Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348
349 /*
350  * perf event paranoia level:
351  *  -1 - not paranoid at all
352  *   0 - disallow raw tracepoint access for unpriv
353  *   1 - disallow cpu events for unpriv
354  *   2 - disallow kernel profiling for unpriv
355  */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360
361 /*
362  * max perf event sample rate
363  */
364 #define DEFAULT_MAX_SAMPLE_RATE         100000
365 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
367
368 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
369
370 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
372
373 static int perf_sample_allowed_ns __read_mostly =
374         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375
376 static void update_perf_cpu_limits(void)
377 {
378         u64 tmp = perf_sample_period_ns;
379
380         tmp *= sysctl_perf_cpu_time_max_percent;
381         tmp = div_u64(tmp, 100);
382         if (!tmp)
383                 tmp = 1;
384
385         WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391                 void __user *buffer, size_t *lenp,
392                 loff_t *ppos)
393 {
394         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395
396         if (ret || !write)
397                 return ret;
398
399         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401         update_perf_cpu_limits();
402
403         return 0;
404 }
405
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409                                 void __user *buffer, size_t *lenp,
410                                 loff_t *ppos)
411 {
412         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413
414         if (ret || !write)
415                 return ret;
416
417         if (sysctl_perf_cpu_time_max_percent == 100 ||
418             sysctl_perf_cpu_time_max_percent == 0) {
419                 printk(KERN_WARNING
420                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421                 WRITE_ONCE(perf_sample_allowed_ns, 0);
422         } else {
423                 update_perf_cpu_limits();
424         }
425
426         return 0;
427 }
428
429 /*
430  * perf samples are done in some very critical code paths (NMIs).
431  * If they take too much CPU time, the system can lock up and not
432  * get any real work done.  This will drop the sample rate when
433  * we detect that events are taking too long.
434  */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437
438 static u64 __report_avg;
439 static u64 __report_allowed;
440
441 static void perf_duration_warn(struct irq_work *w)
442 {
443         printk_ratelimited(KERN_WARNING
444                 "perf: interrupt took too long (%lld > %lld), lowering "
445                 "kernel.perf_event_max_sample_rate to %d\n",
446                 __report_avg, __report_allowed,
447                 sysctl_perf_event_sample_rate);
448 }
449
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455         u64 running_len;
456         u64 avg_len;
457         u32 max;
458
459         if (max_len == 0)
460                 return;
461
462         /* Decay the counter by 1 average sample. */
463         running_len = __this_cpu_read(running_sample_length);
464         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465         running_len += sample_len_ns;
466         __this_cpu_write(running_sample_length, running_len);
467
468         /*
469          * Note: this will be biased artifically low until we have
470          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471          * from having to maintain a count.
472          */
473         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474         if (avg_len <= max_len)
475                 return;
476
477         __report_avg = avg_len;
478         __report_allowed = max_len;
479
480         /*
481          * Compute a throttle threshold 25% below the current duration.
482          */
483         avg_len += avg_len / 4;
484         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485         if (avg_len < max)
486                 max /= (u32)avg_len;
487         else
488                 max = 1;
489
490         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491         WRITE_ONCE(max_samples_per_tick, max);
492
493         sysctl_perf_event_sample_rate = max * HZ;
494         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495
496         if (!irq_work_queue(&perf_duration_work)) {
497                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498                              "kernel.perf_event_max_sample_rate to %d\n",
499                              __report_avg, __report_allowed,
500                              sysctl_perf_event_sample_rate);
501         }
502 }
503
504 static atomic64_t perf_event_id;
505
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507                               enum event_type_t event_type);
508
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510                              enum event_type_t event_type,
511                              struct task_struct *task);
512
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515
516 void __weak perf_event_print_debug(void)        { }
517
518 extern __weak const char *perf_pmu_name(void)
519 {
520         return "pmu";
521 }
522
523 static inline u64 perf_clock(void)
524 {
525         return local_clock();
526 }
527
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530         return event->clock();
531 }
532
533 #ifdef CONFIG_CGROUP_PERF
534
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538         struct perf_event_context *ctx = event->ctx;
539         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540
541         /* @event doesn't care about cgroup */
542         if (!event->cgrp)
543                 return true;
544
545         /* wants specific cgroup scope but @cpuctx isn't associated with any */
546         if (!cpuctx->cgrp)
547                 return false;
548
549         /*
550          * Cgroup scoping is recursive.  An event enabled for a cgroup is
551          * also enabled for all its descendant cgroups.  If @cpuctx's
552          * cgroup is a descendant of @event's (the test covers identity
553          * case), it's a match.
554          */
555         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556                                     event->cgrp->css.cgroup);
557 }
558
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561         css_put(&event->cgrp->css);
562         event->cgrp = NULL;
563 }
564
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567         return event->cgrp != NULL;
568 }
569
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572         struct perf_cgroup_info *t;
573
574         t = per_cpu_ptr(event->cgrp->info, event->cpu);
575         return t->time;
576 }
577
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580         struct perf_cgroup_info *info;
581         u64 now;
582
583         now = perf_clock();
584
585         info = this_cpu_ptr(cgrp->info);
586
587         info->time += now - info->timestamp;
588         info->timestamp = now;
589 }
590
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594         if (cgrp_out)
595                 __update_cgrp_time(cgrp_out);
596 }
597
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600         struct perf_cgroup *cgrp;
601
602         /*
603          * ensure we access cgroup data only when needed and
604          * when we know the cgroup is pinned (css_get)
605          */
606         if (!is_cgroup_event(event))
607                 return;
608
609         cgrp = perf_cgroup_from_task(current, event->ctx);
610         /*
611          * Do not update time when cgroup is not active
612          */
613         if (cgrp == event->cgrp)
614                 __update_cgrp_time(event->cgrp);
615 }
616
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619                           struct perf_event_context *ctx)
620 {
621         struct perf_cgroup *cgrp;
622         struct perf_cgroup_info *info;
623
624         /*
625          * ctx->lock held by caller
626          * ensure we do not access cgroup data
627          * unless we have the cgroup pinned (css_get)
628          */
629         if (!task || !ctx->nr_cgroups)
630                 return;
631
632         cgrp = perf_cgroup_from_task(task, ctx);
633         info = this_cpu_ptr(cgrp->info);
634         info->timestamp = ctx->timestamp;
635 }
636
637 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
639
640 /*
641  * reschedule events based on the cgroup constraint of task.
642  *
643  * mode SWOUT : schedule out everything
644  * mode SWIN : schedule in based on cgroup for next
645  */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648         struct perf_cpu_context *cpuctx;
649         struct pmu *pmu;
650         unsigned long flags;
651
652         /*
653          * disable interrupts to avoid geting nr_cgroup
654          * changes via __perf_event_disable(). Also
655          * avoids preemption.
656          */
657         local_irq_save(flags);
658
659         /*
660          * we reschedule only in the presence of cgroup
661          * constrained events.
662          */
663
664         list_for_each_entry_rcu(pmu, &pmus, entry) {
665                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666                 if (cpuctx->unique_pmu != pmu)
667                         continue; /* ensure we process each cpuctx once */
668
669                 /*
670                  * perf_cgroup_events says at least one
671                  * context on this CPU has cgroup events.
672                  *
673                  * ctx->nr_cgroups reports the number of cgroup
674                  * events for a context.
675                  */
676                 if (cpuctx->ctx.nr_cgroups > 0) {
677                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678                         perf_pmu_disable(cpuctx->ctx.pmu);
679
680                         if (mode & PERF_CGROUP_SWOUT) {
681                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682                                 /*
683                                  * must not be done before ctxswout due
684                                  * to event_filter_match() in event_sched_out()
685                                  */
686                                 cpuctx->cgrp = NULL;
687                         }
688
689                         if (mode & PERF_CGROUP_SWIN) {
690                                 WARN_ON_ONCE(cpuctx->cgrp);
691                                 /*
692                                  * set cgrp before ctxsw in to allow
693                                  * event_filter_match() to not have to pass
694                                  * task around
695                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
696                                  * because cgorup events are only per-cpu
697                                  */
698                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700                         }
701                         perf_pmu_enable(cpuctx->ctx.pmu);
702                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703                 }
704         }
705
706         local_irq_restore(flags);
707 }
708
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710                                          struct task_struct *next)
711 {
712         struct perf_cgroup *cgrp1;
713         struct perf_cgroup *cgrp2 = NULL;
714
715         rcu_read_lock();
716         /*
717          * we come here when we know perf_cgroup_events > 0
718          * we do not need to pass the ctx here because we know
719          * we are holding the rcu lock
720          */
721         cgrp1 = perf_cgroup_from_task(task, NULL);
722         cgrp2 = perf_cgroup_from_task(next, NULL);
723
724         /*
725          * only schedule out current cgroup events if we know
726          * that we are switching to a different cgroup. Otherwise,
727          * do no touch the cgroup events.
728          */
729         if (cgrp1 != cgrp2)
730                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731
732         rcu_read_unlock();
733 }
734
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736                                         struct task_struct *task)
737 {
738         struct perf_cgroup *cgrp1;
739         struct perf_cgroup *cgrp2 = NULL;
740
741         rcu_read_lock();
742         /*
743          * we come here when we know perf_cgroup_events > 0
744          * we do not need to pass the ctx here because we know
745          * we are holding the rcu lock
746          */
747         cgrp1 = perf_cgroup_from_task(task, NULL);
748         cgrp2 = perf_cgroup_from_task(prev, NULL);
749
750         /*
751          * only need to schedule in cgroup events if we are changing
752          * cgroup during ctxsw. Cgroup events were not scheduled
753          * out of ctxsw out if that was not the case.
754          */
755         if (cgrp1 != cgrp2)
756                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757
758         rcu_read_unlock();
759 }
760
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762                                       struct perf_event_attr *attr,
763                                       struct perf_event *group_leader)
764 {
765         struct perf_cgroup *cgrp;
766         struct cgroup_subsys_state *css;
767         struct fd f = fdget(fd);
768         int ret = 0;
769
770         if (!f.file)
771                 return -EBADF;
772
773         css = css_tryget_online_from_dir(f.file->f_path.dentry,
774                                          &perf_event_cgrp_subsys);
775         if (IS_ERR(css)) {
776                 ret = PTR_ERR(css);
777                 goto out;
778         }
779
780         cgrp = container_of(css, struct perf_cgroup, css);
781         event->cgrp = cgrp;
782
783         /*
784          * all events in a group must monitor
785          * the same cgroup because a task belongs
786          * to only one perf cgroup at a time
787          */
788         if (group_leader && group_leader->cgrp != cgrp) {
789                 perf_detach_cgroup(event);
790                 ret = -EINVAL;
791         }
792 out:
793         fdput(f);
794         return ret;
795 }
796
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800         struct perf_cgroup_info *t;
801         t = per_cpu_ptr(event->cgrp->info, event->cpu);
802         event->shadow_ctx_time = now - t->timestamp;
803 }
804
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808         /*
809          * when the current task's perf cgroup does not match
810          * the event's, we need to remember to call the
811          * perf_mark_enable() function the first time a task with
812          * a matching perf cgroup is scheduled in.
813          */
814         if (is_cgroup_event(event) && !perf_cgroup_match(event))
815                 event->cgrp_defer_enabled = 1;
816 }
817
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820                          struct perf_event_context *ctx)
821 {
822         struct perf_event *sub;
823         u64 tstamp = perf_event_time(event);
824
825         if (!event->cgrp_defer_enabled)
826                 return;
827
828         event->cgrp_defer_enabled = 0;
829
830         event->tstamp_enabled = tstamp - event->total_time_enabled;
831         list_for_each_entry(sub, &event->sibling_list, group_entry) {
832                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834                         sub->cgrp_defer_enabled = 0;
835                 }
836         }
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843         return true;
844 }
845
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851         return 0;
852 }
853
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856         return 0;
857 }
858
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868                                          struct task_struct *next)
869 {
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873                                         struct task_struct *task)
874 {
875 }
876
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878                                       struct perf_event_attr *attr,
879                                       struct perf_event *group_leader)
880 {
881         return -EINVAL;
882 }
883
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886                           struct perf_event_context *ctx)
887 {
888 }
889
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902         return 0;
903 }
904
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912                          struct perf_event_context *ctx)
913 {
914 }
915 #endif
916
917 /*
918  * set default to be dependent on timer tick just
919  * like original code
920  */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923  * function must be called with interrupts disbled
924  */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927         struct perf_cpu_context *cpuctx;
928         int rotations = 0;
929
930         WARN_ON(!irqs_disabled());
931
932         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933         rotations = perf_rotate_context(cpuctx);
934
935         raw_spin_lock(&cpuctx->hrtimer_lock);
936         if (rotations)
937                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938         else
939                 cpuctx->hrtimer_active = 0;
940         raw_spin_unlock(&cpuctx->hrtimer_lock);
941
942         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947         struct hrtimer *timer = &cpuctx->hrtimer;
948         struct pmu *pmu = cpuctx->ctx.pmu;
949         u64 interval;
950
951         /* no multiplexing needed for SW PMU */
952         if (pmu->task_ctx_nr == perf_sw_context)
953                 return;
954
955         /*
956          * check default is sane, if not set then force to
957          * default interval (1/tick)
958          */
959         interval = pmu->hrtimer_interval_ms;
960         if (interval < 1)
961                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962
963         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964
965         raw_spin_lock_init(&cpuctx->hrtimer_lock);
966         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967         timer->function = perf_mux_hrtimer_handler;
968 }
969
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972         struct hrtimer *timer = &cpuctx->hrtimer;
973         struct pmu *pmu = cpuctx->ctx.pmu;
974         unsigned long flags;
975
976         /* not for SW PMU */
977         if (pmu->task_ctx_nr == perf_sw_context)
978                 return 0;
979
980         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981         if (!cpuctx->hrtimer_active) {
982                 cpuctx->hrtimer_active = 1;
983                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985         }
986         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987
988         return 0;
989 }
990
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993         int *count = this_cpu_ptr(pmu->pmu_disable_count);
994         if (!(*count)++)
995                 pmu->pmu_disable(pmu);
996 }
997
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001         if (!--(*count))
1002                 pmu->pmu_enable(pmu);
1003 }
1004
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006
1007 /*
1008  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009  * perf_event_task_tick() are fully serialized because they're strictly cpu
1010  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011  * disabled, while perf_event_task_tick is called from IRQ context.
1012  */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016
1017         WARN_ON(!irqs_disabled());
1018
1019         WARN_ON(!list_empty(&ctx->active_ctx_list));
1020
1021         list_add(&ctx->active_ctx_list, head);
1022 }
1023
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026         WARN_ON(!irqs_disabled());
1027
1028         WARN_ON(list_empty(&ctx->active_ctx_list));
1029
1030         list_del_init(&ctx->active_ctx_list);
1031 }
1032
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040         struct perf_event_context *ctx;
1041
1042         ctx = container_of(head, struct perf_event_context, rcu_head);
1043         kfree(ctx->task_ctx_data);
1044         kfree(ctx);
1045 }
1046
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049         if (atomic_dec_and_test(&ctx->refcount)) {
1050                 if (ctx->parent_ctx)
1051                         put_ctx(ctx->parent_ctx);
1052                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053                         put_task_struct(ctx->task);
1054                 call_rcu(&ctx->rcu_head, free_ctx);
1055         }
1056 }
1057
1058 /*
1059  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060  * perf_pmu_migrate_context() we need some magic.
1061  *
1062  * Those places that change perf_event::ctx will hold both
1063  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064  *
1065  * Lock ordering is by mutex address. There are two other sites where
1066  * perf_event_context::mutex nests and those are:
1067  *
1068  *  - perf_event_exit_task_context()    [ child , 0 ]
1069  *      perf_event_exit_event()
1070  *        put_event()                   [ parent, 1 ]
1071  *
1072  *  - perf_event_init_context()         [ parent, 0 ]
1073  *      inherit_task_group()
1074  *        inherit_group()
1075  *          inherit_event()
1076  *            perf_event_alloc()
1077  *              perf_init_event()
1078  *                perf_try_init_event() [ child , 1 ]
1079  *
1080  * While it appears there is an obvious deadlock here -- the parent and child
1081  * nesting levels are inverted between the two. This is in fact safe because
1082  * life-time rules separate them. That is an exiting task cannot fork, and a
1083  * spawning task cannot (yet) exit.
1084  *
1085  * But remember that that these are parent<->child context relations, and
1086  * migration does not affect children, therefore these two orderings should not
1087  * interact.
1088  *
1089  * The change in perf_event::ctx does not affect children (as claimed above)
1090  * because the sys_perf_event_open() case will install a new event and break
1091  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092  * concerned with cpuctx and that doesn't have children.
1093  *
1094  * The places that change perf_event::ctx will issue:
1095  *
1096  *   perf_remove_from_context();
1097  *   synchronize_rcu();
1098  *   perf_install_in_context();
1099  *
1100  * to affect the change. The remove_from_context() + synchronize_rcu() should
1101  * quiesce the event, after which we can install it in the new location. This
1102  * means that only external vectors (perf_fops, prctl) can perturb the event
1103  * while in transit. Therefore all such accessors should also acquire
1104  * perf_event_context::mutex to serialize against this.
1105  *
1106  * However; because event->ctx can change while we're waiting to acquire
1107  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108  * function.
1109  *
1110  * Lock order:
1111  *    cred_guard_mutex
1112  *      task_struct::perf_event_mutex
1113  *        perf_event_context::mutex
1114  *          perf_event::child_mutex;
1115  *            perf_event_context::lock
1116  *          perf_event::mmap_mutex
1117  *          mmap_sem
1118  */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122         struct perf_event_context *ctx;
1123
1124 again:
1125         rcu_read_lock();
1126         ctx = ACCESS_ONCE(event->ctx);
1127         if (!atomic_inc_not_zero(&ctx->refcount)) {
1128                 rcu_read_unlock();
1129                 goto again;
1130         }
1131         rcu_read_unlock();
1132
1133         mutex_lock_nested(&ctx->mutex, nesting);
1134         if (event->ctx != ctx) {
1135                 mutex_unlock(&ctx->mutex);
1136                 put_ctx(ctx);
1137                 goto again;
1138         }
1139
1140         return ctx;
1141 }
1142
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146         return perf_event_ctx_lock_nested(event, 0);
1147 }
1148
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150                                   struct perf_event_context *ctx)
1151 {
1152         mutex_unlock(&ctx->mutex);
1153         put_ctx(ctx);
1154 }
1155
1156 /*
1157  * This must be done under the ctx->lock, such as to serialize against
1158  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159  * calling scheduler related locks and ctx->lock nests inside those.
1160  */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165
1166         lockdep_assert_held(&ctx->lock);
1167
1168         if (parent_ctx)
1169                 ctx->parent_ctx = NULL;
1170         ctx->generation++;
1171
1172         return parent_ctx;
1173 }
1174
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177         /*
1178          * only top level events have the pid namespace they were created in
1179          */
1180         if (event->parent)
1181                 event = event->parent;
1182
1183         return task_tgid_nr_ns(p, event->ns);
1184 }
1185
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188         /*
1189          * only top level events have the pid namespace they were created in
1190          */
1191         if (event->parent)
1192                 event = event->parent;
1193
1194         return task_pid_nr_ns(p, event->ns);
1195 }
1196
1197 /*
1198  * If we inherit events we want to return the parent event id
1199  * to userspace.
1200  */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203         u64 id = event->id;
1204
1205         if (event->parent)
1206                 id = event->parent->id;
1207
1208         return id;
1209 }
1210
1211 /*
1212  * Get the perf_event_context for a task and lock it.
1213  *
1214  * This has to cope with with the fact that until it is locked,
1215  * the context could get moved to another task.
1216  */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220         struct perf_event_context *ctx;
1221
1222 retry:
1223         /*
1224          * One of the few rules of preemptible RCU is that one cannot do
1225          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226          * part of the read side critical section was irqs-enabled -- see
1227          * rcu_read_unlock_special().
1228          *
1229          * Since ctx->lock nests under rq->lock we must ensure the entire read
1230          * side critical section has interrupts disabled.
1231          */
1232         local_irq_save(*flags);
1233         rcu_read_lock();
1234         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235         if (ctx) {
1236                 /*
1237                  * If this context is a clone of another, it might
1238                  * get swapped for another underneath us by
1239                  * perf_event_task_sched_out, though the
1240                  * rcu_read_lock() protects us from any context
1241                  * getting freed.  Lock the context and check if it
1242                  * got swapped before we could get the lock, and retry
1243                  * if so.  If we locked the right context, then it
1244                  * can't get swapped on us any more.
1245                  */
1246                 raw_spin_lock(&ctx->lock);
1247                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248                         raw_spin_unlock(&ctx->lock);
1249                         rcu_read_unlock();
1250                         local_irq_restore(*flags);
1251                         goto retry;
1252                 }
1253
1254                 if (ctx->task == TASK_TOMBSTONE ||
1255                     !atomic_inc_not_zero(&ctx->refcount)) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         ctx = NULL;
1258                 } else {
1259                         WARN_ON_ONCE(ctx->task != task);
1260                 }
1261         }
1262         rcu_read_unlock();
1263         if (!ctx)
1264                 local_irq_restore(*flags);
1265         return ctx;
1266 }
1267
1268 /*
1269  * Get the context for a task and increment its pin_count so it
1270  * can't get swapped to another task.  This also increments its
1271  * reference count so that the context can't get freed.
1272  */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276         struct perf_event_context *ctx;
1277         unsigned long flags;
1278
1279         ctx = perf_lock_task_context(task, ctxn, &flags);
1280         if (ctx) {
1281                 ++ctx->pin_count;
1282                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283         }
1284         return ctx;
1285 }
1286
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289         unsigned long flags;
1290
1291         raw_spin_lock_irqsave(&ctx->lock, flags);
1292         --ctx->pin_count;
1293         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295
1296 /*
1297  * Update the record of the current time in a context.
1298  */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301         u64 now = perf_clock();
1302
1303         ctx->time += now - ctx->timestamp;
1304         ctx->timestamp = now;
1305 }
1306
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309         struct perf_event_context *ctx = event->ctx;
1310
1311         if (is_cgroup_event(event))
1312                 return perf_cgroup_event_time(event);
1313
1314         return ctx ? ctx->time : 0;
1315 }
1316
1317 /*
1318  * Update the total_time_enabled and total_time_running fields for a event.
1319  */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322         struct perf_event_context *ctx = event->ctx;
1323         u64 run_end;
1324
1325         lockdep_assert_held(&ctx->lock);
1326
1327         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329                 return;
1330
1331         /*
1332          * in cgroup mode, time_enabled represents
1333          * the time the event was enabled AND active
1334          * tasks were in the monitored cgroup. This is
1335          * independent of the activity of the context as
1336          * there may be a mix of cgroup and non-cgroup events.
1337          *
1338          * That is why we treat cgroup events differently
1339          * here.
1340          */
1341         if (is_cgroup_event(event))
1342                 run_end = perf_cgroup_event_time(event);
1343         else if (ctx->is_active)
1344                 run_end = ctx->time;
1345         else
1346                 run_end = event->tstamp_stopped;
1347
1348         event->total_time_enabled = run_end - event->tstamp_enabled;
1349
1350         if (event->state == PERF_EVENT_STATE_INACTIVE)
1351                 run_end = event->tstamp_stopped;
1352         else
1353                 run_end = perf_event_time(event);
1354
1355         event->total_time_running = run_end - event->tstamp_running;
1356
1357 }
1358
1359 /*
1360  * Update total_time_enabled and total_time_running for all events in a group.
1361  */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364         struct perf_event *event;
1365
1366         update_event_times(leader);
1367         list_for_each_entry(event, &leader->sibling_list, group_entry)
1368                 update_event_times(event);
1369 }
1370
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374         if (event->attr.pinned)
1375                 return &ctx->pinned_groups;
1376         else
1377                 return &ctx->flexible_groups;
1378 }
1379
1380 /*
1381  * Add a event from the lists for its context.
1382  * Must be called with ctx->mutex and ctx->lock held.
1383  */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387         lockdep_assert_held(&ctx->lock);
1388
1389         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390         event->attach_state |= PERF_ATTACH_CONTEXT;
1391
1392         /*
1393          * If we're a stand alone event or group leader, we go to the context
1394          * list, group events are kept attached to the group so that
1395          * perf_group_detach can, at all times, locate all siblings.
1396          */
1397         if (event->group_leader == event) {
1398                 struct list_head *list;
1399
1400                 if (is_software_event(event))
1401                         event->group_flags |= PERF_GROUP_SOFTWARE;
1402
1403                 list = ctx_group_list(event, ctx);
1404                 list_add_tail(&event->group_entry, list);
1405         }
1406
1407         if (is_cgroup_event(event))
1408                 ctx->nr_cgroups++;
1409
1410         list_add_rcu(&event->event_entry, &ctx->event_list);
1411         ctx->nr_events++;
1412         if (event->attr.inherit_stat)
1413                 ctx->nr_stat++;
1414
1415         ctx->generation++;
1416 }
1417
1418 /*
1419  * Initialize event state based on the perf_event_attr::disabled.
1420  */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424                                               PERF_EVENT_STATE_INACTIVE;
1425 }
1426
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429         int entry = sizeof(u64); /* value */
1430         int size = 0;
1431         int nr = 1;
1432
1433         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434                 size += sizeof(u64);
1435
1436         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437                 size += sizeof(u64);
1438
1439         if (event->attr.read_format & PERF_FORMAT_ID)
1440                 entry += sizeof(u64);
1441
1442         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443                 nr += nr_siblings;
1444                 size += sizeof(u64);
1445         }
1446
1447         size += entry * nr;
1448         event->read_size = size;
1449 }
1450
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453         struct perf_sample_data *data;
1454         u16 size = 0;
1455
1456         if (sample_type & PERF_SAMPLE_IP)
1457                 size += sizeof(data->ip);
1458
1459         if (sample_type & PERF_SAMPLE_ADDR)
1460                 size += sizeof(data->addr);
1461
1462         if (sample_type & PERF_SAMPLE_PERIOD)
1463                 size += sizeof(data->period);
1464
1465         if (sample_type & PERF_SAMPLE_WEIGHT)
1466                 size += sizeof(data->weight);
1467
1468         if (sample_type & PERF_SAMPLE_READ)
1469                 size += event->read_size;
1470
1471         if (sample_type & PERF_SAMPLE_DATA_SRC)
1472                 size += sizeof(data->data_src.val);
1473
1474         if (sample_type & PERF_SAMPLE_TRANSACTION)
1475                 size += sizeof(data->txn);
1476
1477         event->header_size = size;
1478 }
1479
1480 /*
1481  * Called at perf_event creation and when events are attached/detached from a
1482  * group.
1483  */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486         __perf_event_read_size(event,
1487                                event->group_leader->nr_siblings);
1488         __perf_event_header_size(event, event->attr.sample_type);
1489 }
1490
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493         struct perf_sample_data *data;
1494         u64 sample_type = event->attr.sample_type;
1495         u16 size = 0;
1496
1497         if (sample_type & PERF_SAMPLE_TID)
1498                 size += sizeof(data->tid_entry);
1499
1500         if (sample_type & PERF_SAMPLE_TIME)
1501                 size += sizeof(data->time);
1502
1503         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504                 size += sizeof(data->id);
1505
1506         if (sample_type & PERF_SAMPLE_ID)
1507                 size += sizeof(data->id);
1508
1509         if (sample_type & PERF_SAMPLE_STREAM_ID)
1510                 size += sizeof(data->stream_id);
1511
1512         if (sample_type & PERF_SAMPLE_CPU)
1513                 size += sizeof(data->cpu_entry);
1514
1515         event->id_header_size = size;
1516 }
1517
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520         /*
1521          * The values computed here will be over-written when we actually
1522          * attach the event.
1523          */
1524         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526         perf_event__id_header_size(event);
1527
1528         /*
1529          * Sum the lot; should not exceed the 64k limit we have on records.
1530          * Conservative limit to allow for callchains and other variable fields.
1531          */
1532         if (event->read_size + event->header_size +
1533             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534                 return false;
1535
1536         return true;
1537 }
1538
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541         struct perf_event *group_leader = event->group_leader, *pos;
1542
1543         /*
1544          * We can have double attach due to group movement in perf_event_open.
1545          */
1546         if (event->attach_state & PERF_ATTACH_GROUP)
1547                 return;
1548
1549         event->attach_state |= PERF_ATTACH_GROUP;
1550
1551         if (group_leader == event)
1552                 return;
1553
1554         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555
1556         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557                         !is_software_event(event))
1558                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559
1560         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561         group_leader->nr_siblings++;
1562
1563         perf_event__header_size(group_leader);
1564
1565         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566                 perf_event__header_size(pos);
1567 }
1568
1569 /*
1570  * Remove a event from the lists for its context.
1571  * Must be called with ctx->mutex and ctx->lock held.
1572  */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576         struct perf_cpu_context *cpuctx;
1577
1578         WARN_ON_ONCE(event->ctx != ctx);
1579         lockdep_assert_held(&ctx->lock);
1580
1581         /*
1582          * We can have double detach due to exit/hot-unplug + close.
1583          */
1584         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585                 return;
1586
1587         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588
1589         if (is_cgroup_event(event)) {
1590                 ctx->nr_cgroups--;
1591                 /*
1592                  * Because cgroup events are always per-cpu events, this will
1593                  * always be called from the right CPU.
1594                  */
1595                 cpuctx = __get_cpu_context(ctx);
1596                 /*
1597                  * If there are no more cgroup events then clear cgrp to avoid
1598                  * stale pointer in update_cgrp_time_from_cpuctx().
1599                  */
1600                 if (!ctx->nr_cgroups)
1601                         cpuctx->cgrp = NULL;
1602         }
1603
1604         ctx->nr_events--;
1605         if (event->attr.inherit_stat)
1606                 ctx->nr_stat--;
1607
1608         list_del_rcu(&event->event_entry);
1609
1610         if (event->group_leader == event)
1611                 list_del_init(&event->group_entry);
1612
1613         update_group_times(event);
1614
1615         /*
1616          * If event was in error state, then keep it
1617          * that way, otherwise bogus counts will be
1618          * returned on read(). The only way to get out
1619          * of error state is by explicit re-enabling
1620          * of the event
1621          */
1622         if (event->state > PERF_EVENT_STATE_OFF)
1623                 event->state = PERF_EVENT_STATE_OFF;
1624
1625         ctx->generation++;
1626 }
1627
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630         struct perf_event *sibling, *tmp;
1631         struct list_head *list = NULL;
1632
1633         /*
1634          * We can have double detach due to exit/hot-unplug + close.
1635          */
1636         if (!(event->attach_state & PERF_ATTACH_GROUP))
1637                 return;
1638
1639         event->attach_state &= ~PERF_ATTACH_GROUP;
1640
1641         /*
1642          * If this is a sibling, remove it from its group.
1643          */
1644         if (event->group_leader != event) {
1645                 list_del_init(&event->group_entry);
1646                 event->group_leader->nr_siblings--;
1647                 goto out;
1648         }
1649
1650         if (!list_empty(&event->group_entry))
1651                 list = &event->group_entry;
1652
1653         /*
1654          * If this was a group event with sibling events then
1655          * upgrade the siblings to singleton events by adding them
1656          * to whatever list we are on.
1657          */
1658         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659                 if (list)
1660                         list_move_tail(&sibling->group_entry, list);
1661                 sibling->group_leader = sibling;
1662
1663                 /* Inherit group flags from the previous leader */
1664                 sibling->group_flags = event->group_flags;
1665
1666                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1667         }
1668
1669 out:
1670         perf_event__header_size(event->group_leader);
1671
1672         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673                 perf_event__header_size(tmp);
1674 }
1675
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678         return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680
1681 static inline int pmu_filter_match(struct perf_event *event)
1682 {
1683         struct pmu *pmu = event->pmu;
1684         return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686
1687 static inline int
1688 event_filter_match(struct perf_event *event)
1689 {
1690         return (event->cpu == -1 || event->cpu == smp_processor_id())
1691             && perf_cgroup_match(event) && pmu_filter_match(event);
1692 }
1693
1694 static void
1695 event_sched_out(struct perf_event *event,
1696                   struct perf_cpu_context *cpuctx,
1697                   struct perf_event_context *ctx)
1698 {
1699         u64 tstamp = perf_event_time(event);
1700         u64 delta;
1701
1702         WARN_ON_ONCE(event->ctx != ctx);
1703         lockdep_assert_held(&ctx->lock);
1704
1705         /*
1706          * An event which could not be activated because of
1707          * filter mismatch still needs to have its timings
1708          * maintained, otherwise bogus information is return
1709          * via read() for time_enabled, time_running:
1710          */
1711         if (event->state == PERF_EVENT_STATE_INACTIVE
1712             && !event_filter_match(event)) {
1713                 delta = tstamp - event->tstamp_stopped;
1714                 event->tstamp_running += delta;
1715                 event->tstamp_stopped = tstamp;
1716         }
1717
1718         if (event->state != PERF_EVENT_STATE_ACTIVE)
1719                 return;
1720
1721         perf_pmu_disable(event->pmu);
1722
1723         event->tstamp_stopped = tstamp;
1724         event->pmu->del(event, 0);
1725         event->oncpu = -1;
1726         event->state = PERF_EVENT_STATE_INACTIVE;
1727         if (event->pending_disable) {
1728                 event->pending_disable = 0;
1729                 event->state = PERF_EVENT_STATE_OFF;
1730         }
1731
1732         if (!is_software_event(event))
1733                 cpuctx->active_oncpu--;
1734         if (!--ctx->nr_active)
1735                 perf_event_ctx_deactivate(ctx);
1736         if (event->attr.freq && event->attr.sample_freq)
1737                 ctx->nr_freq--;
1738         if (event->attr.exclusive || !cpuctx->active_oncpu)
1739                 cpuctx->exclusive = 0;
1740
1741         perf_pmu_enable(event->pmu);
1742 }
1743
1744 static void
1745 group_sched_out(struct perf_event *group_event,
1746                 struct perf_cpu_context *cpuctx,
1747                 struct perf_event_context *ctx)
1748 {
1749         struct perf_event *event;
1750         int state = group_event->state;
1751
1752         event_sched_out(group_event, cpuctx, ctx);
1753
1754         /*
1755          * Schedule out siblings (if any):
1756          */
1757         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1758                 event_sched_out(event, cpuctx, ctx);
1759
1760         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1761                 cpuctx->exclusive = 0;
1762 }
1763
1764 #define DETACH_GROUP    0x01UL
1765
1766 /*
1767  * Cross CPU call to remove a performance event
1768  *
1769  * We disable the event on the hardware level first. After that we
1770  * remove it from the context list.
1771  */
1772 static void
1773 __perf_remove_from_context(struct perf_event *event,
1774                            struct perf_cpu_context *cpuctx,
1775                            struct perf_event_context *ctx,
1776                            void *info)
1777 {
1778         unsigned long flags = (unsigned long)info;
1779
1780         event_sched_out(event, cpuctx, ctx);
1781         if (flags & DETACH_GROUP)
1782                 perf_group_detach(event);
1783         list_del_event(event, ctx);
1784
1785         if (!ctx->nr_events && ctx->is_active) {
1786                 ctx->is_active = 0;
1787                 if (ctx->task) {
1788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1789                         cpuctx->task_ctx = NULL;
1790                 }
1791         }
1792 }
1793
1794 /*
1795  * Remove the event from a task's (or a CPU's) list of events.
1796  *
1797  * If event->ctx is a cloned context, callers must make sure that
1798  * every task struct that event->ctx->task could possibly point to
1799  * remains valid.  This is OK when called from perf_release since
1800  * that only calls us on the top-level context, which can't be a clone.
1801  * When called from perf_event_exit_task, it's OK because the
1802  * context has been detached from its task.
1803  */
1804 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1805 {
1806         lockdep_assert_held(&event->ctx->mutex);
1807
1808         event_function_call(event, __perf_remove_from_context, (void *)flags);
1809 }
1810
1811 /*
1812  * Cross CPU call to disable a performance event
1813  */
1814 static void __perf_event_disable(struct perf_event *event,
1815                                  struct perf_cpu_context *cpuctx,
1816                                  struct perf_event_context *ctx,
1817                                  void *info)
1818 {
1819         if (event->state < PERF_EVENT_STATE_INACTIVE)
1820                 return;
1821
1822         update_context_time(ctx);
1823         update_cgrp_time_from_event(event);
1824         update_group_times(event);
1825         if (event == event->group_leader)
1826                 group_sched_out(event, cpuctx, ctx);
1827         else
1828                 event_sched_out(event, cpuctx, ctx);
1829         event->state = PERF_EVENT_STATE_OFF;
1830 }
1831
1832 /*
1833  * Disable a event.
1834  *
1835  * If event->ctx is a cloned context, callers must make sure that
1836  * every task struct that event->ctx->task could possibly point to
1837  * remains valid.  This condition is satisifed when called through
1838  * perf_event_for_each_child or perf_event_for_each because they
1839  * hold the top-level event's child_mutex, so any descendant that
1840  * goes to exit will block in perf_event_exit_event().
1841  *
1842  * When called from perf_pending_event it's OK because event->ctx
1843  * is the current context on this CPU and preemption is disabled,
1844  * hence we can't get into perf_event_task_sched_out for this context.
1845  */
1846 static void _perf_event_disable(struct perf_event *event)
1847 {
1848         struct perf_event_context *ctx = event->ctx;
1849
1850         raw_spin_lock_irq(&ctx->lock);
1851         if (event->state <= PERF_EVENT_STATE_OFF) {
1852                 raw_spin_unlock_irq(&ctx->lock);
1853                 return;
1854         }
1855         raw_spin_unlock_irq(&ctx->lock);
1856
1857         event_function_call(event, __perf_event_disable, NULL);
1858 }
1859
1860 void perf_event_disable_local(struct perf_event *event)
1861 {
1862         event_function_local(event, __perf_event_disable, NULL);
1863 }
1864
1865 /*
1866  * Strictly speaking kernel users cannot create groups and therefore this
1867  * interface does not need the perf_event_ctx_lock() magic.
1868  */
1869 void perf_event_disable(struct perf_event *event)
1870 {
1871         struct perf_event_context *ctx;
1872
1873         ctx = perf_event_ctx_lock(event);
1874         _perf_event_disable(event);
1875         perf_event_ctx_unlock(event, ctx);
1876 }
1877 EXPORT_SYMBOL_GPL(perf_event_disable);
1878
1879 static void perf_set_shadow_time(struct perf_event *event,
1880                                  struct perf_event_context *ctx,
1881                                  u64 tstamp)
1882 {
1883         /*
1884          * use the correct time source for the time snapshot
1885          *
1886          * We could get by without this by leveraging the
1887          * fact that to get to this function, the caller
1888          * has most likely already called update_context_time()
1889          * and update_cgrp_time_xx() and thus both timestamp
1890          * are identical (or very close). Given that tstamp is,
1891          * already adjusted for cgroup, we could say that:
1892          *    tstamp - ctx->timestamp
1893          * is equivalent to
1894          *    tstamp - cgrp->timestamp.
1895          *
1896          * Then, in perf_output_read(), the calculation would
1897          * work with no changes because:
1898          * - event is guaranteed scheduled in
1899          * - no scheduled out in between
1900          * - thus the timestamp would be the same
1901          *
1902          * But this is a bit hairy.
1903          *
1904          * So instead, we have an explicit cgroup call to remain
1905          * within the time time source all along. We believe it
1906          * is cleaner and simpler to understand.
1907          */
1908         if (is_cgroup_event(event))
1909                 perf_cgroup_set_shadow_time(event, tstamp);
1910         else
1911                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1912 }
1913
1914 #define MAX_INTERRUPTS (~0ULL)
1915
1916 static void perf_log_throttle(struct perf_event *event, int enable);
1917 static void perf_log_itrace_start(struct perf_event *event);
1918
1919 static int
1920 event_sched_in(struct perf_event *event,
1921                  struct perf_cpu_context *cpuctx,
1922                  struct perf_event_context *ctx)
1923 {
1924         u64 tstamp = perf_event_time(event);
1925         int ret = 0;
1926
1927         lockdep_assert_held(&ctx->lock);
1928
1929         if (event->state <= PERF_EVENT_STATE_OFF)
1930                 return 0;
1931
1932         WRITE_ONCE(event->oncpu, smp_processor_id());
1933         /*
1934          * Order event::oncpu write to happen before the ACTIVE state
1935          * is visible.
1936          */
1937         smp_wmb();
1938         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1939
1940         /*
1941          * Unthrottle events, since we scheduled we might have missed several
1942          * ticks already, also for a heavily scheduling task there is little
1943          * guarantee it'll get a tick in a timely manner.
1944          */
1945         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1946                 perf_log_throttle(event, 1);
1947                 event->hw.interrupts = 0;
1948         }
1949
1950         /*
1951          * The new state must be visible before we turn it on in the hardware:
1952          */
1953         smp_wmb();
1954
1955         perf_pmu_disable(event->pmu);
1956
1957         perf_set_shadow_time(event, ctx, tstamp);
1958
1959         perf_log_itrace_start(event);
1960
1961         if (event->pmu->add(event, PERF_EF_START)) {
1962                 event->state = PERF_EVENT_STATE_INACTIVE;
1963                 event->oncpu = -1;
1964                 ret = -EAGAIN;
1965                 goto out;
1966         }
1967
1968         event->tstamp_running += tstamp - event->tstamp_stopped;
1969
1970         if (!is_software_event(event))
1971                 cpuctx->active_oncpu++;
1972         if (!ctx->nr_active++)
1973                 perf_event_ctx_activate(ctx);
1974         if (event->attr.freq && event->attr.sample_freq)
1975                 ctx->nr_freq++;
1976
1977         if (event->attr.exclusive)
1978                 cpuctx->exclusive = 1;
1979
1980 out:
1981         perf_pmu_enable(event->pmu);
1982
1983         return ret;
1984 }
1985
1986 static int
1987 group_sched_in(struct perf_event *group_event,
1988                struct perf_cpu_context *cpuctx,
1989                struct perf_event_context *ctx)
1990 {
1991         struct perf_event *event, *partial_group = NULL;
1992         struct pmu *pmu = ctx->pmu;
1993         u64 now = ctx->time;
1994         bool simulate = false;
1995
1996         if (group_event->state == PERF_EVENT_STATE_OFF)
1997                 return 0;
1998
1999         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2000
2001         if (event_sched_in(group_event, cpuctx, ctx)) {
2002                 pmu->cancel_txn(pmu);
2003                 perf_mux_hrtimer_restart(cpuctx);
2004                 return -EAGAIN;
2005         }
2006
2007         /*
2008          * Schedule in siblings as one group (if any):
2009          */
2010         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2011                 if (event_sched_in(event, cpuctx, ctx)) {
2012                         partial_group = event;
2013                         goto group_error;
2014                 }
2015         }
2016
2017         if (!pmu->commit_txn(pmu))
2018                 return 0;
2019
2020 group_error:
2021         /*
2022          * Groups can be scheduled in as one unit only, so undo any
2023          * partial group before returning:
2024          * The events up to the failed event are scheduled out normally,
2025          * tstamp_stopped will be updated.
2026          *
2027          * The failed events and the remaining siblings need to have
2028          * their timings updated as if they had gone thru event_sched_in()
2029          * and event_sched_out(). This is required to get consistent timings
2030          * across the group. This also takes care of the case where the group
2031          * could never be scheduled by ensuring tstamp_stopped is set to mark
2032          * the time the event was actually stopped, such that time delta
2033          * calculation in update_event_times() is correct.
2034          */
2035         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2036                 if (event == partial_group)
2037                         simulate = true;
2038
2039                 if (simulate) {
2040                         event->tstamp_running += now - event->tstamp_stopped;
2041                         event->tstamp_stopped = now;
2042                 } else {
2043                         event_sched_out(event, cpuctx, ctx);
2044                 }
2045         }
2046         event_sched_out(group_event, cpuctx, ctx);
2047
2048         pmu->cancel_txn(pmu);
2049
2050         perf_mux_hrtimer_restart(cpuctx);
2051
2052         return -EAGAIN;
2053 }
2054
2055 /*
2056  * Work out whether we can put this event group on the CPU now.
2057  */
2058 static int group_can_go_on(struct perf_event *event,
2059                            struct perf_cpu_context *cpuctx,
2060                            int can_add_hw)
2061 {
2062         /*
2063          * Groups consisting entirely of software events can always go on.
2064          */
2065         if (event->group_flags & PERF_GROUP_SOFTWARE)
2066                 return 1;
2067         /*
2068          * If an exclusive group is already on, no other hardware
2069          * events can go on.
2070          */
2071         if (cpuctx->exclusive)
2072                 return 0;
2073         /*
2074          * If this group is exclusive and there are already
2075          * events on the CPU, it can't go on.
2076          */
2077         if (event->attr.exclusive && cpuctx->active_oncpu)
2078                 return 0;
2079         /*
2080          * Otherwise, try to add it if all previous groups were able
2081          * to go on.
2082          */
2083         return can_add_hw;
2084 }
2085
2086 static void add_event_to_ctx(struct perf_event *event,
2087                                struct perf_event_context *ctx)
2088 {
2089         u64 tstamp = perf_event_time(event);
2090
2091         list_add_event(event, ctx);
2092         perf_group_attach(event);
2093         event->tstamp_enabled = tstamp;
2094         event->tstamp_running = tstamp;
2095         event->tstamp_stopped = tstamp;
2096 }
2097
2098 static void ctx_sched_out(struct perf_event_context *ctx,
2099                           struct perf_cpu_context *cpuctx,
2100                           enum event_type_t event_type);
2101 static void
2102 ctx_sched_in(struct perf_event_context *ctx,
2103              struct perf_cpu_context *cpuctx,
2104              enum event_type_t event_type,
2105              struct task_struct *task);
2106
2107 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2108                                struct perf_event_context *ctx)
2109 {
2110         if (!cpuctx->task_ctx)
2111                 return;
2112
2113         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2114                 return;
2115
2116         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2117 }
2118
2119 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2120                                 struct perf_event_context *ctx,
2121                                 struct task_struct *task)
2122 {
2123         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2124         if (ctx)
2125                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2126         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2127         if (ctx)
2128                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2129 }
2130
2131 static void ctx_resched(struct perf_cpu_context *cpuctx,
2132                         struct perf_event_context *task_ctx)
2133 {
2134         perf_pmu_disable(cpuctx->ctx.pmu);
2135         if (task_ctx)
2136                 task_ctx_sched_out(cpuctx, task_ctx);
2137         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2138         perf_event_sched_in(cpuctx, task_ctx, current);
2139         perf_pmu_enable(cpuctx->ctx.pmu);
2140 }
2141
2142 /*
2143  * Cross CPU call to install and enable a performance event
2144  *
2145  * Very similar to remote_function() + event_function() but cannot assume that
2146  * things like ctx->is_active and cpuctx->task_ctx are set.
2147  */
2148 static int  __perf_install_in_context(void *info)
2149 {
2150         struct perf_event *event = info;
2151         struct perf_event_context *ctx = event->ctx;
2152         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2153         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2154         bool activate = true;
2155         int ret = 0;
2156
2157         raw_spin_lock(&cpuctx->ctx.lock);
2158         if (ctx->task) {
2159                 raw_spin_lock(&ctx->lock);
2160                 task_ctx = ctx;
2161
2162                 /* If we're on the wrong CPU, try again */
2163                 if (task_cpu(ctx->task) != smp_processor_id()) {
2164                         ret = -ESRCH;
2165                         goto unlock;
2166                 }
2167
2168                 /*
2169                  * If we're on the right CPU, see if the task we target is
2170                  * current, if not we don't have to activate the ctx, a future
2171                  * context switch will do that for us.
2172                  */
2173                 if (ctx->task != current)
2174                         activate = false;
2175                 else
2176                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2177
2178         } else if (task_ctx) {
2179                 raw_spin_lock(&task_ctx->lock);
2180         }
2181
2182         if (activate) {
2183                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2184                 add_event_to_ctx(event, ctx);
2185                 ctx_resched(cpuctx, task_ctx);
2186         } else {
2187                 add_event_to_ctx(event, ctx);
2188         }
2189
2190 unlock:
2191         perf_ctx_unlock(cpuctx, task_ctx);
2192
2193         return ret;
2194 }
2195
2196 /*
2197  * Attach a performance event to a context.
2198  *
2199  * Very similar to event_function_call, see comment there.
2200  */
2201 static void
2202 perf_install_in_context(struct perf_event_context *ctx,
2203                         struct perf_event *event,
2204                         int cpu)
2205 {
2206         struct task_struct *task = READ_ONCE(ctx->task);
2207
2208         lockdep_assert_held(&ctx->mutex);
2209
2210         event->ctx = ctx;
2211         if (event->cpu != -1)
2212                 event->cpu = cpu;
2213
2214         if (!task) {
2215                 cpu_function_call(cpu, __perf_install_in_context, event);
2216                 return;
2217         }
2218
2219         /*
2220          * Should not happen, we validate the ctx is still alive before calling.
2221          */
2222         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2223                 return;
2224
2225         /*
2226          * Installing events is tricky because we cannot rely on ctx->is_active
2227          * to be set in case this is the nr_events 0 -> 1 transition.
2228          */
2229 again:
2230         /*
2231          * Cannot use task_function_call() because we need to run on the task's
2232          * CPU regardless of whether its current or not.
2233          */
2234         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2235                 return;
2236
2237         raw_spin_lock_irq(&ctx->lock);
2238         task = ctx->task;
2239         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2240                 /*
2241                  * Cannot happen because we already checked above (which also
2242                  * cannot happen), and we hold ctx->mutex, which serializes us
2243                  * against perf_event_exit_task_context().
2244                  */
2245                 raw_spin_unlock_irq(&ctx->lock);
2246                 return;
2247         }
2248         raw_spin_unlock_irq(&ctx->lock);
2249         /*
2250          * Since !ctx->is_active doesn't mean anything, we must IPI
2251          * unconditionally.
2252          */
2253         goto again;
2254 }
2255
2256 /*
2257  * Put a event into inactive state and update time fields.
2258  * Enabling the leader of a group effectively enables all
2259  * the group members that aren't explicitly disabled, so we
2260  * have to update their ->tstamp_enabled also.
2261  * Note: this works for group members as well as group leaders
2262  * since the non-leader members' sibling_lists will be empty.
2263  */
2264 static void __perf_event_mark_enabled(struct perf_event *event)
2265 {
2266         struct perf_event *sub;
2267         u64 tstamp = perf_event_time(event);
2268
2269         event->state = PERF_EVENT_STATE_INACTIVE;
2270         event->tstamp_enabled = tstamp - event->total_time_enabled;
2271         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2272                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2273                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2274         }
2275 }
2276
2277 /*
2278  * Cross CPU call to enable a performance event
2279  */
2280 static void __perf_event_enable(struct perf_event *event,
2281                                 struct perf_cpu_context *cpuctx,
2282                                 struct perf_event_context *ctx,
2283                                 void *info)
2284 {
2285         struct perf_event *leader = event->group_leader;
2286         struct perf_event_context *task_ctx;
2287
2288         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289             event->state <= PERF_EVENT_STATE_ERROR)
2290                 return;
2291
2292         if (ctx->is_active)
2293                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2294
2295         __perf_event_mark_enabled(event);
2296
2297         if (!ctx->is_active)
2298                 return;
2299
2300         if (!event_filter_match(event)) {
2301                 if (is_cgroup_event(event))
2302                         perf_cgroup_defer_enabled(event);
2303                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304                 return;
2305         }
2306
2307         /*
2308          * If the event is in a group and isn't the group leader,
2309          * then don't put it on unless the group is on.
2310          */
2311         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2312                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2313                 return;
2314         }
2315
2316         task_ctx = cpuctx->task_ctx;
2317         if (ctx->task)
2318                 WARN_ON_ONCE(task_ctx != ctx);
2319
2320         ctx_resched(cpuctx, task_ctx);
2321 }
2322
2323 /*
2324  * Enable a event.
2325  *
2326  * If event->ctx is a cloned context, callers must make sure that
2327  * every task struct that event->ctx->task could possibly point to
2328  * remains valid.  This condition is satisfied when called through
2329  * perf_event_for_each_child or perf_event_for_each as described
2330  * for perf_event_disable.
2331  */
2332 static void _perf_event_enable(struct perf_event *event)
2333 {
2334         struct perf_event_context *ctx = event->ctx;
2335
2336         raw_spin_lock_irq(&ctx->lock);
2337         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2338             event->state <  PERF_EVENT_STATE_ERROR) {
2339                 raw_spin_unlock_irq(&ctx->lock);
2340                 return;
2341         }
2342
2343         /*
2344          * If the event is in error state, clear that first.
2345          *
2346          * That way, if we see the event in error state below, we know that it
2347          * has gone back into error state, as distinct from the task having
2348          * been scheduled away before the cross-call arrived.
2349          */
2350         if (event->state == PERF_EVENT_STATE_ERROR)
2351                 event->state = PERF_EVENT_STATE_OFF;
2352         raw_spin_unlock_irq(&ctx->lock);
2353
2354         event_function_call(event, __perf_event_enable, NULL);
2355 }
2356
2357 /*
2358  * See perf_event_disable();
2359  */
2360 void perf_event_enable(struct perf_event *event)
2361 {
2362         struct perf_event_context *ctx;
2363
2364         ctx = perf_event_ctx_lock(event);
2365         _perf_event_enable(event);
2366         perf_event_ctx_unlock(event, ctx);
2367 }
2368 EXPORT_SYMBOL_GPL(perf_event_enable);
2369
2370 struct stop_event_data {
2371         struct perf_event       *event;
2372         unsigned int            restart;
2373 };
2374
2375 static int __perf_event_stop(void *info)
2376 {
2377         struct stop_event_data *sd = info;
2378         struct perf_event *event = sd->event;
2379
2380         /* if it's already INACTIVE, do nothing */
2381         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2382                 return 0;
2383
2384         /* matches smp_wmb() in event_sched_in() */
2385         smp_rmb();
2386
2387         /*
2388          * There is a window with interrupts enabled before we get here,
2389          * so we need to check again lest we try to stop another CPU's event.
2390          */
2391         if (READ_ONCE(event->oncpu) != smp_processor_id())
2392                 return -EAGAIN;
2393
2394         event->pmu->stop(event, PERF_EF_UPDATE);
2395
2396         /*
2397          * May race with the actual stop (through perf_pmu_output_stop()),
2398          * but it is only used for events with AUX ring buffer, and such
2399          * events will refuse to restart because of rb::aux_mmap_count==0,
2400          * see comments in perf_aux_output_begin().
2401          *
2402          * Since this is happening on a event-local CPU, no trace is lost
2403          * while restarting.
2404          */
2405         if (sd->restart)
2406                 event->pmu->start(event, PERF_EF_START);
2407
2408         return 0;
2409 }
2410
2411 static int perf_event_restart(struct perf_event *event)
2412 {
2413         struct stop_event_data sd = {
2414                 .event          = event,
2415                 .restart        = 1,
2416         };
2417         int ret = 0;
2418
2419         do {
2420                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2421                         return 0;
2422
2423                 /* matches smp_wmb() in event_sched_in() */
2424                 smp_rmb();
2425
2426                 /*
2427                  * We only want to restart ACTIVE events, so if the event goes
2428                  * inactive here (event->oncpu==-1), there's nothing more to do;
2429                  * fall through with ret==-ENXIO.
2430                  */
2431                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2432                                         __perf_event_stop, &sd);
2433         } while (ret == -EAGAIN);
2434
2435         return ret;
2436 }
2437
2438 /*
2439  * In order to contain the amount of racy and tricky in the address filter
2440  * configuration management, it is a two part process:
2441  *
2442  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2443  *      we update the addresses of corresponding vmas in
2444  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2445  * (p2) when an event is scheduled in (pmu::add), it calls
2446  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2447  *      if the generation has changed since the previous call.
2448  *
2449  * If (p1) happens while the event is active, we restart it to force (p2).
2450  *
2451  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2452  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2453  *     ioctl;
2454  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2455  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2456  *     for reading;
2457  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2458  *     of exec.
2459  */
2460 void perf_event_addr_filters_sync(struct perf_event *event)
2461 {
2462         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2463
2464         if (!has_addr_filter(event))
2465                 return;
2466
2467         raw_spin_lock(&ifh->lock);
2468         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2469                 event->pmu->addr_filters_sync(event);
2470                 event->hw.addr_filters_gen = event->addr_filters_gen;
2471         }
2472         raw_spin_unlock(&ifh->lock);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2475
2476 static int _perf_event_refresh(struct perf_event *event, int refresh)
2477 {
2478         /*
2479          * not supported on inherited events
2480          */
2481         if (event->attr.inherit || !is_sampling_event(event))
2482                 return -EINVAL;
2483
2484         atomic_add(refresh, &event->event_limit);
2485         _perf_event_enable(event);
2486
2487         return 0;
2488 }
2489
2490 /*
2491  * See perf_event_disable()
2492  */
2493 int perf_event_refresh(struct perf_event *event, int refresh)
2494 {
2495         struct perf_event_context *ctx;
2496         int ret;
2497
2498         ctx = perf_event_ctx_lock(event);
2499         ret = _perf_event_refresh(event, refresh);
2500         perf_event_ctx_unlock(event, ctx);
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_refresh);
2505
2506 static void ctx_sched_out(struct perf_event_context *ctx,
2507                           struct perf_cpu_context *cpuctx,
2508                           enum event_type_t event_type)
2509 {
2510         int is_active = ctx->is_active;
2511         struct perf_event *event;
2512
2513         lockdep_assert_held(&ctx->lock);
2514
2515         if (likely(!ctx->nr_events)) {
2516                 /*
2517                  * See __perf_remove_from_context().
2518                  */
2519                 WARN_ON_ONCE(ctx->is_active);
2520                 if (ctx->task)
2521                         WARN_ON_ONCE(cpuctx->task_ctx);
2522                 return;
2523         }
2524
2525         ctx->is_active &= ~event_type;
2526         if (!(ctx->is_active & EVENT_ALL))
2527                 ctx->is_active = 0;
2528
2529         if (ctx->task) {
2530                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531                 if (!ctx->is_active)
2532                         cpuctx->task_ctx = NULL;
2533         }
2534
2535         /*
2536          * Always update time if it was set; not only when it changes.
2537          * Otherwise we can 'forget' to update time for any but the last
2538          * context we sched out. For example:
2539          *
2540          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2541          *   ctx_sched_out(.event_type = EVENT_PINNED)
2542          *
2543          * would only update time for the pinned events.
2544          */
2545         if (is_active & EVENT_TIME) {
2546                 /* update (and stop) ctx time */
2547                 update_context_time(ctx);
2548                 update_cgrp_time_from_cpuctx(cpuctx);
2549         }
2550
2551         is_active ^= ctx->is_active; /* changed bits */
2552
2553         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2554                 return;
2555
2556         perf_pmu_disable(ctx->pmu);
2557         if (is_active & EVENT_PINNED) {
2558                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2559                         group_sched_out(event, cpuctx, ctx);
2560         }
2561
2562         if (is_active & EVENT_FLEXIBLE) {
2563                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2564                         group_sched_out(event, cpuctx, ctx);
2565         }
2566         perf_pmu_enable(ctx->pmu);
2567 }
2568
2569 /*
2570  * Test whether two contexts are equivalent, i.e. whether they have both been
2571  * cloned from the same version of the same context.
2572  *
2573  * Equivalence is measured using a generation number in the context that is
2574  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2575  * and list_del_event().
2576  */
2577 static int context_equiv(struct perf_event_context *ctx1,
2578                          struct perf_event_context *ctx2)
2579 {
2580         lockdep_assert_held(&ctx1->lock);
2581         lockdep_assert_held(&ctx2->lock);
2582
2583         /* Pinning disables the swap optimization */
2584         if (ctx1->pin_count || ctx2->pin_count)
2585                 return 0;
2586
2587         /* If ctx1 is the parent of ctx2 */
2588         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2589                 return 1;
2590
2591         /* If ctx2 is the parent of ctx1 */
2592         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2593                 return 1;
2594
2595         /*
2596          * If ctx1 and ctx2 have the same parent; we flatten the parent
2597          * hierarchy, see perf_event_init_context().
2598          */
2599         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2600                         ctx1->parent_gen == ctx2->parent_gen)
2601                 return 1;
2602
2603         /* Unmatched */
2604         return 0;
2605 }
2606
2607 static void __perf_event_sync_stat(struct perf_event *event,
2608                                      struct perf_event *next_event)
2609 {
2610         u64 value;
2611
2612         if (!event->attr.inherit_stat)
2613                 return;
2614
2615         /*
2616          * Update the event value, we cannot use perf_event_read()
2617          * because we're in the middle of a context switch and have IRQs
2618          * disabled, which upsets smp_call_function_single(), however
2619          * we know the event must be on the current CPU, therefore we
2620          * don't need to use it.
2621          */
2622         switch (event->state) {
2623         case PERF_EVENT_STATE_ACTIVE:
2624                 event->pmu->read(event);
2625                 /* fall-through */
2626
2627         case PERF_EVENT_STATE_INACTIVE:
2628                 update_event_times(event);
2629                 break;
2630
2631         default:
2632                 break;
2633         }
2634
2635         /*
2636          * In order to keep per-task stats reliable we need to flip the event
2637          * values when we flip the contexts.
2638          */
2639         value = local64_read(&next_event->count);
2640         value = local64_xchg(&event->count, value);
2641         local64_set(&next_event->count, value);
2642
2643         swap(event->total_time_enabled, next_event->total_time_enabled);
2644         swap(event->total_time_running, next_event->total_time_running);
2645
2646         /*
2647          * Since we swizzled the values, update the user visible data too.
2648          */
2649         perf_event_update_userpage(event);
2650         perf_event_update_userpage(next_event);
2651 }
2652
2653 static void perf_event_sync_stat(struct perf_event_context *ctx,
2654                                    struct perf_event_context *next_ctx)
2655 {
2656         struct perf_event *event, *next_event;
2657
2658         if (!ctx->nr_stat)
2659                 return;
2660
2661         update_context_time(ctx);
2662
2663         event = list_first_entry(&ctx->event_list,
2664                                    struct perf_event, event_entry);
2665
2666         next_event = list_first_entry(&next_ctx->event_list,
2667                                         struct perf_event, event_entry);
2668
2669         while (&event->event_entry != &ctx->event_list &&
2670                &next_event->event_entry != &next_ctx->event_list) {
2671
2672                 __perf_event_sync_stat(event, next_event);
2673
2674                 event = list_next_entry(event, event_entry);
2675                 next_event = list_next_entry(next_event, event_entry);
2676         }
2677 }
2678
2679 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2680                                          struct task_struct *next)
2681 {
2682         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2683         struct perf_event_context *next_ctx;
2684         struct perf_event_context *parent, *next_parent;
2685         struct perf_cpu_context *cpuctx;
2686         int do_switch = 1;
2687
2688         if (likely(!ctx))
2689                 return;
2690
2691         cpuctx = __get_cpu_context(ctx);
2692         if (!cpuctx->task_ctx)
2693                 return;
2694
2695         rcu_read_lock();
2696         next_ctx = next->perf_event_ctxp[ctxn];
2697         if (!next_ctx)
2698                 goto unlock;
2699
2700         parent = rcu_dereference(ctx->parent_ctx);
2701         next_parent = rcu_dereference(next_ctx->parent_ctx);
2702
2703         /* If neither context have a parent context; they cannot be clones. */
2704         if (!parent && !next_parent)
2705                 goto unlock;
2706
2707         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2708                 /*
2709                  * Looks like the two contexts are clones, so we might be
2710                  * able to optimize the context switch.  We lock both
2711                  * contexts and check that they are clones under the
2712                  * lock (including re-checking that neither has been
2713                  * uncloned in the meantime).  It doesn't matter which
2714                  * order we take the locks because no other cpu could
2715                  * be trying to lock both of these tasks.
2716                  */
2717                 raw_spin_lock(&ctx->lock);
2718                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2719                 if (context_equiv(ctx, next_ctx)) {
2720                         WRITE_ONCE(ctx->task, next);
2721                         WRITE_ONCE(next_ctx->task, task);
2722
2723                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2724
2725                         /*
2726                          * RCU_INIT_POINTER here is safe because we've not
2727                          * modified the ctx and the above modification of
2728                          * ctx->task and ctx->task_ctx_data are immaterial
2729                          * since those values are always verified under
2730                          * ctx->lock which we're now holding.
2731                          */
2732                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2733                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2734
2735                         do_switch = 0;
2736
2737                         perf_event_sync_stat(ctx, next_ctx);
2738                 }
2739                 raw_spin_unlock(&next_ctx->lock);
2740                 raw_spin_unlock(&ctx->lock);
2741         }
2742 unlock:
2743         rcu_read_unlock();
2744
2745         if (do_switch) {
2746                 raw_spin_lock(&ctx->lock);
2747                 task_ctx_sched_out(cpuctx, ctx);
2748                 raw_spin_unlock(&ctx->lock);
2749         }
2750 }
2751
2752 void perf_sched_cb_dec(struct pmu *pmu)
2753 {
2754         this_cpu_dec(perf_sched_cb_usages);
2755 }
2756
2757 void perf_sched_cb_inc(struct pmu *pmu)
2758 {
2759         this_cpu_inc(perf_sched_cb_usages);
2760 }
2761
2762 /*
2763  * This function provides the context switch callback to the lower code
2764  * layer. It is invoked ONLY when the context switch callback is enabled.
2765  */
2766 static void perf_pmu_sched_task(struct task_struct *prev,
2767                                 struct task_struct *next,
2768                                 bool sched_in)
2769 {
2770         struct perf_cpu_context *cpuctx;
2771         struct pmu *pmu;
2772         unsigned long flags;
2773
2774         if (prev == next)
2775                 return;
2776
2777         local_irq_save(flags);
2778
2779         rcu_read_lock();
2780
2781         list_for_each_entry_rcu(pmu, &pmus, entry) {
2782                 if (pmu->sched_task) {
2783                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2784
2785                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2786
2787                         perf_pmu_disable(pmu);
2788
2789                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2790
2791                         perf_pmu_enable(pmu);
2792
2793                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2794                 }
2795         }
2796
2797         rcu_read_unlock();
2798
2799         local_irq_restore(flags);
2800 }
2801
2802 static void perf_event_switch(struct task_struct *task,
2803                               struct task_struct *next_prev, bool sched_in);
2804
2805 #define for_each_task_context_nr(ctxn)                                  \
2806         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2807
2808 /*
2809  * Called from scheduler to remove the events of the current task,
2810  * with interrupts disabled.
2811  *
2812  * We stop each event and update the event value in event->count.
2813  *
2814  * This does not protect us against NMI, but disable()
2815  * sets the disabled bit in the control field of event _before_
2816  * accessing the event control register. If a NMI hits, then it will
2817  * not restart the event.
2818  */
2819 void __perf_event_task_sched_out(struct task_struct *task,
2820                                  struct task_struct *next)
2821 {
2822         int ctxn;
2823
2824         if (__this_cpu_read(perf_sched_cb_usages))
2825                 perf_pmu_sched_task(task, next, false);
2826
2827         if (atomic_read(&nr_switch_events))
2828                 perf_event_switch(task, next, false);
2829
2830         for_each_task_context_nr(ctxn)
2831                 perf_event_context_sched_out(task, ctxn, next);
2832
2833         /*
2834          * if cgroup events exist on this CPU, then we need
2835          * to check if we have to switch out PMU state.
2836          * cgroup event are system-wide mode only
2837          */
2838         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839                 perf_cgroup_sched_out(task, next);
2840 }
2841
2842 /*
2843  * Called with IRQs disabled
2844  */
2845 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2846                               enum event_type_t event_type)
2847 {
2848         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2849 }
2850
2851 static void
2852 ctx_pinned_sched_in(struct perf_event_context *ctx,
2853                     struct perf_cpu_context *cpuctx)
2854 {
2855         struct perf_event *event;
2856
2857         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2858                 if (event->state <= PERF_EVENT_STATE_OFF)
2859                         continue;
2860                 if (!event_filter_match(event))
2861                         continue;
2862
2863                 /* may need to reset tstamp_enabled */
2864                 if (is_cgroup_event(event))
2865                         perf_cgroup_mark_enabled(event, ctx);
2866
2867                 if (group_can_go_on(event, cpuctx, 1))
2868                         group_sched_in(event, cpuctx, ctx);
2869
2870                 /*
2871                  * If this pinned group hasn't been scheduled,
2872                  * put it in error state.
2873                  */
2874                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2875                         update_group_times(event);
2876                         event->state = PERF_EVENT_STATE_ERROR;
2877                 }
2878         }
2879 }
2880
2881 static void
2882 ctx_flexible_sched_in(struct perf_event_context *ctx,
2883                       struct perf_cpu_context *cpuctx)
2884 {
2885         struct perf_event *event;
2886         int can_add_hw = 1;
2887
2888         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2889                 /* Ignore events in OFF or ERROR state */
2890                 if (event->state <= PERF_EVENT_STATE_OFF)
2891                         continue;
2892                 /*
2893                  * Listen to the 'cpu' scheduling filter constraint
2894                  * of events:
2895                  */
2896                 if (!event_filter_match(event))
2897                         continue;
2898
2899                 /* may need to reset tstamp_enabled */
2900                 if (is_cgroup_event(event))
2901                         perf_cgroup_mark_enabled(event, ctx);
2902
2903                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2904                         if (group_sched_in(event, cpuctx, ctx))
2905                                 can_add_hw = 0;
2906                 }
2907         }
2908 }
2909
2910 static void
2911 ctx_sched_in(struct perf_event_context *ctx,
2912              struct perf_cpu_context *cpuctx,
2913              enum event_type_t event_type,
2914              struct task_struct *task)
2915 {
2916         int is_active = ctx->is_active;
2917         u64 now;
2918
2919         lockdep_assert_held(&ctx->lock);
2920
2921         if (likely(!ctx->nr_events))
2922                 return;
2923
2924         ctx->is_active |= (event_type | EVENT_TIME);
2925         if (ctx->task) {
2926                 if (!is_active)
2927                         cpuctx->task_ctx = ctx;
2928                 else
2929                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930         }
2931
2932         is_active ^= ctx->is_active; /* changed bits */
2933
2934         if (is_active & EVENT_TIME) {
2935                 /* start ctx time */
2936                 now = perf_clock();
2937                 ctx->timestamp = now;
2938                 perf_cgroup_set_timestamp(task, ctx);
2939         }
2940
2941         /*
2942          * First go through the list and put on any pinned groups
2943          * in order to give them the best chance of going on.
2944          */
2945         if (is_active & EVENT_PINNED)
2946                 ctx_pinned_sched_in(ctx, cpuctx);
2947
2948         /* Then walk through the lower prio flexible groups */
2949         if (is_active & EVENT_FLEXIBLE)
2950                 ctx_flexible_sched_in(ctx, cpuctx);
2951 }
2952
2953 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2954                              enum event_type_t event_type,
2955                              struct task_struct *task)
2956 {
2957         struct perf_event_context *ctx = &cpuctx->ctx;
2958
2959         ctx_sched_in(ctx, cpuctx, event_type, task);
2960 }
2961
2962 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2963                                         struct task_struct *task)
2964 {
2965         struct perf_cpu_context *cpuctx;
2966
2967         cpuctx = __get_cpu_context(ctx);
2968         if (cpuctx->task_ctx == ctx)
2969                 return;
2970
2971         perf_ctx_lock(cpuctx, ctx);
2972         perf_pmu_disable(ctx->pmu);
2973         /*
2974          * We want to keep the following priority order:
2975          * cpu pinned (that don't need to move), task pinned,
2976          * cpu flexible, task flexible.
2977          */
2978         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2979         perf_event_sched_in(cpuctx, ctx, task);
2980         perf_pmu_enable(ctx->pmu);
2981         perf_ctx_unlock(cpuctx, ctx);
2982 }
2983
2984 /*
2985  * Called from scheduler to add the events of the current task
2986  * with interrupts disabled.
2987  *
2988  * We restore the event value and then enable it.
2989  *
2990  * This does not protect us against NMI, but enable()
2991  * sets the enabled bit in the control field of event _before_
2992  * accessing the event control register. If a NMI hits, then it will
2993  * keep the event running.
2994  */
2995 void __perf_event_task_sched_in(struct task_struct *prev,
2996                                 struct task_struct *task)
2997 {
2998         struct perf_event_context *ctx;
2999         int ctxn;
3000
3001         /*
3002          * If cgroup events exist on this CPU, then we need to check if we have
3003          * to switch in PMU state; cgroup event are system-wide mode only.
3004          *
3005          * Since cgroup events are CPU events, we must schedule these in before
3006          * we schedule in the task events.
3007          */
3008         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009                 perf_cgroup_sched_in(prev, task);
3010
3011         for_each_task_context_nr(ctxn) {
3012                 ctx = task->perf_event_ctxp[ctxn];
3013                 if (likely(!ctx))
3014                         continue;
3015
3016                 perf_event_context_sched_in(ctx, task);
3017         }
3018
3019         if (atomic_read(&nr_switch_events))
3020                 perf_event_switch(task, prev, true);
3021
3022         if (__this_cpu_read(perf_sched_cb_usages))
3023                 perf_pmu_sched_task(prev, task, true);
3024 }
3025
3026 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3027 {
3028         u64 frequency = event->attr.sample_freq;
3029         u64 sec = NSEC_PER_SEC;
3030         u64 divisor, dividend;
3031
3032         int count_fls, nsec_fls, frequency_fls, sec_fls;
3033
3034         count_fls = fls64(count);
3035         nsec_fls = fls64(nsec);
3036         frequency_fls = fls64(frequency);
3037         sec_fls = 30;
3038
3039         /*
3040          * We got @count in @nsec, with a target of sample_freq HZ
3041          * the target period becomes:
3042          *
3043          *             @count * 10^9
3044          * period = -------------------
3045          *          @nsec * sample_freq
3046          *
3047          */
3048
3049         /*
3050          * Reduce accuracy by one bit such that @a and @b converge
3051          * to a similar magnitude.
3052          */
3053 #define REDUCE_FLS(a, b)                \
3054 do {                                    \
3055         if (a##_fls > b##_fls) {        \
3056                 a >>= 1;                \
3057                 a##_fls--;              \
3058         } else {                        \
3059                 b >>= 1;                \
3060                 b##_fls--;              \
3061         }                               \
3062 } while (0)
3063
3064         /*
3065          * Reduce accuracy until either term fits in a u64, then proceed with
3066          * the other, so that finally we can do a u64/u64 division.
3067          */
3068         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3069                 REDUCE_FLS(nsec, frequency);
3070                 REDUCE_FLS(sec, count);
3071         }
3072
3073         if (count_fls + sec_fls > 64) {
3074                 divisor = nsec * frequency;
3075
3076                 while (count_fls + sec_fls > 64) {
3077                         REDUCE_FLS(count, sec);
3078                         divisor >>= 1;
3079                 }
3080
3081                 dividend = count * sec;
3082         } else {
3083                 dividend = count * sec;
3084
3085                 while (nsec_fls + frequency_fls > 64) {
3086                         REDUCE_FLS(nsec, frequency);
3087                         dividend >>= 1;
3088                 }
3089
3090                 divisor = nsec * frequency;
3091         }
3092
3093         if (!divisor)
3094                 return dividend;
3095
3096         return div64_u64(dividend, divisor);
3097 }
3098
3099 static DEFINE_PER_CPU(int, perf_throttled_count);
3100 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3101
3102 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3103 {
3104         struct hw_perf_event *hwc = &event->hw;
3105         s64 period, sample_period;
3106         s64 delta;
3107
3108         period = perf_calculate_period(event, nsec, count);
3109
3110         delta = (s64)(period - hwc->sample_period);
3111         delta = (delta + 7) / 8; /* low pass filter */
3112
3113         sample_period = hwc->sample_period + delta;
3114
3115         if (!sample_period)
3116                 sample_period = 1;
3117
3118         hwc->sample_period = sample_period;
3119
3120         if (local64_read(&hwc->period_left) > 8*sample_period) {
3121                 if (disable)
3122                         event->pmu->stop(event, PERF_EF_UPDATE);
3123
3124                 local64_set(&hwc->period_left, 0);
3125
3126                 if (disable)
3127                         event->pmu->start(event, PERF_EF_RELOAD);
3128         }
3129 }
3130
3131 /*
3132  * combine freq adjustment with unthrottling to avoid two passes over the
3133  * events. At the same time, make sure, having freq events does not change
3134  * the rate of unthrottling as that would introduce bias.
3135  */
3136 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3137                                            int needs_unthr)
3138 {
3139         struct perf_event *event;
3140         struct hw_perf_event *hwc;
3141         u64 now, period = TICK_NSEC;
3142         s64 delta;
3143
3144         /*
3145          * only need to iterate over all events iff:
3146          * - context have events in frequency mode (needs freq adjust)
3147          * - there are events to unthrottle on this cpu
3148          */
3149         if (!(ctx->nr_freq || needs_unthr))
3150                 return;
3151
3152         raw_spin_lock(&ctx->lock);
3153         perf_pmu_disable(ctx->pmu);
3154
3155         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3156                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3157                         continue;
3158
3159                 if (!event_filter_match(event))
3160                         continue;
3161
3162                 perf_pmu_disable(event->pmu);
3163
3164                 hwc = &event->hw;
3165
3166                 if (hwc->interrupts == MAX_INTERRUPTS) {
3167                         hwc->interrupts = 0;
3168                         perf_log_throttle(event, 1);
3169                         event->pmu->start(event, 0);
3170                 }
3171
3172                 if (!event->attr.freq || !event->attr.sample_freq)
3173                         goto next;
3174
3175                 /*
3176                  * stop the event and update event->count
3177                  */
3178                 event->pmu->stop(event, PERF_EF_UPDATE);
3179
3180                 now = local64_read(&event->count);
3181                 delta = now - hwc->freq_count_stamp;
3182                 hwc->freq_count_stamp = now;
3183
3184                 /*
3185                  * restart the event
3186                  * reload only if value has changed
3187                  * we have stopped the event so tell that
3188                  * to perf_adjust_period() to avoid stopping it
3189                  * twice.
3190                  */
3191                 if (delta > 0)
3192                         perf_adjust_period(event, period, delta, false);
3193
3194                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3195         next:
3196                 perf_pmu_enable(event->pmu);
3197         }
3198
3199         perf_pmu_enable(ctx->pmu);
3200         raw_spin_unlock(&ctx->lock);
3201 }
3202
3203 /*
3204  * Round-robin a context's events:
3205  */
3206 static void rotate_ctx(struct perf_event_context *ctx)
3207 {
3208         /*
3209          * Rotate the first entry last of non-pinned groups. Rotation might be
3210          * disabled by the inheritance code.
3211          */
3212         if (!ctx->rotate_disable)
3213                 list_rotate_left(&ctx->flexible_groups);
3214 }
3215
3216 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3217 {
3218         struct perf_event_context *ctx = NULL;
3219         int rotate = 0;
3220
3221         if (cpuctx->ctx.nr_events) {
3222                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3223                         rotate = 1;
3224         }
3225
3226         ctx = cpuctx->task_ctx;
3227         if (ctx && ctx->nr_events) {
3228                 if (ctx->nr_events != ctx->nr_active)
3229                         rotate = 1;
3230         }
3231
3232         if (!rotate)
3233                 goto done;
3234
3235         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3236         perf_pmu_disable(cpuctx->ctx.pmu);
3237
3238         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3239         if (ctx)
3240                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3241
3242         rotate_ctx(&cpuctx->ctx);
3243         if (ctx)
3244                 rotate_ctx(ctx);
3245
3246         perf_event_sched_in(cpuctx, ctx, current);
3247
3248         perf_pmu_enable(cpuctx->ctx.pmu);
3249         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3250 done:
3251
3252         return rotate;
3253 }
3254
3255 void perf_event_task_tick(void)
3256 {
3257         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3258         struct perf_event_context *ctx, *tmp;
3259         int throttled;
3260
3261         WARN_ON(!irqs_disabled());
3262
3263         __this_cpu_inc(perf_throttled_seq);
3264         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3265         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3266
3267         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3268                 perf_adjust_freq_unthr_context(ctx, throttled);
3269 }
3270
3271 static int event_enable_on_exec(struct perf_event *event,
3272                                 struct perf_event_context *ctx)
3273 {
3274         if (!event->attr.enable_on_exec)
3275                 return 0;
3276
3277         event->attr.enable_on_exec = 0;
3278         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3279                 return 0;
3280
3281         __perf_event_mark_enabled(event);
3282
3283         return 1;
3284 }
3285
3286 /*
3287  * Enable all of a task's events that have been marked enable-on-exec.
3288  * This expects task == current.
3289  */
3290 static void perf_event_enable_on_exec(int ctxn)
3291 {
3292         struct perf_event_context *ctx, *clone_ctx = NULL;
3293         struct perf_cpu_context *cpuctx;
3294         struct perf_event *event;
3295         unsigned long flags;
3296         int enabled = 0;
3297
3298         local_irq_save(flags);
3299         ctx = current->perf_event_ctxp[ctxn];
3300         if (!ctx || !ctx->nr_events)
3301                 goto out;
3302
3303         cpuctx = __get_cpu_context(ctx);
3304         perf_ctx_lock(cpuctx, ctx);
3305         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3306         list_for_each_entry(event, &ctx->event_list, event_entry)
3307                 enabled |= event_enable_on_exec(event, ctx);
3308
3309         /*
3310          * Unclone and reschedule this context if we enabled any event.
3311          */
3312         if (enabled) {
3313                 clone_ctx = unclone_ctx(ctx);
3314                 ctx_resched(cpuctx, ctx);
3315         }
3316         perf_ctx_unlock(cpuctx, ctx);
3317
3318 out:
3319         local_irq_restore(flags);
3320
3321         if (clone_ctx)
3322                 put_ctx(clone_ctx);
3323 }
3324
3325 struct perf_read_data {
3326         struct perf_event *event;
3327         bool group;
3328         int ret;
3329 };
3330
3331 /*
3332  * Cross CPU call to read the hardware event
3333  */
3334 static void __perf_event_read(void *info)
3335 {
3336         struct perf_read_data *data = info;
3337         struct perf_event *sub, *event = data->event;
3338         struct perf_event_context *ctx = event->ctx;
3339         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3340         struct pmu *pmu = event->pmu;
3341
3342         /*
3343          * If this is a task context, we need to check whether it is
3344          * the current task context of this cpu.  If not it has been
3345          * scheduled out before the smp call arrived.  In that case
3346          * event->count would have been updated to a recent sample
3347          * when the event was scheduled out.
3348          */
3349         if (ctx->task && cpuctx->task_ctx != ctx)
3350                 return;
3351
3352         raw_spin_lock(&ctx->lock);
3353         if (ctx->is_active) {
3354                 update_context_time(ctx);
3355                 update_cgrp_time_from_event(event);
3356         }
3357
3358         update_event_times(event);
3359         if (event->state != PERF_EVENT_STATE_ACTIVE)
3360                 goto unlock;
3361
3362         if (!data->group) {
3363                 pmu->read(event);
3364                 data->ret = 0;
3365                 goto unlock;
3366         }
3367
3368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3369
3370         pmu->read(event);
3371
3372         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3373                 update_event_times(sub);
3374                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3375                         /*
3376                          * Use sibling's PMU rather than @event's since
3377                          * sibling could be on different (eg: software) PMU.
3378                          */
3379                         sub->pmu->read(sub);
3380                 }
3381         }
3382
3383         data->ret = pmu->commit_txn(pmu);
3384
3385 unlock:
3386         raw_spin_unlock(&ctx->lock);
3387 }
3388
3389 static inline u64 perf_event_count(struct perf_event *event)
3390 {
3391         if (event->pmu->count)
3392                 return event->pmu->count(event);
3393
3394         return __perf_event_count(event);
3395 }
3396
3397 /*
3398  * NMI-safe method to read a local event, that is an event that
3399  * is:
3400  *   - either for the current task, or for this CPU
3401  *   - does not have inherit set, for inherited task events
3402  *     will not be local and we cannot read them atomically
3403  *   - must not have a pmu::count method
3404  */
3405 u64 perf_event_read_local(struct perf_event *event)
3406 {
3407         unsigned long flags;
3408         u64 val;
3409
3410         /*
3411          * Disabling interrupts avoids all counter scheduling (context
3412          * switches, timer based rotation and IPIs).
3413          */
3414         local_irq_save(flags);
3415
3416         /* If this is a per-task event, it must be for current */
3417         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3418                      event->hw.target != current);
3419
3420         /* If this is a per-CPU event, it must be for this CPU */
3421         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3422                      event->cpu != smp_processor_id());
3423
3424         /*
3425          * It must not be an event with inherit set, we cannot read
3426          * all child counters from atomic context.
3427          */
3428         WARN_ON_ONCE(event->attr.inherit);
3429
3430         /*
3431          * It must not have a pmu::count method, those are not
3432          * NMI safe.
3433          */
3434         WARN_ON_ONCE(event->pmu->count);
3435
3436         /*
3437          * If the event is currently on this CPU, its either a per-task event,
3438          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3439          * oncpu == -1).
3440          */
3441         if (event->oncpu == smp_processor_id())
3442                 event->pmu->read(event);
3443
3444         val = local64_read(&event->count);
3445         local_irq_restore(flags);
3446
3447         return val;
3448 }
3449
3450 static int perf_event_read(struct perf_event *event, bool group)
3451 {
3452         int ret = 0;
3453
3454         /*
3455          * If event is enabled and currently active on a CPU, update the
3456          * value in the event structure:
3457          */
3458         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3459                 struct perf_read_data data = {
3460                         .event = event,
3461                         .group = group,
3462                         .ret = 0,
3463                 };
3464                 smp_call_function_single(event->oncpu,
3465                                          __perf_event_read, &data, 1);
3466                 ret = data.ret;
3467         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3468                 struct perf_event_context *ctx = event->ctx;
3469                 unsigned long flags;
3470
3471                 raw_spin_lock_irqsave(&ctx->lock, flags);
3472                 /*
3473                  * may read while context is not active
3474                  * (e.g., thread is blocked), in that case
3475                  * we cannot update context time
3476                  */
3477                 if (ctx->is_active) {
3478                         update_context_time(ctx);
3479                         update_cgrp_time_from_event(event);
3480                 }
3481                 if (group)
3482                         update_group_times(event);
3483                 else
3484                         update_event_times(event);
3485                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3486         }
3487
3488         return ret;
3489 }
3490
3491 /*
3492  * Initialize the perf_event context in a task_struct:
3493  */
3494 static void __perf_event_init_context(struct perf_event_context *ctx)
3495 {
3496         raw_spin_lock_init(&ctx->lock);
3497         mutex_init(&ctx->mutex);
3498         INIT_LIST_HEAD(&ctx->active_ctx_list);
3499         INIT_LIST_HEAD(&ctx->pinned_groups);
3500         INIT_LIST_HEAD(&ctx->flexible_groups);
3501         INIT_LIST_HEAD(&ctx->event_list);
3502         atomic_set(&ctx->refcount, 1);
3503 }
3504
3505 static struct perf_event_context *
3506 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3507 {
3508         struct perf_event_context *ctx;
3509
3510         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3511         if (!ctx)
3512                 return NULL;
3513
3514         __perf_event_init_context(ctx);
3515         if (task) {
3516                 ctx->task = task;
3517                 get_task_struct(task);
3518         }
3519         ctx->pmu = pmu;
3520
3521         return ctx;
3522 }
3523
3524 static struct task_struct *
3525 find_lively_task_by_vpid(pid_t vpid)
3526 {
3527         struct task_struct *task;
3528
3529         rcu_read_lock();
3530         if (!vpid)
3531                 task = current;
3532         else
3533                 task = find_task_by_vpid(vpid);
3534         if (task)
3535                 get_task_struct(task);
3536         rcu_read_unlock();
3537
3538         if (!task)
3539                 return ERR_PTR(-ESRCH);
3540
3541         return task;
3542 }
3543
3544 /*
3545  * Returns a matching context with refcount and pincount.
3546  */
3547 static struct perf_event_context *
3548 find_get_context(struct pmu *pmu, struct task_struct *task,
3549                 struct perf_event *event)
3550 {
3551         struct perf_event_context *ctx, *clone_ctx = NULL;
3552         struct perf_cpu_context *cpuctx;
3553         void *task_ctx_data = NULL;
3554         unsigned long flags;
3555         int ctxn, err;
3556         int cpu = event->cpu;
3557
3558         if (!task) {
3559                 /* Must be root to operate on a CPU event: */
3560                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3561                         return ERR_PTR(-EACCES);
3562
3563                 /*
3564                  * We could be clever and allow to attach a event to an
3565                  * offline CPU and activate it when the CPU comes up, but
3566                  * that's for later.
3567                  */
3568                 if (!cpu_online(cpu))
3569                         return ERR_PTR(-ENODEV);
3570
3571                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3572                 ctx = &cpuctx->ctx;
3573                 get_ctx(ctx);
3574                 ++ctx->pin_count;
3575
3576                 return ctx;
3577         }
3578
3579         err = -EINVAL;
3580         ctxn = pmu->task_ctx_nr;
3581         if (ctxn < 0)
3582                 goto errout;
3583
3584         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3585                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3586                 if (!task_ctx_data) {
3587                         err = -ENOMEM;
3588                         goto errout;
3589                 }
3590         }
3591
3592 retry:
3593         ctx = perf_lock_task_context(task, ctxn, &flags);
3594         if (ctx) {
3595                 clone_ctx = unclone_ctx(ctx);
3596                 ++ctx->pin_count;
3597
3598                 if (task_ctx_data && !ctx->task_ctx_data) {
3599                         ctx->task_ctx_data = task_ctx_data;
3600                         task_ctx_data = NULL;
3601                 }
3602                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3603
3604                 if (clone_ctx)
3605                         put_ctx(clone_ctx);
3606         } else {
3607                 ctx = alloc_perf_context(pmu, task);
3608                 err = -ENOMEM;
3609                 if (!ctx)
3610                         goto errout;
3611
3612                 if (task_ctx_data) {
3613                         ctx->task_ctx_data = task_ctx_data;
3614                         task_ctx_data = NULL;
3615                 }
3616
3617                 err = 0;
3618                 mutex_lock(&task->perf_event_mutex);
3619                 /*
3620                  * If it has already passed perf_event_exit_task().
3621                  * we must see PF_EXITING, it takes this mutex too.
3622                  */
3623                 if (task->flags & PF_EXITING)
3624                         err = -ESRCH;
3625                 else if (task->perf_event_ctxp[ctxn])
3626                         err = -EAGAIN;
3627                 else {
3628                         get_ctx(ctx);
3629                         ++ctx->pin_count;
3630                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3631                 }
3632                 mutex_unlock(&task->perf_event_mutex);
3633
3634                 if (unlikely(err)) {
3635                         put_ctx(ctx);
3636
3637                         if (err == -EAGAIN)
3638                                 goto retry;
3639                         goto errout;
3640                 }
3641         }
3642
3643         kfree(task_ctx_data);
3644         return ctx;
3645
3646 errout:
3647         kfree(task_ctx_data);
3648         return ERR_PTR(err);
3649 }
3650
3651 static void perf_event_free_filter(struct perf_event *event);
3652 static void perf_event_free_bpf_prog(struct perf_event *event);
3653
3654 static void free_event_rcu(struct rcu_head *head)
3655 {
3656         struct perf_event *event;
3657
3658         event = container_of(head, struct perf_event, rcu_head);
3659         if (event->ns)
3660                 put_pid_ns(event->ns);
3661         perf_event_free_filter(event);
3662         kfree(event);
3663 }
3664
3665 static void ring_buffer_attach(struct perf_event *event,
3666                                struct ring_buffer *rb);
3667
3668 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3669 {
3670         if (event->parent)
3671                 return;
3672
3673         if (is_cgroup_event(event))
3674                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3675 }
3676
3677 #ifdef CONFIG_NO_HZ_FULL
3678 static DEFINE_SPINLOCK(nr_freq_lock);
3679 #endif
3680
3681 static void unaccount_freq_event_nohz(void)
3682 {
3683 #ifdef CONFIG_NO_HZ_FULL
3684         spin_lock(&nr_freq_lock);
3685         if (atomic_dec_and_test(&nr_freq_events))
3686                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3687         spin_unlock(&nr_freq_lock);
3688 #endif
3689 }
3690
3691 static void unaccount_freq_event(void)
3692 {
3693         if (tick_nohz_full_enabled())
3694                 unaccount_freq_event_nohz();
3695         else
3696                 atomic_dec(&nr_freq_events);
3697 }
3698
3699 static void unaccount_event(struct perf_event *event)
3700 {
3701         bool dec = false;
3702
3703         if (event->parent)
3704                 return;
3705
3706         if (event->attach_state & PERF_ATTACH_TASK)
3707                 dec = true;
3708         if (event->attr.mmap || event->attr.mmap_data)
3709                 atomic_dec(&nr_mmap_events);
3710         if (event->attr.comm)
3711                 atomic_dec(&nr_comm_events);
3712         if (event->attr.task)
3713                 atomic_dec(&nr_task_events);
3714         if (event->attr.freq)
3715                 unaccount_freq_event();
3716         if (event->attr.context_switch) {
3717                 dec = true;
3718                 atomic_dec(&nr_switch_events);
3719         }
3720         if (is_cgroup_event(event))
3721                 dec = true;
3722         if (has_branch_stack(event))
3723                 dec = true;
3724
3725         if (dec) {
3726                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3727                         schedule_delayed_work(&perf_sched_work, HZ);
3728         }
3729
3730         unaccount_event_cpu(event, event->cpu);
3731 }
3732
3733 static void perf_sched_delayed(struct work_struct *work)
3734 {
3735         mutex_lock(&perf_sched_mutex);
3736         if (atomic_dec_and_test(&perf_sched_count))
3737                 static_branch_disable(&perf_sched_events);
3738         mutex_unlock(&perf_sched_mutex);
3739 }
3740
3741 /*
3742  * The following implement mutual exclusion of events on "exclusive" pmus
3743  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3744  * at a time, so we disallow creating events that might conflict, namely:
3745  *
3746  *  1) cpu-wide events in the presence of per-task events,
3747  *  2) per-task events in the presence of cpu-wide events,
3748  *  3) two matching events on the same context.
3749  *
3750  * The former two cases are handled in the allocation path (perf_event_alloc(),
3751  * _free_event()), the latter -- before the first perf_install_in_context().
3752  */
3753 static int exclusive_event_init(struct perf_event *event)
3754 {
3755         struct pmu *pmu = event->pmu;
3756
3757         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3758                 return 0;
3759
3760         /*
3761          * Prevent co-existence of per-task and cpu-wide events on the
3762          * same exclusive pmu.
3763          *
3764          * Negative pmu::exclusive_cnt means there are cpu-wide
3765          * events on this "exclusive" pmu, positive means there are
3766          * per-task events.
3767          *
3768          * Since this is called in perf_event_alloc() path, event::ctx
3769          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3770          * to mean "per-task event", because unlike other attach states it
3771          * never gets cleared.
3772          */
3773         if (event->attach_state & PERF_ATTACH_TASK) {
3774                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3775                         return -EBUSY;
3776         } else {
3777                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3778                         return -EBUSY;
3779         }
3780
3781         return 0;
3782 }
3783
3784 static void exclusive_event_destroy(struct perf_event *event)
3785 {
3786         struct pmu *pmu = event->pmu;
3787
3788         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3789                 return;
3790
3791         /* see comment in exclusive_event_init() */
3792         if (event->attach_state & PERF_ATTACH_TASK)
3793                 atomic_dec(&pmu->exclusive_cnt);
3794         else
3795                 atomic_inc(&pmu->exclusive_cnt);
3796 }
3797
3798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3799 {
3800         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3801             (e1->cpu == e2->cpu ||
3802              e1->cpu == -1 ||
3803              e2->cpu == -1))
3804                 return true;
3805         return false;
3806 }
3807
3808 /* Called under the same ctx::mutex as perf_install_in_context() */
3809 static bool exclusive_event_installable(struct perf_event *event,
3810                                         struct perf_event_context *ctx)
3811 {
3812         struct perf_event *iter_event;
3813         struct pmu *pmu = event->pmu;
3814
3815         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3816                 return true;
3817
3818         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3819                 if (exclusive_event_match(iter_event, event))
3820                         return false;
3821         }
3822
3823         return true;
3824 }
3825
3826 static void perf_addr_filters_splice(struct perf_event *event,
3827                                        struct list_head *head);
3828
3829 static void _free_event(struct perf_event *event)
3830 {
3831         irq_work_sync(&event->pending);
3832
3833         unaccount_event(event);
3834
3835         if (event->rb) {
3836                 /*
3837                  * Can happen when we close an event with re-directed output.
3838                  *
3839                  * Since we have a 0 refcount, perf_mmap_close() will skip
3840                  * over us; possibly making our ring_buffer_put() the last.
3841                  */
3842                 mutex_lock(&event->mmap_mutex);
3843                 ring_buffer_attach(event, NULL);
3844                 mutex_unlock(&event->mmap_mutex);
3845         }
3846
3847         if (is_cgroup_event(event))
3848                 perf_detach_cgroup(event);
3849
3850         if (!event->parent) {
3851                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3852                         put_callchain_buffers();
3853         }
3854
3855         perf_event_free_bpf_prog(event);
3856         perf_addr_filters_splice(event, NULL);
3857         kfree(event->addr_filters_offs);
3858
3859         if (event->destroy)
3860                 event->destroy(event);
3861
3862         if (event->ctx)
3863                 put_ctx(event->ctx);
3864
3865         exclusive_event_destroy(event);
3866         module_put(event->pmu->module);
3867
3868         call_rcu(&event->rcu_head, free_event_rcu);
3869 }
3870
3871 /*
3872  * Used to free events which have a known refcount of 1, such as in error paths
3873  * where the event isn't exposed yet and inherited events.
3874  */
3875 static void free_event(struct perf_event *event)
3876 {
3877         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3878                                 "unexpected event refcount: %ld; ptr=%p\n",
3879                                 atomic_long_read(&event->refcount), event)) {
3880                 /* leak to avoid use-after-free */
3881                 return;
3882         }
3883
3884         _free_event(event);
3885 }
3886
3887 /*
3888  * Remove user event from the owner task.
3889  */
3890 static void perf_remove_from_owner(struct perf_event *event)
3891 {
3892         struct task_struct *owner;
3893
3894         rcu_read_lock();
3895         /*
3896          * Matches the smp_store_release() in perf_event_exit_task(). If we
3897          * observe !owner it means the list deletion is complete and we can
3898          * indeed free this event, otherwise we need to serialize on
3899          * owner->perf_event_mutex.
3900          */
3901         owner = lockless_dereference(event->owner);
3902         if (owner) {
3903                 /*
3904                  * Since delayed_put_task_struct() also drops the last
3905                  * task reference we can safely take a new reference
3906                  * while holding the rcu_read_lock().
3907                  */
3908                 get_task_struct(owner);
3909         }
3910         rcu_read_unlock();
3911
3912         if (owner) {
3913                 /*
3914                  * If we're here through perf_event_exit_task() we're already
3915                  * holding ctx->mutex which would be an inversion wrt. the
3916                  * normal lock order.
3917                  *
3918                  * However we can safely take this lock because its the child
3919                  * ctx->mutex.
3920                  */
3921                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3922
3923                 /*
3924                  * We have to re-check the event->owner field, if it is cleared
3925                  * we raced with perf_event_exit_task(), acquiring the mutex
3926                  * ensured they're done, and we can proceed with freeing the
3927                  * event.
3928                  */
3929                 if (event->owner) {
3930                         list_del_init(&event->owner_entry);
3931                         smp_store_release(&event->owner, NULL);
3932                 }
3933                 mutex_unlock(&owner->perf_event_mutex);
3934                 put_task_struct(owner);
3935         }
3936 }
3937
3938 static void put_event(struct perf_event *event)
3939 {
3940         if (!atomic_long_dec_and_test(&event->refcount))
3941                 return;
3942
3943         _free_event(event);
3944 }
3945
3946 /*
3947  * Kill an event dead; while event:refcount will preserve the event
3948  * object, it will not preserve its functionality. Once the last 'user'
3949  * gives up the object, we'll destroy the thing.
3950  */
3951 int perf_event_release_kernel(struct perf_event *event)
3952 {
3953         struct perf_event_context *ctx = event->ctx;
3954         struct perf_event *child, *tmp;
3955
3956         /*
3957          * If we got here through err_file: fput(event_file); we will not have
3958          * attached to a context yet.
3959          */
3960         if (!ctx) {
3961                 WARN_ON_ONCE(event->attach_state &
3962                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3963                 goto no_ctx;
3964         }
3965
3966         if (!is_kernel_event(event))
3967                 perf_remove_from_owner(event);
3968
3969         ctx = perf_event_ctx_lock(event);
3970         WARN_ON_ONCE(ctx->parent_ctx);
3971         perf_remove_from_context(event, DETACH_GROUP);
3972
3973         raw_spin_lock_irq(&ctx->lock);
3974         /*
3975          * Mark this even as STATE_DEAD, there is no external reference to it
3976          * anymore.
3977          *
3978          * Anybody acquiring event->child_mutex after the below loop _must_
3979          * also see this, most importantly inherit_event() which will avoid
3980          * placing more children on the list.
3981          *
3982          * Thus this guarantees that we will in fact observe and kill _ALL_
3983          * child events.
3984          */
3985         event->state = PERF_EVENT_STATE_DEAD;
3986         raw_spin_unlock_irq(&ctx->lock);
3987
3988         perf_event_ctx_unlock(event, ctx);
3989
3990 again:
3991         mutex_lock(&event->child_mutex);
3992         list_for_each_entry(child, &event->child_list, child_list) {
3993
3994                 /*
3995                  * Cannot change, child events are not migrated, see the
3996                  * comment with perf_event_ctx_lock_nested().
3997                  */
3998                 ctx = lockless_dereference(child->ctx);
3999                 /*
4000                  * Since child_mutex nests inside ctx::mutex, we must jump
4001                  * through hoops. We start by grabbing a reference on the ctx.
4002                  *
4003                  * Since the event cannot get freed while we hold the
4004                  * child_mutex, the context must also exist and have a !0
4005                  * reference count.
4006                  */
4007                 get_ctx(ctx);
4008
4009                 /*
4010                  * Now that we have a ctx ref, we can drop child_mutex, and
4011                  * acquire ctx::mutex without fear of it going away. Then we
4012                  * can re-acquire child_mutex.
4013                  */
4014                 mutex_unlock(&event->child_mutex);
4015                 mutex_lock(&ctx->mutex);
4016                 mutex_lock(&event->child_mutex);
4017
4018                 /*
4019                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4020                  * state, if child is still the first entry, it didn't get freed
4021                  * and we can continue doing so.
4022                  */
4023                 tmp = list_first_entry_or_null(&event->child_list,
4024                                                struct perf_event, child_list);
4025                 if (tmp == child) {
4026                         perf_remove_from_context(child, DETACH_GROUP);
4027                         list_del(&child->child_list);
4028                         free_event(child);
4029                         /*
4030                          * This matches the refcount bump in inherit_event();
4031                          * this can't be the last reference.
4032                          */
4033                         put_event(event);
4034                 }
4035
4036                 mutex_unlock(&event->child_mutex);
4037                 mutex_unlock(&ctx->mutex);
4038                 put_ctx(ctx);
4039                 goto again;
4040         }
4041         mutex_unlock(&event->child_mutex);
4042
4043 no_ctx:
4044         put_event(event); /* Must be the 'last' reference */
4045         return 0;
4046 }
4047 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4048
4049 /*
4050  * Called when the last reference to the file is gone.
4051  */
4052 static int perf_release(struct inode *inode, struct file *file)
4053 {
4054         perf_event_release_kernel(file->private_data);
4055         return 0;
4056 }
4057
4058 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4059 {
4060         struct perf_event *child;
4061         u64 total = 0;
4062
4063         *enabled = 0;
4064         *running = 0;
4065
4066         mutex_lock(&event->child_mutex);
4067
4068         (void)perf_event_read(event, false);
4069         total += perf_event_count(event);
4070
4071         *enabled += event->total_time_enabled +
4072                         atomic64_read(&event->child_total_time_enabled);
4073         *running += event->total_time_running +
4074                         atomic64_read(&event->child_total_time_running);
4075
4076         list_for_each_entry(child, &event->child_list, child_list) {
4077                 (void)perf_event_read(child, false);
4078                 total += perf_event_count(child);
4079                 *enabled += child->total_time_enabled;
4080                 *running += child->total_time_running;
4081         }
4082         mutex_unlock(&event->child_mutex);
4083
4084         return total;
4085 }
4086 EXPORT_SYMBOL_GPL(perf_event_read_value);
4087
4088 static int __perf_read_group_add(struct perf_event *leader,
4089                                         u64 read_format, u64 *values)
4090 {
4091         struct perf_event *sub;
4092         int n = 1; /* skip @nr */
4093         int ret;
4094
4095         ret = perf_event_read(leader, true);
4096         if (ret)
4097                 return ret;
4098
4099         /*
4100          * Since we co-schedule groups, {enabled,running} times of siblings
4101          * will be identical to those of the leader, so we only publish one
4102          * set.
4103          */
4104         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4105                 values[n++] += leader->total_time_enabled +
4106                         atomic64_read(&leader->child_total_time_enabled);
4107         }
4108
4109         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4110                 values[n++] += leader->total_time_running +
4111                         atomic64_read(&leader->child_total_time_running);
4112         }
4113
4114         /*
4115          * Write {count,id} tuples for every sibling.
4116          */
4117         values[n++] += perf_event_count(leader);
4118         if (read_format & PERF_FORMAT_ID)
4119                 values[n++] = primary_event_id(leader);
4120
4121         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4122                 values[n++] += perf_event_count(sub);
4123                 if (read_format & PERF_FORMAT_ID)
4124                         values[n++] = primary_event_id(sub);
4125         }
4126
4127         return 0;
4128 }
4129
4130 static int perf_read_group(struct perf_event *event,
4131                                    u64 read_format, char __user *buf)
4132 {
4133         struct perf_event *leader = event->group_leader, *child;
4134         struct perf_event_context *ctx = leader->ctx;
4135         int ret;
4136         u64 *values;
4137
4138         lockdep_assert_held(&ctx->mutex);
4139
4140         values = kzalloc(event->read_size, GFP_KERNEL);
4141         if (!values)
4142                 return -ENOMEM;
4143
4144         values[0] = 1 + leader->nr_siblings;
4145
4146         /*
4147          * By locking the child_mutex of the leader we effectively
4148          * lock the child list of all siblings.. XXX explain how.
4149          */
4150         mutex_lock(&leader->child_mutex);
4151
4152         ret = __perf_read_group_add(leader, read_format, values);
4153         if (ret)
4154                 goto unlock;
4155
4156         list_for_each_entry(child, &leader->child_list, child_list) {
4157                 ret = __perf_read_group_add(child, read_format, values);
4158                 if (ret)
4159                         goto unlock;
4160         }
4161
4162         mutex_unlock(&leader->child_mutex);
4163
4164         ret = event->read_size;
4165         if (copy_to_user(buf, values, event->read_size))
4166                 ret = -EFAULT;
4167         goto out;
4168
4169 unlock:
4170         mutex_unlock(&leader->child_mutex);
4171 out:
4172         kfree(values);
4173         return ret;
4174 }
4175
4176 static int perf_read_one(struct perf_event *event,
4177                                  u64 read_format, char __user *buf)
4178 {
4179         u64 enabled, running;
4180         u64 values[4];
4181         int n = 0;
4182
4183         values[n++] = perf_event_read_value(event, &enabled, &running);
4184         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4185                 values[n++] = enabled;
4186         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4187                 values[n++] = running;
4188         if (read_format & PERF_FORMAT_ID)
4189                 values[n++] = primary_event_id(event);
4190
4191         if (copy_to_user(buf, values, n * sizeof(u64)))
4192                 return -EFAULT;
4193
4194         return n * sizeof(u64);
4195 }
4196
4197 static bool is_event_hup(struct perf_event *event)
4198 {
4199         bool no_children;
4200
4201         if (event->state > PERF_EVENT_STATE_EXIT)
4202                 return false;
4203
4204         mutex_lock(&event->child_mutex);
4205         no_children = list_empty(&event->child_list);
4206         mutex_unlock(&event->child_mutex);
4207         return no_children;
4208 }
4209
4210 /*
4211  * Read the performance event - simple non blocking version for now
4212  */
4213 static ssize_t
4214 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4215 {
4216         u64 read_format = event->attr.read_format;
4217         int ret;
4218
4219         /*
4220          * Return end-of-file for a read on a event that is in
4221          * error state (i.e. because it was pinned but it couldn't be
4222          * scheduled on to the CPU at some point).
4223          */
4224         if (event->state == PERF_EVENT_STATE_ERROR)
4225                 return 0;
4226
4227         if (count < event->read_size)
4228                 return -ENOSPC;
4229
4230         WARN_ON_ONCE(event->ctx->parent_ctx);
4231         if (read_format & PERF_FORMAT_GROUP)
4232                 ret = perf_read_group(event, read_format, buf);
4233         else
4234                 ret = perf_read_one(event, read_format, buf);
4235
4236         return ret;
4237 }
4238
4239 static ssize_t
4240 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4241 {
4242         struct perf_event *event = file->private_data;
4243         struct perf_event_context *ctx;
4244         int ret;
4245
4246         ctx = perf_event_ctx_lock(event);
4247         ret = __perf_read(event, buf, count);
4248         perf_event_ctx_unlock(event, ctx);
4249
4250         return ret;
4251 }
4252
4253 static unsigned int perf_poll(struct file *file, poll_table *wait)
4254 {
4255         struct perf_event *event = file->private_data;
4256         struct ring_buffer *rb;
4257         unsigned int events = POLLHUP;
4258
4259         poll_wait(file, &event->waitq, wait);
4260
4261         if (is_event_hup(event))
4262                 return events;
4263
4264         /*
4265          * Pin the event->rb by taking event->mmap_mutex; otherwise
4266          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4267          */
4268         mutex_lock(&event->mmap_mutex);
4269         rb = event->rb;
4270         if (rb)
4271                 events = atomic_xchg(&rb->poll, 0);
4272         mutex_unlock(&event->mmap_mutex);
4273         return events;
4274 }
4275
4276 static void _perf_event_reset(struct perf_event *event)
4277 {
4278         (void)perf_event_read(event, false);
4279         local64_set(&event->count, 0);
4280         perf_event_update_userpage(event);
4281 }
4282
4283 /*
4284  * Holding the top-level event's child_mutex means that any
4285  * descendant process that has inherited this event will block
4286  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4287  * task existence requirements of perf_event_enable/disable.
4288  */
4289 static void perf_event_for_each_child(struct perf_event *event,
4290                                         void (*func)(struct perf_event *))
4291 {
4292         struct perf_event *child;
4293
4294         WARN_ON_ONCE(event->ctx->parent_ctx);
4295
4296         mutex_lock(&event->child_mutex);
4297         func(event);
4298         list_for_each_entry(child, &event->child_list, child_list)
4299                 func(child);
4300         mutex_unlock(&event->child_mutex);
4301 }
4302
4303 static void perf_event_for_each(struct perf_event *event,
4304                                   void (*func)(struct perf_event *))
4305 {
4306         struct perf_event_context *ctx = event->ctx;
4307         struct perf_event *sibling;
4308
4309         lockdep_assert_held(&ctx->mutex);
4310
4311         event = event->group_leader;
4312
4313         perf_event_for_each_child(event, func);
4314         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4315                 perf_event_for_each_child(sibling, func);
4316 }
4317
4318 static void __perf_event_period(struct perf_event *event,
4319                                 struct perf_cpu_context *cpuctx,
4320                                 struct perf_event_context *ctx,
4321                                 void *info)
4322 {
4323         u64 value = *((u64 *)info);
4324         bool active;
4325
4326         if (event->attr.freq) {
4327                 event->attr.sample_freq = value;
4328         } else {
4329                 event->attr.sample_period = value;
4330                 event->hw.sample_period = value;
4331         }
4332
4333         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4334         if (active) {
4335                 perf_pmu_disable(ctx->pmu);
4336                 /*
4337                  * We could be throttled; unthrottle now to avoid the tick
4338                  * trying to unthrottle while we already re-started the event.
4339                  */
4340                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4341                         event->hw.interrupts = 0;
4342                         perf_log_throttle(event, 1);
4343                 }
4344                 event->pmu->stop(event, PERF_EF_UPDATE);
4345         }
4346
4347         local64_set(&event->hw.period_left, 0);
4348
4349         if (active) {
4350                 event->pmu->start(event, PERF_EF_RELOAD);
4351                 perf_pmu_enable(ctx->pmu);
4352         }
4353 }
4354
4355 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4356 {
4357         u64 value;
4358
4359         if (!is_sampling_event(event))
4360                 return -EINVAL;
4361
4362         if (copy_from_user(&value, arg, sizeof(value)))
4363                 return -EFAULT;
4364
4365         if (!value)
4366                 return -EINVAL;
4367
4368         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4369                 return -EINVAL;
4370
4371         event_function_call(event, __perf_event_period, &value);
4372
4373         return 0;
4374 }
4375
4376 static const struct file_operations perf_fops;
4377
4378 static inline int perf_fget_light(int fd, struct fd *p)
4379 {
4380         struct fd f = fdget(fd);
4381         if (!f.file)
4382                 return -EBADF;
4383
4384         if (f.file->f_op != &perf_fops) {
4385                 fdput(f);
4386                 return -EBADF;
4387         }
4388         *p = f;
4389         return 0;
4390 }
4391
4392 static int perf_event_set_output(struct perf_event *event,
4393                                  struct perf_event *output_event);
4394 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4395 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4396
4397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4398 {
4399         void (*func)(struct perf_event *);
4400         u32 flags = arg;
4401
4402         switch (cmd) {
4403         case PERF_EVENT_IOC_ENABLE:
4404                 func = _perf_event_enable;
4405                 break;
4406         case PERF_EVENT_IOC_DISABLE:
4407                 func = _perf_event_disable;
4408                 break;
4409         case PERF_EVENT_IOC_RESET:
4410                 func = _perf_event_reset;
4411                 break;
4412
4413         case PERF_EVENT_IOC_REFRESH:
4414                 return _perf_event_refresh(event, arg);
4415
4416         case PERF_EVENT_IOC_PERIOD:
4417                 return perf_event_period(event, (u64 __user *)arg);
4418
4419         case PERF_EVENT_IOC_ID:
4420         {
4421                 u64 id = primary_event_id(event);
4422
4423                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4424                         return -EFAULT;
4425                 return 0;
4426         }
4427
4428         case PERF_EVENT_IOC_SET_OUTPUT:
4429         {
4430                 int ret;
4431                 if (arg != -1) {
4432                         struct perf_event *output_event;
4433                         struct fd output;
4434                         ret = perf_fget_light(arg, &output);
4435                         if (ret)
4436                                 return ret;
4437                         output_event = output.file->private_data;
4438                         ret = perf_event_set_output(event, output_event);
4439                         fdput(output);
4440                 } else {
4441                         ret = perf_event_set_output(event, NULL);
4442                 }
4443                 return ret;
4444         }
4445
4446         case PERF_EVENT_IOC_SET_FILTER:
4447                 return perf_event_set_filter(event, (void __user *)arg);
4448
4449         case PERF_EVENT_IOC_SET_BPF:
4450                 return perf_event_set_bpf_prog(event, arg);
4451
4452         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4453                 struct ring_buffer *rb;
4454
4455                 rcu_read_lock();
4456                 rb = rcu_dereference(event->rb);
4457                 if (!rb || !rb->nr_pages) {
4458                         rcu_read_unlock();
4459                         return -EINVAL;
4460                 }
4461                 rb_toggle_paused(rb, !!arg);
4462                 rcu_read_unlock();
4463                 return 0;
4464         }
4465         default:
4466                 return -ENOTTY;
4467         }
4468
4469         if (flags & PERF_IOC_FLAG_GROUP)
4470                 perf_event_for_each(event, func);
4471         else
4472                 perf_event_for_each_child(event, func);
4473
4474         return 0;
4475 }
4476
4477 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4478 {
4479         struct perf_event *event = file->private_data;
4480         struct perf_event_context *ctx;
4481         long ret;
4482
4483         ctx = perf_event_ctx_lock(event);
4484         ret = _perf_ioctl(event, cmd, arg);
4485         perf_event_ctx_unlock(event, ctx);
4486
4487         return ret;
4488 }
4489
4490 #ifdef CONFIG_COMPAT
4491 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4492                                 unsigned long arg)
4493 {
4494         switch (_IOC_NR(cmd)) {
4495         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4496         case _IOC_NR(PERF_EVENT_IOC_ID):
4497                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4498                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4499                         cmd &= ~IOCSIZE_MASK;
4500                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4501                 }
4502                 break;
4503         }
4504         return perf_ioctl(file, cmd, arg);
4505 }
4506 #else
4507 # define perf_compat_ioctl NULL
4508 #endif
4509
4510 int perf_event_task_enable(void)
4511 {
4512         struct perf_event_context *ctx;
4513         struct perf_event *event;
4514
4515         mutex_lock(&current->perf_event_mutex);
4516         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4517                 ctx = perf_event_ctx_lock(event);
4518                 perf_event_for_each_child(event, _perf_event_enable);
4519                 perf_event_ctx_unlock(event, ctx);
4520         }
4521         mutex_unlock(&current->perf_event_mutex);
4522
4523         return 0;
4524 }
4525
4526 int perf_event_task_disable(void)
4527 {
4528         struct perf_event_context *ctx;
4529         struct perf_event *event;
4530
4531         mutex_lock(&current->perf_event_mutex);
4532         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4533                 ctx = perf_event_ctx_lock(event);
4534                 perf_event_for_each_child(event, _perf_event_disable);
4535                 perf_event_ctx_unlock(event, ctx);
4536         }
4537         mutex_unlock(&current->perf_event_mutex);
4538
4539         return 0;
4540 }
4541
4542 static int perf_event_index(struct perf_event *event)
4543 {
4544         if (event->hw.state & PERF_HES_STOPPED)
4545                 return 0;
4546
4547         if (event->state != PERF_EVENT_STATE_ACTIVE)
4548                 return 0;
4549
4550         return event->pmu->event_idx(event);
4551 }
4552
4553 static void calc_timer_values(struct perf_event *event,
4554                                 u64 *now,
4555                                 u64 *enabled,
4556                                 u64 *running)
4557 {
4558         u64 ctx_time;
4559
4560         *now = perf_clock();
4561         ctx_time = event->shadow_ctx_time + *now;
4562         *enabled = ctx_time - event->tstamp_enabled;
4563         *running = ctx_time - event->tstamp_running;
4564 }
4565
4566 static void perf_event_init_userpage(struct perf_event *event)
4567 {
4568         struct perf_event_mmap_page *userpg;
4569         struct ring_buffer *rb;
4570
4571         rcu_read_lock();
4572         rb = rcu_dereference(event->rb);
4573         if (!rb)
4574                 goto unlock;
4575
4576         userpg = rb->user_page;
4577
4578         /* Allow new userspace to detect that bit 0 is deprecated */
4579         userpg->cap_bit0_is_deprecated = 1;
4580         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4581         userpg->data_offset = PAGE_SIZE;
4582         userpg->data_size = perf_data_size(rb);
4583
4584 unlock:
4585         rcu_read_unlock();
4586 }
4587
4588 void __weak arch_perf_update_userpage(
4589         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4590 {
4591 }
4592
4593 /*
4594  * Callers need to ensure there can be no nesting of this function, otherwise
4595  * the seqlock logic goes bad. We can not serialize this because the arch
4596  * code calls this from NMI context.
4597  */
4598 void perf_event_update_userpage(struct perf_event *event)
4599 {
4600         struct perf_event_mmap_page *userpg;
4601         struct ring_buffer *rb;
4602         u64 enabled, running, now;
4603
4604         rcu_read_lock();
4605         rb = rcu_dereference(event->rb);
4606         if (!rb)
4607                 goto unlock;
4608
4609         /*
4610          * compute total_time_enabled, total_time_running
4611          * based on snapshot values taken when the event
4612          * was last scheduled in.
4613          *
4614          * we cannot simply called update_context_time()
4615          * because of locking issue as we can be called in
4616          * NMI context
4617          */
4618         calc_timer_values(event, &now, &enabled, &running);
4619
4620         userpg = rb->user_page;
4621         /*
4622          * Disable preemption so as to not let the corresponding user-space
4623          * spin too long if we get preempted.
4624          */
4625         preempt_disable();
4626         ++userpg->lock;
4627         barrier();
4628         userpg->index = perf_event_index(event);
4629         userpg->offset = perf_event_count(event);
4630         if (userpg->index)
4631                 userpg->offset -= local64_read(&event->hw.prev_count);
4632
4633         userpg->time_enabled = enabled +
4634                         atomic64_read(&event->child_total_time_enabled);
4635
4636         userpg->time_running = running +
4637                         atomic64_read(&event->child_total_time_running);
4638
4639         arch_perf_update_userpage(event, userpg, now);
4640
4641         barrier();
4642         ++userpg->lock;
4643         preempt_enable();
4644 unlock:
4645         rcu_read_unlock();
4646 }
4647
4648 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4649 {
4650         struct perf_event *event = vma->vm_file->private_data;
4651         struct ring_buffer *rb;
4652         int ret = VM_FAULT_SIGBUS;
4653
4654         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4655                 if (vmf->pgoff == 0)
4656                         ret = 0;
4657                 return ret;
4658         }
4659
4660         rcu_read_lock();
4661         rb = rcu_dereference(event->rb);
4662         if (!rb)
4663                 goto unlock;
4664
4665         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4666                 goto unlock;
4667
4668         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4669         if (!vmf->page)
4670                 goto unlock;
4671
4672         get_page(vmf->page);
4673         vmf->page->mapping = vma->vm_file->f_mapping;
4674         vmf->page->index   = vmf->pgoff;
4675
4676         ret = 0;
4677 unlock:
4678         rcu_read_unlock();
4679
4680         return ret;
4681 }
4682
4683 static void ring_buffer_attach(struct perf_event *event,
4684                                struct ring_buffer *rb)
4685 {
4686         struct ring_buffer *old_rb = NULL;
4687         unsigned long flags;
4688
4689         if (event->rb) {
4690                 /*
4691                  * Should be impossible, we set this when removing
4692                  * event->rb_entry and wait/clear when adding event->rb_entry.
4693                  */
4694                 WARN_ON_ONCE(event->rcu_pending);
4695
4696                 old_rb = event->rb;
4697                 spin_lock_irqsave(&old_rb->event_lock, flags);
4698                 list_del_rcu(&event->rb_entry);
4699                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4700
4701                 event->rcu_batches = get_state_synchronize_rcu();
4702                 event->rcu_pending = 1;
4703         }
4704
4705         if (rb) {
4706                 if (event->rcu_pending) {
4707                         cond_synchronize_rcu(event->rcu_batches);
4708                         event->rcu_pending = 0;
4709                 }
4710
4711                 spin_lock_irqsave(&rb->event_lock, flags);
4712                 list_add_rcu(&event->rb_entry, &rb->event_list);
4713                 spin_unlock_irqrestore(&rb->event_lock, flags);
4714         }
4715
4716         rcu_assign_pointer(event->rb, rb);
4717
4718         if (old_rb) {
4719                 ring_buffer_put(old_rb);
4720                 /*
4721                  * Since we detached before setting the new rb, so that we
4722                  * could attach the new rb, we could have missed a wakeup.
4723                  * Provide it now.
4724                  */
4725                 wake_up_all(&event->waitq);
4726         }
4727 }
4728
4729 static void ring_buffer_wakeup(struct perf_event *event)
4730 {
4731         struct ring_buffer *rb;
4732
4733         rcu_read_lock();
4734         rb = rcu_dereference(event->rb);
4735         if (rb) {
4736                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4737                         wake_up_all(&event->waitq);
4738         }
4739         rcu_read_unlock();
4740 }
4741
4742 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4743 {
4744         struct ring_buffer *rb;
4745
4746         rcu_read_lock();
4747         rb = rcu_dereference(event->rb);
4748         if (rb) {
4749                 if (!atomic_inc_not_zero(&rb->refcount))
4750                         rb = NULL;
4751         }
4752         rcu_read_unlock();
4753
4754         return rb;
4755 }
4756
4757 void ring_buffer_put(struct ring_buffer *rb)
4758 {
4759         if (!atomic_dec_and_test(&rb->refcount))
4760                 return;
4761
4762         WARN_ON_ONCE(!list_empty(&rb->event_list));
4763
4764         call_rcu(&rb->rcu_head, rb_free_rcu);
4765 }
4766
4767 static void perf_mmap_open(struct vm_area_struct *vma)
4768 {
4769         struct perf_event *event = vma->vm_file->private_data;
4770
4771         atomic_inc(&event->mmap_count);
4772         atomic_inc(&event->rb->mmap_count);
4773
4774         if (vma->vm_pgoff)
4775                 atomic_inc(&event->rb->aux_mmap_count);
4776
4777         if (event->pmu->event_mapped)
4778                 event->pmu->event_mapped(event);
4779 }
4780
4781 static void perf_pmu_output_stop(struct perf_event *event);
4782
4783 /*
4784  * A buffer can be mmap()ed multiple times; either directly through the same
4785  * event, or through other events by use of perf_event_set_output().
4786  *
4787  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4788  * the buffer here, where we still have a VM context. This means we need
4789  * to detach all events redirecting to us.
4790  */
4791 static void perf_mmap_close(struct vm_area_struct *vma)
4792 {
4793         struct perf_event *event = vma->vm_file->private_data;
4794
4795         struct ring_buffer *rb = ring_buffer_get(event);
4796         struct user_struct *mmap_user = rb->mmap_user;
4797         int mmap_locked = rb->mmap_locked;
4798         unsigned long size = perf_data_size(rb);
4799
4800         if (event->pmu->event_unmapped)
4801                 event->pmu->event_unmapped(event);
4802
4803         /*
4804          * rb->aux_mmap_count will always drop before rb->mmap_count and
4805          * event->mmap_count, so it is ok to use event->mmap_mutex to
4806          * serialize with perf_mmap here.
4807          */
4808         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4809             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4810                 /*
4811                  * Stop all AUX events that are writing to this buffer,
4812                  * so that we can free its AUX pages and corresponding PMU
4813                  * data. Note that after rb::aux_mmap_count dropped to zero,
4814                  * they won't start any more (see perf_aux_output_begin()).
4815                  */
4816                 perf_pmu_output_stop(event);
4817
4818                 /* now it's safe to free the pages */
4819                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4820                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4821
4822                 /* this has to be the last one */
4823                 rb_free_aux(rb);
4824                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4825
4826                 mutex_unlock(&event->mmap_mutex);
4827         }
4828
4829         atomic_dec(&rb->mmap_count);
4830
4831         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4832                 goto out_put;
4833
4834         ring_buffer_attach(event, NULL);
4835         mutex_unlock(&event->mmap_mutex);
4836
4837         /* If there's still other mmap()s of this buffer, we're done. */
4838         if (atomic_read(&rb->mmap_count))
4839                 goto out_put;
4840
4841         /*
4842          * No other mmap()s, detach from all other events that might redirect
4843          * into the now unreachable buffer. Somewhat complicated by the
4844          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4845          */
4846 again:
4847         rcu_read_lock();
4848         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4849                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4850                         /*
4851                          * This event is en-route to free_event() which will
4852                          * detach it and remove it from the list.
4853                          */
4854                         continue;
4855                 }
4856                 rcu_read_unlock();
4857
4858                 mutex_lock(&event->mmap_mutex);
4859                 /*
4860                  * Check we didn't race with perf_event_set_output() which can
4861                  * swizzle the rb from under us while we were waiting to
4862                  * acquire mmap_mutex.
4863                  *
4864                  * If we find a different rb; ignore this event, a next
4865                  * iteration will no longer find it on the list. We have to
4866                  * still restart the iteration to make sure we're not now
4867                  * iterating the wrong list.
4868                  */
4869                 if (event->rb == rb)
4870                         ring_buffer_attach(event, NULL);
4871
4872                 mutex_unlock(&event->mmap_mutex);
4873                 put_event(event);
4874
4875                 /*
4876                  * Restart the iteration; either we're on the wrong list or
4877                  * destroyed its integrity by doing a deletion.
4878                  */
4879                 goto again;
4880         }
4881         rcu_read_unlock();
4882
4883         /*
4884          * It could be there's still a few 0-ref events on the list; they'll
4885          * get cleaned up by free_event() -- they'll also still have their
4886          * ref on the rb and will free it whenever they are done with it.
4887          *
4888          * Aside from that, this buffer is 'fully' detached and unmapped,
4889          * undo the VM accounting.
4890          */
4891
4892         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4893         vma->vm_mm->pinned_vm -= mmap_locked;
4894         free_uid(mmap_user);
4895
4896 out_put:
4897         ring_buffer_put(rb); /* could be last */
4898 }
4899
4900 static const struct vm_operations_struct perf_mmap_vmops = {
4901         .open           = perf_mmap_open,
4902         .close          = perf_mmap_close, /* non mergable */
4903         .fault          = perf_mmap_fault,
4904         .page_mkwrite   = perf_mmap_fault,
4905 };
4906
4907 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4908 {
4909         struct perf_event *event = file->private_data;
4910         unsigned long user_locked, user_lock_limit;
4911         struct user_struct *user = current_user();
4912         unsigned long locked, lock_limit;
4913         struct ring_buffer *rb = NULL;
4914         unsigned long vma_size;
4915         unsigned long nr_pages;
4916         long user_extra = 0, extra = 0;
4917         int ret = 0, flags = 0;
4918
4919         /*
4920          * Don't allow mmap() of inherited per-task counters. This would
4921          * create a performance issue due to all children writing to the
4922          * same rb.
4923          */
4924         if (event->cpu == -1 && event->attr.inherit)
4925                 return -EINVAL;
4926
4927         if (!(vma->vm_flags & VM_SHARED))
4928                 return -EINVAL;
4929
4930         vma_size = vma->vm_end - vma->vm_start;
4931
4932         if (vma->vm_pgoff == 0) {
4933                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4934         } else {
4935                 /*
4936                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4937                  * mapped, all subsequent mappings should have the same size
4938                  * and offset. Must be above the normal perf buffer.
4939                  */
4940                 u64 aux_offset, aux_size;
4941
4942                 if (!event->rb)
4943                         return -EINVAL;
4944
4945                 nr_pages = vma_size / PAGE_SIZE;
4946
4947                 mutex_lock(&event->mmap_mutex);
4948                 ret = -EINVAL;
4949
4950                 rb = event->rb;
4951                 if (!rb)
4952                         goto aux_unlock;
4953
4954                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4955                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4956
4957                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4958                         goto aux_unlock;
4959
4960                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4961                         goto aux_unlock;
4962
4963                 /* already mapped with a different offset */
4964                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4965                         goto aux_unlock;
4966
4967                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4968                         goto aux_unlock;
4969
4970                 /* already mapped with a different size */
4971                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4972                         goto aux_unlock;
4973
4974                 if (!is_power_of_2(nr_pages))
4975                         goto aux_unlock;
4976
4977                 if (!atomic_inc_not_zero(&rb->mmap_count))
4978                         goto aux_unlock;
4979
4980                 if (rb_has_aux(rb)) {
4981                         atomic_inc(&rb->aux_mmap_count);
4982                         ret = 0;
4983                         goto unlock;
4984                 }
4985
4986                 atomic_set(&rb->aux_mmap_count, 1);
4987                 user_extra = nr_pages;
4988
4989                 goto accounting;
4990         }
4991
4992         /*
4993          * If we have rb pages ensure they're a power-of-two number, so we
4994          * can do bitmasks instead of modulo.
4995          */
4996         if (nr_pages != 0 && !is_power_of_2(nr_pages))
4997                 return -EINVAL;
4998
4999         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5000                 return -EINVAL;
5001
5002         WARN_ON_ONCE(event->ctx->parent_ctx);
5003 again:
5004         mutex_lock(&event->mmap_mutex);
5005         if (event->rb) {
5006                 if (event->rb->nr_pages != nr_pages) {
5007                         ret = -EINVAL;
5008                         goto unlock;
5009                 }
5010
5011                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5012                         /*
5013                          * Raced against perf_mmap_close() through
5014                          * perf_event_set_output(). Try again, hope for better
5015                          * luck.
5016                          */
5017                         mutex_unlock(&event->mmap_mutex);
5018                         goto again;
5019                 }
5020
5021                 goto unlock;
5022         }
5023
5024         user_extra = nr_pages + 1;
5025
5026 accounting:
5027         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5028
5029         /*
5030          * Increase the limit linearly with more CPUs:
5031          */
5032         user_lock_limit *= num_online_cpus();
5033
5034         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5035
5036         if (user_locked > user_lock_limit)
5037                 extra = user_locked - user_lock_limit;
5038
5039         lock_limit = rlimit(RLIMIT_MEMLOCK);
5040         lock_limit >>= PAGE_SHIFT;
5041         locked = vma->vm_mm->pinned_vm + extra;
5042
5043         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5044                 !capable(CAP_IPC_LOCK)) {
5045                 ret = -EPERM;
5046                 goto unlock;
5047         }
5048
5049         WARN_ON(!rb && event->rb);
5050
5051         if (vma->vm_flags & VM_WRITE)
5052                 flags |= RING_BUFFER_WRITABLE;
5053
5054         if (!rb) {
5055                 rb = rb_alloc(nr_pages,
5056                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5057                               event->cpu, flags);
5058
5059                 if (!rb) {
5060                         ret = -ENOMEM;
5061                         goto unlock;
5062                 }
5063
5064                 atomic_set(&rb->mmap_count, 1);
5065                 rb->mmap_user = get_current_user();
5066                 rb->mmap_locked = extra;
5067
5068                 ring_buffer_attach(event, rb);
5069
5070                 perf_event_init_userpage(event);
5071                 perf_event_update_userpage(event);
5072         } else {
5073                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5074                                    event->attr.aux_watermark, flags);
5075                 if (!ret)
5076                         rb->aux_mmap_locked = extra;
5077         }
5078
5079 unlock:
5080         if (!ret) {
5081                 atomic_long_add(user_extra, &user->locked_vm);
5082                 vma->vm_mm->pinned_vm += extra;
5083
5084                 atomic_inc(&event->mmap_count);
5085         } else if (rb) {
5086                 atomic_dec(&rb->mmap_count);
5087         }
5088 aux_unlock:
5089         mutex_unlock(&event->mmap_mutex);
5090
5091         /*
5092          * Since pinned accounting is per vm we cannot allow fork() to copy our
5093          * vma.
5094          */
5095         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5096         vma->vm_ops = &perf_mmap_vmops;
5097
5098         if (event->pmu->event_mapped)
5099                 event->pmu->event_mapped(event);
5100
5101         return ret;
5102 }
5103
5104 static int perf_fasync(int fd, struct file *filp, int on)
5105 {
5106         struct inode *inode = file_inode(filp);
5107         struct perf_event *event = filp->private_data;
5108         int retval;
5109
5110         inode_lock(inode);
5111         retval = fasync_helper(fd, filp, on, &event->fasync);
5112         inode_unlock(inode);
5113
5114         if (retval < 0)
5115                 return retval;
5116
5117         return 0;
5118 }
5119
5120 static const struct file_operations perf_fops = {
5121         .llseek                 = no_llseek,
5122         .release                = perf_release,
5123         .read                   = perf_read,
5124         .poll                   = perf_poll,
5125         .unlocked_ioctl         = perf_ioctl,
5126         .compat_ioctl           = perf_compat_ioctl,
5127         .mmap                   = perf_mmap,
5128         .fasync                 = perf_fasync,
5129 };
5130
5131 /*
5132  * Perf event wakeup
5133  *
5134  * If there's data, ensure we set the poll() state and publish everything
5135  * to user-space before waking everybody up.
5136  */
5137
5138 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5139 {
5140         /* only the parent has fasync state */
5141         if (event->parent)
5142                 event = event->parent;
5143         return &event->fasync;
5144 }
5145
5146 void perf_event_wakeup(struct perf_event *event)
5147 {
5148         ring_buffer_wakeup(event);
5149
5150         if (event->pending_kill) {
5151                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5152                 event->pending_kill = 0;
5153         }
5154 }
5155
5156 static void perf_pending_event(struct irq_work *entry)
5157 {
5158         struct perf_event *event = container_of(entry,
5159                         struct perf_event, pending);
5160         int rctx;
5161
5162         rctx = perf_swevent_get_recursion_context();
5163         /*
5164          * If we 'fail' here, that's OK, it means recursion is already disabled
5165          * and we won't recurse 'further'.
5166          */
5167
5168         if (event->pending_disable) {
5169                 event->pending_disable = 0;
5170                 perf_event_disable_local(event);
5171         }
5172
5173         if (event->pending_wakeup) {
5174                 event->pending_wakeup = 0;
5175                 perf_event_wakeup(event);
5176         }
5177
5178         if (rctx >= 0)
5179                 perf_swevent_put_recursion_context(rctx);
5180 }
5181
5182 /*
5183  * We assume there is only KVM supporting the callbacks.
5184  * Later on, we might change it to a list if there is
5185  * another virtualization implementation supporting the callbacks.
5186  */
5187 struct perf_guest_info_callbacks *perf_guest_cbs;
5188
5189 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5190 {
5191         perf_guest_cbs = cbs;
5192         return 0;
5193 }
5194 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5195
5196 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5197 {
5198         perf_guest_cbs = NULL;
5199         return 0;
5200 }
5201 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5202
5203 static void
5204 perf_output_sample_regs(struct perf_output_handle *handle,
5205                         struct pt_regs *regs, u64 mask)
5206 {
5207         int bit;
5208
5209         for_each_set_bit(bit, (const unsigned long *) &mask,
5210                          sizeof(mask) * BITS_PER_BYTE) {
5211                 u64 val;
5212
5213                 val = perf_reg_value(regs, bit);
5214                 perf_output_put(handle, val);
5215         }
5216 }
5217
5218 static void perf_sample_regs_user(struct perf_regs *regs_user,
5219                                   struct pt_regs *regs,
5220                                   struct pt_regs *regs_user_copy)
5221 {
5222         if (user_mode(regs)) {
5223                 regs_user->abi = perf_reg_abi(current);
5224                 regs_user->regs = regs;
5225         } else if (current->mm) {
5226                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5227         } else {
5228                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5229                 regs_user->regs = NULL;
5230         }
5231 }
5232
5233 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5234                                   struct pt_regs *regs)
5235 {
5236         regs_intr->regs = regs;
5237         regs_intr->abi  = perf_reg_abi(current);
5238 }
5239
5240
5241 /*
5242  * Get remaining task size from user stack pointer.
5243  *
5244  * It'd be better to take stack vma map and limit this more
5245  * precisly, but there's no way to get it safely under interrupt,
5246  * so using TASK_SIZE as limit.
5247  */
5248 static u64 perf_ustack_task_size(struct pt_regs *regs)
5249 {
5250         unsigned long addr = perf_user_stack_pointer(regs);
5251
5252         if (!addr || addr >= TASK_SIZE)
5253                 return 0;
5254
5255         return TASK_SIZE - addr;
5256 }
5257
5258 static u16
5259 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5260                         struct pt_regs *regs)
5261 {
5262         u64 task_size;
5263
5264         /* No regs, no stack pointer, no dump. */
5265         if (!regs)
5266                 return 0;
5267
5268         /*
5269          * Check if we fit in with the requested stack size into the:
5270          * - TASK_SIZE
5271          *   If we don't, we limit the size to the TASK_SIZE.
5272          *
5273          * - remaining sample size
5274          *   If we don't, we customize the stack size to
5275          *   fit in to the remaining sample size.
5276          */
5277
5278         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5279         stack_size = min(stack_size, (u16) task_size);
5280
5281         /* Current header size plus static size and dynamic size. */
5282         header_size += 2 * sizeof(u64);
5283
5284         /* Do we fit in with the current stack dump size? */
5285         if ((u16) (header_size + stack_size) < header_size) {
5286                 /*
5287                  * If we overflow the maximum size for the sample,
5288                  * we customize the stack dump size to fit in.
5289                  */
5290                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5291                 stack_size = round_up(stack_size, sizeof(u64));
5292         }
5293
5294         return stack_size;
5295 }
5296
5297 static void
5298 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5299                           struct pt_regs *regs)
5300 {
5301         /* Case of a kernel thread, nothing to dump */
5302         if (!regs) {
5303                 u64 size = 0;
5304                 perf_output_put(handle, size);
5305         } else {
5306                 unsigned long sp;
5307                 unsigned int rem;
5308                 u64 dyn_size;
5309
5310                 /*
5311                  * We dump:
5312                  * static size
5313                  *   - the size requested by user or the best one we can fit
5314                  *     in to the sample max size
5315                  * data
5316                  *   - user stack dump data
5317                  * dynamic size
5318                  *   - the actual dumped size
5319                  */
5320
5321                 /* Static size. */
5322                 perf_output_put(handle, dump_size);
5323
5324                 /* Data. */
5325                 sp = perf_user_stack_pointer(regs);
5326                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5327                 dyn_size = dump_size - rem;
5328
5329                 perf_output_skip(handle, rem);
5330
5331                 /* Dynamic size. */
5332                 perf_output_put(handle, dyn_size);
5333         }
5334 }
5335
5336 static void __perf_event_header__init_id(struct perf_event_header *header,
5337                                          struct perf_sample_data *data,
5338                                          struct perf_event *event)
5339 {
5340         u64 sample_type = event->attr.sample_type;
5341
5342         data->type = sample_type;
5343         header->size += event->id_header_size;
5344
5345         if (sample_type & PERF_SAMPLE_TID) {
5346                 /* namespace issues */
5347                 data->tid_entry.pid = perf_event_pid(event, current);
5348                 data->tid_entry.tid = perf_event_tid(event, current);
5349         }
5350
5351         if (sample_type & PERF_SAMPLE_TIME)
5352                 data->time = perf_event_clock(event);
5353
5354         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5355                 data->id = primary_event_id(event);
5356
5357         if (sample_type & PERF_SAMPLE_STREAM_ID)
5358                 data->stream_id = event->id;
5359
5360         if (sample_type & PERF_SAMPLE_CPU) {
5361                 data->cpu_entry.cpu      = raw_smp_processor_id();
5362                 data->cpu_entry.reserved = 0;
5363         }
5364 }
5365
5366 void perf_event_header__init_id(struct perf_event_header *header,
5367                                 struct perf_sample_data *data,
5368                                 struct perf_event *event)
5369 {
5370         if (event->attr.sample_id_all)
5371                 __perf_event_header__init_id(header, data, event);
5372 }
5373
5374 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5375                                            struct perf_sample_data *data)
5376 {
5377         u64 sample_type = data->type;
5378
5379         if (sample_type & PERF_SAMPLE_TID)
5380                 perf_output_put(handle, data->tid_entry);
5381
5382         if (sample_type & PERF_SAMPLE_TIME)
5383                 perf_output_put(handle, data->time);
5384
5385         if (sample_type & PERF_SAMPLE_ID)
5386                 perf_output_put(handle, data->id);
5387
5388         if (sample_type & PERF_SAMPLE_STREAM_ID)
5389                 perf_output_put(handle, data->stream_id);
5390
5391         if (sample_type & PERF_SAMPLE_CPU)
5392                 perf_output_put(handle, data->cpu_entry);
5393
5394         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5395                 perf_output_put(handle, data->id);
5396 }
5397
5398 void perf_event__output_id_sample(struct perf_event *event,
5399                                   struct perf_output_handle *handle,
5400                                   struct perf_sample_data *sample)
5401 {
5402         if (event->attr.sample_id_all)
5403                 __perf_event__output_id_sample(handle, sample);
5404 }
5405
5406 static void perf_output_read_one(struct perf_output_handle *handle,
5407                                  struct perf_event *event,
5408                                  u64 enabled, u64 running)
5409 {
5410         u64 read_format = event->attr.read_format;
5411         u64 values[4];
5412         int n = 0;
5413
5414         values[n++] = perf_event_count(event);
5415         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5416                 values[n++] = enabled +
5417                         atomic64_read(&event->child_total_time_enabled);
5418         }
5419         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5420                 values[n++] = running +
5421                         atomic64_read(&event->child_total_time_running);
5422         }
5423         if (read_format & PERF_FORMAT_ID)
5424                 values[n++] = primary_event_id(event);
5425
5426         __output_copy(handle, values, n * sizeof(u64));
5427 }
5428
5429 /*
5430  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5431  */
5432 static void perf_output_read_group(struct perf_output_handle *handle,
5433                             struct perf_event *event,
5434                             u64 enabled, u64 running)
5435 {
5436         struct perf_event *leader = event->group_leader, *sub;
5437         u64 read_format = event->attr.read_format;
5438         u64 values[5];
5439         int n = 0;
5440
5441         values[n++] = 1 + leader->nr_siblings;
5442
5443         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5444                 values[n++] = enabled;
5445
5446         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5447                 values[n++] = running;
5448
5449         if (leader != event)
5450                 leader->pmu->read(leader);
5451
5452         values[n++] = perf_event_count(leader);
5453         if (read_format & PERF_FORMAT_ID)
5454                 values[n++] = primary_event_id(leader);
5455
5456         __output_copy(handle, values, n * sizeof(u64));
5457
5458         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5459                 n = 0;
5460
5461                 if ((sub != event) &&
5462                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5463                         sub->pmu->read(sub);
5464
5465                 values[n++] = perf_event_count(sub);
5466                 if (read_format & PERF_FORMAT_ID)
5467                         values[n++] = primary_event_id(sub);
5468
5469                 __output_copy(handle, values, n * sizeof(u64));
5470         }
5471 }
5472
5473 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5474                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5475
5476 static void perf_output_read(struct perf_output_handle *handle,
5477                              struct perf_event *event)
5478 {
5479         u64 enabled = 0, running = 0, now;
5480         u64 read_format = event->attr.read_format;
5481
5482         /*
5483          * compute total_time_enabled, total_time_running
5484          * based on snapshot values taken when the event
5485          * was last scheduled in.
5486          *
5487          * we cannot simply called update_context_time()
5488          * because of locking issue as we are called in
5489          * NMI context
5490          */
5491         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5492                 calc_timer_values(event, &now, &enabled, &running);
5493
5494         if (event->attr.read_format & PERF_FORMAT_GROUP)
5495                 perf_output_read_group(handle, event, enabled, running);
5496         else
5497                 perf_output_read_one(handle, event, enabled, running);
5498 }
5499
5500 void perf_output_sample(struct perf_output_handle *handle,
5501                         struct perf_event_header *header,
5502                         struct perf_sample_data *data,
5503                         struct perf_event *event)
5504 {
5505         u64 sample_type = data->type;
5506
5507         perf_output_put(handle, *header);
5508
5509         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5510                 perf_output_put(handle, data->id);
5511
5512         if (sample_type & PERF_SAMPLE_IP)
5513                 perf_output_put(handle, data->ip);
5514
5515         if (sample_type & PERF_SAMPLE_TID)
5516                 perf_output_put(handle, data->tid_entry);
5517
5518         if (sample_type & PERF_SAMPLE_TIME)
5519                 perf_output_put(handle, data->time);
5520
5521         if (sample_type & PERF_SAMPLE_ADDR)
5522                 perf_output_put(handle, data->addr);
5523
5524         if (sample_type & PERF_SAMPLE_ID)
5525                 perf_output_put(handle, data->id);
5526
5527         if (sample_type & PERF_SAMPLE_STREAM_ID)
5528                 perf_output_put(handle, data->stream_id);
5529
5530         if (sample_type & PERF_SAMPLE_CPU)
5531                 perf_output_put(handle, data->cpu_entry);
5532
5533         if (sample_type & PERF_SAMPLE_PERIOD)
5534                 perf_output_put(handle, data->period);
5535
5536         if (sample_type & PERF_SAMPLE_READ)
5537                 perf_output_read(handle, event);
5538
5539         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5540                 if (data->callchain) {
5541                         int size = 1;
5542
5543                         if (data->callchain)
5544                                 size += data->callchain->nr;
5545
5546                         size *= sizeof(u64);
5547
5548                         __output_copy(handle, data->callchain, size);
5549                 } else {
5550                         u64 nr = 0;
5551                         perf_output_put(handle, nr);
5552                 }
5553         }
5554
5555         if (sample_type & PERF_SAMPLE_RAW) {
5556                 if (data->raw) {
5557                         u32 raw_size = data->raw->size;
5558                         u32 real_size = round_up(raw_size + sizeof(u32),
5559                                                  sizeof(u64)) - sizeof(u32);
5560                         u64 zero = 0;
5561
5562                         perf_output_put(handle, real_size);
5563                         __output_copy(handle, data->raw->data, raw_size);
5564                         if (real_size - raw_size)
5565                                 __output_copy(handle, &zero, real_size - raw_size);
5566                 } else {
5567                         struct {
5568                                 u32     size;
5569                                 u32     data;
5570                         } raw = {
5571                                 .size = sizeof(u32),
5572                                 .data = 0,
5573                         };
5574                         perf_output_put(handle, raw);
5575                 }
5576         }
5577
5578         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5579                 if (data->br_stack) {
5580                         size_t size;
5581
5582                         size = data->br_stack->nr
5583                              * sizeof(struct perf_branch_entry);
5584
5585                         perf_output_put(handle, data->br_stack->nr);
5586                         perf_output_copy(handle, data->br_stack->entries, size);
5587                 } else {
5588                         /*
5589                          * we always store at least the value of nr
5590                          */
5591                         u64 nr = 0;
5592                         perf_output_put(handle, nr);
5593                 }
5594         }
5595
5596         if (sample_type & PERF_SAMPLE_REGS_USER) {
5597                 u64 abi = data->regs_user.abi;
5598
5599                 /*
5600                  * If there are no regs to dump, notice it through
5601                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5602                  */
5603                 perf_output_put(handle, abi);
5604
5605                 if (abi) {
5606                         u64 mask = event->attr.sample_regs_user;
5607                         perf_output_sample_regs(handle,
5608                                                 data->regs_user.regs,
5609                                                 mask);
5610                 }
5611         }
5612
5613         if (sample_type & PERF_SAMPLE_STACK_USER) {
5614                 perf_output_sample_ustack(handle,
5615                                           data->stack_user_size,
5616                                           data->regs_user.regs);
5617         }
5618
5619         if (sample_type & PERF_SAMPLE_WEIGHT)
5620                 perf_output_put(handle, data->weight);
5621
5622         if (sample_type & PERF_SAMPLE_DATA_SRC)
5623                 perf_output_put(handle, data->data_src.val);
5624
5625         if (sample_type & PERF_SAMPLE_TRANSACTION)
5626                 perf_output_put(handle, data->txn);
5627
5628         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5629                 u64 abi = data->regs_intr.abi;
5630                 /*
5631                  * If there are no regs to dump, notice it through
5632                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5633                  */
5634                 perf_output_put(handle, abi);
5635
5636                 if (abi) {
5637                         u64 mask = event->attr.sample_regs_intr;
5638
5639                         perf_output_sample_regs(handle,
5640                                                 data->regs_intr.regs,
5641                                                 mask);
5642                 }
5643         }
5644
5645         if (!event->attr.watermark) {
5646                 int wakeup_events = event->attr.wakeup_events;
5647
5648                 if (wakeup_events) {
5649                         struct ring_buffer *rb = handle->rb;
5650                         int events = local_inc_return(&rb->events);
5651
5652                         if (events >= wakeup_events) {
5653                                 local_sub(wakeup_events, &rb->events);
5654                                 local_inc(&rb->wakeup);
5655                         }
5656                 }
5657         }
5658 }
5659
5660 void perf_prepare_sample(struct perf_event_header *header,
5661                          struct perf_sample_data *data,
5662                          struct perf_event *event,
5663                          struct pt_regs *regs)
5664 {
5665         u64 sample_type = event->attr.sample_type;
5666
5667         header->type = PERF_RECORD_SAMPLE;
5668         header->size = sizeof(*header) + event->header_size;
5669
5670         header->misc = 0;
5671         header->misc |= perf_misc_flags(regs);
5672
5673         __perf_event_header__init_id(header, data, event);
5674
5675         if (sample_type & PERF_SAMPLE_IP)
5676                 data->ip = perf_instruction_pointer(regs);
5677
5678         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5679                 int size = 1;
5680
5681                 data->callchain = perf_callchain(event, regs);
5682
5683                 if (data->callchain)
5684                         size += data->callchain->nr;
5685
5686                 header->size += size * sizeof(u64);
5687         }
5688
5689         if (sample_type & PERF_SAMPLE_RAW) {
5690                 int size = sizeof(u32);
5691
5692                 if (data->raw)
5693                         size += data->raw->size;
5694                 else
5695                         size += sizeof(u32);
5696
5697                 header->size += round_up(size, sizeof(u64));
5698         }
5699
5700         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5701                 int size = sizeof(u64); /* nr */
5702                 if (data->br_stack) {
5703                         size += data->br_stack->nr
5704                               * sizeof(struct perf_branch_entry);
5705                 }
5706                 header->size += size;
5707         }
5708
5709         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5710                 perf_sample_regs_user(&data->regs_user, regs,
5711                                       &data->regs_user_copy);
5712
5713         if (sample_type & PERF_SAMPLE_REGS_USER) {
5714                 /* regs dump ABI info */
5715                 int size = sizeof(u64);
5716
5717                 if (data->regs_user.regs) {
5718                         u64 mask = event->attr.sample_regs_user;
5719                         size += hweight64(mask) * sizeof(u64);
5720                 }
5721
5722                 header->size += size;
5723         }
5724
5725         if (sample_type & PERF_SAMPLE_STACK_USER) {
5726                 /*
5727                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5728                  * processed as the last one or have additional check added
5729                  * in case new sample type is added, because we could eat
5730                  * up the rest of the sample size.
5731                  */
5732                 u16 stack_size = event->attr.sample_stack_user;
5733                 u16 size = sizeof(u64);
5734
5735                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5736                                                      data->regs_user.regs);
5737
5738                 /*
5739                  * If there is something to dump, add space for the dump
5740                  * itself and for the field that tells the dynamic size,
5741                  * which is how many have been actually dumped.
5742                  */
5743                 if (stack_size)
5744                         size += sizeof(u64) + stack_size;
5745
5746                 data->stack_user_size = stack_size;
5747                 header->size += size;
5748         }
5749
5750         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5751                 /* regs dump ABI info */
5752                 int size = sizeof(u64);
5753
5754                 perf_sample_regs_intr(&data->regs_intr, regs);
5755
5756                 if (data->regs_intr.regs) {
5757                         u64 mask = event->attr.sample_regs_intr;
5758
5759                         size += hweight64(mask) * sizeof(u64);
5760                 }
5761
5762                 header->size += size;
5763         }
5764 }
5765
5766 static void __always_inline
5767 __perf_event_output(struct perf_event *event,
5768                     struct perf_sample_data *data,
5769                     struct pt_regs *regs,
5770                     int (*output_begin)(struct perf_output_handle *,
5771                                         struct perf_event *,
5772                                         unsigned int))
5773 {
5774         struct perf_output_handle handle;
5775         struct perf_event_header header;
5776
5777         /* protect the callchain buffers */
5778         rcu_read_lock();
5779
5780         perf_prepare_sample(&header, data, event, regs);
5781
5782         if (output_begin(&handle, event, header.size))
5783                 goto exit;
5784
5785         perf_output_sample(&handle, &header, data, event);
5786
5787         perf_output_end(&handle);
5788
5789 exit:
5790         rcu_read_unlock();
5791 }
5792
5793 void
5794 perf_event_output_forward(struct perf_event *event,
5795                          struct perf_sample_data *data,
5796                          struct pt_regs *regs)
5797 {
5798         __perf_event_output(event, data, regs, perf_output_begin_forward);
5799 }
5800
5801 void
5802 perf_event_output_backward(struct perf_event *event,
5803                            struct perf_sample_data *data,
5804                            struct pt_regs *regs)
5805 {
5806         __perf_event_output(event, data, regs, perf_output_begin_backward);
5807 }
5808
5809 void
5810 perf_event_output(struct perf_event *event,
5811                   struct perf_sample_data *data,
5812                   struct pt_regs *regs)
5813 {
5814         __perf_event_output(event, data, regs, perf_output_begin);
5815 }
5816
5817 /*
5818  * read event_id
5819  */
5820
5821 struct perf_read_event {
5822         struct perf_event_header        header;
5823
5824         u32                             pid;
5825         u32                             tid;
5826 };
5827
5828 static void
5829 perf_event_read_event(struct perf_event *event,
5830                         struct task_struct *task)
5831 {
5832         struct perf_output_handle handle;
5833         struct perf_sample_data sample;
5834         struct perf_read_event read_event = {
5835                 .header = {
5836                         .type = PERF_RECORD_READ,
5837                         .misc = 0,
5838                         .size = sizeof(read_event) + event->read_size,
5839                 },
5840                 .pid = perf_event_pid(event, task),
5841                 .tid = perf_event_tid(event, task),
5842         };
5843         int ret;
5844
5845         perf_event_header__init_id(&read_event.header, &sample, event);
5846         ret = perf_output_begin(&handle, event, read_event.header.size);
5847         if (ret)
5848                 return;
5849
5850         perf_output_put(&handle, read_event);
5851         perf_output_read(&handle, event);
5852         perf_event__output_id_sample(event, &handle, &sample);
5853
5854         perf_output_end(&handle);
5855 }
5856
5857 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5858
5859 static void
5860 perf_event_aux_ctx(struct perf_event_context *ctx,
5861                    perf_event_aux_output_cb output,
5862                    void *data, bool all)
5863 {
5864         struct perf_event *event;
5865
5866         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5867                 if (!all) {
5868                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5869                                 continue;
5870                         if (!event_filter_match(event))
5871                                 continue;
5872                 }
5873
5874                 output(event, data);
5875         }
5876 }
5877
5878 static void
5879 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5880                         struct perf_event_context *task_ctx)
5881 {
5882         rcu_read_lock();
5883         preempt_disable();
5884         perf_event_aux_ctx(task_ctx, output, data, false);
5885         preempt_enable();
5886         rcu_read_unlock();
5887 }
5888
5889 static void
5890 perf_event_aux(perf_event_aux_output_cb output, void *data,
5891                struct perf_event_context *task_ctx)
5892 {
5893         struct perf_cpu_context *cpuctx;
5894         struct perf_event_context *ctx;
5895         struct pmu *pmu;
5896         int ctxn;
5897
5898         /*
5899          * If we have task_ctx != NULL we only notify
5900          * the task context itself. The task_ctx is set
5901          * only for EXIT events before releasing task
5902          * context.
5903          */
5904         if (task_ctx) {
5905                 perf_event_aux_task_ctx(output, data, task_ctx);
5906                 return;
5907         }
5908
5909         rcu_read_lock();
5910         list_for_each_entry_rcu(pmu, &pmus, entry) {
5911                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5912                 if (cpuctx->unique_pmu != pmu)
5913                         goto next;
5914                 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5915                 ctxn = pmu->task_ctx_nr;
5916                 if (ctxn < 0)
5917                         goto next;
5918                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5919                 if (ctx)
5920                         perf_event_aux_ctx(ctx, output, data, false);
5921 next:
5922                 put_cpu_ptr(pmu->pmu_cpu_context);
5923         }
5924         rcu_read_unlock();
5925 }
5926
5927 /*
5928  * Clear all file-based filters at exec, they'll have to be
5929  * re-instated when/if these objects are mmapped again.
5930  */
5931 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5932 {
5933         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5934         struct perf_addr_filter *filter;
5935         unsigned int restart = 0, count = 0;
5936         unsigned long flags;
5937
5938         if (!has_addr_filter(event))
5939                 return;
5940
5941         raw_spin_lock_irqsave(&ifh->lock, flags);
5942         list_for_each_entry(filter, &ifh->list, entry) {
5943                 if (filter->inode) {
5944                         event->addr_filters_offs[count] = 0;
5945                         restart++;
5946                 }
5947
5948                 count++;
5949         }
5950
5951         if (restart)
5952                 event->addr_filters_gen++;
5953         raw_spin_unlock_irqrestore(&ifh->lock, flags);
5954
5955         if (restart)
5956                 perf_event_restart(event);
5957 }
5958
5959 void perf_event_exec(void)
5960 {
5961         struct perf_event_context *ctx;
5962         int ctxn;
5963
5964         rcu_read_lock();
5965         for_each_task_context_nr(ctxn) {
5966                 ctx = current->perf_event_ctxp[ctxn];
5967                 if (!ctx)
5968                         continue;
5969
5970                 perf_event_enable_on_exec(ctxn);
5971
5972                 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5973                                    true);
5974         }
5975         rcu_read_unlock();
5976 }
5977
5978 struct remote_output {
5979         struct ring_buffer      *rb;
5980         int                     err;
5981 };
5982
5983 static void __perf_event_output_stop(struct perf_event *event, void *data)
5984 {
5985         struct perf_event *parent = event->parent;
5986         struct remote_output *ro = data;
5987         struct ring_buffer *rb = ro->rb;
5988         struct stop_event_data sd = {
5989                 .event  = event,
5990         };
5991
5992         if (!has_aux(event))
5993                 return;
5994
5995         if (!parent)
5996                 parent = event;
5997
5998         /*
5999          * In case of inheritance, it will be the parent that links to the
6000          * ring-buffer, but it will be the child that's actually using it:
6001          */
6002         if (rcu_dereference(parent->rb) == rb)
6003                 ro->err = __perf_event_stop(&sd);
6004 }
6005
6006 static int __perf_pmu_output_stop(void *info)
6007 {
6008         struct perf_event *event = info;
6009         struct pmu *pmu = event->pmu;
6010         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6011         struct remote_output ro = {
6012                 .rb     = event->rb,
6013         };
6014
6015         rcu_read_lock();
6016         perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6017         if (cpuctx->task_ctx)
6018                 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6019                                    &ro, false);
6020         rcu_read_unlock();
6021
6022         return ro.err;
6023 }
6024
6025 static void perf_pmu_output_stop(struct perf_event *event)
6026 {
6027         struct perf_event *iter;
6028         int err, cpu;
6029
6030 restart:
6031         rcu_read_lock();
6032         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6033                 /*
6034                  * For per-CPU events, we need to make sure that neither they
6035                  * nor their children are running; for cpu==-1 events it's
6036                  * sufficient to stop the event itself if it's active, since
6037                  * it can't have children.
6038                  */
6039                 cpu = iter->cpu;
6040                 if (cpu == -1)
6041                         cpu = READ_ONCE(iter->oncpu);
6042
6043                 if (cpu == -1)
6044                         continue;
6045
6046                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6047                 if (err == -EAGAIN) {
6048                         rcu_read_unlock();
6049                         goto restart;
6050                 }
6051         }
6052         rcu_read_unlock();
6053 }
6054
6055 /*
6056  * task tracking -- fork/exit
6057  *
6058  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6059  */
6060
6061 struct perf_task_event {
6062         struct task_struct              *task;
6063         struct perf_event_context       *task_ctx;
6064
6065         struct {
6066                 struct perf_event_header        header;
6067
6068                 u32                             pid;
6069                 u32                             ppid;
6070                 u32                             tid;
6071                 u32                             ptid;
6072                 u64                             time;
6073         } event_id;
6074 };
6075
6076 static int perf_event_task_match(struct perf_event *event)
6077 {
6078         return event->attr.comm  || event->attr.mmap ||
6079                event->attr.mmap2 || event->attr.mmap_data ||
6080                event->attr.task;
6081 }
6082
6083 static void perf_event_task_output(struct perf_event *event,
6084                                    void *data)
6085 {
6086         struct perf_task_event *task_event = data;
6087         struct perf_output_handle handle;
6088         struct perf_sample_data sample;
6089         struct task_struct *task = task_event->task;
6090         int ret, size = task_event->event_id.header.size;
6091
6092         if (!perf_event_task_match(event))
6093                 return;
6094
6095         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6096
6097         ret = perf_output_begin(&handle, event,
6098                                 task_event->event_id.header.size);
6099         if (ret)
6100                 goto out;
6101
6102         task_event->event_id.pid = perf_event_pid(event, task);
6103         task_event->event_id.ppid = perf_event_pid(event, current);
6104
6105         task_event->event_id.tid = perf_event_tid(event, task);
6106         task_event->event_id.ptid = perf_event_tid(event, current);
6107
6108         task_event->event_id.time = perf_event_clock(event);
6109
6110         perf_output_put(&handle, task_event->event_id);
6111
6112         perf_event__output_id_sample(event, &handle, &sample);
6113
6114         perf_output_end(&handle);
6115 out:
6116         task_event->event_id.header.size = size;
6117 }
6118
6119 static void perf_event_task(struct task_struct *task,
6120                               struct perf_event_context *task_ctx,
6121                               int new)
6122 {
6123         struct perf_task_event task_event;
6124
6125         if (!atomic_read(&nr_comm_events) &&
6126             !atomic_read(&nr_mmap_events) &&
6127             !atomic_read(&nr_task_events))
6128                 return;
6129
6130         task_event = (struct perf_task_event){
6131                 .task     = task,
6132                 .task_ctx = task_ctx,
6133                 .event_id    = {
6134                         .header = {
6135                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6136                                 .misc = 0,
6137                                 .size = sizeof(task_event.event_id),
6138                         },
6139                         /* .pid  */
6140                         /* .ppid */
6141                         /* .tid  */
6142                         /* .ptid */
6143                         /* .time */
6144                 },
6145         };
6146
6147         perf_event_aux(perf_event_task_output,
6148                        &task_event,
6149                        task_ctx);
6150 }
6151
6152 void perf_event_fork(struct task_struct *task)
6153 {
6154         perf_event_task(task, NULL, 1);
6155 }
6156
6157 /*
6158  * comm tracking
6159  */
6160
6161 struct perf_comm_event {
6162         struct task_struct      *task;
6163         char                    *comm;
6164         int                     comm_size;
6165
6166         struct {
6167                 struct perf_event_header        header;
6168
6169                 u32                             pid;
6170                 u32                             tid;
6171         } event_id;
6172 };
6173
6174 static int perf_event_comm_match(struct perf_event *event)
6175 {
6176         return event->attr.comm;
6177 }
6178
6179 static void perf_event_comm_output(struct perf_event *event,
6180                                    void *data)
6181 {
6182         struct perf_comm_event *comm_event = data;
6183         struct perf_output_handle handle;
6184         struct perf_sample_data sample;
6185         int size = comm_event->event_id.header.size;
6186         int ret;
6187
6188         if (!perf_event_comm_match(event))
6189                 return;
6190
6191         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6192         ret = perf_output_begin(&handle, event,
6193                                 comm_event->event_id.header.size);
6194
6195         if (ret)
6196                 goto out;
6197
6198         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6199         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6200
6201         perf_output_put(&handle, comm_event->event_id);
6202         __output_copy(&handle, comm_event->comm,
6203                                    comm_event->comm_size);
6204
6205         perf_event__output_id_sample(event, &handle, &sample);
6206
6207         perf_output_end(&handle);
6208 out:
6209         comm_event->event_id.header.size = size;
6210 }
6211
6212 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6213 {
6214         char comm[TASK_COMM_LEN];
6215         unsigned int size;
6216
6217         memset(comm, 0, sizeof(comm));
6218         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6219         size = ALIGN(strlen(comm)+1, sizeof(u64));
6220
6221         comm_event->comm = comm;
6222         comm_event->comm_size = size;
6223
6224         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6225
6226         perf_event_aux(perf_event_comm_output,
6227                        comm_event,
6228                        NULL);
6229 }
6230
6231 void perf_event_comm(struct task_struct *task, bool exec)
6232 {
6233         struct perf_comm_event comm_event;
6234
6235         if (!atomic_read(&nr_comm_events))
6236                 return;
6237
6238         comm_event = (struct perf_comm_event){
6239                 .task   = task,
6240                 /* .comm      */
6241                 /* .comm_size */
6242                 .event_id  = {
6243                         .header = {
6244                                 .type = PERF_RECORD_COMM,
6245                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6246                                 /* .size */
6247                         },
6248                         /* .pid */
6249                         /* .tid */
6250                 },
6251         };
6252
6253         perf_event_comm_event(&comm_event);
6254 }
6255
6256 /*
6257  * mmap tracking
6258  */
6259
6260 struct perf_mmap_event {
6261         struct vm_area_struct   *vma;
6262
6263         const char              *file_name;
6264         int                     file_size;
6265         int                     maj, min;
6266         u64                     ino;
6267         u64                     ino_generation;
6268         u32                     prot, flags;
6269
6270         struct {
6271                 struct perf_event_header        header;
6272
6273                 u32                             pid;
6274                 u32                             tid;
6275                 u64                             start;
6276                 u64                             len;
6277                 u64                             pgoff;
6278         } event_id;
6279 };
6280
6281 static int perf_event_mmap_match(struct perf_event *event,
6282                                  void *data)
6283 {
6284         struct perf_mmap_event *mmap_event = data;
6285         struct vm_area_struct *vma = mmap_event->vma;
6286         int executable = vma->vm_flags & VM_EXEC;
6287
6288         return (!executable && event->attr.mmap_data) ||
6289                (executable && (event->attr.mmap || event->attr.mmap2));
6290 }
6291
6292 static void perf_event_mmap_output(struct perf_event *event,
6293                                    void *data)
6294 {
6295         struct perf_mmap_event *mmap_event = data;
6296         struct perf_output_handle handle;
6297         struct perf_sample_data sample;
6298         int size = mmap_event->event_id.header.size;
6299         int ret;
6300
6301         if (!perf_event_mmap_match(event, data))
6302                 return;
6303
6304         if (event->attr.mmap2) {
6305                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6306                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6307                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6308                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6309                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6310                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6311                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6312         }
6313
6314         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6315         ret = perf_output_begin(&handle, event,
6316                                 mmap_event->event_id.header.size);
6317         if (ret)
6318                 goto out;
6319
6320         mmap_event->event_id.pid = perf_event_pid(event, current);
6321         mmap_event->event_id.tid = perf_event_tid(event, current);
6322
6323         perf_output_put(&handle, mmap_event->event_id);
6324
6325         if (event->attr.mmap2) {
6326                 perf_output_put(&handle, mmap_event->maj);
6327                 perf_output_put(&handle, mmap_event->min);
6328                 perf_output_put(&handle, mmap_event->ino);
6329                 perf_output_put(&handle, mmap_event->ino_generation);
6330                 perf_output_put(&handle, mmap_event->prot);
6331                 perf_output_put(&handle, mmap_event->flags);
6332         }
6333
6334         __output_copy(&handle, mmap_event->file_name,
6335                                    mmap_event->file_size);
6336
6337         perf_event__output_id_sample(event, &handle, &sample);
6338
6339         perf_output_end(&handle);
6340 out:
6341         mmap_event->event_id.header.size = size;
6342 }
6343
6344 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6345 {
6346         struct vm_area_struct *vma = mmap_event->vma;
6347         struct file *file = vma->vm_file;
6348         int maj = 0, min = 0;
6349         u64 ino = 0, gen = 0;
6350         u32 prot = 0, flags = 0;
6351         unsigned int size;
6352         char tmp[16];
6353         char *buf = NULL;
6354         char *name;
6355
6356         if (file) {
6357                 struct inode *inode;
6358                 dev_t dev;
6359
6360                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6361                 if (!buf) {
6362                         name = "//enomem";
6363                         goto cpy_name;
6364                 }
6365                 /*
6366                  * d_path() works from the end of the rb backwards, so we
6367                  * need to add enough zero bytes after the string to handle
6368                  * the 64bit alignment we do later.
6369                  */
6370                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6371                 if (IS_ERR(name)) {
6372                         name = "//toolong";
6373                         goto cpy_name;
6374                 }
6375                 inode = file_inode(vma->vm_file);
6376                 dev = inode->i_sb->s_dev;
6377                 ino = inode->i_ino;
6378                 gen = inode->i_generation;
6379                 maj = MAJOR(dev);
6380                 min = MINOR(dev);
6381
6382                 if (vma->vm_flags & VM_READ)
6383                         prot |= PROT_READ;
6384                 if (vma->vm_flags & VM_WRITE)
6385                         prot |= PROT_WRITE;
6386                 if (vma->vm_flags & VM_EXEC)
6387                         prot |= PROT_EXEC;
6388
6389                 if (vma->vm_flags & VM_MAYSHARE)
6390                         flags = MAP_SHARED;
6391                 else
6392                         flags = MAP_PRIVATE;
6393
6394                 if (vma->vm_flags & VM_DENYWRITE)
6395                         flags |= MAP_DENYWRITE;
6396                 if (vma->vm_flags & VM_MAYEXEC)
6397                         flags |= MAP_EXECUTABLE;
6398                 if (vma->vm_flags & VM_LOCKED)
6399                         flags |= MAP_LOCKED;
6400                 if (vma->vm_flags & VM_HUGETLB)
6401                         flags |= MAP_HUGETLB;
6402
6403                 goto got_name;
6404         } else {
6405                 if (vma->vm_ops && vma->vm_ops->name) {
6406                         name = (char *) vma->vm_ops->name(vma);
6407                         if (name)
6408                                 goto cpy_name;
6409                 }
6410
6411                 name = (char *)arch_vma_name(vma);
6412                 if (name)
6413                         goto cpy_name;
6414
6415                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6416                                 vma->vm_end >= vma->vm_mm->brk) {
6417                         name = "[heap]";
6418                         goto cpy_name;
6419                 }
6420                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6421                                 vma->vm_end >= vma->vm_mm->start_stack) {
6422                         name = "[stack]";
6423                         goto cpy_name;
6424                 }
6425
6426                 name = "//anon";
6427                 goto cpy_name;
6428         }
6429
6430 cpy_name:
6431         strlcpy(tmp, name, sizeof(tmp));
6432         name = tmp;
6433 got_name:
6434         /*
6435          * Since our buffer works in 8 byte units we need to align our string
6436          * size to a multiple of 8. However, we must guarantee the tail end is
6437          * zero'd out to avoid leaking random bits to userspace.
6438          */
6439         size = strlen(name)+1;
6440         while (!IS_ALIGNED(size, sizeof(u64)))
6441                 name[size++] = '\0';
6442
6443         mmap_event->file_name = name;
6444         mmap_event->file_size = size;
6445         mmap_event->maj = maj;
6446         mmap_event->min = min;
6447         mmap_event->ino = ino;
6448         mmap_event->ino_generation = gen;
6449         mmap_event->prot = prot;
6450         mmap_event->flags = flags;
6451
6452         if (!(vma->vm_flags & VM_EXEC))
6453                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6454
6455         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6456
6457         perf_event_aux(perf_event_mmap_output,
6458                        mmap_event,
6459                        NULL);
6460
6461         kfree(buf);
6462 }
6463
6464 /*
6465  * Whether this @filter depends on a dynamic object which is not loaded
6466  * yet or its load addresses are not known.
6467  */
6468 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6469 {
6470         return filter->filter && filter->inode;
6471 }
6472
6473 /*
6474  * Check whether inode and address range match filter criteria.
6475  */
6476 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6477                                      struct file *file, unsigned long offset,
6478                                      unsigned long size)
6479 {
6480         if (filter->inode != file->f_inode)
6481                 return false;
6482
6483         if (filter->offset > offset + size)
6484                 return false;
6485
6486         if (filter->offset + filter->size < offset)
6487                 return false;
6488
6489         return true;
6490 }
6491
6492 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6493 {
6494         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6495         struct vm_area_struct *vma = data;
6496         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6497         struct file *file = vma->vm_file;
6498         struct perf_addr_filter *filter;
6499         unsigned int restart = 0, count = 0;
6500
6501         if (!has_addr_filter(event))
6502                 return;
6503
6504         if (!file)
6505                 return;
6506
6507         raw_spin_lock_irqsave(&ifh->lock, flags);
6508         list_for_each_entry(filter, &ifh->list, entry) {
6509                 if (perf_addr_filter_match(filter, file, off,
6510                                              vma->vm_end - vma->vm_start)) {
6511                         event->addr_filters_offs[count] = vma->vm_start;
6512                         restart++;
6513                 }
6514
6515                 count++;
6516         }
6517
6518         if (restart)
6519                 event->addr_filters_gen++;
6520         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6521
6522         if (restart)
6523                 perf_event_restart(event);
6524 }
6525
6526 /*
6527  * Adjust all task's events' filters to the new vma
6528  */
6529 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6530 {
6531         struct perf_event_context *ctx;
6532         int ctxn;
6533
6534         rcu_read_lock();
6535         for_each_task_context_nr(ctxn) {
6536                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6537                 if (!ctx)
6538                         continue;
6539
6540                 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6541         }
6542         rcu_read_unlock();
6543 }
6544
6545 void perf_event_mmap(struct vm_area_struct *vma)
6546 {
6547         struct perf_mmap_event mmap_event;
6548
6549         if (!atomic_read(&nr_mmap_events))
6550                 return;
6551
6552         mmap_event = (struct perf_mmap_event){
6553                 .vma    = vma,
6554                 /* .file_name */
6555                 /* .file_size */
6556                 .event_id  = {
6557                         .header = {
6558                                 .type = PERF_RECORD_MMAP,
6559                                 .misc = PERF_RECORD_MISC_USER,
6560                                 /* .size */
6561                         },
6562                         /* .pid */
6563                         /* .tid */
6564                         .start  = vma->vm_start,
6565                         .len    = vma->vm_end - vma->vm_start,
6566                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6567                 },
6568                 /* .maj (attr_mmap2 only) */
6569                 /* .min (attr_mmap2 only) */
6570                 /* .ino (attr_mmap2 only) */
6571                 /* .ino_generation (attr_mmap2 only) */
6572                 /* .prot (attr_mmap2 only) */
6573                 /* .flags (attr_mmap2 only) */
6574         };
6575
6576         perf_addr_filters_adjust(vma);
6577         perf_event_mmap_event(&mmap_event);
6578 }
6579
6580 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6581                           unsigned long size, u64 flags)
6582 {
6583         struct perf_output_handle handle;
6584         struct perf_sample_data sample;
6585         struct perf_aux_event {
6586                 struct perf_event_header        header;
6587                 u64                             offset;
6588                 u64                             size;
6589                 u64                             flags;
6590         } rec = {
6591                 .header = {
6592                         .type = PERF_RECORD_AUX,
6593                         .misc = 0,
6594                         .size = sizeof(rec),
6595                 },
6596                 .offset         = head,
6597                 .size           = size,
6598                 .flags          = flags,
6599         };
6600         int ret;
6601
6602         perf_event_header__init_id(&rec.header, &sample, event);
6603         ret = perf_output_begin(&handle, event, rec.header.size);
6604
6605         if (ret)
6606                 return;
6607
6608         perf_output_put(&handle, rec);
6609         perf_event__output_id_sample(event, &handle, &sample);
6610
6611         perf_output_end(&handle);
6612 }
6613
6614 /*
6615  * Lost/dropped samples logging
6616  */
6617 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6618 {
6619         struct perf_output_handle handle;
6620         struct perf_sample_data sample;
6621         int ret;
6622
6623         struct {
6624                 struct perf_event_header        header;
6625                 u64                             lost;
6626         } lost_samples_event = {
6627                 .header = {
6628                         .type = PERF_RECORD_LOST_SAMPLES,
6629                         .misc = 0,
6630                         .size = sizeof(lost_samples_event),
6631                 },
6632                 .lost           = lost,
6633         };
6634
6635         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6636
6637         ret = perf_output_begin(&handle, event,
6638                                 lost_samples_event.header.size);
6639         if (ret)
6640                 return;
6641
6642         perf_output_put(&handle, lost_samples_event);
6643         perf_event__output_id_sample(event, &handle, &sample);
6644         perf_output_end(&handle);
6645 }
6646
6647 /*
6648  * context_switch tracking
6649  */
6650
6651 struct perf_switch_event {
6652         struct task_struct      *task;
6653         struct task_struct      *next_prev;
6654
6655         struct {
6656                 struct perf_event_header        header;
6657                 u32                             next_prev_pid;
6658                 u32                             next_prev_tid;
6659         } event_id;
6660 };
6661
6662 static int perf_event_switch_match(struct perf_event *event)
6663 {
6664         return event->attr.context_switch;
6665 }
6666
6667 static void perf_event_switch_output(struct perf_event *event, void *data)
6668 {
6669         struct perf_switch_event *se = data;
6670         struct perf_output_handle handle;
6671         struct perf_sample_data sample;
6672         int ret;
6673
6674         if (!perf_event_switch_match(event))
6675                 return;
6676
6677         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6678         if (event->ctx->task) {
6679                 se->event_id.header.type = PERF_RECORD_SWITCH;
6680                 se->event_id.header.size = sizeof(se->event_id.header);
6681         } else {
6682                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6683                 se->event_id.header.size = sizeof(se->event_id);
6684                 se->event_id.next_prev_pid =
6685                                         perf_event_pid(event, se->next_prev);
6686                 se->event_id.next_prev_tid =
6687                                         perf_event_tid(event, se->next_prev);
6688         }
6689
6690         perf_event_header__init_id(&se->event_id.header, &sample, event);
6691
6692         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6693         if (ret)
6694                 return;
6695
6696         if (event->ctx->task)
6697                 perf_output_put(&handle, se->event_id.header);
6698         else
6699                 perf_output_put(&handle, se->event_id);
6700
6701         perf_event__output_id_sample(event, &handle, &sample);
6702
6703         perf_output_end(&handle);
6704 }
6705
6706 static void perf_event_switch(struct task_struct *task,
6707                               struct task_struct *next_prev, bool sched_in)
6708 {
6709         struct perf_switch_event switch_event;
6710
6711         /* N.B. caller checks nr_switch_events != 0 */
6712
6713         switch_event = (struct perf_switch_event){
6714                 .task           = task,
6715                 .next_prev      = next_prev,
6716                 .event_id       = {
6717                         .header = {
6718                                 /* .type */
6719                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6720                                 /* .size */
6721                         },
6722                         /* .next_prev_pid */
6723                         /* .next_prev_tid */
6724                 },
6725         };
6726
6727         perf_event_aux(perf_event_switch_output,
6728                        &switch_event,
6729                        NULL);
6730 }
6731
6732 /*
6733  * IRQ throttle logging
6734  */
6735
6736 static void perf_log_throttle(struct perf_event *event, int enable)
6737 {
6738         struct perf_output_handle handle;
6739         struct perf_sample_data sample;
6740         int ret;
6741
6742         struct {
6743                 struct perf_event_header        header;
6744                 u64                             time;
6745                 u64                             id;
6746                 u64                             stream_id;
6747         } throttle_event = {
6748                 .header = {
6749                         .type = PERF_RECORD_THROTTLE,
6750                         .misc = 0,
6751                         .size = sizeof(throttle_event),
6752                 },
6753                 .time           = perf_event_clock(event),
6754                 .id             = primary_event_id(event),
6755                 .stream_id      = event->id,
6756         };
6757
6758         if (enable)
6759                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6760
6761         perf_event_header__init_id(&throttle_event.header, &sample, event);
6762
6763         ret = perf_output_begin(&handle, event,
6764                                 throttle_event.header.size);
6765         if (ret)
6766                 return;
6767
6768         perf_output_put(&handle, throttle_event);
6769         perf_event__output_id_sample(event, &handle, &sample);
6770         perf_output_end(&handle);
6771 }
6772
6773 static void perf_log_itrace_start(struct perf_event *event)
6774 {
6775         struct perf_output_handle handle;
6776         struct perf_sample_data sample;
6777         struct perf_aux_event {
6778                 struct perf_event_header        header;
6779                 u32                             pid;
6780                 u32                             tid;
6781         } rec;
6782         int ret;
6783
6784         if (event->parent)
6785                 event = event->parent;
6786
6787         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6788             event->hw.itrace_started)
6789                 return;
6790
6791         rec.header.type = PERF_RECORD_ITRACE_START;
6792         rec.header.misc = 0;
6793         rec.header.size = sizeof(rec);
6794         rec.pid = perf_event_pid(event, current);
6795         rec.tid = perf_event_tid(event, current);
6796
6797         perf_event_header__init_id(&rec.header, &sample, event);
6798         ret = perf_output_begin(&handle, event, rec.header.size);
6799
6800         if (ret)
6801                 return;
6802
6803         perf_output_put(&handle, rec);
6804         perf_event__output_id_sample(event, &handle, &sample);
6805
6806         perf_output_end(&handle);
6807 }
6808
6809 /*
6810  * Generic event overflow handling, sampling.
6811  */
6812
6813 static int __perf_event_overflow(struct perf_event *event,
6814                                    int throttle, struct perf_sample_data *data,
6815                                    struct pt_regs *regs)
6816 {
6817         int events = atomic_read(&event->event_limit);
6818         struct hw_perf_event *hwc = &event->hw;
6819         u64 seq;
6820         int ret = 0;
6821
6822         /*
6823          * Non-sampling counters might still use the PMI to fold short
6824          * hardware counters, ignore those.
6825          */
6826         if (unlikely(!is_sampling_event(event)))
6827                 return 0;
6828
6829         seq = __this_cpu_read(perf_throttled_seq);
6830         if (seq != hwc->interrupts_seq) {
6831                 hwc->interrupts_seq = seq;
6832                 hwc->interrupts = 1;
6833         } else {
6834                 hwc->interrupts++;
6835                 if (unlikely(throttle
6836                              && hwc->interrupts >= max_samples_per_tick)) {
6837                         __this_cpu_inc(perf_throttled_count);
6838                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6839                         hwc->interrupts = MAX_INTERRUPTS;
6840                         perf_log_throttle(event, 0);
6841                         ret = 1;
6842                 }
6843         }
6844
6845         if (event->attr.freq) {
6846                 u64 now = perf_clock();
6847                 s64 delta = now - hwc->freq_time_stamp;
6848
6849                 hwc->freq_time_stamp = now;
6850
6851                 if (delta > 0 && delta < 2*TICK_NSEC)
6852                         perf_adjust_period(event, delta, hwc->last_period, true);
6853         }
6854
6855         /*
6856          * XXX event_limit might not quite work as expected on inherited
6857          * events
6858          */
6859
6860         event->pending_kill = POLL_IN;
6861         if (events && atomic_dec_and_test(&event->event_limit)) {
6862                 ret = 1;
6863                 event->pending_kill = POLL_HUP;
6864                 event->pending_disable = 1;
6865                 irq_work_queue(&event->pending);
6866         }
6867
6868         event->overflow_handler(event, data, regs);
6869
6870         if (*perf_event_fasync(event) && event->pending_kill) {
6871                 event->pending_wakeup = 1;
6872                 irq_work_queue(&event->pending);
6873         }
6874
6875         return ret;
6876 }
6877
6878 int perf_event_overflow(struct perf_event *event,
6879                           struct perf_sample_data *data,
6880                           struct pt_regs *regs)
6881 {
6882         return __perf_event_overflow(event, 1, data, regs);
6883 }
6884
6885 /*
6886  * Generic software event infrastructure
6887  */
6888
6889 struct swevent_htable {
6890         struct swevent_hlist            *swevent_hlist;
6891         struct mutex                    hlist_mutex;
6892         int                             hlist_refcount;
6893
6894         /* Recursion avoidance in each contexts */
6895         int                             recursion[PERF_NR_CONTEXTS];
6896 };
6897
6898 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6899
6900 /*
6901  * We directly increment event->count and keep a second value in
6902  * event->hw.period_left to count intervals. This period event
6903  * is kept in the range [-sample_period, 0] so that we can use the
6904  * sign as trigger.
6905  */
6906
6907 u64 perf_swevent_set_period(struct perf_event *event)
6908 {
6909         struct hw_perf_event *hwc = &event->hw;
6910         u64 period = hwc->last_period;
6911         u64 nr, offset;
6912         s64 old, val;
6913
6914         hwc->last_period = hwc->sample_period;
6915
6916 again:
6917         old = val = local64_read(&hwc->period_left);
6918         if (val < 0)
6919                 return 0;
6920
6921         nr = div64_u64(period + val, period);
6922         offset = nr * period;
6923         val -= offset;
6924         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6925                 goto again;
6926
6927         return nr;
6928 }
6929
6930 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6931                                     struct perf_sample_data *data,
6932                                     struct pt_regs *regs)
6933 {
6934         struct hw_perf_event *hwc = &event->hw;
6935         int throttle = 0;
6936
6937         if (!overflow)
6938                 overflow = perf_swevent_set_period(event);
6939
6940         if (hwc->interrupts == MAX_INTERRUPTS)
6941                 return;
6942
6943         for (; overflow; overflow--) {
6944                 if (__perf_event_overflow(event, throttle,
6945                                             data, regs)) {
6946                         /*
6947                          * We inhibit the overflow from happening when
6948                          * hwc->interrupts == MAX_INTERRUPTS.
6949                          */
6950                         break;
6951                 }
6952                 throttle = 1;
6953         }
6954 }
6955
6956 static void perf_swevent_event(struct perf_event *event, u64 nr,
6957                                struct perf_sample_data *data,
6958                                struct pt_regs *regs)
6959 {
6960         struct hw_perf_event *hwc = &event->hw;
6961
6962         local64_add(nr, &event->count);
6963
6964         if (!regs)
6965                 return;
6966
6967         if (!is_sampling_event(event))
6968                 return;
6969
6970         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6971                 data->period = nr;
6972                 return perf_swevent_overflow(event, 1, data, regs);
6973         } else
6974                 data->period = event->hw.last_period;
6975
6976         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6977                 return perf_swevent_overflow(event, 1, data, regs);
6978
6979         if (local64_add_negative(nr, &hwc->period_left))
6980                 return;
6981
6982         perf_swevent_overflow(event, 0, data, regs);
6983 }
6984
6985 static int perf_exclude_event(struct perf_event *event,
6986                               struct pt_regs *regs)
6987 {
6988         if (event->hw.state & PERF_HES_STOPPED)
6989                 return 1;
6990
6991         if (regs) {
6992                 if (event->attr.exclude_user && user_mode(regs))
6993                         return 1;
6994
6995                 if (event->attr.exclude_kernel && !user_mode(regs))
6996                         return 1;
6997         }
6998
6999         return 0;
7000 }
7001
7002 static int perf_swevent_match(struct perf_event *event,
7003                                 enum perf_type_id type,
7004                                 u32 event_id,
7005                                 struct perf_sample_data *data,
7006                                 struct pt_regs *regs)
7007 {
7008         if (event->attr.type != type)
7009                 return 0;
7010
7011         if (event->attr.config != event_id)
7012                 return 0;
7013
7014         if (perf_exclude_event(event, regs))
7015                 return 0;
7016
7017         return 1;
7018 }
7019
7020 static inline u64 swevent_hash(u64 type, u32 event_id)
7021 {
7022         u64 val = event_id | (type << 32);
7023
7024         return hash_64(val, SWEVENT_HLIST_BITS);
7025 }
7026
7027 static inline struct hlist_head *
7028 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7029 {
7030         u64 hash = swevent_hash(type, event_id);
7031
7032         return &hlist->heads[hash];
7033 }
7034
7035 /* For the read side: events when they trigger */
7036 static inline struct hlist_head *
7037 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7038 {
7039         struct swevent_hlist *hlist;
7040
7041         hlist = rcu_dereference(swhash->swevent_hlist);
7042         if (!hlist)
7043                 return NULL;
7044
7045         return __find_swevent_head(hlist, type, event_id);
7046 }
7047
7048 /* For the event head insertion and removal in the hlist */
7049 static inline struct hlist_head *
7050 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7051 {
7052         struct swevent_hlist *hlist;
7053         u32 event_id = event->attr.config;
7054         u64 type = event->attr.type;
7055
7056         /*
7057          * Event scheduling is always serialized against hlist allocation
7058          * and release. Which makes the protected version suitable here.
7059          * The context lock guarantees that.
7060          */
7061         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7062                                           lockdep_is_held(&event->ctx->lock));
7063         if (!hlist)
7064                 return NULL;
7065
7066         return __find_swevent_head(hlist, type, event_id);
7067 }
7068
7069 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7070                                     u64 nr,
7071                                     struct perf_sample_data *data,
7072                                     struct pt_regs *regs)
7073 {
7074         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7075         struct perf_event *event;
7076         struct hlist_head *head;
7077
7078         rcu_read_lock();
7079         head = find_swevent_head_rcu(swhash, type, event_id);
7080         if (!head)
7081                 goto end;
7082
7083         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7084                 if (perf_swevent_match(event, type, event_id, data, regs))
7085                         perf_swevent_event(event, nr, data, regs);
7086         }
7087 end:
7088         rcu_read_unlock();
7089 }
7090
7091 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7092
7093 int perf_swevent_get_recursion_context(void)
7094 {
7095         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7096
7097         return get_recursion_context(swhash->recursion);
7098 }
7099 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7100
7101 void perf_swevent_put_recursion_context(int rctx)
7102 {
7103         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7104
7105         put_recursion_context(swhash->recursion, rctx);
7106 }
7107
7108 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7109 {
7110         struct perf_sample_data data;
7111
7112         if (WARN_ON_ONCE(!regs))
7113                 return;
7114
7115         perf_sample_data_init(&data, addr, 0);
7116         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7117 }
7118
7119 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7120 {
7121         int rctx;
7122
7123         preempt_disable_notrace();
7124         rctx = perf_swevent_get_recursion_context();
7125         if (unlikely(rctx < 0))
7126                 goto fail;
7127
7128         ___perf_sw_event(event_id, nr, regs, addr);
7129
7130         perf_swevent_put_recursion_context(rctx);
7131 fail:
7132         preempt_enable_notrace();
7133 }
7134
7135 static void perf_swevent_read(struct perf_event *event)
7136 {
7137 }
7138
7139 static int perf_swevent_add(struct perf_event *event, int flags)
7140 {
7141         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7142         struct hw_perf_event *hwc = &event->hw;
7143         struct hlist_head *head;
7144
7145         if (is_sampling_event(event)) {
7146                 hwc->last_period = hwc->sample_period;
7147                 perf_swevent_set_period(event);
7148         }
7149
7150         hwc->state = !(flags & PERF_EF_START);
7151
7152         head = find_swevent_head(swhash, event);
7153         if (WARN_ON_ONCE(!head))
7154                 return -EINVAL;
7155
7156         hlist_add_head_rcu(&event->hlist_entry, head);
7157         perf_event_update_userpage(event);
7158
7159         return 0;
7160 }
7161
7162 static void perf_swevent_del(struct perf_event *event, int flags)
7163 {
7164         hlist_del_rcu(&event->hlist_entry);
7165 }
7166
7167 static void perf_swevent_start(struct perf_event *event, int flags)
7168 {
7169         event->hw.state = 0;
7170 }
7171
7172 static void perf_swevent_stop(struct perf_event *event, int flags)
7173 {
7174         event->hw.state = PERF_HES_STOPPED;
7175 }
7176
7177 /* Deref the hlist from the update side */
7178 static inline struct swevent_hlist *
7179 swevent_hlist_deref(struct swevent_htable *swhash)
7180 {
7181         return rcu_dereference_protected(swhash->swevent_hlist,
7182                                          lockdep_is_held(&swhash->hlist_mutex));
7183 }
7184
7185 static void swevent_hlist_release(struct swevent_htable *swhash)
7186 {
7187         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7188
7189         if (!hlist)
7190                 return;
7191
7192         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7193         kfree_rcu(hlist, rcu_head);
7194 }
7195
7196 static void swevent_hlist_put_cpu(int cpu)
7197 {
7198         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7199
7200         mutex_lock(&swhash->hlist_mutex);
7201
7202         if (!--swhash->hlist_refcount)
7203                 swevent_hlist_release(swhash);
7204
7205         mutex_unlock(&swhash->hlist_mutex);
7206 }
7207
7208 static void swevent_hlist_put(void)
7209 {
7210         int cpu;
7211
7212         for_each_possible_cpu(cpu)
7213                 swevent_hlist_put_cpu(cpu);
7214 }
7215
7216 static int swevent_hlist_get_cpu(int cpu)
7217 {
7218         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7219         int err = 0;
7220
7221         mutex_lock(&swhash->hlist_mutex);
7222         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7223                 struct swevent_hlist *hlist;
7224
7225                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7226                 if (!hlist) {
7227                         err = -ENOMEM;
7228                         goto exit;
7229                 }
7230                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7231         }
7232         swhash->hlist_refcount++;
7233 exit:
7234         mutex_unlock(&swhash->hlist_mutex);
7235
7236         return err;
7237 }
7238
7239 static int swevent_hlist_get(void)
7240 {
7241         int err, cpu, failed_cpu;
7242
7243         get_online_cpus();
7244         for_each_possible_cpu(cpu) {
7245                 err = swevent_hlist_get_cpu(cpu);
7246                 if (err) {
7247                         failed_cpu = cpu;
7248                         goto fail;
7249                 }
7250         }
7251         put_online_cpus();
7252
7253         return 0;
7254 fail:
7255         for_each_possible_cpu(cpu) {
7256                 if (cpu == failed_cpu)
7257                         break;
7258                 swevent_hlist_put_cpu(cpu);
7259         }
7260
7261         put_online_cpus();
7262         return err;
7263 }
7264
7265 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7266
7267 static void sw_perf_event_destroy(struct perf_event *event)
7268 {
7269         u64 event_id = event->attr.config;
7270
7271         WARN_ON(event->parent);
7272
7273         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7274         swevent_hlist_put();
7275 }
7276
7277 static int perf_swevent_init(struct perf_event *event)
7278 {
7279         u64 event_id = event->attr.config;
7280
7281         if (event->attr.type != PERF_TYPE_SOFTWARE)
7282                 return -ENOENT;
7283
7284         /*
7285          * no branch sampling for software events
7286          */
7287         if (has_branch_stack(event))
7288                 return -EOPNOTSUPP;
7289
7290         switch (event_id) {
7291         case PERF_COUNT_SW_CPU_CLOCK:
7292         case PERF_COUNT_SW_TASK_CLOCK:
7293                 return -ENOENT;
7294
7295         default:
7296                 break;
7297         }
7298
7299         if (event_id >= PERF_COUNT_SW_MAX)
7300                 return -ENOENT;
7301
7302         if (!event->parent) {
7303                 int err;
7304
7305                 err = swevent_hlist_get();
7306                 if (err)
7307                         return err;
7308
7309                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7310                 event->destroy = sw_perf_event_destroy;
7311         }
7312
7313         return 0;
7314 }
7315
7316 static struct pmu perf_swevent = {
7317         .task_ctx_nr    = perf_sw_context,
7318
7319         .capabilities   = PERF_PMU_CAP_NO_NMI,
7320
7321         .event_init     = perf_swevent_init,
7322         .add            = perf_swevent_add,
7323         .del            = perf_swevent_del,
7324         .start          = perf_swevent_start,
7325         .stop           = perf_swevent_stop,
7326         .read           = perf_swevent_read,
7327 };
7328
7329 #ifdef CONFIG_EVENT_TRACING
7330
7331 static int perf_tp_filter_match(struct perf_event *event,
7332                                 struct perf_sample_data *data)
7333 {
7334         void *record = data->raw->data;
7335
7336         /* only top level events have filters set */
7337         if (event->parent)
7338                 event = event->parent;
7339
7340         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7341                 return 1;
7342         return 0;
7343 }
7344
7345 static int perf_tp_event_match(struct perf_event *event,
7346                                 struct perf_sample_data *data,
7347                                 struct pt_regs *regs)
7348 {
7349         if (event->hw.state & PERF_HES_STOPPED)
7350                 return 0;
7351         /*
7352          * All tracepoints are from kernel-space.
7353          */
7354         if (event->attr.exclude_kernel)
7355                 return 0;
7356
7357         if (!perf_tp_filter_match(event, data))
7358                 return 0;
7359
7360         return 1;
7361 }
7362
7363 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7364                                struct trace_event_call *call, u64 count,
7365                                struct pt_regs *regs, struct hlist_head *head,
7366                                struct task_struct *task)
7367 {
7368         struct bpf_prog *prog = call->prog;
7369
7370         if (prog) {
7371                 *(struct pt_regs **)raw_data = regs;
7372                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7373                         perf_swevent_put_recursion_context(rctx);
7374                         return;
7375                 }
7376         }
7377         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7378                       rctx, task);
7379 }
7380 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7381
7382 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7383                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7384                    struct task_struct *task)
7385 {
7386         struct perf_sample_data data;
7387         struct perf_event *event;
7388
7389         struct perf_raw_record raw = {
7390                 .size = entry_size,
7391                 .data = record,
7392         };
7393
7394         perf_sample_data_init(&data, 0, 0);
7395         data.raw = &raw;
7396
7397         perf_trace_buf_update(record, event_type);
7398
7399         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7400                 if (perf_tp_event_match(event, &data, regs))
7401                         perf_swevent_event(event, count, &data, regs);
7402         }
7403
7404         /*
7405          * If we got specified a target task, also iterate its context and
7406          * deliver this event there too.
7407          */
7408         if (task && task != current) {
7409                 struct perf_event_context *ctx;
7410                 struct trace_entry *entry = record;
7411
7412                 rcu_read_lock();
7413                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7414                 if (!ctx)
7415                         goto unlock;
7416
7417                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7418                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7419                                 continue;
7420                         if (event->attr.config != entry->type)
7421                                 continue;
7422                         if (perf_tp_event_match(event, &data, regs))
7423                                 perf_swevent_event(event, count, &data, regs);
7424                 }
7425 unlock:
7426                 rcu_read_unlock();
7427         }
7428
7429         perf_swevent_put_recursion_context(rctx);
7430 }
7431 EXPORT_SYMBOL_GPL(perf_tp_event);
7432
7433 static void tp_perf_event_destroy(struct perf_event *event)
7434 {
7435         perf_trace_destroy(event);
7436 }
7437
7438 static int perf_tp_event_init(struct perf_event *event)
7439 {
7440         int err;
7441
7442         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7443                 return -ENOENT;
7444
7445         /*
7446          * no branch sampling for tracepoint events
7447          */
7448         if (has_branch_stack(event))
7449                 return -EOPNOTSUPP;
7450
7451         err = perf_trace_init(event);
7452         if (err)
7453                 return err;
7454
7455         event->destroy = tp_perf_event_destroy;
7456
7457         return 0;
7458 }
7459
7460 static struct pmu perf_tracepoint = {
7461         .task_ctx_nr    = perf_sw_context,
7462
7463         .event_init     = perf_tp_event_init,
7464         .add            = perf_trace_add,
7465         .del            = perf_trace_del,
7466         .start          = perf_swevent_start,
7467         .stop           = perf_swevent_stop,
7468         .read           = perf_swevent_read,
7469 };
7470
7471 static inline void perf_tp_register(void)
7472 {
7473         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7474 }
7475
7476 static void perf_event_free_filter(struct perf_event *event)
7477 {
7478         ftrace_profile_free_filter(event);
7479 }
7480
7481 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7482 {
7483         bool is_kprobe, is_tracepoint;
7484         struct bpf_prog *prog;
7485
7486         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7487                 return -EINVAL;
7488
7489         if (event->tp_event->prog)
7490                 return -EEXIST;
7491
7492         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7493         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7494         if (!is_kprobe && !is_tracepoint)
7495                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7496                 return -EINVAL;
7497
7498         prog = bpf_prog_get(prog_fd);
7499         if (IS_ERR(prog))
7500                 return PTR_ERR(prog);
7501
7502         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7503             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7504                 /* valid fd, but invalid bpf program type */
7505                 bpf_prog_put(prog);
7506                 return -EINVAL;
7507         }
7508
7509         if (is_tracepoint) {
7510                 int off = trace_event_get_offsets(event->tp_event);
7511
7512                 if (prog->aux->max_ctx_offset > off) {
7513                         bpf_prog_put(prog);
7514                         return -EACCES;
7515                 }
7516         }
7517         event->tp_event->prog = prog;
7518
7519         return 0;
7520 }
7521
7522 static void perf_event_free_bpf_prog(struct perf_event *event)
7523 {
7524         struct bpf_prog *prog;
7525
7526         if (!event->tp_event)
7527                 return;
7528
7529         prog = event->tp_event->prog;
7530         if (prog) {
7531                 event->tp_event->prog = NULL;
7532                 bpf_prog_put(prog);
7533         }
7534 }
7535
7536 #else
7537
7538 static inline void perf_tp_register(void)
7539 {
7540 }
7541
7542 static void perf_event_free_filter(struct perf_event *event)
7543 {
7544 }
7545
7546 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7547 {
7548         return -ENOENT;
7549 }
7550
7551 static void perf_event_free_bpf_prog(struct perf_event *event)
7552 {
7553 }
7554 #endif /* CONFIG_EVENT_TRACING */
7555
7556 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7557 void perf_bp_event(struct perf_event *bp, void *data)
7558 {
7559         struct perf_sample_data sample;
7560         struct pt_regs *regs = data;
7561
7562         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7563
7564         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7565                 perf_swevent_event(bp, 1, &sample, regs);
7566 }
7567 #endif
7568
7569 /*
7570  * Allocate a new address filter
7571  */
7572 static struct perf_addr_filter *
7573 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7574 {
7575         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7576         struct perf_addr_filter *filter;
7577
7578         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7579         if (!filter)
7580                 return NULL;
7581
7582         INIT_LIST_HEAD(&filter->entry);
7583         list_add_tail(&filter->entry, filters);
7584
7585         return filter;
7586 }
7587
7588 static void free_filters_list(struct list_head *filters)
7589 {
7590         struct perf_addr_filter *filter, *iter;
7591
7592         list_for_each_entry_safe(filter, iter, filters, entry) {
7593                 if (filter->inode)
7594                         iput(filter->inode);
7595                 list_del(&filter->entry);
7596                 kfree(filter);
7597         }
7598 }
7599
7600 /*
7601  * Free existing address filters and optionally install new ones
7602  */
7603 static void perf_addr_filters_splice(struct perf_event *event,
7604                                      struct list_head *head)
7605 {
7606         unsigned long flags;
7607         LIST_HEAD(list);
7608
7609         if (!has_addr_filter(event))
7610                 return;
7611
7612         /* don't bother with children, they don't have their own filters */
7613         if (event->parent)
7614                 return;
7615
7616         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7617
7618         list_splice_init(&event->addr_filters.list, &list);
7619         if (head)
7620                 list_splice(head, &event->addr_filters.list);
7621
7622         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7623
7624         free_filters_list(&list);
7625 }
7626
7627 /*
7628  * Scan through mm's vmas and see if one of them matches the
7629  * @filter; if so, adjust filter's address range.
7630  * Called with mm::mmap_sem down for reading.
7631  */
7632 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7633                                             struct mm_struct *mm)
7634 {
7635         struct vm_area_struct *vma;
7636
7637         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7638                 struct file *file = vma->vm_file;
7639                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7640                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7641
7642                 if (!file)
7643                         continue;
7644
7645                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7646                         continue;
7647
7648                 return vma->vm_start;
7649         }
7650
7651         return 0;
7652 }
7653
7654 /*
7655  * Update event's address range filters based on the
7656  * task's existing mappings, if any.
7657  */
7658 static void perf_event_addr_filters_apply(struct perf_event *event)
7659 {
7660         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7661         struct task_struct *task = READ_ONCE(event->ctx->task);
7662         struct perf_addr_filter *filter;
7663         struct mm_struct *mm = NULL;
7664         unsigned int count = 0;
7665         unsigned long flags;
7666
7667         /*
7668          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7669          * will stop on the parent's child_mutex that our caller is also holding
7670          */
7671         if (task == TASK_TOMBSTONE)
7672                 return;
7673
7674         mm = get_task_mm(event->ctx->task);
7675         if (!mm)
7676                 goto restart;
7677
7678         down_read(&mm->mmap_sem);
7679
7680         raw_spin_lock_irqsave(&ifh->lock, flags);
7681         list_for_each_entry(filter, &ifh->list, entry) {
7682                 event->addr_filters_offs[count] = 0;
7683
7684                 if (perf_addr_filter_needs_mmap(filter))
7685                         event->addr_filters_offs[count] =
7686                                 perf_addr_filter_apply(filter, mm);
7687
7688                 count++;
7689         }
7690
7691         event->addr_filters_gen++;
7692         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7693
7694         up_read(&mm->mmap_sem);
7695
7696         mmput(mm);
7697
7698 restart:
7699         perf_event_restart(event);
7700 }
7701
7702 /*
7703  * Address range filtering: limiting the data to certain
7704  * instruction address ranges. Filters are ioctl()ed to us from
7705  * userspace as ascii strings.
7706  *
7707  * Filter string format:
7708  *
7709  * ACTION RANGE_SPEC
7710  * where ACTION is one of the
7711  *  * "filter": limit the trace to this region
7712  *  * "start": start tracing from this address
7713  *  * "stop": stop tracing at this address/region;
7714  * RANGE_SPEC is
7715  *  * for kernel addresses: <start address>[/<size>]
7716  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7717  *
7718  * if <size> is not specified, the range is treated as a single address.
7719  */
7720 enum {
7721         IF_ACT_FILTER,
7722         IF_ACT_START,
7723         IF_ACT_STOP,
7724         IF_SRC_FILE,
7725         IF_SRC_KERNEL,
7726         IF_SRC_FILEADDR,
7727         IF_SRC_KERNELADDR,
7728 };
7729
7730 enum {
7731         IF_STATE_ACTION = 0,
7732         IF_STATE_SOURCE,
7733         IF_STATE_END,
7734 };
7735
7736 static const match_table_t if_tokens = {
7737         { IF_ACT_FILTER,        "filter" },
7738         { IF_ACT_START,         "start" },
7739         { IF_ACT_STOP,          "stop" },
7740         { IF_SRC_FILE,          "%u/%u@%s" },
7741         { IF_SRC_KERNEL,        "%u/%u" },
7742         { IF_SRC_FILEADDR,      "%u@%s" },
7743         { IF_SRC_KERNELADDR,    "%u" },
7744 };
7745
7746 /*
7747  * Address filter string parser
7748  */
7749 static int
7750 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7751                              struct list_head *filters)
7752 {
7753         struct perf_addr_filter *filter = NULL;
7754         char *start, *orig, *filename = NULL;
7755         struct path path;
7756         substring_t args[MAX_OPT_ARGS];
7757         int state = IF_STATE_ACTION, token;
7758         unsigned int kernel = 0;
7759         int ret = -EINVAL;
7760
7761         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7762         if (!fstr)
7763                 return -ENOMEM;
7764
7765         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7766                 ret = -EINVAL;
7767
7768                 if (!*start)
7769                         continue;
7770
7771                 /* filter definition begins */
7772                 if (state == IF_STATE_ACTION) {
7773                         filter = perf_addr_filter_new(event, filters);
7774                         if (!filter)
7775                                 goto fail;
7776                 }
7777
7778                 token = match_token(start, if_tokens, args);
7779                 switch (token) {
7780                 case IF_ACT_FILTER:
7781                 case IF_ACT_START:
7782                         filter->filter = 1;
7783
7784                 case IF_ACT_STOP:
7785                         if (state != IF_STATE_ACTION)
7786                                 goto fail;
7787
7788                         state = IF_STATE_SOURCE;
7789                         break;
7790
7791                 case IF_SRC_KERNELADDR:
7792                 case IF_SRC_KERNEL:
7793                         kernel = 1;
7794
7795                 case IF_SRC_FILEADDR:
7796                 case IF_SRC_FILE:
7797                         if (state != IF_STATE_SOURCE)
7798                                 goto fail;
7799
7800                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7801                                 filter->range = 1;
7802
7803                         *args[0].to = 0;
7804                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7805                         if (ret)
7806                                 goto fail;
7807
7808                         if (filter->range) {
7809                                 *args[1].to = 0;
7810                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7811                                 if (ret)
7812                                         goto fail;
7813                         }
7814
7815                         if (token == IF_SRC_FILE) {
7816                                 filename = match_strdup(&args[2]);
7817                                 if (!filename) {
7818                                         ret = -ENOMEM;
7819                                         goto fail;
7820                                 }
7821                         }
7822
7823                         state = IF_STATE_END;
7824                         break;
7825
7826                 default:
7827                         goto fail;
7828                 }
7829
7830                 /*
7831                  * Filter definition is fully parsed, validate and install it.
7832                  * Make sure that it doesn't contradict itself or the event's
7833                  * attribute.
7834                  */
7835                 if (state == IF_STATE_END) {
7836                         if (kernel && event->attr.exclude_kernel)
7837                                 goto fail;
7838
7839                         if (!kernel) {
7840                                 if (!filename)
7841                                         goto fail;
7842
7843                                 /* look up the path and grab its inode */
7844                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7845                                 if (ret)
7846                                         goto fail_free_name;
7847
7848                                 filter->inode = igrab(d_inode(path.dentry));
7849                                 path_put(&path);
7850                                 kfree(filename);
7851                                 filename = NULL;
7852
7853                                 ret = -EINVAL;
7854                                 if (!filter->inode ||
7855                                     !S_ISREG(filter->inode->i_mode))
7856                                         /* free_filters_list() will iput() */
7857                                         goto fail;
7858                         }
7859
7860                         /* ready to consume more filters */
7861                         state = IF_STATE_ACTION;
7862                         filter = NULL;
7863                 }
7864         }
7865
7866         if (state != IF_STATE_ACTION)
7867                 goto fail;
7868
7869         kfree(orig);
7870
7871         return 0;
7872
7873 fail_free_name:
7874         kfree(filename);
7875 fail:
7876         free_filters_list(filters);
7877         kfree(orig);
7878
7879         return ret;
7880 }
7881
7882 static int
7883 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7884 {
7885         LIST_HEAD(filters);
7886         int ret;
7887
7888         /*
7889          * Since this is called in perf_ioctl() path, we're already holding
7890          * ctx::mutex.
7891          */
7892         lockdep_assert_held(&event->ctx->mutex);
7893
7894         if (WARN_ON_ONCE(event->parent))
7895                 return -EINVAL;
7896
7897         /*
7898          * For now, we only support filtering in per-task events; doing so
7899          * for CPU-wide events requires additional context switching trickery,
7900          * since same object code will be mapped at different virtual
7901          * addresses in different processes.
7902          */
7903         if (!event->ctx->task)
7904                 return -EOPNOTSUPP;
7905
7906         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7907         if (ret)
7908                 return ret;
7909
7910         ret = event->pmu->addr_filters_validate(&filters);
7911         if (ret) {
7912                 free_filters_list(&filters);
7913                 return ret;
7914         }
7915
7916         /* remove existing filters, if any */
7917         perf_addr_filters_splice(event, &filters);
7918
7919         /* install new filters */
7920         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7921
7922         return ret;
7923 }
7924
7925 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7926 {
7927         char *filter_str;
7928         int ret = -EINVAL;
7929
7930         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7931             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7932             !has_addr_filter(event))
7933                 return -EINVAL;
7934
7935         filter_str = strndup_user(arg, PAGE_SIZE);
7936         if (IS_ERR(filter_str))
7937                 return PTR_ERR(filter_str);
7938
7939         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7940             event->attr.type == PERF_TYPE_TRACEPOINT)
7941                 ret = ftrace_profile_set_filter(event, event->attr.config,
7942                                                 filter_str);
7943         else if (has_addr_filter(event))
7944                 ret = perf_event_set_addr_filter(event, filter_str);
7945
7946         kfree(filter_str);
7947         return ret;
7948 }
7949
7950 /*
7951  * hrtimer based swevent callback
7952  */
7953
7954 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7955 {
7956         enum hrtimer_restart ret = HRTIMER_RESTART;
7957         struct perf_sample_data data;
7958         struct pt_regs *regs;
7959         struct perf_event *event;
7960         u64 period;
7961
7962         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7963
7964         if (event->state != PERF_EVENT_STATE_ACTIVE)
7965                 return HRTIMER_NORESTART;
7966
7967         event->pmu->read(event);
7968
7969         perf_sample_data_init(&data, 0, event->hw.last_period);
7970         regs = get_irq_regs();
7971
7972         if (regs && !perf_exclude_event(event, regs)) {
7973                 if (!(event->attr.exclude_idle && is_idle_task(current)))
7974                         if (__perf_event_overflow(event, 1, &data, regs))
7975                                 ret = HRTIMER_NORESTART;
7976         }
7977
7978         period = max_t(u64, 10000, event->hw.sample_period);
7979         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7980
7981         return ret;
7982 }
7983
7984 static void perf_swevent_start_hrtimer(struct perf_event *event)
7985 {
7986         struct hw_perf_event *hwc = &event->hw;
7987         s64 period;
7988
7989         if (!is_sampling_event(event))
7990                 return;
7991
7992         period = local64_read(&hwc->period_left);
7993         if (period) {
7994                 if (period < 0)
7995                         period = 10000;
7996
7997                 local64_set(&hwc->period_left, 0);
7998         } else {
7999                 period = max_t(u64, 10000, hwc->sample_period);
8000         }
8001         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8002                       HRTIMER_MODE_REL_PINNED);
8003 }
8004
8005 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8006 {
8007         struct hw_perf_event *hwc = &event->hw;
8008
8009         if (is_sampling_event(event)) {
8010                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8011                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8012
8013                 hrtimer_cancel(&hwc->hrtimer);
8014         }
8015 }
8016
8017 static void perf_swevent_init_hrtimer(struct perf_event *event)
8018 {
8019         struct hw_perf_event *hwc = &event->hw;
8020
8021         if (!is_sampling_event(event))
8022                 return;
8023
8024         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8025         hwc->hrtimer.function = perf_swevent_hrtimer;
8026
8027         /*
8028          * Since hrtimers have a fixed rate, we can do a static freq->period
8029          * mapping and avoid the whole period adjust feedback stuff.
8030          */
8031         if (event->attr.freq) {
8032                 long freq = event->attr.sample_freq;
8033
8034                 event->attr.sample_period = NSEC_PER_SEC / freq;
8035                 hwc->sample_period = event->attr.sample_period;
8036                 local64_set(&hwc->period_left, hwc->sample_period);
8037                 hwc->last_period = hwc->sample_period;
8038                 event->attr.freq = 0;
8039         }
8040 }
8041
8042 /*
8043  * Software event: cpu wall time clock
8044  */
8045
8046 static void cpu_clock_event_update(struct perf_event *event)
8047 {
8048         s64 prev;
8049         u64 now;
8050
8051         now = local_clock();
8052         prev = local64_xchg(&event->hw.prev_count, now);
8053         local64_add(now - prev, &event->count);
8054 }
8055
8056 static void cpu_clock_event_start(struct perf_event *event, int flags)
8057 {
8058         local64_set(&event->hw.prev_count, local_clock());
8059         perf_swevent_start_hrtimer(event);
8060 }
8061
8062 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8063 {
8064         perf_swevent_cancel_hrtimer(event);
8065         cpu_clock_event_update(event);
8066 }
8067
8068 static int cpu_clock_event_add(struct perf_event *event, int flags)
8069 {
8070         if (flags & PERF_EF_START)
8071                 cpu_clock_event_start(event, flags);
8072         perf_event_update_userpage(event);
8073
8074         return 0;
8075 }
8076
8077 static void cpu_clock_event_del(struct perf_event *event, int flags)
8078 {
8079         cpu_clock_event_stop(event, flags);
8080 }
8081
8082 static void cpu_clock_event_read(struct perf_event *event)
8083 {
8084         cpu_clock_event_update(event);
8085 }
8086
8087 static int cpu_clock_event_init(struct perf_event *event)
8088 {
8089         if (event->attr.type != PERF_TYPE_SOFTWARE)
8090                 return -ENOENT;
8091
8092         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8093                 return -ENOENT;
8094
8095         /*
8096          * no branch sampling for software events
8097          */
8098         if (has_branch_stack(event))
8099                 return -EOPNOTSUPP;
8100
8101         perf_swevent_init_hrtimer(event);
8102
8103         return 0;
8104 }
8105
8106 static struct pmu perf_cpu_clock = {
8107         .task_ctx_nr    = perf_sw_context,
8108
8109         .capabilities   = PERF_PMU_CAP_NO_NMI,
8110
8111         .event_init     = cpu_clock_event_init,
8112         .add            = cpu_clock_event_add,
8113         .del            = cpu_clock_event_del,
8114         .start          = cpu_clock_event_start,
8115         .stop           = cpu_clock_event_stop,
8116         .read           = cpu_clock_event_read,
8117 };
8118
8119 /*
8120  * Software event: task time clock
8121  */
8122
8123 static void task_clock_event_update(struct perf_event *event, u64 now)
8124 {
8125         u64 prev;
8126         s64 delta;
8127
8128         prev = local64_xchg(&event->hw.prev_count, now);
8129         delta = now - prev;
8130         local64_add(delta, &event->count);
8131 }
8132
8133 static void task_clock_event_start(struct perf_event *event, int flags)
8134 {
8135         local64_set(&event->hw.prev_count, event->ctx->time);
8136         perf_swevent_start_hrtimer(event);
8137 }
8138
8139 static void task_clock_event_stop(struct perf_event *event, int flags)
8140 {
8141         perf_swevent_cancel_hrtimer(event);
8142         task_clock_event_update(event, event->ctx->time);
8143 }
8144
8145 static int task_clock_event_add(struct perf_event *event, int flags)
8146 {
8147         if (flags & PERF_EF_START)
8148                 task_clock_event_start(event, flags);
8149         perf_event_update_userpage(event);
8150
8151         return 0;
8152 }
8153
8154 static void task_clock_event_del(struct perf_event *event, int flags)
8155 {
8156         task_clock_event_stop(event, PERF_EF_UPDATE);
8157 }
8158
8159 static void task_clock_event_read(struct perf_event *event)
8160 {
8161         u64 now = perf_clock();
8162         u64 delta = now - event->ctx->timestamp;
8163         u64 time = event->ctx->time + delta;
8164
8165         task_clock_event_update(event, time);
8166 }
8167
8168 static int task_clock_event_init(struct perf_event *event)
8169 {
8170         if (event->attr.type != PERF_TYPE_SOFTWARE)
8171                 return -ENOENT;
8172
8173         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8174                 return -ENOENT;
8175
8176         /*
8177          * no branch sampling for software events
8178          */
8179         if (has_branch_stack(event))
8180                 return -EOPNOTSUPP;
8181
8182         perf_swevent_init_hrtimer(event);
8183
8184         return 0;
8185 }
8186
8187 static struct pmu perf_task_clock = {
8188         .task_ctx_nr    = perf_sw_context,
8189
8190         .capabilities   = PERF_PMU_CAP_NO_NMI,
8191
8192         .event_init     = task_clock_event_init,
8193         .add            = task_clock_event_add,
8194         .del            = task_clock_event_del,
8195         .start          = task_clock_event_start,
8196         .stop           = task_clock_event_stop,
8197         .read           = task_clock_event_read,
8198 };
8199
8200 static void perf_pmu_nop_void(struct pmu *pmu)
8201 {
8202 }
8203
8204 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8205 {
8206 }
8207
8208 static int perf_pmu_nop_int(struct pmu *pmu)
8209 {
8210         return 0;
8211 }
8212
8213 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8214
8215 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8216 {
8217         __this_cpu_write(nop_txn_flags, flags);
8218
8219         if (flags & ~PERF_PMU_TXN_ADD)
8220                 return;
8221
8222         perf_pmu_disable(pmu);
8223 }
8224
8225 static int perf_pmu_commit_txn(struct pmu *pmu)
8226 {
8227         unsigned int flags = __this_cpu_read(nop_txn_flags);
8228
8229         __this_cpu_write(nop_txn_flags, 0);
8230
8231         if (flags & ~PERF_PMU_TXN_ADD)
8232                 return 0;
8233
8234         perf_pmu_enable(pmu);
8235         return 0;
8236 }
8237
8238 static void perf_pmu_cancel_txn(struct pmu *pmu)
8239 {
8240         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8241
8242         __this_cpu_write(nop_txn_flags, 0);
8243
8244         if (flags & ~PERF_PMU_TXN_ADD)
8245                 return;
8246
8247         perf_pmu_enable(pmu);
8248 }
8249
8250 static int perf_event_idx_default(struct perf_event *event)
8251 {
8252         return 0;
8253 }
8254
8255 /*
8256  * Ensures all contexts with the same task_ctx_nr have the same
8257  * pmu_cpu_context too.
8258  */
8259 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8260 {
8261         struct pmu *pmu;
8262
8263         if (ctxn < 0)
8264                 return NULL;
8265
8266         list_for_each_entry(pmu, &pmus, entry) {
8267                 if (pmu->task_ctx_nr == ctxn)
8268                         return pmu->pmu_cpu_context;
8269         }
8270
8271         return NULL;
8272 }
8273
8274 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8275 {
8276         int cpu;
8277
8278         for_each_possible_cpu(cpu) {
8279                 struct perf_cpu_context *cpuctx;
8280
8281                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8282
8283                 if (cpuctx->unique_pmu == old_pmu)
8284                         cpuctx->unique_pmu = pmu;
8285         }
8286 }
8287
8288 static void free_pmu_context(struct pmu *pmu)
8289 {
8290         struct pmu *i;
8291
8292         mutex_lock(&pmus_lock);
8293         /*
8294          * Like a real lame refcount.
8295          */
8296         list_for_each_entry(i, &pmus, entry) {
8297                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8298                         update_pmu_context(i, pmu);
8299                         goto out;
8300                 }
8301         }
8302
8303         free_percpu(pmu->pmu_cpu_context);
8304 out:
8305         mutex_unlock(&pmus_lock);
8306 }
8307
8308 /*
8309  * Let userspace know that this PMU supports address range filtering:
8310  */
8311 static ssize_t nr_addr_filters_show(struct device *dev,
8312                                     struct device_attribute *attr,
8313                                     char *page)
8314 {
8315         struct pmu *pmu = dev_get_drvdata(dev);
8316
8317         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8318 }
8319 DEVICE_ATTR_RO(nr_addr_filters);
8320
8321 static struct idr pmu_idr;
8322
8323 static ssize_t
8324 type_show(struct device *dev, struct device_attribute *attr, char *page)
8325 {
8326         struct pmu *pmu = dev_get_drvdata(dev);
8327
8328         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8329 }
8330 static DEVICE_ATTR_RO(type);
8331
8332 static ssize_t
8333 perf_event_mux_interval_ms_show(struct device *dev,
8334                                 struct device_attribute *attr,
8335                                 char *page)
8336 {
8337         struct pmu *pmu = dev_get_drvdata(dev);
8338
8339         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8340 }
8341
8342 static DEFINE_MUTEX(mux_interval_mutex);
8343
8344 static ssize_t
8345 perf_event_mux_interval_ms_store(struct device *dev,
8346                                  struct device_attribute *attr,
8347                                  const char *buf, size_t count)
8348 {
8349         struct pmu *pmu = dev_get_drvdata(dev);
8350         int timer, cpu, ret;
8351
8352         ret = kstrtoint(buf, 0, &timer);
8353         if (ret)
8354                 return ret;
8355
8356         if (timer < 1)
8357                 return -EINVAL;
8358
8359         /* same value, noting to do */
8360         if (timer == pmu->hrtimer_interval_ms)
8361                 return count;
8362
8363         mutex_lock(&mux_interval_mutex);
8364         pmu->hrtimer_interval_ms = timer;
8365
8366         /* update all cpuctx for this PMU */
8367         get_online_cpus();
8368         for_each_online_cpu(cpu) {
8369                 struct perf_cpu_context *cpuctx;
8370                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8371                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8372
8373                 cpu_function_call(cpu,
8374                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8375         }
8376         put_online_cpus();
8377         mutex_unlock(&mux_interval_mutex);
8378
8379         return count;
8380 }
8381 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8382
8383 static struct attribute *pmu_dev_attrs[] = {
8384         &dev_attr_type.attr,
8385         &dev_attr_perf_event_mux_interval_ms.attr,
8386         NULL,
8387 };
8388 ATTRIBUTE_GROUPS(pmu_dev);
8389
8390 static int pmu_bus_running;
8391 static struct bus_type pmu_bus = {
8392         .name           = "event_source",
8393         .dev_groups     = pmu_dev_groups,
8394 };
8395
8396 static void pmu_dev_release(struct device *dev)
8397 {
8398         kfree(dev);
8399 }
8400
8401 static int pmu_dev_alloc(struct pmu *pmu)
8402 {
8403         int ret = -ENOMEM;
8404
8405         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8406         if (!pmu->dev)
8407                 goto out;
8408
8409         pmu->dev->groups = pmu->attr_groups;
8410         device_initialize(pmu->dev);
8411         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8412         if (ret)
8413                 goto free_dev;
8414
8415         dev_set_drvdata(pmu->dev, pmu);
8416         pmu->dev->bus = &pmu_bus;
8417         pmu->dev->release = pmu_dev_release;
8418         ret = device_add(pmu->dev);
8419         if (ret)
8420                 goto free_dev;
8421
8422         /* For PMUs with address filters, throw in an extra attribute: */
8423         if (pmu->nr_addr_filters)
8424                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8425
8426         if (ret)
8427                 goto del_dev;
8428
8429 out:
8430         return ret;
8431
8432 del_dev:
8433         device_del(pmu->dev);
8434
8435 free_dev:
8436         put_device(pmu->dev);
8437         goto out;
8438 }
8439
8440 static struct lock_class_key cpuctx_mutex;
8441 static struct lock_class_key cpuctx_lock;
8442
8443 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8444 {
8445         int cpu, ret;
8446
8447         mutex_lock(&pmus_lock);
8448         ret = -ENOMEM;
8449         pmu->pmu_disable_count = alloc_percpu(int);
8450         if (!pmu->pmu_disable_count)
8451                 goto unlock;
8452
8453         pmu->type = -1;
8454         if (!name)
8455                 goto skip_type;
8456         pmu->name = name;
8457
8458         if (type < 0) {
8459                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8460                 if (type < 0) {
8461                         ret = type;
8462                         goto free_pdc;
8463                 }
8464         }
8465         pmu->type = type;
8466
8467         if (pmu_bus_running) {
8468                 ret = pmu_dev_alloc(pmu);
8469                 if (ret)
8470                         goto free_idr;
8471         }
8472
8473 skip_type:
8474         if (pmu->task_ctx_nr == perf_hw_context) {
8475                 static int hw_context_taken = 0;
8476
8477                 /*
8478                  * Other than systems with heterogeneous CPUs, it never makes
8479                  * sense for two PMUs to share perf_hw_context. PMUs which are
8480                  * uncore must use perf_invalid_context.
8481                  */
8482                 if (WARN_ON_ONCE(hw_context_taken &&
8483                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8484                         pmu->task_ctx_nr = perf_invalid_context;
8485
8486                 hw_context_taken = 1;
8487         }
8488
8489         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8490         if (pmu->pmu_cpu_context)
8491                 goto got_cpu_context;
8492
8493         ret = -ENOMEM;
8494         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8495         if (!pmu->pmu_cpu_context)
8496                 goto free_dev;
8497
8498         for_each_possible_cpu(cpu) {
8499                 struct perf_cpu_context *cpuctx;
8500
8501                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8502                 __perf_event_init_context(&cpuctx->ctx);
8503                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8504                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8505                 cpuctx->ctx.pmu = pmu;
8506
8507                 __perf_mux_hrtimer_init(cpuctx, cpu);
8508
8509                 cpuctx->unique_pmu = pmu;
8510         }
8511
8512 got_cpu_context:
8513         if (!pmu->start_txn) {
8514                 if (pmu->pmu_enable) {
8515                         /*
8516                          * If we have pmu_enable/pmu_disable calls, install
8517                          * transaction stubs that use that to try and batch
8518                          * hardware accesses.
8519                          */
8520                         pmu->start_txn  = perf_pmu_start_txn;
8521                         pmu->commit_txn = perf_pmu_commit_txn;
8522                         pmu->cancel_txn = perf_pmu_cancel_txn;
8523                 } else {
8524                         pmu->start_txn  = perf_pmu_nop_txn;
8525                         pmu->commit_txn = perf_pmu_nop_int;
8526                         pmu->cancel_txn = perf_pmu_nop_void;
8527                 }
8528         }
8529
8530         if (!pmu->pmu_enable) {
8531                 pmu->pmu_enable  = perf_pmu_nop_void;
8532                 pmu->pmu_disable = perf_pmu_nop_void;
8533         }
8534
8535         if (!pmu->event_idx)
8536                 pmu->event_idx = perf_event_idx_default;
8537
8538         list_add_rcu(&pmu->entry, &pmus);
8539         atomic_set(&pmu->exclusive_cnt, 0);
8540         ret = 0;
8541 unlock:
8542         mutex_unlock(&pmus_lock);
8543
8544         return ret;
8545
8546 free_dev:
8547         device_del(pmu->dev);
8548         put_device(pmu->dev);
8549
8550 free_idr:
8551         if (pmu->type >= PERF_TYPE_MAX)
8552                 idr_remove(&pmu_idr, pmu->type);
8553
8554 free_pdc:
8555         free_percpu(pmu->pmu_disable_count);
8556         goto unlock;
8557 }
8558 EXPORT_SYMBOL_GPL(perf_pmu_register);
8559
8560 void perf_pmu_unregister(struct pmu *pmu)
8561 {
8562         mutex_lock(&pmus_lock);
8563         list_del_rcu(&pmu->entry);
8564         mutex_unlock(&pmus_lock);
8565
8566         /*
8567          * We dereference the pmu list under both SRCU and regular RCU, so
8568          * synchronize against both of those.
8569          */
8570         synchronize_srcu(&pmus_srcu);
8571         synchronize_rcu();
8572
8573         free_percpu(pmu->pmu_disable_count);
8574         if (pmu->type >= PERF_TYPE_MAX)
8575                 idr_remove(&pmu_idr, pmu->type);
8576         if (pmu->nr_addr_filters)
8577                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8578         device_del(pmu->dev);
8579         put_device(pmu->dev);
8580         free_pmu_context(pmu);
8581 }
8582 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8583
8584 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8585 {
8586         struct perf_event_context *ctx = NULL;
8587         int ret;
8588
8589         if (!try_module_get(pmu->module))
8590                 return -ENODEV;
8591
8592         if (event->group_leader != event) {
8593                 /*
8594                  * This ctx->mutex can nest when we're called through
8595                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8596                  */
8597                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8598                                                  SINGLE_DEPTH_NESTING);
8599                 BUG_ON(!ctx);
8600         }
8601
8602         event->pmu = pmu;
8603         ret = pmu->event_init(event);
8604
8605         if (ctx)
8606                 perf_event_ctx_unlock(event->group_leader, ctx);
8607
8608         if (ret)
8609                 module_put(pmu->module);
8610
8611         return ret;
8612 }
8613
8614 static struct pmu *perf_init_event(struct perf_event *event)
8615 {
8616         struct pmu *pmu = NULL;
8617         int idx;
8618         int ret;
8619
8620         idx = srcu_read_lock(&pmus_srcu);
8621
8622         rcu_read_lock();
8623         pmu = idr_find(&pmu_idr, event->attr.type);
8624         rcu_read_unlock();
8625         if (pmu) {
8626                 ret = perf_try_init_event(pmu, event);
8627                 if (ret)
8628                         pmu = ERR_PTR(ret);
8629                 goto unlock;
8630         }
8631
8632         list_for_each_entry_rcu(pmu, &pmus, entry) {
8633                 ret = perf_try_init_event(pmu, event);
8634                 if (!ret)
8635                         goto unlock;
8636
8637                 if (ret != -ENOENT) {
8638                         pmu = ERR_PTR(ret);
8639                         goto unlock;
8640                 }
8641         }
8642         pmu = ERR_PTR(-ENOENT);
8643 unlock:
8644         srcu_read_unlock(&pmus_srcu, idx);
8645
8646         return pmu;
8647 }
8648
8649 static void account_event_cpu(struct perf_event *event, int cpu)
8650 {
8651         if (event->parent)
8652                 return;
8653
8654         if (is_cgroup_event(event))
8655                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8656 }
8657
8658 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8659 static void account_freq_event_nohz(void)
8660 {
8661 #ifdef CONFIG_NO_HZ_FULL
8662         /* Lock so we don't race with concurrent unaccount */
8663         spin_lock(&nr_freq_lock);
8664         if (atomic_inc_return(&nr_freq_events) == 1)
8665                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8666         spin_unlock(&nr_freq_lock);
8667 #endif
8668 }
8669
8670 static void account_freq_event(void)
8671 {
8672         if (tick_nohz_full_enabled())
8673                 account_freq_event_nohz();
8674         else
8675                 atomic_inc(&nr_freq_events);
8676 }
8677
8678
8679 static void account_event(struct perf_event *event)
8680 {
8681         bool inc = false;
8682
8683         if (event->parent)
8684                 return;
8685
8686         if (event->attach_state & PERF_ATTACH_TASK)
8687                 inc = true;
8688         if (event->attr.mmap || event->attr.mmap_data)
8689                 atomic_inc(&nr_mmap_events);
8690         if (event->attr.comm)
8691                 atomic_inc(&nr_comm_events);
8692         if (event->attr.task)
8693                 atomic_inc(&nr_task_events);
8694         if (event->attr.freq)
8695                 account_freq_event();
8696         if (event->attr.context_switch) {
8697                 atomic_inc(&nr_switch_events);
8698                 inc = true;
8699         }
8700         if (has_branch_stack(event))
8701                 inc = true;
8702         if (is_cgroup_event(event))
8703                 inc = true;
8704
8705         if (inc) {
8706                 if (atomic_inc_not_zero(&perf_sched_count))
8707                         goto enabled;
8708
8709                 mutex_lock(&perf_sched_mutex);
8710                 if (!atomic_read(&perf_sched_count)) {
8711                         static_branch_enable(&perf_sched_events);
8712                         /*
8713                          * Guarantee that all CPUs observe they key change and
8714                          * call the perf scheduling hooks before proceeding to
8715                          * install events that need them.
8716                          */
8717                         synchronize_sched();
8718                 }
8719                 /*
8720                  * Now that we have waited for the sync_sched(), allow further
8721                  * increments to by-pass the mutex.
8722                  */
8723                 atomic_inc(&perf_sched_count);
8724                 mutex_unlock(&perf_sched_mutex);
8725         }
8726 enabled:
8727
8728         account_event_cpu(event, event->cpu);
8729 }
8730
8731 /*
8732  * Allocate and initialize a event structure
8733  */
8734 static struct perf_event *
8735 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8736                  struct task_struct *task,
8737                  struct perf_event *group_leader,
8738                  struct perf_event *parent_event,
8739                  perf_overflow_handler_t overflow_handler,
8740                  void *context, int cgroup_fd)
8741 {
8742         struct pmu *pmu;
8743         struct perf_event *event;
8744         struct hw_perf_event *hwc;
8745         long err = -EINVAL;
8746
8747         if ((unsigned)cpu >= nr_cpu_ids) {
8748                 if (!task || cpu != -1)
8749                         return ERR_PTR(-EINVAL);
8750         }
8751
8752         event = kzalloc(sizeof(*event), GFP_KERNEL);
8753         if (!event)
8754                 return ERR_PTR(-ENOMEM);
8755
8756         /*
8757          * Single events are their own group leaders, with an
8758          * empty sibling list:
8759          */
8760         if (!group_leader)
8761                 group_leader = event;
8762
8763         mutex_init(&event->child_mutex);
8764         INIT_LIST_HEAD(&event->child_list);
8765
8766         INIT_LIST_HEAD(&event->group_entry);
8767         INIT_LIST_HEAD(&event->event_entry);
8768         INIT_LIST_HEAD(&event->sibling_list);
8769         INIT_LIST_HEAD(&event->rb_entry);
8770         INIT_LIST_HEAD(&event->active_entry);
8771         INIT_LIST_HEAD(&event->addr_filters.list);
8772         INIT_HLIST_NODE(&event->hlist_entry);
8773
8774
8775         init_waitqueue_head(&event->waitq);
8776         init_irq_work(&event->pending, perf_pending_event);
8777
8778         mutex_init(&event->mmap_mutex);
8779         raw_spin_lock_init(&event->addr_filters.lock);
8780
8781         atomic_long_set(&event->refcount, 1);
8782         event->cpu              = cpu;
8783         event->attr             = *attr;
8784         event->group_leader     = group_leader;
8785         event->pmu              = NULL;
8786         event->oncpu            = -1;
8787
8788         event->parent           = parent_event;
8789
8790         event->ns               = get_pid_ns(task_active_pid_ns(current));
8791         event->id               = atomic64_inc_return(&perf_event_id);
8792
8793         event->state            = PERF_EVENT_STATE_INACTIVE;
8794
8795         if (task) {
8796                 event->attach_state = PERF_ATTACH_TASK;
8797                 /*
8798                  * XXX pmu::event_init needs to know what task to account to
8799                  * and we cannot use the ctx information because we need the
8800                  * pmu before we get a ctx.
8801                  */
8802                 event->hw.target = task;
8803         }
8804
8805         event->clock = &local_clock;
8806         if (parent_event)
8807                 event->clock = parent_event->clock;
8808
8809         if (!overflow_handler && parent_event) {
8810                 overflow_handler = parent_event->overflow_handler;
8811                 context = parent_event->overflow_handler_context;
8812         }
8813
8814         if (overflow_handler) {
8815                 event->overflow_handler = overflow_handler;
8816                 event->overflow_handler_context = context;
8817         } else if (is_write_backward(event)){
8818                 event->overflow_handler = perf_event_output_backward;
8819                 event->overflow_handler_context = NULL;
8820         } else {
8821                 event->overflow_handler = perf_event_output_forward;
8822                 event->overflow_handler_context = NULL;
8823         }
8824
8825         perf_event__state_init(event);
8826
8827         pmu = NULL;
8828
8829         hwc = &event->hw;
8830         hwc->sample_period = attr->sample_period;
8831         if (attr->freq && attr->sample_freq)
8832                 hwc->sample_period = 1;
8833         hwc->last_period = hwc->sample_period;
8834
8835         local64_set(&hwc->period_left, hwc->sample_period);
8836
8837         /*
8838          * we currently do not support PERF_FORMAT_GROUP on inherited events
8839          */
8840         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8841                 goto err_ns;
8842
8843         if (!has_branch_stack(event))
8844                 event->attr.branch_sample_type = 0;
8845
8846         if (cgroup_fd != -1) {
8847                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8848                 if (err)
8849                         goto err_ns;
8850         }
8851
8852         pmu = perf_init_event(event);
8853         if (!pmu)
8854                 goto err_ns;
8855         else if (IS_ERR(pmu)) {
8856                 err = PTR_ERR(pmu);
8857                 goto err_ns;
8858         }
8859
8860         err = exclusive_event_init(event);
8861         if (err)
8862                 goto err_pmu;
8863
8864         if (has_addr_filter(event)) {
8865                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8866                                                    sizeof(unsigned long),
8867                                                    GFP_KERNEL);
8868                 if (!event->addr_filters_offs)
8869                         goto err_per_task;
8870
8871                 /* force hw sync on the address filters */
8872                 event->addr_filters_gen = 1;
8873         }
8874
8875         if (!event->parent) {
8876                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8877                         err = get_callchain_buffers();
8878                         if (err)
8879                                 goto err_addr_filters;
8880                 }
8881         }
8882
8883         /* symmetric to unaccount_event() in _free_event() */
8884         account_event(event);
8885
8886         return event;
8887
8888 err_addr_filters:
8889         kfree(event->addr_filters_offs);
8890
8891 err_per_task:
8892         exclusive_event_destroy(event);
8893
8894 err_pmu:
8895         if (event->destroy)
8896                 event->destroy(event);
8897         module_put(pmu->module);
8898 err_ns:
8899         if (is_cgroup_event(event))
8900                 perf_detach_cgroup(event);
8901         if (event->ns)
8902                 put_pid_ns(event->ns);
8903         kfree(event);
8904
8905         return ERR_PTR(err);
8906 }
8907
8908 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8909                           struct perf_event_attr *attr)
8910 {
8911         u32 size;
8912         int ret;
8913
8914         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8915                 return -EFAULT;
8916
8917         /*
8918          * zero the full structure, so that a short copy will be nice.
8919          */
8920         memset(attr, 0, sizeof(*attr));
8921
8922         ret = get_user(size, &uattr->size);
8923         if (ret)
8924                 return ret;
8925
8926         if (size > PAGE_SIZE)   /* silly large */
8927                 goto err_size;
8928
8929         if (!size)              /* abi compat */
8930                 size = PERF_ATTR_SIZE_VER0;
8931
8932         if (size < PERF_ATTR_SIZE_VER0)
8933                 goto err_size;
8934
8935         /*
8936          * If we're handed a bigger struct than we know of,
8937          * ensure all the unknown bits are 0 - i.e. new
8938          * user-space does not rely on any kernel feature
8939          * extensions we dont know about yet.
8940          */
8941         if (size > sizeof(*attr)) {
8942                 unsigned char __user *addr;
8943                 unsigned char __user *end;
8944                 unsigned char val;
8945
8946                 addr = (void __user *)uattr + sizeof(*attr);
8947                 end  = (void __user *)uattr + size;
8948
8949                 for (; addr < end; addr++) {
8950                         ret = get_user(val, addr);
8951                         if (ret)
8952                                 return ret;
8953                         if (val)
8954                                 goto err_size;
8955                 }
8956                 size = sizeof(*attr);
8957         }
8958
8959         ret = copy_from_user(attr, uattr, size);
8960         if (ret)
8961                 return -EFAULT;
8962
8963         if (attr->__reserved_1)
8964                 return -EINVAL;
8965
8966         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8967                 return -EINVAL;
8968
8969         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8970                 return -EINVAL;
8971
8972         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8973                 u64 mask = attr->branch_sample_type;
8974
8975                 /* only using defined bits */
8976                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8977                         return -EINVAL;
8978
8979                 /* at least one branch bit must be set */
8980                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8981                         return -EINVAL;
8982
8983                 /* propagate priv level, when not set for branch */
8984                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8985
8986                         /* exclude_kernel checked on syscall entry */
8987                         if (!attr->exclude_kernel)
8988                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8989
8990                         if (!attr->exclude_user)
8991                                 mask |= PERF_SAMPLE_BRANCH_USER;
8992
8993                         if (!attr->exclude_hv)
8994                                 mask |= PERF_SAMPLE_BRANCH_HV;
8995                         /*
8996                          * adjust user setting (for HW filter setup)
8997                          */
8998                         attr->branch_sample_type = mask;
8999                 }
9000                 /* privileged levels capture (kernel, hv): check permissions */
9001                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9002                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9003                         return -EACCES;
9004         }
9005
9006         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9007                 ret = perf_reg_validate(attr->sample_regs_user);
9008                 if (ret)
9009                         return ret;
9010         }
9011
9012         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9013                 if (!arch_perf_have_user_stack_dump())
9014                         return -ENOSYS;
9015
9016                 /*
9017                  * We have __u32 type for the size, but so far
9018                  * we can only use __u16 as maximum due to the
9019                  * __u16 sample size limit.
9020                  */
9021                 if (attr->sample_stack_user >= USHRT_MAX)
9022                         ret = -EINVAL;
9023                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9024                         ret = -EINVAL;
9025         }
9026
9027         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9028                 ret = perf_reg_validate(attr->sample_regs_intr);
9029 out:
9030         return ret;
9031
9032 err_size:
9033         put_user(sizeof(*attr), &uattr->size);
9034         ret = -E2BIG;
9035         goto out;
9036 }
9037
9038 static int
9039 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9040 {
9041         struct ring_buffer *rb = NULL;
9042         int ret = -EINVAL;
9043
9044         if (!output_event)
9045                 goto set;
9046
9047         /* don't allow circular references */
9048         if (event == output_event)
9049                 goto out;
9050
9051         /*
9052          * Don't allow cross-cpu buffers
9053          */
9054         if (output_event->cpu != event->cpu)
9055                 goto out;
9056
9057         /*
9058          * If its not a per-cpu rb, it must be the same task.
9059          */
9060         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9061                 goto out;
9062
9063         /*
9064          * Mixing clocks in the same buffer is trouble you don't need.
9065          */
9066         if (output_event->clock != event->clock)
9067                 goto out;
9068
9069         /*
9070          * Either writing ring buffer from beginning or from end.
9071          * Mixing is not allowed.
9072          */
9073         if (is_write_backward(output_event) != is_write_backward(event))
9074                 goto out;
9075
9076         /*
9077          * If both events generate aux data, they must be on the same PMU
9078          */
9079         if (has_aux(event) && has_aux(output_event) &&
9080             event->pmu != output_event->pmu)
9081                 goto out;
9082
9083 set:
9084         mutex_lock(&event->mmap_mutex);
9085         /* Can't redirect output if we've got an active mmap() */
9086         if (atomic_read(&event->mmap_count))
9087                 goto unlock;
9088
9089         if (output_event) {
9090                 /* get the rb we want to redirect to */
9091                 rb = ring_buffer_get(output_event);
9092                 if (!rb)
9093                         goto unlock;
9094         }
9095
9096         ring_buffer_attach(event, rb);
9097
9098         ret = 0;
9099 unlock:
9100         mutex_unlock(&event->mmap_mutex);
9101
9102 out:
9103         return ret;
9104 }
9105
9106 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9107 {
9108         if (b < a)
9109                 swap(a, b);
9110
9111         mutex_lock(a);
9112         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9113 }
9114
9115 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9116 {
9117         bool nmi_safe = false;
9118
9119         switch (clk_id) {
9120         case CLOCK_MONOTONIC:
9121                 event->clock = &ktime_get_mono_fast_ns;
9122                 nmi_safe = true;
9123                 break;
9124
9125         case CLOCK_MONOTONIC_RAW:
9126                 event->clock = &ktime_get_raw_fast_ns;
9127                 nmi_safe = true;
9128                 break;
9129
9130         case CLOCK_REALTIME:
9131                 event->clock = &ktime_get_real_ns;
9132                 break;
9133
9134         case CLOCK_BOOTTIME:
9135                 event->clock = &ktime_get_boot_ns;
9136                 break;
9137
9138         case CLOCK_TAI:
9139                 event->clock = &ktime_get_tai_ns;
9140                 break;
9141
9142         default:
9143                 return -EINVAL;
9144         }
9145
9146         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9147                 return -EINVAL;
9148
9149         return 0;
9150 }
9151
9152 /**
9153  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9154  *
9155  * @attr_uptr:  event_id type attributes for monitoring/sampling
9156  * @pid:                target pid
9157  * @cpu:                target cpu
9158  * @group_fd:           group leader event fd
9159  */
9160 SYSCALL_DEFINE5(perf_event_open,
9161                 struct perf_event_attr __user *, attr_uptr,
9162                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9163 {
9164         struct perf_event *group_leader = NULL, *output_event = NULL;
9165         struct perf_event *event, *sibling;
9166         struct perf_event_attr attr;
9167         struct perf_event_context *ctx, *uninitialized_var(gctx);
9168         struct file *event_file = NULL;
9169         struct fd group = {NULL, 0};
9170         struct task_struct *task = NULL;
9171         struct pmu *pmu;
9172         int event_fd;
9173         int move_group = 0;
9174         int err;
9175         int f_flags = O_RDWR;
9176         int cgroup_fd = -1;
9177
9178         /* for future expandability... */
9179         if (flags & ~PERF_FLAG_ALL)
9180                 return -EINVAL;
9181
9182         err = perf_copy_attr(attr_uptr, &attr);
9183         if (err)
9184                 return err;
9185
9186         if (!attr.exclude_kernel) {
9187                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9188                         return -EACCES;
9189         }
9190
9191         if (attr.freq) {
9192                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9193                         return -EINVAL;
9194         } else {
9195                 if (attr.sample_period & (1ULL << 63))
9196                         return -EINVAL;
9197         }
9198
9199         /*
9200          * In cgroup mode, the pid argument is used to pass the fd
9201          * opened to the cgroup directory in cgroupfs. The cpu argument
9202          * designates the cpu on which to monitor threads from that
9203          * cgroup.
9204          */
9205         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9206                 return -EINVAL;
9207
9208         if (flags & PERF_FLAG_FD_CLOEXEC)
9209                 f_flags |= O_CLOEXEC;
9210
9211         event_fd = get_unused_fd_flags(f_flags);
9212         if (event_fd < 0)
9213                 return event_fd;
9214
9215         if (group_fd != -1) {
9216                 err = perf_fget_light(group_fd, &group);
9217                 if (err)
9218                         goto err_fd;
9219                 group_leader = group.file->private_data;
9220                 if (flags & PERF_FLAG_FD_OUTPUT)
9221                         output_event = group_leader;
9222                 if (flags & PERF_FLAG_FD_NO_GROUP)
9223                         group_leader = NULL;
9224         }
9225
9226         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9227                 task = find_lively_task_by_vpid(pid);
9228                 if (IS_ERR(task)) {
9229                         err = PTR_ERR(task);
9230                         goto err_group_fd;
9231                 }
9232         }
9233
9234         if (task && group_leader &&
9235             group_leader->attr.inherit != attr.inherit) {
9236                 err = -EINVAL;
9237                 goto err_task;
9238         }
9239
9240         get_online_cpus();
9241
9242         if (task) {
9243                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9244                 if (err)
9245                         goto err_cpus;
9246
9247                 /*
9248                  * Reuse ptrace permission checks for now.
9249                  *
9250                  * We must hold cred_guard_mutex across this and any potential
9251                  * perf_install_in_context() call for this new event to
9252                  * serialize against exec() altering our credentials (and the
9253                  * perf_event_exit_task() that could imply).
9254                  */
9255                 err = -EACCES;
9256                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9257                         goto err_cred;
9258         }
9259
9260         if (flags & PERF_FLAG_PID_CGROUP)
9261                 cgroup_fd = pid;
9262
9263         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9264                                  NULL, NULL, cgroup_fd);
9265         if (IS_ERR(event)) {
9266                 err = PTR_ERR(event);
9267                 goto err_cred;
9268         }
9269
9270         if (is_sampling_event(event)) {
9271                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9272                         err = -ENOTSUPP;
9273                         goto err_alloc;
9274                 }
9275         }
9276
9277         /*
9278          * Special case software events and allow them to be part of
9279          * any hardware group.
9280          */
9281         pmu = event->pmu;
9282
9283         if (attr.use_clockid) {
9284                 err = perf_event_set_clock(event, attr.clockid);
9285                 if (err)
9286                         goto err_alloc;
9287         }
9288
9289         if (group_leader &&
9290             (is_software_event(event) != is_software_event(group_leader))) {
9291                 if (is_software_event(event)) {
9292                         /*
9293                          * If event and group_leader are not both a software
9294                          * event, and event is, then group leader is not.
9295                          *
9296                          * Allow the addition of software events to !software
9297                          * groups, this is safe because software events never
9298                          * fail to schedule.
9299                          */
9300                         pmu = group_leader->pmu;
9301                 } else if (is_software_event(group_leader) &&
9302                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9303                         /*
9304                          * In case the group is a pure software group, and we
9305                          * try to add a hardware event, move the whole group to
9306                          * the hardware context.
9307                          */
9308                         move_group = 1;
9309                 }
9310         }
9311
9312         /*
9313          * Get the target context (task or percpu):
9314          */
9315         ctx = find_get_context(pmu, task, event);
9316         if (IS_ERR(ctx)) {
9317                 err = PTR_ERR(ctx);
9318                 goto err_alloc;
9319         }
9320
9321         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9322                 err = -EBUSY;
9323                 goto err_context;
9324         }
9325
9326         /*
9327          * Look up the group leader (we will attach this event to it):
9328          */
9329         if (group_leader) {
9330                 err = -EINVAL;
9331
9332                 /*
9333                  * Do not allow a recursive hierarchy (this new sibling
9334                  * becoming part of another group-sibling):
9335                  */
9336                 if (group_leader->group_leader != group_leader)
9337                         goto err_context;
9338
9339                 /* All events in a group should have the same clock */
9340                 if (group_leader->clock != event->clock)
9341                         goto err_context;
9342
9343                 /*
9344                  * Do not allow to attach to a group in a different
9345                  * task or CPU context:
9346                  */
9347                 if (move_group) {
9348                         /*
9349                          * Make sure we're both on the same task, or both
9350                          * per-cpu events.
9351                          */
9352                         if (group_leader->ctx->task != ctx->task)
9353                                 goto err_context;
9354
9355                         /*
9356                          * Make sure we're both events for the same CPU;
9357                          * grouping events for different CPUs is broken; since
9358                          * you can never concurrently schedule them anyhow.
9359                          */
9360                         if (group_leader->cpu != event->cpu)
9361                                 goto err_context;
9362                 } else {
9363                         if (group_leader->ctx != ctx)
9364                                 goto err_context;
9365                 }
9366
9367                 /*
9368                  * Only a group leader can be exclusive or pinned
9369                  */
9370                 if (attr.exclusive || attr.pinned)
9371                         goto err_context;
9372         }
9373
9374         if (output_event) {
9375                 err = perf_event_set_output(event, output_event);
9376                 if (err)
9377                         goto err_context;
9378         }
9379
9380         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9381                                         f_flags);
9382         if (IS_ERR(event_file)) {
9383                 err = PTR_ERR(event_file);
9384                 event_file = NULL;
9385                 goto err_context;
9386         }
9387
9388         if (move_group) {
9389                 gctx = group_leader->ctx;
9390                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9391                 if (gctx->task == TASK_TOMBSTONE) {
9392                         err = -ESRCH;
9393                         goto err_locked;
9394                 }
9395         } else {
9396                 mutex_lock(&ctx->mutex);
9397         }
9398
9399         if (ctx->task == TASK_TOMBSTONE) {
9400                 err = -ESRCH;
9401                 goto err_locked;
9402         }
9403
9404         if (!perf_event_validate_size(event)) {
9405                 err = -E2BIG;
9406                 goto err_locked;
9407         }
9408
9409         /*
9410          * Must be under the same ctx::mutex as perf_install_in_context(),
9411          * because we need to serialize with concurrent event creation.
9412          */
9413         if (!exclusive_event_installable(event, ctx)) {
9414                 /* exclusive and group stuff are assumed mutually exclusive */
9415                 WARN_ON_ONCE(move_group);
9416
9417                 err = -EBUSY;
9418                 goto err_locked;
9419         }
9420
9421         WARN_ON_ONCE(ctx->parent_ctx);
9422
9423         /*
9424          * This is the point on no return; we cannot fail hereafter. This is
9425          * where we start modifying current state.
9426          */
9427
9428         if (move_group) {
9429                 /*
9430                  * See perf_event_ctx_lock() for comments on the details
9431                  * of swizzling perf_event::ctx.
9432                  */
9433                 perf_remove_from_context(group_leader, 0);
9434
9435                 list_for_each_entry(sibling, &group_leader->sibling_list,
9436                                     group_entry) {
9437                         perf_remove_from_context(sibling, 0);
9438                         put_ctx(gctx);
9439                 }
9440
9441                 /*
9442                  * Wait for everybody to stop referencing the events through
9443                  * the old lists, before installing it on new lists.
9444                  */
9445                 synchronize_rcu();
9446
9447                 /*
9448                  * Install the group siblings before the group leader.
9449                  *
9450                  * Because a group leader will try and install the entire group
9451                  * (through the sibling list, which is still in-tact), we can
9452                  * end up with siblings installed in the wrong context.
9453                  *
9454                  * By installing siblings first we NO-OP because they're not
9455                  * reachable through the group lists.
9456                  */
9457                 list_for_each_entry(sibling, &group_leader->sibling_list,
9458                                     group_entry) {
9459                         perf_event__state_init(sibling);
9460                         perf_install_in_context(ctx, sibling, sibling->cpu);
9461                         get_ctx(ctx);
9462                 }
9463
9464                 /*
9465                  * Removing from the context ends up with disabled
9466                  * event. What we want here is event in the initial
9467                  * startup state, ready to be add into new context.
9468                  */
9469                 perf_event__state_init(group_leader);
9470                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9471                 get_ctx(ctx);
9472
9473                 /*
9474                  * Now that all events are installed in @ctx, nothing
9475                  * references @gctx anymore, so drop the last reference we have
9476                  * on it.
9477                  */
9478                 put_ctx(gctx);
9479         }
9480
9481         /*
9482          * Precalculate sample_data sizes; do while holding ctx::mutex such
9483          * that we're serialized against further additions and before
9484          * perf_install_in_context() which is the point the event is active and
9485          * can use these values.
9486          */
9487         perf_event__header_size(event);
9488         perf_event__id_header_size(event);
9489
9490         event->owner = current;
9491
9492         perf_install_in_context(ctx, event, event->cpu);
9493         perf_unpin_context(ctx);
9494
9495         if (move_group)
9496                 mutex_unlock(&gctx->mutex);
9497         mutex_unlock(&ctx->mutex);
9498
9499         if (task) {
9500                 mutex_unlock(&task->signal->cred_guard_mutex);
9501                 put_task_struct(task);
9502         }
9503
9504         put_online_cpus();
9505
9506         mutex_lock(&current->perf_event_mutex);
9507         list_add_tail(&event->owner_entry, &current->perf_event_list);
9508         mutex_unlock(&current->perf_event_mutex);
9509
9510         /*
9511          * Drop the reference on the group_event after placing the
9512          * new event on the sibling_list. This ensures destruction
9513          * of the group leader will find the pointer to itself in
9514          * perf_group_detach().
9515          */
9516         fdput(group);
9517         fd_install(event_fd, event_file);
9518         return event_fd;
9519
9520 err_locked:
9521         if (move_group)
9522                 mutex_unlock(&gctx->mutex);
9523         mutex_unlock(&ctx->mutex);
9524 /* err_file: */
9525         fput(event_file);
9526 err_context:
9527         perf_unpin_context(ctx);
9528         put_ctx(ctx);
9529 err_alloc:
9530         /*
9531          * If event_file is set, the fput() above will have called ->release()
9532          * and that will take care of freeing the event.
9533          */
9534         if (!event_file)
9535                 free_event(event);
9536 err_cred:
9537         if (task)
9538                 mutex_unlock(&task->signal->cred_guard_mutex);
9539 err_cpus:
9540         put_online_cpus();
9541 err_task:
9542         if (task)
9543                 put_task_struct(task);
9544 err_group_fd:
9545         fdput(group);
9546 err_fd:
9547         put_unused_fd(event_fd);
9548         return err;
9549 }
9550
9551 /**
9552  * perf_event_create_kernel_counter
9553  *
9554  * @attr: attributes of the counter to create
9555  * @cpu: cpu in which the counter is bound
9556  * @task: task to profile (NULL for percpu)
9557  */
9558 struct perf_event *
9559 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9560                                  struct task_struct *task,
9561                                  perf_overflow_handler_t overflow_handler,
9562                                  void *context)
9563 {
9564         struct perf_event_context *ctx;
9565         struct perf_event *event;
9566         int err;
9567
9568         /*
9569          * Get the target context (task or percpu):
9570          */
9571
9572         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9573                                  overflow_handler, context, -1);
9574         if (IS_ERR(event)) {
9575                 err = PTR_ERR(event);
9576                 goto err;
9577         }
9578
9579         /* Mark owner so we could distinguish it from user events. */
9580         event->owner = TASK_TOMBSTONE;
9581
9582         ctx = find_get_context(event->pmu, task, event);
9583         if (IS_ERR(ctx)) {
9584                 err = PTR_ERR(ctx);
9585                 goto err_free;
9586         }
9587
9588         WARN_ON_ONCE(ctx->parent_ctx);
9589         mutex_lock(&ctx->mutex);
9590         if (ctx->task == TASK_TOMBSTONE) {
9591                 err = -ESRCH;
9592                 goto err_unlock;
9593         }
9594
9595         if (!exclusive_event_installable(event, ctx)) {
9596                 err = -EBUSY;
9597                 goto err_unlock;
9598         }
9599
9600         perf_install_in_context(ctx, event, cpu);
9601         perf_unpin_context(ctx);
9602         mutex_unlock(&ctx->mutex);
9603
9604         return event;
9605
9606 err_unlock:
9607         mutex_unlock(&ctx->mutex);
9608         perf_unpin_context(ctx);
9609         put_ctx(ctx);
9610 err_free:
9611         free_event(event);
9612 err:
9613         return ERR_PTR(err);
9614 }
9615 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9616
9617 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9618 {
9619         struct perf_event_context *src_ctx;
9620         struct perf_event_context *dst_ctx;
9621         struct perf_event *event, *tmp;
9622         LIST_HEAD(events);
9623
9624         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9625         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9626
9627         /*
9628          * See perf_event_ctx_lock() for comments on the details
9629          * of swizzling perf_event::ctx.
9630          */
9631         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9632         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9633                                  event_entry) {
9634                 perf_remove_from_context(event, 0);
9635                 unaccount_event_cpu(event, src_cpu);
9636                 put_ctx(src_ctx);
9637                 list_add(&event->migrate_entry, &events);
9638         }
9639
9640         /*
9641          * Wait for the events to quiesce before re-instating them.
9642          */
9643         synchronize_rcu();
9644
9645         /*
9646          * Re-instate events in 2 passes.
9647          *
9648          * Skip over group leaders and only install siblings on this first
9649          * pass, siblings will not get enabled without a leader, however a
9650          * leader will enable its siblings, even if those are still on the old
9651          * context.
9652          */
9653         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9654                 if (event->group_leader == event)
9655                         continue;
9656
9657                 list_del(&event->migrate_entry);
9658                 if (event->state >= PERF_EVENT_STATE_OFF)
9659                         event->state = PERF_EVENT_STATE_INACTIVE;
9660                 account_event_cpu(event, dst_cpu);
9661                 perf_install_in_context(dst_ctx, event, dst_cpu);
9662                 get_ctx(dst_ctx);
9663         }
9664
9665         /*
9666          * Once all the siblings are setup properly, install the group leaders
9667          * to make it go.
9668          */
9669         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9670                 list_del(&event->migrate_entry);
9671                 if (event->state >= PERF_EVENT_STATE_OFF)
9672                         event->state = PERF_EVENT_STATE_INACTIVE;
9673                 account_event_cpu(event, dst_cpu);
9674                 perf_install_in_context(dst_ctx, event, dst_cpu);
9675                 get_ctx(dst_ctx);
9676         }
9677         mutex_unlock(&dst_ctx->mutex);
9678         mutex_unlock(&src_ctx->mutex);
9679 }
9680 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9681
9682 static void sync_child_event(struct perf_event *child_event,
9683                                struct task_struct *child)
9684 {
9685         struct perf_event *parent_event = child_event->parent;
9686         u64 child_val;
9687
9688         if (child_event->attr.inherit_stat)
9689                 perf_event_read_event(child_event, child);
9690
9691         child_val = perf_event_count(child_event);
9692
9693         /*
9694          * Add back the child's count to the parent's count:
9695          */
9696         atomic64_add(child_val, &parent_event->child_count);
9697         atomic64_add(child_event->total_time_enabled,
9698                      &parent_event->child_total_time_enabled);
9699         atomic64_add(child_event->total_time_running,
9700                      &parent_event->child_total_time_running);
9701 }
9702
9703 static void
9704 perf_event_exit_event(struct perf_event *child_event,
9705                       struct perf_event_context *child_ctx,
9706                       struct task_struct *child)
9707 {
9708         struct perf_event *parent_event = child_event->parent;
9709
9710         /*
9711          * Do not destroy the 'original' grouping; because of the context
9712          * switch optimization the original events could've ended up in a
9713          * random child task.
9714          *
9715          * If we were to destroy the original group, all group related
9716          * operations would cease to function properly after this random
9717          * child dies.
9718          *
9719          * Do destroy all inherited groups, we don't care about those
9720          * and being thorough is better.
9721          */
9722         raw_spin_lock_irq(&child_ctx->lock);
9723         WARN_ON_ONCE(child_ctx->is_active);
9724
9725         if (parent_event)
9726                 perf_group_detach(child_event);
9727         list_del_event(child_event, child_ctx);
9728         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9729         raw_spin_unlock_irq(&child_ctx->lock);
9730
9731         /*
9732          * Parent events are governed by their filedesc, retain them.
9733          */
9734         if (!parent_event) {
9735                 perf_event_wakeup(child_event);
9736                 return;
9737         }
9738         /*
9739          * Child events can be cleaned up.
9740          */
9741
9742         sync_child_event(child_event, child);
9743
9744         /*
9745          * Remove this event from the parent's list
9746          */
9747         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9748         mutex_lock(&parent_event->child_mutex);
9749         list_del_init(&child_event->child_list);
9750         mutex_unlock(&parent_event->child_mutex);
9751
9752         /*
9753          * Kick perf_poll() for is_event_hup().
9754          */
9755         perf_event_wakeup(parent_event);
9756         free_event(child_event);
9757         put_event(parent_event);
9758 }
9759
9760 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9761 {
9762         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9763         struct perf_event *child_event, *next;
9764
9765         WARN_ON_ONCE(child != current);
9766
9767         child_ctx = perf_pin_task_context(child, ctxn);
9768         if (!child_ctx)
9769                 return;
9770
9771         /*
9772          * In order to reduce the amount of tricky in ctx tear-down, we hold
9773          * ctx::mutex over the entire thing. This serializes against almost
9774          * everything that wants to access the ctx.
9775          *
9776          * The exception is sys_perf_event_open() /
9777          * perf_event_create_kernel_count() which does find_get_context()
9778          * without ctx::mutex (it cannot because of the move_group double mutex
9779          * lock thing). See the comments in perf_install_in_context().
9780          */
9781         mutex_lock(&child_ctx->mutex);
9782
9783         /*
9784          * In a single ctx::lock section, de-schedule the events and detach the
9785          * context from the task such that we cannot ever get it scheduled back
9786          * in.
9787          */
9788         raw_spin_lock_irq(&child_ctx->lock);
9789         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9790
9791         /*
9792          * Now that the context is inactive, destroy the task <-> ctx relation
9793          * and mark the context dead.
9794          */
9795         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9796         put_ctx(child_ctx); /* cannot be last */
9797         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9798         put_task_struct(current); /* cannot be last */
9799
9800         clone_ctx = unclone_ctx(child_ctx);
9801         raw_spin_unlock_irq(&child_ctx->lock);
9802
9803         if (clone_ctx)
9804                 put_ctx(clone_ctx);
9805
9806         /*
9807          * Report the task dead after unscheduling the events so that we
9808          * won't get any samples after PERF_RECORD_EXIT. We can however still
9809          * get a few PERF_RECORD_READ events.
9810          */
9811         perf_event_task(child, child_ctx, 0);
9812
9813         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9814                 perf_event_exit_event(child_event, child_ctx, child);
9815
9816         mutex_unlock(&child_ctx->mutex);
9817
9818         put_ctx(child_ctx);
9819 }
9820
9821 /*
9822  * When a child task exits, feed back event values to parent events.
9823  *
9824  * Can be called with cred_guard_mutex held when called from
9825  * install_exec_creds().
9826  */
9827 void perf_event_exit_task(struct task_struct *child)
9828 {
9829         struct perf_event *event, *tmp;
9830         int ctxn;
9831
9832         mutex_lock(&child->perf_event_mutex);
9833         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9834                                  owner_entry) {
9835                 list_del_init(&event->owner_entry);
9836
9837                 /*
9838                  * Ensure the list deletion is visible before we clear
9839                  * the owner, closes a race against perf_release() where
9840                  * we need to serialize on the owner->perf_event_mutex.
9841                  */
9842                 smp_store_release(&event->owner, NULL);
9843         }
9844         mutex_unlock(&child->perf_event_mutex);
9845
9846         for_each_task_context_nr(ctxn)
9847                 perf_event_exit_task_context(child, ctxn);
9848
9849         /*
9850          * The perf_event_exit_task_context calls perf_event_task
9851          * with child's task_ctx, which generates EXIT events for
9852          * child contexts and sets child->perf_event_ctxp[] to NULL.
9853          * At this point we need to send EXIT events to cpu contexts.
9854          */
9855         perf_event_task(child, NULL, 0);
9856 }
9857
9858 static void perf_free_event(struct perf_event *event,
9859                             struct perf_event_context *ctx)
9860 {
9861         struct perf_event *parent = event->parent;
9862
9863         if (WARN_ON_ONCE(!parent))
9864                 return;
9865
9866         mutex_lock(&parent->child_mutex);
9867         list_del_init(&event->child_list);
9868         mutex_unlock(&parent->child_mutex);
9869
9870         put_event(parent);
9871
9872         raw_spin_lock_irq(&ctx->lock);
9873         perf_group_detach(event);
9874         list_del_event(event, ctx);
9875         raw_spin_unlock_irq(&ctx->lock);
9876         free_event(event);
9877 }
9878
9879 /*
9880  * Free an unexposed, unused context as created by inheritance by
9881  * perf_event_init_task below, used by fork() in case of fail.
9882  *
9883  * Not all locks are strictly required, but take them anyway to be nice and
9884  * help out with the lockdep assertions.
9885  */
9886 void perf_event_free_task(struct task_struct *task)
9887 {
9888         struct perf_event_context *ctx;
9889         struct perf_event *event, *tmp;
9890         int ctxn;
9891
9892         for_each_task_context_nr(ctxn) {
9893                 ctx = task->perf_event_ctxp[ctxn];
9894                 if (!ctx)
9895                         continue;
9896
9897                 mutex_lock(&ctx->mutex);
9898 again:
9899                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9900                                 group_entry)
9901                         perf_free_event(event, ctx);
9902
9903                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9904                                 group_entry)
9905                         perf_free_event(event, ctx);
9906
9907                 if (!list_empty(&ctx->pinned_groups) ||
9908                                 !list_empty(&ctx->flexible_groups))
9909                         goto again;
9910
9911                 mutex_unlock(&ctx->mutex);
9912
9913                 put_ctx(ctx);
9914         }
9915 }
9916
9917 void perf_event_delayed_put(struct task_struct *task)
9918 {
9919         int ctxn;
9920
9921         for_each_task_context_nr(ctxn)
9922                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9923 }
9924
9925 struct file *perf_event_get(unsigned int fd)
9926 {
9927         struct file *file;
9928
9929         file = fget_raw(fd);
9930         if (!file)
9931                 return ERR_PTR(-EBADF);
9932
9933         if (file->f_op != &perf_fops) {
9934                 fput(file);
9935                 return ERR_PTR(-EBADF);
9936         }
9937
9938         return file;
9939 }
9940
9941 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9942 {
9943         if (!event)
9944                 return ERR_PTR(-EINVAL);
9945
9946         return &event->attr;
9947 }
9948
9949 /*
9950  * inherit a event from parent task to child task:
9951  */
9952 static struct perf_event *
9953 inherit_event(struct perf_event *parent_event,
9954               struct task_struct *parent,
9955               struct perf_event_context *parent_ctx,
9956               struct task_struct *child,
9957               struct perf_event *group_leader,
9958               struct perf_event_context *child_ctx)
9959 {
9960         enum perf_event_active_state parent_state = parent_event->state;
9961         struct perf_event *child_event;
9962         unsigned long flags;
9963
9964         /*
9965          * Instead of creating recursive hierarchies of events,
9966          * we link inherited events back to the original parent,
9967          * which has a filp for sure, which we use as the reference
9968          * count:
9969          */
9970         if (parent_event->parent)
9971                 parent_event = parent_event->parent;
9972
9973         child_event = perf_event_alloc(&parent_event->attr,
9974                                            parent_event->cpu,
9975                                            child,
9976                                            group_leader, parent_event,
9977                                            NULL, NULL, -1);
9978         if (IS_ERR(child_event))
9979                 return child_event;
9980
9981         /*
9982          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9983          * must be under the same lock in order to serialize against
9984          * perf_event_release_kernel(), such that either we must observe
9985          * is_orphaned_event() or they will observe us on the child_list.
9986          */
9987         mutex_lock(&parent_event->child_mutex);
9988         if (is_orphaned_event(parent_event) ||
9989             !atomic_long_inc_not_zero(&parent_event->refcount)) {
9990                 mutex_unlock(&parent_event->child_mutex);
9991                 free_event(child_event);
9992                 return NULL;
9993         }
9994
9995         get_ctx(child_ctx);
9996
9997         /*
9998          * Make the child state follow the state of the parent event,
9999          * not its attr.disabled bit.  We hold the parent's mutex,
10000          * so we won't race with perf_event_{en, dis}able_family.
10001          */
10002         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10003                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10004         else
10005                 child_event->state = PERF_EVENT_STATE_OFF;
10006
10007         if (parent_event->attr.freq) {
10008                 u64 sample_period = parent_event->hw.sample_period;
10009                 struct hw_perf_event *hwc = &child_event->hw;
10010
10011                 hwc->sample_period = sample_period;
10012                 hwc->last_period   = sample_period;
10013
10014                 local64_set(&hwc->period_left, sample_period);
10015         }
10016
10017         child_event->ctx = child_ctx;
10018         child_event->overflow_handler = parent_event->overflow_handler;
10019         child_event->overflow_handler_context
10020                 = parent_event->overflow_handler_context;
10021
10022         /*
10023          * Precalculate sample_data sizes
10024          */
10025         perf_event__header_size(child_event);
10026         perf_event__id_header_size(child_event);
10027
10028         /*
10029          * Link it up in the child's context:
10030          */
10031         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10032         add_event_to_ctx(child_event, child_ctx);
10033         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10034
10035         /*
10036          * Link this into the parent event's child list
10037          */
10038         list_add_tail(&child_event->child_list, &parent_event->child_list);
10039         mutex_unlock(&parent_event->child_mutex);
10040
10041         return child_event;
10042 }
10043
10044 static int inherit_group(struct perf_event *parent_event,
10045               struct task_struct *parent,
10046               struct perf_event_context *parent_ctx,
10047               struct task_struct *child,
10048               struct perf_event_context *child_ctx)
10049 {
10050         struct perf_event *leader;
10051         struct perf_event *sub;
10052         struct perf_event *child_ctr;
10053
10054         leader = inherit_event(parent_event, parent, parent_ctx,
10055                                  child, NULL, child_ctx);
10056         if (IS_ERR(leader))
10057                 return PTR_ERR(leader);
10058         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10059                 child_ctr = inherit_event(sub, parent, parent_ctx,
10060                                             child, leader, child_ctx);
10061                 if (IS_ERR(child_ctr))
10062                         return PTR_ERR(child_ctr);
10063         }
10064         return 0;
10065 }
10066
10067 static int
10068 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10069                    struct perf_event_context *parent_ctx,
10070                    struct task_struct *child, int ctxn,
10071                    int *inherited_all)
10072 {
10073         int ret;
10074         struct perf_event_context *child_ctx;
10075
10076         if (!event->attr.inherit) {
10077                 *inherited_all = 0;
10078                 return 0;
10079         }
10080
10081         child_ctx = child->perf_event_ctxp[ctxn];
10082         if (!child_ctx) {
10083                 /*
10084                  * This is executed from the parent task context, so
10085                  * inherit events that have been marked for cloning.
10086                  * First allocate and initialize a context for the
10087                  * child.
10088                  */
10089
10090                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10091                 if (!child_ctx)
10092                         return -ENOMEM;
10093
10094                 child->perf_event_ctxp[ctxn] = child_ctx;
10095         }
10096
10097         ret = inherit_group(event, parent, parent_ctx,
10098                             child, child_ctx);
10099
10100         if (ret)
10101                 *inherited_all = 0;
10102
10103         return ret;
10104 }
10105
10106 /*
10107  * Initialize the perf_event context in task_struct
10108  */
10109 static int perf_event_init_context(struct task_struct *child, int ctxn)
10110 {
10111         struct perf_event_context *child_ctx, *parent_ctx;
10112         struct perf_event_context *cloned_ctx;
10113         struct perf_event *event;
10114         struct task_struct *parent = current;
10115         int inherited_all = 1;
10116         unsigned long flags;
10117         int ret = 0;
10118
10119         if (likely(!parent->perf_event_ctxp[ctxn]))
10120                 return 0;
10121
10122         /*
10123          * If the parent's context is a clone, pin it so it won't get
10124          * swapped under us.
10125          */
10126         parent_ctx = perf_pin_task_context(parent, ctxn);
10127         if (!parent_ctx)
10128                 return 0;
10129
10130         /*
10131          * No need to check if parent_ctx != NULL here; since we saw
10132          * it non-NULL earlier, the only reason for it to become NULL
10133          * is if we exit, and since we're currently in the middle of
10134          * a fork we can't be exiting at the same time.
10135          */
10136
10137         /*
10138          * Lock the parent list. No need to lock the child - not PID
10139          * hashed yet and not running, so nobody can access it.
10140          */
10141         mutex_lock(&parent_ctx->mutex);
10142
10143         /*
10144          * We dont have to disable NMIs - we are only looking at
10145          * the list, not manipulating it:
10146          */
10147         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10148                 ret = inherit_task_group(event, parent, parent_ctx,
10149                                          child, ctxn, &inherited_all);
10150                 if (ret)
10151                         break;
10152         }
10153
10154         /*
10155          * We can't hold ctx->lock when iterating the ->flexible_group list due
10156          * to allocations, but we need to prevent rotation because
10157          * rotate_ctx() will change the list from interrupt context.
10158          */
10159         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10160         parent_ctx->rotate_disable = 1;
10161         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10162
10163         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10164                 ret = inherit_task_group(event, parent, parent_ctx,
10165                                          child, ctxn, &inherited_all);
10166                 if (ret)
10167                         break;
10168         }
10169
10170         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10171         parent_ctx->rotate_disable = 0;
10172
10173         child_ctx = child->perf_event_ctxp[ctxn];
10174
10175         if (child_ctx && inherited_all) {
10176                 /*
10177                  * Mark the child context as a clone of the parent
10178                  * context, or of whatever the parent is a clone of.
10179                  *
10180                  * Note that if the parent is a clone, the holding of
10181                  * parent_ctx->lock avoids it from being uncloned.
10182                  */
10183                 cloned_ctx = parent_ctx->parent_ctx;
10184                 if (cloned_ctx) {
10185                         child_ctx->parent_ctx = cloned_ctx;
10186                         child_ctx->parent_gen = parent_ctx->parent_gen;
10187                 } else {
10188                         child_ctx->parent_ctx = parent_ctx;
10189                         child_ctx->parent_gen = parent_ctx->generation;
10190                 }
10191                 get_ctx(child_ctx->parent_ctx);
10192         }
10193
10194         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10195         mutex_unlock(&parent_ctx->mutex);
10196
10197         perf_unpin_context(parent_ctx);
10198         put_ctx(parent_ctx);
10199
10200         return ret;
10201 }
10202
10203 /*
10204  * Initialize the perf_event context in task_struct
10205  */
10206 int perf_event_init_task(struct task_struct *child)
10207 {
10208         int ctxn, ret;
10209
10210         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10211         mutex_init(&child->perf_event_mutex);
10212         INIT_LIST_HEAD(&child->perf_event_list);
10213
10214         for_each_task_context_nr(ctxn) {
10215                 ret = perf_event_init_context(child, ctxn);
10216                 if (ret) {
10217                         perf_event_free_task(child);
10218                         return ret;
10219                 }
10220         }
10221
10222         return 0;
10223 }
10224
10225 static void __init perf_event_init_all_cpus(void)
10226 {
10227         struct swevent_htable *swhash;
10228         int cpu;
10229
10230         for_each_possible_cpu(cpu) {
10231                 swhash = &per_cpu(swevent_htable, cpu);
10232                 mutex_init(&swhash->hlist_mutex);
10233                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10234         }
10235 }
10236
10237 static void perf_event_init_cpu(int cpu)
10238 {
10239         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10240
10241         mutex_lock(&swhash->hlist_mutex);
10242         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10243                 struct swevent_hlist *hlist;
10244
10245                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10246                 WARN_ON(!hlist);
10247                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10248         }
10249         mutex_unlock(&swhash->hlist_mutex);
10250 }
10251
10252 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10253 static void __perf_event_exit_context(void *__info)
10254 {
10255         struct perf_event_context *ctx = __info;
10256         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10257         struct perf_event *event;
10258
10259         raw_spin_lock(&ctx->lock);
10260         list_for_each_entry(event, &ctx->event_list, event_entry)
10261                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10262         raw_spin_unlock(&ctx->lock);
10263 }
10264
10265 static void perf_event_exit_cpu_context(int cpu)
10266 {
10267         struct perf_event_context *ctx;
10268         struct pmu *pmu;
10269         int idx;
10270
10271         idx = srcu_read_lock(&pmus_srcu);
10272         list_for_each_entry_rcu(pmu, &pmus, entry) {
10273                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10274
10275                 mutex_lock(&ctx->mutex);
10276                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10277                 mutex_unlock(&ctx->mutex);
10278         }
10279         srcu_read_unlock(&pmus_srcu, idx);
10280 }
10281
10282 static void perf_event_exit_cpu(int cpu)
10283 {
10284         perf_event_exit_cpu_context(cpu);
10285 }
10286 #else
10287 static inline void perf_event_exit_cpu(int cpu) { }
10288 #endif
10289
10290 static int
10291 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10292 {
10293         int cpu;
10294
10295         for_each_online_cpu(cpu)
10296                 perf_event_exit_cpu(cpu);
10297
10298         return NOTIFY_OK;
10299 }
10300
10301 /*
10302  * Run the perf reboot notifier at the very last possible moment so that
10303  * the generic watchdog code runs as long as possible.
10304  */
10305 static struct notifier_block perf_reboot_notifier = {
10306         .notifier_call = perf_reboot,
10307         .priority = INT_MIN,
10308 };
10309
10310 static int
10311 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10312 {
10313         unsigned int cpu = (long)hcpu;
10314
10315         switch (action & ~CPU_TASKS_FROZEN) {
10316
10317         case CPU_UP_PREPARE:
10318                 /*
10319                  * This must be done before the CPU comes alive, because the
10320                  * moment we can run tasks we can encounter (software) events.
10321                  *
10322                  * Specifically, someone can have inherited events on kthreadd
10323                  * or a pre-existing worker thread that gets re-bound.
10324                  */
10325                 perf_event_init_cpu(cpu);
10326                 break;
10327
10328         case CPU_DOWN_PREPARE:
10329                 /*
10330                  * This must be done before the CPU dies because after that an
10331                  * active event might want to IPI the CPU and that'll not work
10332                  * so great for dead CPUs.
10333                  *
10334                  * XXX smp_call_function_single() return -ENXIO without a warn
10335                  * so we could possibly deal with this.
10336                  *
10337                  * This is safe against new events arriving because
10338                  * sys_perf_event_open() serializes against hotplug using
10339                  * get_online_cpus().
10340                  */
10341                 perf_event_exit_cpu(cpu);
10342                 break;
10343         default:
10344                 break;
10345         }
10346
10347         return NOTIFY_OK;
10348 }
10349
10350 void __init perf_event_init(void)
10351 {
10352         int ret;
10353
10354         idr_init(&pmu_idr);
10355
10356         perf_event_init_all_cpus();
10357         init_srcu_struct(&pmus_srcu);
10358         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10359         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10360         perf_pmu_register(&perf_task_clock, NULL, -1);
10361         perf_tp_register();
10362         perf_cpu_notifier(perf_cpu_notify);
10363         register_reboot_notifier(&perf_reboot_notifier);
10364
10365         ret = init_hw_breakpoint();
10366         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10367
10368         /*
10369          * Build time assertion that we keep the data_head at the intended
10370          * location.  IOW, validation we got the __reserved[] size right.
10371          */
10372         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10373                      != 1024);
10374 }
10375
10376 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10377                               char *page)
10378 {
10379         struct perf_pmu_events_attr *pmu_attr =
10380                 container_of(attr, struct perf_pmu_events_attr, attr);
10381
10382         if (pmu_attr->event_str)
10383                 return sprintf(page, "%s\n", pmu_attr->event_str);
10384
10385         return 0;
10386 }
10387 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10388
10389 static int __init perf_event_sysfs_init(void)
10390 {
10391         struct pmu *pmu;
10392         int ret;
10393
10394         mutex_lock(&pmus_lock);
10395
10396         ret = bus_register(&pmu_bus);
10397         if (ret)
10398                 goto unlock;
10399
10400         list_for_each_entry(pmu, &pmus, entry) {
10401                 if (!pmu->name || pmu->type < 0)
10402                         continue;
10403
10404                 ret = pmu_dev_alloc(pmu);
10405                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10406         }
10407         pmu_bus_running = 1;
10408         ret = 0;
10409
10410 unlock:
10411         mutex_unlock(&pmus_lock);
10412
10413         return ret;
10414 }
10415 device_initcall(perf_event_sysfs_init);
10416
10417 #ifdef CONFIG_CGROUP_PERF
10418 static struct cgroup_subsys_state *
10419 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10420 {
10421         struct perf_cgroup *jc;
10422
10423         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10424         if (!jc)
10425                 return ERR_PTR(-ENOMEM);
10426
10427         jc->info = alloc_percpu(struct perf_cgroup_info);
10428         if (!jc->info) {
10429                 kfree(jc);
10430                 return ERR_PTR(-ENOMEM);
10431         }
10432
10433         return &jc->css;
10434 }
10435
10436 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10437 {
10438         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10439
10440         free_percpu(jc->info);
10441         kfree(jc);
10442 }
10443
10444 static int __perf_cgroup_move(void *info)
10445 {
10446         struct task_struct *task = info;
10447         rcu_read_lock();
10448         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10449         rcu_read_unlock();
10450         return 0;
10451 }
10452
10453 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10454 {
10455         struct task_struct *task;
10456         struct cgroup_subsys_state *css;
10457
10458         cgroup_taskset_for_each(task, css, tset)
10459                 task_function_call(task, __perf_cgroup_move, task);
10460 }
10461
10462 struct cgroup_subsys perf_event_cgrp_subsys = {
10463         .css_alloc      = perf_cgroup_css_alloc,
10464         .css_free       = perf_cgroup_css_free,
10465         .attach         = perf_cgroup_attach,
10466 };
10467 #endif /* CONFIG_CGROUP_PERF */