)
829 {
830         struct perf_event *sub;
831         u64 tstamp = perf_event_time(event);
832
833         if (!event->cgrp_defer_enabled)
834                 return;
835
836         event->cgrp_defer_enabled = 0;
837
838         event->tstamp_enabled = tstamp - event->total_time_enabled;
839         list_for_each_entry(sub, &event->sibling_list, group_entry) {
840                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842                         sub->cgrp_defer_enabled = 0;
843                 }
844         }
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851         return true;
852 }
853
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859         return 0;
860 }
861
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864         return 0;
865 }
866
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876                                          struct task_struct *next)
877 {
878 }
879
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881                                         struct task_struct *task)
882 {
883 }
884
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886                                       struct perf_event_attr *attr,
887                                       struct perf_event *group_leader)
888 {
889         return -EINVAL;
890 }
891
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894                           struct perf_event_context *ctx)
895 {
896 }
897
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910         return 0;
911 }
912
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920                          struct perf_event_context *ctx)
921 {
922 }
923 #endif
924
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935         struct perf_cpu_context *cpuctx;
936         int rotations = 0;
937
938         WARN_ON(!irqs_disabled());
939
940         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941         rotations = perf_rotate_context(cpuctx);
942
943         raw_spin_lock(&cpuctx->hrtimer_lock);
944         if (rotations)
945                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946         else
947                 cpuctx->hrtimer_active = 0;
948         raw_spin_unlock(&cpuctx->hrtimer_lock);
949
950         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955         struct hrtimer *timer = &cpuctx->hrtimer;
956         struct pmu *pmu = cpuctx->ctx.pmu;
957         u64 interval;
958
959         /* no multiplexing needed for SW PMU */
960         if (pmu->task_ctx_nr == perf_sw_context)
961                 return;
962
963         /*
964          * check default is sane, if not set then force to
965          * default interval (1/tick)
966          */
967         interval = pmu->hrtimer_interval_ms;
968         if (interval < 1)
969                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970
971         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972
973         raw_spin_lock_init(&cpuctx->hrtimer_lock);
974         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975         timer->function = perf_mux_hrtimer_handler;
976 }
977
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980         struct hrtimer *timer = &cpuctx->hrtimer;
981         struct pmu *pmu = cpuctx->ctx.pmu;
982         unsigned long flags;
983
984         /* not for SW PMU */
985         if (pmu->task_ctx_nr == perf_sw_context)
986                 return 0;
987
988         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989         if (!cpuctx->hrtimer_active) {
990                 cpuctx->hrtimer_active = 1;
991                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993         }
994         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995
996         return 0;
997 }
998
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002         if (!(*count)++)
1003                 pmu->pmu_disable(pmu);
1004 }
1005
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009         if (!--(*count))
1010                 pmu->pmu_enable(pmu);
1011 }
1012
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024
1025         WARN_ON(!irqs_disabled());
1026
1027         WARN_ON(!list_empty(&ctx->active_ctx_list));
1028
1029         list_add(&ctx->active_ctx_list, head);
1030 }
1031
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034         WARN_ON(!irqs_disabled());
1035
1036         WARN_ON(list_empty(&ctx->active_ctx_list));
1037
1038         list_del_init(&ctx->active_ctx_list);
1039 }
1040
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048         struct perf_event_context *ctx;
1049
1050         ctx = container_of(head, struct perf_event_context, rcu_head);
1051         kfree(ctx->task_ctx_data);
1052         kfree(ctx);
1053 }
1054
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057         if (atomic_dec_and_test(&ctx->refcount)) {
1058                 if (ctx->parent_ctx)
1059                         put_ctx(ctx->parent_ctx);
1060                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061                         put_task_struct(ctx->task);
1062                 call_rcu(&ctx->rcu_head, free_ctx);
1063         }
1064 }
1065
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()    [ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()                   [ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()         [ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event() [ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *      task_struct::perf_event_mutex
1121  *        perf_event_context::mutex
1122  *          perf_event::child_mutex;
1123  *            perf_event_context::lock
1124  *          perf_event::mmap_mutex
1125  *          mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130         struct perf_event_context *ctx;
1131
1132 again:
1133         rcu_read_lock();
1134         ctx = ACCESS_ONCE(event->ctx);
1135         if (!atomic_inc_not_zero(&ctx->refcount)) {
1136                 rcu_read_unlock();
1137                 goto again;
1138         }
1139         rcu_read_unlock();
1140
1141         mutex_lock_nested(&ctx->mutex, nesting);
1142         if (event->ctx != ctx) {
1143                 mutex_unlock(&ctx->mutex);
1144                 put_ctx(ctx);
1145                 goto again;
1146         }
1147
1148         return ctx;
1149 }
1150
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154         return perf_event_ctx_lock_nested(event, 0);
1155 }
1156
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158                                   struct perf_event_context *ctx)
1159 {
1160         mutex_unlock(&ctx->mutex);
1161         put_ctx(ctx);
1162 }
1163
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173
1174         lockdep_assert_held(&ctx->lock);
1175
1176         if (parent_ctx)
1177                 ctx->parent_ctx = NULL;
1178         ctx->generation++;
1179
1180         return parent_ctx;
1181 }
1182
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185         /*
1186          * only top level events have the pid namespace they were created in
1187          */
1188         if (event->parent)
1189                 event = event->parent;
1190
1191         return task_tgid_nr_ns(p, event->ns);
1192 }
1193
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196         /*
1197          * only top level events have the pid namespace they were created in
1198          */
1199         if (event->parent)
1200                 event = event->parent;
1201
1202         return task_pid_nr_ns(p, event->ns);
1203 }
1204
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211         u64 id = event->id;
1212
1213         if (event->parent)
1214                 id = event->parent->id;
1215
1216         return id;
1217 }
1218
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228         struct perf_event_context *ctx;
1229
1230 retry:
1231         /*
1232          * One of the few rules of preemptible RCU is that one cannot do
1233          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234          * part of the read side critical section was irqs-enabled -- see
1235          * rcu_read_unlock_special().
1236          *
1237          * Since ctx->lock nests under rq->lock we must ensure the entire read
1238          * side critical section has interrupts disabled.
1239          */
1240         local_irq_save(*flags);
1241         rcu_read_lock();
1242         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243         if (ctx) {
1244                 /*
1245                  * If this context is a clone of another, it might
1246                  * get swapped for another underneath us by
1247                  * perf_event_task_sched_out, though the
1248                  * rcu_read_lock() protects us from any context
1249                  * getting freed.  Lock the context and check if it
1250                  * got swapped before we could get the lock, and retry
1251                  * if so.  If we locked the right context, then it
1252                  * can't get swapped on us any more.
1253                  */
1254                 raw_spin_lock(&ctx->lock);
1255                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         rcu_read_unlock();
1258                         local_irq_restore(*flags);
1259                         goto retry;
1260                 }
1261
1262                 if (ctx->task == TASK_TOMBSTONE ||
1263                     !atomic_inc_not_zero(&ctx->refcount)) {
1264                         raw_spin_unlock(&ctx->lock);
1265                         ctx = NULL;
1266                 } else {
1267                         WARN_ON_ONCE(ctx->task != task);
1268                 }
1269         }
1270         rcu_read_unlock();
1271         if (!ctx)
1272                 local_irq_restore(*flags);
1273         return ctx;
1274 }
1275
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284         struct perf_event_context *ctx;
1285         unsigned long flags;
1286
1287         ctx = perf_lock_task_context(task, ctxn, &flags);
1288         if (ctx) {
1289                 ++ctx->pin_count;
1290                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291         }
1292         return ctx;
1293 }
1294
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297         unsigned long flags;
1298
1299         raw_spin_lock_irqsave(&ctx->lock, flags);
1300         --ctx->pin_count;
1301         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309         u64 now = perf_clock();
1310
1311         ctx->time += now - ctx->timestamp;
1312         ctx->timestamp = now;
1313 }
1314
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317         struct perf_event_context *ctx = event->ctx;
1318
1319         if (is_cgroup_event(event))
1320                 return perf_cgroup_event_time(event);
1321
1322         return ctx ? ctx->time : 0;
1323 }
1324
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330         struct perf_event_context *ctx = event->ctx;
1331         u64 run_end;
1332
1333         lockdep_assert_held(&ctx->lock);
1334
1335         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337                 return;
1338
1339         /*
1340          * in cgroup mode, time_enabled represents
1341          * the time the event was enabled AND active
1342          * tasks were in the monitored cgroup. This is
1343          * independent of the activity of the context as
1344          * there may be a mix of cgroup and non-cgroup events.
1345          *
1346          * That is why we treat cgroup events differently
1347          * here.
1348          */
1349         if (is_cgroup_event(event))
1350                 run_end = perf_cgroup_event_time(event);
1351         else if (ctx->is_active)
1352                 run_end = ctx->time;
1353         else
1354                 run_end = event->tstamp_stopped;
1355
1356         event->total_time_enabled = run_end - event->tstamp_enabled;
1357
1358         if (event->state == PERF_EVENT_STATE_INACTIVE)
1359                 run_end = event->tstamp_stopped;
1360         else
1361                 run_end = perf_event_time(event);
1362
1363         event->total_time_running = run_end - event->tstamp_running;
1364
1365 }
1366
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372         struct perf_event *event;
1373
1374         update_event_times(leader);
1375         list_for_each_entry(event, &leader->sibling_list, group_entry)
1376                 update_event_times(event);
1377 }
1378
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382         if (event->attr.pinned)
1383                 return &ctx->pinned_groups;
1384         else
1385                 return &ctx->flexible_groups;
1386 }
1387
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395         lockdep_assert_held(&ctx->lock);
1396
1397         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398         event->attach_state |= PERF_ATTACH_CONTEXT;
1399
1400         /*
1401          * If we're a stand alone event or group leader, we go to the context
1402          * list, group events are kept attached to the group so that
1403          * perf_group_detach can, at all times, locate all siblings.
1404          */
1405         if (event->group_leader == event) {
1406                 struct list_head *list;
1407
1408                 if (is_software_event(event))
1409                         event->group_flags |= PERF_GROUP_SOFTWARE;
1410
1411                 list = ctx_group_list(event, ctx);
1412                 list_add_tail(&event->group_entry, list);
1413         }
1414
1415         if (is_cgroup_event(event))
1416                 ctx->nr_cgroups++;
1417
1418         list_add_rcu(&event->event_entry, &ctx->event_list);
1419         ctx->nr_events++;
1420         if (event->attr.inherit_stat)
1421                 ctx->nr_stat++;
1422
1423         ctx->generation++;
1424 }
1425
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432                                               PERF_EVENT_STATE_INACTIVE;
1433 }
1434
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437         int entry = sizeof(u64); /* value */
1438         int size = 0;
1439         int nr = 1;
1440
1441         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442                 size += sizeof(u64);
1443
1444         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445                 size += sizeof(u64);
1446
1447         if (event->attr.read_format & PERF_FORMAT_ID)
1448                 entry += sizeof(u64);
1449
1450         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451                 nr += nr_siblings;
1452                 size += sizeof(u64);
1453         }
1454
1455         size += entry * nr;
1456         event->read_size = size;
1457 }
1458
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461         struct perf_sample_data *data;
1462         u16 size = 0;
1463
1464         if (sample_type & PERF_SAMPLE_IP)
1465                 size += sizeof(data->ip);
1466
1467         if (sample_type & PERF_SAMPLE_ADDR)
1468                 size += sizeof(data->addr);
1469
1470         if (sample_type & PERF_SAMPLE_PERIOD)
1471                 size += sizeof(data->period);
1472
1473         if (sample_type & PERF_SAMPLE_WEIGHT)
1474                 size += sizeof(data->weight);
1475
1476         if (sample_type & PERF_SAMPLE_READ)
1477                 size += event->read_size;
1478
1479         if (sample_type & PERF_SAMPLE_DATA_SRC)
1480                 size += sizeof(data->data_src.val);
1481
1482         if (sample_type & PERF_SAMPLE_TRANSACTION)
1483                 size += sizeof(data->txn);
1484
1485         event->header_size = size;
1486 }
1487
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494         __perf_event_read_size(event,
1495                                event->group_leader->nr_siblings);
1496         __perf_event_header_size(event, event->attr.sample_type);
1497 }
1498
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501         struct perf_sample_data *data;
1502         u64 sample_type = event->attr.sample_type;
1503         u16 size = 0;
1504
1505         if (sample_type & PERF_SAMPLE_TID)
1506                 size += sizeof(data->tid_entry);
1507
1508         if (sample_type & PERF_SAMPLE_TIME)
1509                 size += sizeof(data->time);
1510
1511         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512                 size += sizeof(data->id);
1513
1514         if (sample_type & PERF_SAMPLE_ID)
1515                 size += sizeof(data->id);
1516
1517         if (sample_type & PERF_SAMPLE_STREAM_ID)
1518                 size += sizeof(data->stream_id);
1519
1520         if (sample_type & PERF_SAMPLE_CPU)
1521                 size += sizeof(data->cpu_entry);
1522
1523         event->id_header_size = size;
1524 }
1525
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528         /*
1529          * The values computed here will be over-written when we actually
1530          * attach the event.
1531          */
1532         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534         perf_event__id_header_size(event);
1535
1536         /*
1537          * Sum the lot; should not exceed the 64k limit we have on records.
1538          * Conservative limit to allow for callchains and other variable fields.
1539          */
1540         if (event->read_size + event->header_size +
1541             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542                 return false;
1543
1544         return true;
1545 }
1546
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549         struct perf_event *group_leader = event->group_leader, *pos;
1550
1551         /*
1552          * We can have double attach due to group movement in perf_event_open.
1553          */
1554         if (event->attach_state & PERF_ATTACH_GROUP)
1555                 return;
1556
1557         event->attach_state |= PERF_ATTACH_GROUP;
1558
1559         if (group_leader == event)
1560                 return;
1561
1562         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563
1564         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565                         !is_software_event(event))
1566                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567
1568         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569         group_leader->nr_siblings++;
1570
1571         perf_event__header_size(group_leader);
1572
1573         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574                 perf_event__header_size(pos);
1575 }
1576
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_cpu_context *cpuctx;
1585
1586         WARN_ON_ONCE(event->ctx != ctx);
1587         lockdep_assert_held(&ctx->lock);
1588
1589         /*
1590          * We can have double detach due to exit/hot-unplug + close.
1591          */
1592         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593                 return;
1594
1595         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596
1597         if (is_cgroup_event(event)) {
1598                 ctx->nr_cgroups--;
1599                 /*
1600                  * Because cgroup events are always per-cpu events, this will
1601                  * always be called from the right CPU.
1602                  */
1603                 cpuctx = __get_cpu_context(ctx);
1604                 /*
1605                  * If there are no more cgroup events then clear cgrp to avoid
1606                  * stale pointer in update_cgrp_time_from_cpuctx().
1607                  */
1608                 if (!ctx->nr_cgroups)
1609                         cpuctx->cgrp = NULL;
1610         }
1611
1612         ctx->nr_events--;
1613         if (event->attr.inherit_stat)
1614                 ctx->nr_stat--;
1615
1616         list_del_rcu(&event->event_entry);
1617
1618         if (event->group_leader == event)
1619                 list_del_init(&event->group_entry);
1620
1621         update_group_times(event);
1622
1623         /*
1624          * If event was in error state, then keep it
1625          * that way, otherwise bogus counts will be
1626          * returned on read(). The only way to get out
1627          * of error state is by explicit re-enabling
1628          * of the event
1629          */
1630         if (event->state > PERF_EVENT_STATE_OFF)
1631                 event->state = PERF_EVENT_STATE_OFF;
1632
1633         ctx->generation++;
1634 }
1635
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638         struct perf_event *sibling, *tmp;
1639         struct list_head *list = NULL;
1640
1641         /*
1642          * We can have double detach due to exit/hot-unplug + close.
1643          */
1644         if (!(event->attach_state & PERF_ATTACH_GROUP))
1645                 return;
1646
1647         event->attach_state &= ~PERF_ATTACH_GROUP;
1648
1649         /*
1650          * If this is a sibling, remove it from its group.
1651          */
1652         if (event->group_leader != event) {
1653                 list_del_init(&event->group_entry);
1654                 event->group_leader->nr_siblings--;
1655                 goto out;
1656         }
1657
1658         if (!list_empty(&event->group_entry))
1659                 list = &event->group_entry;
1660
1661         /*
1662          * If this was a group event with sibling events then
1663          * upgrade the siblings to singleton events by adding them
1664          * to whatever list we are on.
1665          */
1666         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667                 if (list)
1668                         list_move_tail(&sibling->group_entry, list);
1669                 sibling->group_leader = sibling;
1670
1671                 /* Inherit group flags from the previous leader */
1672                 sibling->group_flags = event->group_flags;
1673
1674                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1675         }
1676
1677 out:
1678         perf_event__header_size(event->group_leader);
1679
1680         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681                 perf_event__header_size(tmp);
1682 }
1683
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686         return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688
1689 static inline int pmu_filter_match(struct perf_event *event)
1690 {
1691         struct pmu *pmu = event->pmu;
1692         return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694
1695 static inline int
1696 event_filter_match(struct perf_event *event)
1697 {
1698         return (event->cpu == -1 || event->cpu == smp_processor_id())
1699             && perf_cgroup_match(event) && pmu_filter_match(event);
1700 }
1701
1702 static void
1703 event_sched_out(struct perf_event *event,
1704                   struct perf_cpu_context *cpuctx,
1705                   struct perf_event_context *ctx)
1706 {
1707         u64 tstamp = perf_event_time(event);
1708         u64 delta;
1709
1710         WARN_ON_ONCE(event->ctx != ctx);
1711         lockdep_assert_held(&ctx->lock);
1712
1713         /*
1714          * An event which could not be activated because of
1715          * filter mismatch still needs to have its timings
1716          * maintained, otherwise bogus information is return
1717          * via read() for time_enabled, time_running:
1718          */
1719         if (event->state == PERF_EVENT_STATE_INACTIVE
1720             && !event_filter_match(event)) {
1721                 delta = tstamp - event->tstamp_stopped;
1722                 event->tstamp_running += delta;
1723                 event->tstamp_stopped = tstamp;
1724         }
1725
1726         if (event->state != PERF_EVENT_STATE_ACTIVE)
1727                 return;
1728
1729         perf_pmu_disable(event->pmu);
1730
1731         event->tstamp_stopped = tstamp;
1732         event->pmu->del(event, 0);
1733         event->oncpu = -1;
1734         event->state = PERF_EVENT_STATE_INACTIVE;
1735         if (event->pending_disable) {
1736                 event->pending_disable = 0;
1737                 event->state = PERF_EVENT_STATE_OFF;
1738         }
1739
1740         if (!is_software_event(event))
1741                 cpuctx->active_oncpu--;
1742         if (!--ctx->nr_active)
1743                 perf_event_ctx_deactivate(ctx);
1744         if (event->attr.freq && event->attr.sample_freq)
1745                 ctx->nr_freq--;
1746         if (event->attr.exclusive || !cpuctx->active_oncpu)
1747                 cpuctx->exclusive = 0;
1748
1749         perf_pmu_enable(event->pmu);
1750 }
1751
1752 static void
1753 group_sched_out(struct perf_event *group_event,
1754                 struct perf_cpu_context *cpuctx,
1755                 struct perf_event_context *ctx)
1756 {
1757         struct perf_event *event;
1758         int state = group_event->state;
1759
1760         event_sched_out(group_event, cpuctx, ctx);
1761
1762         /*
1763          * Schedule out siblings (if any):
1764          */
1765         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1766                 event_sched_out(event, cpuctx, ctx);
1767
1768         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1769                 cpuctx->exclusive = 0;
1770 }
1771
1772 #define DETACH_GROUP    0x01UL
1773
1774 /*
1775  * Cross CPU call to remove a performance event
1776  *
1777  * We disable the event on the hardware level first. After that we
1778  * remove it from the context list.
1779  */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782                            struct perf_cpu_context *cpuctx,
1783                            struct perf_event_context *ctx,
1784                            void *info)
1785 {
1786         unsigned long flags = (unsigned long)info;
1787
1788         event_sched_out(event, cpuctx, ctx);
1789         if (flags & DETACH_GROUP)
1790                 perf_group_detach(event);
1791         list_del_event(event, ctx);
1792
1793         if (!ctx->nr_events && ctx->is_active) {
1794                 ctx->is_active = 0;
1795                 if (ctx->task) {
1796                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797                         cpuctx->task_ctx = NULL;
1798                 }
1799         }
1800 }
1801
1802 /*
1803  * Remove the event from a task's (or a CPU's) list of events.
1804  *
1805  * If event->ctx is a cloned context, callers must make sure that
1806  * every task struct that event->ctx->task could possibly point to
1807  * remains valid.  This is OK when called from perf_release since
1808  * that only calls us on the top-level context, which can't be a clone.
1809  * When called from perf_event_exit_task, it's OK because the
1810  * context has been detached from its task.
1811  */
1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1813 {
1814         lockdep_assert_held(&event->ctx->mutex);
1815
1816         event_function_call(event, __perf_remove_from_context, (void *)flags);
1817 }
1818
1819 /*
1820  * Cross CPU call to disable a performance event
1821  */
1822 static void __perf_event_disable(struct perf_event *event,
1823                                  struct perf_cpu_context *cpuctx,
1824                                  struct perf_event_context *ctx,
1825                                  void *info)
1826 {
1827         if (event->state < PERF_EVENT_STATE_INACTIVE)
1828                 return;
1829
1830         update_context_time(ctx);
1831         update_cgrp_time_from_event(event);
1832         update_group_times(event);
1833         if (event == event->group_leader)
1834                 group_sched_out(event, cpuctx, ctx);
1835         else
1836                 event_sched_out(event, cpuctx, ctx);
1837         event->state = PERF_EVENT_STATE_OFF;
1838 }
1839
1840 /*
1841  * Disable a event.
1842  *
1843  * If event->ctx is a cloned context, callers must make sure that
1844  * every task struct that event->ctx->task could possibly point to
1845  * remains valid.  This condition is satisifed when called through
1846  * perf_event_for_each_child or perf_event_for_each because they
1847  * hold the top-level event's child_mutex, so any descendant that
1848  * goes to exit will block in perf_event_exit_event().
1849  *
1850  * When called from perf_pending_event it's OK because event->ctx
1851  * is the current context on this CPU and preemption is disabled,
1852  * hence we can't get into perf_event_task_sched_out for this context.
1853  */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856         struct perf_event_context *ctx = event->ctx;
1857
1858         raw_spin_lock_irq(&ctx->lock);
1859         if (event->state <= PERF_EVENT_STATE_OFF) {
1860                 raw_spin_unlock_irq(&ctx->lock);
1861                 return;
1862         }
1863         raw_spin_unlock_irq(&ctx->lock);
1864
1865         event_function_call(event, __perf_event_disable, NULL);
1866 }
1867
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870         event_function_local(event, __perf_event_disable, NULL);
1871 }
1872
1873 /*
1874  * Strictly speaking kernel users cannot create groups and therefore this
1875  * interface does not need the perf_event_ctx_lock() magic.
1876  */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879         struct perf_event_context *ctx;
1880
1881         ctx = perf_event_ctx_lock(event);
1882         _perf_event_disable(event);
1883         perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886
1887 static void perf_set_shadow_time(struct perf_event *event,
1888                                  struct perf_event_context *ctx,
1889                                  u64 tstamp)
1890 {
1891         /*
1892          * use the correct time source for the time snapshot
1893          *
1894          * We could get by without this by leveraging the
1895          * fact that to get to this function, the caller
1896          * has most likely already called update_context_time()
1897          * and update_cgrp_time_xx() and thus both timestamp
1898          * are identical (or very close). Given that tstamp is,
1899          * already adjusted for cgroup, we could say that:
1900          *    tstamp - ctx->timestamp
1901          * is equivalent to
1902          *    tstamp - cgrp->timestamp.
1903          *
1904          * Then, in perf_output_read(), the calculation would
1905          * work with no changes because:
1906          * - event is guaranteed scheduled in
1907          * - no scheduled out in between
1908          * - thus the timestamp would be the same
1909          *
1910          * But this is a bit hairy.
1911          *
1912          * So instead, we have an explicit cgroup call to remain
1913          * within the time time source all along. We believe it
1914          * is cleaner and simpler to understand.
1915          */
1916         if (is_cgroup_event(event))
1917                 perf_cgroup_set_shadow_time(event, tstamp);
1918         else
1919                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921
1922 #define MAX_INTERRUPTS (~0ULL)
1923
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926
1927 static int
1928 event_sched_in(struct perf_event *event,
1929                  struct perf_cpu_context *cpuctx,
1930                  struct perf_event_context *ctx)
1931 {
1932         u64 tstamp = perf_event_time(event);
1933         int ret = 0;
1934
1935         lockdep_assert_held(&ctx->lock);
1936
1937         if (event->state <= PERF_EVENT_STATE_OFF)
1938                 return 0;
1939
1940         WRITE_ONCE(event->oncpu, smp_processor_id());
1941         /*
1942          * Order event::oncpu write to happen before the ACTIVE state
1943          * is visible.
1944          */
1945         smp_wmb();
1946         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1947
1948         /*
1949          * Unthrottle events, since we scheduled we might have missed several
1950          * ticks already, also for a heavily scheduling task there is little
1951          * guarantee it'll get a tick in a timely manner.
1952          */
1953         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1954                 perf_log_throttle(event, 1);
1955                 event->hw.interrupts = 0;
1956         }
1957
1958         /*
1959          * The new state must be visible before we turn it on in the hardware:
1960          */
1961         smp_wmb();
1962
1963         perf_pmu_disable(event->pmu);
1964
1965         perf_set_shadow_time(event, ctx, tstamp);
1966
1967         perf_log_itrace_start(event);
1968
1969         if (event->pmu->add(event, PERF_EF_START)) {
1970                 event->state = PERF_EVENT_STATE_INACTIVE;
1971                 event->oncpu = -1;
1972                 ret = -EAGAIN;
1973                 goto out;
1974         }
1975
1976         event->tstamp_running += tstamp - event->tstamp_stopped;
1977
1978         if (!is_software_event(event))
1979                 cpuctx->active_oncpu++;
1980         if (!ctx->nr_active++)
1981                 perf_event_ctx_activate(ctx);
1982         if (event->attr.freq && event->attr.sample_freq)
1983                 ctx->nr_freq++;
1984
1985         if (event->attr.exclusive)
1986                 cpuctx->exclusive = 1;
1987
1988 out:
1989         perf_pmu_enable(event->pmu);
1990
1991         return ret;
1992 }
1993
1994 static int
1995 group_sched_in(struct perf_event *group_event,
1996                struct perf_cpu_context *cpuctx,
1997                struct perf_event_context *ctx)
1998 {
1999         struct perf_event *event, *partial_group = NULL;
2000         struct pmu *pmu = ctx->pmu;
2001         u64 now = ctx->time;
2002         bool simulate = false;
2003
2004         if (group_event->state == PERF_EVENT_STATE_OFF)
2005                 return 0;
2006
2007         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2008
2009         if (event_sched_in(group_event, cpuctx, ctx)) {
2010                 pmu->cancel_txn(pmu);
2011                 perf_mux_hrtimer_restart(cpuctx);
2012                 return -EAGAIN;
2013         }
2014
2015         /*
2016          * Schedule in siblings as one group (if any):
2017          */
2018         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2019                 if (event_sched_in(event, cpuctx, ctx)) {
2020                         partial_group = event;
2021                         goto group_error;
2022                 }
2023         }
2024
2025         if (!pmu->commit_txn(pmu))
2026                 return 0;
2027
2028 group_error:
2029         /*
2030          * Groups can be scheduled in as one unit only, so undo any
2031          * partial group before returning:
2032          * The events up to the failed event are scheduled out normally,
2033          * tstamp_stopped will be updated.
2034          *
2035          * The failed events and the remaining siblings need to have
2036          * their timings updated as if they had gone thru event_sched_in()
2037          * and event_sched_out(). This is required to get consistent timings
2038          * across the group. This also takes care of the case where the group
2039          * could never be scheduled by ensuring tstamp_stopped is set to mark
2040          * the time the event was actually stopped, such that time delta
2041          * calculation in update_event_times() is correct.
2042          */
2043         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2044                 if (event == partial_group)
2045                         simulate = true;
2046
2047                 if (simulate) {
2048                         event->tstamp_running += now - event->tstamp_stopped;
2049                         event->tstamp_stopped = now;
2050                 } else {
2051                         event_sched_out(event, cpuctx, ctx);
2052                 }
2053         }
2054         event_sched_out(group_event, cpuctx, ctx);
2055
2056         pmu->cancel_txn(pmu);
2057
2058         perf_mux_hrtimer_restart(cpuctx);
2059
2060         return -EAGAIN;
2061 }
2062
2063 /*
2064  * Work out whether we can put this event group on the CPU now.
2065  */
2066 static int group_can_go_on(struct perf_event *event,
2067                            struct perf_cpu_context *cpuctx,
2068                            int can_add_hw)
2069 {
2070         /*
2071          * Groups consisting entirely of software events can always go on.
2072          */
2073         if (event->group_flags & PERF_GROUP_SOFTWARE)
2074                 return 1;
2075         /*
2076          * If an exclusive group is already on, no other hardware
2077          * events can go on.
2078          */
2079         if (cpuctx->exclusive)
2080                 return 0;
2081         /*
2082          * If this group is exclusive and there are already
2083          * events on the CPU, it can't go on.
2084          */
2085         if (event->attr.exclusive && cpuctx->active_oncpu)
2086                 return 0;
2087         /*
2088          * Otherwise, try to add it if all previous groups were able
2089          * to go on.
2090          */
2091         return can_add_hw;
2092 }
2093
2094 static void add_event_to_ctx(struct perf_event *event,
2095                                struct perf_event_context *ctx)
2096 {
2097         u64 tstamp = perf_event_time(event);
2098
2099         list_add_event(event, ctx);
2100         perf_group_attach(event);
2101         event->tstamp_enabled = tstamp;
2102         event->tstamp_running = tstamp;
2103         event->tstamp_stopped = tstamp;
2104 }
2105
2106 static void ctx_sched_out(struct perf_event_context *ctx,
2107                           struct perf_cpu_context *cpuctx,
2108                           enum event_type_t event_type);
2109 static void
2110 ctx_sched_in(struct perf_event_context *ctx,
2111              struct perf_cpu_context *cpuctx,
2112              enum event_type_t event_type,
2113              struct task_struct *task);
2114
2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116                                struct perf_event_context *ctx)
2117 {
2118         if (!cpuctx->task_ctx)
2119                 return;
2120
2121         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2122                 return;
2123
2124         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2125 }
2126
2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2128                                 struct perf_event_context *ctx,
2129                                 struct task_struct *task)
2130 {
2131         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2132         if (ctx)
2133                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2134         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2135         if (ctx)
2136                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2137 }
2138
2139 static void ctx_resched(struct perf_cpu_context *cpuctx,
2140                         struct perf_event_context *task_ctx)
2141 {
2142         perf_pmu_disable(cpuctx->ctx.pmu);
2143         if (task_ctx)
2144                 task_ctx_sched_out(cpuctx, task_ctx);
2145         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2146         perf_event_sched_in(cpuctx, task_ctx, current);
2147         perf_pmu_enable(cpuctx->ctx.pmu);
2148 }
2149
2150 /*
2151  * Cross CPU call to install and enable a performance event
2152  *
2153  * Very similar to remote_function() + event_function() but cannot assume that
2154  * things like ctx->is_active and cpuctx->task_ctx are set.
2155  */
2156 static int  __perf_install_in_context(void *info)
2157 {
2158         struct perf_event *event = info;
2159         struct perf_event_context *ctx = event->ctx;
2160         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2161         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2162         bool activate = true;
2163         int ret = 0;
2164
2165         raw_spin_lock(&cpuctx->ctx.lock);
2166         if (ctx->task) {
2167                 raw_spin_lock(&ctx->lock);
2168                 task_ctx = ctx;
2169
2170                 /* If we're on the wrong CPU, try again */
2171                 if (task_cpu(ctx->task) != smp_processor_id()) {
2172                         ret = -ESRCH;
2173                         goto unlock;
2174                 }
2175
2176                 /*
2177                  * If we're on the right CPU, see if the task we target is
2178                  * current, if not we don't have to activate the ctx, a future
2179                  * context switch will do that for us.
2180                  */
2181                 if (ctx->task != current)
2182                         activate = false;
2183                 else
2184                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2185
2186         } else if (task_ctx) {
2187                 raw_spin_lock(&task_ctx->lock);
2188         }
2189
2190         if (activate) {
2191                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2192                 add_event_to_ctx(event, ctx);
2193                 ctx_resched(cpuctx, task_ctx);
2194         } else {
2195                 add_event_to_ctx(event, ctx);
2196         }
2197
2198 unlock:
2199         perf_ctx_unlock(cpuctx, task_ctx);
2200
2201         return ret;
2202 }
2203
2204 /*
2205  * Attach a performance event to a context.
2206  *
2207  * Very similar to event_function_call, see comment there.
2208  */
2209 static void
2210 perf_install_in_context(struct perf_event_context *ctx,
2211                         struct perf_event *event,
2212                         int cpu)
2213 {
2214         struct task_struct *task = READ_ONCE(ctx->task);
2215
2216         lockdep_assert_held(&ctx->mutex);
2217
2218         event->ctx = ctx;
2219         if (event->cpu != -1)
2220                 event->cpu = cpu;
2221
2222         if (!task) {
2223                 cpu_function_call(cpu, __perf_install_in_context, event);
2224                 return;
2225         }
2226
2227         /*
2228          * Should not happen, we validate the ctx is still alive before calling.
2229          */
2230         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2231                 return;
2232
2233         /*
2234          * Installing events is tricky because we cannot rely on ctx->is_active
2235          * to be set in case this is the nr_events 0 -> 1 transition.
2236          */
2237 again:
2238         /*
2239          * Cannot use task_function_call() because we need to run on the task's
2240          * CPU regardless of whether its current or not.
2241          */
2242         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2243                 return;
2244
2245         raw_spin_lock_irq(&ctx->lock);
2246         task = ctx->task;
2247         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2248                 /*
2249                  * Cannot happen because we already checked above (which also
2250                  * cannot happen), and we hold ctx->mutex, which serializes us
2251                  * against perf_event_exit_task_context().
2252                  */
2253                 raw_spin_unlock_irq(&ctx->lock);
2254                 return;
2255         }
2256         raw_spin_unlock_irq(&ctx->lock);
2257         /*
2258          * Since !ctx->is_active doesn't mean anything, we must IPI
2259          * unconditionally.
2260          */
2261         goto again;
2262 }
2263
2264 /*
2265  * Put a event into inactive state and update time fields.
2266  * Enabling the leader of a group effectively enables all
2267  * the group members that aren't explicitly disabled, so we
2268  * have to update their ->tstamp_enabled also.
2269  * Note: this works for group members as well as group leaders
2270  * since the non-leader members' sibling_lists will be empty.
2271  */
2272 static void __perf_event_mark_enabled(struct perf_event *event)
2273 {
2274         struct perf_event *sub;
2275         u64 tstamp = perf_event_time(event);
2276
2277         event->state = PERF_EVENT_STATE_INACTIVE;
2278         event->tstamp_enabled = tstamp - event->total_time_enabled;
2279         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2280                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2281                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2282         }
2283 }
2284
2285 /*
2286  * Cross CPU call to enable a performance event
2287  */
2288 static void __perf_event_enable(struct perf_event *event,
2289                                 struct perf_cpu_context *cpuctx,
2290                                 struct perf_event_context *ctx,
2291                                 void *info)
2292 {
2293         struct perf_event *leader = event->group_leader;
2294         struct perf_event_context *task_ctx;
2295
2296         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2297             event->state <= PERF_EVENT_STATE_ERROR)
2298                 return;
2299
2300         if (ctx->is_active)
2301                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2302
2303         __perf_event_mark_enabled(event);
2304
2305         if (!ctx->is_active)
2306                 return;
2307
2308         if (!event_filter_match(event)) {
2309                 if (is_cgroup_event(event))
2310                         perf_cgroup_defer_enabled(event);
2311                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2312                 return;
2313         }
2314
2315         /*
2316          * If the event is in a group and isn't the group leader,
2317          * then don't put it on unless the group is on.
2318          */
2319         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2320                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2321                 return;
2322         }
2323
2324         task_ctx = cpuctx->task_ctx;
2325         if (ctx->task)
2326                 WARN_ON_ONCE(task_ctx != ctx);
2327
2328         ctx_resched(cpuctx, task_ctx);
2329 }
2330
2331 /*
2332  * Enable a event.
2333  *
2334  * If event->ctx is a cloned context, callers must make sure that
2335  * every task struct that event->ctx->task could possibly point to
2336  * remains valid.  This condition is satisfied when called through
2337  * perf_event_for_each_child or perf_event_for_each as described
2338  * for perf_event_disable.
2339  */
2340 static void _perf_event_enable(struct perf_event *event)
2341 {
2342         struct perf_event_context *ctx = event->ctx;
2343
2344         raw_spin_lock_irq(&ctx->lock);
2345         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2346             event->state <  PERF_EVENT_STATE_ERROR) {
2347                 raw_spin_unlock_irq(&ctx->lock);
2348                 return;
2349         }
2350
2351         /*
2352          * If the event is in error state, clear that first.
2353          *
2354          * That way, if we see the event in error state below, we know that it
2355          * has gone back into error state, as distinct from the task having
2356          * been scheduled away before the cross-call arrived.
2357          */
2358         if (event->state == PERF_EVENT_STATE_ERROR)
2359                 event->state = PERF_EVENT_STATE_OFF;
2360         raw_spin_unlock_irq(&ctx->lock);
2361
2362         event_function_call(event, __perf_event_enable, NULL);
2363 }
2364
2365 /*
2366  * See perf_event_disable();
2367  */
2368 void perf_event_enable(struct perf_event *event)
2369 {
2370         struct perf_event_context *ctx;
2371
2372         ctx = perf_event_ctx_lock(event);
2373         _perf_event_enable(event);
2374         perf_event_ctx_unlock(event, ctx);
2375 }
2376 EXPORT_SYMBOL_GPL(perf_event_enable);
2377
2378 struct stop_event_data {
2379         struct perf_event       *event;
2380         unsigned int            restart;
2381 };
2382
2383 static int __perf_event_stop(void *info)
2384 {
2385         struct stop_event_data *sd = info;
2386         struct perf_event *event = sd->event;
2387
2388         /* if it's already INACTIVE, do nothing */
2389         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2390                 return 0;
2391
2392         /* matches smp_wmb() in event_sched_in() */
2393         smp_rmb();
2394
2395         /*
2396          * There is a window with interrupts enabled before we get here,
2397          * so we need to check again lest we try to stop another CPU's event.
2398          */
2399         if (READ_ONCE(event->oncpu) != smp_processor_id())
2400                 return -EAGAIN;
2401
2402         event->pmu->stop(event, PERF_EF_UPDATE);
2403
2404         /*
2405          * May race with the actual stop (through perf_pmu_output_stop()),
2406          * but it is only used for events with AUX ring buffer, and such
2407          * events will refuse to restart because of rb::aux_mmap_count==0,
2408          * see comments in perf_aux_output_begin().
2409          *
2410          * Since this is happening on a event-local CPU, no trace is lost
2411          * while restarting.
2412          */
2413         if (sd->restart)
2414                 event->pmu->start(event, PERF_EF_START);
2415
2416         return 0;
2417 }
2418
2419 static int perf_event_restart(struct perf_event *event)
2420 {
2421         struct stop_event_data sd = {
2422                 .event          = event,
2423                 .restart        = 1,
2424         };
2425         int ret = 0;
2426
2427         do {
2428                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2429                         return 0;
2430
2431                 /* matches smp_wmb() in event_sched_in() */
2432                 smp_rmb();
2433
2434                 /*
2435                  * We only want to restart ACTIVE events, so if the event goes
2436                  * inactive here (event->oncpu==-1), there's nothing more to do;
2437                  * fall through with ret==-ENXIO.
2438                  */
2439                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2440                                         __perf_event_stop, &sd);
2441         } while (ret == -EAGAIN);
2442
2443         return ret;
2444 }
2445
2446 /*
2447  * In order to contain the amount of racy and tricky in the address filter
2448  * configuration management, it is a two part process:
2449  *
2450  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2451  *      we update the addresses of corresponding vmas in
2452  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2453  * (p2) when an event is scheduled in (pmu::add), it calls
2454  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2455  *      if the generation has changed since the previous call.
2456  *
2457  * If (p1) happens while the event is active, we restart it to force (p2).
2458  *
2459  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2460  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2461  *     ioctl;
2462  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2463  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2464  *     for reading;
2465  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2466  *     of exec.
2467  */
2468 void perf_event_addr_filters_sync(struct perf_event *event)
2469 {
2470         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2471
2472         if (!has_addr_filter(event))
2473                 return;
2474
2475         raw_spin_lock(&ifh->lock);
2476         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2477                 event->pmu->addr_filters_sync(event);
2478                 event->hw.addr_filters_gen = event->addr_filters_gen;
2479         }
2480         raw_spin_unlock(&ifh->lock);
2481 }
2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2483
2484 static int _perf_event_refresh(struct perf_event *event, int refresh)
2485 {
2486         /*
2487          * not supported on inherited events
2488          */
2489         if (event->attr.inherit || !is_sampling_event(event))
2490                 return -EINVAL;
2491
2492         atomic_add(refresh, &event->event_limit);
2493         _perf_event_enable(event);
2494
2495         return 0;
2496 }
2497
2498 /*
2499  * See perf_event_disable()
2500  */
2501 int perf_event_refresh(struct perf_event *event, int refresh)
2502 {
2503         struct perf_event_context *ctx;
2504         int ret;
2505
2506         ctx = perf_event_ctx_lock(event);
2507         ret = _perf_event_refresh(event, refresh);
2508         perf_event_ctx_unlock(event, ctx);
2509
2510         return ret;
2511 }
2512 EXPORT_SYMBOL_GPL(perf_event_refresh);
2513
2514 static void ctx_sched_out(struct perf_event_context *ctx,
2515                           struct perf_cpu_context *cpuctx,
2516                           enum event_type_t event_type)
2517 {
2518         int is_active = ctx->is_active;
2519         struct perf_event *event;
2520
2521         lockdep_assert_held(&ctx->lock);
2522
2523         if (likely(!ctx->nr_events)) {
2524                 /*
2525                  * See __perf_remove_from_context().
2526                  */
2527                 WARN_ON_ONCE(ctx->is_active);
2528                 if (ctx->task)
2529                         WARN_ON_ONCE(cpuctx->task_ctx);
2530                 return;
2531         }
2532
2533         ctx->is_active &= ~event_type;
2534         if (!(ctx->is_active & EVENT_ALL))
2535                 ctx->is_active = 0;
2536
2537         if (ctx->task) {
2538                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2539                 if (!ctx->is_active)
2540                         cpuctx->task_ctx = NULL;
2541         }
2542
2543         /*
2544          * Always update time if it was set; not only when it changes.
2545          * Otherwise we can 'forget' to update time for any but the last
2546          * context we sched out. For example:
2547          *
2548          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2549          *   ctx_sched_out(.event_type = EVENT_PINNED)
2550          *
2551          * would only update time for the pinned events.
2552          */
2553         if (is_active & EVENT_TIME) {
2554                 /* update (and stop) ctx time */
2555                 update_context_time(ctx);
2556                 update_cgrp_time_from_cpuctx(cpuctx);
2557         }
2558
2559         is_active ^= ctx->is_active; /* changed bits */
2560
2561         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2562                 return;
2563
2564         perf_pmu_disable(ctx->pmu);
2565         if (is_active & EVENT_PINNED) {
2566                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2567                         group_sched_out(event, cpuctx, ctx);
2568         }
2569
2570         if (is_active & EVENT_FLEXIBLE) {
2571                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2572                         group_sched_out(event, cpuctx, ctx);
2573         }
2574         perf_pmu_enable(ctx->pmu);
2575 }
2576
2577 /*
2578  * Test whether two contexts are equivalent, i.e. whether they have both been
2579  * cloned from the same version of the same context.
2580  *
2581  * Equivalence is measured using a generation number in the context that is
2582  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2583  * and list_del_event().
2584  */
2585 static int context_equiv(struct perf_event_context *ctx1,
2586                          struct perf_event_context *ctx2)
2587 {
2588         lockdep_assert_held(&ctx1->lock);
2589         lockdep_assert_held(&ctx2->lock);
2590
2591         /* Pinning disables the swap optimization */
2592         if (ctx1->pin_count || ctx2->pin_count)
2593                 return 0;
2594
2595         /* If ctx1 is the parent of ctx2 */
2596         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2597                 return 1;
2598
2599         /* If ctx2 is the parent of ctx1 */
2600         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2601                 return 1;
2602
2603         /*
2604          * If ctx1 and ctx2 have the same parent; we flatten the parent
2605          * hierarchy, see perf_event_init_context().
2606          */
2607         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2608                         ctx1->parent_gen == ctx2->parent_gen)
2609                 return 1;
2610
2611         /* Unmatched */
2612         return 0;
2613 }
2614
2615 static void __perf_event_sync_stat(struct perf_event *event,
2616                                      struct perf_event *next_event)
2617 {
2618         u64 value;
2619
2620         if (!event->attr.inherit_stat)
2621                 return;
2622
2623         /*
2624          * Update the event value, we cannot use perf_event_read()
2625          * because we're in the middle of a context switch and have IRQs
2626          * disabled, which upsets smp_call_function_single(), however
2627          * we know the event must be on the current CPU, therefore we
2628          * don't need to use it.
2629          */
2630         switch (event->state) {
2631         case PERF_EVENT_STATE_ACTIVE:
2632                 event->pmu->read(event);
2633                 /* fall-through */
2634
2635         case PERF_EVENT_STATE_INACTIVE:
2636                 update_event_times(event);
2637                 break;
2638
2639         default:
2640                 break;
2641         }
2642
2643         /*
2644          * In order to keep per-task stats reliable we need to flip the event
2645          * values when we flip the contexts.
2646          */
2647         value = local64_read(&next_event->count);
2648         value = local64_xchg(&event->count, value);
2649         local64_set(&next_event->count, value);
2650
2651         swap(event->total_time_enabled, next_event->total_time_enabled);
2652         swap(event->total_time_running, next_event->total_time_running);
2653
2654         /*
2655          * Since we swizzled the values, update the user visible data too.
2656          */
2657         perf_event_update_userpage(event);
2658         perf_event_update_userpage(next_event);
2659 }
2660
2661 static void perf_event_sync_stat(struct perf_event_context *ctx,
2662                                    struct perf_event_context *next_ctx)
2663 {
2664         struct perf_event *event, *next_event;
2665
2666         if (!ctx->nr_stat)
2667                 return;
2668
2669         update_context_time(ctx);
2670
2671         event = list_first_entry(&ctx->event_list,
2672                                    struct perf_event, event_entry);
2673
2674         next_event = list_first_entry(&next_ctx->event_list,
2675                                         struct perf_event, event_entry);
2676
2677         while (&event->event_entry != &ctx->event_list &&
2678                &next_event->event_entry != &next_ctx->event_list) {
2679
2680                 __perf_event_sync_stat(event, next_event);
2681
2682                 event = list_next_entry(event, event_entry);
2683                 next_event = list_next_entry(next_event, event_entry);
2684         }
2685 }
2686
2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2688                                          struct task_struct *next)
2689 {
2690         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2691         struct perf_event_context *next_ctx;
2692         struct perf_event_context *parent, *next_parent;
2693         struct perf_cpu_context *cpuctx;
2694         int do_switch = 1;
2695
2696         if (likely(!ctx))
2697                 return;
2698
2699         cpuctx = __get_cpu_context(ctx);
2700         if (!cpuctx->task_ctx)
2701                 return;
2702
2703         rcu_read_lock();
2704         next_ctx = next->perf_event_ctxp[ctxn];
2705         if (!next_ctx)
2706                 goto unlock;
2707
2708         parent = rcu_dereference(ctx->parent_ctx);
2709         next_parent = rcu_dereference(next_ctx->parent_ctx);
2710
2711         /* If neither context have a parent context; they cannot be clones. */
2712         if (!parent && !next_parent)
2713                 goto unlock;
2714
2715         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2716                 /*
2717                  * Looks like the two contexts are clones, so we might be
2718                  * able to optimize the context switch.  We lock both
2719                  * contexts and check that they are clones under the
2720                  * lock (including re-checking that neither has been
2721                  * uncloned in the meantime).  It doesn't matter which
2722                  * order we take the locks because no other cpu could
2723                  * be trying to lock both of these tasks.
2724                  */
2725                 raw_spin_lock(&ctx->lock);
2726                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2727                 if (context_equiv(ctx, next_ctx)) {
2728                         WRITE_ONCE(ctx->task, next);
2729                         WRITE_ONCE(next_ctx->task, task);
2730
2731                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2732
2733                         /*
2734                          * RCU_INIT_POINTER here is safe because we've not
2735                          * modified the ctx and the above modification of
2736                          * ctx->task and ctx->task_ctx_data are immaterial
2737                          * since those values are always verified under
2738                          * ctx->lock which we're now holding.
2739                          */
2740                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2741                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2742
2743                         do_switch = 0;
2744
2745                         perf_event_sync_stat(ctx, next_ctx);
2746                 }
2747                 raw_spin_unlock(&next_ctx->lock);
2748                 raw_spin_unlock(&ctx->lock);
2749         }
2750 unlock:
2751         rcu_read_unlock();
2752
2753         if (do_switch) {
2754                 raw_spin_lock(&ctx->lock);
2755                 task_ctx_sched_out(cpuctx, ctx);
2756                 raw_spin_unlock(&ctx->lock);
2757         }
2758 }
2759
2760 void perf_sched_cb_dec(struct pmu *pmu)
2761 {
2762         this_cpu_dec(perf_sched_cb_usages);
2763 }
2764
2765 void perf_sched_cb_inc(struct pmu *pmu)
2766 {
2767         this_cpu_inc(perf_sched_cb_usages);
2768 }
2769
2770 /*
2771  * This function provides the context switch callback to the lower code
2772  * layer. It is invoked ONLY when the context switch callback is enabled.
2773  */
2774 static void perf_pmu_sched_task(struct task_struct *prev,
2775                                 struct task_struct *next,
2776                                 bool sched_in)
2777 {
2778         struct perf_cpu_context *cpuctx;
2779         struct pmu *pmu;
2780         unsigned long flags;
2781
2782         if (prev == next)
2783                 return;
2784
2785         local_irq_save(flags);
2786
2787         rcu_read_lock();
2788
2789         list_for_each_entry_rcu(pmu, &pmus, entry) {
2790                 if (pmu->sched_task) {
2791                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2792
2793                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2794
2795                         perf_pmu_disable(pmu);
2796
2797                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2798
2799                         perf_pmu_enable(pmu);
2800
2801                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2802                 }
2803         }
2804
2805         rcu_read_unlock();
2806
2807         local_irq_restore(flags);
2808 }
2809
2810 static void perf_event_switch(struct task_struct *task,
2811                               struct task_struct *next_prev, bool sched_in);
2812
2813 #define for_each_task_context_nr(ctxn)                                  \
2814         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2815
2816 /*
2817  * Called from scheduler to remove the events of the current task,
2818  * with interrupts disabled.
2819  *
2820  * We stop each event and update the event value in event->count.
2821  *
2822  * This does not protect us against NMI, but disable()
2823  * sets the disabled bit in the control field of event _before_
2824  * accessing the event control register. If a NMI hits, then it will
2825  * not restart the event.
2826  */
2827 void __perf_event_task_sched_out(struct task_struct *task,
2828                                  struct task_struct *next)
2829 {
2830         int ctxn;
2831
2832         if (__this_cpu_read(perf_sched_cb_usages))
2833                 perf_pmu_sched_task(task, next, false);
2834
2835         if (atomic_read(&nr_switch_events))
2836                 perf_event_switch(task, next, false);
2837
2838         for_each_task_context_nr(ctxn)
2839                 perf_event_context_sched_out(task, ctxn, next);
2840
2841         /*
2842          * if cgroup events exist on this CPU, then we need
2843          * to check if we have to switch out PMU state.
2844          * cgroup event are system-wide mode only
2845          */
2846         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2847                 perf_cgroup_sched_out(task, next);
2848 }
2849
2850 /*
2851  * Called with IRQs disabled
2852  */
2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2854                               enum event_type_t event_type)
2855 {
2856         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2857 }
2858
2859 static void
2860 ctx_pinned_sched_in(struct perf_event_context *ctx,
2861                     struct perf_cpu_context *cpuctx)
2862 {
2863         struct perf_event *event;
2864
2865         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2866                 if (event->state <= PERF_EVENT_STATE_OFF)
2867                         continue;
2868                 if (!event_filter_match(event))
2869                         continue;
2870
2871                 /* may need to reset tstamp_enabled */
2872                 if (is_cgroup_event(event))
2873                         perf_cgroup_mark_enabled(event, ctx);
2874
2875                 if (group_can_go_on(event, cpuctx, 1))
2876                         group_sched_in(event, cpuctx, ctx);
2877
2878                 /*
2879                  * If this pinned group hasn't been scheduled,
2880                  * put it in error state.
2881                  */
2882                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2883                         update_group_times(event);
2884                         event->state = PERF_EVENT_STATE_ERROR;
2885                 }
2886         }
2887 }
2888
2889 static void
2890 ctx_flexible_sched_in(struct perf_event_context *ctx,
2891                       struct perf_cpu_context *cpuctx)
2892 {
2893         struct perf_event *event;
2894         int can_add_hw = 1;
2895
2896         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2897                 /* Ignore events in OFF or ERROR state */
2898                 if (event->state <= PERF_EVENT_STATE_OFF)
2899                         continue;
2900                 /*
2901                  * Listen to the 'cpu' scheduling filter constraint
2902                  * of events:
2903                  */
2904                 if (!event_filter_match(event))
2905                         continue;
2906
2907                 /* may need to reset tstamp_enabled */
2908                 if (is_cgroup_event(event))
2909                         perf_cgroup_mark_enabled(event, ctx);
2910
2911                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2912                         if (group_sched_in(event, cpuctx, ctx))
2913                                 can_add_hw = 0;
2914                 }
2915         }
2916 }
2917
2918 static void
2919 ctx_sched_in(struct perf_event_context *ctx,
2920              struct perf_cpu_context *cpuctx,
2921              enum event_type_t event_type,
2922              struct task_struct *task)
2923 {
2924         int is_active = ctx->is_active;
2925         u64 now;
2926
2927         lockdep_assert_held(&ctx->lock);
2928
2929         if (likely(!ctx->nr_events))
2930                 return;
2931
2932         ctx->is_active |= (event_type | EVENT_TIME);
2933         if (ctx->task) {
2934                 if (!is_active)
2935                         cpuctx->task_ctx = ctx;
2936                 else
2937                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2938         }
2939
2940         is_active ^= ctx->is_active; /* changed bits */
2941
2942         if (is_active & EVENT_TIME) {
2943                 /* start ctx time */
2944                 now = perf_clock();
2945                 ctx->timestamp = now;
2946                 perf_cgroup_set_timestamp(task, ctx);
2947         }
2948
2949         /*
2950          * First go through the list and put on any pinned groups
2951          * in order to give them the best chance of going on.
2952          */
2953         if (is_active & EVENT_PINNED)
2954                 ctx_pinned_sched_in(ctx, cpuctx);
2955
2956         /* Then walk through the lower prio flexible groups */
2957         if (is_active & EVENT_FLEXIBLE)
2958                 ctx_flexible_sched_in(ctx, cpuctx);
2959 }
2960
2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2962                              enum event_type_t event_type,
2963                              struct task_struct *task)
2964 {
2965         struct perf_event_context *ctx = &cpuctx->ctx;
2966
2967         ctx_sched_in(ctx, cpuctx, event_type, task);
2968 }
2969
2970 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2971                                         struct task_struct *task)
2972 {
2973         struct perf_cpu_context *cpuctx;
2974
2975         cpuctx = __get_cpu_context(ctx);
2976         if (cpuctx->task_ctx == ctx)
2977                 return;
2978
2979         perf_ctx_lock(cpuctx, ctx);
2980         perf_pmu_disable(ctx->pmu);
2981         /*
2982          * We want to keep the following priority order:
2983          * cpu pinned (that don't need to move), task pinned,
2984          * cpu flexible, task flexible.
2985          */
2986         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2987         perf_event_sched_in(cpuctx, ctx, task);
2988         perf_pmu_enable(ctx->pmu);
2989         perf_ctx_unlock(cpuctx, ctx);
2990 }
2991
2992 /*
2993  * Called from scheduler to add the events of the current task
2994  * with interrupts disabled.
2995  *
2996  * We restore the event value and then enable it.
2997  *
2998  * This does not protect us against NMI, but enable()
2999  * sets the enabled bit in the control field of event _before_
3000  * accessing the event control register. If a NMI hits, then it will
3001  * keep the event running.
3002  */
3003 void __perf_event_task_sched_in(struct task_struct *prev,
3004                                 struct task_struct *task)
3005 {
3006         struct perf_event_context *ctx;
3007         int ctxn;
3008
3009         /*
3010          * If cgroup events exist on this CPU, then we need to check if we have
3011          * to switch in PMU state; cgroup event are system-wide mode only.
3012          *
3013          * Since cgroup events are CPU events, we must schedule these in before
3014          * we schedule in the task events.
3015          */
3016         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3017                 perf_cgroup_sched_in(prev, task);
3018
3019         for_each_task_context_nr(ctxn) {
3020                 ctx = task->perf_event_ctxp[ctxn];
3021                 if (likely(!ctx))
3022                         continue;
3023
3024                 perf_event_context_sched_in(ctx, task);
3025         }
3026
3027         if (atomic_read(&nr_switch_events))
3028                 perf_event_switch(task, prev, true);
3029
3030         if (__this_cpu_read(perf_sched_cb_usages))
3031                 perf_pmu_sched_task(prev, task, true);
3032 }
3033
3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3035 {
3036         u64 frequency = event->attr.sample_freq;
3037         u64 sec = NSEC_PER_SEC;
3038         u64 divisor, dividend;
3039
3040         int count_fls, nsec_fls, frequency_fls, sec_fls;
3041
3042         count_fls = fls64(count);
3043         nsec_fls = fls64(nsec);
3044         frequency_fls = fls64(frequency);
3045         sec_fls = 30;
3046
3047         /*
3048          * We got @count in @nsec, with a target of sample_freq HZ
3049          * the target period becomes:
3050          *
3051          *             @count * 10^9
3052          * period = -------------------
3053          *          @nsec * sample_freq
3054          *
3055          */
3056
3057         /*
3058          * Reduce accuracy by one bit such that @a and @b converge
3059          * to a similar magnitude.
3060          */
3061 #define REDUCE_FLS(a, b)                \
3062 do {                                    \
3063         if (a##_fls > b##_fls) {        \
3064                 a >>= 1;                \
3065                 a##_fls--;              \
3066         } else {                        \
3067                 b >>= 1;                \
3068                 b##_fls--;              \
3069         }                               \
3070 } while (0)
3071
3072         /*
3073          * Reduce accuracy until either term fits in a u64, then proceed with
3074          * the other, so that finally we can do a u64/u64 division.
3075          */
3076         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3077                 REDUCE_FLS(nsec, frequency);
3078                 REDUCE_FLS(sec, count);
3079         }
3080
3081         if (count_fls + sec_fls > 64) {
3082                 divisor = nsec * frequency;
3083
3084                 while (count_fls + sec_fls > 64) {
3085                         REDUCE_FLS(count, sec);
3086                         divisor >>= 1;
3087                 }
3088
3089                 dividend = count * sec;
3090         } else {
3091                 dividend = count * sec;
3092
3093                 while (nsec_fls + frequency_fls > 64) {
3094                         REDUCE_FLS(nsec, frequency);
3095                         dividend >>= 1;
3096                 }
3097
3098                 divisor = nsec * frequency;
3099         }
3100
3101         if (!divisor)
3102                 return dividend;
3103
3104         return div64_u64(dividend, divisor);
3105 }
3106
3107 static DEFINE_PER_CPU(int, perf_throttled_count);
3108 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3109
3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3111 {
3112         struct hw_perf_event *hwc = &event->hw;
3113         s64 period, sample_period;
3114         s64 delta;
3115
3116         period = perf_calculate_period(event, nsec, count);
3117
3118         delta = (s64)(period - hwc->sample_period);
3119         delta = (delta + 7) / 8; /* low pass filter */
3120
3121         sample_period = hwc->sample_period + delta;
3122
3123         if (!sample_period)
3124                 sample_period = 1;
3125
3126         hwc->sample_period = sample_period;
3127
3128         if (local64_read(&hwc->period_left) > 8*sample_period) {
3129                 if (disable)
3130                         event->pmu->stop(event, PERF_EF_UPDATE);
3131
3132                 local64_set(&hwc->period_left, 0);
3133
3134                 if (disable)
3135                         event->pmu->start(event, PERF_EF_RELOAD);
3136         }
3137 }
3138
3139 /*
3140  * combine freq adjustment with unthrottling to avoid two passes over the
3141  * events. At the same time, make sure, having freq events does not change
3142  * the rate of unthrottling as that would introduce bias.
3143  */
3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3145                                            int needs_unthr)
3146 {
3147         struct perf_event *event;
3148         struct hw_perf_event *hwc;
3149         u64 now, period = TICK_NSEC;
3150         s64 delta;
3151
3152         /*
3153          * only need to iterate over all events iff:
3154          * - context have events in frequency mode (needs freq adjust)
3155          * - there are events to unthrottle on this cpu
3156          */
3157         if (!(ctx->nr_freq || needs_unthr))
3158                 return;
3159
3160         raw_spin_lock(&ctx->lock);
3161         perf_pmu_disable(ctx->pmu);
3162
3163         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3164                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3165                         continue;
3166
3167                 if (!event_filter_match(event))
3168                         continue;
3169
3170                 perf_pmu_disable(event->pmu);
3171
3172                 hwc = &event->hw;
3173
3174                 if (hwc->interrupts == MAX_INTERRUPTS) {
3175                         hwc->interrupts = 0;
3176                         perf_log_throttle(event, 1);
3177                         event->pmu->start(event, 0);
3178                 }
3179
3180                 if (!event->attr.freq || !event->attr.sample_freq)
3181                         goto next;
3182
3183                 /*
3184                  * stop the event and update event->count
3185                  */
3186                 event->pmu->stop(event, PERF_EF_UPDATE);
3187
3188                 now = local64_read(&event->count);
3189                 delta = now - hwc->freq_count_stamp;
3190                 hwc->freq_count_stamp = now;
3191
3192                 /*
3193                  * restart the event
3194                  * reload only if value has changed
3195                  * we have stopped the event so tell that
3196                  * to perf_adjust_period() to avoid stopping it
3197                  * twice.
3198                  */
3199                 if (delta > 0)
3200                         perf_adjust_period(event, period, delta, false);
3201
3202                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3203         next:
3204                 perf_pmu_enable(event->pmu);
3205         }
3206
3207         perf_pmu_enable(ctx->pmu);
3208         raw_spin_unlock(&ctx->lock);
3209 }
3210
3211 /*
3212  * Round-robin a context's events:
3213  */
3214 static void rotate_ctx(struct perf_event_context *ctx)
3215 {
3216         /*
3217          * Rotate the first entry last of non-pinned groups. Rotation might be
3218          * disabled by the inheritance code.
3219          */
3220         if (!ctx->rotate_disable)
3221                 list_rotate_left(&ctx->flexible_groups);
3222 }
3223
3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3225 {
3226         struct perf_event_context *ctx = NULL;
3227         int rotate = 0;
3228
3229         if (cpuctx->ctx.nr_events) {
3230                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3231                         rotate = 1;
3232         }
3233
3234         ctx = cpuctx->task_ctx;
3235         if (ctx && ctx->nr_events) {
3236                 if (ctx->nr_events != ctx->nr_active)
3237                         rotate = 1;
3238         }
3239
3240         if (!rotate)
3241                 goto done;
3242
3243         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3244         perf_pmu_disable(cpuctx->ctx.pmu);
3245
3246         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3247         if (ctx)
3248                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3249
3250         rotate_ctx(&cpuctx->ctx);
3251         if (ctx)
3252                 rotate_ctx(ctx);
3253
3254         perf_event_sched_in(cpuctx, ctx, current);
3255
3256         perf_pmu_enable(cpuctx->ctx.pmu);
3257         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3258 done:
3259
3260         return rotate;
3261 }
3262
3263 void perf_event_task_tick(void)
3264 {
3265         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3266         struct perf_event_context *ctx, *tmp;
3267         int throttled;
3268
3269         WARN_ON(!irqs_disabled());
3270
3271         __this_cpu_inc(perf_throttled_seq);
3272         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3273         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3274
3275         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3276                 perf_adjust_freq_unthr_context(ctx, throttled);
3277 }
3278
3279 static int event_enable_on_exec(struct perf_event *event,
3280                                 struct perf_event_context *ctx)
3281 {
3282         if (!event->attr.enable_on_exec)
3283                 return 0;
3284
3285         event->attr.enable_on_exec = 0;
3286         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3287                 return 0;
3288
3289         __perf_event_mark_enabled(event);
3290
3291         return 1;
3292 }
3293
3294 /*
3295  * Enable all of a task's events that have been marked enable-on-exec.
3296  * This expects task == current.
3297  */
3298 static void perf_event_enable_on_exec(int ctxn)
3299 {
3300         struct perf_event_context *ctx, *clone_ctx = NULL;
3301         struct perf_cpu_context *cpuctx;
3302         struct perf_event *event;
3303         unsigned long flags;
3304         int enabled = 0;
3305
3306         local_irq_save(flags);
3307         ctx = current->perf_event_ctxp[ctxn];
3308         if (!ctx || !ctx->nr_events)
3309                 goto out;
3310
3311         cpuctx = __get_cpu_context(ctx);
3312         perf_ctx_lock(cpuctx, ctx);
3313         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3314         list_for_each_entry(event, &ctx->event_list, event_entry)
3315                 enabled |= event_enable_on_exec(event, ctx);
3316
3317         /*
3318          * Unclone and reschedule this context if we enabled any event.
3319          */
3320         if (enabled) {
3321                 clone_ctx = unclone_ctx(ctx);
3322                 ctx_resched(cpuctx, ctx);
3323         }
3324         perf_ctx_unlock(cpuctx, ctx);
3325
3326 out:
3327         local_irq_restore(flags);
3328
3329         if (clone_ctx)
3330                 put_ctx(clone_ctx);
3331 }
3332
3333 struct perf_read_data {
3334         struct perf_event *event;
3335         bool group;
3336         int ret;
3337 };
3338
3339 /*
3340  * Cross CPU call to read the hardware event
3341  */
3342 static void __perf_event_read(void *info)
3343 {
3344         struct perf_read_data *data = info;
3345         struct perf_event *sub, *event = data->event;
3346         struct perf_event_context *ctx = event->ctx;
3347         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3348         struct pmu *pmu = event->pmu;
3349
3350         /*
3351          * If this is a task context, we need to check whether it is
3352          * the current task context of this cpu.  If not it has been
3353          * scheduled out before the smp call arrived.  In that case
3354          * event->count would have been updated to a recent sample
3355          * when the event was scheduled out.
3356          */
3357         if (ctx->task && cpuctx->task_ctx != ctx)
3358                 return;
3359
3360         raw_spin_lock(&ctx->lock);
3361         if (ctx->is_active) {
3362                 update_context_time(ctx);
3363                 update_cgrp_time_from_event(event);
3364         }
3365
3366         update_event_times(event);
3367         if (event->state != PERF_EVENT_STATE_ACTIVE)
3368                 goto unlock;
3369
3370         if (!data->group) {
3371                 pmu->read(event);
3372                 data->ret = 0;
3373                 goto unlock;
3374         }
3375
3376         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3377
3378         pmu->read(event);
3379
3380         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3381                 update_event_times(sub);
3382                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3383                         /*
3384                          * Use sibling's PMU rather than @event's since
3385                          * sibling could be on different (eg: software) PMU.
3386                          */
3387                         sub->pmu->read(sub);
3388                 }
3389         }
3390
3391         data->ret = pmu->commit_txn(pmu);
3392
3393 unlock:
3394         raw_spin_unlock(&ctx->lock);
3395 }
3396
3397 static inline u64 perf_event_count(struct perf_event *event)
3398 {
3399         if (event->pmu->count)
3400                 return event->pmu->count(event);
3401
3402         return __perf_event_count(event);
3403 }
3404
3405 /*
3406  * NMI-safe method to read a local event, that is an event that
3407  * is:
3408  *   - either for the current task, or for this CPU
3409  *   - does not have inherit set, for inherited task events
3410  *     will not be local and we cannot read them atomically
3411  *   - must not have a pmu::count method
3412  */
3413 u64 perf_event_read_local(struct perf_event *event)
3414 {
3415         unsigned long flags;
3416         u64 val;
3417
3418         /*
3419          * Disabling interrupts avoids all counter scheduling (context
3420          * switches, timer based rotation and IPIs).
3421          */
3422         local_irq_save(flags);
3423
3424         /* If this is a per-task event, it must be for current */
3425         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3426                      event->hw.target != current);
3427
3428         /* If this is a per-CPU event, it must be for this CPU */
3429         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3430                      event->cpu != smp_processor_id());
3431
3432         /*
3433          * It must not be an event with inherit set, we cannot read
3434          * all child counters from atomic context.
3435          */
3436         WARN_ON_ONCE(event->attr.inherit);
3437
3438         /*
3439          * It must not have a pmu::count method, those are not
3440          * NMI safe.
3441          */
3442         WARN_ON_ONCE(event->pmu->count);
3443
3444         /*
3445          * If the event is currently on this CPU, its either a per-task event,
3446          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3447          * oncpu == -1).
3448          */
3449         if (event->oncpu == smp_processor_id())
3450                 event->pmu->read(event);
3451
3452         val = local64_read(&event->count);
3453         local_irq_restore(flags);
3454
3455         return val;
3456 }
3457
3458 static int perf_event_read(struct perf_event *event, bool group)
3459 {
3460         int ret = 0;
3461
3462         /*
3463          * If event is enabled and currently active on a CPU, update the
3464          * value in the event structure:
3465          */
3466         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3467                 struct perf_read_data data = {
3468                         .event = event,
3469                         .group = group,
3470                         .ret = 0,
3471                 };
3472                 smp_call_function_single(event->oncpu,
3473                                          __perf_event_read, &data, 1);
3474                 ret = data.ret;
3475         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3476                 struct perf_event_context *ctx = event->ctx;
3477                 unsigned long flags;
3478
3479                 raw_spin_lock_irqsave(&ctx->lock, flags);
3480                 /*
3481                  * may read while context is not active
3482                  * (e.g., thread is blocked), in that case
3483                  * we cannot update context time
3484                  */
3485                 if (ctx->is_active) {
3486                         update_context_time(ctx);
3487                         update_cgrp_time_from_event(event);
3488                 }
3489                 if (group)
3490                         update_group_times(event);
3491                 else
3492                         update_event_times(event);
3493                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3494         }
3495
3496         return ret;
3497 }
3498
3499 /*
3500  * Initialize the perf_event context in a task_struct:
3501  */
3502 static void __perf_event_init_context(struct perf_event_context *ctx)
3503 {
3504         raw_spin_lock_init(&ctx->lock);
3505         mutex_init(&ctx->mutex);
3506         INIT_LIST_HEAD(&ctx->active_ctx_list);
3507         INIT_LIST_HEAD(&ctx->pinned_groups);
3508         INIT_LIST_HEAD(&ctx->flexible_groups);
3509         INIT_LIST_HEAD(&ctx->event_list);
3510         atomic_set(&ctx->refcount, 1);
3511 }
3512
3513 static struct perf_event_context *
3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3515 {
3516         struct perf_event_context *ctx;
3517
3518         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3519         if (!ctx)
3520                 return NULL;
3521
3522         __perf_event_init_context(ctx);
3523         if (task) {
3524                 ctx->task = task;
3525                 get_task_struct(task);
3526         }
3527         ctx->pmu = pmu;
3528
3529         return ctx;
3530 }
3531
3532 static struct task_struct *
3533 find_lively_task_by_vpid(pid_t vpid)
3534 {
3535         struct task_struct *task;
3536
3537         rcu_read_lock();
3538         if (!vpid)
3539                 task = current;
3540         else
3541                 task = find_task_by_vpid(vpid);
3542         if (task)
3543                 get_task_struct(task);
3544         rcu_read_unlock();
3545
3546         if (!task)
3547                 return ERR_PTR(-ESRCH);
3548
3549         return task;
3550 }
3551
3552 /*
3553  * Returns a matching context with refcount and pincount.
3554  */
3555 static struct perf_event_context *
3556 find_get_context(struct pmu *pmu, struct task_struct *task,
3557                 struct perf_event *event)
3558 {
3559         struct perf_event_context *ctx, *clone_ctx = NULL;
3560         struct perf_cpu_context *cpuctx;
3561         void *task_ctx_data = NULL;
3562         unsigned long flags;
3563         int ctxn, err;
3564         int cpu = event->cpu;
3565
3566         if (!task) {
3567                 /* Must be root to operate on a CPU event: */
3568                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3569                         return ERR_PTR(-EACCES);
3570
3571                 /*
3572                  * We could be clever and allow to attach a event to an
3573                  * offline CPU and activate it when the CPU comes up, but
3574                  * that's for later.
3575                  */
3576                 if (!cpu_online(cpu))
3577                         return ERR_PTR(-ENODEV);
3578
3579                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3580                 ctx = &cpuctx->ctx;
3581                 get_ctx(ctx);
3582                 ++ctx->pin_count;
3583
3584                 return ctx;
3585         }
3586
3587         err = -EINVAL;
3588         ctxn = pmu->task_ctx_nr;
3589         if (ctxn < 0)
3590                 goto errout;
3591
3592         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3593                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3594                 if (!task_ctx_data) {
3595                         err = -ENOMEM;
3596                         goto errout;
3597                 }
3598         }
3599
3600 retry:
3601         ctx = perf_lock_task_context(task, ctxn, &flags);
3602         if (ctx) {
3603                 clone_ctx = unclone_ctx(ctx);
3604                 ++ctx->pin_count;
3605
3606                 if (task_ctx_data && !ctx->task_ctx_data) {
3607                         ctx->task_ctx_data = task_ctx_data;
3608                         task_ctx_data = NULL;
3609                 }
3610                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3611
3612                 if (clone_ctx)
3613                         put_ctx(clone_ctx);
3614         } else {
3615                 ctx = alloc_perf_context(pmu, task);
3616                 err = -ENOMEM;
3617                 if (!ctx)
3618                         goto errout;
3619
3620                 if (task_ctx_data) {
3621                         ctx->task_ctx_data = task_ctx_data;
3622                         task_ctx_data = NULL;
3623                 }
3624
3625                 err = 0;
3626                 mutex_lock(&task->perf_event_mutex);
3627                 /*
3628                  * If it has already passed perf_event_exit_task().
3629                  * we must see PF_EXITING, it takes this mutex too.
3630                  */
3631                 if (task->flags & PF_EXITING)
3632                         err = -ESRCH;
3633                 else if (task->perf_event_ctxp[ctxn])
3634                         err = -EAGAIN;
3635                 else {
3636                         get_ctx(ctx);
3637                         ++ctx->pin_count;
3638                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3639                 }
3640                 mutex_unlock(&task->perf_event_mutex);
3641
3642                 if (unlikely(err)) {
3643                         put_ctx(ctx);
3644
3645                         if (err == -EAGAIN)
3646                                 goto retry;
3647                         goto errout;
3648                 }
3649         }
3650
3651         kfree(task_ctx_data);
3652         return ctx;
3653
3654 errout:
3655         kfree(task_ctx_data);
3656         return ERR_PTR(err);
3657 }
3658
3659 static void perf_event_free_filter(struct perf_event *event);
3660 static void perf_event_free_bpf_prog(struct perf_event *event);
3661
3662 static void free_event_rcu(struct rcu_head *head)
3663 {
3664         struct perf_event *event;
3665
3666         event = container_of(head, struct perf_event, rcu_head);
3667         if (event->ns)
3668                 put_pid_ns(event->ns);
3669         perf_event_free_filter(event);
3670         kfree(event);
3671 }
3672
3673 static void ring_buffer_attach(struct perf_event *event,
3674                                struct ring_buffer *rb);
3675
3676 static void detach_sb_event(struct perf_event *event)
3677 {
3678         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3679
3680         raw_spin_lock(&pel->lock);
3681         list_del_rcu(&event->sb_list);
3682         raw_spin_unlock(&pel->lock);
3683 }
3684
3685 static void unaccount_pmu_sb_event(struct perf_event *event)
3686 {
3687         if (event->parent)
3688                 return;
3689
3690         if (event->attach_state & PERF_ATTACH_TASK)
3691                 return;
3692
3693         detach_sb_event(event);
3694 }
3695
3696 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3697 {
3698         if (event->parent)
3699                 return;
3700
3701         if (is_cgroup_event(event))
3702                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3703 }
3704
3705 #ifdef CONFIG_NO_HZ_FULL
3706 static DEFINE_SPINLOCK(nr_freq_lock);
3707 #endif
3708
3709 static void unaccount_freq_event_nohz(void)
3710 {
3711 #ifdef CONFIG_NO_HZ_FULL
3712         spin_lock(&nr_freq_lock);
3713         if (atomic_dec_and_test(&nr_freq_events))
3714                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3715         spin_unlock(&nr_freq_lock);
3716 #endif
3717 }
3718
3719 static void unaccount_freq_event(void)
3720 {
3721         if (tick_nohz_full_enabled())
3722                 unaccount_freq_event_nohz();
3723         else
3724                 atomic_dec(&nr_freq_events);
3725 }
3726
3727 static void unaccount_event(struct perf_event *event)
3728 {
3729         bool dec = false;
3730
3731         if (event->parent)
3732                 return;
3733
3734         if (event->attach_state & PERF_ATTACH_TASK)
3735                 dec = true;
3736         if (event->attr.mmap || event->attr.mmap_data)
3737                 atomic_dec(&nr_mmap_events);
3738         if (event->attr.comm)
3739                 atomic_dec(&nr_comm_events);
3740         if (event->attr.task)
3741                 atomic_dec(&nr_task_events);
3742         if (event->attr.freq)
3743                 unaccount_freq_event();
3744         if (event->attr.context_switch) {
3745                 dec = true;
3746                 atomic_dec(&nr_switch_events);
3747         }
3748         if (is_cgroup_event(event))
3749                 dec = true;
3750         if (has_branch_stack(event))
3751                 dec = true;
3752
3753         if (dec) {
3754                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3755                         schedule_delayed_work(&perf_sched_work, HZ);
3756         }
3757
3758         unaccount_event_cpu(event, event->cpu);
3759
3760         unaccount_pmu_sb_event(event);
3761 }
3762
3763 static void perf_sched_delayed(struct work_struct *work)
3764 {
3765         mutex_lock(&perf_sched_mutex);
3766         if (atomic_dec_and_test(&perf_sched_count))
3767                 static_branch_disable(&perf_sched_events);
3768         mutex_unlock(&perf_sched_mutex);
3769 }
3770
3771 /*
3772  * The following implement mutual exclusion of events on "exclusive" pmus
3773  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3774  * at a time, so we disallow creating events that might conflict, namely:
3775  *
3776  *  1) cpu-wide events in the presence of per-task events,
3777  *  2) per-task events in the presence of cpu-wide events,
3778  *  3) two matching events on the same context.
3779  *
3780  * The former two cases are handled in the allocation path (perf_event_alloc(),
3781  * _free_event()), the latter -- before the first perf_install_in_context().
3782  */
3783 static int exclusive_event_init(struct perf_event *event)
3784 {
3785         struct pmu *pmu = event->pmu;
3786
3787         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3788                 return 0;
3789
3790         /*
3791          * Prevent co-existence of per-task and cpu-wide events on the
3792          * same exclusive pmu.
3793          *
3794          * Negative pmu::exclusive_cnt means there are cpu-wide
3795          * events on this "exclusive" pmu, positive means there are
3796          * per-task events.
3797          *
3798          * Since this is called in perf_event_alloc() path, event::ctx
3799          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3800          * to mean "per-task event", because unlike other attach states it
3801          * never gets cleared.
3802          */
3803         if (event->attach_state & PERF_ATTACH_TASK) {
3804                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3805                         return -EBUSY;
3806         } else {
3807                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3808                         return -EBUSY;
3809         }
3810
3811         return 0;
3812 }
3813
3814 static void exclusive_event_destroy(struct perf_event *event)
3815 {
3816         struct pmu *pmu = event->pmu;
3817
3818         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3819                 return;
3820
3821         /* see comment in exclusive_event_init() */
3822         if (event->attach_state & PERF_ATTACH_TASK)
3823                 atomic_dec(&pmu->exclusive_cnt);
3824         else
3825                 atomic_inc(&pmu->exclusive_cnt);
3826 }
3827
3828 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3829 {
3830         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3831             (e1->cpu == e2->cpu ||
3832              e1->cpu == -1 ||
3833              e2->cpu == -1))
3834                 return true;
3835         return false;
3836 }
3837
3838 /* Called under the same ctx::mutex as perf_install_in_context() */
3839 static bool exclusive_event_installable(struct perf_event *event,
3840                                         struct perf_event_context *ctx)
3841 {
3842         struct perf_event *iter_event;
3843         struct pmu *pmu = event->pmu;
3844
3845         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3846                 return true;
3847
3848         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3849                 if (exclusive_event_match(iter_event, event))
3850                         return false;
3851         }
3852
3853         return true;
3854 }
3855
3856 static void perf_addr_filters_splice(struct perf_event *event,
3857                                        struct list_head *head);
3858
3859 static void _free_event(struct perf_event *event)
3860 {
3861         irq_work_sync(&event->pending);
3862
3863         unaccount_event(event);
3864
3865         if (event->rb) {
3866                 /*
3867                  * Can happen when we close an event with re-directed output.
3868                  *
3869                  * Since we have a 0 refcount, perf_mmap_close() will skip
3870                  * over us; possibly making our ring_buffer_put() the last.
3871                  */
3872                 mutex_lock(&event->mmap_mutex);
3873                 ring_buffer_attach(event, NULL);
3874                 mutex_unlock(&event->mmap_mutex);
3875         }
3876
3877         if (is_cgroup_event(event))
3878                 perf_detach_cgroup(event);
3879
3880         if (!event->parent) {
3881                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3882                         put_callchain_buffers();
3883         }
3884
3885         perf_event_free_bpf_prog(event);
3886         perf_addr_filters_splice(event, NULL);
3887         kfree(event->addr_filters_offs);
3888
3889         if (event->destroy)
3890                 event->destroy(event);
3891
3892         if (event->ctx)
3893                 put_ctx(event->ctx);
3894
3895         if (event->pmu) {
3896                 exclusive_event_destroy(event);
3897                 module_put(event->pmu->module);
3898         }
3899
3900         call_rcu(&event->rcu_head, free_event_rcu);
3901 }
3902
3903 /*
3904  * Used to free events which have a known refcount of 1, such as in error paths
3905  * where the event isn't exposed yet and inherited events.
3906  */
3907 static void free_event(struct perf_event *event)
3908 {
3909         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3910                                 "unexpected event refcount: %ld; ptr=%p\n",
3911                                 atomic_long_read(&event->refcount), event)) {
3912                 /* leak to avoid use-after-free */
3913                 return;
3914         }
3915
3916         _free_event(event);
3917 }
3918
3919 /*
3920  * Remove user event from the owner task.
3921  */
3922 static void perf_remove_from_owner(struct perf_event *event)
3923 {
3924         struct task_struct *owner;
3925
3926         rcu_read_lock();
3927         /*
3928          * Matches the smp_store_release() in perf_event_exit_task(). If we
3929          * observe !owner it means the list deletion is complete and we can
3930          * indeed free this event, otherwise we need to serialize on
3931          * owner->perf_event_mutex.
3932          */
3933         owner = lockless_dereference(event->owner);
3934         if (owner) {
3935                 /*
3936                  * Since delayed_put_task_struct() also drops the last
3937                  * task reference we can safely take a new reference
3938                  * while holding the rcu_read_lock().
3939                  */
3940                 get_task_struct(owner);
3941         }
3942         rcu_read_unlock();
3943
3944         if (owner) {
3945                 /*
3946                  * If we're here through perf_event_exit_task() we're already
3947                  * holding ctx->mutex which would be an inversion wrt. the
3948                  * normal lock order.
3949                  *
3950                  * However we can safely take this lock because its the child
3951                  * ctx->mutex.
3952                  */
3953                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3954
3955                 /*
3956                  * We have to re-check the event->owner field, if it is cleared
3957                  * we raced with perf_event_exit_task(), acquiring the mutex
3958                  * ensured they're done, and we can proceed with freeing the
3959                  * event.
3960                  */
3961                 if (event->owner) {
3962                         list_del_init(&event->owner_entry);
3963                         smp_store_release(&event->owner, NULL);
3964                 }
3965                 mutex_unlock(&owner->perf_event_mutex);
3966                 put_task_struct(owner);
3967         }
3968 }
3969
3970 static void put_event(struct perf_event *event)
3971 {
3972         if (!atomic_long_dec_and_test(&event->refcount))
3973                 return;
3974
3975         _free_event(event);
3976 }
3977
3978 /*
3979  * Kill an event dead; while event:refcount will preserve the event
3980  * object, it will not preserve its functionality. Once the last 'user'
3981  * gives up the object, we'll destroy the thing.
3982  */
3983 int perf_event_release_kernel(struct perf_event *event)
3984 {
3985         struct perf_event_context *ctx = event->ctx;
3986         struct perf_event *child, *tmp;
3987
3988         /*
3989          * If we got here through err_file: fput(event_file); we will not have
3990          * attached to a context yet.
3991          */
3992         if (!ctx) {
3993                 WARN_ON_ONCE(event->attach_state &
3994                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3995                 goto no_ctx;
3996         }
3997
3998         if (!is_kernel_event(event))
3999                 perf_remove_from_owner(event);
4000
4001         ctx = perf_event_ctx_lock(event);
4002         WARN_ON_ONCE(ctx->parent_ctx);
4003         perf_remove_from_context(event, DETACH_GROUP);
4004
4005         raw_spin_lock_irq(&ctx->lock);
4006         /*
4007          * Mark this even as STATE_DEAD, there is no external reference to it
4008          * anymore.
4009          *
4010          * Anybody acquiring event->child_mutex after the below loop _must_
4011          * also see this, most importantly inherit_event() which will avoid
4012          * placing more children on the list.
4013          *
4014          * Thus this guarantees that we will in fact observe and kill _ALL_
4015          * child events.
4016          */
4017         event->state = PERF_EVENT_STATE_DEAD;
4018         raw_spin_unlock_irq(&ctx->lock);
4019
4020         perf_event_ctx_unlock(event, ctx);
4021
4022 again:
4023         mutex_lock(&event->child_mutex);
4024         list_for_each_entry(child, &event->child_list, child_list) {
4025
4026                 /*
4027                  * Cannot change, child events are not migrated, see the
4028                  * comment with perf_event_ctx_lock_nested().
4029                  */
4030                 ctx = lockless_dereference(child->ctx);
4031                 /*
4032                  * Since child_mutex nests inside ctx::mutex, we must jump
4033                  * through hoops. We start by grabbing a reference on the ctx.
4034                  *
4035                  * Since the event cannot get freed while we hold the
4036                  * child_mutex, the context must also exist and have a !0
4037                  * reference count.
4038                  */
4039                 get_ctx(ctx);
4040
4041                 /*
4042                  * Now that we have a ctx ref, we can drop child_mutex, and
4043                  * acquire ctx::mutex without fear of it going away. Then we
4044                  * can re-acquire child_mutex.
4045                  */
4046                 mutex_unlock(&event->child_mutex);
4047                 mutex_lock(&ctx->mutex);
4048                 mutex_lock(&event->child_mutex);
4049
4050                 /*
4051                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4052                  * state, if child is still the first entry, it didn't get freed
4053                  * and we can continue doing so.
4054                  */
4055                 tmp = list_first_entry_or_null(&event->child_list,
4056                                                struct perf_event, child_list);
4057                 if (tmp == child) {
4058                         perf_remove_from_context(child, DETACH_GROUP);
4059                         list_del(&child->child_list);
4060                         free_event(child);
4061                         /*
4062                          * This matches the refcount bump in inherit_event();
4063                          * this can't be the last reference.
4064                          */
4065                         put_event(event);
4066                 }
4067
4068                 mutex_unlock(&event->child_mutex);
4069                 mutex_unlock(&ctx->mutex);
4070                 put_ctx(ctx);
4071                 goto again;
4072         }
4073         mutex_unlock(&event->child_mutex);
4074
4075 no_ctx:
4076         put_event(event); /* Must be the 'last' reference */
4077         return 0;
4078 }
4079 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4080
4081 /*
4082  * Called when the last reference to the file is gone.
4083  */
4084 static int perf_release(struct inode *inode, struct file *file)
4085 {
4086         perf_event_release_kernel(file->private_data);
4087         return 0;
4088 }
4089
4090 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4091 {
4092         struct perf_event *child;
4093         u64 total = 0;
4094
4095         *enabled = 0;
4096         *running = 0;
4097
4098         mutex_lock(&event->child_mutex);
4099
4100         (void)perf_event_read(event, false);
4101         total += perf_event_count(event);
4102
4103         *enabled += event->total_time_enabled +
4104                         atomic64_read(&event->child_total_time_enabled);
4105         *running += event->total_time_running +
4106                         atomic64_read(&event->child_total_time_running);
4107
4108         list_for_each_entry(child, &event->child_list, child_list) {
4109                 (void)perf_event_read(child, false);
4110                 total += perf_event_count(child);
4111                 *enabled += child->total_time_enabled;
4112                 *running += child->total_time_running;
4113         }
4114         mutex_unlock(&event->child_mutex);
4115
4116         return total;
4117 }
4118 EXPORT_SYMBOL_GPL(perf_event_read_value);
4119
4120 static int __perf_read_group_add(struct perf_event *leader,
4121                                         u64 read_format, u64 *values)
4122 {
4123         struct perf_event *sub;
4124         int n = 1; /* skip @nr */
4125         int ret;
4126
4127         ret = perf_event_read(leader, true);
4128         if (ret)
4129                 return ret;
4130
4131         /*
4132          * Since we co-schedule groups, {enabled,running} times of siblings
4133          * will be identical to those of the leader, so we only publish one
4134          * set.
4135          */
4136         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4137                 values[n++] += leader->total_time_enabled +
4138                         atomic64_read(&leader->child_total_time_enabled);
4139         }
4140
4141         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4142                 values[n++] += leader->total_time_running +
4143                         atomic64_read(&leader->child_total_time_running);
4144         }
4145
4146         /*
4147          * Write {count,id} tuples for every sibling.
4148          */
4149         values[n++] += perf_event_count(leader);
4150         if (read_format & PERF_FORMAT_ID)
4151                 values[n++] = primary_event_id(leader);
4152
4153         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4154                 values[n++] += perf_event_count(sub);
4155                 if (read_format & PERF_FORMAT_ID)
4156                         values[n++] = primary_event_id(sub);
4157         }
4158
4159         return 0;
4160 }
4161
4162 static int perf_read_group(struct perf_event *event,
4163                                    u64 read_format, char __user *buf)
4164 {
4165         struct perf_event *leader = event->group_leader, *child;
4166         struct perf_event_context *ctx = leader->ctx;
4167         int ret;
4168         u64 *values;
4169
4170         lockdep_assert_held(&ctx->mutex);
4171
4172         values = kzalloc(event->read_size, GFP_KERNEL);
4173         if (!values)
4174                 return -ENOMEM;
4175
4176         values[0] = 1 + leader->nr_siblings;
4177
4178         /*
4179          * By locking the child_mutex of the leader we effectively
4180          * lock the child list of all siblings.. XXX explain how.
4181          */
4182         mutex_lock(&leader->child_mutex);
4183
4184         ret = __perf_read_group_add(leader, read_format, values);
4185         if (ret)
4186                 goto unlock;
4187
4188         list_for_each_entry(child, &leader->child_list, child_list) {
4189                 ret = __perf_read_group_add(child, read_format, values);
4190                 if (ret)
4191                         goto unlock;
4192         }
4193
4194         mutex_unlock(&leader->child_mutex);
4195
4196         ret = event->read_size;
4197         if (copy_to_user(buf, values, event->read_size))
4198                 ret = -EFAULT;
4199         goto out;
4200
4201 unlock:
4202         mutex_unlock(&leader->child_mutex);
4203 out:
4204         kfree(values);
4205         return ret;
4206 }
4207
4208 static int perf_read_one(struct perf_event *event,
4209                                  u64 read_format, char __user *buf)
4210 {
4211         u64 enabled, running;
4212         u64 values[4];
4213         int n = 0;
4214
4215         values[n++] = perf_event_read_value(event, &enabled, &running);
4216         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4217                 values[n++] = enabled;
4218         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4219                 values[n++] = running;
4220         if (read_format & PERF_FORMAT_ID)
4221                 values[n++] = primary_event_id(event);
4222
4223         if (copy_to_user(buf, values, n * sizeof(u64)))
4224                 return -EFAULT;
4225
4226         return n * sizeof(u64);
4227 }
4228
4229 static bool is_event_hup(struct perf_event *event)
4230 {
4231         bool no_children;
4232
4233         if (event->state > PERF_EVENT_STATE_EXIT)
4234                 return false;
4235
4236         mutex_lock(&event->child_mutex);
4237         no_children = list_empty(&event->child_list);
4238         mutex_unlock(&event->child_mutex);
4239         return no_children;
4240 }
4241
4242 /*
4243  * Read the performance event - simple non blocking version for now
4244  */
4245 static ssize_t
4246 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4247 {
4248         u64 read_format = event->attr.read_format;
4249         int ret;
4250
4251         /*
4252          * Return end-of-file for a read on a event that is in
4253          * error state (i.e. because it was pinned but it couldn't be
4254          * scheduled on to the CPU at some point).
4255          */
4256         if (event->state == PERF_EVENT_STATE_ERROR)
4257                 return 0;
4258
4259         if (count < event->read_size)
4260                 return -ENOSPC;
4261
4262         WARN_ON_ONCE(event->ctx->parent_ctx);
4263         if (read_format & PERF_FORMAT_GROUP)
4264                 ret = perf_read_group(event, read_format, buf);
4265         else
4266                 ret = perf_read_one(event, read_format, buf);
4267
4268         return ret;
4269 }
4270
4271 static ssize_t
4272 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4273 {
4274         struct perf_event *event = file->private_data;
4275         struct perf_event_context *ctx;
4276         int ret;
4277
4278         ctx = perf_event_ctx_lock(event);
4279         ret = __perf_read(event, buf, count);
4280         perf_event_ctx_unlock(event, ctx);
4281
4282         return ret;
4283 }
4284
4285 static unsigned int perf_poll(struct file *file, poll_table *wait)
4286 {
4287         struct perf_event *event = file->private_data;
4288         struct ring_buffer *rb;
4289         unsigned int events = POLLHUP;
4290
4291         poll_wait(file, &event->waitq, wait);
4292
4293         if (is_event_hup(event))
4294                 return events;
4295
4296         /*
4297          * Pin the event->rb by taking event->mmap_mutex; otherwise
4298          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4299          */
4300         mutex_lock(&event->mmap_mutex);
4301         rb = event->rb;
4302         if (rb)
4303                 events = atomic_xchg(&rb->poll, 0);
4304         mutex_unlock(&event->mmap_mutex);
4305         return events;
4306 }
4307
4308 static void _perf_event_reset(struct perf_event *event)
4309 {
4310         (void)perf_event_read(event, false);
4311         local64_set(&event->count, 0);
4312         perf_event_update_userpage(event);
4313 }
4314
4315 /*
4316  * Holding the top-level event's child_mutex means that any
4317  * descendant process that has inherited this event will block
4318  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4319  * task existence requirements of perf_event_enable/disable.
4320  */
4321 static void perf_event_for_each_child(struct perf_event *event,
4322                                         void (*func)(struct perf_event *))
4323 {
4324         struct perf_event *child;
4325
4326         WARN_ON_ONCE(event->ctx->parent_ctx);
4327
4328         mutex_lock(&event->child_mutex);
4329         func(event);
4330         list_for_each_entry(child, &event->child_list, child_list)
4331                 func(child);
4332         mutex_unlock(&event->child_mutex);
4333 }
4334
4335 static void perf_event_for_each(struct perf_event *event,
4336                                   void (*func)(struct perf_event *))
4337 {
4338         struct perf_event_context *ctx = event->ctx;
4339         struct perf_event *sibling;
4340
4341         lockdep_assert_held(&ctx->mutex);
4342
4343         event = event->group_leader;
4344
4345         perf_event_for_each_child(event, func);
4346         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4347                 perf_event_for_each_child(sibling, func);
4348 }
4349
4350 static void __perf_event_period(struct perf_event *event,
4351                                 struct perf_cpu_context *cpuctx,
4352                                 struct perf_event_context *ctx,
4353                                 void *info)
4354 {
4355         u64 value = *((u64 *)info);
4356         bool active;
4357
4358         if (event->attr.freq) {
4359                 event->attr.sample_freq = value;
4360         } else {
4361                 event->attr.sample_period = value;
4362                 event->hw.sample_period = value;
4363         }
4364
4365         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4366         if (active) {
4367                 perf_pmu_disable(ctx->pmu);
4368                 /*
4369                  * We could be throttled; unthrottle now to avoid the tick
4370                  * trying to unthrottle while we already re-started the event.
4371                  */
4372                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4373                         event->hw.interrupts = 0;
4374                         perf_log_throttle(event, 1);
4375                 }
4376                 event->pmu->stop(event, PERF_EF_UPDATE);
4377         }
4378
4379         local64_set(&event->hw.period_left, 0);
4380
4381         if (active) {
4382                 event->pmu->start(event, PERF_EF_RELOAD);
4383                 perf_pmu_enable(ctx->pmu);
4384         }
4385 }
4386
4387 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4388 {
4389         u64 value;
4390
4391         if (!is_sampling_event(event))
4392                 return -EINVAL;
4393
4394         if (copy_from_user(&value, arg, sizeof(value)))
4395                 return -EFAULT;
4396
4397         if (!value)
4398                 return -EINVAL;
4399
4400         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4401                 return -EINVAL;
4402
4403         event_function_call(event, __perf_event_period, &value);
4404
4405         return 0;
4406 }
4407
4408 static const struct file_operations perf_fops;
4409
4410 static inline int perf_fget_light(int fd, struct fd *p)
4411 {
4412         struct fd f = fdget(fd);
4413         if (!f.file)
4414                 return -EBADF;
4415
4416         if (f.file->f_op != &perf_fops) {
4417                 fdput(f);
4418                 return -EBADF;
4419         }
4420         *p = f;
4421         return 0;
4422 }
4423
4424 static int perf_event_set_output(struct perf_event *event,
4425                                  struct perf_event *output_event);
4426 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4427 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4428
4429 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4430 {
4431         void (*func)(struct perf_event *);
4432         u32 flags = arg;
4433
4434         switch (cmd) {
4435         case PERF_EVENT_IOC_ENABLE:
4436                 func = _perf_event_enable;
4437                 break;
4438         case PERF_EVENT_IOC_DISABLE:
4439                 func = _perf_event_disable;
4440                 break;
4441         case PERF_EVENT_IOC_RESET:
4442                 func = _perf_event_reset;
4443                 break;
4444
4445         case PERF_EVENT_IOC_REFRESH:
4446                 return _perf_event_refresh(event, arg);
4447
4448         case PERF_EVENT_IOC_PERIOD:
4449                 return perf_event_period(event, (u64 __user *)arg);
4450
4451         case PERF_EVENT_IOC_ID:
4452         {
4453                 u64 id = primary_event_id(event);
4454
4455                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4456                         return -EFAULT;
4457                 return 0;
4458         }
4459
4460         case PERF_EVENT_IOC_SET_OUTPUT:
4461         {
4462                 int ret;
4463                 if (arg != -1) {
4464                         struct perf_event *output_event;
4465                         struct fd output;
4466                         ret = perf_fget_light(arg, &output);
4467                         if (ret)
4468                                 return ret;
4469                         output_event = output.file->private_data;
4470                         ret = perf_event_set_output(event, output_event);
4471                         fdput(output);
4472                 } else {
4473                         ret = perf_event_set_output(event, NULL);
4474                 }
4475                 return ret;
4476         }
4477
4478         case PERF_EVENT_IOC_SET_FILTER:
4479                 return perf_event_set_filter(event, (void __user *)arg);
4480
4481         case PERF_EVENT_IOC_SET_BPF:
4482                 return perf_event_set_bpf_prog(event, arg);
4483
4484         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4485                 struct ring_buffer *rb;
4486
4487                 rcu_read_lock();
4488                 rb = rcu_dereference(event->rb);
4489                 if (!rb || !rb->nr_pages) {
4490                         rcu_read_unlock();
4491                         return -EINVAL;
4492                 }
4493                 rb_toggle_paused(rb, !!arg);
4494                 rcu_read_unlock();
4495                 return 0;
4496         }
4497         default:
4498                 return -ENOTTY;
4499         }
4500
4501         if (flags & PERF_IOC_FLAG_GROUP)
4502                 perf_event_for_each(event, func);
4503         else
4504                 perf_event_for_each_child(event, func);
4505
4506         return 0;
4507 }
4508
4509 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4510 {
4511         struct perf_event *event = file->private_data;
4512         struct perf_event_context *ctx;
4513         long ret;
4514
4515         ctx = perf_event_ctx_lock(event);
4516         ret = _perf_ioctl(event, cmd, arg);
4517         perf_event_ctx_unlock(event, ctx);
4518
4519         return ret;
4520 }
4521
4522 #ifdef CONFIG_COMPAT
4523 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4524                                 unsigned long arg)
4525 {
4526         switch (_IOC_NR(cmd)) {
4527         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4528         case _IOC_NR(PERF_EVENT_IOC_ID):
4529                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4530                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4531                         cmd &= ~IOCSIZE_MASK;
4532                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4533                 }
4534                 break;
4535         }
4536         return perf_ioctl(file, cmd, arg);
4537 }
4538 #else
4539 # define perf_compat_ioctl NULL
4540 #endif
4541
4542 int perf_event_task_enable(void)
4543 {
4544         struct perf_event_context *ctx;
4545         struct perf_event *event;
4546
4547         mutex_lock(&current->perf_event_mutex);
4548         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4549                 ctx = perf_event_ctx_lock(event);
4550                 perf_event_for_each_child(event, _perf_event_enable);
4551                 perf_event_ctx_unlock(event, ctx);
4552         }
4553         mutex_unlock(&current->perf_event_mutex);
4554
4555         return 0;
4556 }
4557
4558 int perf_event_task_disable(void)
4559 {
4560         struct perf_event_context *ctx;
4561         struct perf_event *event;
4562
4563         mutex_lock(&current->perf_event_mutex);
4564         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4565                 ctx = perf_event_ctx_lock(event);
4566                 perf_event_for_each_child(event, _perf_event_disable);
4567                 perf_event_ctx_unlock(event, ctx);
4568         }
4569         mutex_unlock(&current->perf_event_mutex);
4570
4571         return 0;
4572 }
4573
4574 static int perf_event_index(struct perf_event *event)
4575 {
4576         if (event->hw.state & PERF_HES_STOPPED)
4577                 return 0;
4578
4579         if (event->state != PERF_EVENT_STATE_ACTIVE)
4580                 return 0;
4581
4582         return event->pmu->event_idx(event);
4583 }
4584
4585 static void calc_timer_values(struct perf_event *event,
4586                                 u64 *now,
4587                                 u64 *enabled,
4588                                 u64 *running)
4589 {
4590         u64 ctx_time;
4591
4592         *now = perf_clock();
4593         ctx_time = event->shadow_ctx_time + *now;
4594         *enabled = ctx_time - event->tstamp_enabled;
4595         *running = ctx_time - event->tstamp_running;
4596 }
4597
4598 static void perf_event_init_userpage(struct perf_event *event)
4599 {
4600         struct perf_event_mmap_page *userpg;
4601         struct ring_buffer *rb;
4602
4603         rcu_read_lock();
4604         rb = rcu_dereference(event->rb);
4605         if (!rb)
4606                 goto unlock;
4607
4608         userpg = rb->user_page;
4609
4610         /* Allow new userspace to detect that bit 0 is deprecated */
4611         userpg->cap_bit0_is_deprecated = 1;
4612         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4613         userpg->data_offset = PAGE_SIZE;
4614         userpg->data_size = perf_data_size(rb);
4615
4616 unlock:
4617         rcu_read_unlock();
4618 }
4619
4620 void __weak arch_perf_update_userpage(
4621         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4622 {
4623 }
4624
4625 /*
4626  * Callers need to ensure there can be no nesting of this function, otherwise
4627  * the seqlock logic goes bad. We can not serialize this because the arch
4628  * code calls this from NMI context.
4629  */
4630 void perf_event_update_userpage(struct perf_event *event)
4631 {
4632         struct perf_event_mmap_page *userpg;
4633         struct ring_buffer *rb;
4634         u64 enabled, running, now;
4635
4636         rcu_read_lock();
4637         rb = rcu_dereference(event->rb);
4638         if (!rb)
4639                 goto unlock;
4640
4641         /*
4642          * compute total_time_enabled, total_time_running
4643          * based on snapshot values taken when the event
4644          * was last scheduled in.
4645          *
4646          * we cannot simply called update_context_time()
4647          * because of locking issue as we can be called in
4648          * NMI context
4649          */
4650         calc_timer_values(event, &now, &enabled, &running);
4651
4652         userpg = rb->user_page;
4653         /*
4654          * Disable preemption so as to not let the corresponding user-space
4655          * spin too long if we get preempted.
4656          */
4657         preempt_disable();
4658         ++userpg->lock;
4659         barrier();
4660         userpg->index = perf_event_index(event);
4661         userpg->offset = perf_event_count(event);
4662         if (userpg->index)
4663                 userpg->offset -= local64_read(&event->hw.prev_count);
4664
4665         userpg->time_enabled = enabled +
4666                         atomic64_read(&event->child_total_time_enabled);
4667
4668         userpg->time_running = running +
4669                         atomic64_read(&event->child_total_time_running);
4670
4671         arch_perf_update_userpage(event, userpg, now);
4672
4673         barrier();
4674         ++userpg->lock;
4675         preempt_enable();
4676 unlock:
4677         rcu_read_unlock();
4678 }
4679
4680 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4681 {
4682         struct perf_event *event = vma->vm_file->private_data;
4683         struct ring_buffer *rb;
4684         int ret = VM_FAULT_SIGBUS;
4685
4686         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4687                 if (vmf->pgoff == 0)
4688                         ret = 0;
4689                 return ret;
4690         }
4691
4692         rcu_read_lock();
4693         rb = rcu_dereference(event->rb);
4694         if (!rb)
4695                 goto unlock;
4696
4697         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4698                 goto unlock;
4699
4700         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4701         if (!vmf->page)
4702                 goto unlock;
4703
4704         get_page(vmf->page);
4705         vmf->page->mapping = vma->vm_file->f_mapping;
4706         vmf->page->index   = vmf->pgoff;
4707
4708         ret = 0;
4709 unlock:
4710         rcu_read_unlock();
4711
4712         return ret;
4713 }
4714
4715 static void ring_buffer_attach(struct perf_event *event,
4716                                struct ring_buffer *rb)
4717 {
4718         struct ring_buffer *old_rb = NULL;
4719         unsigned long flags;
4720
4721         if (event->rb) {
4722                 /*
4723                  * Should be impossible, we set this when removing
4724                  * event->rb_entry and wait/clear when adding event->rb_entry.
4725                  */
4726                 WARN_ON_ONCE(event->rcu_pending);
4727
4728                 old_rb = event->rb;
4729                 spin_lock_irqsave(&old_rb->event_lock, flags);
4730                 list_del_rcu(&event->rb_entry);
4731                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4732
4733                 event->rcu_batches = get_state_synchronize_rcu();
4734                 event->rcu_pending = 1;
4735         }
4736
4737         if (rb) {
4738                 if (event->rcu_pending) {
4739                         cond_synchronize_rcu(event->rcu_batches);
4740                         event->rcu_pending = 0;
4741                 }
4742
4743                 spin_lock_irqsave(&rb->event_lock, flags);
4744                 list_add_rcu(&event->rb_entry, &rb->event_list);
4745                 spin_unlock_irqrestore(&rb->event_lock, flags);
4746         }
4747
4748         rcu_assign_pointer(event->rb, rb);
4749
4750         if (old_rb) {
4751                 ring_buffer_put(old_rb);
4752                 /*
4753                  * Since we detached before setting the new rb, so that we
4754                  * could attach the new rb, we could have missed a wakeup.
4755                  * Provide it now.
4756                  */
4757                 wake_up_all(&event->waitq);
4758         }
4759 }
4760
4761 static void ring_buffer_wakeup(struct perf_event *event)
4762 {
4763         struct ring_buffer *rb;
4764
4765         rcu_read_lock();
4766         rb = rcu_dereference(event->rb);
4767         if (rb) {
4768                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4769                         wake_up_all(&event->waitq);
4770         }
4771         rcu_read_unlock();
4772 }
4773
4774 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4775 {
4776         struct ring_buffer *rb;
4777
4778         rcu_read_lock();
4779         rb = rcu_dereference(event->rb);
4780         if (rb) {
4781                 if (!atomic_inc_not_zero(&rb->refcount))
4782                         rb = NULL;
4783         }
4784         rcu_read_unlock();
4785
4786         return rb;
4787 }
4788
4789 void ring_buffer_put(struct ring_buffer *rb)
4790 {
4791         if (!atomic_dec_and_test(&rb->refcount))
4792                 return;
4793
4794         WARN_ON_ONCE(!list_empty(&rb->event_list));
4795
4796         call_rcu(&rb->rcu_head, rb_free_rcu);
4797 }
4798
4799 static void perf_mmap_open(struct vm_area_struct *vma)
4800 {
4801         struct perf_event *event = vma->vm_file->private_data;
4802
4803         atomic_inc(&event->mmap_count);
4804         atomic_inc(&event->rb->mmap_count);
4805
4806         if (vma->vm_pgoff)
4807                 atomic_inc(&event->rb->aux_mmap_count);
4808
4809         if (event->pmu->event_mapped)
4810                 event->pmu->event_mapped(event);
4811 }
4812
4813 static void perf_pmu_output_stop(struct perf_event *event);
4814
4815 /*
4816  * A buffer can be mmap()ed multiple times; either directly through the same
4817  * event, or through other events by use of perf_event_set_output().
4818  *
4819  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4820  * the buffer here, where we still have a VM context. This means we need
4821  * to detach all events redirecting to us.
4822  */
4823 static void perf_mmap_close(struct vm_area_struct *vma)
4824 {
4825         struct perf_event *event = vma->vm_file->private_data;
4826
4827         struct ring_buffer *rb = ring_buffer_get(event);
4828         struct user_struct *mmap_user = rb->mmap_user;
4829         int mmap_locked = rb->mmap_locked;
4830         unsigned long size = perf_data_size(rb);
4831
4832         if (event->pmu->event_unmapped)
4833                 event->pmu->event_unmapped(event);
4834
4835         /*
4836          * rb->aux_mmap_count will always drop before rb->mmap_count and
4837          * event->mmap_count, so it is ok to use event->mmap_mutex to
4838          * serialize with perf_mmap here.
4839          */
4840         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4841             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4842                 /*
4843                  * Stop all AUX events that are writing to this buffer,
4844                  * so that we can free its AUX pages and corresponding PMU
4845                  * data. Note that after rb::aux_mmap_count dropped to zero,
4846                  * they won't start any more (see perf_aux_output_begin()).
4847                  */
4848                 perf_pmu_output_stop(event);
4849
4850                 /* now it's safe to free the pages */
4851                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4852                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4853
4854                 /* this has to be the last one */
4855                 rb_free_aux(rb);
4856                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4857
4858                 mutex_unlock(&event->mmap_mutex);
4859         }
4860
4861         atomic_dec(&rb->mmap_count);
4862
4863         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4864                 goto out_put;
4865
4866         ring_buffer_attach(event, NULL);
4867         mutex_unlock(&event->mmap_mutex);
4868
4869         /* If there's still other mmap()s of this buffer, we're done. */
4870         if (atomic_read(&rb->mmap_count))
4871                 goto out_put;
4872
4873         /*
4874          * No other mmap()s, detach from all other events that might redirect
4875          * into the now unreachable buffer. Somewhat complicated by the
4876          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4877          */
4878 again:
4879         rcu_read_lock();
4880         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4881                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4882                         /*
4883                          * This event is en-route to free_event() which will
4884                          * detach it and remove it from the list.
4885                          */
4886                         continue;
4887                 }
4888                 rcu_read_unlock();
4889
4890                 mutex_lock(&event->mmap_mutex);
4891                 /*
4892                  * Check we didn't race with perf_event_set_output() which can
4893                  * swizzle the rb from under us while we were waiting to
4894                  * acquire mmap_mutex.
4895                  *
4896                  * If we find a different rb; ignore this event, a next
4897                  * iteration will no longer find it on the list. We have to
4898                  * still restart the iteration to make sure we're not now
4899                  * iterating the wrong list.
4900                  */
4901                 if (event->rb == rb)
4902                         ring_buffer_attach(event, NULL);
4903
4904                 mutex_unlock(&event->mmap_mutex);
4905                 put_event(event);
4906
4907                 /*
4908                  * Restart the iteration; either we're on the wrong list or
4909                  * destroyed its integrity by doing a deletion.
4910                  */
4911                 goto again;
4912         }
4913         rcu_read_unlock();
4914
4915         /*
4916          * It could be there's still a few 0-ref events on the list; they'll
4917          * get cleaned up by free_event() -- they'll also still have their
4918          * ref on the rb and will free it whenever they are done with it.
4919          *
4920          * Aside from that, this buffer is 'fully' detached and unmapped,
4921          * undo the VM accounting.
4922          */
4923
4924         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4925         vma->vm_mm->pinned_vm -= mmap_locked;
4926         free_uid(mmap_user);
4927
4928 out_put:
4929         ring_buffer_put(rb); /* could be last */
4930 }
4931
4932 static const struct vm_operations_struct perf_mmap_vmops = {
4933         .open           = perf_mmap_open,
4934         .close          = perf_mmap_close, /* non mergable */
4935         .fault          = perf_mmap_fault,
4936         .page_mkwrite   = perf_mmap_fault,
4937 };
4938
4939 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4940 {
4941         struct perf_event *event = file->private_data;
4942         unsigned long user_locked, user_lock_limit;
4943         struct user_struct *user = current_user();
4944         unsigned long locked, lock_limit;
4945         struct ring_buffer *rb = NULL;
4946         unsigned long vma_size;
4947         unsigned long nr_pages;
4948         long user_extra = 0, extra = 0;
4949         int ret = 0, flags = 0;
4950
4951         /*
4952          * Don't allow mmap() of inherited per-task counters. This would
4953          * create a performance issue due to all children writing to the
4954          * same rb.
4955          */
4956         if (event->cpu == -1 && event->attr.inherit)
4957                 return -EINVAL;
4958
4959         if (!(vma->vm_flags & VM_SHARED))
4960                 return -EINVAL;
4961
4962         vma_size = vma->vm_end - vma->vm_start;
4963
4964         if (vma->vm_pgoff == 0) {
4965                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4966         } else {
4967                 /*
4968                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4969                  * mapped, all subsequent mappings should have the same size
4970                  * and offset. Must be above the normal perf buffer.
4971                  */
4972                 u64 aux_offset, aux_size;
4973
4974                 if (!event->rb)
4975                         return -EINVAL;
4976
4977                 nr_pages = vma_size / PAGE_SIZE;
4978
4979                 mutex_lock(&event->mmap_mutex);
4980                 ret = -EINVAL;
4981
4982                 rb = event->rb;
4983                 if (!rb)
4984                         goto aux_unlock;
4985
4986                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4987                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4988
4989                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4990                         goto aux_unlock;
4991
4992                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4993                         goto aux_unlock;
4994
4995                 /* already mapped with a different offset */
4996                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4997                         goto aux_unlock;
4998
4999                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5000                         goto aux_unlock;
5001
5002                 /* already mapped with a different size */
5003                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5004                         goto aux_unlock;
5005
5006                 if (!is_power_of_2(nr_pages))
5007                         goto aux_unlock;
5008
5009                 if (!atomic_inc_not_zero(&rb->mmap_count))
5010                         goto aux_unlock;
5011
5012                 if (rb_has_aux(rb)) {
5013                         atomic_inc(&rb->aux_mmap_count);
5014                         ret = 0;
5015                         goto unlock;
5016                 }
5017
5018                 atomic_set(&rb->aux_mmap_count, 1);
5019                 user_extra = nr_pages;
5020
5021                 goto accounting;
5022         }
5023
5024         /*
5025          * If we have rb pages ensure they're a power-of-two number, so we
5026          * can do bitmasks instead of modulo.
5027          */
5028         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5029                 return -EINVAL;
5030
5031         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5032                 return -EINVAL;
5033
5034         WARN_ON_ONCE(event->ctx->parent_ctx);
5035 again:
5036         mutex_lock(&event->mmap_mutex);
5037         if (event->rb) {
5038                 if (event->rb->nr_pages != nr_pages) {
5039                         ret = -EINVAL;
5040                         goto unlock;
5041                 }
5042
5043                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5044                         /*
5045                          * Raced against perf_mmap_close() through
5046                          * perf_event_set_output(). Try again, hope for better
5047                          * luck.
5048                          */
5049                         mutex_unlock(&event->mmap_mutex);
5050                         goto again;
5051                 }
5052
5053                 goto unlock;
5054         }
5055
5056         user_extra = nr_pages + 1;
5057
5058 accounting:
5059         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5060
5061         /*
5062          * Increase the limit linearly with more CPUs:
5063          */
5064         user_lock_limit *= num_online_cpus();
5065
5066         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5067
5068         if (user_locked > user_lock_limit)
5069                 extra = user_locked - user_lock_limit;
5070
5071         lock_limit = rlimit(RLIMIT_MEMLOCK);
5072         lock_limit >>= PAGE_SHIFT;
5073         locked = vma->vm_mm->pinned_vm + extra;
5074
5075         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5076                 !capable(CAP_IPC_LOCK)) {
5077                 ret = -EPERM;
5078                 goto unlock;
5079         }
5080
5081         WARN_ON(!rb && event->rb);
5082
5083         if (vma->vm_flags & VM_WRITE)
5084                 flags |= RING_BUFFER_WRITABLE;
5085
5086         if (!rb) {
5087                 rb = rb_alloc(nr_pages,
5088                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5089                               event->cpu, flags);
5090
5091                 if (!rb) {
5092                         ret = -ENOMEM;
5093                         goto unlock;
5094                 }
5095
5096                 atomic_set(&rb->mmap_count, 1);
5097                 rb->mmap_user = get_current_user();
5098                 rb->mmap_locked = extra;
5099
5100                 ring_buffer_attach(event, rb);
5101
5102                 perf_event_init_userpage(event);
5103                 perf_event_update_userpage(event);
5104         } else {
5105                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5106                                    event->attr.aux_watermark, flags);
5107                 if (!ret)
5108                         rb->aux_mmap_locked = extra;
5109         }
5110
5111 unlock:
5112         if (!ret) {
5113                 atomic_long_add(user_extra, &user->locked_vm);
5114                 vma->vm_mm->pinned_vm += extra;
5115
5116                 atomic_inc(&event->mmap_count);
5117         } else if (rb) {
5118                 atomic_dec(&rb->mmap_count);
5119         }
5120 aux_unlock:
5121         mutex_unlock(&event->mmap_mutex);
5122
5123         /*
5124          * Since pinned accounting is per vm we cannot allow fork() to copy our
5125          * vma.
5126          */
5127         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5128         vma->vm_ops = &perf_mmap_vmops;
5129
5130         if (event->pmu->event_mapped)
5131                 event->pmu->event_mapped(event);
5132
5133         return ret;
5134 }
5135
5136 static int perf_fasync(int fd, struct file *filp, int on)
5137 {
5138         struct inode *inode = file_inode(filp);
5139         struct perf_event *event = filp->private_data;
5140         int retval;
5141
5142         inode_lock(inode);
5143         retval = fasync_helper(fd, filp, on, &event->fasync);
5144         inode_unlock(inode);
5145
5146         if (retval < 0)
5147                 return retval;
5148
5149         return 0;
5150 }
5151
5152 static const struct file_operations perf_fops = {
5153         .llseek                 = no_llseek,
5154         .release                = perf_release,
5155         .read                   = perf_read,
5156         .poll                   = perf_poll,
5157         .unlocked_ioctl         = perf_ioctl,
5158         .compat_ioctl           = perf_compat_ioctl,
5159         .mmap                   = perf_mmap,
5160         .fasync                 = perf_fasync,
5161 };
5162
5163 /*
5164  * Perf event wakeup
5165  *
5166  * If there's data, ensure we set the poll() state and publish everything
5167  * to user-space before waking everybody up.
5168  */
5169
5170 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5171 {
5172         /* only the parent has fasync state */
5173         if (event->parent)
5174                 event = event->parent;
5175         return &event->fasync;
5176 }
5177
5178 void perf_event_wakeup(struct perf_event *event)
5179 {
5180         ring_buffer_wakeup(event);
5181
5182         if (event->pending_kill) {
5183                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5184                 event->pending_kill = 0;
5185         }
5186 }
5187
5188 static void perf_pending_event(struct irq_work *entry)
5189 {
5190         struct perf_event *event = container_of(entry,
5191                         struct perf_event, pending);
5192         int rctx;
5193
5194         rctx = perf_swevent_get_recursion_context();
5195         /*
5196          * If we 'fail' here, that's OK, it means recursion is already disabled
5197          * and we won't recurse 'further'.
5198          */
5199
5200         if (event->pending_disable) {
5201                 event->pending_disable = 0;
5202                 perf_event_disable_local(event);
5203         }
5204
5205         if (event->pending_wakeup) {
5206                 event->pending_wakeup = 0;
5207                 perf_event_wakeup(event);
5208         }
5209
5210         if (rctx >= 0)
5211                 perf_swevent_put_recursion_context(rctx);
5212 }
5213
5214 /*
5215  * We assume there is only KVM supporting the callbacks.
5216  * Later on, we might change it to a list if there is
5217  * another virtualization implementation supporting the callbacks.
5218  */
5219 struct perf_guest_info_callbacks *perf_guest_cbs;
5220
5221 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5222 {
5223         perf_guest_cbs = cbs;
5224         return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5227
5228 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5229 {
5230         perf_guest_cbs = NULL;
5231         return 0;
5232 }
5233 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5234
5235 static void
5236 perf_output_sample_regs(struct perf_output_handle *handle,
5237                         struct pt_regs *regs, u64 mask)
5238 {
5239         int bit;
5240
5241         for_each_set_bit(bit, (const unsigned long *) &mask,
5242                          sizeof(mask) * BITS_PER_BYTE) {
5243                 u64 val;
5244
5245                 val = perf_reg_value(regs, bit);
5246                 perf_output_put(handle, val);
5247         }
5248 }
5249
5250 static void perf_sample_regs_user(struct perf_regs *regs_user,
5251                                   struct pt_regs *regs,
5252                                   struct pt_regs *regs_user_copy)
5253 {
5254         if (user_mode(regs)) {
5255                 regs_user->abi = perf_reg_abi(current);
5256                 regs_user->regs = regs;
5257         } else if (current->mm) {
5258                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5259         } else {
5260                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5261                 regs_user->regs = NULL;
5262         }
5263 }
5264
5265 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5266                                   struct pt_regs *regs)
5267 {
5268         regs_intr->regs = regs;
5269         regs_intr->abi  = perf_reg_abi(current);
5270 }
5271
5272
5273 /*
5274  * Get remaining task size from user stack pointer.
5275  *
5276  * It'd be better to take stack vma map and limit this more
5277  * precisly, but there's no way to get it safely under interrupt,
5278  * so using TASK_SIZE as limit.
5279  */
5280 static u64 perf_ustack_task_size(struct pt_regs *regs)
5281 {
5282         unsigned long addr = perf_user_stack_pointer(regs);
5283
5284         if (!addr || addr >= TASK_SIZE)
5285                 return 0;
5286
5287         return TASK_SIZE - addr;
5288 }
5289
5290 static u16
5291 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5292                         struct pt_regs *regs)
5293 {
5294         u64 task_size;
5295
5296         /* No regs, no stack pointer, no dump. */
5297         if (!regs)
5298                 return 0;
5299
5300         /*
5301          * Check if we fit in with the requested stack size into the:
5302          * - TASK_SIZE
5303          *   If we don't, we limit the size to the TASK_SIZE.
5304          *
5305          * - remaining sample size
5306          *   If we don't, we customize the stack size to
5307          *   fit in to the remaining sample size.
5308          */
5309
5310         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5311         stack_size = min(stack_size, (u16) task_size);
5312
5313         /* Current header size plus static size and dynamic size. */
5314         header_size += 2 * sizeof(u64);
5315
5316         /* Do we fit in with the current stack dump size? */
5317         if ((u16) (header_size + stack_size) < header_size) {
5318                 /*
5319                  * If we overflow the maximum size for the sample,
5320                  * we customize the stack dump size to fit in.
5321                  */
5322                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5323                 stack_size = round_up(stack_size, sizeof(u64));
5324         }
5325
5326         return stack_size;
5327 }
5328
5329 static void
5330 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5331                           struct pt_regs *regs)
5332 {
5333         /* Case of a kernel thread, nothing to dump */
5334         if (!regs) {
5335                 u64 size = 0;
5336                 perf_output_put(handle, size);
5337         } else {
5338                 unsigned long sp;
5339                 unsigned int rem;
5340                 u64 dyn_size;
5341
5342                 /*
5343                  * We dump:
5344                  * static size
5345                  *   - the size requested by user or the best one we can fit
5346                  *     in to the sample max size
5347                  * data
5348                  *   - user stack dump data
5349                  * dynamic size
5350                  *   - the actual dumped size
5351                  */
5352
5353                 /* Static size. */
5354                 perf_output_put(handle, dump_size);
5355
5356                 /* Data. */
5357                 sp = perf_user_stack_pointer(regs);
5358                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5359                 dyn_size = dump_size - rem;
5360
5361                 perf_output_skip(handle, rem);
5362
5363                 /* Dynamic size. */
5364                 perf_output_put(handle, dyn_size);
5365         }
5366 }
5367
5368 static void __perf_event_header__init_id(struct perf_event_header *header,
5369                                          struct perf_sample_data *data,
5370                                          struct perf_event *event)
5371 {
5372         u64 sample_type = event->attr.sample_type;
5373
5374         data->type = sample_type;
5375         header->size += event->id_header_size;
5376
5377         if (sample_type & PERF_SAMPLE_TID) {
5378                 /* namespace issues */
5379                 data->tid_entry.pid = perf_event_pid(event, current);
5380                 data->tid_entry.tid = perf_event_tid(event, current);
5381         }
5382
5383         if (sample_type & PERF_SAMPLE_TIME)
5384                 data->time = perf_event_clock(event);
5385
5386         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5387                 data->id = primary_event_id(event);
5388
5389         if (sample_type & PERF_SAMPLE_STREAM_ID)
5390                 data->stream_id = event->id;
5391
5392         if (sample_type & PERF_SAMPLE_CPU) {
5393                 data->cpu_entry.cpu      = raw_smp_processor_id();
5394                 data->cpu_entry.reserved = 0;
5395         }
5396 }
5397
5398 void perf_event_header__init_id(struct perf_event_header *header,
5399                                 struct perf_sample_data *data,
5400                                 struct perf_event *event)
5401 {
5402         if (event->attr.sample_id_all)
5403                 __perf_event_header__init_id(header, data, event);
5404 }
5405
5406 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5407                                            struct perf_sample_data *data)
5408 {
5409         u64 sample_type = data->type;
5410
5411         if (sample_type & PERF_SAMPLE_TID)
5412                 perf_output_put(handle, data->tid_entry);
5413
5414         if (sample_type & PERF_SAMPLE_TIME)
5415                 perf_output_put(handle, data->time);
5416
5417         if (sample_type & PERF_SAMPLE_ID)
5418                 perf_output_put(handle, data->id);
5419
5420         if (sample_type & PERF_SAMPLE_STREAM_ID)
5421                 perf_output_put(handle, data->stream_id);
5422
5423         if (sample_type & PERF_SAMPLE_CPU)
5424                 perf_output_put(handle, data->cpu_entry);
5425
5426         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5427                 perf_output_put(handle, data->id);
5428 }
5429
5430 void perf_event__output_id_sample(struct perf_event *event,
5431                                   struct perf_output_handle *handle,
5432                                   struct perf_sample_data *sample)
5433 {
5434         if (event->attr.sample_id_all)
5435                 __perf_event__output_id_sample(handle, sample);
5436 }
5437
5438 static void perf_output_read_one(struct perf_output_handle *handle,
5439                                  struct perf_event *event,
5440                                  u64 enabled, u64 running)
5441 {
5442         u64 read_format = event->attr.read_format;
5443         u64 values[4];
5444         int n = 0;
5445
5446         values[n++] = perf_event_count(event);
5447         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5448                 values[n++] = enabled +
5449                         atomic64_read(&event->child_total_time_enabled);
5450         }
5451         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5452                 values[n++] = running +
5453                         atomic64_read(&event->child_total_time_running);
5454         }
5455         if (read_format & PERF_FORMAT_ID)
5456                 values[n++] = primary_event_id(event);
5457
5458         __output_copy(handle, values, n * sizeof(u64));
5459 }
5460
5461 /*
5462  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5463  */
5464 static void perf_output_read_group(struct perf_output_handle *handle,
5465                             struct perf_event *event,
5466                             u64 enabled, u64 running)
5467 {
5468         struct perf_event *leader = event->group_leader, *sub;
5469         u64 read_format = event->attr.read_format;
5470         u64 values[5];
5471         int n = 0;
5472
5473         values[n++] = 1 + leader->nr_siblings;
5474
5475         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5476                 values[n++] = enabled;
5477
5478         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5479                 values[n++] = running;
5480
5481         if (leader != event)
5482                 leader->pmu->read(leader);
5483
5484         values[n++] = perf_event_count(leader);
5485         if (read_format & PERF_FORMAT_ID)
5486                 values[n++] = primary_event_id(leader);
5487
5488         __output_copy(handle, values, n * sizeof(u64));
5489
5490         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5491                 n = 0;
5492
5493                 if ((sub != event) &&
5494                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5495                         sub->pmu->read(sub);
5496
5497                 values[n++] = perf_event_count(sub);
5498                 if (read_format & PERF_FORMAT_ID)
5499                         values[n++] = primary_event_id(sub);
5500
5501                 __output_copy(handle, values, n * sizeof(u64));
5502         }
5503 }
5504
5505 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5506                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5507
5508 static void perf_output_read(struct perf_output_handle *handle,
5509                              struct perf_event *event)
5510 {
5511         u64 enabled = 0, running = 0, now;
5512         u64 read_format = event->attr.read_format;
5513
5514         /*
5515          * compute total_time_enabled, total_time_running
5516          * based on snapshot values taken when the event
5517          * was last scheduled in.
5518          *
5519          * we cannot simply called update_context_time()
5520          * because of locking issue as we are called in
5521          * NMI context
5522          */
5523         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5524                 calc_timer_values(event, &now, &enabled, &running);
5525
5526         if (event->attr.read_format & PERF_FORMAT_GROUP)
5527                 perf_output_read_group(handle, event, enabled, running);
5528         else
5529                 perf_output_read_one(handle, event, enabled, running);
5530 }
5531
5532 void perf_output_sample(struct perf_output_handle *handle,
5533                         struct perf_event_header *header,
5534                         struct perf_sample_data *data,
5535                         struct perf_event *event)
5536 {
5537         u64 sample_type = data->type;
5538
5539         perf_output_put(handle, *header);
5540
5541         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5542                 perf_output_put(handle, data->id);
5543
5544         if (sample_type & PERF_SAMPLE_IP)
5545                 perf_output_put(handle, data->ip);
5546
5547         if (sample_type & PERF_SAMPLE_TID)
5548                 perf_output_put(handle, data->tid_entry);
5549
5550         if (sample_type & PERF_SAMPLE_TIME)
5551                 perf_output_put(handle, data->time);
5552
5553         if (sample_type & PERF_SAMPLE_ADDR)
5554                 perf_output_put(handle, data->addr);
5555
5556         if (sample_type & PERF_SAMPLE_ID)
5557                 perf_output_put(handle, data->id);
5558
5559         if (sample_type & PERF_SAMPLE_STREAM_ID)
5560                 perf_output_put(handle, data->stream_id);
5561
5562         if (sample_type & PERF_SAMPLE_CPU)
5563                 perf_output_put(handle, data->cpu_entry);
5564
5565         if (sample_type & PERF_SAMPLE_PERIOD)
5566                 perf_output_put(handle, data->period);
5567
5568         if (sample_type & PERF_SAMPLE_READ)
5569                 perf_output_read(handle, event);
5570
5571         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5572                 if (data->callchain) {
5573                         int size = 1;
5574
5575                         if (data->callchain)
5576                                 size += data->callchain->nr;
5577
5578                         size *= sizeof(u64);
5579
5580                         __output_copy(handle, data->callchain, size);
5581                 } else {
5582                         u64 nr = 0;
5583                         perf_output_put(handle, nr);
5584                 }
5585         }
5586
5587         if (sample_type & PERF_SAMPLE_RAW) {
5588                 if (data->raw) {
5589                         u32 raw_size = data->raw->size;
5590                         u32 real_size = round_up(raw_size + sizeof(u32),
5591                                                  sizeof(u64)) - sizeof(u32);
5592                         u64 zero = 0;
5593
5594                         perf_output_put(handle, real_size);
5595                         __output_copy(handle, data->raw->data, raw_size);
5596                         if (real_size - raw_size)
5597                                 __output_copy(handle, &zero, real_size - raw_size);
5598                 } else {
5599                         struct {
5600                                 u32     size;
5601                                 u32     data;
5602                         } raw = {
5603                                 .size = sizeof(u32),
5604                                 .data = 0,
5605                         };
5606                         perf_output_put(handle, raw);
5607                 }
5608         }
5609
5610         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5611                 if (data->br_stack) {
5612                         size_t size;
5613
5614                         size = data->br_stack->nr
5615                              * sizeof(struct perf_branch_entry);
5616
5617                         perf_output_put(handle, data->br_stack->nr);
5618                         perf_output_copy(handle, data->br_stack->entries, size);
5619                 } else {
5620                         /*
5621                          * we always store at least the value of nr
5622                          */
5623                         u64 nr = 0;
5624                         perf_output_put(handle, nr);
5625                 }
5626         }
5627
5628         if (sample_type & PERF_SAMPLE_REGS_USER) {
5629                 u64 abi = data->regs_user.abi;
5630
5631                 /*
5632                  * If there are no regs to dump, notice it through
5633                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5634                  */
5635                 perf_output_put(handle, abi);
5636
5637                 if (abi) {
5638                         u64 mask = event->attr.sample_regs_user;
5639                         perf_output_sample_regs(handle,
5640                                                 data->regs_user.regs,
5641                                                 mask);
5642                 }
5643         }
5644
5645         if (sample_type & PERF_SAMPLE_STACK_USER) {
5646                 perf_output_sample_ustack(handle,
5647                                           data->stack_user_size,
5648                                           data->regs_user.regs);
5649         }
5650
5651         if (sample_type & PERF_SAMPLE_WEIGHT)
5652                 perf_output_put(handle, data->weight);
5653
5654         if (sample_type & PERF_SAMPLE_DATA_SRC)
5655                 perf_output_put(handle, data->data_src.val);
5656
5657         if (sample_type & PERF_SAMPLE_TRANSACTION)
5658                 perf_output_put(handle, data->txn);
5659
5660         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5661                 u64 abi = data->regs_intr.abi;
5662                 /*
5663                  * If there are no regs to dump, notice it through
5664                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5665                  */
5666                 perf_output_put(handle, abi);
5667
5668                 if (abi) {
5669                         u64 mask = event->attr.sample_regs_intr;
5670
5671                         perf_output_sample_regs(handle,
5672                                                 data->regs_intr.regs,
5673                                                 mask);
5674                 }
5675         }
5676
5677         if (!event->attr.watermark) {
5678                 int wakeup_events = event->attr.wakeup_events;
5679
5680                 if (wakeup_events) {
5681                         struct ring_buffer *rb = handle->rb;
5682                         int events = local_inc_return(&rb->events);
5683
5684                         if (events >= wakeup_events) {
5685                                 local_sub(wakeup_events, &rb->events);
5686                                 local_inc(&rb->wakeup);
5687                         }
5688                 }
5689         }
5690 }
5691
5692 void perf_prepare_sample(struct perf_event_header *header,
5693                          struct perf_sample_data *data,
5694                          struct perf_event *event,
5695                          struct pt_regs *regs)
5696 {
5697         u64 sample_type = event->attr.sample_type;
5698
5699         header->type = PERF_RECORD_SAMPLE;
5700         header->size = sizeof(*header) + event->header_size;
5701
5702         header->misc = 0;
5703         header->misc |= perf_misc_flags(regs);
5704
5705         __perf_event_header__init_id(header, data, event);
5706
5707         if (sample_type & PERF_SAMPLE_IP)
5708                 data->ip = perf_instruction_pointer(regs);
5709
5710         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5711                 int size = 1;
5712
5713                 data->callchain = perf_callchain(event, regs);
5714
5715                 if (data->callchain)
5716                         size += data->callchain->nr;
5717
5718                 header->size += size * sizeof(u64);
5719         }
5720
5721         if (sample_type & PERF_SAMPLE_RAW) {
5722                 int size = sizeof(u32);
5723
5724                 if (data->raw)
5725                         size += data->raw->size;
5726                 else
5727                         size += sizeof(u32);
5728
5729                 header->size += round_up(size, sizeof(u64));
5730         }
5731
5732         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5733                 int size = sizeof(u64); /* nr */
5734                 if (data->br_stack) {
5735                         size += data->br_stack->nr
5736                               * sizeof(struct perf_branch_entry);
5737                 }
5738                 header->size += size;
5739         }
5740
5741         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5742                 perf_sample_regs_user(&data->regs_user, regs,
5743                                       &data->regs_user_copy);
5744
5745         if (sample_type & PERF_SAMPLE_REGS_USER) {
5746                 /* regs dump ABI info */
5747                 int size = sizeof(u64);
5748
5749                 if (data->regs_user.regs) {
5750                         u64 mask = event->attr.sample_regs_user;
5751                         size += hweight64(mask) * sizeof(u64);
5752                 }
5753
5754                 header->size += size;
5755         }
5756
5757         if (sample_type & PERF_SAMPLE_STACK_USER) {
5758                 /*
5759                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5760                  * processed as the last one or have additional check added
5761                  * in case new sample type is added, because we could eat
5762                  * up the rest of the sample size.
5763                  */
5764                 u16 stack_size = event->attr.sample_stack_user;
5765                 u16 size = sizeof(u64);
5766
5767                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5768                                                      data->regs_user.regs);
5769
5770                 /*
5771                  * If there is something to dump, add space for the dump
5772                  * itself and for the field that tells the dynamic size,
5773                  * which is how many have been actually dumped.
5774                  */
5775                 if (stack_size)
5776                         size += sizeof(u64) + stack_size;
5777
5778                 data->stack_user_size = stack_size;
5779                 header->size += size;
5780         }
5781
5782         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5783                 /* regs dump ABI info */
5784                 int size = sizeof(u64);
5785
5786                 perf_sample_regs_intr(&data->regs_intr, regs);
5787
5788                 if (data->regs_intr.regs) {
5789                         u64 mask = event->attr.sample_regs_intr;
5790
5791                         size += hweight64(mask) * sizeof(u64);
5792                 }
5793
5794                 header->size += size;
5795         }
5796 }
5797
5798 static void __always_inline
5799 __perf_event_output(struct perf_event *event,
5800                     struct perf_sample_data *data,
5801                     struct pt_regs *regs,
5802                     int (*output_begin)(struct perf_output_handle *,
5803                                         struct perf_event *,
5804                                         unsigned int))
5805 {
5806         struct perf_output_handle handle;
5807         struct perf_event_header header;
5808
5809         /* protect the callchain buffers */
5810         rcu_read_lock();
5811
5812         perf_prepare_sample(&header, data, event, regs);
5813
5814         if (output_begin(&handle, event, header.size))
5815                 goto exit;
5816
5817         perf_output_sample(&handle, &header, data, event);
5818
5819         perf_output_end(&handle);
5820
5821 exit:
5822         rcu_read_unlock();
5823 }
5824
5825 void
5826 perf_event_output_forward(struct perf_event *event,
5827                          struct perf_sample_data *data,
5828                          struct pt_regs *regs)
5829 {
5830         __perf_event_output(event, data, regs, perf_output_begin_forward);
5831 }
5832
5833 void
5834 perf_event_output_backward(struct perf_event *event,
5835                            struct perf_sample_data *data,
5836                            struct pt_regs *regs)
5837 {
5838         __perf_event_output(event, data, regs, perf_output_begin_backward);
5839 }
5840
5841 void
5842 perf_event_output(struct perf_event *event,
5843                   struct perf_sample_data *data,
5844                   struct pt_regs *regs)
5845 {
5846         __perf_event_output(event, data, regs, perf_output_begin);
5847 }
5848
5849 /*
5850  * read event_id
5851  */
5852
5853 struct perf_read_event {
5854         struct perf_event_header        header;
5855
5856         u32                             pid;
5857         u32                             tid;
5858 };
5859
5860 static void
5861 perf_event_read_event(struct perf_event *event,
5862                         struct task_struct *task)
5863 {
5864         struct perf_output_handle handle;
5865         struct perf_sample_data sample;
5866         struct perf_read_event read_event = {
5867                 .header = {
5868                         .type = PERF_RECORD_READ,
5869                         .misc = 0,
5870                         .size = sizeof(read_event) + event->read_size,
5871                 },
5872                 .pid = perf_event_pid(event, task),
5873                 .tid = perf_event_tid(event, task),
5874         };
5875         int ret;
5876
5877         perf_event_header__init_id(&read_event.header, &sample, event);
5878         ret = perf_output_begin(&handle, event, read_event.header.size);
5879         if (ret)
5880                 return;
5881
5882         perf_output_put(&handle, read_event);
5883         perf_output_read(&handle, event);
5884         perf_event__output_id_sample(event, &handle, &sample);
5885
5886         perf_output_end(&handle);
5887 }
5888
5889 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5890
5891 static void
5892 perf_iterate_ctx(struct perf_event_context *ctx,
5893                    perf_iterate_f output,
5894                    void *data, bool all)
5895 {
5896         struct perf_event *event;
5897
5898         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5899                 if (!all) {
5900                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5901                                 continue;
5902                         if (!event_filter_match(event))
5903                                 continue;
5904                 }
5905
5906                 output(event, data);
5907         }
5908 }
5909
5910 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5911 {
5912         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5913         struct perf_event *event;
5914
5915         list_for_each_entry_rcu(event, &pel->list, sb_list) {
5916                 if (event->state < PERF_EVENT_STATE_INACTIVE)
5917                         continue;
5918                 if (!event_filter_match(event))
5919                         continue;
5920                 output(event, data);
5921         }
5922 }
5923
5924 /*
5925  * Iterate all events that need to receive side-band events.
5926  *
5927  * For new callers; ensure that account_pmu_sb_event() includes
5928  * your event, otherwise it might not get delivered.
5929  */
5930 static void
5931 perf_iterate_sb(perf_iterate_f output, void *data,
5932                struct perf_event_context *task_ctx)
5933 {
5934         struct perf_event_context *ctx;
5935         int ctxn;
5936
5937         rcu_read_lock();
5938         preempt_disable();
5939
5940         /*
5941          * If we have task_ctx != NULL we only notify the task context itself.
5942          * The task_ctx is set only for EXIT events before releasing task
5943          * context.
5944          */
5945         if (task_ctx) {
5946                 perf_iterate_ctx(task_ctx, output, data, false);
5947                 goto done;
5948         }
5949
5950         perf_iterate_sb_cpu(output, data);
5951
5952         for_each_task_context_nr(ctxn) {
5953                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5954                 if (ctx)
5955                         perf_iterate_ctx(ctx, output, data, false);
5956         }
5957 done:
5958         preempt_enable();
5959         rcu_read_unlock();
5960 }
5961
5962 /*
5963  * Clear all file-based filters at exec, they'll have to be
5964  * re-instated when/if these objects are mmapped again.
5965  */
5966 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5967 {
5968         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5969         struct perf_addr_filter *filter;
5970         unsigned int restart = 0, count = 0;
5971         unsigned long flags;
5972
5973         if (!has_addr_filter(event))
5974                 return;
5975
5976         raw_spin_lock_irqsave(&ifh->lock, flags);
5977         list_for_each_entry(filter, &ifh->list, entry) {
5978                 if (filter->inode) {
5979                         event->addr_filters_offs[count] = 0;
5980                         restart++;
5981                 }
5982
5983                 count++;
5984         }
5985
5986         if (restart)
5987                 event->addr_filters_gen++;
5988         raw_spin_unlock_irqrestore(&ifh->lock, flags);
5989
5990         if (restart)
5991                 perf_event_restart(event);
5992 }
5993
5994 void perf_event_exec(void)
5995 {
5996         struct perf_event_context *ctx;
5997         int ctxn;
5998
5999         rcu_read_lock();
6000         for_each_task_context_nr(ctxn) {
6001                 ctx = current->perf_event_ctxp[ctxn];
6002                 if (!ctx)
6003                         continue;
6004
6005                 perf_event_enable_on_exec(ctxn);
6006
6007                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6008                                    true);
6009         }
6010         rcu_read_unlock();
6011 }
6012
6013 struct remote_output {
6014         struct ring_buffer      *rb;
6015         int                     err;
6016 };
6017
6018 static void __perf_event_output_stop(struct perf_event *event, void *data)
6019 {
6020         struct perf_event *parent = event->parent;
6021         struct remote_output *ro = data;
6022         struct ring_buffer *rb = ro->rb;
6023         struct stop_event_data sd = {
6024                 .event  = event,
6025         };
6026
6027         if (!has_aux(event))
6028                 return;
6029
6030         if (!parent)
6031                 parent = event;
6032
6033         /*
6034          * In case of inheritance, it will be the parent that links to the
6035          * ring-buffer, but it will be the child that's actually using it:
6036          */
6037         if (rcu_dereference(parent->rb) == rb)
6038                 ro->err = __perf_event_stop(&sd);
6039 }
6040
6041 static int __perf_pmu_output_stop(void *info)
6042 {
6043         struct perf_event *event = info;
6044         struct pmu *pmu = event->pmu;
6045         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6046         struct remote_output ro = {
6047                 .rb     = event->rb,
6048         };
6049
6050         rcu_read_lock();
6051         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6052         if (cpuctx->task_ctx)
6053                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6054                                    &ro, false);
6055         rcu_read_unlock();
6056
6057         return ro.err;
6058 }
6059
6060 static void perf_pmu_output_stop(struct perf_event *event)
6061 {
6062         struct perf_event *iter;
6063         int err, cpu;
6064
6065 restart:
6066         rcu_read_lock();
6067         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6068                 /*
6069                  * For per-CPU events, we need to make sure that neither they
6070                  * nor their children are running; for cpu==-1 events it's
6071                  * sufficient to stop the event itself if it's active, since
6072                  * it can't have children.
6073                  */
6074                 cpu = iter->cpu;
6075                 if (cpu == -1)
6076                         cpu = READ_ONCE(iter->oncpu);
6077
6078                 if (cpu == -1)
6079                         continue;
6080
6081                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6082                 if (err == -EAGAIN) {
6083                         rcu_read_unlock();
6084                         goto restart;
6085                 }
6086         }
6087         rcu_read_unlock();
6088 }
6089
6090 /*
6091  * task tracking -- fork/exit
6092  *
6093  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6094  */
6095
6096 struct perf_task_event {
6097         struct task_struct              *task;
6098         struct perf_event_context       *task_ctx;
6099
6100         struct {
6101                 struct perf_event_header        header;
6102
6103                 u32                             pid;
6104                 u32                             ppid;
6105                 u32                             tid;
6106                 u32                             ptid;
6107                 u64                             time;
6108         } event_id;
6109 };
6110
6111 static int perf_event_task_match(struct perf_event *event)
6112 {
6113         return event->attr.comm  || event->attr.mmap ||
6114                event->attr.mmap2 || event->attr.mmap_data ||
6115                event->attr.task;
6116 }
6117
6118 static void perf_event_task_output(struct perf_event *event,
6119                                    void *data)
6120 {
6121         struct perf_task_event *task_event = data;
6122         struct perf_output_handle handle;
6123         struct perf_sample_data sample;
6124         struct task_struct *task = task_event->task;
6125         int ret, size = task_event->event_id.header.size;
6126
6127         if (!perf_event_task_match(event))
6128                 return;
6129
6130         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6131
6132         ret = perf_output_begin(&handle, event,
6133                                 task_event->event_id.header.size);
6134         if (ret)
6135                 goto out;
6136
6137         task_event->event_id.pid = perf_event_pid(event, task);
6138         task_event->event_id.ppid = perf_event_pid(event, current);
6139
6140         task_event->event_id.tid = perf_event_tid(event, task);
6141         task_event->event_id.ptid = perf_event_tid(event, current);
6142
6143         task_event->event_id.time = perf_event_clock(event);
6144
6145         perf_output_put(&handle, task_event->event_id);
6146
6147         perf_event__output_id_sample(event, &handle, &sample);
6148
6149         perf_output_end(&handle);
6150 out:
6151         task_event->event_id.header.size = size;
6152 }
6153
6154 static void perf_event_task(struct task_struct *task,
6155                               struct perf_event_context *task_ctx,
6156                               int new)
6157 {
6158         struct perf_task_event task_event;
6159
6160         if (!atomic_read(&nr_comm_events) &&
6161             !atomic_read(&nr_mmap_events) &&
6162             !atomic_read(&nr_task_events))
6163                 return;
6164
6165         task_event = (struct perf_task_event){
6166                 .task     = task,
6167                 .task_ctx = task_ctx,
6168                 .event_id    = {
6169                         .header = {
6170                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6171                                 .misc = 0,
6172                                 .size = sizeof(task_event.event_id),
6173                         },
6174                         /* .pid  */
6175                         /* .ppid */
6176                         /* .tid  */
6177                         /* .ptid */
6178                         /* .time */
6179                 },
6180         };
6181
6182         perf_iterate_sb(perf_event_task_output,
6183                        &task_event,
6184                        task_ctx);
6185 }
6186
6187 void perf_event_fork(struct task_struct *task)
6188 {
6189         perf_event_task(task, NULL, 1);
6190 }
6191
6192 /*
6193  * comm tracking
6194  */
6195
6196 struct perf_comm_event {
6197         struct task_struct      *task;
6198         char                    *comm;
6199         int                     comm_size;
6200
6201         struct {
6202                 struct perf_event_header        header;
6203
6204                 u32                             pid;
6205                 u32                             tid;
6206         } event_id;
6207 };
6208
6209 static int perf_event_comm_match(struct perf_event *event)
6210 {
6211         return event->attr.comm;
6212 }
6213
6214 static void perf_event_comm_output(struct perf_event *event,
6215                                    void *data)
6216 {
6217         struct perf_comm_event *comm_event = data;
6218         struct perf_output_handle handle;
6219         struct perf_sample_data sample;
6220         int size = comm_event->event_id.header.size;
6221         int ret;
6222
6223         if (!perf_event_comm_match(event))
6224                 return;
6225
6226         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6227         ret = perf_output_begin(&handle, event,
6228                                 comm_event->event_id.header.size);
6229
6230         if (ret)
6231                 goto out;
6232
6233         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6234         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6235
6236         perf_output_put(&handle, comm_event->event_id);
6237         __output_copy(&handle, comm_event->comm,
6238                                    comm_event->comm_size);
6239
6240         perf_event__output_id_sample(event, &handle, &sample);
6241
6242         perf_output_end(&handle);
6243 out:
6244         comm_event->event_id.header.size = size;
6245 }
6246
6247 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6248 {
6249         char comm[TASK_COMM_LEN];
6250         unsigned int size;
6251
6252         memset(comm, 0, sizeof(comm));
6253         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6254         size = ALIGN(strlen(comm)+1, sizeof(u64));
6255
6256         comm_event->comm = comm;
6257         comm_event->comm_size = size;
6258
6259         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6260
6261         perf_iterate_sb(perf_event_comm_output,
6262                        comm_event,
6263                        NULL);
6264 }
6265
6266 void perf_event_comm(struct task_struct *task, bool exec)
6267 {
6268         struct perf_comm_event comm_event;
6269
6270         if (!atomic_read(&nr_comm_events))
6271                 return;
6272
6273         comm_event = (struct perf_comm_event){
6274                 .task   = task,
6275                 /* .comm      */
6276                 /* .comm_size */
6277                 .event_id  = {
6278                         .header = {
6279                                 .type = PERF_RECORD_COMM,
6280                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6281                                 /* .size */
6282                         },
6283                         /* .pid */
6284                         /* .tid */
6285                 },
6286         };
6287
6288         perf_event_comm_event(&comm_event);
6289 }
6290
6291 /*
6292  * mmap tracking
6293  */
6294
6295 struct perf_mmap_event {
6296         struct vm_area_struct   *vma;
6297
6298         const char              *file_name;
6299         int                     file_size;
6300         int                     maj, min;
6301         u64                     ino;
6302         u64                     ino_generation;
6303         u32                     prot, flags;
6304
6305         struct {
6306                 struct perf_event_header        header;
6307
6308                 u32                             pid;
6309                 u32                             tid;
6310                 u64                             start;
6311                 u64                             len;
6312                 u64                             pgoff;
6313         } event_id;
6314 };
6315
6316 static int perf_event_mmap_match(struct perf_event *event,
6317                                  void *data)
6318 {
6319         struct perf_mmap_event *mmap_event = data;
6320         struct vm_area_struct *vma = mmap_event->vma;
6321         int executable = vma->vm_flags & VM_EXEC;
6322
6323         return (!executable && event->attr.mmap_data) ||
6324                (executable && (event->attr.mmap || event->attr.mmap2));
6325 }
6326
6327 static void perf_event_mmap_output(struct perf_event *event,
6328                                    void *data)
6329 {
6330         struct perf_mmap_event *mmap_event = data;
6331         struct perf_output_handle handle;
6332         struct perf_sample_data sample;
6333         int size = mmap_event->event_id.header.size;
6334         int ret;
6335
6336         if (!perf_event_mmap_match(event, data))
6337                 return;
6338
6339         if (event->attr.mmap2) {
6340                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6341                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6342                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6343                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6344                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6345                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6346                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6347         }
6348
6349         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6350         ret = perf_output_begin(&handle, event,
6351                                 mmap_event->event_id.header.size);
6352         if (ret)
6353                 goto out;
6354
6355         mmap_event->event_id.pid = perf_event_pid(event, current);
6356         mmap_event->event_id.tid = perf_event_tid(event, current);
6357
6358         perf_output_put(&handle, mmap_event->event_id);
6359
6360         if (event->attr.mmap2) {
6361                 perf_output_put(&handle, mmap_event->maj);
6362                 perf_output_put(&handle, mmap_event->min);
6363                 perf_output_put(&handle, mmap_event->ino);
6364                 perf_output_put(&handle, mmap_event->ino_generation);
6365                 perf_output_put(&handle, mmap_event->prot);
6366                 perf_output_put(&handle, mmap_event->flags);
6367         }
6368
6369         __output_copy(&handle, mmap_event->file_name,
6370                                    mmap_event->file_size);
6371
6372         perf_event__output_id_sample(event, &handle, &sample);
6373
6374         perf_output_end(&handle);
6375 out:
6376         mmap_event->event_id.header.size = size;
6377 }
6378
6379 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6380 {
6381         struct vm_area_struct *vma = mmap_event->vma;
6382         struct file *file = vma->vm_file;
6383         int maj = 0, min = 0;
6384         u64 ino = 0, gen = 0;
6385         u32 prot = 0, flags = 0;
6386         unsigned int size;
6387         char tmp[16];
6388         char *buf = NULL;
6389         char *name;
6390
6391         if (file) {
6392                 struct inode *inode;
6393                 dev_t dev;
6394
6395                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6396                 if (!buf) {
6397                         name = "//enomem";
6398                         goto cpy_name;
6399                 }
6400                 /*
6401                  * d_path() works from the end of the rb backwards, so we
6402                  * need to add enough zero bytes after the string to handle
6403                  * the 64bit alignment we do later.
6404                  */
6405                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6406                 if (IS_ERR(name)) {
6407                         name = "//toolong";
6408                         goto cpy_name;
6409                 }
6410                 inode = file_inode(vma->vm_file);
6411                 dev = inode->i_sb->s_dev;
6412                 ino = inode->i_ino;
6413                 gen = inode->i_generation;
6414                 maj = MAJOR(dev);
6415                 min = MINOR(dev);
6416
6417                 if (vma->vm_flags & VM_READ)
6418                         prot |= PROT_READ;
6419                 if (vma->vm_flags & VM_WRITE)
6420                         prot |= PROT_WRITE;
6421                 if (vma->vm_flags & VM_EXEC)
6422                         prot |= PROT_EXEC;
6423
6424                 if (vma->vm_flags & VM_MAYSHARE)
6425                         flags = MAP_SHARED;
6426                 else
6427                         flags = MAP_PRIVATE;
6428
6429                 if (vma->vm_flags & VM_DENYWRITE)
6430                         flags |= MAP_DENYWRITE;
6431                 if (vma->vm_flags & VM_MAYEXEC)
6432                         flags |= MAP_EXECUTABLE;
6433                 if (vma->vm_flags & VM_LOCKED)
6434                         flags |= MAP_LOCKED;
6435                 if (vma->vm_flags & VM_HUGETLB)
6436                         flags |= MAP_HUGETLB;
6437
6438                 goto got_name;
6439         } else {
6440                 if (vma->vm_ops && vma->vm_ops->name) {
6441                         name = (char *) vma->vm_ops->name(vma);
6442                         if (name)
6443                                 goto cpy_name;
6444                 }
6445
6446                 name = (char *)arch_vma_name(vma);
6447                 if (name)
6448                         goto cpy_name;
6449
6450                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6451                                 vma->vm_end >= vma->vm_mm->brk) {
6452                         name = "[heap]";
6453                         goto cpy_name;
6454                 }
6455                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6456                                 vma->vm_end >= vma->vm_mm->start_stack) {
6457                         name = "[stack]";
6458                         goto cpy_name;
6459                 }
6460
6461                 name = "//anon";
6462                 goto cpy_name;
6463         }
6464
6465 cpy_name:
6466         strlcpy(tmp, name, sizeof(tmp));
6467         name = tmp;
6468 got_name:
6469         /*
6470          * Since our buffer works in 8 byte units we need to align our string
6471          * size to a multiple of 8. However, we must guarantee the tail end is
6472          * zero'd out to avoid leaking random bits to userspace.
6473          */
6474         size = strlen(name)+1;
6475         while (!IS_ALIGNED(size, sizeof(u64)))
6476                 name[size++] = '\0';
6477
6478         mmap_event->file_name = name;
6479         mmap_event->file_size = size;
6480         mmap_event->maj = maj;
6481         mmap_event->min = min;
6482         mmap_event->ino = ino;
6483         mmap_event->ino_generation = gen;
6484         mmap_event->prot = prot;
6485         mmap_event->flags = flags;
6486
6487         if (!(vma->vm_flags & VM_EXEC))
6488                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6489
6490         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6491
6492         perf_iterate_sb(perf_event_mmap_output,
6493                        mmap_event,
6494                        NULL);
6495
6496         kfree(buf);
6497 }
6498
6499 /*
6500  * Whether this @filter depends on a dynamic object which is not loaded
6501  * yet or its load addresses are not known.
6502  */
6503 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6504 {
6505         return filter->filter && filter->inode;
6506 }
6507
6508 /*
6509  * Check whether inode and address range match filter criteria.
6510  */
6511 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6512                                      struct file *file, unsigned long offset,
6513                                      unsigned long size)
6514 {
6515         if (filter->inode != file->f_inode)
6516                 return false;
6517
6518         if (filter->offset > offset + size)
6519                 return false;
6520
6521         if (filter->offset + filter->size < offset)
6522                 return false;
6523
6524         return true;
6525 }
6526
6527 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6528 {
6529         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6530         struct vm_area_struct *vma = data;
6531         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6532         struct file *file = vma->vm_file;
6533         struct perf_addr_filter *filter;
6534         unsigned int restart = 0, count = 0;
6535
6536         if (!has_addr_filter(event))
6537                 return;
6538
6539         if (!file)
6540                 return;
6541
6542         raw_spin_lock_irqsave(&ifh->lock, flags);
6543         list_for_each_entry(filter, &ifh->list, entry) {
6544                 if (perf_addr_filter_match(filter, file, off,
6545                                              vma->vm_end - vma->vm_start)) {
6546                         event->addr_filters_offs[count] = vma->vm_start;
6547                         restart++;
6548                 }
6549
6550                 count++;
6551         }
6552
6553         if (restart)
6554                 event->addr_filters_gen++;
6555         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6556
6557         if (restart)
6558                 perf_event_restart(event);
6559 }
6560
6561 /*
6562  * Adjust all task's events' filters to the new vma
6563  */
6564 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6565 {
6566         struct perf_event_context *ctx;
6567         int ctxn;
6568
6569         rcu_read_lock();
6570         for_each_task_context_nr(ctxn) {
6571                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6572                 if (!ctx)
6573                         continue;
6574
6575                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6576         }
6577         rcu_read_unlock();
6578 }
6579
6580 void perf_event_mmap(struct vm_area_struct *vma)
6581 {
6582         struct perf_mmap_event mmap_event;
6583
6584         if (!atomic_read(&nr_mmap_events))
6585                 return;
6586
6587         mmap_event = (struct perf_mmap_event){
6588                 .vma    = vma,
6589                 /* .file_name */
6590                 /* .file_size */
6591                 .event_id  = {
6592                         .header = {
6593                                 .type = PERF_RECORD_MMAP,
6594                                 .misc = PERF_RECORD_MISC_USER,
6595                                 /* .size */
6596                         },
6597                         /* .pid */
6598                         /* .tid */
6599                         .start  = vma->vm_start,
6600                         .len    = vma->vm_end - vma->vm_start,
6601                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6602                 },
6603                 /* .maj (attr_mmap2 only) */
6604                 /* .min (attr_mmap2 only) */
6605                 /* .ino (attr_mmap2 only) */
6606                 /* .ino_generation (attr_mmap2 only) */
6607                 /* .prot (attr_mmap2 only) */
6608                 /* .flags (attr_mmap2 only) */
6609         };
6610
6611         perf_addr_filters_adjust(vma);
6612         perf_event_mmap_event(&mmap_event);
6613 }
6614
6615 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6616                           unsigned long size, u64 flags)
6617 {
6618         struct perf_output_handle handle;
6619         struct perf_sample_data sample;
6620         struct perf_aux_event {
6621                 struct perf_event_header        header;
6622                 u64                             offset;
6623                 u64                             size;
6624                 u64                             flags;
6625         } rec = {
6626                 .header = {
6627                         .type = PERF_RECORD_AUX,
6628                         .misc = 0,
6629                         .size = sizeof(rec),
6630                 },
6631                 .offset         = head,
6632                 .size           = size,
6633                 .flags          = flags,
6634         };
6635         int ret;
6636
6637         perf_event_header__init_id(&rec.header, &sample, event);
6638         ret = perf_output_begin(&handle, event, rec.header.size);
6639
6640         if (ret)
6641                 return;
6642
6643         perf_output_put(&handle, rec);
6644         perf_event__output_id_sample(event, &handle, &sample);
6645
6646         perf_output_end(&handle);
6647 }
6648
6649 /*
6650  * Lost/dropped samples logging
6651  */
6652 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6653 {
6654         struct perf_output_handle handle;
6655         struct perf_sample_data sample;
6656         int ret;
6657
6658         struct {
6659                 struct perf_event_header        header;
6660                 u64                             lost;
6661         } lost_samples_event = {
6662                 .header = {
6663                         .type = PERF_RECORD_LOST_SAMPLES,
6664                         .misc = 0,
6665                         .size = sizeof(lost_samples_event),
6666                 },
6667                 .lost           = lost,
6668         };
6669
6670         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6671
6672         ret = perf_output_begin(&handle, event,
6673                                 lost_samples_event.header.size);
6674         if (ret)
6675                 return;
6676
6677         perf_output_put(&handle, lost_samples_event);
6678         perf_event__output_id_sample(event, &handle, &sample);
6679         perf_output_end(&handle);
6680 }
6681
6682 /*
6683  * context_switch tracking
6684  */
6685
6686 struct perf_switch_event {
6687         struct task_struct      *task;
6688         struct task_struct      *next_prev;
6689
6690         struct {
6691                 struct perf_event_header        header;
6692                 u32                             next_prev_pid;
6693                 u32                             next_prev_tid;
6694         } event_id;
6695 };
6696
6697 static int perf_event_switch_match(struct perf_event *event)
6698 {
6699         return event->attr.context_switch;
6700 }
6701
6702 static void perf_event_switch_output(struct perf_event *event, void *data)
6703 {
6704         struct perf_switch_event *se = data;
6705         struct perf_output_handle handle;
6706         struct perf_sample_data sample;
6707         int ret;
6708
6709         if (!perf_event_switch_match(event))
6710                 return;
6711
6712         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6713         if (event->ctx->task) {
6714                 se->event_id.header.type = PERF_RECORD_SWITCH;
6715                 se->event_id.header.size = sizeof(se->event_id.header);
6716         } else {
6717                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6718                 se->event_id.header.size = sizeof(se->event_id);
6719                 se->event_id.next_prev_pid =
6720                                         perf_event_pid(event, se->next_prev);
6721                 se->event_id.next_prev_tid =
6722                                         perf_event_tid(event, se->next_prev);
6723         }
6724
6725         perf_event_header__init_id(&se->event_id.header, &sample, event);
6726
6727         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6728         if (ret)
6729                 return;
6730
6731         if (event->ctx->task)
6732                 perf_output_put(&handle, se->event_id.header);
6733         else
6734                 perf_output_put(&handle, se->event_id);
6735
6736         perf_event__output_id_sample(event, &handle, &sample);
6737
6738         perf_output_end(&handle);
6739 }
6740
6741 static void perf_event_switch(struct task_struct *task,
6742                               struct task_struct *next_prev, bool sched_in)
6743 {
6744         struct perf_switch_event switch_event;
6745
6746         /* N.B. caller checks nr_switch_events != 0 */
6747
6748         switch_event = (struct perf_switch_event){
6749                 .task           = task,
6750                 .next_prev      = next_prev,
6751                 .event_id       = {
6752                         .header = {
6753                                 /* .type */
6754                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6755                                 /* .size */
6756                         },
6757                         /* .next_prev_pid */
6758                         /* .next_prev_tid */
6759                 },
6760         };
6761
6762         perf_iterate_sb(perf_event_switch_output,
6763                        &switch_event,
6764                        NULL);
6765 }
6766
6767 /*
6768  * IRQ throttle logging
6769  */
6770
6771 static void perf_log_throttle(struct perf_event *event, int enable)
6772 {
6773         struct perf_output_handle handle;
6774         struct perf_sample_data sample;
6775         int ret;
6776
6777         struct {
6778                 struct perf_event_header        header;
6779                 u64                             time;
6780                 u64                             id;
6781                 u64                             stream_id;
6782         } throttle_event = {
6783                 .header = {
6784                         .type = PERF_RECORD_THROTTLE,
6785                         .misc = 0,
6786                         .size = sizeof(throttle_event),
6787                 },
6788                 .time           = perf_event_clock(event),
6789                 .id             = primary_event_id(event),
6790                 .stream_id      = event->id,
6791         };
6792
6793         if (enable)
6794                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6795
6796         perf_event_header__init_id(&throttle_event.header, &sample, event);
6797
6798         ret = perf_output_begin(&handle, event,
6799                                 throttle_event.header.size);
6800         if (ret)
6801                 return;
6802
6803         perf_output_put(&handle, throttle_event);
6804         perf_event__output_id_sample(event, &handle, &sample);
6805         perf_output_end(&handle);
6806 }
6807
6808 static void perf_log_itrace_start(struct perf_event *event)
6809 {
6810         struct perf_output_handle handle;
6811         struct perf_sample_data sample;
6812         struct perf_aux_event {
6813                 struct perf_event_header        header;
6814                 u32                             pid;
6815                 u32                             tid;
6816         } rec;
6817         int ret;
6818
6819         if (event->parent)
6820                 event = event->parent;
6821
6822         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6823             event->hw.itrace_started)
6824                 return;
6825
6826         rec.header.type = PERF_RECORD_ITRACE_START;
6827         rec.header.misc = 0;
6828         rec.header.size = sizeof(rec);
6829         rec.pid = perf_event_pid(event, current);
6830         rec.tid = perf_event_tid(event, current);
6831
6832         perf_event_header__init_id(&rec.header, &sample, event);
6833         ret = perf_output_begin(&handle, event, rec.header.size);
6834
6835         if (ret)
6836                 return;
6837
6838         perf_output_put(&handle, rec);
6839         perf_event__output_id_sample(event, &handle, &sample);
6840
6841         perf_output_end(&handle);
6842 }
6843
6844 /*
6845  * Generic event overflow handling, sampling.
6846  */
6847
6848 static int __perf_event_overflow(struct perf_event *event,
6849                                    int throttle, struct perf_sample_data *data,
6850                                    struct pt_regs *regs)
6851 {
6852         int events = atomic_read(&event->event_limit);
6853         struct hw_perf_event *hwc = &event->hw;
6854         u64 seq;
6855         int ret = 0;
6856
6857         /*
6858          * Non-sampling counters might still use the PMI to fold short
6859          * hardware counters, ignore those.
6860          */
6861         if (unlikely(!is_sampling_event(event)))
6862                 return 0;
6863
6864         seq = __this_cpu_read(perf_throttled_seq);
6865         if (seq != hwc->interrupts_seq) {
6866                 hwc->interrupts_seq = seq;
6867                 hwc->interrupts = 1;
6868         } else {
6869                 hwc->interrupts++;
6870                 if (unlikely(throttle
6871                              && hwc->interrupts >= max_samples_per_tick)) {
6872                         __this_cpu_inc(perf_throttled_count);
6873                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6874                         hwc->interrupts = MAX_INTERRUPTS;
6875                         perf_log_throttle(event, 0);
6876                         ret = 1;
6877                 }
6878         }
6879
6880         if (event->attr.freq) {
6881                 u64 now = perf_clock();
6882                 s64 delta = now - hwc->freq_time_stamp;
6883
6884                 hwc->freq_time_stamp = now;
6885
6886                 if (delta > 0 && delta < 2*TICK_NSEC)
6887                         perf_adjust_period(event, delta, hwc->last_period, true);
6888         }
6889
6890         /*
6891          * XXX event_limit might not quite work as expected on inherited
6892          * events
6893          */
6894
6895         event->pending_kill = POLL_IN;
6896         if (events && atomic_dec_and_test(&event->event_limit)) {
6897                 ret = 1;
6898                 event->pending_kill = POLL_HUP;
6899                 event->pending_disable = 1;
6900                 irq_work_queue(&event->pending);
6901         }
6902
6903         event->overflow_handler(event, data, regs);
6904
6905         if (*perf_event_fasync(event) && event->pending_kill) {
6906                 event->pending_wakeup = 1;
6907                 irq_work_queue(&event->pending);
6908         }
6909
6910         return ret;
6911 }
6912
6913 int perf_event_overflow(struct perf_event *event,
6914                           struct perf_sample_data *data,
6915                           struct pt_regs *regs)
6916 {
6917         return __perf_event_overflow(event, 1, data, regs);
6918 }
6919
6920 /*
6921  * Generic software event infrastructure
6922  */
6923
6924 struct swevent_htable {
6925         struct swevent_hlist            *swevent_hlist;
6926         struct mutex                    hlist_mutex;
6927         int                             hlist_refcount;
6928
6929         /* Recursion avoidance in each contexts */
6930         int                             recursion[PERF_NR_CONTEXTS];
6931 };
6932
6933 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6934
6935 /*
6936  * We directly increment event->count and keep a second value in
6937  * event->hw.period_left to count intervals. This period event
6938  * is kept in the range [-sample_period, 0] so that we can use the
6939  * sign as trigger.
6940  */
6941
6942 u64 perf_swevent_set_period(struct perf_event *event)
6943 {
6944         struct hw_perf_event *hwc = &event->hw;
6945         u64 period = hwc->last_period;
6946         u64 nr, offset;
6947         s64 old, val;
6948
6949         hwc->last_period = hwc->sample_period;
6950
6951 again:
6952         old = val = local64_read(&hwc->period_left);
6953         if (val < 0)
6954                 return 0;
6955
6956         nr = div64_u64(period + val, period);
6957         offset = nr * period;
6958         val -= offset;
6959         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6960                 goto again;
6961
6962         return nr;
6963 }
6964
6965 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6966                                     struct perf_sample_data *data,
6967                                     struct pt_regs *regs)
6968 {
6969         struct hw_perf_event *hwc = &event->hw;
6970         int throttle = 0;
6971
6972         if (!overflow)
6973                 overflow = perf_swevent_set_period(event);
6974
6975         if (hwc->interrupts == MAX_INTERRUPTS)
6976                 return;
6977
6978         for (; overflow; overflow--) {
6979                 if (__perf_event_overflow(event, throttle,
6980                                             data, regs)) {
6981                         /*
6982                          * We inhibit the overflow from happening when
6983                          * hwc->interrupts == MAX_INTERRUPTS.
6984                          */
6985                         break;
6986                 }
6987                 throttle = 1;
6988         }
6989 }
6990
6991 static void perf_swevent_event(struct perf_event *event, u64 nr,
6992                                struct perf_sample_data *data,
6993                                struct pt_regs *regs)
6994 {
6995         struct hw_perf_event *hwc = &event->hw;
6996
6997         local64_add(nr, &event->count);
6998
6999         if (!regs)
7000                 return;
7001
7002         if (!is_sampling_event(event))
7003                 return;
7004
7005         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7006                 data->period = nr;
7007                 return perf_swevent_overflow(event, 1, data, regs);
7008         } else
7009                 data->period = event->hw.last_period;
7010
7011         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7012                 return perf_swevent_overflow(event, 1, data, regs);
7013
7014         if (local64_add_negative(nr, &hwc->period_left))
7015                 return;
7016
7017         perf_swevent_overflow(event, 0, data, regs);
7018 }
7019
7020 static int perf_exclude_event(struct perf_event *event,
7021                               struct pt_regs *regs)
7022 {
7023         if (event->hw.state & PERF_HES_STOPPED)
7024                 return 1;
7025
7026         if (regs) {
7027                 if (event->attr.exclude_user && user_mode(regs))
7028                         return 1;
7029
7030                 if (event->attr.exclude_kernel && !user_mode(regs))
7031                         return 1;
7032         }
7033
7034         return 0;
7035 }
7036
7037 static int perf_swevent_match(struct perf_event *event,
7038                                 enum perf_type_id type,
7039                                 u32 event_id,
7040                                 struct perf_sample_data *data,
7041                                 struct pt_regs *regs)
7042 {
7043         if (event->attr.type != type)
7044                 return 0;
7045
7046         if (event->attr.config != event_id)
7047                 return 0;
7048
7049         if (perf_exclude_event(event, regs))
7050                 return 0;
7051
7052         return 1;
7053 }
7054
7055 static inline u64 swevent_hash(u64 type, u32 event_id)
7056 {
7057         u64 val = event_id | (type << 32);
7058
7059         return hash_64(val, SWEVENT_HLIST_BITS);
7060 }
7061
7062 static inline struct hlist_head *
7063 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7064 {
7065         u64 hash = swevent_hash(type, event_id);
7066
7067         return &hlist->heads[hash];
7068 }
7069
7070 /* For the read side: events when they trigger */
7071 static inline struct hlist_head *
7072 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7073 {
7074         struct swevent_hlist *hlist;
7075
7076         hlist = rcu_dereference(swhash->swevent_hlist);
7077         if (!hlist)
7078                 return NULL;
7079
7080         return __find_swevent_head(hlist, type, event_id);
7081 }
7082
7083 /* For the event head insertion and removal in the hlist */
7084 static inline struct hlist_head *
7085 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7086 {
7087         struct swevent_hlist *hlist;
7088         u32 event_id = event->attr.config;
7089         u64 type = event->attr.type;
7090
7091         /*
7092          * Event scheduling is always serialized against hlist allocation
7093          * and release. Which makes the protected version suitable here.
7094          * The context lock guarantees that.
7095          */
7096         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7097                                           lockdep_is_held(&event->ctx->lock));
7098         if (!hlist)
7099                 return NULL;
7100
7101         return __find_swevent_head(hlist, type, event_id);
7102 }
7103
7104 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7105                                     u64 nr,
7106                                     struct perf_sample_data *data,
7107                                     struct pt_regs *regs)
7108 {
7109         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7110         struct perf_event *event;
7111         struct hlist_head *head;
7112
7113         rcu_read_lock();
7114         head = find_swevent_head_rcu(swhash, type, event_id);
7115         if (!head)
7116                 goto end;
7117
7118         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7119                 if (perf_swevent_match(event, type, event_id, data, regs))
7120                         perf_swevent_event(event, nr, data, regs);
7121         }
7122 end:
7123         rcu_read_unlock();
7124 }
7125
7126 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7127
7128 int perf_swevent_get_recursion_context(void)
7129 {
7130         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7131
7132         return get_recursion_context(swhash->recursion);
7133 }
7134 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7135
7136 inline void perf_swevent_put_recursion_context(int rctx)
7137 {
7138         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7139
7140         put_recursion_context(swhash->recursion, rctx);
7141 }
7142
7143 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7144 {
7145         struct perf_sample_data data;
7146
7147         if (WARN_ON_ONCE(!regs))
7148                 return;
7149
7150         perf_sample_data_init(&data, addr, 0);
7151         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7152 }
7153
7154 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7155 {
7156         int rctx;
7157
7158         preempt_disable_notrace();
7159         rctx = perf_swevent_get_recursion_context();
7160         if (unlikely(rctx < 0))
7161                 goto fail;
7162
7163         ___perf_sw_event(event_id, nr, regs, addr);
7164
7165         perf_swevent_put_recursion_context(rctx);
7166 fail:
7167         preempt_enable_notrace();
7168 }
7169
7170 static void perf_swevent_read(struct perf_event *event)
7171 {
7172 }
7173
7174 static int perf_swevent_add(struct perf_event *event, int flags)
7175 {
7176         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7177         struct hw_perf_event *hwc = &event->hw;
7178         struct hlist_head *head;
7179
7180         if (is_sampling_event(event)) {
7181                 hwc->last_period = hwc->sample_period;
7182                 perf_swevent_set_period(event);
7183         }
7184
7185         hwc->state = !(flags & PERF_EF_START);
7186
7187         head = find_swevent_head(swhash, event);
7188         if (WARN_ON_ONCE(!head))
7189                 return -EINVAL;
7190
7191         hlist_add_head_rcu(&event->hlist_entry, head);
7192         perf_event_update_userpage(event);
7193
7194         return 0;
7195 }
7196
7197 static void perf_swevent_del(struct perf_event *event, int flags)
7198 {
7199         hlist_del_rcu(&event->hlist_entry);
7200 }
7201
7202 static void perf_swevent_start(struct perf_event *event, int flags)
7203 {
7204         event->hw.state = 0;
7205 }
7206
7207 static void perf_swevent_stop(struct perf_event *event, int flags)
7208 {
7209         event->hw.state = PERF_HES_STOPPED;
7210 }
7211
7212 /* Deref the hlist from the update side */
7213 static inline struct swevent_hlist *
7214 swevent_hlist_deref(struct swevent_htable *swhash)
7215 {
7216         return rcu_dereference_protected(swhash->swevent_hlist,
7217                                          lockdep_is_held(&swhash->hlist_mutex));
7218 }
7219
7220 static void swevent_hlist_release(struct swevent_htable *swhash)
7221 {
7222         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7223
7224         if (!hlist)
7225                 return;
7226
7227         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7228         kfree_rcu(hlist, rcu_head);
7229 }
7230
7231 static void swevent_hlist_put_cpu(int cpu)
7232 {
7233         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7234
7235         mutex_lock(&swhash->hlist_mutex);
7236
7237         if (!--swhash->hlist_refcount)
7238                 swevent_hlist_release(swhash);
7239
7240         mutex_unlock(&swhash->hlist_mutex);
7241 }
7242
7243 static void swevent_hlist_put(void)
7244 {
7245         int cpu;
7246
7247         for_each_possible_cpu(cpu)
7248                 swevent_hlist_put_cpu(cpu);
7249 }
7250
7251 static int swevent_hlist_get_cpu(int cpu)
7252 {
7253         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7254         int err = 0;
7255
7256         mutex_lock(&swhash->hlist_mutex);
7257         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7258                 struct swevent_hlist *hlist;
7259
7260                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7261                 if (!hlist) {
7262                         err = -ENOMEM;
7263                         goto exit;
7264                 }
7265                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7266         }
7267         swhash->hlist_refcount++;
7268 exit:
7269         mutex_unlock(&swhash->hlist_mutex);
7270
7271         return err;
7272 }
7273
7274 static int swevent_hlist_get(void)
7275 {
7276         int err, cpu, failed_cpu;
7277
7278         get_online_cpus();
7279         for_each_possible_cpu(cpu) {
7280                 err = swevent_hlist_get_cpu(cpu);
7281                 if (err) {
7282                         failed_cpu = cpu;
7283                         goto fail;
7284                 }
7285         }
7286         put_online_cpus();
7287
7288         return 0;
7289 fail:
7290         for_each_possible_cpu(cpu) {
7291                 if (cpu == failed_cpu)
7292                         break;
7293                 swevent_hlist_put_cpu(cpu);
7294         }
7295
7296         put_online_cpus();
7297         return err;
7298 }
7299
7300 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7301
7302 static void sw_perf_event_destroy(struct perf_event *event)
7303 {
7304         u64 event_id = event->attr.config;
7305
7306         WARN_ON(event->parent);
7307
7308         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7309         swevent_hlist_put();
7310 }
7311
7312 static int perf_swevent_init(struct perf_event *event)
7313 {
7314         u64 event_id = event->attr.config;
7315
7316         if (event->attr.type != PERF_TYPE_SOFTWARE)
7317                 return -ENOENT;
7318
7319         /*
7320          * no branch sampling for software events
7321          */
7322         if (has_branch_stack(event))
7323                 return -EOPNOTSUPP;
7324
7325         switch (event_id) {
7326         case PERF_COUNT_SW_CPU_CLOCK:
7327         case PERF_COUNT_SW_TASK_CLOCK:
7328                 return -ENOENT;
7329
7330         default:
7331                 break;
7332         }
7333
7334         if (event_id >= PERF_COUNT_SW_MAX)
7335                 return -ENOENT;
7336
7337         if (!event->parent) {
7338                 int err;
7339
7340                 err = swevent_hlist_get();
7341                 if (err)
7342                         return err;
7343
7344                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7345                 event->destroy = sw_perf_event_destroy;
7346         }
7347
7348         return 0;
7349 }
7350
7351 static struct pmu perf_swevent = {
7352         .task_ctx_nr    = perf_sw_context,
7353
7354         .capabilities   = PERF_PMU_CAP_NO_NMI,
7355
7356         .event_init     = perf_swevent_init,
7357         .add            = perf_swevent_add,
7358         .del            = perf_swevent_del,
7359         .start          = perf_swevent_start,
7360         .stop           = perf_swevent_stop,
7361         .read           = perf_swevent_read,
7362 };
7363
7364 #ifdef CONFIG_EVENT_TRACING
7365
7366 static int perf_tp_filter_match(struct perf_event *event,
7367                                 struct perf_sample_data *data)
7368 {
7369         void *record = data->raw->data;
7370
7371         /* only top level events have filters set */
7372         if (event->parent)
7373                 event = event->parent;
7374
7375         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7376                 return 1;
7377         return 0;
7378 }
7379
7380 static int perf_tp_event_match(struct perf_event *event,
7381                                 struct perf_sample_data *data,
7382                                 struct pt_regs *regs)
7383 {
7384         if (event->hw.state & PERF_HES_STOPPED)
7385                 return 0;
7386         /*
7387          * All tracepoints are from kernel-space.
7388          */
7389         if (event->attr.exclude_kernel)
7390                 return 0;
7391
7392         if (!perf_tp_filter_match(event, data))
7393                 return 0;
7394
7395         return 1;
7396 }
7397
7398 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7399                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7400                    struct task_struct *task)
7401 {
7402         struct perf_sample_data data;
7403         struct perf_event *event;
7404
7405         struct perf_raw_record raw = {
7406                 .size = entry_size,
7407                 .data = record,
7408         };
7409
7410         perf_sample_data_init(&data, addr, 0);
7411         data.raw = &raw;
7412
7413         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7414                 if (perf_tp_event_match(event, &data, regs))
7415                         perf_swevent_event(event, count, &data, regs);
7416         }
7417
7418         /*
7419          * If we got specified a target task, also iterate its context and
7420          * deliver this event there too.
7421          */
7422         if (task && task != current) {
7423                 struct perf_event_context *ctx;
7424                 struct trace_entry *entry = record;
7425
7426                 rcu_read_lock();
7427                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7428                 if (!ctx)
7429                         goto unlock;
7430
7431                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7432                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7433                                 continue;
7434                         if (event->attr.config != entry->type)
7435                                 continue;
7436                         if (perf_tp_event_match(event, &data, regs))
7437                                 perf_swevent_event(event, count, &data, regs);
7438                 }
7439 unlock:
7440                 rcu_read_unlock();
7441         }
7442
7443         perf_swevent_put_recursion_context(rctx);
7444 }
7445 EXPORT_SYMBOL_GPL(perf_tp_event);
7446
7447 static void tp_perf_event_destroy(struct perf_event *event)
7448 {
7449         perf_trace_destroy(event);
7450 }
7451
7452 static int perf_tp_event_init(struct perf_event *event)
7453 {
7454         int err;
7455
7456         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7457                 return -ENOENT;
7458
7459         /*
7460          * no branch sampling for tracepoint events
7461          */
7462         if (has_branch_stack(event))
7463                 return -EOPNOTSUPP;
7464
7465         err = perf_trace_init(event);
7466         if (err)
7467                 return err;
7468
7469         event->destroy = tp_perf_event_destroy;
7470
7471         return 0;
7472 }
7473
7474 static struct pmu perf_tracepoint = {
7475         .task_ctx_nr    = perf_sw_context,
7476
7477         .event_init     = perf_tp_event_init,
7478         .add            = perf_trace_add,
7479         .del            = perf_trace_del,
7480         .start          = perf_swevent_start,
7481         .stop           = perf_swevent_stop,
7482         .read           = perf_swevent_read,
7483 };
7484
7485 static inline void perf_tp_register(void)
7486 {
7487         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7488 }
7489
7490 static void perf_event_free_filter(struct perf_event *event)
7491 {
7492         ftrace_profile_free_filter(event);
7493 }
7494
7495 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7496 {
7497         struct bpf_prog *prog;
7498
7499         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7500                 return -EINVAL;
7501
7502         if (event->tp_event->prog)
7503                 return -EEXIST;
7504
7505         if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7506                 /* bpf programs can only be attached to u/kprobes */
7507                 return -EINVAL;
7508
7509         prog = bpf_prog_get(prog_fd);
7510         if (IS_ERR(prog))
7511                 return PTR_ERR(prog);
7512
7513         if (prog->type != BPF_PROG_TYPE_KPROBE) {
7514                 /* valid fd, but invalid bpf program type */
7515                 bpf_prog_put(prog);
7516                 return -EINVAL;
7517         }
7518
7519         event->tp_event->prog = prog;
7520
7521         return 0;
7522 }
7523
7524 static void perf_event_free_bpf_prog(struct perf_event *event)
7525 {
7526         struct bpf_prog *prog;
7527
7528         if (!event->tp_event)
7529                 return;
7530
7531         prog = event->tp_event->prog;
7532         if (prog) {
7533                 event->tp_event->prog = NULL;
7534                 bpf_prog_put(prog);
7535         }
7536 }
7537
7538 #else
7539
7540 static inline void perf_tp_register(void)
7541 {
7542 }
7543
7544 static void perf_event_free_filter(struct perf_event *event)
7545 {
7546 }
7547
7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7549 {
7550         return -ENOENT;
7551 }
7552
7553 static void perf_event_free_bpf_prog(struct perf_event *event)
7554 {
7555 }
7556 #endif /* CONFIG_EVENT_TRACING */
7557
7558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7559 void perf_bp_event(struct perf_event *bp, void *data)
7560 {
7561         struct perf_sample_data sample;
7562         struct pt_regs *regs = data;
7563
7564         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7565
7566         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7567                 perf_swevent_event(bp, 1, &sample, regs);
7568 }
7569 #endif
7570
7571 /*
7572  * Allocate a new address filter
7573  */
7574 static struct perf_addr_filter *
7575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7576 {
7577         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7578         struct perf_addr_filter *filter;
7579
7580         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7581         if (!filter)
7582                 return NULL;
7583
7584         INIT_LIST_HEAD(&filter->entry);
7585         list_add_tail(&filter->entry, filters);
7586
7587         return filter;
7588 }
7589
7590 static void free_filters_list(struct list_head *filters)
7591 {
7592         struct perf_addr_filter *filter, *iter;
7593
7594         list_for_each_entry_safe(filter, iter, filters, entry) {
7595                 if (filter->inode)
7596                         iput(filter->inode);
7597                 list_del(&filter->entry);
7598                 kfree(filter);
7599         }
7600 }
7601
7602 /*
7603  * Free existing address filters and optionally install new ones
7604  */
7605 static void perf_addr_filters_splice(struct perf_event *event,
7606                                      struct list_head *head)
7607 {
7608         unsigned long flags;
7609         LIST_HEAD(list);
7610
7611         if (!has_addr_filter(event))
7612                 return;
7613
7614         /* don't bother with children, they don't have their own filters */
7615         if (event->parent)
7616                 return;
7617
7618         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7619
7620         list_splice_init(&event->addr_filters.list, &list);
7621         if (head)
7622                 list_splice(head, &event->addr_filters.list);
7623
7624         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7625
7626         free_filters_list(&list);
7627 }
7628
7629 /*
7630  * Scan through mm's vmas and see if one of them matches the
7631  * @filter; if so, adjust filter's address range.
7632  * Called with mm::mmap_sem down for reading.
7633  */
7634 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7635                                             struct mm_struct *mm)
7636 {
7637         struct vm_area_struct *vma;
7638
7639         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7640                 struct file *file = vma->vm_file;
7641                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7642                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7643
7644                 if (!file)
7645                         continue;
7646
7647                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7648                         continue;
7649
7650                 return vma->vm_start;
7651         }
7652
7653         return 0;
7654 }
7655
7656 /*
7657  * Update event's address range filters based on the
7658  * task's existing mappings, if any.
7659  */
7660 static void perf_event_addr_filters_apply(struct perf_event *event)
7661 {
7662         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7663         struct task_struct *task = READ_ONCE(event->ctx->task);
7664         struct perf_addr_filter *filter;
7665         struct mm_struct *mm = NULL;
7666         unsigned int count = 0;
7667         unsigned long flags;
7668
7669         /*
7670          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7671          * will stop on the parent's child_mutex that our caller is also holding
7672          */
7673         if (task == TASK_TOMBSTONE)
7674                 return;
7675
7676         mm = get_task_mm(event->ctx->task);
7677         if (!mm)
7678                 goto restart;
7679
7680         down_read(&mm->mmap_sem);
7681
7682         raw_spin_lock_irqsave(&ifh->lock, flags);
7683         list_for_each_entry(filter, &ifh->list, entry) {
7684                 event->addr_filters_offs[count] = 0;
7685
7686                 if (perf_addr_filter_needs_mmap(filter))
7687                         event->addr_filters_offs[count] =
7688                                 perf_addr_filter_apply(filter, mm);
7689
7690                 count++;
7691         }
7692
7693         event->addr_filters_gen++;
7694         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7695
7696         up_read(&mm->mmap_sem);
7697
7698         mmput(mm);
7699
7700 restart:
7701         perf_event_restart(event);
7702 }
7703
7704 /*
7705  * Address range filtering: limiting the data to certain
7706  * instruction address ranges. Filters are ioctl()ed to us from
7707  * userspace as ascii strings.
7708  *
7709  * Filter string format:
7710  *
7711  * ACTION RANGE_SPEC
7712  * where ACTION is one of the
7713  *  * "filter": limit the trace to this region
7714  *  * "start": start tracing from this address
7715  *  * "stop": stop tracing at this address/region;
7716  * RANGE_SPEC is
7717  *  * for kernel addresses: <start address>[/<size>]
7718  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7719  *
7720  * if <size> is not specified, the range is treated as a single address.
7721  */
7722 enum {
7723         IF_ACT_FILTER,
7724         IF_ACT_START,
7725         IF_ACT_STOP,
7726         IF_SRC_FILE,
7727         IF_SRC_KERNEL,
7728         IF_SRC_FILEADDR,
7729         IF_SRC_KERNELADDR,
7730 };
7731
7732 enum {
7733         IF_STATE_ACTION = 0,
7734         IF_STATE_SOURCE,
7735         IF_STATE_END,
7736 };
7737
7738 static const match_table_t if_tokens = {
7739         { IF_ACT_FILTER,        "filter" },
7740         { IF_ACT_START,         "start" },
7741         { IF_ACT_STOP,          "stop" },
7742         { IF_SRC_FILE,          "%u/%u@%s" },
7743         { IF_SRC_KERNEL,        "%u/%u" },
7744         { IF_SRC_FILEADDR,      "%u@%s" },
7745         { IF_SRC_KERNELADDR,    "%u" },
7746 };
7747
7748 /*
7749  * Address filter string parser
7750  */
7751 static int
7752 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7753                              struct list_head *filters)
7754 {
7755         struct perf_addr_filter *filter = NULL;
7756         char *start, *orig, *filename = NULL;
7757         struct path path;
7758         substring_t args[MAX_OPT_ARGS];
7759         int state = IF_STATE_ACTION, token;
7760         unsigned int kernel = 0;
7761         int ret = -EINVAL;
7762
7763         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7764         if (!fstr)
7765                 return -ENOMEM;
7766
7767         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7768                 ret = -EINVAL;
7769
7770                 if (!*start)
7771                         continue;
7772
7773                 /* filter definition begins */
7774                 if (state == IF_STATE_ACTION) {
7775                         filter = perf_addr_filter_new(event, filters);
7776                         if (!filter)
7777                                 goto fail;
7778                 }
7779
7780                 token = match_token(start, if_tokens, args);
7781                 switch (token) {
7782                 case IF_ACT_FILTER:
7783                 case IF_ACT_START:
7784                         filter->filter = 1;
7785
7786                 case IF_ACT_STOP:
7787                         if (state != IF_STATE_ACTION)
7788                                 goto fail;
7789
7790                         state = IF_STATE_SOURCE;
7791                         break;
7792
7793                 case IF_SRC_KERNELADDR:
7794                 case IF_SRC_KERNEL:
7795                         kernel = 1;
7796
7797                 case IF_SRC_FILEADDR:
7798                 case IF_SRC_FILE:
7799                         if (state != IF_STATE_SOURCE)
7800                                 goto fail;
7801
7802                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7803                                 filter->range = 1;
7804
7805                         *args[0].to = 0;
7806                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7807                         if (ret)
7808                                 goto fail;
7809
7810                         if (filter->range) {
7811                                 *args[1].to = 0;
7812                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7813                                 if (ret)
7814                                         goto fail;
7815                         }
7816
7817                         if (token == IF_SRC_FILE) {
7818                                 filename = match_strdup(&args[2]);
7819                                 if (!filename) {
7820                                         ret = -ENOMEM;
7821                                         goto fail;
7822                                 }
7823                         }
7824
7825                         state = IF_STATE_END;
7826                         break;
7827
7828                 default:
7829                         goto fail;
7830                 }
7831
7832                 /*
7833                  * Filter definition is fully parsed, validate and install it.
7834                  * Make sure that it doesn't contradict itself or the event's
7835                  * attribute.
7836                  */
7837                 if (state == IF_STATE_END) {
7838                         if (kernel && event->attr.exclude_kernel)
7839                                 goto fail;
7840
7841                         if (!kernel) {
7842                                 if (!filename)
7843                                         goto fail;
7844
7845                                 /* look up the path and grab its inode */
7846                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7847                                 if (ret)
7848                                         goto fail_free_name;
7849
7850                                 filter->inode = igrab(d_inode(path.dentry));
7851                                 path_put(&path);
7852                                 kfree(filename);
7853                                 filename = NULL;
7854
7855                                 ret = -EINVAL;
7856                                 if (!filter->inode ||
7857                                     !S_ISREG(filter->inode->i_mode))
7858                                         /* free_filters_list() will iput() */
7859                                         goto fail;
7860                         }
7861
7862                         /* ready to consume more filters */
7863                         state = IF_STATE_ACTION;
7864                         filter = NULL;
7865                 }
7866         }
7867
7868         if (state != IF_STATE_ACTION)
7869                 goto fail;
7870
7871         kfree(orig);
7872
7873         return 0;
7874
7875 fail_free_name:
7876         kfree(filename);
7877 fail:
7878         free_filters_list(filters);
7879         kfree(orig);
7880
7881         return ret;
7882 }
7883
7884 static int
7885 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7886 {
7887         LIST_HEAD(filters);
7888         int ret;
7889
7890         /*
7891          * Since this is called in perf_ioctl() path, we're already holding
7892          * ctx::mutex.
7893          */
7894         lockdep_assert_held(&event->ctx->mutex);
7895
7896         if (WARN_ON_ONCE(event->parent))
7897                 return -EINVAL;
7898
7899         /*
7900          * For now, we only support filtering in per-task events; doing so
7901          * for CPU-wide events requires additional context switching trickery,
7902          * since same object code will be mapped at different virtual
7903          * addresses in different processes.
7904          */
7905         if (!event->ctx->task)
7906                 return -EOPNOTSUPP;
7907
7908         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7909         if (ret)
7910                 return ret;
7911
7912         ret = event->pmu->addr_filters_validate(&filters);
7913         if (ret) {
7914                 free_filters_list(&filters);
7915                 return ret;
7916         }
7917
7918         /* remove existing filters, if any */
7919         perf_addr_filters_splice(event, &filters);
7920
7921         /* install new filters */
7922         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7923
7924         return ret;
7925 }
7926
7927 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7928 {
7929         char *filter_str;
7930         int ret = -EINVAL;
7931
7932         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7933             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7934             !has_addr_filter(event))
7935                 return -EINVAL;
7936
7937         filter_str = strndup_user(arg, PAGE_SIZE);
7938         if (IS_ERR(filter_str))
7939                 return PTR_ERR(filter_str);
7940
7941         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7942             event->attr.type == PERF_TYPE_TRACEPOINT)
7943                 ret = ftrace_profile_set_filter(event, event->attr.config,
7944                                                 filter_str);
7945         else if (has_addr_filter(event))
7946                 ret = perf_event_set_addr_filter(event, filter_str);
7947
7948         kfree(filter_str);
7949         return ret;
7950 }
7951
7952 /*
7953  * hrtimer based swevent callback
7954  */
7955
7956 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7957 {
7958         enum hrtimer_restart ret = HRTIMER_RESTART;
7959         struct perf_sample_data data;
7960         struct pt_regs *regs;
7961         struct perf_event *event;
7962         u64 period;
7963
7964         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7965
7966         if (event->state != PERF_EVENT_STATE_ACTIVE)
7967                 return HRTIMER_NORESTART;
7968
7969         event->pmu->read(event);
7970
7971         perf_sample_data_init(&data, 0, event->hw.last_period);
7972         regs = get_irq_regs();
7973
7974         if (regs && !perf_exclude_event(event, regs)) {
7975                 if (!(event->attr.exclude_idle && is_idle_task(current)))
7976                         if (__perf_event_overflow(event, 1, &data, regs))
7977                                 ret = HRTIMER_NORESTART;
7978         }
7979
7980         period = max_t(u64, 10000, event->hw.sample_period);
7981         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7982
7983         return ret;
7984 }
7985
7986 static void perf_swevent_start_hrtimer(struct perf_event *event)
7987 {
7988         struct hw_perf_event *hwc = &event->hw;
7989         s64 period;
7990
7991         if (!is_sampling_event(event))
7992                 return;
7993
7994         period = local64_read(&hwc->period_left);
7995         if (period) {
7996                 if (period < 0)
7997                         period = 10000;
7998
7999                 local64_set(&hwc->period_left, 0);
8000         } else {
8001                 period = max_t(u64, 10000, hwc->sample_period);
8002         }
8003         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8004                       HRTIMER_MODE_REL_PINNED);
8005 }
8006
8007 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8008 {
8009         struct hw_perf_event *hwc = &event->hw;
8010
8011         if (is_sampling_event(event)) {
8012                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8013                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8014
8015                 hrtimer_cancel(&hwc->hrtimer);
8016         }
8017 }
8018
8019 static void perf_swevent_init_hrtimer(struct perf_event *event)
8020 {
8021         struct hw_perf_event *hwc = &event->hw;
8022
8023         if (!is_sampling_event(event))
8024                 return;
8025
8026         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8027         hwc->hrtimer.function = perf_swevent_hrtimer;
8028
8029         /*
8030          * Since hrtimers have a fixed rate, we can do a static freq->period
8031          * mapping and avoid the whole period adjust feedback stuff.
8032          */
8033         if (event->attr.freq) {
8034                 long freq = event->attr.sample_freq;
8035
8036                 event->attr.sample_period = NSEC_PER_SEC / freq;
8037                 hwc->sample_period = event->attr.sample_period;
8038                 local64_set(&hwc->period_left, hwc->sample_period);
8039                 hwc->last_period = hwc->sample_period;
8040                 event->attr.freq = 0;
8041         }
8042 }
8043
8044 /*
8045  * Software event: cpu wall time clock
8046  */
8047
8048 static void cpu_clock_event_update(struct perf_event *event)
8049 {
8050         s64 prev;
8051         u64 now;
8052
8053         now = local_clock();
8054         prev = local64_xchg(&event->hw.prev_count, now);
8055         local64_add(now - prev, &event->count);
8056 }
8057
8058 static void cpu_clock_event_start(struct perf_event *event, int flags)
8059 {
8060         local64_set(&event->hw.prev_count, local_clock());
8061         perf_swevent_start_hrtimer(event);
8062 }
8063
8064 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8065 {
8066         perf_swevent_cancel_hrtimer(event);
8067         cpu_clock_event_update(event);
8068 }
8069
8070 static int cpu_clock_event_add(struct perf_event *event, int flags)
8071 {
8072         if (flags & PERF_EF_START)
8073                 cpu_clock_event_start(event, flags);
8074         perf_event_update_userpage(event);
8075
8076         return 0;
8077 }
8078
8079 static void cpu_clock_event_del(struct perf_event *event, int flags)
8080 {
8081         cpu_clock_event_stop(event, flags);
8082 }
8083
8084 static void cpu_clock_event_read(struct perf_event *event)
8085 {
8086         cpu_clock_event_update(event);
8087 }
8088
8089 static int cpu_clock_event_init(struct perf_event *event)
8090 {
8091         if (event->attr.type != PERF_TYPE_SOFTWARE)
8092                 return -ENOENT;
8093
8094         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8095                 return -ENOENT;
8096
8097         /*
8098          * no branch sampling for software events
8099          */
8100         if (has_branch_stack(event))
8101                 return -EOPNOTSUPP;
8102
8103         perf_swevent_init_hrtimer(event);
8104
8105         return 0;
8106 }
8107
8108 static struct pmu perf_cpu_clock = {
8109         .task_ctx_nr    = perf_sw_context,
8110
8111         .capabilities   = PERF_PMU_CAP_NO_NMI,
8112
8113         .event_init     = cpu_clock_event_init,
8114         .add            = cpu_clock_event_add,
8115         .del            = cpu_clock_event_del,
8116         .start          = cpu_clock_event_start,
8117         .stop           = cpu_clock_event_stop,
8118         .read           = cpu_clock_event_read,
8119 };
8120
8121 /*
8122  * Software event: task time clock
8123  */
8124
8125 static void task_clock_event_update(struct perf_event *event, u64 now)
8126 {
8127         u64 prev;
8128         s64 delta;
8129
8130         prev = local64_xchg(&event->hw.prev_count, now);
8131         delta = now - prev;
8132         local64_add(delta, &event->count);
8133 }
8134
8135 static void task_clock_event_start(struct perf_event *event, int flags)
8136 {
8137         local64_set(&event->hw.prev_count, event->ctx->time);
8138         perf_swevent_start_hrtimer(event);
8139 }
8140
8141 static void task_clock_event_stop(struct perf_event *event, int flags)
8142 {
8143         perf_swevent_cancel_hrtimer(event);
8144         task_clock_event_update(event, event->ctx->time);
8145 }
8146
8147 static int task_clock_event_add(struct perf_event *event, int flags)
8148 {
8149         if (flags & PERF_EF_START)
8150                 task_clock_event_start(event, flags);
8151         perf_event_update_userpage(event);
8152
8153         return 0;
8154 }
8155
8156 static void task_clock_event_del(struct perf_event *event, int flags)
8157 {
8158         task_clock_event_stop(event, PERF_EF_UPDATE);
8159 }
8160
8161 static void task_clock_event_read(struct perf_event *event)
8162 {
8163         u64 now = perf_clock();
8164         u64 delta = now - event->ctx->timestamp;
8165         u64 time = event->ctx->time + delta;
8166
8167         task_clock_event_update(event, time);
8168 }
8169
8170 static int task_clock_event_init(struct perf_event *event)
8171 {
8172         if (event->attr.type != PERF_TYPE_SOFTWARE)
8173                 return -ENOENT;
8174
8175         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8176                 return -ENOENT;
8177
8178         /*
8179          * no branch sampling for software events
8180          */
8181         if (has_branch_stack(event))
8182                 return -EOPNOTSUPP;
8183
8184         perf_swevent_init_hrtimer(event);
8185
8186         return 0;
8187 }
8188
8189 static struct pmu perf_task_clock = {
8190         .task_ctx_nr    = perf_sw_context,
8191
8192         .capabilities   = PERF_PMU_CAP_NO_NMI,
8193
8194         .event_init     = task_clock_event_init,
8195         .add            = task_clock_event_add,
8196         .del            = task_clock_event_del,
8197         .start          = task_clock_event_start,
8198         .stop           = task_clock_event_stop,
8199         .read           = task_clock_event_read,
8200 };
8201
8202 static void perf_pmu_nop_void(struct pmu *pmu)
8203 {
8204 }
8205
8206 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8207 {
8208 }
8209
8210 static int perf_pmu_nop_int(struct pmu *pmu)
8211 {
8212         return 0;
8213 }
8214
8215 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8216
8217 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8218 {
8219         __this_cpu_write(nop_txn_flags, flags);
8220
8221         if (flags & ~PERF_PMU_TXN_ADD)
8222                 return;
8223
8224         perf_pmu_disable(pmu);
8225 }
8226
8227 static int perf_pmu_commit_txn(struct pmu *pmu)
8228 {
8229         unsigned int flags = __this_cpu_read(nop_txn_flags);
8230
8231         __this_cpu_write(nop_txn_flags, 0);
8232
8233         if (flags & ~PERF_PMU_TXN_ADD)
8234                 return 0;
8235
8236         perf_pmu_enable(pmu);
8237         return 0;
8238 }
8239
8240 static void perf_pmu_cancel_txn(struct pmu *pmu)
8241 {
8242         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8243
8244         __this_cpu_write(nop_txn_flags, 0);
8245
8246         if (flags & ~PERF_PMU_TXN_ADD)
8247                 return;
8248
8249         perf_pmu_enable(pmu);
8250 }
8251
8252 static int perf_event_idx_default(struct perf_event *event)
8253 {
8254         return 0;
8255 }
8256
8257 /*
8258  * Ensures all contexts with the same task_ctx_nr have the same
8259  * pmu_cpu_context too.
8260  */
8261 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8262 {
8263         struct pmu *pmu;
8264
8265         if (ctxn < 0)
8266                 return NULL;
8267
8268         list_for_each_entry(pmu, &pmus, entry) {
8269                 if (pmu->task_ctx_nr == ctxn)
8270                         return pmu->pmu_cpu_context;
8271         }
8272
8273         return NULL;
8274 }
8275
8276 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8277 {
8278         int cpu;
8279
8280         for_each_possible_cpu(cpu) {
8281                 struct perf_cpu_context *cpuctx;
8282
8283                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8284
8285                 if (cpuctx->unique_pmu == old_pmu)
8286                         cpuctx->unique_pmu = pmu;
8287         }
8288 }
8289
8290 static void free_pmu_context(struct pmu *pmu)
8291 {
8292         struct pmu *i;
8293
8294         mutex_lock(&pmus_lock);
8295         /*
8296          * Like a real lame refcount.
8297          */
8298         list_for_each_entry(i, &pmus, entry) {
8299                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8300                         update_pmu_context(i, pmu);
8301                         goto out;
8302                 }
8303         }
8304
8305         free_percpu(pmu->pmu_cpu_context);
8306 out:
8307         mutex_unlock(&pmus_lock);
8308 }
8309
8310 /*
8311  * Let userspace know that this PMU supports address range filtering:
8312  */
8313 static ssize_t nr_addr_filters_show(struct device *dev,
8314                                     struct device_attribute *attr,
8315                                     char *page)
8316 {
8317         struct pmu *pmu = dev_get_drvdata(dev);
8318
8319         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8320 }
8321 DEVICE_ATTR_RO(nr_addr_filters);
8322
8323 static struct idr pmu_idr;
8324
8325 static ssize_t
8326 type_show(struct device *dev, struct device_attribute *attr, char *page)
8327 {
8328         struct pmu *pmu = dev_get_drvdata(dev);
8329
8330         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8331 }
8332 static DEVICE_ATTR_RO(type);
8333
8334 static ssize_t
8335 perf_event_mux_interval_ms_show(struct device *dev,
8336                                 struct device_attribute *attr,
8337                                 char *page)
8338 {
8339         struct pmu *pmu = dev_get_drvdata(dev);
8340
8341         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8342 }
8343
8344 static DEFINE_MUTEX(mux_interval_mutex);
8345
8346 static ssize_t
8347 perf_event_mux_interval_ms_store(struct device *dev,
8348                                  struct device_attribute *attr,
8349                                  const char *buf, size_t count)
8350 {
8351         struct pmu *pmu = dev_get_drvdata(dev);
8352         int timer, cpu, ret;
8353
8354         ret = kstrtoint(buf, 0, &timer);
8355         if (ret)
8356                 return ret;
8357
8358         if (timer < 1)
8359                 return -EINVAL;
8360
8361         /* same value, noting to do */
8362         if (timer == pmu->hrtimer_interval_ms)
8363                 return count;
8364
8365         mutex_lock(&mux_interval_mutex);
8366         pmu->hrtimer_interval_ms = timer;
8367
8368         /* update all cpuctx for this PMU */
8369         get_online_cpus();
8370         for_each_online_cpu(cpu) {
8371                 struct perf_cpu_context *cpuctx;
8372                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8373                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8374
8375                 cpu_function_call(cpu,
8376                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8377         }
8378         put_online_cpus();
8379         mutex_unlock(&mux_interval_mutex);
8380
8381         return count;
8382 }
8383 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8384
8385 static struct attribute *pmu_dev_attrs[] = {
8386         &dev_attr_type.attr,
8387         &dev_attr_perf_event_mux_interval_ms.attr,
8388         NULL,
8389 };
8390 ATTRIBUTE_GROUPS(pmu_dev);
8391
8392 static int pmu_bus_running;
8393 static struct bus_type pmu_bus = {
8394         .name           = "event_source",
8395         .dev_groups     = pmu_dev_groups,
8396 };
8397
8398 static void pmu_dev_release(struct device *dev)
8399 {
8400         kfree(dev);
8401 }
8402
8403 static int pmu_dev_alloc(struct pmu *pmu)
8404 {
8405         int ret = -ENOMEM;
8406
8407         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8408         if (!pmu->dev)
8409                 goto out;
8410
8411         pmu->dev->groups = pmu->attr_groups;
8412         device_initialize(pmu->dev);
8413         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8414         if (ret)
8415                 goto free_dev;
8416
8417         dev_set_drvdata(pmu->dev, pmu);
8418         pmu->dev->bus = &pmu_bus;
8419         pmu->dev->release = pmu_dev_release;
8420         ret = device_add(pmu->dev);
8421         if (ret)
8422                 goto free_dev;
8423
8424         /* For PMUs with address filters, throw in an extra attribute: */
8425         if (pmu->nr_addr_filters)
8426                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8427
8428         if (ret)
8429                 goto del_dev;
8430
8431 out:
8432         return ret;
8433
8434 del_dev:
8435         device_del(pmu->dev);
8436
8437 free_dev:
8438         put_device(pmu->dev);
8439         goto out;
8440 }
8441
8442 static struct lock_class_key cpuctx_mutex;
8443 static struct lock_class_key cpuctx_lock;
8444
8445 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8446 {
8447         int cpu, ret;
8448
8449         mutex_lock(&pmus_lock);
8450         ret = -ENOMEM;
8451         pmu->pmu_disable_count = alloc_percpu(int);
8452         if (!pmu->pmu_disable_count)
8453                 goto unlock;
8454
8455         pmu->type = -1;
8456         if (!name)
8457                 goto skip_type;
8458         pmu->name = name;
8459
8460         if (type < 0) {
8461                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8462                 if (type < 0) {
8463                         ret = type;
8464                         goto free_pdc;
8465                 }
8466         }
8467         pmu->type = type;
8468
8469         if (pmu_bus_running) {
8470                 ret = pmu_dev_alloc(pmu);
8471                 if (ret)
8472                         goto free_idr;
8473         }
8474
8475 skip_type:
8476         if (pmu->task_ctx_nr == perf_hw_context) {
8477                 static int hw_context_taken = 0;
8478
8479                 /*
8480                  * Other than systems with heterogeneous CPUs, it never makes
8481                  * sense for two PMUs to share perf_hw_context. PMUs which are
8482                  * uncore must use perf_invalid_context.
8483                  */
8484                 if (WARN_ON_ONCE(hw_context_taken &&
8485                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8486                         pmu->task_ctx_nr = perf_invalid_context;
8487
8488                 hw_context_taken = 1;
8489         }
8490
8491         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8492         if (pmu->pmu_cpu_context)
8493                 goto got_cpu_context;
8494
8495         ret = -ENOMEM;
8496         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8497         if (!pmu->pmu_cpu_context)
8498                 goto free_dev;
8499
8500         for_each_possible_cpu(cpu) {
8501                 struct perf_cpu_context *cpuctx;
8502
8503                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8504                 __perf_event_init_context(&cpuctx->ctx);
8505                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8506                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8507                 cpuctx->ctx.pmu = pmu;
8508
8509                 __perf_mux_hrtimer_init(cpuctx, cpu);
8510
8511                 cpuctx->unique_pmu = pmu;
8512         }
8513
8514 got_cpu_context:
8515         if (!pmu->start_txn) {
8516                 if (pmu->pmu_enable) {
8517                         /*
8518                          * If we have pmu_enable/pmu_disable calls, install
8519                          * transaction stubs that use that to try and batch
8520                          * hardware accesses.
8521                          */
8522                         pmu->start_txn  = perf_pmu_start_txn;
8523                         pmu->commit_txn = perf_pmu_commit_txn;
8524                         pmu->cancel_txn = perf_pmu_cancel_txn;
8525                 } else {
8526                         pmu->start_txn  = perf_pmu_nop_txn;
8527                         pmu->commit_txn = perf_pmu_nop_int;
8528                         pmu->cancel_txn = perf_pmu_nop_void;
8529                 }
8530         }
8531
8532         if (!pmu->pmu_enable) {
8533                 pmu->pmu_enable  = perf_pmu_nop_void;
8534                 pmu->pmu_disable = perf_pmu_nop_void;
8535         }
8536
8537         if (!pmu->event_idx)
8538                 pmu->event_idx = perf_event_idx_default;
8539
8540         list_add_rcu(&pmu->entry, &pmus);
8541         atomic_set(&pmu->exclusive_cnt, 0);
8542         ret = 0;
8543 unlock:
8544         mutex_unlock(&pmus_lock);
8545
8546         return ret;
8547
8548 free_dev:
8549         device_del(pmu->dev);
8550         put_device(pmu->dev);
8551
8552 free_idr:
8553         if (pmu->type >= PERF_TYPE_MAX)
8554                 idr_remove(&pmu_idr, pmu->type);
8555
8556 free_pdc:
8557         free_percpu(pmu->pmu_disable_count);
8558         goto unlock;
8559 }
8560 EXPORT_SYMBOL_GPL(perf_pmu_register);
8561
8562 void perf_pmu_unregister(struct pmu *pmu)
8563 {
8564         mutex_lock(&pmus_lock);
8565         list_del_rcu(&pmu->entry);
8566         mutex_unlock(&pmus_lock);
8567
8568         /*
8569          * We dereference the pmu list under both SRCU and regular RCU, so
8570          * synchronize against both of those.
8571          */
8572         synchronize_srcu(&pmus_srcu);
8573         synchronize_rcu();
8574
8575         free_percpu(pmu->pmu_disable_count);
8576         if (pmu->type >= PERF_TYPE_MAX)
8577                 idr_remove(&pmu_idr, pmu->type);
8578         if (pmu->nr_addr_filters)
8579                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8580         device_del(pmu->dev);
8581         put_device(pmu->dev);
8582         free_pmu_context(pmu);
8583 }
8584 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8585
8586 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8587 {
8588         struct perf_event_context *ctx = NULL;
8589         int ret;
8590
8591         if (!try_module_get(pmu->module))
8592                 return -ENODEV;
8593
8594         if (event->group_leader != event) {
8595                 /*
8596                  * This ctx->mutex can nest when we're called through
8597                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8598                  */
8599                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8600                                                  SINGLE_DEPTH_NESTING);
8601                 BUG_ON(!ctx);
8602         }
8603
8604         event->pmu = pmu;
8605         ret = pmu->event_init(event);
8606
8607         if (ctx)
8608                 perf_event_ctx_unlock(event->group_leader, ctx);
8609
8610         if (ret)
8611                 module_put(pmu->module);
8612
8613         return ret;
8614 }
8615
8616 static struct pmu *perf_init_event(struct perf_event *event)
8617 {
8618         struct pmu *pmu = NULL;
8619         int idx;
8620         int ret;
8621
8622         idx = srcu_read_lock(&pmus_srcu);
8623
8624         rcu_read_lock();
8625         pmu = idr_find(&pmu_idr, event->attr.type);
8626         rcu_read_unlock();
8627         if (pmu) {
8628                 ret = perf_try_init_event(pmu, event);
8629                 if (ret)
8630                         pmu = ERR_PTR(ret);
8631                 goto unlock;
8632         }
8633
8634         list_for_each_entry_rcu(pmu, &pmus, entry) {
8635                 ret = perf_try_init_event(pmu, event);
8636                 if (!ret)
8637                         goto unlock;
8638
8639                 if (ret != -ENOENT) {
8640                         pmu = ERR_PTR(ret);
8641                         goto unlock;
8642                 }
8643         }
8644         pmu = ERR_PTR(-ENOENT);
8645 unlock:
8646         srcu_read_unlock(&pmus_srcu, idx);
8647
8648         return pmu;
8649 }
8650
8651 static void attach_sb_event(struct perf_event *event)
8652 {
8653         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8654
8655         raw_spin_lock(&pel->lock);
8656         list_add_rcu(&event->sb_list, &pel->list);
8657         raw_spin_unlock(&pel->lock);
8658 }
8659
8660 /*
8661  * We keep a list of all !task (and therefore per-cpu) events
8662  * that need to receive side-band records.
8663  *
8664  * This avoids having to scan all the various PMU per-cpu contexts
8665  * looking for them.
8666  */
8667 static void account_pmu_sb_event(struct perf_event *event)
8668 {
8669         struct perf_event_attr *attr = &event->attr;
8670
8671         if (event->parent)
8672                 return;
8673
8674         if (event->attach_state & PERF_ATTACH_TASK)
8675                 return;
8676
8677         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
8678             attr->comm || attr->comm_exec ||
8679             attr->task ||
8680             attr->context_switch)
8681                 attach_sb_event(event);
8682 }
8683
8684 static void account_event_cpu(struct perf_event *event, int cpu)
8685 {
8686         if (event->parent)
8687                 return;
8688
8689         if (is_cgroup_event(event))
8690                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8691 }
8692
8693 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8694 static void account_freq_event_nohz(void)
8695 {
8696 #ifdef CONFIG_NO_HZ_FULL
8697         /* Lock so we don't race with concurrent unaccount */
8698         spin_lock(&nr_freq_lock);
8699         if (atomic_inc_return(&nr_freq_events) == 1)
8700                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8701         spin_unlock(&nr_freq_lock);
8702 #endif
8703 }
8704
8705 static void account_freq_event(void)
8706 {
8707         if (tick_nohz_full_enabled())
8708                 account_freq_event_nohz();
8709         else
8710                 atomic_inc(&nr_freq_events);
8711 }
8712
8713
8714 static void account_event(struct perf_event *event)
8715 {
8716         bool inc = false;
8717
8718         if (event->parent)
8719                 return;
8720
8721         if (event->attach_state & PERF_ATTACH_TASK)
8722                 inc = true;
8723         if (event->attr.mmap || event->attr.mmap_data)
8724                 atomic_inc(&nr_mmap_events);
8725         if (event->attr.comm)
8726                 atomic_inc(&nr_comm_events);
8727         if (event->attr.task)
8728                 atomic_inc(&nr_task_events);
8729         if (event->attr.freq)
8730                 account_freq_event();
8731         if (event->attr.context_switch) {
8732                 atomic_inc(&nr_switch_events);
8733                 inc = true;
8734         }
8735         if (has_branch_stack(event))
8736                 inc = true;
8737         if (is_cgroup_event(event))
8738                 inc = true;
8739
8740         if (inc) {
8741                 if (atomic_inc_not_zero(&perf_sched_count))
8742                         goto enabled;
8743
8744                 mutex_lock(&perf_sched_mutex);
8745                 if (!atomic_read(&perf_sched_count)) {
8746                         static_branch_enable(&perf_sched_events);
8747                         /*
8748                          * Guarantee that all CPUs observe they key change and
8749                          * call the perf scheduling hooks before proceeding to
8750                          * install events that need them.
8751                          */
8752                         synchronize_sched();
8753                 }
8754                 /*
8755                  * Now that we have waited for the sync_sched(), allow further
8756                  * increments to by-pass the mutex.
8757                  */
8758                 atomic_inc(&perf_sched_count);
8759                 mutex_unlock(&perf_sched_mutex);
8760         }
8761 enabled:
8762
8763         account_event_cpu(event, event->cpu);
8764
8765         account_pmu_sb_event(event);
8766 }
8767
8768 /*
8769  * Allocate and initialize a event structure
8770  */
8771 static struct perf_event *
8772 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8773                  struct task_struct *task,
8774                  struct perf_event *group_leader,
8775                  struct perf_event *parent_event,
8776                  perf_overflow_handler_t overflow_handler,
8777                  void *context, int cgroup_fd)
8778 {
8779         struct pmu *pmu;
8780         struct perf_event *event;
8781         struct hw_perf_event *hwc;
8782         long err = -EINVAL;
8783
8784         if ((unsigned)cpu >= nr_cpu_ids) {
8785                 if (!task || cpu != -1)
8786                         return ERR_PTR(-EINVAL);
8787         }
8788
8789         event = kzalloc(sizeof(*event), GFP_KERNEL);
8790         if (!event)
8791                 return ERR_PTR(-ENOMEM);
8792
8793         /*
8794          * Single events are their own group leaders, with an
8795          * empty sibling list:
8796          */
8797         if (!group_leader)
8798                 group_leader = event;
8799
8800         mutex_init(&event->child_mutex);
8801         INIT_LIST_HEAD(&event->child_list);
8802
8803         INIT_LIST_HEAD(&event->group_entry);
8804         INIT_LIST_HEAD(&event->event_entry);
8805         INIT_LIST_HEAD(&event->sibling_list);
8806         INIT_LIST_HEAD(&event->rb_entry);
8807         INIT_LIST_HEAD(&event->active_entry);
8808         INIT_LIST_HEAD(&event->addr_filters.list);
8809         INIT_HLIST_NODE(&event->hlist_entry);
8810
8811
8812         init_waitqueue_head(&event->waitq);
8813         init_irq_work(&event->pending, perf_pending_event);
8814
8815         mutex_init(&event->mmap_mutex);
8816         raw_spin_lock_init(&event->addr_filters.lock);
8817
8818         atomic_long_set(&event->refcount, 1);
8819         event->cpu              = cpu;
8820         event->attr             = *attr;
8821         event->group_leader     = group_leader;
8822         event->pmu              = NULL;
8823         event->oncpu            = -1;
8824
8825         event->parent           = parent_event;
8826
8827         event->ns               = get_pid_ns(task_active_pid_ns(current));
8828         event->id               = atomic64_inc_return(&perf_event_id);
8829
8830         event->state            = PERF_EVENT_STATE_INACTIVE;
8831
8832         if (task) {
8833                 event->attach_state = PERF_ATTACH_TASK;
8834                 /*
8835                  * XXX pmu::event_init needs to know what task to account to
8836                  * and we cannot use the ctx information because we need the
8837                  * pmu before we get a ctx.
8838                  */
8839                 event->hw.target = task;
8840         }
8841
8842         event->clock = &local_clock;
8843         if (parent_event)
8844                 event->clock = parent_event->clock;
8845
8846         if (!overflow_handler && parent_event) {
8847                 overflow_handler = parent_event->overflow_handler;
8848                 context = parent_event->overflow_handler_context;
8849         }
8850
8851         if (overflow_handler) {
8852                 event->overflow_handler = overflow_handler;
8853                 event->overflow_handler_context = context;
8854         } else if (is_write_backward(event)){
8855                 event->overflow_handler = perf_event_output_backward;
8856                 event->overflow_handler_context = NULL;
8857         } else {
8858                 event->overflow_handler = perf_event_output_forward;
8859                 event->overflow_handler_context = NULL;
8860         }
8861
8862         perf_event__state_init(event);
8863
8864         pmu = NULL;
8865
8866         hwc = &event->hw;
8867         hwc->sample_period = attr->sample_period;
8868         if (attr->freq && attr->sample_freq)
8869                 hwc->sample_period = 1;
8870         hwc->last_period = hwc->sample_period;
8871
8872         local64_set(&hwc->period_left, hwc->sample_period);
8873
8874         /*
8875          * we currently do not support PERF_FORMAT_GROUP on inherited events
8876          */
8877         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8878                 goto err_ns;
8879
8880         if (!has_branch_stack(event))
8881                 event->attr.branch_sample_type = 0;
8882
8883         if (cgroup_fd != -1) {
8884                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8885                 if (err)
8886                         goto err_ns;
8887         }
8888
8889         pmu = perf_init_event(event);
8890         if (!pmu)
8891                 goto err_ns;
8892         else if (IS_ERR(pmu)) {
8893                 err = PTR_ERR(pmu);
8894                 goto err_ns;
8895         }
8896
8897         err = exclusive_event_init(event);
8898         if (err)
8899                 goto err_pmu;
8900
8901         if (has_addr_filter(event)) {
8902                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8903                                                    sizeof(unsigned long),
8904                                                    GFP_KERNEL);
8905                 if (!event->addr_filters_offs)
8906                         goto err_per_task;
8907
8908                 /* force hw sync on the address filters */
8909                 event->addr_filters_gen = 1;
8910         }
8911
8912         if (!event->parent) {
8913                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8914                         err = get_callchain_buffers(attr->sample_max_stack);
8915                         if (err)
8916                                 goto err_addr_filters;
8917                 }
8918         }
8919
8920         /* symmetric to unaccount_event() in _free_event() */
8921         account_event(event);
8922
8923         return event;
8924
8925 err_addr_filters:
8926         kfree(event->addr_filters_offs);
8927
8928 err_per_task:
8929         exclusive_event_destroy(event);
8930
8931 err_pmu:
8932         if (event->destroy)
8933                 event->destroy(event);
8934         module_put(pmu->module);
8935 err_ns:
8936         if (is_cgroup_event(event))
8937                 perf_detach_cgroup(event);
8938         if (event->ns)
8939                 put_pid_ns(event->ns);
8940         kfree(event);
8941
8942         return ERR_PTR(err);
8943 }
8944
8945 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8946                           struct perf_event_attr *attr)
8947 {
8948         u32 size;
8949         int ret;
8950
8951         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8952                 return -EFAULT;
8953
8954         /*
8955          * zero the full structure, so that a short copy will be nice.
8956          */
8957         memset(attr, 0, sizeof(*attr));
8958
8959         ret = get_user(size, &uattr->size);
8960         if (ret)
8961                 return ret;
8962
8963         if (size > PAGE_SIZE)   /* silly large */
8964                 goto err_size;
8965
8966         if (!size)              /* abi compat */
8967                 size = PERF_ATTR_SIZE_VER0;
8968
8969         if (size < PERF_ATTR_SIZE_VER0)
8970                 goto err_size;
8971
8972         /*
8973          * If we're handed a bigger struct than we know of,
8974          * ensure all the unknown bits are 0 - i.e. new
8975          * user-space does not rely on any kernel feature
8976          * extensions we dont know about yet.
8977          */
8978         if (size > sizeof(*attr)) {
8979                 unsigned char __user *addr;
8980                 unsigned char __user *end;
8981                 unsigned char val;
8982
8983                 addr = (void __user *)uattr + sizeof(*attr);
8984                 end  = (void __user *)uattr + size;
8985
8986                 for (; addr < end; addr++) {
8987                         ret = get_user(val, addr);
8988                         if (ret)
8989                                 return ret;
8990                         if (val)
8991                                 goto err_size;
8992                 }
8993                 size = sizeof(*attr);
8994         }
8995
8996         ret = copy_from_user(attr, uattr, size);
8997         if (ret)
8998                 return -EFAULT;
8999
9000         if (attr->__reserved_1)
9001                 return -EINVAL;
9002
9003         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9004                 return -EINVAL;
9005
9006         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9007                 return -EINVAL;
9008
9009         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9010                 u64 mask = attr->branch_sample_type;
9011
9012                 /* only using defined bits */
9013                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9014                         return -EINVAL;
9015
9016                 /* at least one branch bit must be set */
9017                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9018                         return -EINVAL;
9019
9020                 /* propagate priv level, when not set for branch */
9021                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9022
9023                         /* exclude_kernel checked on syscall entry */
9024                         if (!attr->exclude_kernel)
9025                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9026
9027                         if (!attr->exclude_user)
9028                                 mask |= PERF_SAMPLE_BRANCH_USER;
9029
9030                         if (!attr->exclude_hv)
9031                                 mask |= PERF_SAMPLE_BRANCH_HV;
9032                         /*
9033                          * adjust user setting (for HW filter setup)
9034                          */
9035                         attr->branch_sample_type = mask;
9036                 }
9037                 /* privileged levels capture (kernel, hv): check permissions */
9038                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9039                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9040                         return -EACCES;
9041         }
9042
9043         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9044                 ret = perf_reg_validate(attr->sample_regs_user);
9045                 if (ret)
9046                         return ret;
9047         }
9048
9049         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9050                 if (!arch_perf_have_user_stack_dump())
9051                         return -ENOSYS;
9052
9053                 /*
9054                  * We have __u32 type for the size, but so far
9055                  * we can only use __u16 as maximum due to the
9056                  * __u16 sample size limit.
9057                  */
9058                 if (attr->sample_stack_user >= USHRT_MAX)
9059                         ret = -EINVAL;
9060                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9061                         ret = -EINVAL;
9062         }
9063
9064         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9065                 ret = perf_reg_validate(attr->sample_regs_intr);
9066 out:
9067         return ret;
9068
9069 err_size:
9070         put_user(sizeof(*attr), &uattr->size);
9071         ret = -E2BIG;
9072         goto out;
9073 }
9074
9075 static int
9076 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9077 {
9078         struct ring_buffer *rb = NULL;
9079         int ret = -EINVAL;
9080
9081         if (!output_event)
9082                 goto set;
9083
9084         /* don't allow circular references */
9085         if (event == output_event)
9086                 goto out;
9087
9088         /*
9089          * Don't allow cross-cpu buffers
9090          */
9091         if (output_event->cpu != event->cpu)
9092                 goto out;
9093
9094         /*
9095          * If its not a per-cpu rb, it must be the same task.
9096          */
9097         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9098                 goto out;
9099
9100         /*
9101          * Mixing clocks in the same buffer is trouble you don't need.
9102          */
9103         if (output_event->clock != event->clock)
9104                 goto out;
9105
9106         /*
9107          * Either writing ring buffer from beginning or from end.
9108          * Mixing is not allowed.
9109          */
9110         if (is_write_backward(output_event) != is_write_backward(event))
9111                 goto out;
9112
9113         /*
9114          * If both events generate aux data, they must be on the same PMU
9115          */
9116         if (has_aux(event) && has_aux(output_event) &&
9117             event->pmu != output_event->pmu)
9118                 goto out;
9119
9120 set:
9121         mutex_lock(&event->mmap_mutex);
9122         /* Can't redirect output if we've got an active mmap() */
9123         if (atomic_read(&event->mmap_count))
9124                 goto unlock;
9125
9126         if (output_event) {
9127                 /* get the rb we want to redirect to */
9128                 rb = ring_buffer_get(output_event);
9129                 if (!rb)
9130                         goto unlock;
9131         }
9132
9133         ring_buffer_attach(event, rb);
9134
9135         ret = 0;
9136 unlock:
9137         mutex_unlock(&event->mmap_mutex);
9138
9139 out:
9140         return ret;
9141 }
9142
9143 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9144 {
9145         if (b < a)
9146                 swap(a, b);
9147
9148         mutex_lock(a);
9149         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9150 }
9151
9152 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9153 {
9154         bool nmi_safe = false;
9155
9156         switch (clk_id) {
9157         case CLOCK_MONOTONIC:
9158                 event->clock = &ktime_get_mono_fast_ns;
9159                 nmi_safe = true;
9160                 break;
9161
9162         case CLOCK_MONOTONIC_RAW:
9163                 event->clock = &ktime_get_raw_fast_ns;
9164                 nmi_safe = true;
9165                 break;
9166
9167         case CLOCK_REALTIME:
9168                 event->clock = &ktime_get_real_ns;
9169                 break;
9170
9171         case CLOCK_BOOTTIME:
9172                 event->clock = &ktime_get_boot_ns;
9173                 break;
9174
9175         case CLOCK_TAI:
9176                 event->clock = &ktime_get_tai_ns;
9177                 break;
9178
9179         default:
9180                 return -EINVAL;
9181         }
9182
9183         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9184                 return -EINVAL;
9185
9186         return 0;
9187 }
9188
9189 /**
9190  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9191  *
9192  * @attr_uptr:  event_id type attributes for monitoring/sampling
9193  * @pid:                target pid
9194  * @cpu:                target cpu
9195  * @group_fd:           group leader event fd
9196  */
9197 SYSCALL_DEFINE5(perf_event_open,
9198                 struct perf_event_attr __user *, attr_uptr,
9199                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9200 {
9201         struct perf_event *group_leader = NULL, *output_event = NULL;
9202         struct perf_event *event, *sibling;
9203         struct perf_event_attr attr;
9204         struct perf_event_context *ctx, *uninitialized_var(gctx);
9205         struct file *event_file = NULL;
9206         struct fd group = {NULL, 0};
9207         struct task_struct *task = NULL;
9208         struct pmu *pmu;
9209         int event_fd;
9210         int move_group = 0;
9211         int err;
9212         int f_flags = O_RDWR;
9213         int cgroup_fd = -1;
9214
9215         /* for future expandability... */
9216         if (flags & ~PERF_FLAG_ALL)
9217                 return -EINVAL;
9218
9219         err = perf_copy_attr(attr_uptr, &attr);
9220         if (err)
9221                 return err;
9222
9223         if (!attr.exclude_kernel) {
9224                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9225                         return -EACCES;
9226         }
9227
9228         if (attr.freq) {
9229                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9230                         return -EINVAL;
9231         } else {
9232                 if (attr.sample_period & (1ULL << 63))
9233                         return -EINVAL;
9234         }
9235
9236         if (!attr.sample_max_stack)
9237                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9238
9239         /*
9240          * In cgroup mode, the pid argument is used to pass the fd
9241          * opened to the cgroup directory in cgroupfs. The cpu argument
9242          * designates the cpu on which to monitor threads from that
9243          * cgroup.
9244          */
9245         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9246                 return -EINVAL;
9247
9248         if (flags & PERF_FLAG_FD_CLOEXEC)
9249                 f_flags |= O_CLOEXEC;
9250
9251         event_fd = get_unused_fd_flags(f_flags);
9252         if (event_fd < 0)
9253                 return event_fd;
9254
9255         if (group_fd != -1) {
9256                 err = perf_fget_light(group_fd, &group);
9257                 if (err)
9258                         goto err_fd;
9259                 group_leader = group.file->private_data;
9260                 if (flags & PERF_FLAG_FD_OUTPUT)
9261                         output_event = group_leader;
9262                 if (flags & PERF_FLAG_FD_NO_GROUP)
9263                         group_leader = NULL;
9264         }
9265
9266         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9267                 task = find_lively_task_by_vpid(pid);
9268                 if (IS_ERR(task)) {
9269                         err = PTR_ERR(task);
9270                         goto err_group_fd;
9271                 }
9272         }
9273
9274         if (task && group_leader &&
9275             group_leader->attr.inherit != attr.inherit) {
9276                 err = -EINVAL;
9277                 goto err_task;
9278         }
9279
9280         get_online_cpus();
9281
9282         if (task) {
9283                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9284                 if (err)
9285                         goto err_cpus;
9286
9287                 /*
9288                  * Reuse ptrace permission checks for now.
9289                  *
9290                  * We must hold cred_guard_mutex across this and any potential
9291                  * perf_install_in_context() call for this new event to
9292                  * serialize against exec() altering our credentials (and the
9293                  * perf_event_exit_task() that could imply).
9294                  */
9295                 err = -EACCES;
9296                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9297                         goto err_cred;
9298         }
9299
9300         if (flags & PERF_FLAG_PID_CGROUP)
9301                 cgroup_fd = pid;
9302
9303         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9304                                  NULL, NULL, cgroup_fd);
9305         if (IS_ERR(event)) {
9306                 err = PTR_ERR(event);
9307                 goto err_cred;
9308         }
9309
9310         if (is_sampling_event(event)) {
9311                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9312                         err = -EOPNOTSUPP;
9313                         goto err_alloc;
9314                 }
9315         }
9316
9317         /*
9318          * Special case software events and allow them to be part of
9319          * any hardware group.
9320          */
9321         pmu = event->pmu;
9322
9323         if (attr.use_clockid) {
9324                 err = perf_event_set_clock(event, attr.clockid);
9325                 if (err)
9326                         goto err_alloc;
9327         }
9328
9329         if (group_leader &&
9330             (is_software_event(event) != is_software_event(group_leader))) {
9331                 if (is_software_event(event)) {
9332                         /*
9333                          * If event and group_leader are not both a software
9334                          * event, and event is, then group leader is not.
9335                          *
9336                          * Allow the addition of software events to !software
9337                          * groups, this is safe because software events never
9338                          * fail to schedule.
9339                          */
9340                         pmu = group_leader->pmu;
9341                 } else if (is_software_event(group_leader) &&
9342                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9343                         /*
9344                          * In case the group is a pure software group, and we
9345                          * try to add a hardware event, move the whole group to
9346                          * the hardware context.
9347                          */
9348                         move_group = 1;
9349                 }
9350         }
9351
9352         /*
9353          * Get the target context (task or percpu):
9354          */
9355         ctx = find_get_context(pmu, task, event);
9356         if (IS_ERR(ctx)) {
9357                 err = PTR_ERR(ctx);
9358                 goto err_alloc;
9359         }
9360
9361         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9362                 err = -EBUSY;
9363                 goto err_context;
9364         }
9365
9366         /*
9367          * Look up the group leader (we will attach this event to it):
9368          */
9369         if (group_leader) {
9370                 err = -EINVAL;
9371
9372                 /*
9373                  * Do not allow a recursive hierarchy (this new sibling
9374                  * becoming part of another group-sibling):
9375                  */
9376                 if (group_leader->group_leader != group_leader)
9377                         goto err_context;
9378
9379                 /* All events in a group should have the same clock */
9380                 if (group_leader->clock != event->clock)
9381                         goto err_context;
9382
9383                 /*
9384                  * Do not allow to attach to a group in a different
9385                  * task or CPU context:
9386                  */
9387                 if (move_group) {
9388                         /*
9389                          * Make sure we're both on the same task, or both
9390                          * per-cpu events.
9391                          */
9392                         if (group_leader->ctx->task != ctx->task)
9393                                 goto err_context;
9394
9395                         /*
9396                          * Make sure we're both events for the same CPU;
9397                          * grouping events for different CPUs is broken; since
9398                          * you can never concurrently schedule them anyhow.
9399                          */
9400                         if (group_leader->cpu != event->cpu)
9401                                 goto err_context;
9402                 } else {
9403                         if (group_leader->ctx != ctx)
9404                                 goto err_context;
9405                 }
9406
9407                 /*
9408                  * Only a group leader can be exclusive or pinned
9409                  */
9410                 if (attr.exclusive || attr.pinned)
9411                         goto err_context;
9412         }
9413
9414         if (output_event) {
9415                 err = perf_event_set_output(event, output_event);
9416                 if (err)
9417                         goto err_context;
9418         }
9419
9420         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9421                                         f_flags);
9422         if (IS_ERR(event_file)) {
9423                 err = PTR_ERR(event_file);
9424                 event_file = NULL;
9425                 goto err_context;
9426         }
9427
9428         if (move_group) {
9429                 gctx = group_leader->ctx;
9430                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9431                 if (gctx->task == TASK_TOMBSTONE) {
9432                         err = -ESRCH;
9433                         goto err_locked;
9434                 }
9435         } else {
9436                 mutex_lock(&ctx->mutex);
9437         }
9438
9439         if (ctx->task == TASK_TOMBSTONE) {
9440                 err = -ESRCH;
9441                 goto err_locked;
9442         }
9443
9444         if (!perf_event_validate_size(event)) {
9445                 err = -E2BIG;
9446                 goto err_locked;
9447         }
9448
9449         /*
9450          * Must be under the same ctx::mutex as perf_install_in_context(),
9451          * because we need to serialize with concurrent event creation.
9452          */
9453         if (!exclusive_event_installable(event, ctx)) {
9454                 /* exclusive and group stuff are assumed mutually exclusive */
9455                 WARN_ON_ONCE(move_group);
9456
9457                 err = -EBUSY;
9458                 goto err_locked;
9459         }
9460
9461         WARN_ON_ONCE(ctx->parent_ctx);
9462
9463         /*
9464          * This is the point on no return; we cannot fail hereafter. This is
9465          * where we start modifying current state.
9466          */
9467
9468         if (move_group) {
9469                 /*
9470                  * See perf_event_ctx_lock() for comments on the details
9471                  * of swizzling perf_event::ctx.
9472                  */
9473                 perf_remove_from_context(group_leader, 0);
9474
9475                 list_for_each_entry(sibling, &group_leader->sibling_list,
9476                                     group_entry) {
9477                         perf_remove_from_context(sibling, 0);
9478                         put_ctx(gctx);
9479                 }
9480
9481                 /*
9482                  * Wait for everybody to stop referencing the events through
9483                  * the old lists, before installing it on new lists.
9484                  */
9485                 synchronize_rcu();
9486
9487                 /*
9488                  * Install the group siblings before the group leader.
9489                  *
9490                  * Because a group leader will try and install the entire group
9491                  * (through the sibling list, which is still in-tact), we can
9492                  * end up with siblings installed in the wrong context.
9493                  *
9494                  * By installing siblings first we NO-OP because they're not
9495                  * reachable through the group lists.
9496                  */
9497                 list_for_each_entry(sibling, &group_leader->sibling_list,
9498                                     group_entry) {
9499                         perf_event__state_init(sibling);
9500                         perf_install_in_context(ctx, sibling, sibling->cpu);
9501                         get_ctx(ctx);
9502                 }
9503
9504                 /*
9505                  * Removing from the context ends up with disabled
9506                  * event. What we want here is event in the initial
9507                  * startup state, ready to be add into new context.
9508                  */
9509                 perf_event__state_init(group_leader);
9510                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9511                 get_ctx(ctx);
9512
9513                 /*
9514                  * Now that all events are installed in @ctx, nothing
9515                  * references @gctx anymore, so drop the last reference we have
9516                  * on it.
9517                  */
9518                 put_ctx(gctx);
9519         }
9520
9521         /*
9522          * Precalculate sample_data sizes; do while holding ctx::mutex such
9523          * that we're serialized against further additions and before
9524          * perf_install_in_context() which is the point the event is active and
9525          * can use these values.
9526          */
9527         perf_event__header_size(event);
9528         perf_event__id_header_size(event);
9529
9530         event->owner = current;
9531
9532         perf_install_in_context(ctx, event, event->cpu);
9533         perf_unpin_context(ctx);
9534
9535         if (move_group)
9536                 mutex_unlock(&gctx->mutex);
9537         mutex_unlock(&ctx->mutex);
9538
9539         if (task) {
9540                 mutex_unlock(&task->signal->cred_guard_mutex);
9541                 put_task_struct(task);
9542         }
9543
9544         put_online_cpus();
9545
9546         mutex_lock(&current->perf_event_mutex);
9547         list_add_tail(&event->owner_entry, &current->perf_event_list);
9548         mutex_unlock(&current->perf_event_mutex);
9549
9550         /*
9551          * Drop the reference on the group_event after placing the
9552          * new event on the sibling_list. This ensures destruction
9553          * of the group leader will find the pointer to itself in
9554          * perf_group_detach().
9555          */
9556         fdput(group);
9557         fd_install(event_fd, event_file);
9558         return event_fd;
9559
9560 err_locked:
9561         if (move_group)
9562                 mutex_unlock(&gctx->mutex);
9563         mutex_unlock(&ctx->mutex);
9564 /* err_file: */
9565         fput(event_file);
9566 err_context:
9567         perf_unpin_context(ctx);
9568         put_ctx(ctx);
9569 err_alloc:
9570         /*
9571          * If event_file is set, the fput() above will have called ->release()
9572          * and that will take care of freeing the event.
9573          */
9574         if (!event_file)
9575                 free_event(event);
9576 err_cred:
9577         if (task)
9578                 mutex_unlock(&task->signal->cred_guard_mutex);
9579 err_cpus:
9580         put_online_cpus();
9581 err_task:
9582         if (task)
9583                 put_task_struct(task);
9584 err_group_fd:
9585         fdput(group);
9586 err_fd:
9587         put_unused_fd(event_fd);
9588         return err;
9589 }
9590
9591 /**
9592  * perf_event_create_kernel_counter
9593  *
9594  * @attr: attributes of the counter to create
9595  * @cpu: cpu in which the counter is bound
9596  * @task: task to profile (NULL for percpu)
9597  */
9598 struct perf_event *
9599 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9600                                  struct task_struct *task,
9601                                  perf_overflow_handler_t overflow_handler,
9602                                  void *context)
9603 {
9604         struct perf_event_context *ctx;
9605         struct perf_event *event;
9606         int err;
9607
9608         /*
9609          * Get the target context (task or percpu):
9610          */
9611
9612         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9613                                  overflow_handler, context, -1);
9614         if (IS_ERR(event)) {
9615                 err = PTR_ERR(event);
9616                 goto err;
9617         }
9618
9619         /* Mark owner so we could distinguish it from user events. */
9620         event->owner = TASK_TOMBSTONE;
9621
9622         ctx = find_get_context(event->pmu, task, event);
9623         if (IS_ERR(ctx)) {
9624                 err = PTR_ERR(ctx);
9625                 goto err_free;
9626         }
9627
9628         WARN_ON_ONCE(ctx->parent_ctx);
9629         mutex_lock(&ctx->mutex);
9630         if (ctx->task == TASK_TOMBSTONE) {
9631                 err = -ESRCH;
9632                 goto err_unlock;
9633         }
9634
9635         if (!exclusive_event_installable(event, ctx)) {
9636                 err = -EBUSY;
9637                 goto err_unlock;
9638         }
9639
9640         perf_install_in_context(ctx, event, cpu);
9641         perf_unpin_context(ctx);
9642         mutex_unlock(&ctx->mutex);
9643
9644         return event;
9645
9646 err_unlock:
9647         mutex_unlock(&ctx->mutex);
9648         perf_unpin_context(ctx);
9649         put_ctx(ctx);
9650 err_free:
9651         free_event(event);
9652 err:
9653         return ERR_PTR(err);
9654 }
9655 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9656
9657 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9658 {
9659         struct perf_event_context *src_ctx;
9660         struct perf_event_context *dst_ctx;
9661         struct perf_event *event, *tmp;
9662         LIST_HEAD(events);
9663
9664         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9665         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9666
9667         /*
9668          * See perf_event_ctx_lock() for comments on the details
9669          * of swizzling perf_event::ctx.
9670          */
9671         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9672         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9673                                  event_entry) {
9674                 perf_remove_from_context(event, 0);
9675                 unaccount_event_cpu(event, src_cpu);
9676                 put_ctx(src_ctx);
9677                 list_add(&event->migrate_entry, &events);
9678         }
9679
9680         /*
9681          * Wait for the events to quiesce before re-instating them.
9682          */
9683         synchronize_rcu();
9684
9685         /*
9686          * Re-instate events in 2 passes.
9687          *
9688          * Skip over group leaders and only install siblings on this first
9689          * pass, siblings will not get enabled without a leader, however a
9690          * leader will enable its siblings, even if those are still on the old
9691          * context.
9692          */
9693         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9694                 if (event->group_leader == event)
9695                         continue;
9696
9697                 list_del(&event->migrate_entry);
9698                 if (event->state >= PERF_EVENT_STATE_OFF)
9699                         event->state = PERF_EVENT_STATE_INACTIVE;
9700                 account_event_cpu(event, dst_cpu);
9701                 perf_install_in_context(dst_ctx, event, dst_cpu);
9702                 get_ctx(dst_ctx);
9703         }
9704
9705         /*
9706          * Once all the siblings are setup properly, install the group leaders
9707          * to make it go.
9708          */
9709         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9710                 list_del(&event->migrate_entry);
9711                 if (event->state >= PERF_EVENT_STATE_OFF)
9712                         event->state = PERF_EVENT_STATE_INACTIVE;
9713                 account_event_cpu(event, dst_cpu);
9714                 perf_install_in_context(dst_ctx, event, dst_cpu);
9715                 get_ctx(dst_ctx);
9716         }
9717         mutex_unlock(&dst_ctx->mutex);
9718         mutex_unlock(&src_ctx->mutex);
9719 }
9720 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9721
9722 static void sync_child_event(struct perf_event *child_event,
9723                                struct task_struct *child)
9724 {
9725         struct perf_event *parent_event = child_event->parent;
9726         u64 child_val;
9727
9728         if (child_event->attr.inherit_stat)
9729                 perf_event_read_event(child_event, child);
9730
9731         child_val = perf_event_count(child_event);
9732
9733         /*
9734          * Add back the child's count to the parent's count:
9735          */
9736         atomic64_add(child_val, &parent_event->child_count);
9737         atomic64_add(child_event->total_time_enabled,
9738                      &parent_event->child_total_time_enabled);
9739         atomic64_add(child_event->total_time_running,
9740                      &parent_event->child_total_time_running);
9741 }
9742
9743 static void
9744 perf_event_exit_event(struct perf_event *child_event,
9745                       struct perf_event_context *child_ctx,
9746                       struct task_struct *child)
9747 {
9748         struct perf_event *parent_event = child_event->parent;
9749
9750         /*
9751          * Do not destroy the 'original' grouping; because of the context
9752          * switch optimization the original events could've ended up in a
9753          * random child task.
9754          *
9755          * If we were to destroy the original group, all group related
9756          * operations would cease to function properly after this random
9757          * child dies.
9758          *
9759          * Do destroy all inherited groups, we don't care about those
9760          * and being thorough is better.
9761          */
9762         raw_spin_lock_irq(&child_ctx->lock);
9763         WARN_ON_ONCE(child_ctx->is_active);
9764
9765         if (parent_event)
9766                 perf_group_detach(child_event);
9767         list_del_event(child_event, child_ctx);
9768         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9769         raw_spin_unlock_irq(&child_ctx->lock);
9770
9771         /*
9772          * Parent events are governed by their filedesc, retain them.
9773          */
9774         if (!parent_event) {
9775                 perf_event_wakeup(child_event);
9776                 return;
9777         }
9778         /*
9779          * Child events can be cleaned up.
9780          */
9781
9782         sync_child_event(child_event, child);
9783
9784         /*
9785          * Remove this event from the parent's list
9786          */
9787         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9788         mutex_lock(&parent_event->child_mutex);
9789         list_del_init(&child_event->child_list);
9790         mutex_unlock(&parent_event->child_mutex);
9791
9792         /*
9793          * Kick perf_poll() for is_event_hup().
9794          */
9795         perf_event_wakeup(parent_event);
9796         free_event(child_event);
9797         put_event(parent_event);
9798 }
9799
9800 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9801 {
9802         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9803         struct perf_event *child_event, *next;
9804
9805         WARN_ON_ONCE(child != current);
9806
9807         child_ctx = perf_pin_task_context(child, ctxn);
9808         if (!child_ctx)
9809                 return;
9810
9811         /*
9812          * In order to reduce the amount of tricky in ctx tear-down, we hold
9813          * ctx::mutex over the entire thing. This serializes against almost
9814          * everything that wants to access the ctx.
9815          *
9816          * The exception is sys_perf_event_open() /
9817          * perf_event_create_kernel_count() which does find_get_context()
9818          * without ctx::mutex (it cannot because of the move_group double mutex
9819          * lock thing). See the comments in perf_install_in_context().
9820          */
9821         mutex_lock(&child_ctx->mutex);
9822
9823         /*
9824          * In a single ctx::lock section, de-schedule the events and detach the
9825          * context from the task such that we cannot ever get it scheduled back
9826          * in.
9827          */
9828         raw_spin_lock_irq(&child_ctx->lock);
9829         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9830
9831         /*
9832          * Now that the context is inactive, destroy the task <-> ctx relation
9833          * and mark the context dead.
9834          */
9835         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9836         put_ctx(child_ctx); /* cannot be last */
9837         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9838         put_task_struct(current); /* cannot be last */
9839
9840         clone_ctx = unclone_ctx(child_ctx);
9841         raw_spin_unlock_irq(&child_ctx->lock);
9842
9843         if (clone_ctx)
9844                 put_ctx(clone_ctx);
9845
9846         /*
9847          * Report the task dead after unscheduling the events so that we
9848          * won't get any samples after PERF_RECORD_EXIT. We can however still
9849          * get a few PERF_RECORD_READ events.
9850          */
9851         perf_event_task(child, child_ctx, 0);
9852
9853         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9854                 perf_event_exit_event(child_event, child_ctx, child);
9855
9856         mutex_unlock(&child_ctx->mutex);
9857
9858         put_ctx(child_ctx);
9859 }
9860
9861 /*
9862  * When a child task exits, feed back event values to parent events.
9863  *
9864  * Can be called with cred_guard_mutex held when called from
9865  * install_exec_creds().
9866  */
9867 void perf_event_exit_task(struct task_struct *child)
9868 {
9869         struct perf_event *event, *tmp;
9870         int ctxn;
9871
9872         mutex_lock(&child->perf_event_mutex);
9873         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9874                                  owner_entry) {
9875                 list_del_init(&event->owner_entry);
9876
9877                 /*
9878                  * Ensure the list deletion is visible before we clear
9879                  * the owner, closes a race against perf_release() where
9880                  * we need to serialize on the owner->perf_event_mutex.
9881                  */
9882                 smp_store_release(&event->owner, NULL);
9883         }
9884         mutex_unlock(&child->perf_event_mutex);
9885
9886         for_each_task_context_nr(ctxn)
9887                 perf_event_exit_task_context(child, ctxn);
9888
9889         /*
9890          * The perf_event_exit_task_context calls perf_event_task
9891          * with child's task_ctx, which generates EXIT events for
9892          * child contexts and sets child->perf_event_ctxp[] to NULL.
9893          * At this point we need to send EXIT events to cpu contexts.
9894          */
9895         perf_event_task(child, NULL, 0);
9896 }
9897
9898 static void perf_free_event(struct perf_event *event,
9899                             struct perf_event_context *ctx)
9900 {
9901         struct perf_event *parent = event->parent;
9902
9903         if (WARN_ON_ONCE(!parent))
9904                 return;
9905
9906         mutex_lock(&parent->child_mutex);
9907         list_del_init(&event->child_list);
9908         mutex_unlock(&parent->child_mutex);
9909
9910         put_event(parent);
9911
9912         raw_spin_lock_irq(&ctx->lock);
9913         perf_group_detach(event);
9914         list_del_event(event, ctx);
9915         raw_spin_unlock_irq(&ctx->lock);
9916         free_event(event);
9917 }
9918
9919 /*
9920  * Free an unexposed, unused context as created by inheritance by
9921  * perf_event_init_task below, used by fork() in case of fail.
9922  *
9923  * Not all locks are strictly required, but take them anyway to be nice and
9924  * help out with the lockdep assertions.
9925  */
9926 void perf_event_free_task(struct task_struct *task)
9927 {
9928         struct perf_event_context *ctx;
9929         struct perf_event *event, *tmp;
9930         int ctxn;
9931
9932         for_each_task_context_nr(ctxn) {
9933                 ctx = task->perf_event_ctxp[ctxn];
9934                 if (!ctx)
9935                         continue;
9936
9937                 mutex_lock(&ctx->mutex);
9938 again:
9939                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9940                                 group_entry)
9941                         perf_free_event(event, ctx);
9942
9943                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9944                                 group_entry)
9945                         perf_free_event(event, ctx);
9946
9947                 if (!list_empty(&ctx->pinned_groups) ||
9948                                 !list_empty(&ctx->flexible_groups))
9949                         goto again;
9950
9951                 mutex_unlock(&ctx->mutex);
9952
9953                 put_ctx(ctx);
9954         }
9955 }
9956
9957 void perf_event_delayed_put(struct task_struct *task)
9958 {
9959         int ctxn;
9960
9961         for_each_task_context_nr(ctxn)
9962                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9963 }
9964
9965 struct file *perf_event_get(unsigned int fd)
9966 {
9967         struct file *file;
9968
9969         file = fget_raw(fd);
9970         if (!file)
9971                 return ERR_PTR(-EBADF);
9972
9973         if (file->f_op != &perf_fops) {
9974                 fput(file);
9975                 return ERR_PTR(-EBADF);
9976         }
9977
9978         return file;
9979 }
9980
9981 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9982 {
9983         if (!event)
9984                 return ERR_PTR(-EINVAL);
9985
9986         return &event->attr;
9987 }
9988
9989 /*
9990  * inherit a event from parent task to child task:
9991  */
9992 static struct perf_event *
9993 inherit_event(struct perf_event *parent_event,
9994               struct task_struct *parent,
9995               struct perf_event_context *parent_ctx,
9996               struct task_struct *child,
9997               struct perf_event *group_leader,
9998               struct perf_event_context *child_ctx)
9999 {
10000         enum perf_event_active_state parent_state = parent_event->state;
10001         struct perf_event *child_event;
10002         unsigned long flags;
10003
10004         /*
10005          * Instead of creating recursive hierarchies of events,
10006          * we link inherited events back to the original parent,
10007          * which has a filp for sure, which we use as the reference
10008          * count:
10009          */
10010         if (parent_event->parent)
10011                 parent_event = parent_event->parent;
10012
10013         child_event = perf_event_alloc(&parent_event->attr,
10014                                            parent_event->cpu,
10015                                            child,
10016                                            group_leader, parent_event,
10017                                            NULL, NULL, -1);
10018         if (IS_ERR(child_event))
10019                 return child_event;
10020
10021         /*
10022          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10023          * must be under the same lock in order to serialize against
10024          * perf_event_release_kernel(), such that either we must observe
10025          * is_orphaned_event() or they will observe us on the child_list.
10026          */
10027         mutex_lock(&parent_event->child_mutex);
10028         if (is_orphaned_event(parent_event) ||
10029             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10030                 mutex_unlock(&parent_event->child_mutex);
10031                 free_event(child_event);
10032                 return NULL;
10033         }
10034
10035         get_ctx(child_ctx);
10036
10037         /*
10038          * Make the child state follow the state of the parent event,
10039          * not its attr.disabled bit.  We hold the parent's mutex,
10040          * so we won't race with perf_event_{en, dis}able_family.
10041          */
10042         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10043                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10044         else
10045                 child_event->state = PERF_EVENT_STATE_OFF;
10046
10047         if (parent_event->attr.freq) {
10048                 u64 sample_period = parent_event->hw.sample_period;
10049                 struct hw_perf_event *hwc = &child_event->hw;
10050
10051                 hwc->sample_period = sample_period;
10052                 hwc->last_period   = sample_period;
10053
10054                 local64_set(&hwc->period_left, sample_period);
10055         }
10056
10057         child_event->ctx = child_ctx;
10058         child_event->overflow_handler = parent_event->overflow_handler;
10059         child_event->overflow_handler_context
10060                 = parent_event->overflow_handler_context;
10061
10062         /*
10063          * Precalculate sample_data sizes
10064          */
10065         perf_event__header_size(child_event);
10066         perf_event__id_header_size(child_event);
10067
10068         /*
10069          * Link it up in the child's context:
10070          */
10071         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10072         add_event_to_ctx(child_event, child_ctx);
10073         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10074
10075         /*
10076          * Link this into the parent event's child list
10077          */
10078         list_add_tail(&child_event->child_list, &parent_event->child_list);
10079         mutex_unlock(&parent_event->child_mutex);
10080
10081         return child_event;
10082 }
10083
10084 static int inherit_group(struct perf_event *parent_event,
10085               struct task_struct *parent,
10086               struct perf_event_context *parent_ctx,
10087               struct task_struct *child,
10088               struct perf_event_context *child_ctx)
10089 {
10090         struct perf_event *leader;
10091         struct perf_event *sub;
10092         struct perf_event *child_ctr;
10093
10094         leader = inherit_event(parent_event, parent, parent_ctx,
10095                                  child, NULL, child_ctx);
10096         if (IS_ERR(leader))
10097                 return PTR_ERR(leader);
10098         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10099                 child_ctr = inherit_event(sub, parent, parent_ctx,
10100                                             child, leader, child_ctx);
10101                 if (IS_ERR(child_ctr))
10102                         return PTR_ERR(child_ctr);
10103         }
10104         return 0;
10105 }
10106
10107 static int
10108 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10109                    struct perf_event_context *parent_ctx,
10110                    struct task_struct *child, int ctxn,
10111                    int *inherited_all)
10112 {
10113         int ret;
10114         struct perf_event_context *child_ctx;
10115
10116         if (!event->attr.inherit) {
10117                 *inherited_all = 0;
10118                 return 0;
10119         }
10120
10121         child_ctx = child->perf_event_ctxp[ctxn];
10122         if (!child_ctx) {
10123                 /*
10124                  * This is executed from the parent task context, so
10125                  * inherit events that have been marked for cloning.
10126                  * First allocate and initialize a context for the
10127                  * child.
10128                  */
10129
10130                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10131                 if (!child_ctx)
10132                         return -ENOMEM;
10133
10134                 child->perf_event_ctxp[ctxn] = child_ctx;
10135         }
10136
10137         ret = inherit_group(event, parent, parent_ctx,
10138                             child, child_ctx);
10139
10140         if (ret)
10141                 *inherited_all = 0;
10142
10143         return ret;
10144 }
10145
10146 /*
10147  * Initialize the perf_event context in task_struct
10148  */
10149 static int perf_event_init_context(struct task_struct *child, int ctxn)
10150 {
10151         struct perf_event_context *child_ctx, *parent_ctx;
10152         struct perf_event_context *cloned_ctx;
10153         struct perf_event *event;
10154         struct task_struct *parent = current;
10155         int inherited_all = 1;
10156         unsigned long flags;
10157         int ret = 0;
10158
10159         if (likely(!parent->perf_event_ctxp[ctxn]))
10160                 return 0;
10161
10162         /*
10163          * If the parent's context is a clone, pin it so it won't get
10164          * swapped under us.
10165          */
10166         parent_ctx = perf_pin_task_context(parent, ctxn);
10167         if (!parent_ctx)
10168                 return 0;
10169
10170         /*
10171          * No need to check if parent_ctx != NULL here; since we saw
10172          * it non-NULL earlier, the only reason for it to become NULL
10173          * is if we exit, and since we're currently in the middle of
10174          * a fork we can't be exiting at the same time.
10175          */
10176
10177         /*
10178          * Lock the parent list. No need to lock the child - not PID
10179          * hashed yet and not running, so nobody can access it.
10180          */
10181         mutex_lock(&parent_ctx->mutex);
10182
10183         /*
10184          * We dont have to disable NMIs - we are only looking at
10185          * the list, not manipulating it:
10186          */
10187         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10188                 ret = inherit_task_group(event, parent, parent_ctx,
10189                                          child, ctxn, &inherited_all);
10190                 if (ret)
10191                         break;
10192         }
10193
10194         /*
10195          * We can't hold ctx->lock when iterating the ->flexible_group list due
10196          * to allocations, but we need to prevent rotation because
10197          * rotate_ctx() will change the list from interrupt context.
10198          */
10199         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10200         parent_ctx->rotate_disable = 1;
10201         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10202
10203         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10204                 ret = inherit_task_group(event, parent, parent_ctx,
10205                                          child, ctxn, &inherited_all);
10206                 if (ret)
10207                         break;
10208         }
10209
10210         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10211         parent_ctx->rotate_disable = 0;
10212
10213         child_ctx = child->perf_event_ctxp[ctxn];
10214
10215         if (child_ctx && inherited_all) {
10216                 /*
10217                  * Mark the child context as a clone of the parent
10218                  * context, or of whatever the parent is a clone of.
10219                  *
10220                  * Note that if the parent is a clone, the holding of
10221                  * parent_ctx->lock avoids it from being uncloned.
10222                  */
10223                 cloned_ctx = parent_ctx->parent_ctx;
10224                 if (cloned_ctx) {
10225                         child_ctx->parent_ctx = cloned_ctx;
10226                         child_ctx->parent_gen = parent_ctx->parent_gen;
10227                 } else {
10228                         child_ctx->parent_ctx = parent_ctx;
10229                         child_ctx->parent_gen = parent_ctx->generation;
10230                 }
10231                 get_ctx(child_ctx->parent_ctx);
10232         }
10233
10234         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10235         mutex_unlock(&parent_ctx->mutex);
10236
10237         perf_unpin_context(parent_ctx);
10238         put_ctx(parent_ctx);
10239
10240         return ret;
10241 }
10242
10243 /*
10244  * Initialize the perf_event context in task_struct
10245  */
10246 int perf_event_init_task(struct task_struct *child)
10247 {
10248         int ctxn, ret;
10249
10250         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10251         mutex_init(&child->perf_event_mutex);
10252         INIT_LIST_HEAD(&child->perf_event_list);
10253
10254         for_each_task_context_nr(ctxn) {
10255                 ret = perf_event_init_context(child, ctxn);
10256                 if (ret) {
10257                         perf_event_free_task(child);
10258                         return ret;
10259                 }
10260         }
10261
10262         return 0;
10263 }
10264
10265 static void __init perf_event_init_all_cpus(void)
10266 {
10267         struct swevent_htable *swhash;
10268         int cpu;
10269
10270         for_each_possible_cpu(cpu) {
10271                 swhash = &per_cpu(swevent_htable, cpu);
10272                 mutex_init(&swhash->hlist_mutex);
10273                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10274
10275                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10276                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10277         }
10278 }
10279
10280 static void perf_event_init_cpu(int cpu)
10281 {
10282         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10283
10284         mutex_lock(&swhash->hlist_mutex);
10285         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10286                 struct swevent_hlist *hlist;
10287
10288                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10289                 WARN_ON(!hlist);
10290                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10291         }
10292         mutex_unlock(&swhash->hlist_mutex);
10293 }
10294
10295 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10296 static void __perf_event_exit_context(void *__info)
10297 {
10298         struct perf_event_context *ctx = __info;
10299         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10300         struct perf_event *event;
10301
10302         raw_spin_lock(&ctx->lock);
10303         list_for_each_entry(event, &ctx->event_list, event_entry)
10304                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10305         raw_spin_unlock(&ctx->lock);
10306 }
10307
10308 static void perf_event_exit_cpu_context(int cpu)
10309 {
10310         struct perf_event_context *ctx;
10311         struct pmu *pmu;
10312         int idx;
10313
10314         idx = srcu_read_lock(&pmus_srcu);
10315         list_for_each_entry_rcu(pmu, &pmus, entry) {
10316                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10317
10318                 mutex_lock(&ctx->mutex);
10319                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10320                 mutex_unlock(&ctx->mutex);
10321         }
10322         srcu_read_unlock(&pmus_srcu, idx);
10323 }
10324
10325 static void perf_event_exit_cpu(int cpu)
10326 {
10327         perf_event_exit_cpu_context(cpu);
10328 }
10329 #else
10330 static inline void perf_event_exit_cpu(int cpu) { }
10331 #endif
10332
10333 static int
10334 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10335 {
10336         int cpu;
10337
10338         for_each_online_cpu(cpu)
10339                 perf_event_exit_cpu(cpu);
10340
10341         return NOTIFY_OK;
10342 }
10343
10344 /*
10345  * Run the perf reboot notifier at the very last possible moment so that
10346  * the generic watchdog code runs as long as possible.
10347  */
10348 static struct notifier_block perf_reboot_notifier = {
10349         .notifier_call = perf_reboot,
10350         .priority = INT_MIN,
10351 };
10352
10353 static int
10354 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10355 {
10356         unsigned int cpu = (long)hcpu;
10357
10358         switch (action & ~CPU_TASKS_FROZEN) {
10359
10360         case CPU_UP_PREPARE:
10361                 /*
10362                  * This must be done before the CPU comes alive, because the
10363                  * moment we can run tasks we can encounter (software) events.
10364                  *
10365                  * Specifically, someone can have inherited events on kthreadd
10366                  * or a pre-existing worker thread that gets re-bound.
10367                  */
10368                 perf_event_init_cpu(cpu);
10369                 break;
10370
10371         case CPU_DOWN_PREPARE:
10372                 /*
10373                  * This must be done before the CPU dies because after that an
10374                  * active event might want to IPI the CPU and that'll not work
10375                  * so great for dead CPUs.
10376                  *
10377                  * XXX smp_call_function_single() return -ENXIO without a warn
10378                  * so we could possibly deal with this.
10379                  *
10380                  * This is safe against new events arriving because
10381                  * sys_perf_event_open() serializes against hotplug using
10382                  * get_online_cpus().
10383                  */
10384                 perf_event_exit_cpu(cpu);
10385                 break;
10386         default:
10387                 break;
10388         }
10389
10390         return NOTIFY_OK;
10391 }
10392
10393 void __init perf_event_init(void)
10394 {
10395         int ret;
10396
10397         idr_init(&pmu_idr);
10398
10399         perf_event_init_all_cpus();
10400         init_srcu_struct(&pmus_srcu);
10401         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10402         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10403         perf_pmu_register(&perf_task_clock, NULL, -1);
10404         perf_tp_register();
10405         perf_cpu_notifier(perf_cpu_notify);
10406         register_reboot_notifier(&perf_reboot_notifier);
10407
10408         ret = init_hw_breakpoint();
10409         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10410
10411         /*
10412          * Build time assertion that we keep the data_head at the intended
10413          * location.  IOW, validation we got the __reserved[] size right.
10414          */
10415         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10416                      != 1024);
10417 }
10418
10419 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10420                               char *page)
10421 {
10422         struct perf_pmu_events_attr *pmu_attr =
10423                 container_of(attr, struct perf_pmu_events_attr, attr);
10424
10425         if (pmu_attr->event_str)
10426                 return sprintf(page, "%s\n", pmu_attr->event_str);
10427
10428         return 0;
10429 }
10430 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10431
10432 static int __init perf_event_sysfs_init(void)
10433 {
10434         struct pmu *pmu;
10435         int ret;
10436
10437         mutex_lock(&pmus_lock);
10438
10439         ret = bus_register(&pmu_bus);
10440         if (ret)
10441                 goto unlock;
10442
10443         list_for_each_entry(pmu, &pmus, entry) {
10444                 if (!pmu->name || pmu->type < 0)
10445                         continue;
10446
10447                 ret = pmu_dev_alloc(pmu);
10448                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10449         }
10450         pmu_bus_running = 1;
10451         ret = 0;
10452
10453 unlock:
10454         mutex_unlock(&pmus_lock);
10455
10456         return ret;
10457 }
10458 device_initcall(perf_event_sysfs_init);
10459
10460 #ifdef CONFIG_CGROUP_PERF
10461 static struct cgroup_subsys_state *
10462 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10463 {
10464         struct perf_cgroup *jc;
10465
10466         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10467         if (!jc)
10468                 return ERR_PTR(-ENOMEM);
10469
10470         jc->info = alloc_percpu(struct perf_cgroup_info);
10471         if (!jc->info) {
10472                 kfree(jc);
10473                 return ERR_PTR(-ENOMEM);
10474         }
10475
10476         return &jc->css;
10477 }
10478
10479 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10480 {
10481         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10482
10483         free_percpu(jc->info);
10484         kfree(jc);
10485 }
10486
10487 static int __perf_cgroup_move(void *info)
10488 {
10489         struct task_struct *task = info;
10490         rcu_read_lock();
10491         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10492         rcu_read_unlock();
10493         return 0;
10494 }
10495
10496 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10497 {
10498         struct task_struct *task;
10499         struct cgroup_subsys_state *css;
10500
10501         cgroup_taskset_for_each(task, css, tset)
10502                 task_function_call(task, __perf_cgroup_move, task);
10503 }
10504
10505 struct cgroup_subsys perf_event_cgrp_subsys = {
10506         .css_alloc      = perf_cgroup_css_alloc,
10507         .css_free       = perf_cgroup_css_free,
10508         .attach         = perf_cgroup_attach,
10509 };
10510 #endif /* CONFIG_CGROUP_PERF */