Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905         cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913         return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921         return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451         if (event->attr.pinned)
1452                 return &ctx->pinned_groups;
1453         else
1454                 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465         lockdep_assert_held(&ctx->lock);
1466
1467         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468         event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470         /*
1471          * If we're a stand alone event or group leader, we go to the context
1472          * list, group events are kept attached to the group so that
1473          * perf_group_detach can, at all times, locate all siblings.
1474          */
1475         if (event->group_leader == event) {
1476                 struct list_head *list;
1477
1478                 if (is_software_event(event))
1479                         event->group_flags |= PERF_GROUP_SOFTWARE;
1480
1481                 list = ctx_group_list(event, ctx);
1482                 list_add_tail(&event->group_entry, list);
1483         }
1484
1485         list_update_cgroup_event(event, ctx, true);
1486
1487         list_add_rcu(&event->event_entry, &ctx->event_list);
1488         ctx->nr_events++;
1489         if (event->attr.inherit_stat)
1490                 ctx->nr_stat++;
1491
1492         ctx->generation++;
1493 }
1494
1495 /*
1496  * Initialize event state based on the perf_event_attr::disabled.
1497  */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501                                               PERF_EVENT_STATE_INACTIVE;
1502 }
1503
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506         int entry = sizeof(u64); /* value */
1507         int size = 0;
1508         int nr = 1;
1509
1510         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511                 size += sizeof(u64);
1512
1513         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514                 size += sizeof(u64);
1515
1516         if (event->attr.read_format & PERF_FORMAT_ID)
1517                 entry += sizeof(u64);
1518
1519         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520                 nr += nr_siblings;
1521                 size += sizeof(u64);
1522         }
1523
1524         size += entry * nr;
1525         event->read_size = size;
1526 }
1527
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530         struct perf_sample_data *data;
1531         u16 size = 0;
1532
1533         if (sample_type & PERF_SAMPLE_IP)
1534                 size += sizeof(data->ip);
1535
1536         if (sample_type & PERF_SAMPLE_ADDR)
1537                 size += sizeof(data->addr);
1538
1539         if (sample_type & PERF_SAMPLE_PERIOD)
1540                 size += sizeof(data->period);
1541
1542         if (sample_type & PERF_SAMPLE_WEIGHT)
1543                 size += sizeof(data->weight);
1544
1545         if (sample_type & PERF_SAMPLE_READ)
1546                 size += event->read_size;
1547
1548         if (sample_type & PERF_SAMPLE_DATA_SRC)
1549                 size += sizeof(data->data_src.val);
1550
1551         if (sample_type & PERF_SAMPLE_TRANSACTION)
1552                 size += sizeof(data->txn);
1553
1554         event->header_size = size;
1555 }
1556
1557 /*
1558  * Called at perf_event creation and when events are attached/detached from a
1559  * group.
1560  */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563         __perf_event_read_size(event,
1564                                event->group_leader->nr_siblings);
1565         __perf_event_header_size(event, event->attr.sample_type);
1566 }
1567
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570         struct perf_sample_data *data;
1571         u64 sample_type = event->attr.sample_type;
1572         u16 size = 0;
1573
1574         if (sample_type & PERF_SAMPLE_TID)
1575                 size += sizeof(data->tid_entry);
1576
1577         if (sample_type & PERF_SAMPLE_TIME)
1578                 size += sizeof(data->time);
1579
1580         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581                 size += sizeof(data->id);
1582
1583         if (sample_type & PERF_SAMPLE_ID)
1584                 size += sizeof(data->id);
1585
1586         if (sample_type & PERF_SAMPLE_STREAM_ID)
1587                 size += sizeof(data->stream_id);
1588
1589         if (sample_type & PERF_SAMPLE_CPU)
1590                 size += sizeof(data->cpu_entry);
1591
1592         event->id_header_size = size;
1593 }
1594
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597         /*
1598          * The values computed here will be over-written when we actually
1599          * attach the event.
1600          */
1601         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603         perf_event__id_header_size(event);
1604
1605         /*
1606          * Sum the lot; should not exceed the 64k limit we have on records.
1607          * Conservative limit to allow for callchains and other variable fields.
1608          */
1609         if (event->read_size + event->header_size +
1610             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618         struct perf_event *group_leader = event->group_leader, *pos;
1619
1620         /*
1621          * We can have double attach due to group movement in perf_event_open.
1622          */
1623         if (event->attach_state & PERF_ATTACH_GROUP)
1624                 return;
1625
1626         event->attach_state |= PERF_ATTACH_GROUP;
1627
1628         if (group_leader == event)
1629                 return;
1630
1631         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
1633         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634                         !is_software_event(event))
1635                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638         group_leader->nr_siblings++;
1639
1640         perf_event__header_size(group_leader);
1641
1642         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643                 perf_event__header_size(pos);
1644 }
1645
1646 /*
1647  * Remove a event from the lists for its context.
1648  * Must be called with ctx->mutex and ctx->lock held.
1649  */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653         WARN_ON_ONCE(event->ctx != ctx);
1654         lockdep_assert_held(&ctx->lock);
1655
1656         /*
1657          * We can have double detach due to exit/hot-unplug + close.
1658          */
1659         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660                 return;
1661
1662         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
1664         list_update_cgroup_event(event, ctx, false);
1665
1666         ctx->nr_events--;
1667         if (event->attr.inherit_stat)
1668                 ctx->nr_stat--;
1669
1670         list_del_rcu(&event->event_entry);
1671
1672         if (event->group_leader == event)
1673                 list_del_init(&event->group_entry);
1674
1675         update_group_times(event);
1676
1677         /*
1678          * If event was in error state, then keep it
1679          * that way, otherwise bogus counts will be
1680          * returned on read(). The only way to get out
1681          * of error state is by explicit re-enabling
1682          * of the event
1683          */
1684         if (event->state > PERF_EVENT_STATE_OFF)
1685                 event->state = PERF_EVENT_STATE_OFF;
1686
1687         ctx->generation++;
1688 }
1689
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692         struct perf_event *sibling, *tmp;
1693         struct list_head *list = NULL;
1694
1695         /*
1696          * We can have double detach due to exit/hot-unplug + close.
1697          */
1698         if (!(event->attach_state & PERF_ATTACH_GROUP))
1699                 return;
1700
1701         event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703         /*
1704          * If this is a sibling, remove it from its group.
1705          */
1706         if (event->group_leader != event) {
1707                 list_del_init(&event->group_entry);
1708                 event->group_leader->nr_siblings--;
1709                 goto out;
1710         }
1711
1712         if (!list_empty(&event->group_entry))
1713                 list = &event->group_entry;
1714
1715         /*
1716          * If this was a group event with sibling events then
1717          * upgrade the siblings to singleton events by adding them
1718          * to whatever list we are on.
1719          */
1720         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721                 if (list)
1722                         list_move_tail(&sibling->group_entry, list);
1723                 sibling->group_leader = sibling;
1724
1725                 /* Inherit group flags from the previous leader */
1726                 sibling->group_flags = event->group_flags;
1727
1728                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1729         }
1730
1731 out:
1732         perf_event__header_size(event->group_leader);
1733
1734         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735                 perf_event__header_size(tmp);
1736 }
1737
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740         return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745         struct pmu *pmu = event->pmu;
1746         return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748
1749 /*
1750  * Check whether we should attempt to schedule an event group based on
1751  * PMU-specific filtering. An event group can consist of HW and SW events,
1752  * potentially with a SW leader, so we must check all the filters, to
1753  * determine whether a group is schedulable:
1754  */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757         struct perf_event *child;
1758
1759         if (!__pmu_filter_match(event))
1760                 return 0;
1761
1762         list_for_each_entry(child, &event->sibling_list, group_entry) {
1763                 if (!__pmu_filter_match(child))
1764                         return 0;
1765         }
1766
1767         return 1;
1768 }
1769
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774                perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776
1777 static void
1778 event_sched_out(struct perf_event *event,
1779                   struct perf_cpu_context *cpuctx,
1780                   struct perf_event_context *ctx)
1781 {
1782         u64 tstamp = perf_event_time(event);
1783         u64 delta;
1784
1785         WARN_ON_ONCE(event->ctx != ctx);
1786         lockdep_assert_held(&ctx->lock);
1787
1788         /*
1789          * An event which could not be activated because of
1790          * filter mismatch still needs to have its timings
1791          * maintained, otherwise bogus information is return
1792          * via read() for time_enabled, time_running:
1793          */
1794         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795             !event_filter_match(event)) {
1796                 delta = tstamp - event->tstamp_stopped;
1797                 event->tstamp_running += delta;
1798                 event->tstamp_stopped = tstamp;
1799         }
1800
1801         if (event->state != PERF_EVENT_STATE_ACTIVE)
1802                 return;
1803
1804         perf_pmu_disable(event->pmu);
1805
1806         event->tstamp_stopped = tstamp;
1807         event->pmu->del(event, 0);
1808         event->oncpu = -1;
1809         event->state = PERF_EVENT_STATE_INACTIVE;
1810         if (event->pending_disable) {
1811                 event->pending_disable = 0;
1812                 event->state = PERF_EVENT_STATE_OFF;
1813         }
1814
1815         if (!is_software_event(event))
1816                 cpuctx->active_oncpu--;
1817         if (!--ctx->nr_active)
1818                 perf_event_ctx_deactivate(ctx);
1819         if (event->attr.freq && event->attr.sample_freq)
1820                 ctx->nr_freq--;
1821         if (event->attr.exclusive || !cpuctx->active_oncpu)
1822                 cpuctx->exclusive = 0;
1823
1824         perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829                 struct perf_cpu_context *cpuctx,
1830                 struct perf_event_context *ctx)
1831 {
1832         struct perf_event *event;
1833         int state = group_event->state;
1834
1835         event_sched_out(group_event, cpuctx, ctx);
1836
1837         /*
1838          * Schedule out siblings (if any):
1839          */
1840         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841                 event_sched_out(event, cpuctx, ctx);
1842
1843         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844                 cpuctx->exclusive = 0;
1845 }
1846
1847 #define DETACH_GROUP    0x01UL
1848
1849 /*
1850  * Cross CPU call to remove a performance event
1851  *
1852  * We disable the event on the hardware level first. After that we
1853  * remove it from the context list.
1854  */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857                            struct perf_cpu_context *cpuctx,
1858                            struct perf_event_context *ctx,
1859                            void *info)
1860 {
1861         unsigned long flags = (unsigned long)info;
1862
1863         event_sched_out(event, cpuctx, ctx);
1864         if (flags & DETACH_GROUP)
1865                 perf_group_detach(event);
1866         list_del_event(event, ctx);
1867
1868         if (!ctx->nr_events && ctx->is_active) {
1869                 ctx->is_active = 0;
1870                 if (ctx->task) {
1871                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872                         cpuctx->task_ctx = NULL;
1873                 }
1874         }
1875 }
1876
1877 /*
1878  * Remove the event from a task's (or a CPU's) list of events.
1879  *
1880  * If event->ctx is a cloned context, callers must make sure that
1881  * every task struct that event->ctx->task could possibly point to
1882  * remains valid.  This is OK when called from perf_release since
1883  * that only calls us on the top-level context, which can't be a clone.
1884  * When called from perf_event_exit_task, it's OK because the
1885  * context has been detached from its task.
1886  */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889         lockdep_assert_held(&event->ctx->mutex);
1890
1891         event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893
1894 /*
1895  * Cross CPU call to disable a performance event
1896  */
1897 static void __perf_event_disable(struct perf_event *event,
1898                                  struct perf_cpu_context *cpuctx,
1899                                  struct perf_event_context *ctx,
1900                                  void *info)
1901 {
1902         if (event->state < PERF_EVENT_STATE_INACTIVE)
1903                 return;
1904
1905         update_context_time(ctx);
1906         update_cgrp_time_from_event(event);
1907         update_group_times(event);
1908         if (event == event->group_leader)
1909                 group_sched_out(event, cpuctx, ctx);
1910         else
1911                 event_sched_out(event, cpuctx, ctx);
1912         event->state = PERF_EVENT_STATE_OFF;
1913 }
1914
1915 /*
1916  * Disable a event.
1917  *
1918  * If event->ctx is a cloned context, callers must make sure that
1919  * every task struct that event->ctx->task could possibly point to
1920  * remains valid.  This condition is satisifed when called through
1921  * perf_event_for_each_child or perf_event_for_each because they
1922  * hold the top-level event's child_mutex, so any descendant that
1923  * goes to exit will block in perf_event_exit_event().
1924  *
1925  * When called from perf_pending_event it's OK because event->ctx
1926  * is the current context on this CPU and preemption is disabled,
1927  * hence we can't get into perf_event_task_sched_out for this context.
1928  */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931         struct perf_event_context *ctx = event->ctx;
1932
1933         raw_spin_lock_irq(&ctx->lock);
1934         if (event->state <= PERF_EVENT_STATE_OFF) {
1935                 raw_spin_unlock_irq(&ctx->lock);
1936                 return;
1937         }
1938         raw_spin_unlock_irq(&ctx->lock);
1939
1940         event_function_call(event, __perf_event_disable, NULL);
1941 }
1942
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945         event_function_local(event, __perf_event_disable, NULL);
1946 }
1947
1948 /*
1949  * Strictly speaking kernel users cannot create groups and therefore this
1950  * interface does not need the perf_event_ctx_lock() magic.
1951  */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954         struct perf_event_context *ctx;
1955
1956         ctx = perf_event_ctx_lock(event);
1957         _perf_event_disable(event);
1958         perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961
1962 static void perf_set_shadow_time(struct perf_event *event,
1963                                  struct perf_event_context *ctx,
1964                                  u64 tstamp)
1965 {
1966         /*
1967          * use the correct time source for the time snapshot
1968          *
1969          * We could get by without this by leveraging the
1970          * fact that to get to this function, the caller
1971          * has most likely already called update_context_time()
1972          * and update_cgrp_time_xx() and thus both timestamp
1973          * are identical (or very close). Given that tstamp is,
1974          * already adjusted for cgroup, we could say that:
1975          *    tstamp - ctx->timestamp
1976          * is equivalent to
1977          *    tstamp - cgrp->timestamp.
1978          *
1979          * Then, in perf_output_read(), the calculation would
1980          * work with no changes because:
1981          * - event is guaranteed scheduled in
1982          * - no scheduled out in between
1983          * - thus the timestamp would be the same
1984          *
1985          * But this is a bit hairy.
1986          *
1987          * So instead, we have an explicit cgroup call to remain
1988          * within the time time source all along. We believe it
1989          * is cleaner and simpler to understand.
1990          */
1991         if (is_cgroup_event(event))
1992                 perf_cgroup_set_shadow_time(event, tstamp);
1993         else
1994                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996
1997 #define MAX_INTERRUPTS (~0ULL)
1998
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001
2002 static int
2003 event_sched_in(struct perf_event *event,
2004                  struct perf_cpu_context *cpuctx,
2005                  struct perf_event_context *ctx)
2006 {
2007         u64 tstamp = perf_event_time(event);
2008         int ret = 0;
2009
2010         lockdep_assert_held(&ctx->lock);
2011
2012         if (event->state <= PERF_EVENT_STATE_OFF)
2013                 return 0;
2014
2015         WRITE_ONCE(event->oncpu, smp_processor_id());
2016         /*
2017          * Order event::oncpu write to happen before the ACTIVE state
2018          * is visible.
2019          */
2020         smp_wmb();
2021         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022
2023         /*
2024          * Unthrottle events, since we scheduled we might have missed several
2025          * ticks already, also for a heavily scheduling task there is little
2026          * guarantee it'll get a tick in a timely manner.
2027          */
2028         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029                 perf_log_throttle(event, 1);
2030                 event->hw.interrupts = 0;
2031         }
2032
2033         /*
2034          * The new state must be visible before we turn it on in the hardware:
2035          */
2036         smp_wmb();
2037
2038         perf_pmu_disable(event->pmu);
2039
2040         perf_set_shadow_time(event, ctx, tstamp);
2041
2042         perf_log_itrace_start(event);
2043
2044         if (event->pmu->add(event, PERF_EF_START)) {
2045                 event->state = PERF_EVENT_STATE_INACTIVE;
2046                 event->oncpu = -1;
2047                 ret = -EAGAIN;
2048                 goto out;
2049         }
2050
2051         event->tstamp_running += tstamp - event->tstamp_stopped;
2052
2053         if (!is_software_event(event))
2054                 cpuctx->active_oncpu++;
2055         if (!ctx->nr_active++)
2056                 perf_event_ctx_activate(ctx);
2057         if (event->attr.freq && event->attr.sample_freq)
2058                 ctx->nr_freq++;
2059
2060         if (event->attr.exclusive)
2061                 cpuctx->exclusive = 1;
2062
2063 out:
2064         perf_pmu_enable(event->pmu);
2065
2066         return ret;
2067 }
2068
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071                struct perf_cpu_context *cpuctx,
2072                struct perf_event_context *ctx)
2073 {
2074         struct perf_event *event, *partial_group = NULL;
2075         struct pmu *pmu = ctx->pmu;
2076         u64 now = ctx->time;
2077         bool simulate = false;
2078
2079         if (group_event->state == PERF_EVENT_STATE_OFF)
2080                 return 0;
2081
2082         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083
2084         if (event_sched_in(group_event, cpuctx, ctx)) {
2085                 pmu->cancel_txn(pmu);
2086                 perf_mux_hrtimer_restart(cpuctx);
2087                 return -EAGAIN;
2088         }
2089
2090         /*
2091          * Schedule in siblings as one group (if any):
2092          */
2093         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094                 if (event_sched_in(event, cpuctx, ctx)) {
2095                         partial_group = event;
2096                         goto group_error;
2097                 }
2098         }
2099
2100         if (!pmu->commit_txn(pmu))
2101                 return 0;
2102
2103 group_error:
2104         /*
2105          * Groups can be scheduled in as one unit only, so undo any
2106          * partial group before returning:
2107          * The events up to the failed event are scheduled out normally,
2108          * tstamp_stopped will be updated.
2109          *
2110          * The failed events and the remaining siblings need to have
2111          * their timings updated as if they had gone thru event_sched_in()
2112          * and event_sched_out(). This is required to get consistent timings
2113          * across the group. This also takes care of the case where the group
2114          * could never be scheduled by ensuring tstamp_stopped is set to mark
2115          * the time the event was actually stopped, such that time delta
2116          * calculation in update_event_times() is correct.
2117          */
2118         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119                 if (event == partial_group)
2120                         simulate = true;
2121
2122                 if (simulate) {
2123                         event->tstamp_running += now - event->tstamp_stopped;
2124                         event->tstamp_stopped = now;
2125                 } else {
2126                         event_sched_out(event, cpuctx, ctx);
2127                 }
2128         }
2129         event_sched_out(group_event, cpuctx, ctx);
2130
2131         pmu->cancel_txn(pmu);
2132
2133         perf_mux_hrtimer_restart(cpuctx);
2134
2135         return -EAGAIN;
2136 }
2137
2138 /*
2139  * Work out whether we can put this event group on the CPU now.
2140  */
2141 static int group_can_go_on(struct perf_event *event,
2142                            struct perf_cpu_context *cpuctx,
2143                            int can_add_hw)
2144 {
2145         /*
2146          * Groups consisting entirely of software events can always go on.
2147          */
2148         if (event->group_flags & PERF_GROUP_SOFTWARE)
2149                 return 1;
2150         /*
2151          * If an exclusive group is already on, no other hardware
2152          * events can go on.
2153          */
2154         if (cpuctx->exclusive)
2155                 return 0;
2156         /*
2157          * If this group is exclusive and there are already
2158          * events on the CPU, it can't go on.
2159          */
2160         if (event->attr.exclusive && cpuctx->active_oncpu)
2161                 return 0;
2162         /*
2163          * Otherwise, try to add it if all previous groups were able
2164          * to go on.
2165          */
2166         return can_add_hw;
2167 }
2168
2169 static void add_event_to_ctx(struct perf_event *event,
2170                                struct perf_event_context *ctx)
2171 {
2172         u64 tstamp = perf_event_time(event);
2173
2174         list_add_event(event, ctx);
2175         perf_group_attach(event);
2176         event->tstamp_enabled = tstamp;
2177         event->tstamp_running = tstamp;
2178         event->tstamp_stopped = tstamp;
2179 }
2180
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182                           struct perf_cpu_context *cpuctx,
2183                           enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186              struct perf_cpu_context *cpuctx,
2187              enum event_type_t event_type,
2188              struct task_struct *task);
2189
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191                                struct perf_event_context *ctx)
2192 {
2193         if (!cpuctx->task_ctx)
2194                 return;
2195
2196         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197                 return;
2198
2199         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203                                 struct perf_event_context *ctx,
2204                                 struct task_struct *task)
2205 {
2206         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207         if (ctx)
2208                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210         if (ctx)
2211                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215                         struct perf_event_context *task_ctx)
2216 {
2217         perf_pmu_disable(cpuctx->ctx.pmu);
2218         if (task_ctx)
2219                 task_ctx_sched_out(cpuctx, task_ctx);
2220         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221         perf_event_sched_in(cpuctx, task_ctx, current);
2222         perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224
2225 /*
2226  * Cross CPU call to install and enable a performance event
2227  *
2228  * Very similar to remote_function() + event_function() but cannot assume that
2229  * things like ctx->is_active and cpuctx->task_ctx are set.
2230  */
2231 static int  __perf_install_in_context(void *info)
2232 {
2233         struct perf_event *event = info;
2234         struct perf_event_context *ctx = event->ctx;
2235         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237         bool activate = true;
2238         int ret = 0;
2239
2240         raw_spin_lock(&cpuctx->ctx.lock);
2241         if (ctx->task) {
2242                 raw_spin_lock(&ctx->lock);
2243                 task_ctx = ctx;
2244
2245                 /* If we're on the wrong CPU, try again */
2246                 if (task_cpu(ctx->task) != smp_processor_id()) {
2247                         ret = -ESRCH;
2248                         goto unlock;
2249                 }
2250
2251                 /*
2252                  * If we're on the right CPU, see if the task we target is
2253                  * current, if not we don't have to activate the ctx, a future
2254                  * context switch will do that for us.
2255                  */
2256                 if (ctx->task != current)
2257                         activate = false;
2258                 else
2259                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260
2261         } else if (task_ctx) {
2262                 raw_spin_lock(&task_ctx->lock);
2263         }
2264
2265         if (activate) {
2266                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267                 add_event_to_ctx(event, ctx);
2268                 ctx_resched(cpuctx, task_ctx);
2269         } else {
2270                 add_event_to_ctx(event, ctx);
2271         }
2272
2273 unlock:
2274         perf_ctx_unlock(cpuctx, task_ctx);
2275
2276         return ret;
2277 }
2278
2279 /*
2280  * Attach a performance event to a context.
2281  *
2282  * Very similar to event_function_call, see comment there.
2283  */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286                         struct perf_event *event,
2287                         int cpu)
2288 {
2289         struct task_struct *task = READ_ONCE(ctx->task);
2290
2291         lockdep_assert_held(&ctx->mutex);
2292
2293         if (event->cpu != -1)
2294                 event->cpu = cpu;
2295
2296         /*
2297          * Ensures that if we can observe event->ctx, both the event and ctx
2298          * will be 'complete'. See perf_iterate_sb_cpu().
2299          */
2300         smp_store_release(&event->ctx, ctx);
2301
2302         if (!task) {
2303                 cpu_function_call(cpu, __perf_install_in_context, event);
2304                 return;
2305         }
2306
2307         /*
2308          * Should not happen, we validate the ctx is still alive before calling.
2309          */
2310         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311                 return;
2312
2313         /*
2314          * Installing events is tricky because we cannot rely on ctx->is_active
2315          * to be set in case this is the nr_events 0 -> 1 transition.
2316          */
2317 again:
2318         /*
2319          * Cannot use task_function_call() because we need to run on the task's
2320          * CPU regardless of whether its current or not.
2321          */
2322         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323                 return;
2324
2325         raw_spin_lock_irq(&ctx->lock);
2326         task = ctx->task;
2327         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328                 /*
2329                  * Cannot happen because we already checked above (which also
2330                  * cannot happen), and we hold ctx->mutex, which serializes us
2331                  * against perf_event_exit_task_context().
2332                  */
2333                 raw_spin_unlock_irq(&ctx->lock);
2334                 return;
2335         }
2336         raw_spin_unlock_irq(&ctx->lock);
2337         /*
2338          * Since !ctx->is_active doesn't mean anything, we must IPI
2339          * unconditionally.
2340          */
2341         goto again;
2342 }
2343
2344 /*
2345  * Put a event into inactive state and update time fields.
2346  * Enabling the leader of a group effectively enables all
2347  * the group members that aren't explicitly disabled, so we
2348  * have to update their ->tstamp_enabled also.
2349  * Note: this works for group members as well as group leaders
2350  * since the non-leader members' sibling_lists will be empty.
2351  */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354         struct perf_event *sub;
2355         u64 tstamp = perf_event_time(event);
2356
2357         event->state = PERF_EVENT_STATE_INACTIVE;
2358         event->tstamp_enabled = tstamp - event->total_time_enabled;
2359         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362         }
2363 }
2364
2365 /*
2366  * Cross CPU call to enable a performance event
2367  */
2368 static void __perf_event_enable(struct perf_event *event,
2369                                 struct perf_cpu_context *cpuctx,
2370                                 struct perf_event_context *ctx,
2371                                 void *info)
2372 {
2373         struct perf_event *leader = event->group_leader;
2374         struct perf_event_context *task_ctx;
2375
2376         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377             event->state <= PERF_EVENT_STATE_ERROR)
2378                 return;
2379
2380         if (ctx->is_active)
2381                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382
2383         __perf_event_mark_enabled(event);
2384
2385         if (!ctx->is_active)
2386                 return;
2387
2388         if (!event_filter_match(event)) {
2389                 if (is_cgroup_event(event))
2390                         perf_cgroup_defer_enabled(event);
2391                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392                 return;
2393         }
2394
2395         /*
2396          * If the event is in a group and isn't the group leader,
2397          * then don't put it on unless the group is on.
2398          */
2399         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401                 return;
2402         }
2403
2404         task_ctx = cpuctx->task_ctx;
2405         if (ctx->task)
2406                 WARN_ON_ONCE(task_ctx != ctx);
2407
2408         ctx_resched(cpuctx, task_ctx);
2409 }
2410
2411 /*
2412  * Enable a event.
2413  *
2414  * If event->ctx is a cloned context, callers must make sure that
2415  * every task struct that event->ctx->task could possibly point to
2416  * remains valid.  This condition is satisfied when called through
2417  * perf_event_for_each_child or perf_event_for_each as described
2418  * for perf_event_disable.
2419  */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422         struct perf_event_context *ctx = event->ctx;
2423
2424         raw_spin_lock_irq(&ctx->lock);
2425         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426             event->state <  PERF_EVENT_STATE_ERROR) {
2427                 raw_spin_unlock_irq(&ctx->lock);
2428                 return;
2429         }
2430
2431         /*
2432          * If the event is in error state, clear that first.
2433          *
2434          * That way, if we see the event in error state below, we know that it
2435          * has gone back into error state, as distinct from the task having
2436          * been scheduled away before the cross-call arrived.
2437          */
2438         if (event->state == PERF_EVENT_STATE_ERROR)
2439                 event->state = PERF_EVENT_STATE_OFF;
2440         raw_spin_unlock_irq(&ctx->lock);
2441
2442         event_function_call(event, __perf_event_enable, NULL);
2443 }
2444
2445 /*
2446  * See perf_event_disable();
2447  */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450         struct perf_event_context *ctx;
2451
2452         ctx = perf_event_ctx_lock(event);
2453         _perf_event_enable(event);
2454         perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457
2458 struct stop_event_data {
2459         struct perf_event       *event;
2460         unsigned int            restart;
2461 };
2462
2463 static int __perf_event_stop(void *info)
2464 {
2465         struct stop_event_data *sd = info;
2466         struct perf_event *event = sd->event;
2467
2468         /* if it's already INACTIVE, do nothing */
2469         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470                 return 0;
2471
2472         /* matches smp_wmb() in event_sched_in() */
2473         smp_rmb();
2474
2475         /*
2476          * There is a window with interrupts enabled before we get here,
2477          * so we need to check again lest we try to stop another CPU's event.
2478          */
2479         if (READ_ONCE(event->oncpu) != smp_processor_id())
2480                 return -EAGAIN;
2481
2482         event->pmu->stop(event, PERF_EF_UPDATE);
2483
2484         /*
2485          * May race with the actual stop (through perf_pmu_output_stop()),
2486          * but it is only used for events with AUX ring buffer, and such
2487          * events will refuse to restart because of rb::aux_mmap_count==0,
2488          * see comments in perf_aux_output_begin().
2489          *
2490          * Since this is happening on a event-local CPU, no trace is lost
2491          * while restarting.
2492          */
2493         if (sd->restart)
2494                 event->pmu->start(event, PERF_EF_START);
2495
2496         return 0;
2497 }
2498
2499 static int perf_event_stop(struct perf_event *event, int restart)
2500 {
2501         struct stop_event_data sd = {
2502                 .event          = event,
2503                 .restart        = restart,
2504         };
2505         int ret = 0;
2506
2507         do {
2508                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509                         return 0;
2510
2511                 /* matches smp_wmb() in event_sched_in() */
2512                 smp_rmb();
2513
2514                 /*
2515                  * We only want to restart ACTIVE events, so if the event goes
2516                  * inactive here (event->oncpu==-1), there's nothing more to do;
2517                  * fall through with ret==-ENXIO.
2518                  */
2519                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2520                                         __perf_event_stop, &sd);
2521         } while (ret == -EAGAIN);
2522
2523         return ret;
2524 }
2525
2526 /*
2527  * In order to contain the amount of racy and tricky in the address filter
2528  * configuration management, it is a two part process:
2529  *
2530  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531  *      we update the addresses of corresponding vmas in
2532  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2533  * (p2) when an event is scheduled in (pmu::add), it calls
2534  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535  *      if the generation has changed since the previous call.
2536  *
2537  * If (p1) happens while the event is active, we restart it to force (p2).
2538  *
2539  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2541  *     ioctl;
2542  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2544  *     for reading;
2545  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546  *     of exec.
2547  */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551
2552         if (!has_addr_filter(event))
2553                 return;
2554
2555         raw_spin_lock(&ifh->lock);
2556         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557                 event->pmu->addr_filters_sync(event);
2558                 event->hw.addr_filters_gen = event->addr_filters_gen;
2559         }
2560         raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566         /*
2567          * not supported on inherited events
2568          */
2569         if (event->attr.inherit || !is_sampling_event(event))
2570                 return -EINVAL;
2571
2572         atomic_add(refresh, &event->event_limit);
2573         _perf_event_enable(event);
2574
2575         return 0;
2576 }
2577
2578 /*
2579  * See perf_event_disable()
2580  */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583         struct perf_event_context *ctx;
2584         int ret;
2585
2586         ctx = perf_event_ctx_lock(event);
2587         ret = _perf_event_refresh(event, refresh);
2588         perf_event_ctx_unlock(event, ctx);
2589
2590         return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595                           struct perf_cpu_context *cpuctx,
2596                           enum event_type_t event_type)
2597 {
2598         int is_active = ctx->is_active;
2599         struct perf_event *event;
2600
2601         lockdep_assert_held(&ctx->lock);
2602
2603         if (likely(!ctx->nr_events)) {
2604                 /*
2605                  * See __perf_remove_from_context().
2606                  */
2607                 WARN_ON_ONCE(ctx->is_active);
2608                 if (ctx->task)
2609                         WARN_ON_ONCE(cpuctx->task_ctx);
2610                 return;
2611         }
2612
2613         ctx->is_active &= ~event_type;
2614         if (!(ctx->is_active & EVENT_ALL))
2615                 ctx->is_active = 0;
2616
2617         if (ctx->task) {
2618                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619                 if (!ctx->is_active)
2620                         cpuctx->task_ctx = NULL;
2621         }
2622
2623         /*
2624          * Always update time if it was set; not only when it changes.
2625          * Otherwise we can 'forget' to update time for any but the last
2626          * context we sched out. For example:
2627          *
2628          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629          *   ctx_sched_out(.event_type = EVENT_PINNED)
2630          *
2631          * would only update time for the pinned events.
2632          */
2633         if (is_active & EVENT_TIME) {
2634                 /* update (and stop) ctx time */
2635                 update_context_time(ctx);
2636                 update_cgrp_time_from_cpuctx(cpuctx);
2637         }
2638
2639         is_active ^= ctx->is_active; /* changed bits */
2640
2641         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642                 return;
2643
2644         perf_pmu_disable(ctx->pmu);
2645         if (is_active & EVENT_PINNED) {
2646                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647                         group_sched_out(event, cpuctx, ctx);
2648         }
2649
2650         if (is_active & EVENT_FLEXIBLE) {
2651                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652                         group_sched_out(event, cpuctx, ctx);
2653         }
2654         perf_pmu_enable(ctx->pmu);
2655 }
2656
2657 /*
2658  * Test whether two contexts are equivalent, i.e. whether they have both been
2659  * cloned from the same version of the same context.
2660  *
2661  * Equivalence is measured using a generation number in the context that is
2662  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663  * and list_del_event().
2664  */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666                          struct perf_event_context *ctx2)
2667 {
2668         lockdep_assert_held(&ctx1->lock);
2669         lockdep_assert_held(&ctx2->lock);
2670
2671         /* Pinning disables the swap optimization */
2672         if (ctx1->pin_count || ctx2->pin_count)
2673                 return 0;
2674
2675         /* If ctx1 is the parent of ctx2 */
2676         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677                 return 1;
2678
2679         /* If ctx2 is the parent of ctx1 */
2680         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681                 return 1;
2682
2683         /*
2684          * If ctx1 and ctx2 have the same parent; we flatten the parent
2685          * hierarchy, see perf_event_init_context().
2686          */
2687         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688                         ctx1->parent_gen == ctx2->parent_gen)
2689                 return 1;
2690
2691         /* Unmatched */
2692         return 0;
2693 }
2694
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696                                      struct perf_event *next_event)
2697 {
2698         u64 value;
2699
2700         if (!event->attr.inherit_stat)
2701                 return;
2702
2703         /*
2704          * Update the event value, we cannot use perf_event_read()
2705          * because we're in the middle of a context switch and have IRQs
2706          * disabled, which upsets smp_call_function_single(), however
2707          * we know the event must be on the current CPU, therefore we
2708          * don't need to use it.
2709          */
2710         switch (event->state) {
2711         case PERF_EVENT_STATE_ACTIVE:
2712                 event->pmu->read(event);
2713                 /* fall-through */
2714
2715         case PERF_EVENT_STATE_INACTIVE:
2716                 update_event_times(event);
2717                 break;
2718
2719         default:
2720                 break;
2721         }
2722
2723         /*
2724          * In order to keep per-task stats reliable we need to flip the event
2725          * values when we flip the contexts.
2726          */
2727         value = local64_read(&next_event->count);
2728         value = local64_xchg(&event->count, value);
2729         local64_set(&next_event->count, value);
2730
2731         swap(event->total_time_enabled, next_event->total_time_enabled);
2732         swap(event->total_time_running, next_event->total_time_running);
2733
2734         /*
2735          * Since we swizzled the values, update the user visible data too.
2736          */
2737         perf_event_update_userpage(event);
2738         perf_event_update_userpage(next_event);
2739 }
2740
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742                                    struct perf_event_context *next_ctx)
2743 {
2744         struct perf_event *event, *next_event;
2745
2746         if (!ctx->nr_stat)
2747                 return;
2748
2749         update_context_time(ctx);
2750
2751         event = list_first_entry(&ctx->event_list,
2752                                    struct perf_event, event_entry);
2753
2754         next_event = list_first_entry(&next_ctx->event_list,
2755                                         struct perf_event, event_entry);
2756
2757         while (&event->event_entry != &ctx->event_list &&
2758                &next_event->event_entry != &next_ctx->event_list) {
2759
2760                 __perf_event_sync_stat(event, next_event);
2761
2762                 event = list_next_entry(event, event_entry);
2763                 next_event = list_next_entry(next_event, event_entry);
2764         }
2765 }
2766
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768                                          struct task_struct *next)
2769 {
2770         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771         struct perf_event_context *next_ctx;
2772         struct perf_event_context *parent, *next_parent;
2773         struct perf_cpu_context *cpuctx;
2774         int do_switch = 1;
2775
2776         if (likely(!ctx))
2777                 return;
2778
2779         cpuctx = __get_cpu_context(ctx);
2780         if (!cpuctx->task_ctx)
2781                 return;
2782
2783         rcu_read_lock();
2784         next_ctx = next->perf_event_ctxp[ctxn];
2785         if (!next_ctx)
2786                 goto unlock;
2787
2788         parent = rcu_dereference(ctx->parent_ctx);
2789         next_parent = rcu_dereference(next_ctx->parent_ctx);
2790
2791         /* If neither context have a parent context; they cannot be clones. */
2792         if (!parent && !next_parent)
2793                 goto unlock;
2794
2795         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796                 /*
2797                  * Looks like the two contexts are clones, so we might be
2798                  * able to optimize the context switch.  We lock both
2799                  * contexts and check that they are clones under the
2800                  * lock (including re-checking that neither has been
2801                  * uncloned in the meantime).  It doesn't matter which
2802                  * order we take the locks because no other cpu could
2803                  * be trying to lock both of these tasks.
2804                  */
2805                 raw_spin_lock(&ctx->lock);
2806                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807                 if (context_equiv(ctx, next_ctx)) {
2808                         WRITE_ONCE(ctx->task, next);
2809                         WRITE_ONCE(next_ctx->task, task);
2810
2811                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812
2813                         /*
2814                          * RCU_INIT_POINTER here is safe because we've not
2815                          * modified the ctx and the above modification of
2816                          * ctx->task and ctx->task_ctx_data are immaterial
2817                          * since those values are always verified under
2818                          * ctx->lock which we're now holding.
2819                          */
2820                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822
2823                         do_switch = 0;
2824
2825                         perf_event_sync_stat(ctx, next_ctx);
2826                 }
2827                 raw_spin_unlock(&next_ctx->lock);
2828                 raw_spin_unlock(&ctx->lock);
2829         }
2830 unlock:
2831         rcu_read_unlock();
2832
2833         if (do_switch) {
2834                 raw_spin_lock(&ctx->lock);
2835                 task_ctx_sched_out(cpuctx, ctx);
2836                 raw_spin_unlock(&ctx->lock);
2837         }
2838 }
2839
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842         this_cpu_dec(perf_sched_cb_usages);
2843 }
2844
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847         this_cpu_inc(perf_sched_cb_usages);
2848 }
2849
2850 /*
2851  * This function provides the context switch callback to the lower code
2852  * layer. It is invoked ONLY when the context switch callback is enabled.
2853  */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855                                 struct task_struct *next,
2856                                 bool sched_in)
2857 {
2858         struct perf_cpu_context *cpuctx;
2859         struct pmu *pmu;
2860         unsigned long flags;
2861
2862         if (prev == next)
2863                 return;
2864
2865         local_irq_save(flags);
2866
2867         rcu_read_lock();
2868
2869         list_for_each_entry_rcu(pmu, &pmus, entry) {
2870                 if (pmu->sched_task) {
2871                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872
2873                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874
2875                         perf_pmu_disable(pmu);
2876
2877                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2878
2879                         perf_pmu_enable(pmu);
2880
2881                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882                 }
2883         }
2884
2885         rcu_read_unlock();
2886
2887         local_irq_restore(flags);
2888 }
2889
2890 static void perf_event_switch(struct task_struct *task,
2891                               struct task_struct *next_prev, bool sched_in);
2892
2893 #define for_each_task_context_nr(ctxn)                                  \
2894         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895
2896 /*
2897  * Called from scheduler to remove the events of the current task,
2898  * with interrupts disabled.
2899  *
2900  * We stop each event and update the event value in event->count.
2901  *
2902  * This does not protect us against NMI, but disable()
2903  * sets the disabled bit in the control field of event _before_
2904  * accessing the event control register. If a NMI hits, then it will
2905  * not restart the event.
2906  */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908                                  struct task_struct *next)
2909 {
2910         int ctxn;
2911
2912         if (__this_cpu_read(perf_sched_cb_usages))
2913                 perf_pmu_sched_task(task, next, false);
2914
2915         if (atomic_read(&nr_switch_events))
2916                 perf_event_switch(task, next, false);
2917
2918         for_each_task_context_nr(ctxn)
2919                 perf_event_context_sched_out(task, ctxn, next);
2920
2921         /*
2922          * if cgroup events exist on this CPU, then we need
2923          * to check if we have to switch out PMU state.
2924          * cgroup event are system-wide mode only
2925          */
2926         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927                 perf_cgroup_sched_out(task, next);
2928 }
2929
2930 /*
2931  * Called with IRQs disabled
2932  */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934                               enum event_type_t event_type)
2935 {
2936         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941                     struct perf_cpu_context *cpuctx)
2942 {
2943         struct perf_event *event;
2944
2945         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946                 if (event->state <= PERF_EVENT_STATE_OFF)
2947                         continue;
2948                 if (!event_filter_match(event))
2949                         continue;
2950
2951                 /* may need to reset tstamp_enabled */
2952                 if (is_cgroup_event(event))
2953                         perf_cgroup_mark_enabled(event, ctx);
2954
2955                 if (group_can_go_on(event, cpuctx, 1))
2956                         group_sched_in(event, cpuctx, ctx);
2957
2958                 /*
2959                  * If this pinned group hasn't been scheduled,
2960                  * put it in error state.
2961                  */
2962                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963                         update_group_times(event);
2964                         event->state = PERF_EVENT_STATE_ERROR;
2965                 }
2966         }
2967 }
2968
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971                       struct perf_cpu_context *cpuctx)
2972 {
2973         struct perf_event *event;
2974         int can_add_hw = 1;
2975
2976         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977                 /* Ignore events in OFF or ERROR state */
2978                 if (event->state <= PERF_EVENT_STATE_OFF)
2979                         continue;
2980                 /*
2981                  * Listen to the 'cpu' scheduling filter constraint
2982                  * of events:
2983                  */
2984                 if (!event_filter_match(event))
2985                         continue;
2986
2987                 /* may need to reset tstamp_enabled */
2988                 if (is_cgroup_event(event))
2989                         perf_cgroup_mark_enabled(event, ctx);
2990
2991                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992                         if (group_sched_in(event, cpuctx, ctx))
2993                                 can_add_hw = 0;
2994                 }
2995         }
2996 }
2997
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000              struct perf_cpu_context *cpuctx,
3001              enum event_type_t event_type,
3002              struct task_struct *task)
3003 {
3004         int is_active = ctx->is_active;
3005         u64 now;
3006
3007         lockdep_assert_held(&ctx->lock);
3008
3009         if (likely(!ctx->nr_events))
3010                 return;
3011
3012         ctx->is_active |= (event_type | EVENT_TIME);
3013         if (ctx->task) {
3014                 if (!is_active)
3015                         cpuctx->task_ctx = ctx;
3016                 else
3017                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018         }
3019
3020         is_active ^= ctx->is_active; /* changed bits */
3021
3022         if (is_active & EVENT_TIME) {
3023                 /* start ctx time */
3024                 now = perf_clock();
3025                 ctx->timestamp = now;
3026                 perf_cgroup_set_timestamp(task, ctx);
3027         }
3028
3029         /*
3030          * First go through the list and put on any pinned groups
3031          * in order to give them the best chance of going on.
3032          */
3033         if (is_active & EVENT_PINNED)
3034                 ctx_pinned_sched_in(ctx, cpuctx);
3035
3036         /* Then walk through the lower prio flexible groups */
3037         if (is_active & EVENT_FLEXIBLE)
3038                 ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042                              enum event_type_t event_type,
3043                              struct task_struct *task)
3044 {
3045         struct perf_event_context *ctx = &cpuctx->ctx;
3046
3047         ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051                                         struct task_struct *task)
3052 {
3053         struct perf_cpu_context *cpuctx;
3054
3055         cpuctx = __get_cpu_context(ctx);
3056         if (cpuctx->task_ctx == ctx)
3057                 return;
3058
3059         perf_ctx_lock(cpuctx, ctx);
3060         perf_pmu_disable(ctx->pmu);
3061         /*
3062          * We want to keep the following priority order:
3063          * cpu pinned (that don't need to move), task pinned,
3064          * cpu flexible, task flexible.
3065          */
3066         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067         perf_event_sched_in(cpuctx, ctx, task);
3068         perf_pmu_enable(ctx->pmu);
3069         perf_ctx_unlock(cpuctx, ctx);
3070 }
3071
3072 /*
3073  * Called from scheduler to add the events of the current task
3074  * with interrupts disabled.
3075  *
3076  * We restore the event value and then enable it.
3077  *
3078  * This does not protect us against NMI, but enable()
3079  * sets the enabled bit in the control field of event _before_
3080  * accessing the event control register. If a NMI hits, then it will
3081  * keep the event running.
3082  */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084                                 struct task_struct *task)
3085 {
3086         struct perf_event_context *ctx;
3087         int ctxn;
3088
3089         /*
3090          * If cgroup events exist on this CPU, then we need to check if we have
3091          * to switch in PMU state; cgroup event are system-wide mode only.
3092          *
3093          * Since cgroup events are CPU events, we must schedule these in before
3094          * we schedule in the task events.
3095          */
3096         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097                 perf_cgroup_sched_in(prev, task);
3098
3099         for_each_task_context_nr(ctxn) {
3100                 ctx = task->perf_event_ctxp[ctxn];
3101                 if (likely(!ctx))
3102                         continue;
3103
3104                 perf_event_context_sched_in(ctx, task);
3105         }
3106
3107         if (atomic_read(&nr_switch_events))
3108                 perf_event_switch(task, prev, true);
3109
3110         if (__this_cpu_read(perf_sched_cb_usages))
3111                 perf_pmu_sched_task(prev, task, true);
3112 }
3113
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116         u64 frequency = event->attr.sample_freq;
3117         u64 sec = NSEC_PER_SEC;
3118         u64 divisor, dividend;
3119
3120         int count_fls, nsec_fls, frequency_fls, sec_fls;
3121
3122         count_fls = fls64(count);
3123         nsec_fls = fls64(nsec);
3124         frequency_fls = fls64(frequency);
3125         sec_fls = 30;
3126
3127         /*
3128          * We got @count in @nsec, with a target of sample_freq HZ
3129          * the target period becomes:
3130          *
3131          *             @count * 10^9
3132          * period = -------------------
3133          *          @nsec * sample_freq
3134          *
3135          */
3136
3137         /*
3138          * Reduce accuracy by one bit such that @a and @b converge
3139          * to a similar magnitude.
3140          */
3141 #define REDUCE_FLS(a, b)                \
3142 do {                                    \
3143         if (a##_fls > b##_fls) {        \
3144                 a >>= 1;                \
3145                 a##_fls--;              \
3146         } else {                        \
3147                 b >>= 1;                \
3148                 b##_fls--;              \
3149         }                               \
3150 } while (0)
3151
3152         /*
3153          * Reduce accuracy until either term fits in a u64, then proceed with
3154          * the other, so that finally we can do a u64/u64 division.
3155          */
3156         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157                 REDUCE_FLS(nsec, frequency);
3158                 REDUCE_FLS(sec, count);
3159         }
3160
3161         if (count_fls + sec_fls > 64) {
3162                 divisor = nsec * frequency;
3163
3164                 while (count_fls + sec_fls > 64) {
3165                         REDUCE_FLS(count, sec);
3166                         divisor >>= 1;
3167                 }
3168
3169                 dividend = count * sec;
3170         } else {
3171                 dividend = count * sec;
3172
3173                 while (nsec_fls + frequency_fls > 64) {
3174                         REDUCE_FLS(nsec, frequency);
3175                         dividend >>= 1;
3176                 }
3177
3178                 divisor = nsec * frequency;
3179         }
3180
3181         if (!divisor)
3182                 return dividend;
3183
3184         return div64_u64(dividend, divisor);
3185 }
3186
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192         struct hw_perf_event *hwc = &event->hw;
3193         s64 period, sample_period;
3194         s64 delta;
3195
3196         period = perf_calculate_period(event, nsec, count);
3197
3198         delta = (s64)(period - hwc->sample_period);
3199         delta = (delta + 7) / 8; /* low pass filter */
3200
3201         sample_period = hwc->sample_period + delta;
3202
3203         if (!sample_period)
3204                 sample_period = 1;
3205
3206         hwc->sample_period = sample_period;
3207
3208         if (local64_read(&hwc->period_left) > 8*sample_period) {
3209                 if (disable)
3210                         event->pmu->stop(event, PERF_EF_UPDATE);
3211
3212                 local64_set(&hwc->period_left, 0);
3213
3214                 if (disable)
3215                         event->pmu->start(event, PERF_EF_RELOAD);
3216         }
3217 }
3218
3219 /*
3220  * combine freq adjustment with unthrottling to avoid two passes over the
3221  * events. At the same time, make sure, having freq events does not change
3222  * the rate of unthrottling as that would introduce bias.
3223  */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225                                            int needs_unthr)
3226 {
3227         struct perf_event *event;
3228         struct hw_perf_event *hwc;
3229         u64 now, period = TICK_NSEC;
3230         s64 delta;
3231
3232         /*
3233          * only need to iterate over all events iff:
3234          * - context have events in frequency mode (needs freq adjust)
3235          * - there are events to unthrottle on this cpu
3236          */
3237         if (!(ctx->nr_freq || needs_unthr))
3238                 return;
3239
3240         raw_spin_lock(&ctx->lock);
3241         perf_pmu_disable(ctx->pmu);
3242
3243         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245                         continue;
3246
3247                 if (!event_filter_match(event))
3248                         continue;
3249
3250                 perf_pmu_disable(event->pmu);
3251
3252                 hwc = &event->hw;
3253
3254                 if (hwc->interrupts == MAX_INTERRUPTS) {
3255                         hwc->interrupts = 0;
3256                         perf_log_throttle(event, 1);
3257                         event->pmu->start(event, 0);
3258                 }
3259
3260                 if (!event->attr.freq || !event->attr.sample_freq)
3261                         goto next;
3262
3263                 /*
3264                  * stop the event and update event->count
3265                  */
3266                 event->pmu->stop(event, PERF_EF_UPDATE);
3267
3268                 now = local64_read(&event->count);
3269                 delta = now - hwc->freq_count_stamp;
3270                 hwc->freq_count_stamp = now;
3271
3272                 /*
3273                  * restart the event
3274                  * reload only if value has changed
3275                  * we have stopped the event so tell that
3276                  * to perf_adjust_period() to avoid stopping it
3277                  * twice.
3278                  */
3279                 if (delta > 0)
3280                         perf_adjust_period(event, period, delta, false);
3281
3282                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283         next:
3284                 perf_pmu_enable(event->pmu);
3285         }
3286
3287         perf_pmu_enable(ctx->pmu);
3288         raw_spin_unlock(&ctx->lock);
3289 }
3290
3291 /*
3292  * Round-robin a context's events:
3293  */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296         /*
3297          * Rotate the first entry last of non-pinned groups. Rotation might be
3298          * disabled by the inheritance code.
3299          */
3300         if (!ctx->rotate_disable)
3301                 list_rotate_left(&ctx->flexible_groups);
3302 }
3303
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306         struct perf_event_context *ctx = NULL;
3307         int rotate = 0;
3308
3309         if (cpuctx->ctx.nr_events) {
3310                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311                         rotate = 1;
3312         }
3313
3314         ctx = cpuctx->task_ctx;
3315         if (ctx && ctx->nr_events) {
3316                 if (ctx->nr_events != ctx->nr_active)
3317                         rotate = 1;
3318         }
3319
3320         if (!rotate)
3321                 goto done;
3322
3323         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324         perf_pmu_disable(cpuctx->ctx.pmu);
3325
3326         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327         if (ctx)
3328                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329
3330         rotate_ctx(&cpuctx->ctx);
3331         if (ctx)
3332                 rotate_ctx(ctx);
3333
3334         perf_event_sched_in(cpuctx, ctx, current);
3335
3336         perf_pmu_enable(cpuctx->ctx.pmu);
3337         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339
3340         return rotate;
3341 }
3342
3343 void perf_event_task_tick(void)
3344 {
3345         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346         struct perf_event_context *ctx, *tmp;
3347         int throttled;
3348
3349         WARN_ON(!irqs_disabled());
3350
3351         __this_cpu_inc(perf_throttled_seq);
3352         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354
3355         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356                 perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358
3359 static int event_enable_on_exec(struct perf_event *event,
3360                                 struct perf_event_context *ctx)
3361 {
3362         if (!event->attr.enable_on_exec)
3363                 return 0;
3364
3365         event->attr.enable_on_exec = 0;
3366         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367                 return 0;
3368
3369         __perf_event_mark_enabled(event);
3370
3371         return 1;
3372 }
3373
3374 /*
3375  * Enable all of a task's events that have been marked enable-on-exec.
3376  * This expects task == current.
3377  */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380         struct perf_event_context *ctx, *clone_ctx = NULL;
3381         struct perf_cpu_context *cpuctx;
3382         struct perf_event *event;
3383         unsigned long flags;
3384         int enabled = 0;
3385
3386         local_irq_save(flags);
3387         ctx = current->perf_event_ctxp[ctxn];
3388         if (!ctx || !ctx->nr_events)
3389                 goto out;
3390
3391         cpuctx = __get_cpu_context(ctx);
3392         perf_ctx_lock(cpuctx, ctx);
3393         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394         list_for_each_entry(event, &ctx->event_list, event_entry)
3395                 enabled |= event_enable_on_exec(event, ctx);
3396
3397         /*
3398          * Unclone and reschedule this context if we enabled any event.
3399          */
3400         if (enabled) {
3401                 clone_ctx = unclone_ctx(ctx);
3402                 ctx_resched(cpuctx, ctx);
3403         }
3404         perf_ctx_unlock(cpuctx, ctx);
3405
3406 out:
3407         local_irq_restore(flags);
3408
3409         if (clone_ctx)
3410                 put_ctx(clone_ctx);
3411 }
3412
3413 struct perf_read_data {
3414         struct perf_event *event;
3415         bool group;
3416         int ret;
3417 };
3418
3419 /*
3420  * Cross CPU call to read the hardware event
3421  */
3422 static void __perf_event_read(void *info)
3423 {
3424         struct perf_read_data *data = info;
3425         struct perf_event *sub, *event = data->event;
3426         struct perf_event_context *ctx = event->ctx;
3427         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428         struct pmu *pmu = event->pmu;
3429
3430         /*
3431          * If this is a task context, we need to check whether it is
3432          * the current task context of this cpu.  If not it has been
3433          * scheduled out before the smp call arrived.  In that case
3434          * event->count would have been updated to a recent sample
3435          * when the event was scheduled out.
3436          */
3437         if (ctx->task && cpuctx->task_ctx != ctx)
3438                 return;
3439
3440         raw_spin_lock(&ctx->lock);
3441         if (ctx->is_active) {
3442                 update_context_time(ctx);
3443                 update_cgrp_time_from_event(event);
3444         }
3445
3446         update_event_times(event);
3447         if (event->state != PERF_EVENT_STATE_ACTIVE)
3448                 goto unlock;
3449
3450         if (!data->group) {
3451                 pmu->read(event);
3452                 data->ret = 0;
3453                 goto unlock;
3454         }
3455
3456         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457
3458         pmu->read(event);
3459
3460         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461                 update_event_times(sub);
3462                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463                         /*
3464                          * Use sibling's PMU rather than @event's since
3465                          * sibling could be on different (eg: software) PMU.
3466                          */
3467                         sub->pmu->read(sub);
3468                 }
3469         }
3470
3471         data->ret = pmu->commit_txn(pmu);
3472
3473 unlock:
3474         raw_spin_unlock(&ctx->lock);
3475 }
3476
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479         if (event->pmu->count)
3480                 return event->pmu->count(event);
3481
3482         return __perf_event_count(event);
3483 }
3484
3485 /*
3486  * NMI-safe method to read a local event, that is an event that
3487  * is:
3488  *   - either for the current task, or for this CPU
3489  *   - does not have inherit set, for inherited task events
3490  *     will not be local and we cannot read them atomically
3491  *   - must not have a pmu::count method
3492  */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495         unsigned long flags;
3496         u64 val;
3497
3498         /*
3499          * Disabling interrupts avoids all counter scheduling (context
3500          * switches, timer based rotation and IPIs).
3501          */
3502         local_irq_save(flags);
3503
3504         /* If this is a per-task event, it must be for current */
3505         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506                      event->hw.target != current);
3507
3508         /* If this is a per-CPU event, it must be for this CPU */
3509         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510                      event->cpu != smp_processor_id());
3511
3512         /*
3513          * It must not be an event with inherit set, we cannot read
3514          * all child counters from atomic context.
3515          */
3516         WARN_ON_ONCE(event->attr.inherit);
3517
3518         /*
3519          * It must not have a pmu::count method, those are not
3520          * NMI safe.
3521          */
3522         WARN_ON_ONCE(event->pmu->count);
3523
3524         /*
3525          * If the event is currently on this CPU, its either a per-task event,
3526          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527          * oncpu == -1).
3528          */
3529         if (event->oncpu == smp_processor_id())
3530                 event->pmu->read(event);
3531
3532         val = local64_read(&event->count);
3533         local_irq_restore(flags);
3534
3535         return val;
3536 }
3537
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540         int ret = 0;
3541
3542         /*
3543          * If event is enabled and currently active on a CPU, update the
3544          * value in the event structure:
3545          */
3546         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547                 struct perf_read_data data = {
3548                         .event = event,
3549                         .group = group,
3550                         .ret = 0,
3551                 };
3552                 /*
3553                  * Purposely ignore the smp_call_function_single() return
3554                  * value.
3555                  *
3556                  * If event->oncpu isn't a valid CPU it means the event got
3557                  * scheduled out and that will have updated the event count.
3558                  *
3559                  * Therefore, either way, we'll have an up-to-date event count
3560                  * after this.
3561                  */
3562                 (void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3563                 ret = data.ret;
3564         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3565                 struct perf_event_context *ctx = event->ctx;
3566                 unsigned long flags;
3567
3568                 raw_spin_lock_irqsave(&ctx->lock, flags);
3569                 /*
3570                  * may read while context is not active
3571                  * (e.g., thread is blocked), in that case
3572                  * we cannot update context time
3573                  */
3574                 if (ctx->is_active) {
3575                         update_context_time(ctx);
3576                         update_cgrp_time_from_event(event);
3577                 }
3578                 if (group)
3579                         update_group_times(event);
3580                 else
3581                         update_event_times(event);
3582                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3583         }
3584
3585         return ret;
3586 }
3587
3588 /*
3589  * Initialize the perf_event context in a task_struct:
3590  */
3591 static void __perf_event_init_context(struct perf_event_context *ctx)
3592 {
3593         raw_spin_lock_init(&ctx->lock);
3594         mutex_init(&ctx->mutex);
3595         INIT_LIST_HEAD(&ctx->active_ctx_list);
3596         INIT_LIST_HEAD(&ctx->pinned_groups);
3597         INIT_LIST_HEAD(&ctx->flexible_groups);
3598         INIT_LIST_HEAD(&ctx->event_list);
3599         atomic_set(&ctx->refcount, 1);
3600 }
3601
3602 static struct perf_event_context *
3603 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3604 {
3605         struct perf_event_context *ctx;
3606
3607         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3608         if (!ctx)
3609                 return NULL;
3610
3611         __perf_event_init_context(ctx);
3612         if (task) {
3613                 ctx->task = task;
3614                 get_task_struct(task);
3615         }
3616         ctx->pmu = pmu;
3617
3618         return ctx;
3619 }
3620
3621 static struct task_struct *
3622 find_lively_task_by_vpid(pid_t vpid)
3623 {
3624         struct task_struct *task;
3625
3626         rcu_read_lock();
3627         if (!vpid)
3628                 task = current;
3629         else
3630                 task = find_task_by_vpid(vpid);
3631         if (task)
3632                 get_task_struct(task);
3633         rcu_read_unlock();
3634
3635         if (!task)
3636                 return ERR_PTR(-ESRCH);
3637
3638         return task;
3639 }
3640
3641 /*
3642  * Returns a matching context with refcount and pincount.
3643  */
3644 static struct perf_event_context *
3645 find_get_context(struct pmu *pmu, struct task_struct *task,
3646                 struct perf_event *event)
3647 {
3648         struct perf_event_context *ctx, *clone_ctx = NULL;
3649         struct perf_cpu_context *cpuctx;
3650         void *task_ctx_data = NULL;
3651         unsigned long flags;
3652         int ctxn, err;
3653         int cpu = event->cpu;
3654
3655         if (!task) {
3656                 /* Must be root to operate on a CPU event: */
3657                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3658                         return ERR_PTR(-EACCES);
3659
3660                 /*
3661                  * We could be clever and allow to attach a event to an
3662                  * offline CPU and activate it when the CPU comes up, but
3663                  * that's for later.
3664                  */
3665                 if (!cpu_online(cpu))
3666                         return ERR_PTR(-ENODEV);
3667
3668                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3669                 ctx = &cpuctx->ctx;
3670                 get_ctx(ctx);
3671                 ++ctx->pin_count;
3672
3673                 return ctx;
3674         }
3675
3676         err = -EINVAL;
3677         ctxn = pmu->task_ctx_nr;
3678         if (ctxn < 0)
3679                 goto errout;
3680
3681         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3682                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3683                 if (!task_ctx_data) {
3684                         err = -ENOMEM;
3685                         goto errout;
3686                 }
3687         }
3688
3689 retry:
3690         ctx = perf_lock_task_context(task, ctxn, &flags);
3691         if (ctx) {
3692                 clone_ctx = unclone_ctx(ctx);
3693                 ++ctx->pin_count;
3694
3695                 if (task_ctx_data && !ctx->task_ctx_data) {
3696                         ctx->task_ctx_data = task_ctx_data;
3697                         task_ctx_data = NULL;
3698                 }
3699                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3700
3701                 if (clone_ctx)
3702                         put_ctx(clone_ctx);
3703         } else {
3704                 ctx = alloc_perf_context(pmu, task);
3705                 err = -ENOMEM;
3706                 if (!ctx)
3707                         goto errout;
3708
3709                 if (task_ctx_data) {
3710                         ctx->task_ctx_data = task_ctx_data;
3711                         task_ctx_data = NULL;
3712                 }
3713
3714                 err = 0;
3715                 mutex_lock(&task->perf_event_mutex);
3716                 /*
3717                  * If it has already passed perf_event_exit_task().
3718                  * we must see PF_EXITING, it takes this mutex too.
3719                  */
3720                 if (task->flags & PF_EXITING)
3721                         err = -ESRCH;
3722                 else if (task->perf_event_ctxp[ctxn])
3723                         err = -EAGAIN;
3724                 else {
3725                         get_ctx(ctx);
3726                         ++ctx->pin_count;
3727                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3728                 }
3729                 mutex_unlock(&task->perf_event_mutex);
3730
3731                 if (unlikely(err)) {
3732                         put_ctx(ctx);
3733
3734                         if (err == -EAGAIN)
3735                                 goto retry;
3736                         goto errout;
3737                 }
3738         }
3739
3740         kfree(task_ctx_data);
3741         return ctx;
3742
3743 errout:
3744         kfree(task_ctx_data);
3745         return ERR_PTR(err);
3746 }
3747
3748 static void perf_event_free_filter(struct perf_event *event);
3749 static void perf_event_free_bpf_prog(struct perf_event *event);
3750
3751 static void free_event_rcu(struct rcu_head *head)
3752 {
3753         struct perf_event *event;
3754
3755         event = container_of(head, struct perf_event, rcu_head);
3756         if (event->ns)
3757                 put_pid_ns(event->ns);
3758         perf_event_free_filter(event);
3759         kfree(event);
3760 }
3761
3762 static void ring_buffer_attach(struct perf_event *event,
3763                                struct ring_buffer *rb);
3764
3765 static void detach_sb_event(struct perf_event *event)
3766 {
3767         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3768
3769         raw_spin_lock(&pel->lock);
3770         list_del_rcu(&event->sb_list);
3771         raw_spin_unlock(&pel->lock);
3772 }
3773
3774 static bool is_sb_event(struct perf_event *event)
3775 {
3776         struct perf_event_attr *attr = &event->attr;
3777
3778         if (event->parent)
3779                 return false;
3780
3781         if (event->attach_state & PERF_ATTACH_TASK)
3782                 return false;
3783
3784         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3785             attr->comm || attr->comm_exec ||
3786             attr->task ||
3787             attr->context_switch)
3788                 return true;
3789         return false;
3790 }
3791
3792 static void unaccount_pmu_sb_event(struct perf_event *event)
3793 {
3794         if (is_sb_event(event))
3795                 detach_sb_event(event);
3796 }
3797
3798 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3799 {
3800         if (event->parent)
3801                 return;
3802
3803         if (is_cgroup_event(event))
3804                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3805 }
3806
3807 #ifdef CONFIG_NO_HZ_FULL
3808 static DEFINE_SPINLOCK(nr_freq_lock);
3809 #endif
3810
3811 static void unaccount_freq_event_nohz(void)
3812 {
3813 #ifdef CONFIG_NO_HZ_FULL
3814         spin_lock(&nr_freq_lock);
3815         if (atomic_dec_and_test(&nr_freq_events))
3816                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3817         spin_unlock(&nr_freq_lock);
3818 #endif
3819 }
3820
3821 static void unaccount_freq_event(void)
3822 {
3823         if (tick_nohz_full_enabled())
3824                 unaccount_freq_event_nohz();
3825         else
3826                 atomic_dec(&nr_freq_events);
3827 }
3828
3829 static void unaccount_event(struct perf_event *event)
3830 {
3831         bool dec = false;
3832
3833         if (event->parent)
3834                 return;
3835
3836         if (event->attach_state & PERF_ATTACH_TASK)
3837                 dec = true;
3838         if (event->attr.mmap || event->attr.mmap_data)
3839                 atomic_dec(&nr_mmap_events);
3840         if (event->attr.comm)
3841                 atomic_dec(&nr_comm_events);
3842         if (event->attr.task)
3843                 atomic_dec(&nr_task_events);
3844         if (event->attr.freq)
3845                 unaccount_freq_event();
3846         if (event->attr.context_switch) {
3847                 dec = true;
3848                 atomic_dec(&nr_switch_events);
3849         }
3850         if (is_cgroup_event(event))
3851                 dec = true;
3852         if (has_branch_stack(event))
3853                 dec = true;
3854
3855         if (dec) {
3856                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3857                         schedule_delayed_work(&perf_sched_work, HZ);
3858         }
3859
3860         unaccount_event_cpu(event, event->cpu);
3861
3862         unaccount_pmu_sb_event(event);
3863 }
3864
3865 static void perf_sched_delayed(struct work_struct *work)
3866 {
3867         mutex_lock(&perf_sched_mutex);
3868         if (atomic_dec_and_test(&perf_sched_count))
3869                 static_branch_disable(&perf_sched_events);
3870         mutex_unlock(&perf_sched_mutex);
3871 }
3872
3873 /*
3874  * The following implement mutual exclusion of events on "exclusive" pmus
3875  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3876  * at a time, so we disallow creating events that might conflict, namely:
3877  *
3878  *  1) cpu-wide events in the presence of per-task events,
3879  *  2) per-task events in the presence of cpu-wide events,
3880  *  3) two matching events on the same context.
3881  *
3882  * The former two cases are handled in the allocation path (perf_event_alloc(),
3883  * _free_event()), the latter -- before the first perf_install_in_context().
3884  */
3885 static int exclusive_event_init(struct perf_event *event)
3886 {
3887         struct pmu *pmu = event->pmu;
3888
3889         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3890                 return 0;
3891
3892         /*
3893          * Prevent co-existence of per-task and cpu-wide events on the
3894          * same exclusive pmu.
3895          *
3896          * Negative pmu::exclusive_cnt means there are cpu-wide
3897          * events on this "exclusive" pmu, positive means there are
3898          * per-task events.
3899          *
3900          * Since this is called in perf_event_alloc() path, event::ctx
3901          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3902          * to mean "per-task event", because unlike other attach states it
3903          * never gets cleared.
3904          */
3905         if (event->attach_state & PERF_ATTACH_TASK) {
3906                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3907                         return -EBUSY;
3908         } else {
3909                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3910                         return -EBUSY;
3911         }
3912
3913         return 0;
3914 }
3915
3916 static void exclusive_event_destroy(struct perf_event *event)
3917 {
3918         struct pmu *pmu = event->pmu;
3919
3920         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3921                 return;
3922
3923         /* see comment in exclusive_event_init() */
3924         if (event->attach_state & PERF_ATTACH_TASK)
3925                 atomic_dec(&pmu->exclusive_cnt);
3926         else
3927                 atomic_inc(&pmu->exclusive_cnt);
3928 }
3929
3930 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3931 {
3932         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3933             (e1->cpu == e2->cpu ||
3934              e1->cpu == -1 ||
3935              e2->cpu == -1))
3936                 return true;
3937         return false;
3938 }
3939
3940 /* Called under the same ctx::mutex as perf_install_in_context() */
3941 static bool exclusive_event_installable(struct perf_event *event,
3942                                         struct perf_event_context *ctx)
3943 {
3944         struct perf_event *iter_event;
3945         struct pmu *pmu = event->pmu;
3946
3947         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3948                 return true;
3949
3950         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3951                 if (exclusive_event_match(iter_event, event))
3952                         return false;
3953         }
3954
3955         return true;
3956 }
3957
3958 static void perf_addr_filters_splice(struct perf_event *event,
3959                                        struct list_head *head);
3960
3961 static void _free_event(struct perf_event *event)
3962 {
3963         irq_work_sync(&event->pending);
3964
3965         unaccount_event(event);
3966
3967         if (event->rb) {
3968                 /*
3969                  * Can happen when we close an event with re-directed output.
3970                  *
3971                  * Since we have a 0 refcount, perf_mmap_close() will skip
3972                  * over us; possibly making our ring_buffer_put() the last.
3973                  */
3974                 mutex_lock(&event->mmap_mutex);
3975                 ring_buffer_attach(event, NULL);
3976                 mutex_unlock(&event->mmap_mutex);
3977         }
3978
3979         if (is_cgroup_event(event))
3980                 perf_detach_cgroup(event);
3981
3982         if (!event->parent) {
3983                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3984                         put_callchain_buffers();
3985         }
3986
3987         perf_event_free_bpf_prog(event);
3988         perf_addr_filters_splice(event, NULL);
3989         kfree(event->addr_filters_offs);
3990
3991         if (event->destroy)
3992                 event->destroy(event);
3993
3994         if (event->ctx)
3995                 put_ctx(event->ctx);
3996
3997         exclusive_event_destroy(event);
3998         module_put(event->pmu->module);
3999
4000         call_rcu(&event->rcu_head, free_event_rcu);
4001 }
4002
4003 /*
4004  * Used to free events which have a known refcount of 1, such as in error paths
4005  * where the event isn't exposed yet and inherited events.
4006  */
4007 static void free_event(struct perf_event *event)
4008 {
4009         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4010                                 "unexpected event refcount: %ld; ptr=%p\n",
4011                                 atomic_long_read(&event->refcount), event)) {
4012                 /* leak to avoid use-after-free */
4013                 return;
4014         }
4015
4016         _free_event(event);
4017 }
4018
4019 /*
4020  * Remove user event from the owner task.
4021  */
4022 static void perf_remove_from_owner(struct perf_event *event)
4023 {
4024         struct task_struct *owner;
4025
4026         rcu_read_lock();
4027         /*
4028          * Matches the smp_store_release() in perf_event_exit_task(). If we
4029          * observe !owner it means the list deletion is complete and we can
4030          * indeed free this event, otherwise we need to serialize on
4031          * owner->perf_event_mutex.
4032          */
4033         owner = lockless_dereference(event->owner);
4034         if (owner) {
4035                 /*
4036                  * Since delayed_put_task_struct() also drops the last
4037                  * task reference we can safely take a new reference
4038                  * while holding the rcu_read_lock().
4039                  */
4040                 get_task_struct(owner);
4041         }
4042         rcu_read_unlock();
4043
4044         if (owner) {
4045                 /*
4046                  * If we're here through perf_event_exit_task() we're already
4047                  * holding ctx->mutex which would be an inversion wrt. the
4048                  * normal lock order.
4049                  *
4050                  * However we can safely take this lock because its the child
4051                  * ctx->mutex.
4052                  */
4053                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4054
4055                 /*
4056                  * We have to re-check the event->owner field, if it is cleared
4057                  * we raced with perf_event_exit_task(), acquiring the mutex
4058                  * ensured they're done, and we can proceed with freeing the
4059                  * event.
4060                  */
4061                 if (event->owner) {
4062                         list_del_init(&event->owner_entry);
4063                         smp_store_release(&event->owner, NULL);
4064                 }
4065                 mutex_unlock(&owner->perf_event_mutex);
4066                 put_task_struct(owner);
4067         }
4068 }
4069
4070 static void put_event(struct perf_event *event)
4071 {
4072         if (!atomic_long_dec_and_test(&event->refcount))
4073                 return;
4074
4075         _free_event(event);
4076 }
4077
4078 /*
4079  * Kill an event dead; while event:refcount will preserve the event
4080  * object, it will not preserve its functionality. Once the last 'user'
4081  * gives up the object, we'll destroy the thing.
4082  */
4083 int perf_event_release_kernel(struct perf_event *event)
4084 {
4085         struct perf_event_context *ctx = event->ctx;
4086         struct perf_event *child, *tmp;
4087
4088         /*
4089          * If we got here through err_file: fput(event_file); we will not have
4090          * attached to a context yet.
4091          */
4092         if (!ctx) {
4093                 WARN_ON_ONCE(event->attach_state &
4094                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4095                 goto no_ctx;
4096         }
4097
4098         if (!is_kernel_event(event))
4099                 perf_remove_from_owner(event);
4100
4101         ctx = perf_event_ctx_lock(event);
4102         WARN_ON_ONCE(ctx->parent_ctx);
4103         perf_remove_from_context(event, DETACH_GROUP);
4104
4105         raw_spin_lock_irq(&ctx->lock);
4106         /*
4107          * Mark this even as STATE_DEAD, there is no external reference to it
4108          * anymore.
4109          *
4110          * Anybody acquiring event->child_mutex after the below loop _must_
4111          * also see this, most importantly inherit_event() which will avoid
4112          * placing more children on the list.
4113          *
4114          * Thus this guarantees that we will in fact observe and kill _ALL_
4115          * child events.
4116          */
4117         event->state = PERF_EVENT_STATE_DEAD;
4118         raw_spin_unlock_irq(&ctx->lock);
4119
4120         perf_event_ctx_unlock(event, ctx);
4121
4122 again:
4123         mutex_lock(&event->child_mutex);
4124         list_for_each_entry(child, &event->child_list, child_list) {
4125
4126                 /*
4127                  * Cannot change, child events are not migrated, see the
4128                  * comment with perf_event_ctx_lock_nested().
4129                  */
4130                 ctx = lockless_dereference(child->ctx);
4131                 /*
4132                  * Since child_mutex nests inside ctx::mutex, we must jump
4133                  * through hoops. We start by grabbing a reference on the ctx.
4134                  *
4135                  * Since the event cannot get freed while we hold the
4136                  * child_mutex, the context must also exist and have a !0
4137                  * reference count.
4138                  */
4139                 get_ctx(ctx);
4140
4141                 /*
4142                  * Now that we have a ctx ref, we can drop child_mutex, and
4143                  * acquire ctx::mutex without fear of it going away. Then we
4144                  * can re-acquire child_mutex.
4145                  */
4146                 mutex_unlock(&event->child_mutex);
4147                 mutex_lock(&ctx->mutex);
4148                 mutex_lock(&event->child_mutex);
4149
4150                 /*
4151                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4152                  * state, if child is still the first entry, it didn't get freed
4153                  * and we can continue doing so.
4154                  */
4155                 tmp = list_first_entry_or_null(&event->child_list,
4156                                                struct perf_event, child_list);
4157                 if (tmp == child) {
4158                         perf_remove_from_context(child, DETACH_GROUP);
4159                         list_del(&child->child_list);
4160                         free_event(child);
4161                         /*
4162                          * This matches the refcount bump in inherit_event();
4163                          * this can't be the last reference.
4164                          */
4165                         put_event(event);
4166                 }
4167
4168                 mutex_unlock(&event->child_mutex);
4169                 mutex_unlock(&ctx->mutex);
4170                 put_ctx(ctx);
4171                 goto again;
4172         }
4173         mutex_unlock(&event->child_mutex);
4174
4175 no_ctx:
4176         put_event(event); /* Must be the 'last' reference */
4177         return 0;
4178 }
4179 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4180
4181 /*
4182  * Called when the last reference to the file is gone.
4183  */
4184 static int perf_release(struct inode *inode, struct file *file)
4185 {
4186         perf_event_release_kernel(file->private_data);
4187         return 0;
4188 }
4189
4190 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4191 {
4192         struct perf_event *child;
4193         u64 total = 0;
4194
4195         *enabled = 0;
4196         *running = 0;
4197
4198         mutex_lock(&event->child_mutex);
4199
4200         (void)perf_event_read(event, false);
4201         total += perf_event_count(event);
4202
4203         *enabled += event->total_time_enabled +
4204                         atomic64_read(&event->child_total_time_enabled);
4205         *running += event->total_time_running +
4206                         atomic64_read(&event->child_total_time_running);
4207
4208         list_for_each_entry(child, &event->child_list, child_list) {
4209                 (void)perf_event_read(child, false);
4210                 total += perf_event_count(child);
4211                 *enabled += child->total_time_enabled;
4212                 *running += child->total_time_running;
4213         }
4214         mutex_unlock(&event->child_mutex);
4215
4216         return total;
4217 }
4218 EXPORT_SYMBOL_GPL(perf_event_read_value);
4219
4220 static int __perf_read_group_add(struct perf_event *leader,
4221                                         u64 read_format, u64 *values)
4222 {
4223         struct perf_event *sub;
4224         int n = 1; /* skip @nr */
4225         int ret;
4226
4227         ret = perf_event_read(leader, true);
4228         if (ret)
4229                 return ret;
4230
4231         /*
4232          * Since we co-schedule groups, {enabled,running} times of siblings
4233          * will be identical to those of the leader, so we only publish one
4234          * set.
4235          */
4236         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4237                 values[n++] += leader->total_time_enabled +
4238                         atomic64_read(&leader->child_total_time_enabled);
4239         }
4240
4241         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4242                 values[n++] += leader->total_time_running +
4243                         atomic64_read(&leader->child_total_time_running);
4244         }
4245
4246         /*
4247          * Write {count,id} tuples for every sibling.
4248          */
4249         values[n++] += perf_event_count(leader);
4250         if (read_format & PERF_FORMAT_ID)
4251                 values[n++] = primary_event_id(leader);
4252
4253         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4254                 values[n++] += perf_event_count(sub);
4255                 if (read_format & PERF_FORMAT_ID)
4256                         values[n++] = primary_event_id(sub);
4257         }
4258
4259         return 0;
4260 }
4261
4262 static int perf_read_group(struct perf_event *event,
4263                                    u64 read_format, char __user *buf)
4264 {
4265         struct perf_event *leader = event->group_leader, *child;
4266         struct perf_event_context *ctx = leader->ctx;
4267         int ret;
4268         u64 *values;
4269
4270         lockdep_assert_held(&ctx->mutex);
4271
4272         values = kzalloc(event->read_size, GFP_KERNEL);
4273         if (!values)
4274                 return -ENOMEM;
4275
4276         values[0] = 1 + leader->nr_siblings;
4277
4278         /*
4279          * By locking the child_mutex of the leader we effectively
4280          * lock the child list of all siblings.. XXX explain how.
4281          */
4282         mutex_lock(&leader->child_mutex);
4283
4284         ret = __perf_read_group_add(leader, read_format, values);
4285         if (ret)
4286                 goto unlock;
4287
4288         list_for_each_entry(child, &leader->child_list, child_list) {
4289                 ret = __perf_read_group_add(child, read_format, values);
4290                 if (ret)
4291                         goto unlock;
4292         }
4293
4294         mutex_unlock(&leader->child_mutex);
4295
4296         ret = event->read_size;
4297         if (copy_to_user(buf, values, event->read_size))
4298                 ret = -EFAULT;
4299         goto out;
4300
4301 unlock:
4302         mutex_unlock(&leader->child_mutex);
4303 out:
4304         kfree(values);
4305         return ret;
4306 }
4307
4308 static int perf_read_one(struct perf_event *event,
4309                                  u64 read_format, char __user *buf)
4310 {
4311         u64 enabled, running;
4312         u64 values[4];
4313         int n = 0;
4314
4315         values[n++] = perf_event_read_value(event, &enabled, &running);
4316         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4317                 values[n++] = enabled;
4318         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4319                 values[n++] = running;
4320         if (read_format & PERF_FORMAT_ID)
4321                 values[n++] = primary_event_id(event);
4322
4323         if (copy_to_user(buf, values, n * sizeof(u64)))
4324                 return -EFAULT;
4325
4326         return n * sizeof(u64);
4327 }
4328
4329 static bool is_event_hup(struct perf_event *event)
4330 {
4331         bool no_children;
4332
4333         if (event->state > PERF_EVENT_STATE_EXIT)
4334                 return false;
4335
4336         mutex_lock(&event->child_mutex);
4337         no_children = list_empty(&event->child_list);
4338         mutex_unlock(&event->child_mutex);
4339         return no_children;
4340 }
4341
4342 /*
4343  * Read the performance event - simple non blocking version for now
4344  */
4345 static ssize_t
4346 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4347 {
4348         u64 read_format = event->attr.read_format;
4349         int ret;
4350
4351         /*
4352          * Return end-of-file for a read on a event that is in
4353          * error state (i.e. because it was pinned but it couldn't be
4354          * scheduled on to the CPU at some point).
4355          */
4356         if (event->state == PERF_EVENT_STATE_ERROR)
4357                 return 0;
4358
4359         if (count < event->read_size)
4360                 return -ENOSPC;
4361
4362         WARN_ON_ONCE(event->ctx->parent_ctx);
4363         if (read_format & PERF_FORMAT_GROUP)
4364                 ret = perf_read_group(event, read_format, buf);
4365         else
4366                 ret = perf_read_one(event, read_format, buf);
4367
4368         return ret;
4369 }
4370
4371 static ssize_t
4372 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4373 {
4374         struct perf_event *event = file->private_data;
4375         struct perf_event_context *ctx;
4376         int ret;
4377
4378         ctx = perf_event_ctx_lock(event);
4379         ret = __perf_read(event, buf, count);
4380         perf_event_ctx_unlock(event, ctx);
4381
4382         return ret;
4383 }
4384
4385 static unsigned int perf_poll(struct file *file, poll_table *wait)
4386 {
4387         struct perf_event *event = file->private_data;
4388         struct ring_buffer *rb;
4389         unsigned int events = POLLHUP;
4390
4391         poll_wait(file, &event->waitq, wait);
4392
4393         if (is_event_hup(event))
4394                 return events;
4395
4396         /*
4397          * Pin the event->rb by taking event->mmap_mutex; otherwise
4398          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4399          */
4400         mutex_lock(&event->mmap_mutex);
4401         rb = event->rb;
4402         if (rb)
4403                 events = atomic_xchg(&rb->poll, 0);
4404         mutex_unlock(&event->mmap_mutex);
4405         return events;
4406 }
4407
4408 static void _perf_event_reset(struct perf_event *event)
4409 {
4410         (void)perf_event_read(event, false);
4411         local64_set(&event->count, 0);
4412         perf_event_update_userpage(event);
4413 }
4414
4415 /*
4416  * Holding the top-level event's child_mutex means that any
4417  * descendant process that has inherited this event will block
4418  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4419  * task existence requirements of perf_event_enable/disable.
4420  */
4421 static void perf_event_for_each_child(struct perf_event *event,
4422                                         void (*func)(struct perf_event *))
4423 {
4424         struct perf_event *child;
4425
4426         WARN_ON_ONCE(event->ctx->parent_ctx);
4427
4428         mutex_lock(&event->child_mutex);
4429         func(event);
4430         list_for_each_entry(child, &event->child_list, child_list)
4431                 func(child);
4432         mutex_unlock(&event->child_mutex);
4433 }
4434
4435 static void perf_event_for_each(struct perf_event *event,
4436                                   void (*func)(struct perf_event *))
4437 {
4438         struct perf_event_context *ctx = event->ctx;
4439         struct perf_event *sibling;
4440
4441         lockdep_assert_held(&ctx->mutex);
4442
4443         event = event->group_leader;
4444
4445         perf_event_for_each_child(event, func);
4446         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4447                 perf_event_for_each_child(sibling, func);
4448 }
4449
4450 static void __perf_event_period(struct perf_event *event,
4451                                 struct perf_cpu_context *cpuctx,
4452                                 struct perf_event_context *ctx,
4453                                 void *info)
4454 {
4455         u64 value = *((u64 *)info);
4456         bool active;
4457
4458         if (event->attr.freq) {
4459                 event->attr.sample_freq = value;
4460         } else {
4461                 event->attr.sample_period = value;
4462                 event->hw.sample_period = value;
4463         }
4464
4465         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4466         if (active) {
4467                 perf_pmu_disable(ctx->pmu);
4468                 /*
4469                  * We could be throttled; unthrottle now to avoid the tick
4470                  * trying to unthrottle while we already re-started the event.
4471                  */
4472                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4473                         event->hw.interrupts = 0;
4474                         perf_log_throttle(event, 1);
4475                 }
4476                 event->pmu->stop(event, PERF_EF_UPDATE);
4477         }
4478
4479         local64_set(&event->hw.period_left, 0);
4480
4481         if (active) {
4482                 event->pmu->start(event, PERF_EF_RELOAD);
4483                 perf_pmu_enable(ctx->pmu);
4484         }
4485 }
4486
4487 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4488 {
4489         u64 value;
4490
4491         if (!is_sampling_event(event))
4492                 return -EINVAL;
4493
4494         if (copy_from_user(&value, arg, sizeof(value)))
4495                 return -EFAULT;
4496
4497         if (!value)
4498                 return -EINVAL;
4499
4500         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4501                 return -EINVAL;
4502
4503         event_function_call(event, __perf_event_period, &value);
4504
4505         return 0;
4506 }
4507
4508 static const struct file_operations perf_fops;
4509
4510 static inline int perf_fget_light(int fd, struct fd *p)
4511 {
4512         struct fd f = fdget(fd);
4513         if (!f.file)
4514                 return -EBADF;
4515
4516         if (f.file->f_op != &perf_fops) {
4517                 fdput(f);
4518                 return -EBADF;
4519         }
4520         *p = f;
4521         return 0;
4522 }
4523
4524 static int perf_event_set_output(struct perf_event *event,
4525                                  struct perf_event *output_event);
4526 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4527 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4528
4529 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4530 {
4531         void (*func)(struct perf_event *);
4532         u32 flags = arg;
4533
4534         switch (cmd) {
4535         case PERF_EVENT_IOC_ENABLE:
4536                 func = _perf_event_enable;
4537                 break;
4538         case PERF_EVENT_IOC_DISABLE:
4539                 func = _perf_event_disable;
4540                 break;
4541         case PERF_EVENT_IOC_RESET:
4542                 func = _perf_event_reset;
4543                 break;
4544
4545         case PERF_EVENT_IOC_REFRESH:
4546                 return _perf_event_refresh(event, arg);
4547
4548         case PERF_EVENT_IOC_PERIOD:
4549                 return perf_event_period(event, (u64 __user *)arg);
4550
4551         case PERF_EVENT_IOC_ID:
4552         {
4553                 u64 id = primary_event_id(event);
4554
4555                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4556                         return -EFAULT;
4557                 return 0;
4558         }
4559
4560         case PERF_EVENT_IOC_SET_OUTPUT:
4561         {
4562                 int ret;
4563                 if (arg != -1) {
4564                         struct perf_event *output_event;
4565                         struct fd output;
4566                         ret = perf_fget_light(arg, &output);
4567                         if (ret)
4568                                 return ret;
4569                         output_event = output.file->private_data;
4570                         ret = perf_event_set_output(event, output_event);
4571                         fdput(output);
4572                 } else {
4573                         ret = perf_event_set_output(event, NULL);
4574                 }
4575                 return ret;
4576         }
4577
4578         case PERF_EVENT_IOC_SET_FILTER:
4579                 return perf_event_set_filter(event, (void __user *)arg);
4580
4581         case PERF_EVENT_IOC_SET_BPF:
4582                 return perf_event_set_bpf_prog(event, arg);
4583
4584         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4585                 struct ring_buffer *rb;
4586
4587                 rcu_read_lock();
4588                 rb = rcu_dereference(event->rb);
4589                 if (!rb || !rb->nr_pages) {
4590                         rcu_read_unlock();
4591                         return -EINVAL;
4592                 }
4593                 rb_toggle_paused(rb, !!arg);
4594                 rcu_read_unlock();
4595                 return 0;
4596         }
4597         default:
4598                 return -ENOTTY;
4599         }
4600
4601         if (flags & PERF_IOC_FLAG_GROUP)
4602                 perf_event_for_each(event, func);
4603         else
4604                 perf_event_for_each_child(event, func);
4605
4606         return 0;
4607 }
4608
4609 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4610 {
4611         struct perf_event *event = file->private_data;
4612         struct perf_event_context *ctx;
4613         long ret;
4614
4615         ctx = perf_event_ctx_lock(event);
4616         ret = _perf_ioctl(event, cmd, arg);
4617         perf_event_ctx_unlock(event, ctx);
4618
4619         return ret;
4620 }
4621
4622 #ifdef CONFIG_COMPAT
4623 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4624                                 unsigned long arg)
4625 {
4626         switch (_IOC_NR(cmd)) {
4627         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4628         case _IOC_NR(PERF_EVENT_IOC_ID):
4629                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4630                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4631                         cmd &= ~IOCSIZE_MASK;
4632                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4633                 }
4634                 break;
4635         }
4636         return perf_ioctl(file, cmd, arg);
4637 }
4638 #else
4639 # define perf_compat_ioctl NULL
4640 #endif
4641
4642 int perf_event_task_enable(void)
4643 {
4644         struct perf_event_context *ctx;
4645         struct perf_event *event;
4646
4647         mutex_lock(&current->perf_event_mutex);
4648         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4649                 ctx = perf_event_ctx_lock(event);
4650                 perf_event_for_each_child(event, _perf_event_enable);
4651                 perf_event_ctx_unlock(event, ctx);
4652         }
4653         mutex_unlock(&current->perf_event_mutex);
4654
4655         return 0;
4656 }
4657
4658 int perf_event_task_disable(void)
4659 {
4660         struct perf_event_context *ctx;
4661         struct perf_event *event;
4662
4663         mutex_lock(&current->perf_event_mutex);
4664         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4665                 ctx = perf_event_ctx_lock(event);
4666                 perf_event_for_each_child(event, _perf_event_disable);
4667                 perf_event_ctx_unlock(event, ctx);
4668         }
4669         mutex_unlock(&current->perf_event_mutex);
4670
4671         return 0;
4672 }
4673
4674 static int perf_event_index(struct perf_event *event)
4675 {
4676         if (event->hw.state & PERF_HES_STOPPED)
4677                 return 0;
4678
4679         if (event->state != PERF_EVENT_STATE_ACTIVE)
4680                 return 0;
4681
4682         return event->pmu->event_idx(event);
4683 }
4684
4685 static void calc_timer_values(struct perf_event *event,
4686                                 u64 *now,
4687                                 u64 *enabled,
4688                                 u64 *running)
4689 {
4690         u64 ctx_time;
4691
4692         *now = perf_clock();
4693         ctx_time = event->shadow_ctx_time + *now;
4694         *enabled = ctx_time - event->tstamp_enabled;
4695         *running = ctx_time - event->tstamp_running;
4696 }
4697
4698 static void perf_event_init_userpage(struct perf_event *event)
4699 {
4700         struct perf_event_mmap_page *userpg;
4701         struct ring_buffer *rb;
4702
4703         rcu_read_lock();
4704         rb = rcu_dereference(event->rb);
4705         if (!rb)
4706                 goto unlock;
4707
4708         userpg = rb->user_page;
4709
4710         /* Allow new userspace to detect that bit 0 is deprecated */
4711         userpg->cap_bit0_is_deprecated = 1;
4712         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4713         userpg->data_offset = PAGE_SIZE;
4714         userpg->data_size = perf_data_size(rb);
4715
4716 unlock:
4717         rcu_read_unlock();
4718 }
4719
4720 void __weak arch_perf_update_userpage(
4721         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4722 {
4723 }
4724
4725 /*
4726  * Callers need to ensure there can be no nesting of this function, otherwise
4727  * the seqlock logic goes bad. We can not serialize this because the arch
4728  * code calls this from NMI context.
4729  */
4730 void perf_event_update_userpage(struct perf_event *event)
4731 {
4732         struct perf_event_mmap_page *userpg;
4733         struct ring_buffer *rb;
4734         u64 enabled, running, now;
4735
4736         rcu_read_lock();
4737         rb = rcu_dereference(event->rb);
4738         if (!rb)
4739                 goto unlock;
4740
4741         /*
4742          * compute total_time_enabled, total_time_running
4743          * based on snapshot values taken when the event
4744          * was last scheduled in.
4745          *
4746          * we cannot simply called update_context_time()
4747          * because of locking issue as we can be called in
4748          * NMI context
4749          */
4750         calc_timer_values(event, &now, &enabled, &running);
4751
4752         userpg = rb->user_page;
4753         /*
4754          * Disable preemption so as to not let the corresponding user-space
4755          * spin too long if we get preempted.
4756          */
4757         preempt_disable();
4758         ++userpg->lock;
4759         barrier();
4760         userpg->index = perf_event_index(event);
4761         userpg->offset = perf_event_count(event);
4762         if (userpg->index)
4763                 userpg->offset -= local64_read(&event->hw.prev_count);
4764
4765         userpg->time_enabled = enabled +
4766                         atomic64_read(&event->child_total_time_enabled);
4767
4768         userpg->time_running = running +
4769                         atomic64_read(&event->child_total_time_running);
4770
4771         arch_perf_update_userpage(event, userpg, now);
4772
4773         barrier();
4774         ++userpg->lock;
4775         preempt_enable();
4776 unlock:
4777         rcu_read_unlock();
4778 }
4779
4780 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4781 {
4782         struct perf_event *event = vma->vm_file->private_data;
4783         struct ring_buffer *rb;
4784         int ret = VM_FAULT_SIGBUS;
4785
4786         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4787                 if (vmf->pgoff == 0)
4788                         ret = 0;
4789                 return ret;
4790         }
4791
4792         rcu_read_lock();
4793         rb = rcu_dereference(event->rb);
4794         if (!rb)
4795                 goto unlock;
4796
4797         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4798                 goto unlock;
4799
4800         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4801         if (!vmf->page)
4802                 goto unlock;
4803
4804         get_page(vmf->page);
4805         vmf->page->mapping = vma->vm_file->f_mapping;
4806         vmf->page->index   = vmf->pgoff;
4807
4808         ret = 0;
4809 unlock:
4810         rcu_read_unlock();
4811
4812         return ret;
4813 }
4814
4815 static void ring_buffer_attach(struct perf_event *event,
4816                                struct ring_buffer *rb)
4817 {
4818         struct ring_buffer *old_rb = NULL;
4819         unsigned long flags;
4820
4821         if (event->rb) {
4822                 /*
4823                  * Should be impossible, we set this when removing
4824                  * event->rb_entry and wait/clear when adding event->rb_entry.
4825                  */
4826                 WARN_ON_ONCE(event->rcu_pending);
4827
4828                 old_rb = event->rb;
4829                 spin_lock_irqsave(&old_rb->event_lock, flags);
4830                 list_del_rcu(&event->rb_entry);
4831                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4832
4833                 event->rcu_batches = get_state_synchronize_rcu();
4834                 event->rcu_pending = 1;
4835         }
4836
4837         if (rb) {
4838                 if (event->rcu_pending) {
4839                         cond_synchronize_rcu(event->rcu_batches);
4840                         event->rcu_pending = 0;
4841                 }
4842
4843                 spin_lock_irqsave(&rb->event_lock, flags);
4844                 list_add_rcu(&event->rb_entry, &rb->event_list);
4845                 spin_unlock_irqrestore(&rb->event_lock, flags);
4846         }
4847
4848         /*
4849          * Avoid racing with perf_mmap_close(AUX): stop the event
4850          * before swizzling the event::rb pointer; if it's getting
4851          * unmapped, its aux_mmap_count will be 0 and it won't
4852          * restart. See the comment in __perf_pmu_output_stop().
4853          *
4854          * Data will inevitably be lost when set_output is done in
4855          * mid-air, but then again, whoever does it like this is
4856          * not in for the data anyway.
4857          */
4858         if (has_aux(event))
4859                 perf_event_stop(event, 0);
4860
4861         rcu_assign_pointer(event->rb, rb);
4862
4863         if (old_rb) {
4864                 ring_buffer_put(old_rb);
4865                 /*
4866                  * Since we detached before setting the new rb, so that we
4867                  * could attach the new rb, we could have missed a wakeup.
4868                  * Provide it now.
4869                  */
4870                 wake_up_all(&event->waitq);
4871         }
4872 }
4873
4874 static void ring_buffer_wakeup(struct perf_event *event)
4875 {
4876         struct ring_buffer *rb;
4877
4878         rcu_read_lock();
4879         rb = rcu_dereference(event->rb);
4880         if (rb) {
4881                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4882                         wake_up_all(&event->waitq);
4883         }
4884         rcu_read_unlock();
4885 }
4886
4887 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4888 {
4889         struct ring_buffer *rb;
4890
4891         rcu_read_lock();
4892         rb = rcu_dereference(event->rb);
4893         if (rb) {
4894                 if (!atomic_inc_not_zero(&rb->refcount))
4895                         rb = NULL;
4896         }
4897         rcu_read_unlock();
4898
4899         return rb;
4900 }
4901
4902 void ring_buffer_put(struct ring_buffer *rb)
4903 {
4904         if (!atomic_dec_and_test(&rb->refcount))
4905                 return;
4906
4907         WARN_ON_ONCE(!list_empty(&rb->event_list));
4908
4909         call_rcu(&rb->rcu_head, rb_free_rcu);
4910 }
4911
4912 static void perf_mmap_open(struct vm_area_struct *vma)
4913 {
4914         struct perf_event *event = vma->vm_file->private_data;
4915
4916         atomic_inc(&event->mmap_count);
4917         atomic_inc(&event->rb->mmap_count);
4918
4919         if (vma->vm_pgoff)
4920                 atomic_inc(&event->rb->aux_mmap_count);
4921
4922         if (event->pmu->event_mapped)
4923                 event->pmu->event_mapped(event);
4924 }
4925
4926 static void perf_pmu_output_stop(struct perf_event *event);
4927
4928 /*
4929  * A buffer can be mmap()ed multiple times; either directly through the same
4930  * event, or through other events by use of perf_event_set_output().
4931  *
4932  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4933  * the buffer here, where we still have a VM context. This means we need
4934  * to detach all events redirecting to us.
4935  */
4936 static void perf_mmap_close(struct vm_area_struct *vma)
4937 {
4938         struct perf_event *event = vma->vm_file->private_data;
4939
4940         struct ring_buffer *rb = ring_buffer_get(event);
4941         struct user_struct *mmap_user = rb->mmap_user;
4942         int mmap_locked = rb->mmap_locked;
4943         unsigned long size = perf_data_size(rb);
4944
4945         if (event->pmu->event_unmapped)
4946                 event->pmu->event_unmapped(event);
4947
4948         /*
4949          * rb->aux_mmap_count will always drop before rb->mmap_count and
4950          * event->mmap_count, so it is ok to use event->mmap_mutex to
4951          * serialize with perf_mmap here.
4952          */
4953         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4954             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4955                 /*
4956                  * Stop all AUX events that are writing to this buffer,
4957                  * so that we can free its AUX pages and corresponding PMU
4958                  * data. Note that after rb::aux_mmap_count dropped to zero,
4959                  * they won't start any more (see perf_aux_output_begin()).
4960                  */
4961                 perf_pmu_output_stop(event);
4962
4963                 /* now it's safe to free the pages */
4964                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4965                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4966
4967                 /* this has to be the last one */
4968                 rb_free_aux(rb);
4969                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4970
4971                 mutex_unlock(&event->mmap_mutex);
4972         }
4973
4974         atomic_dec(&rb->mmap_count);
4975
4976         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4977                 goto out_put;
4978
4979         ring_buffer_attach(event, NULL);
4980         mutex_unlock(&event->mmap_mutex);
4981
4982         /* If there's still other mmap()s of this buffer, we're done. */
4983         if (atomic_read(&rb->mmap_count))
4984                 goto out_put;
4985
4986         /*
4987          * No other mmap()s, detach from all other events that might redirect
4988          * into the now unreachable buffer. Somewhat complicated by the
4989          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4990          */
4991 again:
4992         rcu_read_lock();
4993         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4994                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4995                         /*
4996                          * This event is en-route to free_event() which will
4997                          * detach it and remove it from the list.
4998                          */
4999                         continue;
5000                 }
5001                 rcu_read_unlock();
5002
5003                 mutex_lock(&event->mmap_mutex);
5004                 /*
5005                  * Check we didn't race with perf_event_set_output() which can
5006                  * swizzle the rb from under us while we were waiting to
5007                  * acquire mmap_mutex.
5008                  *
5009                  * If we find a different rb; ignore this event, a next
5010                  * iteration will no longer find it on the list. We have to
5011                  * still restart the iteration to make sure we're not now
5012                  * iterating the wrong list.
5013                  */
5014                 if (event->rb == rb)
5015                         ring_buffer_attach(event, NULL);
5016
5017                 mutex_unlock(&event->mmap_mutex);
5018                 put_event(event);
5019
5020                 /*
5021                  * Restart the iteration; either we're on the wrong list or
5022                  * destroyed its integrity by doing a deletion.
5023                  */
5024                 goto again;
5025         }
5026         rcu_read_unlock();
5027
5028         /*
5029          * It could be there's still a few 0-ref events on the list; they'll
5030          * get cleaned up by free_event() -- they'll also still have their
5031          * ref on the rb and will free it whenever they are done with it.
5032          *
5033          * Aside from that, this buffer is 'fully' detached and unmapped,
5034          * undo the VM accounting.
5035          */
5036
5037         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5038         vma->vm_mm->pinned_vm -= mmap_locked;
5039         free_uid(mmap_user);
5040
5041 out_put:
5042         ring_buffer_put(rb); /* could be last */
5043 }
5044
5045 static const struct vm_operations_struct perf_mmap_vmops = {
5046         .open           = perf_mmap_open,
5047         .close          = perf_mmap_close, /* non mergable */
5048         .fault          = perf_mmap_fault,
5049         .page_mkwrite   = perf_mmap_fault,
5050 };
5051
5052 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5053 {
5054         struct perf_event *event = file->private_data;
5055         unsigned long user_locked, user_lock_limit;
5056         struct user_struct *user = current_user();
5057         unsigned long locked, lock_limit;
5058         struct ring_buffer *rb = NULL;
5059         unsigned long vma_size;
5060         unsigned long nr_pages;
5061         long user_extra = 0, extra = 0;
5062         int ret = 0, flags = 0;
5063
5064         /*
5065          * Don't allow mmap() of inherited per-task counters. This would
5066          * create a performance issue due to all children writing to the
5067          * same rb.
5068          */
5069         if (event->cpu == -1 && event->attr.inherit)
5070                 return -EINVAL;
5071
5072         if (!(vma->vm_flags & VM_SHARED))
5073                 return -EINVAL;
5074
5075         vma_size = vma->vm_end - vma->vm_start;
5076
5077         if (vma->vm_pgoff == 0) {
5078                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5079         } else {
5080                 /*
5081                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5082                  * mapped, all subsequent mappings should have the same size
5083                  * and offset. Must be above the normal perf buffer.
5084                  */
5085                 u64 aux_offset, aux_size;
5086
5087                 if (!event->rb)
5088                         return -EINVAL;
5089
5090                 nr_pages = vma_size / PAGE_SIZE;
5091
5092                 mutex_lock(&event->mmap_mutex);
5093                 ret = -EINVAL;
5094
5095                 rb = event->rb;
5096                 if (!rb)
5097                         goto aux_unlock;
5098
5099                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5100                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5101
5102                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5103                         goto aux_unlock;
5104
5105                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5106                         goto aux_unlock;
5107
5108                 /* already mapped with a different offset */
5109                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5110                         goto aux_unlock;
5111
5112                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5113                         goto aux_unlock;
5114
5115                 /* already mapped with a different size */
5116                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5117                         goto aux_unlock;
5118
5119                 if (!is_power_of_2(nr_pages))
5120                         goto aux_unlock;
5121
5122                 if (!atomic_inc_not_zero(&rb->mmap_count))
5123                         goto aux_unlock;
5124
5125                 if (rb_has_aux(rb)) {
5126                         atomic_inc(&rb->aux_mmap_count);
5127                         ret = 0;
5128                         goto unlock;
5129                 }
5130
5131                 atomic_set(&rb->aux_mmap_count, 1);
5132                 user_extra = nr_pages;
5133
5134                 goto accounting;
5135         }
5136
5137         /*
5138          * If we have rb pages ensure they're a power-of-two number, so we
5139          * can do bitmasks instead of modulo.
5140          */
5141         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5142                 return -EINVAL;
5143
5144         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5145                 return -EINVAL;
5146
5147         WARN_ON_ONCE(event->ctx->parent_ctx);
5148 again:
5149         mutex_lock(&event->mmap_mutex);
5150         if (event->rb) {
5151                 if (event->rb->nr_pages != nr_pages) {
5152                         ret = -EINVAL;
5153                         goto unlock;
5154                 }
5155
5156                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5157                         /*
5158                          * Raced against perf_mmap_close() through
5159                          * perf_event_set_output(). Try again, hope for better
5160                          * luck.
5161                          */
5162                         mutex_unlock(&event->mmap_mutex);
5163                         goto again;
5164                 }
5165
5166                 goto unlock;
5167         }
5168
5169         user_extra = nr_pages + 1;
5170
5171 accounting:
5172         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5173
5174         /*
5175          * Increase the limit linearly with more CPUs:
5176          */
5177         user_lock_limit *= num_online_cpus();
5178
5179         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5180
5181         if (user_locked > user_lock_limit)
5182                 extra = user_locked - user_lock_limit;
5183
5184         lock_limit = rlimit(RLIMIT_MEMLOCK);
5185         lock_limit >>= PAGE_SHIFT;
5186         locked = vma->vm_mm->pinned_vm + extra;
5187
5188         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5189                 !capable(CAP_IPC_LOCK)) {
5190                 ret = -EPERM;
5191                 goto unlock;
5192         }
5193
5194         WARN_ON(!rb && event->rb);
5195
5196         if (vma->vm_flags & VM_WRITE)
5197                 flags |= RING_BUFFER_WRITABLE;
5198
5199         if (!rb) {
5200                 rb = rb_alloc(nr_pages,
5201                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5202                               event->cpu, flags);
5203
5204                 if (!rb) {
5205                         ret = -ENOMEM;
5206                         goto unlock;
5207                 }
5208
5209                 atomic_set(&rb->mmap_count, 1);
5210                 rb->mmap_user = get_current_user();
5211                 rb->mmap_locked = extra;
5212
5213                 ring_buffer_attach(event, rb);
5214
5215                 perf_event_init_userpage(event);
5216                 perf_event_update_userpage(event);
5217         } else {
5218                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5219                                    event->attr.aux_watermark, flags);
5220                 if (!ret)
5221                         rb->aux_mmap_locked = extra;
5222         }
5223
5224 unlock:
5225         if (!ret) {
5226                 atomic_long_add(user_extra, &user->locked_vm);
5227                 vma->vm_mm->pinned_vm += extra;
5228
5229                 atomic_inc(&event->mmap_count);
5230         } else if (rb) {
5231                 atomic_dec(&rb->mmap_count);
5232         }
5233 aux_unlock:
5234         mutex_unlock(&event->mmap_mutex);
5235
5236         /*
5237          * Since pinned accounting is per vm we cannot allow fork() to copy our
5238          * vma.
5239          */
5240         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5241         vma->vm_ops = &perf_mmap_vmops;
5242
5243         if (event->pmu->event_mapped)
5244                 event->pmu->event_mapped(event);
5245
5246         return ret;
5247 }
5248
5249 static int perf_fasync(int fd, struct file *filp, int on)
5250 {
5251         struct inode *inode = file_inode(filp);
5252         struct perf_event *event = filp->private_data;
5253         int retval;
5254
5255         inode_lock(inode);
5256         retval = fasync_helper(fd, filp, on, &event->fasync);
5257         inode_unlock(inode);
5258
5259         if (retval < 0)
5260                 return retval;
5261
5262         return 0;
5263 }
5264
5265 static const struct file_operations perf_fops = {
5266         .llseek                 = no_llseek,
5267         .release                = perf_release,
5268         .read                   = perf_read,
5269         .poll                   = perf_poll,
5270         .unlocked_ioctl         = perf_ioctl,
5271         .compat_ioctl           = perf_compat_ioctl,
5272         .mmap                   = perf_mmap,
5273         .fasync                 = perf_fasync,
5274 };
5275
5276 /*
5277  * Perf event wakeup
5278  *
5279  * If there's data, ensure we set the poll() state and publish everything
5280  * to user-space before waking everybody up.
5281  */
5282
5283 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5284 {
5285         /* only the parent has fasync state */
5286         if (event->parent)
5287                 event = event->parent;
5288         return &event->fasync;
5289 }
5290
5291 void perf_event_wakeup(struct perf_event *event)
5292 {
5293         ring_buffer_wakeup(event);
5294
5295         if (event->pending_kill) {
5296                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5297                 event->pending_kill = 0;
5298         }
5299 }
5300
5301 static void perf_pending_event(struct irq_work *entry)
5302 {
5303         struct perf_event *event = container_of(entry,
5304                         struct perf_event, pending);
5305         int rctx;
5306
5307         rctx = perf_swevent_get_recursion_context();
5308         /*
5309          * If we 'fail' here, that's OK, it means recursion is already disabled
5310          * and we won't recurse 'further'.
5311          */
5312
5313         if (event->pending_disable) {
5314                 event->pending_disable = 0;
5315                 perf_event_disable_local(event);
5316         }
5317
5318         if (event->pending_wakeup) {
5319                 event->pending_wakeup = 0;
5320                 perf_event_wakeup(event);
5321         }
5322
5323         if (rctx >= 0)
5324                 perf_swevent_put_recursion_context(rctx);
5325 }
5326
5327 /*
5328  * We assume there is only KVM supporting the callbacks.
5329  * Later on, we might change it to a list if there is
5330  * another virtualization implementation supporting the callbacks.
5331  */
5332 struct perf_guest_info_callbacks *perf_guest_cbs;
5333
5334 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5335 {
5336         perf_guest_cbs = cbs;
5337         return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5340
5341 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5342 {
5343         perf_guest_cbs = NULL;
5344         return 0;
5345 }
5346 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5347
5348 static void
5349 perf_output_sample_regs(struct perf_output_handle *handle,
5350                         struct pt_regs *regs, u64 mask)
5351 {
5352         int bit;
5353
5354         for_each_set_bit(bit, (const unsigned long *) &mask,
5355                          sizeof(mask) * BITS_PER_BYTE) {
5356                 u64 val;
5357
5358                 val = perf_reg_value(regs, bit);
5359                 perf_output_put(handle, val);
5360         }
5361 }
5362
5363 static void perf_sample_regs_user(struct perf_regs *regs_user,
5364                                   struct pt_regs *regs,
5365                                   struct pt_regs *regs_user_copy)
5366 {
5367         if (user_mode(regs)) {
5368                 regs_user->abi = perf_reg_abi(current);
5369                 regs_user->regs = regs;
5370         } else if (current->mm) {
5371                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5372         } else {
5373                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5374                 regs_user->regs = NULL;
5375         }
5376 }
5377
5378 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5379                                   struct pt_regs *regs)
5380 {
5381         regs_intr->regs = regs;
5382         regs_intr->abi  = perf_reg_abi(current);
5383 }
5384
5385
5386 /*
5387  * Get remaining task size from user stack pointer.
5388  *
5389  * It'd be better to take stack vma map and limit this more
5390  * precisly, but there's no way to get it safely under interrupt,
5391  * so using TASK_SIZE as limit.
5392  */
5393 static u64 perf_ustack_task_size(struct pt_regs *regs)
5394 {
5395         unsigned long addr = perf_user_stack_pointer(regs);
5396
5397         if (!addr || addr >= TASK_SIZE)
5398                 return 0;
5399
5400         return TASK_SIZE - addr;
5401 }
5402
5403 static u16
5404 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5405                         struct pt_regs *regs)
5406 {
5407         u64 task_size;
5408
5409         /* No regs, no stack pointer, no dump. */
5410         if (!regs)
5411                 return 0;
5412
5413         /*
5414          * Check if we fit in with the requested stack size into the:
5415          * - TASK_SIZE
5416          *   If we don't, we limit the size to the TASK_SIZE.
5417          *
5418          * - remaining sample size
5419          *   If we don't, we customize the stack size to
5420          *   fit in to the remaining sample size.
5421          */
5422
5423         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5424         stack_size = min(stack_size, (u16) task_size);
5425
5426         /* Current header size plus static size and dynamic size. */
5427         header_size += 2 * sizeof(u64);
5428
5429         /* Do we fit in with the current stack dump size? */
5430         if ((u16) (header_size + stack_size) < header_size) {
5431                 /*
5432                  * If we overflow the maximum size for the sample,
5433                  * we customize the stack dump size to fit in.
5434                  */
5435                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5436                 stack_size = round_up(stack_size, sizeof(u64));
5437         }
5438
5439         return stack_size;
5440 }
5441
5442 static void
5443 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5444                           struct pt_regs *regs)
5445 {
5446         /* Case of a kernel thread, nothing to dump */
5447         if (!regs) {
5448                 u64 size = 0;
5449                 perf_output_put(handle, size);
5450         } else {
5451                 unsigned long sp;
5452                 unsigned int rem;
5453                 u64 dyn_size;
5454
5455                 /*
5456                  * We dump:
5457                  * static size
5458                  *   - the size requested by user or the best one we can fit
5459                  *     in to the sample max size
5460                  * data
5461                  *   - user stack dump data
5462                  * dynamic size
5463                  *   - the actual dumped size
5464                  */
5465
5466                 /* Static size. */
5467                 perf_output_put(handle, dump_size);
5468
5469                 /* Data. */
5470                 sp = perf_user_stack_pointer(regs);
5471                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5472                 dyn_size = dump_size - rem;
5473
5474                 perf_output_skip(handle, rem);
5475
5476                 /* Dynamic size. */
5477                 perf_output_put(handle, dyn_size);
5478         }
5479 }
5480
5481 static void __perf_event_header__init_id(struct perf_event_header *header,
5482                                          struct perf_sample_data *data,
5483                                          struct perf_event *event)
5484 {
5485         u64 sample_type = event->attr.sample_type;
5486
5487         data->type = sample_type;
5488         header->size += event->id_header_size;
5489
5490         if (sample_type & PERF_SAMPLE_TID) {
5491                 /* namespace issues */
5492                 data->tid_entry.pid = perf_event_pid(event, current);
5493                 data->tid_entry.tid = perf_event_tid(event, current);
5494         }
5495
5496         if (sample_type & PERF_SAMPLE_TIME)
5497                 data->time = perf_event_clock(event);
5498
5499         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5500                 data->id = primary_event_id(event);
5501
5502         if (sample_type & PERF_SAMPLE_STREAM_ID)
5503                 data->stream_id = event->id;
5504
5505         if (sample_type & PERF_SAMPLE_CPU) {
5506                 data->cpu_entry.cpu      = raw_smp_processor_id();
5507                 data->cpu_entry.reserved = 0;
5508         }
5509 }
5510
5511 void perf_event_header__init_id(struct perf_event_header *header,
5512                                 struct perf_sample_data *data,
5513                                 struct perf_event *event)
5514 {
5515         if (event->attr.sample_id_all)
5516                 __perf_event_header__init_id(header, data, event);
5517 }
5518
5519 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5520                                            struct perf_sample_data *data)
5521 {
5522         u64 sample_type = data->type;
5523
5524         if (sample_type & PERF_SAMPLE_TID)
5525                 perf_output_put(handle, data->tid_entry);
5526
5527         if (sample_type & PERF_SAMPLE_TIME)
5528                 perf_output_put(handle, data->time);
5529
5530         if (sample_type & PERF_SAMPLE_ID)
5531                 perf_output_put(handle, data->id);
5532
5533         if (sample_type & PERF_SAMPLE_STREAM_ID)
5534                 perf_output_put(handle, data->stream_id);
5535
5536         if (sample_type & PERF_SAMPLE_CPU)
5537                 perf_output_put(handle, data->cpu_entry);
5538
5539         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5540                 perf_output_put(handle, data->id);
5541 }
5542
5543 void perf_event__output_id_sample(struct perf_event *event,
5544                                   struct perf_output_handle *handle,
5545                                   struct perf_sample_data *sample)
5546 {
5547         if (event->attr.sample_id_all)
5548                 __perf_event__output_id_sample(handle, sample);
5549 }
5550
5551 static void perf_output_read_one(struct perf_output_handle *handle,
5552                                  struct perf_event *event,
5553                                  u64 enabled, u64 running)
5554 {
5555         u64 read_format = event->attr.read_format;
5556         u64 values[4];
5557         int n = 0;
5558
5559         values[n++] = perf_event_count(event);
5560         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5561                 values[n++] = enabled +
5562                         atomic64_read(&event->child_total_time_enabled);
5563         }
5564         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5565                 values[n++] = running +
5566                         atomic64_read(&event->child_total_time_running);
5567         }
5568         if (read_format & PERF_FORMAT_ID)
5569                 values[n++] = primary_event_id(event);
5570
5571         __output_copy(handle, values, n * sizeof(u64));
5572 }
5573
5574 /*
5575  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5576  */
5577 static void perf_output_read_group(struct perf_output_handle *handle,
5578                             struct perf_event *event,
5579                             u64 enabled, u64 running)
5580 {
5581         struct perf_event *leader = event->group_leader, *sub;
5582         u64 read_format = event->attr.read_format;
5583         u64 values[5];
5584         int n = 0;
5585
5586         values[n++] = 1 + leader->nr_siblings;
5587
5588         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5589                 values[n++] = enabled;
5590
5591         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5592                 values[n++] = running;
5593
5594         if (leader != event)
5595                 leader->pmu->read(leader);
5596
5597         values[n++] = perf_event_count(leader);
5598         if (read_format & PERF_FORMAT_ID)
5599                 values[n++] = primary_event_id(leader);
5600
5601         __output_copy(handle, values, n * sizeof(u64));
5602
5603         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5604                 n = 0;
5605
5606                 if ((sub != event) &&
5607                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5608                         sub->pmu->read(sub);
5609
5610                 values[n++] = perf_event_count(sub);
5611                 if (read_format & PERF_FORMAT_ID)
5612                         values[n++] = primary_event_id(sub);
5613
5614                 __output_copy(handle, values, n * sizeof(u64));
5615         }
5616 }
5617
5618 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5619                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5620
5621 static void perf_output_read(struct perf_output_handle *handle,
5622                              struct perf_event *event)
5623 {
5624         u64 enabled = 0, running = 0, now;
5625         u64 read_format = event->attr.read_format;
5626
5627         /*
5628          * compute total_time_enabled, total_time_running
5629          * based on snapshot values taken when the event
5630          * was last scheduled in.
5631          *
5632          * we cannot simply called update_context_time()
5633          * because of locking issue as we are called in
5634          * NMI context
5635          */
5636         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5637                 calc_timer_values(event, &now, &enabled, &running);
5638
5639         if (event->attr.read_format & PERF_FORMAT_GROUP)
5640                 perf_output_read_group(handle, event, enabled, running);
5641         else
5642                 perf_output_read_one(handle, event, enabled, running);
5643 }
5644
5645 void perf_output_sample(struct perf_output_handle *handle,
5646                         struct perf_event_header *header,
5647                         struct perf_sample_data *data,
5648                         struct perf_event *event)
5649 {
5650         u64 sample_type = data->type;
5651
5652         perf_output_put(handle, *header);
5653
5654         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5655                 perf_output_put(handle, data->id);
5656
5657         if (sample_type & PERF_SAMPLE_IP)
5658                 perf_output_put(handle, data->ip);
5659
5660         if (sample_type & PERF_SAMPLE_TID)
5661                 perf_output_put(handle, data->tid_entry);
5662
5663         if (sample_type & PERF_SAMPLE_TIME)
5664                 perf_output_put(handle, data->time);
5665
5666         if (sample_type & PERF_SAMPLE_ADDR)
5667                 perf_output_put(handle, data->addr);
5668
5669         if (sample_type & PERF_SAMPLE_ID)
5670                 perf_output_put(handle, data->id);
5671
5672         if (sample_type & PERF_SAMPLE_STREAM_ID)
5673                 perf_output_put(handle, data->stream_id);
5674
5675         if (sample_type & PERF_SAMPLE_CPU)
5676                 perf_output_put(handle, data->cpu_entry);
5677
5678         if (sample_type & PERF_SAMPLE_PERIOD)
5679                 perf_output_put(handle, data->period);
5680
5681         if (sample_type & PERF_SAMPLE_READ)
5682                 perf_output_read(handle, event);
5683
5684         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5685                 if (data->callchain) {
5686                         int size = 1;
5687
5688                         if (data->callchain)
5689                                 size += data->callchain->nr;
5690
5691                         size *= sizeof(u64);
5692
5693                         __output_copy(handle, data->callchain, size);
5694                 } else {
5695                         u64 nr = 0;
5696                         perf_output_put(handle, nr);
5697                 }
5698         }
5699
5700         if (sample_type & PERF_SAMPLE_RAW) {
5701                 struct perf_raw_record *raw = data->raw;
5702
5703                 if (raw) {
5704                         struct perf_raw_frag *frag = &raw->frag;
5705
5706                         perf_output_put(handle, raw->size);
5707                         do {
5708                                 if (frag->copy) {
5709                                         __output_custom(handle, frag->copy,
5710                                                         frag->data, frag->size);
5711                                 } else {
5712                                         __output_copy(handle, frag->data,
5713                                                       frag->size);
5714                                 }
5715                                 if (perf_raw_frag_last(frag))
5716                                         break;
5717                                 frag = frag->next;
5718                         } while (1);
5719                         if (frag->pad)
5720                                 __output_skip(handle, NULL, frag->pad);
5721                 } else {
5722                         struct {
5723                                 u32     size;
5724                                 u32     data;
5725                         } raw = {
5726                                 .size = sizeof(u32),
5727                                 .data = 0,
5728                         };
5729                         perf_output_put(handle, raw);
5730                 }
5731         }
5732
5733         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5734                 if (data->br_stack) {
5735                         size_t size;
5736
5737                         size = data->br_stack->nr
5738                              * sizeof(struct perf_branch_entry);
5739
5740                         perf_output_put(handle, data->br_stack->nr);
5741                         perf_output_copy(handle, data->br_stack->entries, size);
5742                 } else {
5743                         /*
5744                          * we always store at least the value of nr
5745                          */
5746                         u64 nr = 0;
5747                         perf_output_put(handle, nr);
5748                 }
5749         }
5750
5751         if (sample_type & PERF_SAMPLE_REGS_USER) {
5752                 u64 abi = data->regs_user.abi;
5753
5754                 /*
5755                  * If there are no regs to dump, notice it through
5756                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5757                  */
5758                 perf_output_put(handle, abi);
5759
5760                 if (abi) {
5761                         u64 mask = event->attr.sample_regs_user;
5762                         perf_output_sample_regs(handle,
5763                                                 data->regs_user.regs,
5764                                                 mask);
5765                 }
5766         }
5767
5768         if (sample_type & PERF_SAMPLE_STACK_USER) {
5769                 perf_output_sample_ustack(handle,
5770                                           data->stack_user_size,
5771                                           data->regs_user.regs);
5772         }
5773
5774         if (sample_type & PERF_SAMPLE_WEIGHT)
5775                 perf_output_put(handle, data->weight);
5776
5777         if (sample_type & PERF_SAMPLE_DATA_SRC)
5778                 perf_output_put(handle, data->data_src.val);
5779
5780         if (sample_type & PERF_SAMPLE_TRANSACTION)
5781                 perf_output_put(handle, data->txn);
5782
5783         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5784                 u64 abi = data->regs_intr.abi;
5785                 /*
5786                  * If there are no regs to dump, notice it through
5787                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5788                  */
5789                 perf_output_put(handle, abi);
5790
5791                 if (abi) {
5792                         u64 mask = event->attr.sample_regs_intr;
5793
5794                         perf_output_sample_regs(handle,
5795                                                 data->regs_intr.regs,
5796                                                 mask);
5797                 }
5798         }
5799
5800         if (!event->attr.watermark) {
5801                 int wakeup_events = event->attr.wakeup_events;
5802
5803                 if (wakeup_events) {
5804                         struct ring_buffer *rb = handle->rb;
5805                         int events = local_inc_return(&rb->events);
5806
5807                         if (events >= wakeup_events) {
5808                                 local_sub(wakeup_events, &rb->events);
5809                                 local_inc(&rb->wakeup);
5810                         }
5811                 }
5812         }
5813 }
5814
5815 void perf_prepare_sample(struct perf_event_header *header,
5816                          struct perf_sample_data *data,
5817                          struct perf_event *event,
5818                          struct pt_regs *regs)
5819 {
5820         u64 sample_type = event->attr.sample_type;
5821
5822         header->type = PERF_RECORD_SAMPLE;
5823         header->size = sizeof(*header) + event->header_size;
5824
5825         header->misc = 0;
5826         header->misc |= perf_misc_flags(regs);
5827
5828         __perf_event_header__init_id(header, data, event);
5829
5830         if (sample_type & PERF_SAMPLE_IP)
5831                 data->ip = perf_instruction_pointer(regs);
5832
5833         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834                 int size = 1;
5835
5836                 data->callchain = perf_callchain(event, regs);
5837
5838                 if (data->callchain)
5839                         size += data->callchain->nr;
5840
5841                 header->size += size * sizeof(u64);
5842         }
5843
5844         if (sample_type & PERF_SAMPLE_RAW) {
5845                 struct perf_raw_record *raw = data->raw;
5846                 int size;
5847
5848                 if (raw) {
5849                         struct perf_raw_frag *frag = &raw->frag;
5850                         u32 sum = 0;
5851
5852                         do {
5853                                 sum += frag->size;
5854                                 if (perf_raw_frag_last(frag))
5855                                         break;
5856                                 frag = frag->next;
5857                         } while (1);
5858
5859                         size = round_up(sum + sizeof(u32), sizeof(u64));
5860                         raw->size = size - sizeof(u32);
5861                         frag->pad = raw->size - sum;
5862                 } else {
5863                         size = sizeof(u64);
5864                 }
5865
5866                 header->size += size;
5867         }
5868
5869         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5870                 int size = sizeof(u64); /* nr */
5871                 if (data->br_stack) {
5872                         size += data->br_stack->nr
5873                               * sizeof(struct perf_branch_entry);
5874                 }
5875                 header->size += size;
5876         }
5877
5878         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5879                 perf_sample_regs_user(&data->regs_user, regs,
5880                                       &data->regs_user_copy);
5881
5882         if (sample_type & PERF_SAMPLE_REGS_USER) {
5883                 /* regs dump ABI info */
5884                 int size = sizeof(u64);
5885
5886                 if (data->regs_user.regs) {
5887                         u64 mask = event->attr.sample_regs_user;
5888                         size += hweight64(mask) * sizeof(u64);
5889                 }
5890
5891                 header->size += size;
5892         }
5893
5894         if (sample_type & PERF_SAMPLE_STACK_USER) {
5895                 /*
5896                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5897                  * processed as the last one or have additional check added
5898                  * in case new sample type is added, because we could eat
5899                  * up the rest of the sample size.
5900                  */
5901                 u16 stack_size = event->attr.sample_stack_user;
5902                 u16 size = sizeof(u64);
5903
5904                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5905                                                      data->regs_user.regs);
5906
5907                 /*
5908                  * If there is something to dump, add space for the dump
5909                  * itself and for the field that tells the dynamic size,
5910                  * which is how many have been actually dumped.
5911                  */
5912                 if (stack_size)
5913                         size += sizeof(u64) + stack_size;
5914
5915                 data->stack_user_size = stack_size;
5916                 header->size += size;
5917         }
5918
5919         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5920                 /* regs dump ABI info */
5921                 int size = sizeof(u64);
5922
5923                 perf_sample_regs_intr(&data->regs_intr, regs);
5924
5925                 if (data->regs_intr.regs) {
5926                         u64 mask = event->attr.sample_regs_intr;
5927
5928                         size += hweight64(mask) * sizeof(u64);
5929                 }
5930
5931                 header->size += size;
5932         }
5933 }
5934
5935 static void __always_inline
5936 __perf_event_output(struct perf_event *event,
5937                     struct perf_sample_data *data,
5938                     struct pt_regs *regs,
5939                     int (*output_begin)(struct perf_output_handle *,
5940                                         struct perf_event *,
5941                                         unsigned int))
5942 {
5943         struct perf_output_handle handle;
5944         struct perf_event_header header;
5945
5946         /* protect the callchain buffers */
5947         rcu_read_lock();
5948
5949         perf_prepare_sample(&header, data, event, regs);
5950
5951         if (output_begin(&handle, event, header.size))
5952                 goto exit;
5953
5954         perf_output_sample(&handle, &header, data, event);
5955
5956         perf_output_end(&handle);
5957
5958 exit:
5959         rcu_read_unlock();
5960 }
5961
5962 void
5963 perf_event_output_forward(struct perf_event *event,
5964                          struct perf_sample_data *data,
5965                          struct pt_regs *regs)
5966 {
5967         __perf_event_output(event, data, regs, perf_output_begin_forward);
5968 }
5969
5970 void
5971 perf_event_output_backward(struct perf_event *event,
5972                            struct perf_sample_data *data,
5973                            struct pt_regs *regs)
5974 {
5975         __perf_event_output(event, data, regs, perf_output_begin_backward);
5976 }
5977
5978 void
5979 perf_event_output(struct perf_event *event,
5980                   struct perf_sample_data *data,
5981                   struct pt_regs *regs)
5982 {
5983         __perf_event_output(event, data, regs, perf_output_begin);
5984 }
5985
5986 /*
5987  * read event_id
5988  */
5989
5990 struct perf_read_event {
5991         struct perf_event_header        header;
5992
5993         u32                             pid;
5994         u32                             tid;
5995 };
5996
5997 static void
5998 perf_event_read_event(struct perf_event *event,
5999                         struct task_struct *task)
6000 {
6001         struct perf_output_handle handle;
6002         struct perf_sample_data sample;
6003         struct perf_read_event read_event = {
6004                 .header = {
6005                         .type = PERF_RECORD_READ,
6006                         .misc = 0,
6007                         .size = sizeof(read_event) + event->read_size,
6008                 },
6009                 .pid = perf_event_pid(event, task),
6010                 .tid = perf_event_tid(event, task),
6011         };
6012         int ret;
6013
6014         perf_event_header__init_id(&read_event.header, &sample, event);
6015         ret = perf_output_begin(&handle, event, read_event.header.size);
6016         if (ret)
6017                 return;
6018
6019         perf_output_put(&handle, read_event);
6020         perf_output_read(&handle, event);
6021         perf_event__output_id_sample(event, &handle, &sample);
6022
6023         perf_output_end(&handle);
6024 }
6025
6026 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6027
6028 static void
6029 perf_iterate_ctx(struct perf_event_context *ctx,
6030                    perf_iterate_f output,
6031                    void *data, bool all)
6032 {
6033         struct perf_event *event;
6034
6035         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6036                 if (!all) {
6037                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6038                                 continue;
6039                         if (!event_filter_match(event))
6040                                 continue;
6041                 }
6042
6043                 output(event, data);
6044         }
6045 }
6046
6047 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6048 {
6049         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6050         struct perf_event *event;
6051
6052         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6053                 /*
6054                  * Skip events that are not fully formed yet; ensure that
6055                  * if we observe event->ctx, both event and ctx will be
6056                  * complete enough. See perf_install_in_context().
6057                  */
6058                 if (!smp_load_acquire(&event->ctx))
6059                         continue;
6060
6061                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6062                         continue;
6063                 if (!event_filter_match(event))
6064                         continue;
6065                 output(event, data);
6066         }
6067 }
6068
6069 /*
6070  * Iterate all events that need to receive side-band events.
6071  *
6072  * For new callers; ensure that account_pmu_sb_event() includes
6073  * your event, otherwise it might not get delivered.
6074  */
6075 static void
6076 perf_iterate_sb(perf_iterate_f output, void *data,
6077                struct perf_event_context *task_ctx)
6078 {
6079         struct perf_event_context *ctx;
6080         int ctxn;
6081
6082         rcu_read_lock();
6083         preempt_disable();
6084
6085         /*
6086          * If we have task_ctx != NULL we only notify the task context itself.
6087          * The task_ctx is set only for EXIT events before releasing task
6088          * context.
6089          */
6090         if (task_ctx) {
6091                 perf_iterate_ctx(task_ctx, output, data, false);
6092                 goto done;
6093         }
6094
6095         perf_iterate_sb_cpu(output, data);
6096
6097         for_each_task_context_nr(ctxn) {
6098                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6099                 if (ctx)
6100                         perf_iterate_ctx(ctx, output, data, false);
6101         }
6102 done:
6103         preempt_enable();
6104         rcu_read_unlock();
6105 }
6106
6107 /*
6108  * Clear all file-based filters at exec, they'll have to be
6109  * re-instated when/if these objects are mmapped again.
6110  */
6111 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6112 {
6113         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6114         struct perf_addr_filter *filter;
6115         unsigned int restart = 0, count = 0;
6116         unsigned long flags;
6117
6118         if (!has_addr_filter(event))
6119                 return;
6120
6121         raw_spin_lock_irqsave(&ifh->lock, flags);
6122         list_for_each_entry(filter, &ifh->list, entry) {
6123                 if (filter->inode) {
6124                         event->addr_filters_offs[count] = 0;
6125                         restart++;
6126                 }
6127
6128                 count++;
6129         }
6130
6131         if (restart)
6132                 event->addr_filters_gen++;
6133         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6134
6135         if (restart)
6136                 perf_event_stop(event, 1);
6137 }
6138
6139 void perf_event_exec(void)
6140 {
6141         struct perf_event_context *ctx;
6142         int ctxn;
6143
6144         rcu_read_lock();
6145         for_each_task_context_nr(ctxn) {
6146                 ctx = current->perf_event_ctxp[ctxn];
6147                 if (!ctx)
6148                         continue;
6149
6150                 perf_event_enable_on_exec(ctxn);
6151
6152                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6153                                    true);
6154         }
6155         rcu_read_unlock();
6156 }
6157
6158 struct remote_output {
6159         struct ring_buffer      *rb;
6160         int                     err;
6161 };
6162
6163 static void __perf_event_output_stop(struct perf_event *event, void *data)
6164 {
6165         struct perf_event *parent = event->parent;
6166         struct remote_output *ro = data;
6167         struct ring_buffer *rb = ro->rb;
6168         struct stop_event_data sd = {
6169                 .event  = event,
6170         };
6171
6172         if (!has_aux(event))
6173                 return;
6174
6175         if (!parent)
6176                 parent = event;
6177
6178         /*
6179          * In case of inheritance, it will be the parent that links to the
6180          * ring-buffer, but it will be the child that's actually using it.
6181          *
6182          * We are using event::rb to determine if the event should be stopped,
6183          * however this may race with ring_buffer_attach() (through set_output),
6184          * which will make us skip the event that actually needs to be stopped.
6185          * So ring_buffer_attach() has to stop an aux event before re-assigning
6186          * its rb pointer.
6187          */
6188         if (rcu_dereference(parent->rb) == rb)
6189                 ro->err = __perf_event_stop(&sd);
6190 }
6191
6192 static int __perf_pmu_output_stop(void *info)
6193 {
6194         struct perf_event *event = info;
6195         struct pmu *pmu = event->pmu;
6196         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6197         struct remote_output ro = {
6198                 .rb     = event->rb,
6199         };
6200
6201         rcu_read_lock();
6202         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6203         if (cpuctx->task_ctx)
6204                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6205                                    &ro, false);
6206         rcu_read_unlock();
6207
6208         return ro.err;
6209 }
6210
6211 static void perf_pmu_output_stop(struct perf_event *event)
6212 {
6213         struct perf_event *iter;
6214         int err, cpu;
6215
6216 restart:
6217         rcu_read_lock();
6218         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6219                 /*
6220                  * For per-CPU events, we need to make sure that neither they
6221                  * nor their children are running; for cpu==-1 events it's
6222                  * sufficient to stop the event itself if it's active, since
6223                  * it can't have children.
6224                  */
6225                 cpu = iter->cpu;
6226                 if (cpu == -1)
6227                         cpu = READ_ONCE(iter->oncpu);
6228
6229                 if (cpu == -1)
6230                         continue;
6231
6232                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6233                 if (err == -EAGAIN) {
6234                         rcu_read_unlock();
6235                         goto restart;
6236                 }
6237         }
6238         rcu_read_unlock();
6239 }
6240
6241 /*
6242  * task tracking -- fork/exit
6243  *
6244  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6245  */
6246
6247 struct perf_task_event {
6248         struct task_struct              *task;
6249         struct perf_event_context       *task_ctx;
6250
6251         struct {
6252                 struct perf_event_header        header;
6253
6254                 u32                             pid;
6255                 u32                             ppid;
6256                 u32                             tid;
6257                 u32                             ptid;
6258                 u64                             time;
6259         } event_id;
6260 };
6261
6262 static int perf_event_task_match(struct perf_event *event)
6263 {
6264         return event->attr.comm  || event->attr.mmap ||
6265                event->attr.mmap2 || event->attr.mmap_data ||
6266                event->attr.task;
6267 }
6268
6269 static void perf_event_task_output(struct perf_event *event,
6270                                    void *data)
6271 {
6272         struct perf_task_event *task_event = data;
6273         struct perf_output_handle handle;
6274         struct perf_sample_data sample;
6275         struct task_struct *task = task_event->task;
6276         int ret, size = task_event->event_id.header.size;
6277
6278         if (!perf_event_task_match(event))
6279                 return;
6280
6281         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6282
6283         ret = perf_output_begin(&handle, event,
6284                                 task_event->event_id.header.size);
6285         if (ret)
6286                 goto out;
6287
6288         task_event->event_id.pid = perf_event_pid(event, task);
6289         task_event->event_id.ppid = perf_event_pid(event, current);
6290
6291         task_event->event_id.tid = perf_event_tid(event, task);
6292         task_event->event_id.ptid = perf_event_tid(event, current);
6293
6294         task_event->event_id.time = perf_event_clock(event);
6295
6296         perf_output_put(&handle, task_event->event_id);
6297
6298         perf_event__output_id_sample(event, &handle, &sample);
6299
6300         perf_output_end(&handle);
6301 out:
6302         task_event->event_id.header.size = size;
6303 }
6304
6305 static void perf_event_task(struct task_struct *task,
6306                               struct perf_event_context *task_ctx,
6307                               int new)
6308 {
6309         struct perf_task_event task_event;
6310
6311         if (!atomic_read(&nr_comm_events) &&
6312             !atomic_read(&nr_mmap_events) &&
6313             !atomic_read(&nr_task_events))
6314                 return;
6315
6316         task_event = (struct perf_task_event){
6317                 .task     = task,
6318                 .task_ctx = task_ctx,
6319                 .event_id    = {
6320                         .header = {
6321                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6322                                 .misc = 0,
6323                                 .size = sizeof(task_event.event_id),
6324                         },
6325                         /* .pid  */
6326                         /* .ppid */
6327                         /* .tid  */
6328                         /* .ptid */
6329                         /* .time */
6330                 },
6331         };
6332
6333         perf_iterate_sb(perf_event_task_output,
6334                        &task_event,
6335                        task_ctx);
6336 }
6337
6338 void perf_event_fork(struct task_struct *task)
6339 {
6340         perf_event_task(task, NULL, 1);
6341 }
6342
6343 /*
6344  * comm tracking
6345  */
6346
6347 struct perf_comm_event {
6348         struct task_struct      *task;
6349         char                    *comm;
6350         int                     comm_size;
6351
6352         struct {
6353                 struct perf_event_header        header;
6354
6355                 u32                             pid;
6356                 u32                             tid;
6357         } event_id;
6358 };
6359
6360 static int perf_event_comm_match(struct perf_event *event)
6361 {
6362         return event->attr.comm;
6363 }
6364
6365 static void perf_event_comm_output(struct perf_event *event,
6366                                    void *data)
6367 {
6368         struct perf_comm_event *comm_event = data;
6369         struct perf_output_handle handle;
6370         struct perf_sample_data sample;
6371         int size = comm_event->event_id.header.size;
6372         int ret;
6373
6374         if (!perf_event_comm_match(event))
6375                 return;
6376
6377         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6378         ret = perf_output_begin(&handle, event,
6379                                 comm_event->event_id.header.size);
6380
6381         if (ret)
6382                 goto out;
6383
6384         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6385         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6386
6387         perf_output_put(&handle, comm_event->event_id);
6388         __output_copy(&handle, comm_event->comm,
6389                                    comm_event->comm_size);
6390
6391         perf_event__output_id_sample(event, &handle, &sample);
6392
6393         perf_output_end(&handle);
6394 out:
6395         comm_event->event_id.header.size = size;
6396 }
6397
6398 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6399 {
6400         char comm[TASK_COMM_LEN];
6401         unsigned int size;
6402
6403         memset(comm, 0, sizeof(comm));
6404         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6405         size = ALIGN(strlen(comm)+1, sizeof(u64));
6406
6407         comm_event->comm = comm;
6408         comm_event->comm_size = size;
6409
6410         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6411
6412         perf_iterate_sb(perf_event_comm_output,
6413                        comm_event,
6414                        NULL);
6415 }
6416
6417 void perf_event_comm(struct task_struct *task, bool exec)
6418 {
6419         struct perf_comm_event comm_event;
6420
6421         if (!atomic_read(&nr_comm_events))
6422                 return;
6423
6424         comm_event = (struct perf_comm_event){
6425                 .task   = task,
6426                 /* .comm      */
6427                 /* .comm_size */
6428                 .event_id  = {
6429                         .header = {
6430                                 .type = PERF_RECORD_COMM,
6431                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6432                                 /* .size */
6433                         },
6434                         /* .pid */
6435                         /* .tid */
6436                 },
6437         };
6438
6439         perf_event_comm_event(&comm_event);
6440 }
6441
6442 /*
6443  * mmap tracking
6444  */
6445
6446 struct perf_mmap_event {
6447         struct vm_area_struct   *vma;
6448
6449         const char              *file_name;
6450         int                     file_size;
6451         int                     maj, min;
6452         u64                     ino;
6453         u64                     ino_generation;
6454         u32                     prot, flags;
6455
6456         struct {
6457                 struct perf_event_header        header;
6458
6459                 u32                             pid;
6460                 u32                             tid;
6461                 u64                             start;
6462                 u64                             len;
6463                 u64                             pgoff;
6464         } event_id;
6465 };
6466
6467 static int perf_event_mmap_match(struct perf_event *event,
6468                                  void *data)
6469 {
6470         struct perf_mmap_event *mmap_event = data;
6471         struct vm_area_struct *vma = mmap_event->vma;
6472         int executable = vma->vm_flags & VM_EXEC;
6473
6474         return (!executable && event->attr.mmap_data) ||
6475                (executable && (event->attr.mmap || event->attr.mmap2));
6476 }
6477
6478 static void perf_event_mmap_output(struct perf_event *event,
6479                                    void *data)
6480 {
6481         struct perf_mmap_event *mmap_event = data;
6482         struct perf_output_handle handle;
6483         struct perf_sample_data sample;
6484         int size = mmap_event->event_id.header.size;
6485         int ret;
6486
6487         if (!perf_event_mmap_match(event, data))
6488                 return;
6489
6490         if (event->attr.mmap2) {
6491                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6492                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6493                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6494                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6495                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6496                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6497                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6498         }
6499
6500         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6501         ret = perf_output_begin(&handle, event,
6502                                 mmap_event->event_id.header.size);
6503         if (ret)
6504                 goto out;
6505
6506         mmap_event->event_id.pid = perf_event_pid(event, current);
6507         mmap_event->event_id.tid = perf_event_tid(event, current);
6508
6509         perf_output_put(&handle, mmap_event->event_id);
6510
6511         if (event->attr.mmap2) {
6512                 perf_output_put(&handle, mmap_event->maj);
6513                 perf_output_put(&handle, mmap_event->min);
6514                 perf_output_put(&handle, mmap_event->ino);
6515                 perf_output_put(&handle, mmap_event->ino_generation);
6516                 perf_output_put(&handle, mmap_event->prot);
6517                 perf_output_put(&handle, mmap_event->flags);
6518         }
6519
6520         __output_copy(&handle, mmap_event->file_name,
6521                                    mmap_event->file_size);
6522
6523         perf_event__output_id_sample(event, &handle, &sample);
6524
6525         perf_output_end(&handle);
6526 out:
6527         mmap_event->event_id.header.size = size;
6528 }
6529
6530 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6531 {
6532         struct vm_area_struct *vma = mmap_event->vma;
6533         struct file *file = vma->vm_file;
6534         int maj = 0, min = 0;
6535         u64 ino = 0, gen = 0;
6536         u32 prot = 0, flags = 0;
6537         unsigned int size;
6538         char tmp[16];
6539         char *buf = NULL;
6540         char *name;
6541
6542         if (file) {
6543                 struct inode *inode;
6544                 dev_t dev;
6545
6546                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6547                 if (!buf) {
6548                         name = "//enomem";
6549                         goto cpy_name;
6550                 }
6551                 /*
6552                  * d_path() works from the end of the rb backwards, so we
6553                  * need to add enough zero bytes after the string to handle
6554                  * the 64bit alignment we do later.
6555                  */
6556                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6557                 if (IS_ERR(name)) {
6558                         name = "//toolong";
6559                         goto cpy_name;
6560                 }
6561                 inode = file_inode(vma->vm_file);
6562                 dev = inode->i_sb->s_dev;
6563                 ino = inode->i_ino;
6564                 gen = inode->i_generation;
6565                 maj = MAJOR(dev);
6566                 min = MINOR(dev);
6567
6568                 if (vma->vm_flags & VM_READ)
6569                         prot |= PROT_READ;
6570                 if (vma->vm_flags & VM_WRITE)
6571                         prot |= PROT_WRITE;
6572                 if (vma->vm_flags & VM_EXEC)
6573                         prot |= PROT_EXEC;
6574
6575                 if (vma->vm_flags & VM_MAYSHARE)
6576                         flags = MAP_SHARED;
6577                 else
6578                         flags = MAP_PRIVATE;
6579
6580                 if (vma->vm_flags & VM_DENYWRITE)
6581                         flags |= MAP_DENYWRITE;
6582                 if (vma->vm_flags & VM_MAYEXEC)
6583                         flags |= MAP_EXECUTABLE;
6584                 if (vma->vm_flags & VM_LOCKED)
6585                         flags |= MAP_LOCKED;
6586                 if (vma->vm_flags & VM_HUGETLB)
6587                         flags |= MAP_HUGETLB;
6588
6589                 goto got_name;
6590         } else {
6591                 if (vma->vm_ops && vma->vm_ops->name) {
6592                         name = (char *) vma->vm_ops->name(vma);
6593                         if (name)
6594                                 goto cpy_name;
6595                 }
6596
6597                 name = (char *)arch_vma_name(vma);
6598                 if (name)
6599                         goto cpy_name;
6600
6601                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6602                                 vma->vm_end >= vma->vm_mm->brk) {
6603                         name = "[heap]";
6604                         goto cpy_name;
6605                 }
6606                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6607                                 vma->vm_end >= vma->vm_mm->start_stack) {
6608                         name = "[stack]";
6609                         goto cpy_name;
6610                 }
6611
6612                 name = "//anon";
6613                 goto cpy_name;
6614         }
6615
6616 cpy_name:
6617         strlcpy(tmp, name, sizeof(tmp));
6618         name = tmp;
6619 got_name:
6620         /*
6621          * Since our buffer works in 8 byte units we need to align our string
6622          * size to a multiple of 8. However, we must guarantee the tail end is
6623          * zero'd out to avoid leaking random bits to userspace.
6624          */
6625         size = strlen(name)+1;
6626         while (!IS_ALIGNED(size, sizeof(u64)))
6627                 name[size++] = '\0';
6628
6629         mmap_event->file_name = name;
6630         mmap_event->file_size = size;
6631         mmap_event->maj = maj;
6632         mmap_event->min = min;
6633         mmap_event->ino = ino;
6634         mmap_event->ino_generation = gen;
6635         mmap_event->prot = prot;
6636         mmap_event->flags = flags;
6637
6638         if (!(vma->vm_flags & VM_EXEC))
6639                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6640
6641         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6642
6643         perf_iterate_sb(perf_event_mmap_output,
6644                        mmap_event,
6645                        NULL);
6646
6647         kfree(buf);
6648 }
6649
6650 /*
6651  * Check whether inode and address range match filter criteria.
6652  */
6653 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6654                                      struct file *file, unsigned long offset,
6655                                      unsigned long size)
6656 {
6657         if (filter->inode != file->f_inode)
6658                 return false;
6659
6660         if (filter->offset > offset + size)
6661                 return false;
6662
6663         if (filter->offset + filter->size < offset)
6664                 return false;
6665
6666         return true;
6667 }
6668
6669 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6670 {
6671         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6672         struct vm_area_struct *vma = data;
6673         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6674         struct file *file = vma->vm_file;
6675         struct perf_addr_filter *filter;
6676         unsigned int restart = 0, count = 0;
6677
6678         if (!has_addr_filter(event))
6679                 return;
6680
6681         if (!file)
6682                 return;
6683
6684         raw_spin_lock_irqsave(&ifh->lock, flags);
6685         list_for_each_entry(filter, &ifh->list, entry) {
6686                 if (perf_addr_filter_match(filter, file, off,
6687                                              vma->vm_end - vma->vm_start)) {
6688                         event->addr_filters_offs[count] = vma->vm_start;
6689                         restart++;
6690                 }
6691
6692                 count++;
6693         }
6694
6695         if (restart)
6696                 event->addr_filters_gen++;
6697         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6698
6699         if (restart)
6700                 perf_event_stop(event, 1);
6701 }
6702
6703 /*
6704  * Adjust all task's events' filters to the new vma
6705  */
6706 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6707 {
6708         struct perf_event_context *ctx;
6709         int ctxn;
6710
6711         /*
6712          * Data tracing isn't supported yet and as such there is no need
6713          * to keep track of anything that isn't related to executable code:
6714          */
6715         if (!(vma->vm_flags & VM_EXEC))
6716                 return;
6717
6718         rcu_read_lock();
6719         for_each_task_context_nr(ctxn) {
6720                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6721                 if (!ctx)
6722                         continue;
6723
6724                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6725         }
6726         rcu_read_unlock();
6727 }
6728
6729 void perf_event_mmap(struct vm_area_struct *vma)
6730 {
6731         struct perf_mmap_event mmap_event;
6732
6733         if (!atomic_read(&nr_mmap_events))
6734                 return;
6735
6736         mmap_event = (struct perf_mmap_event){
6737                 .vma    = vma,
6738                 /* .file_name */
6739                 /* .file_size */
6740                 .event_id  = {
6741                         .header = {
6742                                 .type = PERF_RECORD_MMAP,
6743                                 .misc = PERF_RECORD_MISC_USER,
6744                                 /* .size */
6745                         },
6746                         /* .pid */
6747                         /* .tid */
6748                         .start  = vma->vm_start,
6749                         .len    = vma->vm_end - vma->vm_start,
6750                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6751                 },
6752                 /* .maj (attr_mmap2 only) */
6753                 /* .min (attr_mmap2 only) */
6754                 /* .ino (attr_mmap2 only) */
6755                 /* .ino_generation (attr_mmap2 only) */
6756                 /* .prot (attr_mmap2 only) */
6757                 /* .flags (attr_mmap2 only) */
6758         };
6759
6760         perf_addr_filters_adjust(vma);
6761         perf_event_mmap_event(&mmap_event);
6762 }
6763
6764 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6765                           unsigned long size, u64 flags)
6766 {
6767         struct perf_output_handle handle;
6768         struct perf_sample_data sample;
6769         struct perf_aux_event {
6770                 struct perf_event_header        header;
6771                 u64                             offset;
6772                 u64                             size;
6773                 u64                             flags;
6774         } rec = {
6775                 .header = {
6776                         .type = PERF_RECORD_AUX,
6777                         .misc = 0,
6778                         .size = sizeof(rec),
6779                 },
6780                 .offset         = head,
6781                 .size           = size,
6782                 .flags          = flags,
6783         };
6784         int ret;
6785
6786         perf_event_header__init_id(&rec.header, &sample, event);
6787         ret = perf_output_begin(&handle, event, rec.header.size);
6788
6789         if (ret)
6790                 return;
6791
6792         perf_output_put(&handle, rec);
6793         perf_event__output_id_sample(event, &handle, &sample);
6794
6795         perf_output_end(&handle);
6796 }
6797
6798 /*
6799  * Lost/dropped samples logging
6800  */
6801 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6802 {
6803         struct perf_output_handle handle;
6804         struct perf_sample_data sample;
6805         int ret;
6806
6807         struct {
6808                 struct perf_event_header        header;
6809                 u64                             lost;
6810         } lost_samples_event = {
6811                 .header = {
6812                         .type = PERF_RECORD_LOST_SAMPLES,
6813                         .misc = 0,
6814                         .size = sizeof(lost_samples_event),
6815                 },
6816                 .lost           = lost,
6817         };
6818
6819         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6820
6821         ret = perf_output_begin(&handle, event,
6822                                 lost_samples_event.header.size);
6823         if (ret)
6824                 return;
6825
6826         perf_output_put(&handle, lost_samples_event);
6827         perf_event__output_id_sample(event, &handle, &sample);
6828         perf_output_end(&handle);
6829 }
6830
6831 /*
6832  * context_switch tracking
6833  */
6834
6835 struct perf_switch_event {
6836         struct task_struct      *task;
6837         struct task_struct      *next_prev;
6838
6839         struct {
6840                 struct perf_event_header        header;
6841                 u32                             next_prev_pid;
6842                 u32                             next_prev_tid;
6843         } event_id;
6844 };
6845
6846 static int perf_event_switch_match(struct perf_event *event)
6847 {
6848         return event->attr.context_switch;
6849 }
6850
6851 static void perf_event_switch_output(struct perf_event *event, void *data)
6852 {
6853         struct perf_switch_event *se = data;
6854         struct perf_output_handle handle;
6855         struct perf_sample_data sample;
6856         int ret;
6857
6858         if (!perf_event_switch_match(event))
6859                 return;
6860
6861         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6862         if (event->ctx->task) {
6863                 se->event_id.header.type = PERF_RECORD_SWITCH;
6864                 se->event_id.header.size = sizeof(se->event_id.header);
6865         } else {
6866                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6867                 se->event_id.header.size = sizeof(se->event_id);
6868                 se->event_id.next_prev_pid =
6869                                         perf_event_pid(event, se->next_prev);
6870                 se->event_id.next_prev_tid =
6871                                         perf_event_tid(event, se->next_prev);
6872         }
6873
6874         perf_event_header__init_id(&se->event_id.header, &sample, event);
6875
6876         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6877         if (ret)
6878                 return;
6879
6880         if (event->ctx->task)
6881                 perf_output_put(&handle, se->event_id.header);
6882         else
6883                 perf_output_put(&handle, se->event_id);
6884
6885         perf_event__output_id_sample(event, &handle, &sample);
6886
6887         perf_output_end(&handle);
6888 }
6889
6890 static void perf_event_switch(struct task_struct *task,
6891                               struct task_struct *next_prev, bool sched_in)
6892 {
6893         struct perf_switch_event switch_event;
6894
6895         /* N.B. caller checks nr_switch_events != 0 */
6896
6897         switch_event = (struct perf_switch_event){
6898                 .task           = task,
6899                 .next_prev      = next_prev,
6900                 .event_id       = {
6901                         .header = {
6902                                 /* .type */
6903                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6904                                 /* .size */
6905                         },
6906                         /* .next_prev_pid */
6907                         /* .next_prev_tid */
6908                 },
6909         };
6910
6911         perf_iterate_sb(perf_event_switch_output,
6912                        &switch_event,
6913                        NULL);
6914 }
6915
6916 /*
6917  * IRQ throttle logging
6918  */
6919
6920 static void perf_log_throttle(struct perf_event *event, int enable)
6921 {
6922         struct perf_output_handle handle;
6923         struct perf_sample_data sample;
6924         int ret;
6925
6926         struct {
6927                 struct perf_event_header        header;
6928                 u64                             time;
6929                 u64                             id;
6930                 u64                             stream_id;
6931         } throttle_event = {
6932                 .header = {
6933                         .type = PERF_RECORD_THROTTLE,
6934                         .misc = 0,
6935                         .size = sizeof(throttle_event),
6936                 },
6937                 .time           = perf_event_clock(event),
6938                 .id             = primary_event_id(event),
6939                 .stream_id      = event->id,
6940         };
6941
6942         if (enable)
6943                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6944
6945         perf_event_header__init_id(&throttle_event.header, &sample, event);
6946
6947         ret = perf_output_begin(&handle, event,
6948                                 throttle_event.header.size);
6949         if (ret)
6950                 return;
6951
6952         perf_output_put(&handle, throttle_event);
6953         perf_event__output_id_sample(event, &handle, &sample);
6954         perf_output_end(&handle);
6955 }
6956
6957 static void perf_log_itrace_start(struct perf_event *event)
6958 {
6959         struct perf_output_handle handle;
6960         struct perf_sample_data sample;
6961         struct perf_aux_event {
6962                 struct perf_event_header        header;
6963                 u32                             pid;
6964                 u32                             tid;
6965         } rec;
6966         int ret;
6967
6968         if (event->parent)
6969                 event = event->parent;
6970
6971         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6972             event->hw.itrace_started)
6973                 return;
6974
6975         rec.header.type = PERF_RECORD_ITRACE_START;
6976         rec.header.misc = 0;
6977         rec.header.size = sizeof(rec);
6978         rec.pid = perf_event_pid(event, current);
6979         rec.tid = perf_event_tid(event, current);
6980
6981         perf_event_header__init_id(&rec.header, &sample, event);
6982         ret = perf_output_begin(&handle, event, rec.header.size);
6983
6984         if (ret)
6985                 return;
6986
6987         perf_output_put(&handle, rec);
6988         perf_event__output_id_sample(event, &handle, &sample);
6989
6990         perf_output_end(&handle);
6991 }
6992
6993 /*
6994  * Generic event overflow handling, sampling.
6995  */
6996
6997 static int __perf_event_overflow(struct perf_event *event,
6998                                    int throttle, struct perf_sample_data *data,
6999                                    struct pt_regs *regs)
7000 {
7001         int events = atomic_read(&event->event_limit);
7002         struct hw_perf_event *hwc = &event->hw;
7003         u64 seq;
7004         int ret = 0;
7005
7006         /*
7007          * Non-sampling counters might still use the PMI to fold short
7008          * hardware counters, ignore those.
7009          */
7010         if (unlikely(!is_sampling_event(event)))
7011                 return 0;
7012
7013         seq = __this_cpu_read(perf_throttled_seq);
7014         if (seq != hwc->interrupts_seq) {
7015                 hwc->interrupts_seq = seq;
7016                 hwc->interrupts = 1;
7017         } else {
7018                 hwc->interrupts++;
7019                 if (unlikely(throttle
7020                              && hwc->interrupts >= max_samples_per_tick)) {
7021                         __this_cpu_inc(perf_throttled_count);
7022                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7023                         hwc->interrupts = MAX_INTERRUPTS;
7024                         perf_log_throttle(event, 0);
7025                         ret = 1;
7026                 }
7027         }
7028
7029         if (event->attr.freq) {
7030                 u64 now = perf_clock();
7031                 s64 delta = now - hwc->freq_time_stamp;
7032
7033                 hwc->freq_time_stamp = now;
7034
7035                 if (delta > 0 && delta < 2*TICK_NSEC)
7036                         perf_adjust_period(event, delta, hwc->last_period, true);
7037         }
7038
7039         /*
7040          * XXX event_limit might not quite work as expected on inherited
7041          * events
7042          */
7043
7044         event->pending_kill = POLL_IN;
7045         if (events && atomic_dec_and_test(&event->event_limit)) {
7046                 ret = 1;
7047                 event->pending_kill = POLL_HUP;
7048                 event->pending_disable = 1;
7049                 irq_work_queue(&event->pending);
7050         }
7051
7052         READ_ONCE(event->overflow_handler)(event, data, regs);
7053
7054         if (*perf_event_fasync(event) && event->pending_kill) {
7055                 event->pending_wakeup = 1;
7056                 irq_work_queue(&event->pending);
7057         }
7058
7059         return ret;
7060 }
7061
7062 int perf_event_overflow(struct perf_event *event,
7063                           struct perf_sample_data *data,
7064                           struct pt_regs *regs)
7065 {
7066         return __perf_event_overflow(event, 1, data, regs);
7067 }
7068
7069 /*
7070  * Generic software event infrastructure
7071  */
7072
7073 struct swevent_htable {
7074         struct swevent_hlist            *swevent_hlist;
7075         struct mutex                    hlist_mutex;
7076         int                             hlist_refcount;
7077
7078         /* Recursion avoidance in each contexts */
7079         int                             recursion[PERF_NR_CONTEXTS];
7080 };
7081
7082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7083
7084 /*
7085  * We directly increment event->count and keep a second value in
7086  * event->hw.period_left to count intervals. This period event
7087  * is kept in the range [-sample_period, 0] so that we can use the
7088  * sign as trigger.
7089  */
7090
7091 u64 perf_swevent_set_period(struct perf_event *event)
7092 {
7093         struct hw_perf_event *hwc = &event->hw;
7094         u64 period = hwc->last_period;
7095         u64 nr, offset;
7096         s64 old, val;
7097
7098         hwc->last_period = hwc->sample_period;
7099
7100 again:
7101         old = val = local64_read(&hwc->period_left);
7102         if (val < 0)
7103                 return 0;
7104
7105         nr = div64_u64(period + val, period);
7106         offset = nr * period;
7107         val -= offset;
7108         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7109                 goto again;
7110
7111         return nr;
7112 }
7113
7114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7115                                     struct perf_sample_data *data,
7116                                     struct pt_regs *regs)
7117 {
7118         struct hw_perf_event *hwc = &event->hw;
7119         int throttle = 0;
7120
7121         if (!overflow)
7122                 overflow = perf_swevent_set_period(event);
7123
7124         if (hwc->interrupts == MAX_INTERRUPTS)
7125                 return;
7126
7127         for (; overflow; overflow--) {
7128                 if (__perf_event_overflow(event, throttle,
7129                                             data, regs)) {
7130                         /*
7131                          * We inhibit the overflow from happening when
7132                          * hwc->interrupts == MAX_INTERRUPTS.
7133                          */
7134                         break;
7135                 }
7136                 throttle = 1;
7137         }
7138 }
7139
7140 static void perf_swevent_event(struct perf_event *event, u64 nr,
7141                                struct perf_sample_data *data,
7142                                struct pt_regs *regs)
7143 {
7144         struct hw_perf_event *hwc = &event->hw;
7145
7146         local64_add(nr, &event->count);
7147
7148         if (!regs)
7149                 return;
7150
7151         if (!is_sampling_event(event))
7152                 return;
7153
7154         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7155                 data->period = nr;
7156                 return perf_swevent_overflow(event, 1, data, regs);
7157         } else
7158                 data->period = event->hw.last_period;
7159
7160         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7161                 return perf_swevent_overflow(event, 1, data, regs);
7162
7163         if (local64_add_negative(nr, &hwc->period_left))
7164                 return;
7165
7166         perf_swevent_overflow(event, 0, data, regs);
7167 }
7168
7169 static int perf_exclude_event(struct perf_event *event,
7170                               struct pt_regs *regs)
7171 {
7172         if (event->hw.state & PERF_HES_STOPPED)
7173                 return 1;
7174
7175         if (regs) {
7176                 if (event->attr.exclude_user && user_mode(regs))
7177                         return 1;
7178
7179                 if (event->attr.exclude_kernel && !user_mode(regs))
7180                         return 1;
7181         }
7182
7183         return 0;
7184 }
7185
7186 static int perf_swevent_match(struct perf_event *event,
7187                                 enum perf_type_id type,
7188                                 u32 event_id,
7189                                 struct perf_sample_data *data,
7190                                 struct pt_regs *regs)
7191 {
7192         if (event->attr.type != type)
7193                 return 0;
7194
7195         if (event->attr.config != event_id)
7196                 return 0;
7197
7198         if (perf_exclude_event(event, regs))
7199                 return 0;
7200
7201         return 1;
7202 }
7203
7204 static inline u64 swevent_hash(u64 type, u32 event_id)
7205 {
7206         u64 val = event_id | (type << 32);
7207
7208         return hash_64(val, SWEVENT_HLIST_BITS);
7209 }
7210
7211 static inline struct hlist_head *
7212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7213 {
7214         u64 hash = swevent_hash(type, event_id);
7215
7216         return &hlist->heads[hash];
7217 }
7218
7219 /* For the read side: events when they trigger */
7220 static inline struct hlist_head *
7221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7222 {
7223         struct swevent_hlist *hlist;
7224
7225         hlist = rcu_dereference(swhash->swevent_hlist);
7226         if (!hlist)
7227                 return NULL;
7228
7229         return __find_swevent_head(hlist, type, event_id);
7230 }
7231
7232 /* For the event head insertion and removal in the hlist */
7233 static inline struct hlist_head *
7234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7235 {
7236         struct swevent_hlist *hlist;
7237         u32 event_id = event->attr.config;
7238         u64 type = event->attr.type;
7239
7240         /*
7241          * Event scheduling is always serialized against hlist allocation
7242          * and release. Which makes the protected version suitable here.
7243          * The context lock guarantees that.
7244          */
7245         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7246                                           lockdep_is_held(&event->ctx->lock));
7247         if (!hlist)
7248                 return NULL;
7249
7250         return __find_swevent_head(hlist, type, event_id);
7251 }
7252
7253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7254                                     u64 nr,
7255                                     struct perf_sample_data *data,
7256                                     struct pt_regs *regs)
7257 {
7258         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7259         struct perf_event *event;
7260         struct hlist_head *head;
7261
7262         rcu_read_lock();
7263         head = find_swevent_head_rcu(swhash, type, event_id);
7264         if (!head)
7265                 goto end;
7266
7267         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7268                 if (perf_swevent_match(event, type, event_id, data, regs))
7269                         perf_swevent_event(event, nr, data, regs);
7270         }
7271 end:
7272         rcu_read_unlock();
7273 }
7274
7275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7276
7277 int perf_swevent_get_recursion_context(void)
7278 {
7279         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7280
7281         return get_recursion_context(swhash->recursion);
7282 }
7283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7284
7285 void perf_swevent_put_recursion_context(int rctx)
7286 {
7287         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7288
7289         put_recursion_context(swhash->recursion, rctx);
7290 }
7291
7292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7293 {
7294         struct perf_sample_data data;
7295
7296         if (WARN_ON_ONCE(!regs))
7297                 return;
7298
7299         perf_sample_data_init(&data, addr, 0);
7300         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7301 }
7302
7303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7304 {
7305         int rctx;
7306
7307         preempt_disable_notrace();
7308         rctx = perf_swevent_get_recursion_context();
7309         if (unlikely(rctx < 0))
7310                 goto fail;
7311
7312         ___perf_sw_event(event_id, nr, regs, addr);
7313
7314         perf_swevent_put_recursion_context(rctx);
7315 fail:
7316         preempt_enable_notrace();
7317 }
7318
7319 static void perf_swevent_read(struct perf_event *event)
7320 {
7321 }
7322
7323 static int perf_swevent_add(struct perf_event *event, int flags)
7324 {
7325         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7326         struct hw_perf_event *hwc = &event->hw;
7327         struct hlist_head *head;
7328
7329         if (is_sampling_event(event)) {
7330                 hwc->last_period = hwc->sample_period;
7331                 perf_swevent_set_period(event);
7332         }
7333
7334         hwc->state = !(flags & PERF_EF_START);
7335
7336         head = find_swevent_head(swhash, event);
7337         if (WARN_ON_ONCE(!head))
7338                 return -EINVAL;
7339
7340         hlist_add_head_rcu(&event->hlist_entry, head);
7341         perf_event_update_userpage(event);
7342
7343         return 0;
7344 }
7345
7346 static void perf_swevent_del(struct perf_event *event, int flags)
7347 {
7348         hlist_del_rcu(&event->hlist_entry);
7349 }
7350
7351 static void perf_swevent_start(struct perf_event *event, int flags)
7352 {
7353         event->hw.state = 0;
7354 }
7355
7356 static void perf_swevent_stop(struct perf_event *event, int flags)
7357 {
7358         event->hw.state = PERF_HES_STOPPED;
7359 }
7360
7361 /* Deref the hlist from the update side */
7362 static inline struct swevent_hlist *
7363 swevent_hlist_deref(struct swevent_htable *swhash)
7364 {
7365         return rcu_dereference_protected(swhash->swevent_hlist,
7366                                          lockdep_is_held(&swhash->hlist_mutex));
7367 }
7368
7369 static void swevent_hlist_release(struct swevent_htable *swhash)
7370 {
7371         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7372
7373         if (!hlist)
7374                 return;
7375
7376         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7377         kfree_rcu(hlist, rcu_head);
7378 }
7379
7380 static void swevent_hlist_put_cpu(int cpu)
7381 {
7382         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7383
7384         mutex_lock(&swhash->hlist_mutex);
7385
7386         if (!--swhash->hlist_refcount)
7387                 swevent_hlist_release(swhash);
7388
7389         mutex_unlock(&swhash->hlist_mutex);
7390 }
7391
7392 static void swevent_hlist_put(void)
7393 {
7394         int cpu;
7395
7396         for_each_possible_cpu(cpu)
7397                 swevent_hlist_put_cpu(cpu);
7398 }
7399
7400 static int swevent_hlist_get_cpu(int cpu)
7401 {
7402         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7403         int err = 0;
7404
7405         mutex_lock(&swhash->hlist_mutex);
7406         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7407                 struct swevent_hlist *hlist;
7408
7409                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7410                 if (!hlist) {
7411                         err = -ENOMEM;
7412                         goto exit;
7413                 }
7414                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7415         }
7416         swhash->hlist_refcount++;
7417 exit:
7418         mutex_unlock(&swhash->hlist_mutex);
7419
7420         return err;
7421 }
7422
7423 static int swevent_hlist_get(void)
7424 {
7425         int err, cpu, failed_cpu;
7426
7427         get_online_cpus();
7428         for_each_possible_cpu(cpu) {
7429                 err = swevent_hlist_get_cpu(cpu);
7430                 if (err) {
7431                         failed_cpu = cpu;
7432                         goto fail;
7433                 }
7434         }
7435         put_online_cpus();
7436
7437         return 0;
7438 fail:
7439         for_each_possible_cpu(cpu) {
7440                 if (cpu == failed_cpu)
7441                         break;
7442                 swevent_hlist_put_cpu(cpu);
7443         }
7444
7445         put_online_cpus();
7446         return err;
7447 }
7448
7449 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7450
7451 static void sw_perf_event_destroy(struct perf_event *event)
7452 {
7453         u64 event_id = event->attr.config;
7454
7455         WARN_ON(event->parent);
7456
7457         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7458         swevent_hlist_put();
7459 }
7460
7461 static int perf_swevent_init(struct perf_event *event)
7462 {
7463         u64 event_id = event->attr.config;
7464
7465         if (event->attr.type != PERF_TYPE_SOFTWARE)
7466                 return -ENOENT;
7467
7468         /*
7469          * no branch sampling for software events
7470          */
7471         if (has_branch_stack(event))
7472                 return -EOPNOTSUPP;
7473
7474         switch (event_id) {
7475         case PERF_COUNT_SW_CPU_CLOCK:
7476         case PERF_COUNT_SW_TASK_CLOCK:
7477                 return -ENOENT;
7478
7479         default:
7480                 break;
7481         }
7482
7483         if (event_id >= PERF_COUNT_SW_MAX)
7484                 return -ENOENT;
7485
7486         if (!event->parent) {
7487                 int err;
7488
7489                 err = swevent_hlist_get();
7490                 if (err)
7491                         return err;
7492
7493                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7494                 event->destroy = sw_perf_event_destroy;
7495         }
7496
7497         return 0;
7498 }
7499
7500 static struct pmu perf_swevent = {
7501         .task_ctx_nr    = perf_sw_context,
7502
7503         .capabilities   = PERF_PMU_CAP_NO_NMI,
7504
7505         .event_init     = perf_swevent_init,
7506         .add            = perf_swevent_add,
7507         .del            = perf_swevent_del,
7508         .start          = perf_swevent_start,
7509         .stop           = perf_swevent_stop,
7510         .read           = perf_swevent_read,
7511 };
7512
7513 #ifdef CONFIG_EVENT_TRACING
7514
7515 static int perf_tp_filter_match(struct perf_event *event,
7516                                 struct perf_sample_data *data)
7517 {
7518         void *record = data->raw->frag.data;
7519
7520         /* only top level events have filters set */
7521         if (event->parent)
7522                 event = event->parent;
7523
7524         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7525                 return 1;
7526         return 0;
7527 }
7528
7529 static int perf_tp_event_match(struct perf_event *event,
7530                                 struct perf_sample_data *data,
7531                                 struct pt_regs *regs)
7532 {
7533         if (event->hw.state & PERF_HES_STOPPED)
7534                 return 0;
7535         /*
7536          * All tracepoints are from kernel-space.
7537          */
7538         if (event->attr.exclude_kernel)
7539                 return 0;
7540
7541         if (!perf_tp_filter_match(event, data))
7542                 return 0;
7543
7544         return 1;
7545 }
7546
7547 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7548                                struct trace_event_call *call, u64 count,
7549                                struct pt_regs *regs, struct hlist_head *head,
7550                                struct task_struct *task)
7551 {
7552         struct bpf_prog *prog = call->prog;
7553
7554         if (prog) {
7555                 *(struct pt_regs **)raw_data = regs;
7556                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7557                         perf_swevent_put_recursion_context(rctx);
7558                         return;
7559                 }
7560         }
7561         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7562                       rctx, task);
7563 }
7564 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7565
7566 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7567                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7568                    struct task_struct *task)
7569 {
7570         struct perf_sample_data data;
7571         struct perf_event *event;
7572
7573         struct perf_raw_record raw = {
7574                 .frag = {
7575                         .size = entry_size,
7576                         .data = record,
7577                 },
7578         };
7579
7580         perf_sample_data_init(&data, 0, 0);
7581         data.raw = &raw;
7582
7583         perf_trace_buf_update(record, event_type);
7584
7585         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7586                 if (perf_tp_event_match(event, &data, regs))
7587                         perf_swevent_event(event, count, &data, regs);
7588         }
7589
7590         /*
7591          * If we got specified a target task, also iterate its context and
7592          * deliver this event there too.
7593          */
7594         if (task && task != current) {
7595                 struct perf_event_context *ctx;
7596                 struct trace_entry *entry = record;
7597
7598                 rcu_read_lock();
7599                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7600                 if (!ctx)
7601                         goto unlock;
7602
7603                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7604                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7605                                 continue;
7606                         if (event->attr.config != entry->type)
7607                                 continue;
7608                         if (perf_tp_event_match(event, &data, regs))
7609                                 perf_swevent_event(event, count, &data, regs);
7610                 }
7611 unlock:
7612                 rcu_read_unlock();
7613         }
7614
7615         perf_swevent_put_recursion_context(rctx);
7616 }
7617 EXPORT_SYMBOL_GPL(perf_tp_event);
7618
7619 static void tp_perf_event_destroy(struct perf_event *event)
7620 {
7621         perf_trace_destroy(event);
7622 }
7623
7624 static int perf_tp_event_init(struct perf_event *event)
7625 {
7626         int err;
7627
7628         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7629                 return -ENOENT;
7630
7631         /*
7632          * no branch sampling for tracepoint events
7633          */
7634         if (has_branch_stack(event))
7635                 return -EOPNOTSUPP;
7636
7637         err = perf_trace_init(event);
7638         if (err)
7639                 return err;
7640
7641         event->destroy = tp_perf_event_destroy;
7642
7643         return 0;
7644 }
7645
7646 static struct pmu perf_tracepoint = {
7647         .task_ctx_nr    = perf_sw_context,
7648
7649         .event_init     = perf_tp_event_init,
7650         .add            = perf_trace_add,
7651         .del            = perf_trace_del,
7652         .start          = perf_swevent_start,
7653         .stop           = perf_swevent_stop,
7654         .read           = perf_swevent_read,
7655 };
7656
7657 static inline void perf_tp_register(void)
7658 {
7659         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7660 }
7661
7662 static void perf_event_free_filter(struct perf_event *event)
7663 {
7664         ftrace_profile_free_filter(event);
7665 }
7666
7667 #ifdef CONFIG_BPF_SYSCALL
7668 static void bpf_overflow_handler(struct perf_event *event,
7669                                  struct perf_sample_data *data,
7670                                  struct pt_regs *regs)
7671 {
7672         struct bpf_perf_event_data_kern ctx = {
7673                 .data = data,
7674                 .regs = regs,
7675         };
7676         int ret = 0;
7677
7678         preempt_disable();
7679         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7680                 goto out;
7681         rcu_read_lock();
7682         ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7683         rcu_read_unlock();
7684 out:
7685         __this_cpu_dec(bpf_prog_active);
7686         preempt_enable();
7687         if (!ret)
7688                 return;
7689
7690         event->orig_overflow_handler(event, data, regs);
7691 }
7692
7693 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7694 {
7695         struct bpf_prog *prog;
7696
7697         if (event->overflow_handler_context)
7698                 /* hw breakpoint or kernel counter */
7699                 return -EINVAL;
7700
7701         if (event->prog)
7702                 return -EEXIST;
7703
7704         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7705         if (IS_ERR(prog))
7706                 return PTR_ERR(prog);
7707
7708         event->prog = prog;
7709         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7710         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7711         return 0;
7712 }
7713
7714 static void perf_event_free_bpf_handler(struct perf_event *event)
7715 {
7716         struct bpf_prog *prog = event->prog;
7717
7718         if (!prog)
7719                 return;
7720
7721         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7722         event->prog = NULL;
7723         bpf_prog_put(prog);
7724 }
7725 #else
7726 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7727 {
7728         return -EOPNOTSUPP;
7729 }
7730 static void perf_event_free_bpf_handler(struct perf_event *event)
7731 {
7732 }
7733 #endif
7734
7735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7736 {
7737         bool is_kprobe, is_tracepoint;
7738         struct bpf_prog *prog;
7739
7740         if (event->attr.type == PERF_TYPE_HARDWARE ||
7741             event->attr.type == PERF_TYPE_SOFTWARE)
7742                 return perf_event_set_bpf_handler(event, prog_fd);
7743
7744         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7745                 return -EINVAL;
7746
7747         if (event->tp_event->prog)
7748                 return -EEXIST;
7749
7750         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7751         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7752         if (!is_kprobe && !is_tracepoint)
7753                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7754                 return -EINVAL;
7755
7756         prog = bpf_prog_get(prog_fd);
7757         if (IS_ERR(prog))
7758                 return PTR_ERR(prog);
7759
7760         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7761             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7762                 /* valid fd, but invalid bpf program type */
7763                 bpf_prog_put(prog);
7764                 return -EINVAL;
7765         }
7766
7767         if (is_tracepoint) {
7768                 int off = trace_event_get_offsets(event->tp_event);
7769
7770                 if (prog->aux->max_ctx_offset > off) {
7771                         bpf_prog_put(prog);
7772                         return -EACCES;
7773                 }
7774         }
7775         event->tp_event->prog = prog;
7776
7777         return 0;
7778 }
7779
7780 static void perf_event_free_bpf_prog(struct perf_event *event)
7781 {
7782         struct bpf_prog *prog;
7783
7784         perf_event_free_bpf_handler(event);
7785
7786         if (!event->tp_event)
7787                 return;
7788
7789         prog = event->tp_event->prog;
7790         if (prog) {
7791                 event->tp_event->prog = NULL;
7792                 bpf_prog_put(prog);
7793         }
7794 }
7795
7796 #else
7797
7798 static inline void perf_tp_register(void)
7799 {
7800 }
7801
7802 static void perf_event_free_filter(struct perf_event *event)
7803 {
7804 }
7805
7806 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7807 {
7808         return -ENOENT;
7809 }
7810
7811 static void perf_event_free_bpf_prog(struct perf_event *event)
7812 {
7813 }
7814 #endif /* CONFIG_EVENT_TRACING */
7815
7816 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7817 void perf_bp_event(struct perf_event *bp, void *data)
7818 {
7819         struct perf_sample_data sample;
7820         struct pt_regs *regs = data;
7821
7822         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7823
7824         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7825                 perf_swevent_event(bp, 1, &sample, regs);
7826 }
7827 #endif
7828
7829 /*
7830  * Allocate a new address filter
7831  */
7832 static struct perf_addr_filter *
7833 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7834 {
7835         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7836         struct perf_addr_filter *filter;
7837
7838         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7839         if (!filter)
7840                 return NULL;
7841
7842         INIT_LIST_HEAD(&filter->entry);
7843         list_add_tail(&filter->entry, filters);
7844
7845         return filter;
7846 }
7847
7848 static void free_filters_list(struct list_head *filters)
7849 {
7850         struct perf_addr_filter *filter, *iter;
7851
7852         list_for_each_entry_safe(filter, iter, filters, entry) {
7853                 if (filter->inode)
7854                         iput(filter->inode);
7855                 list_del(&filter->entry);
7856                 kfree(filter);
7857         }
7858 }
7859
7860 /*
7861  * Free existing address filters and optionally install new ones
7862  */
7863 static void perf_addr_filters_splice(struct perf_event *event,
7864                                      struct list_head *head)
7865 {
7866         unsigned long flags;
7867         LIST_HEAD(list);
7868
7869         if (!has_addr_filter(event))
7870                 return;
7871
7872         /* don't bother with children, they don't have their own filters */
7873         if (event->parent)
7874                 return;
7875
7876         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7877
7878         list_splice_init(&event->addr_filters.list, &list);
7879         if (head)
7880                 list_splice(head, &event->addr_filters.list);
7881
7882         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7883
7884         free_filters_list(&list);
7885 }
7886
7887 /*
7888  * Scan through mm's vmas and see if one of them matches the
7889  * @filter; if so, adjust filter's address range.
7890  * Called with mm::mmap_sem down for reading.
7891  */
7892 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7893                                             struct mm_struct *mm)
7894 {
7895         struct vm_area_struct *vma;
7896
7897         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7898                 struct file *file = vma->vm_file;
7899                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7900                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7901
7902                 if (!file)
7903                         continue;
7904
7905                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7906                         continue;
7907
7908                 return vma->vm_start;
7909         }
7910
7911         return 0;
7912 }
7913
7914 /*
7915  * Update event's address range filters based on the
7916  * task's existing mappings, if any.
7917  */
7918 static void perf_event_addr_filters_apply(struct perf_event *event)
7919 {
7920         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7921         struct task_struct *task = READ_ONCE(event->ctx->task);
7922         struct perf_addr_filter *filter;
7923         struct mm_struct *mm = NULL;
7924         unsigned int count = 0;
7925         unsigned long flags;
7926
7927         /*
7928          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7929          * will stop on the parent's child_mutex that our caller is also holding
7930          */
7931         if (task == TASK_TOMBSTONE)
7932                 return;
7933
7934         mm = get_task_mm(event->ctx->task);
7935         if (!mm)
7936                 goto restart;
7937
7938         down_read(&mm->mmap_sem);
7939
7940         raw_spin_lock_irqsave(&ifh->lock, flags);
7941         list_for_each_entry(filter, &ifh->list, entry) {
7942                 event->addr_filters_offs[count] = 0;
7943
7944                 /*
7945                  * Adjust base offset if the filter is associated to a binary
7946                  * that needs to be mapped:
7947                  */
7948                 if (filter->inode)
7949                         event->addr_filters_offs[count] =
7950                                 perf_addr_filter_apply(filter, mm);
7951
7952                 count++;
7953         }
7954
7955         event->addr_filters_gen++;
7956         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7957
7958         up_read(&mm->mmap_sem);
7959
7960         mmput(mm);
7961
7962 restart:
7963         perf_event_stop(event, 1);
7964 }
7965
7966 /*
7967  * Address range filtering: limiting the data to certain
7968  * instruction address ranges. Filters are ioctl()ed to us from
7969  * userspace as ascii strings.
7970  *
7971  * Filter string format:
7972  *
7973  * ACTION RANGE_SPEC
7974  * where ACTION is one of the
7975  *  * "filter": limit the trace to this region
7976  *  * "start": start tracing from this address
7977  *  * "stop": stop tracing at this address/region;
7978  * RANGE_SPEC is
7979  *  * for kernel addresses: <start address>[/<size>]
7980  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7981  *
7982  * if <size> is not specified, the range is treated as a single address.
7983  */
7984 enum {
7985         IF_ACT_FILTER,
7986         IF_ACT_START,
7987         IF_ACT_STOP,
7988         IF_SRC_FILE,
7989         IF_SRC_KERNEL,
7990         IF_SRC_FILEADDR,
7991         IF_SRC_KERNELADDR,
7992 };
7993
7994 enum {
7995         IF_STATE_ACTION = 0,
7996         IF_STATE_SOURCE,
7997         IF_STATE_END,
7998 };
7999
8000 static const match_table_t if_tokens = {
8001         { IF_ACT_FILTER,        "filter" },
8002         { IF_ACT_START,         "start" },
8003         { IF_ACT_STOP,          "stop" },
8004         { IF_SRC_FILE,          "%u/%u@%s" },
8005         { IF_SRC_KERNEL,        "%u/%u" },
8006         { IF_SRC_FILEADDR,      "%u@%s" },
8007         { IF_SRC_KERNELADDR,    "%u" },
8008 };
8009
8010 /*
8011  * Address filter string parser
8012  */
8013 static int
8014 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8015                              struct list_head *filters)
8016 {
8017         struct perf_addr_filter *filter = NULL;
8018         char *start, *orig, *filename = NULL;
8019         struct path path;
8020         substring_t args[MAX_OPT_ARGS];
8021         int state = IF_STATE_ACTION, token;
8022         unsigned int kernel = 0;
8023         int ret = -EINVAL;
8024
8025         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8026         if (!fstr)
8027                 return -ENOMEM;
8028
8029         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8030                 ret = -EINVAL;
8031
8032                 if (!*start)
8033                         continue;
8034
8035                 /* filter definition begins */
8036                 if (state == IF_STATE_ACTION) {
8037                         filter = perf_addr_filter_new(event, filters);
8038                         if (!filter)
8039                                 goto fail;
8040                 }
8041
8042                 token = match_token(start, if_tokens, args);
8043                 switch (token) {
8044                 case IF_ACT_FILTER:
8045                 case IF_ACT_START:
8046                         filter->filter = 1;
8047
8048                 case IF_ACT_STOP:
8049                         if (state != IF_STATE_ACTION)
8050                                 goto fail;
8051
8052                         state = IF_STATE_SOURCE;
8053                         break;
8054
8055                 case IF_SRC_KERNELADDR:
8056                 case IF_SRC_KERNEL:
8057                         kernel = 1;
8058
8059                 case IF_SRC_FILEADDR:
8060                 case IF_SRC_FILE:
8061                         if (state != IF_STATE_SOURCE)
8062                                 goto fail;
8063
8064                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8065                                 filter->range = 1;
8066
8067                         *args[0].to = 0;
8068                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8069                         if (ret)
8070                                 goto fail;
8071
8072                         if (filter->range) {
8073                                 *args[1].to = 0;
8074                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8075                                 if (ret)
8076                                         goto fail;
8077                         }
8078
8079                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8080                                 int fpos = filter->range ? 2 : 1;
8081
8082                                 filename = match_strdup(&args[fpos]);
8083                                 if (!filename) {
8084                                         ret = -ENOMEM;
8085                                         goto fail;
8086                                 }
8087                         }
8088
8089                         state = IF_STATE_END;
8090                         break;
8091
8092                 default:
8093                         goto fail;
8094                 }
8095
8096                 /*
8097                  * Filter definition is fully parsed, validate and install it.
8098                  * Make sure that it doesn't contradict itself or the event's
8099                  * attribute.
8100                  */
8101                 if (state == IF_STATE_END) {
8102                         if (kernel && event->attr.exclude_kernel)
8103                                 goto fail;
8104
8105                         if (!kernel) {
8106                                 if (!filename)
8107                                         goto fail;
8108
8109                                 /* look up the path and grab its inode */
8110                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8111                                 if (ret)
8112                                         goto fail_free_name;
8113
8114                                 filter->inode = igrab(d_inode(path.dentry));
8115                                 path_put(&path);
8116                                 kfree(filename);
8117                                 filename = NULL;
8118
8119                                 ret = -EINVAL;
8120                                 if (!filter->inode ||
8121                                     !S_ISREG(filter->inode->i_mode))
8122                                         /* free_filters_list() will iput() */
8123                                         goto fail;
8124                         }
8125
8126                         /* ready to consume more filters */
8127                         state = IF_STATE_ACTION;
8128                         filter = NULL;
8129                 }
8130         }
8131
8132         if (state != IF_STATE_ACTION)
8133                 goto fail;
8134
8135         kfree(orig);
8136
8137         return 0;
8138
8139 fail_free_name:
8140         kfree(filename);
8141 fail:
8142         free_filters_list(filters);
8143         kfree(orig);
8144
8145         return ret;
8146 }
8147
8148 static int
8149 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8150 {
8151         LIST_HEAD(filters);
8152         int ret;
8153
8154         /*
8155          * Since this is called in perf_ioctl() path, we're already holding
8156          * ctx::mutex.
8157          */
8158         lockdep_assert_held(&event->ctx->mutex);
8159
8160         if (WARN_ON_ONCE(event->parent))
8161                 return -EINVAL;
8162
8163         /*
8164          * For now, we only support filtering in per-task events; doing so
8165          * for CPU-wide events requires additional context switching trickery,
8166          * since same object code will be mapped at different virtual
8167          * addresses in different processes.
8168          */
8169         if (!event->ctx->task)
8170                 return -EOPNOTSUPP;
8171
8172         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8173         if (ret)
8174                 return ret;
8175
8176         ret = event->pmu->addr_filters_validate(&filters);
8177         if (ret) {
8178                 free_filters_list(&filters);
8179                 return ret;
8180         }
8181
8182         /* remove existing filters, if any */
8183         perf_addr_filters_splice(event, &filters);
8184
8185         /* install new filters */
8186         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8187
8188         return ret;
8189 }
8190
8191 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8192 {
8193         char *filter_str;
8194         int ret = -EINVAL;
8195
8196         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8197             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8198             !has_addr_filter(event))
8199                 return -EINVAL;
8200
8201         filter_str = strndup_user(arg, PAGE_SIZE);
8202         if (IS_ERR(filter_str))
8203                 return PTR_ERR(filter_str);
8204
8205         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8206             event->attr.type == PERF_TYPE_TRACEPOINT)
8207                 ret = ftrace_profile_set_filter(event, event->attr.config,
8208                                                 filter_str);
8209         else if (has_addr_filter(event))
8210                 ret = perf_event_set_addr_filter(event, filter_str);
8211
8212         kfree(filter_str);
8213         return ret;
8214 }
8215
8216 /*
8217  * hrtimer based swevent callback
8218  */
8219
8220 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8221 {
8222         enum hrtimer_restart ret = HRTIMER_RESTART;
8223         struct perf_sample_data data;
8224         struct pt_regs *regs;
8225         struct perf_event *event;
8226         u64 period;
8227
8228         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8229
8230         if (event->state != PERF_EVENT_STATE_ACTIVE)
8231                 return HRTIMER_NORESTART;
8232
8233         event->pmu->read(event);
8234
8235         perf_sample_data_init(&data, 0, event->hw.last_period);
8236         regs = get_irq_regs();
8237
8238         if (regs && !perf_exclude_event(event, regs)) {
8239                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8240                         if (__perf_event_overflow(event, 1, &data, regs))
8241                                 ret = HRTIMER_NORESTART;
8242         }
8243
8244         period = max_t(u64, 10000, event->hw.sample_period);
8245         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8246
8247         return ret;
8248 }
8249
8250 static void perf_swevent_start_hrtimer(struct perf_event *event)
8251 {
8252         struct hw_perf_event *hwc = &event->hw;
8253         s64 period;
8254
8255         if (!is_sampling_event(event))
8256                 return;
8257
8258         period = local64_read(&hwc->period_left);
8259         if (period) {
8260                 if (period < 0)
8261                         period = 10000;
8262
8263                 local64_set(&hwc->period_left, 0);
8264         } else {
8265                 period = max_t(u64, 10000, hwc->sample_period);
8266         }
8267         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8268                       HRTIMER_MODE_REL_PINNED);
8269 }
8270
8271 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8272 {
8273         struct hw_perf_event *hwc = &event->hw;
8274
8275         if (is_sampling_event(event)) {
8276                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8277                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8278
8279                 hrtimer_cancel(&hwc->hrtimer);
8280         }
8281 }
8282
8283 static void perf_swevent_init_hrtimer(struct perf_event *event)
8284 {
8285         struct hw_perf_event *hwc = &event->hw;
8286
8287         if (!is_sampling_event(event))
8288                 return;
8289
8290         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8291         hwc->hrtimer.function = perf_swevent_hrtimer;
8292
8293         /*
8294          * Since hrtimers have a fixed rate, we can do a static freq->period
8295          * mapping and avoid the whole period adjust feedback stuff.
8296          */
8297         if (event->attr.freq) {
8298                 long freq = event->attr.sample_freq;
8299
8300                 event->attr.sample_period = NSEC_PER_SEC / freq;
8301                 hwc->sample_period = event->attr.sample_period;
8302                 local64_set(&hwc->period_left, hwc->sample_period);
8303                 hwc->last_period = hwc->sample_period;
8304                 event->attr.freq = 0;
8305         }
8306 }
8307
8308 /*
8309  * Software event: cpu wall time clock
8310  */
8311
8312 static void cpu_clock_event_update(struct perf_event *event)
8313 {
8314         s64 prev;
8315         u64 now;
8316
8317         now = local_clock();
8318         prev = local64_xchg(&event->hw.prev_count, now);
8319         local64_add(now - prev, &event->count);
8320 }
8321
8322 static void cpu_clock_event_start(struct perf_event *event, int flags)
8323 {
8324         local64_set(&event->hw.prev_count, local_clock());
8325         perf_swevent_start_hrtimer(event);
8326 }
8327
8328 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8329 {
8330         perf_swevent_cancel_hrtimer(event);
8331         cpu_clock_event_update(event);
8332 }
8333
8334 static int cpu_clock_event_add(struct perf_event *event, int flags)
8335 {
8336         if (flags & PERF_EF_START)
8337                 cpu_clock_event_start(event, flags);
8338         perf_event_update_userpage(event);
8339
8340         return 0;
8341 }
8342
8343 static void cpu_clock_event_del(struct perf_event *event, int flags)
8344 {
8345         cpu_clock_event_stop(event, flags);
8346 }
8347
8348 static void cpu_clock_event_read(struct perf_event *event)
8349 {
8350         cpu_clock_event_update(event);
8351 }
8352
8353 static int cpu_clock_event_init(struct perf_event *event)
8354 {
8355         if (event->attr.type != PERF_TYPE_SOFTWARE)
8356                 return -ENOENT;
8357
8358         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8359                 return -ENOENT;
8360
8361         /*
8362          * no branch sampling for software events
8363          */
8364         if (has_branch_stack(event))
8365                 return -EOPNOTSUPP;
8366
8367         perf_swevent_init_hrtimer(event);
8368
8369         return 0;
8370 }
8371
8372 static struct pmu perf_cpu_clock = {
8373         .task_ctx_nr    = perf_sw_context,
8374
8375         .capabilities   = PERF_PMU_CAP_NO_NMI,
8376
8377         .event_init     = cpu_clock_event_init,
8378         .add            = cpu_clock_event_add,
8379         .del            = cpu_clock_event_del,
8380         .start          = cpu_clock_event_start,
8381         .stop           = cpu_clock_event_stop,
8382         .read           = cpu_clock_event_read,
8383 };
8384
8385 /*
8386  * Software event: task time clock
8387  */
8388
8389 static void task_clock_event_update(struct perf_event *event, u64 now)
8390 {
8391         u64 prev;
8392         s64 delta;
8393
8394         prev = local64_xchg(&event->hw.prev_count, now);
8395         delta = now - prev;
8396         local64_add(delta, &event->count);
8397 }
8398
8399 static void task_clock_event_start(struct perf_event *event, int flags)
8400 {
8401         local64_set(&event->hw.prev_count, event->ctx->time);
8402         perf_swevent_start_hrtimer(event);
8403 }
8404
8405 static void task_clock_event_stop(struct perf_event *event, int flags)
8406 {
8407         perf_swevent_cancel_hrtimer(event);
8408         task_clock_event_update(event, event->ctx->time);
8409 }
8410
8411 static int task_clock_event_add(struct perf_event *event, int flags)
8412 {
8413         if (flags & PERF_EF_START)
8414                 task_clock_event_start(event, flags);
8415         perf_event_update_userpage(event);
8416
8417         return 0;
8418 }
8419
8420 static void task_clock_event_del(struct perf_event *event, int flags)
8421 {
8422         task_clock_event_stop(event, PERF_EF_UPDATE);
8423 }
8424
8425 static void task_clock_event_read(struct perf_event *event)
8426 {
8427         u64 now = perf_clock();
8428         u64 delta = now - event->ctx->timestamp;
8429         u64 time = event->ctx->time + delta;
8430
8431         task_clock_event_update(event, time);
8432 }
8433
8434 static int task_clock_event_init(struct perf_event *event)
8435 {
8436         if (event->attr.type != PERF_TYPE_SOFTWARE)
8437                 return -ENOENT;
8438
8439         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8440                 return -ENOENT;
8441
8442         /*
8443          * no branch sampling for software events
8444          */
8445         if (has_branch_stack(event))
8446                 return -EOPNOTSUPP;
8447
8448         perf_swevent_init_hrtimer(event);
8449
8450         return 0;
8451 }
8452
8453 static struct pmu perf_task_clock = {
8454         .task_ctx_nr    = perf_sw_context,
8455
8456         .capabilities   = PERF_PMU_CAP_NO_NMI,
8457
8458         .event_init     = task_clock_event_init,
8459         .add            = task_clock_event_add,
8460         .del            = task_clock_event_del,
8461         .start          = task_clock_event_start,
8462         .stop           = task_clock_event_stop,
8463         .read           = task_clock_event_read,
8464 };
8465
8466 static void perf_pmu_nop_void(struct pmu *pmu)
8467 {
8468 }
8469
8470 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8471 {
8472 }
8473
8474 static int perf_pmu_nop_int(struct pmu *pmu)
8475 {
8476         return 0;
8477 }
8478
8479 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8480
8481 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8482 {
8483         __this_cpu_write(nop_txn_flags, flags);
8484
8485         if (flags & ~PERF_PMU_TXN_ADD)
8486                 return;
8487
8488         perf_pmu_disable(pmu);
8489 }
8490
8491 static int perf_pmu_commit_txn(struct pmu *pmu)
8492 {
8493         unsigned int flags = __this_cpu_read(nop_txn_flags);
8494
8495         __this_cpu_write(nop_txn_flags, 0);
8496
8497         if (flags & ~PERF_PMU_TXN_ADD)
8498                 return 0;
8499
8500         perf_pmu_enable(pmu);
8501         return 0;
8502 }
8503
8504 static void perf_pmu_cancel_txn(struct pmu *pmu)
8505 {
8506         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8507
8508         __this_cpu_write(nop_txn_flags, 0);
8509
8510         if (flags & ~PERF_PMU_TXN_ADD)
8511                 return;
8512
8513         perf_pmu_enable(pmu);
8514 }
8515
8516 static int perf_event_idx_default(struct perf_event *event)
8517 {
8518         return 0;
8519 }
8520
8521 /*
8522  * Ensures all contexts with the same task_ctx_nr have the same
8523  * pmu_cpu_context too.
8524  */
8525 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8526 {
8527         struct pmu *pmu;
8528
8529         if (ctxn < 0)
8530                 return NULL;
8531
8532         list_for_each_entry(pmu, &pmus, entry) {
8533                 if (pmu->task_ctx_nr == ctxn)
8534                         return pmu->pmu_cpu_context;
8535         }
8536
8537         return NULL;
8538 }
8539
8540 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8541 {
8542         int cpu;
8543
8544         for_each_possible_cpu(cpu) {
8545                 struct perf_cpu_context *cpuctx;
8546
8547                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8548
8549                 if (cpuctx->unique_pmu == old_pmu)
8550                         cpuctx->unique_pmu = pmu;
8551         }
8552 }
8553
8554 static void free_pmu_context(struct pmu *pmu)
8555 {
8556         struct pmu *i;
8557
8558         mutex_lock(&pmus_lock);
8559         /*
8560          * Like a real lame refcount.
8561          */
8562         list_for_each_entry(i, &pmus, entry) {
8563                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8564                         update_pmu_context(i, pmu);
8565                         goto out;
8566                 }
8567         }
8568
8569         free_percpu(pmu->pmu_cpu_context);
8570 out:
8571         mutex_unlock(&pmus_lock);
8572 }
8573
8574 /*
8575  * Let userspace know that this PMU supports address range filtering:
8576  */
8577 static ssize_t nr_addr_filters_show(struct device *dev,
8578                                     struct device_attribute *attr,
8579                                     char *page)
8580 {
8581         struct pmu *pmu = dev_get_drvdata(dev);
8582
8583         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8584 }
8585 DEVICE_ATTR_RO(nr_addr_filters);
8586
8587 static struct idr pmu_idr;
8588
8589 static ssize_t
8590 type_show(struct device *dev, struct device_attribute *attr, char *page)
8591 {
8592         struct pmu *pmu = dev_get_drvdata(dev);
8593
8594         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8595 }
8596 static DEVICE_ATTR_RO(type);
8597
8598 static ssize_t
8599 perf_event_mux_interval_ms_show(struct device *dev,
8600                                 struct device_attribute *attr,
8601                                 char *page)
8602 {
8603         struct pmu *pmu = dev_get_drvdata(dev);
8604
8605         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8606 }
8607
8608 static DEFINE_MUTEX(mux_interval_mutex);
8609
8610 static ssize_t
8611 perf_event_mux_interval_ms_store(struct device *dev,
8612                                  struct device_attribute *attr,
8613                                  const char *buf, size_t count)
8614 {
8615         struct pmu *pmu = dev_get_drvdata(dev);
8616         int timer, cpu, ret;
8617
8618         ret = kstrtoint(buf, 0, &timer);
8619         if (ret)
8620                 return ret;
8621
8622         if (timer < 1)
8623                 return -EINVAL;
8624
8625         /* same value, noting to do */
8626         if (timer == pmu->hrtimer_interval_ms)
8627                 return count;
8628
8629         mutex_lock(&mux_interval_mutex);
8630         pmu->hrtimer_interval_ms = timer;
8631
8632         /* update all cpuctx for this PMU */
8633         get_online_cpus();
8634         for_each_online_cpu(cpu) {
8635                 struct perf_cpu_context *cpuctx;
8636                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8637                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8638
8639                 cpu_function_call(cpu,
8640                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8641         }
8642         put_online_cpus();
8643         mutex_unlock(&mux_interval_mutex);
8644
8645         return count;
8646 }
8647 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8648
8649 static struct attribute *pmu_dev_attrs[] = {
8650         &dev_attr_type.attr,
8651         &dev_attr_perf_event_mux_interval_ms.attr,
8652         NULL,
8653 };
8654 ATTRIBUTE_GROUPS(pmu_dev);
8655
8656 static int pmu_bus_running;
8657 static struct bus_type pmu_bus = {
8658         .name           = "event_source",
8659         .dev_groups     = pmu_dev_groups,
8660 };
8661
8662 static void pmu_dev_release(struct device *dev)
8663 {
8664         kfree(dev);
8665 }
8666
8667 static int pmu_dev_alloc(struct pmu *pmu)
8668 {
8669         int ret = -ENOMEM;
8670
8671         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8672         if (!pmu->dev)
8673                 goto out;
8674
8675         pmu->dev->groups = pmu->attr_groups;
8676         device_initialize(pmu->dev);
8677         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8678         if (ret)
8679                 goto free_dev;
8680
8681         dev_set_drvdata(pmu->dev, pmu);
8682         pmu->dev->bus = &pmu_bus;
8683         pmu->dev->release = pmu_dev_release;
8684         ret = device_add(pmu->dev);
8685         if (ret)
8686                 goto free_dev;
8687
8688         /* For PMUs with address filters, throw in an extra attribute: */
8689         if (pmu->nr_addr_filters)
8690                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8691
8692         if (ret)
8693                 goto del_dev;
8694
8695 out:
8696         return ret;
8697
8698 del_dev:
8699         device_del(pmu->dev);
8700
8701 free_dev:
8702         put_device(pmu->dev);
8703         goto out;
8704 }
8705
8706 static struct lock_class_key cpuctx_mutex;
8707 static struct lock_class_key cpuctx_lock;
8708
8709 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8710 {
8711         int cpu, ret;
8712
8713         mutex_lock(&pmus_lock);
8714         ret = -ENOMEM;
8715         pmu->pmu_disable_count = alloc_percpu(int);
8716         if (!pmu->pmu_disable_count)
8717                 goto unlock;
8718
8719         pmu->type = -1;
8720         if (!name)
8721                 goto skip_type;
8722         pmu->name = name;
8723
8724         if (type < 0) {
8725                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8726                 if (type < 0) {
8727                         ret = type;
8728                         goto free_pdc;
8729                 }
8730         }
8731         pmu->type = type;
8732
8733         if (pmu_bus_running) {
8734                 ret = pmu_dev_alloc(pmu);
8735                 if (ret)
8736                         goto free_idr;
8737         }
8738
8739 skip_type:
8740         if (pmu->task_ctx_nr == perf_hw_context) {
8741                 static int hw_context_taken = 0;
8742
8743                 /*
8744                  * Other than systems with heterogeneous CPUs, it never makes
8745                  * sense for two PMUs to share perf_hw_context. PMUs which are
8746                  * uncore must use perf_invalid_context.
8747                  */
8748                 if (WARN_ON_ONCE(hw_context_taken &&
8749                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8750                         pmu->task_ctx_nr = perf_invalid_context;
8751
8752                 hw_context_taken = 1;
8753         }
8754
8755         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8756         if (pmu->pmu_cpu_context)
8757                 goto got_cpu_context;
8758
8759         ret = -ENOMEM;
8760         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8761         if (!pmu->pmu_cpu_context)
8762                 goto free_dev;
8763
8764         for_each_possible_cpu(cpu) {
8765                 struct perf_cpu_context *cpuctx;
8766
8767                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8768                 __perf_event_init_context(&cpuctx->ctx);
8769                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8770                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8771                 cpuctx->ctx.pmu = pmu;
8772
8773                 __perf_mux_hrtimer_init(cpuctx, cpu);
8774
8775                 cpuctx->unique_pmu = pmu;
8776         }
8777
8778 got_cpu_context:
8779         if (!pmu->start_txn) {
8780                 if (pmu->pmu_enable) {
8781                         /*
8782                          * If we have pmu_enable/pmu_disable calls, install
8783                          * transaction stubs that use that to try and batch
8784                          * hardware accesses.
8785                          */
8786                         pmu->start_txn  = perf_pmu_start_txn;
8787                         pmu->commit_txn = perf_pmu_commit_txn;
8788                         pmu->cancel_txn = perf_pmu_cancel_txn;
8789                 } else {
8790                         pmu->start_txn  = perf_pmu_nop_txn;
8791                         pmu->commit_txn = perf_pmu_nop_int;
8792                         pmu->cancel_txn = perf_pmu_nop_void;
8793                 }
8794         }
8795
8796         if (!pmu->pmu_enable) {
8797                 pmu->pmu_enable  = perf_pmu_nop_void;
8798                 pmu->pmu_disable = perf_pmu_nop_void;
8799         }
8800
8801         if (!pmu->event_idx)
8802                 pmu->event_idx = perf_event_idx_default;
8803
8804         list_add_rcu(&pmu->entry, &pmus);
8805         atomic_set(&pmu->exclusive_cnt, 0);
8806         ret = 0;
8807 unlock:
8808         mutex_unlock(&pmus_lock);
8809
8810         return ret;
8811
8812 free_dev:
8813         device_del(pmu->dev);
8814         put_device(pmu->dev);
8815
8816 free_idr:
8817         if (pmu->type >= PERF_TYPE_MAX)
8818                 idr_remove(&pmu_idr, pmu->type);
8819
8820 free_pdc:
8821         free_percpu(pmu->pmu_disable_count);
8822         goto unlock;
8823 }
8824 EXPORT_SYMBOL_GPL(perf_pmu_register);
8825
8826 void perf_pmu_unregister(struct pmu *pmu)
8827 {
8828         mutex_lock(&pmus_lock);
8829         list_del_rcu(&pmu->entry);
8830         mutex_unlock(&pmus_lock);
8831
8832         /*
8833          * We dereference the pmu list under both SRCU and regular RCU, so
8834          * synchronize against both of those.
8835          */
8836         synchronize_srcu(&pmus_srcu);
8837         synchronize_rcu();
8838
8839         free_percpu(pmu->pmu_disable_count);
8840         if (pmu->type >= PERF_TYPE_MAX)
8841                 idr_remove(&pmu_idr, pmu->type);
8842         if (pmu->nr_addr_filters)
8843                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8844         device_del(pmu->dev);
8845         put_device(pmu->dev);
8846         free_pmu_context(pmu);
8847 }
8848 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8849
8850 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8851 {
8852         struct perf_event_context *ctx = NULL;
8853         int ret;
8854
8855         if (!try_module_get(pmu->module))
8856                 return -ENODEV;
8857
8858         if (event->group_leader != event) {
8859                 /*
8860                  * This ctx->mutex can nest when we're called through
8861                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8862                  */
8863                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8864                                                  SINGLE_DEPTH_NESTING);
8865                 BUG_ON(!ctx);
8866         }
8867
8868         event->pmu = pmu;
8869         ret = pmu->event_init(event);
8870
8871         if (ctx)
8872                 perf_event_ctx_unlock(event->group_leader, ctx);
8873
8874         if (ret)
8875                 module_put(pmu->module);
8876
8877         return ret;
8878 }
8879
8880 static struct pmu *perf_init_event(struct perf_event *event)
8881 {
8882         struct pmu *pmu = NULL;
8883         int idx;
8884         int ret;
8885
8886         idx = srcu_read_lock(&pmus_srcu);
8887
8888         rcu_read_lock();
8889         pmu = idr_find(&pmu_idr, event->attr.type);
8890         rcu_read_unlock();
8891         if (pmu) {
8892                 ret = perf_try_init_event(pmu, event);
8893                 if (ret)
8894                         pmu = ERR_PTR(ret);
8895                 goto unlock;
8896         }
8897
8898         list_for_each_entry_rcu(pmu, &pmus, entry) {
8899                 ret = perf_try_init_event(pmu, event);
8900                 if (!ret)
8901                         goto unlock;
8902
8903                 if (ret != -ENOENT) {
8904                         pmu = ERR_PTR(ret);
8905                         goto unlock;
8906                 }
8907         }
8908         pmu = ERR_PTR(-ENOENT);
8909 unlock:
8910         srcu_read_unlock(&pmus_srcu, idx);
8911
8912         return pmu;
8913 }
8914
8915 static void attach_sb_event(struct perf_event *event)
8916 {
8917         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8918
8919         raw_spin_lock(&pel->lock);
8920         list_add_rcu(&event->sb_list, &pel->list);
8921         raw_spin_unlock(&pel->lock);
8922 }
8923
8924 /*
8925  * We keep a list of all !task (and therefore per-cpu) events
8926  * that need to receive side-band records.
8927  *
8928  * This avoids having to scan all the various PMU per-cpu contexts
8929  * looking for them.
8930  */
8931 static void account_pmu_sb_event(struct perf_event *event)
8932 {
8933         if (is_sb_event(event))
8934                 attach_sb_event(event);
8935 }
8936
8937 static void account_event_cpu(struct perf_event *event, int cpu)
8938 {
8939         if (event->parent)
8940                 return;
8941
8942         if (is_cgroup_event(event))
8943                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8944 }
8945
8946 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8947 static void account_freq_event_nohz(void)
8948 {
8949 #ifdef CONFIG_NO_HZ_FULL
8950         /* Lock so we don't race with concurrent unaccount */
8951         spin_lock(&nr_freq_lock);
8952         if (atomic_inc_return(&nr_freq_events) == 1)
8953                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8954         spin_unlock(&nr_freq_lock);
8955 #endif
8956 }
8957
8958 static void account_freq_event(void)
8959 {
8960         if (tick_nohz_full_enabled())
8961                 account_freq_event_nohz();
8962         else
8963                 atomic_inc(&nr_freq_events);
8964 }
8965
8966
8967 static void account_event(struct perf_event *event)
8968 {
8969         bool inc = false;
8970
8971         if (event->parent)
8972                 return;
8973
8974         if (event->attach_state & PERF_ATTACH_TASK)
8975                 inc = true;
8976         if (event->attr.mmap || event->attr.mmap_data)
8977                 atomic_inc(&nr_mmap_events);
8978         if (event->attr.comm)
8979                 atomic_inc(&nr_comm_events);
8980         if (event->attr.task)
8981                 atomic_inc(&nr_task_events);
8982         if (event->attr.freq)
8983                 account_freq_event();
8984         if (event->attr.context_switch) {
8985                 atomic_inc(&nr_switch_events);
8986                 inc = true;
8987         }
8988         if (has_branch_stack(event))
8989                 inc = true;
8990         if (is_cgroup_event(event))
8991                 inc = true;
8992
8993         if (inc) {
8994                 if (atomic_inc_not_zero(&perf_sched_count))
8995                         goto enabled;
8996
8997                 mutex_lock(&perf_sched_mutex);
8998                 if (!atomic_read(&perf_sched_count)) {
8999                         static_branch_enable(&perf_sched_events);
9000                         /*
9001                          * Guarantee that all CPUs observe they key change and
9002                          * call the perf scheduling hooks before proceeding to
9003                          * install events that need them.
9004                          */
9005                         synchronize_sched();
9006                 }
9007                 /*
9008                  * Now that we have waited for the sync_sched(), allow further
9009                  * increments to by-pass the mutex.
9010                  */
9011                 atomic_inc(&perf_sched_count);
9012                 mutex_unlock(&perf_sched_mutex);
9013         }
9014 enabled:
9015
9016         account_event_cpu(event, event->cpu);
9017
9018         account_pmu_sb_event(event);
9019 }
9020
9021 /*
9022  * Allocate and initialize a event structure
9023  */
9024 static struct perf_event *
9025 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9026                  struct task_struct *task,
9027                  struct perf_event *group_leader,
9028                  struct perf_event *parent_event,
9029                  perf_overflow_handler_t overflow_handler,
9030                  void *context, int cgroup_fd)
9031 {
9032         struct pmu *pmu;
9033         struct perf_event *event;
9034         struct hw_perf_event *hwc;
9035         long err = -EINVAL;
9036
9037         if ((unsigned)cpu >= nr_cpu_ids) {
9038                 if (!task || cpu != -1)
9039                         return ERR_PTR(-EINVAL);
9040         }
9041
9042         event = kzalloc(sizeof(*event), GFP_KERNEL);
9043         if (!event)
9044                 return ERR_PTR(-ENOMEM);
9045
9046         /*
9047          * Single events are their own group leaders, with an
9048          * empty sibling list:
9049          */
9050         if (!group_leader)
9051                 group_leader = event;
9052
9053         mutex_init(&event->child_mutex);
9054         INIT_LIST_HEAD(&event->child_list);
9055
9056         INIT_LIST_HEAD(&event->group_entry);
9057         INIT_LIST_HEAD(&event->event_entry);
9058         INIT_LIST_HEAD(&event->sibling_list);
9059         INIT_LIST_HEAD(&event->rb_entry);
9060         INIT_LIST_HEAD(&event->active_entry);
9061         INIT_LIST_HEAD(&event->addr_filters.list);
9062         INIT_HLIST_NODE(&event->hlist_entry);
9063
9064
9065         init_waitqueue_head(&event->waitq);
9066         init_irq_work(&event->pending, perf_pending_event);
9067
9068         mutex_init(&event->mmap_mutex);
9069         raw_spin_lock_init(&event->addr_filters.lock);
9070
9071         atomic_long_set(&event->refcount, 1);
9072         event->cpu              = cpu;
9073         event->attr             = *attr;
9074         event->group_leader     = group_leader;
9075         event->pmu              = NULL;
9076         event->oncpu            = -1;
9077
9078         event->parent           = parent_event;
9079
9080         event->ns               = get_pid_ns(task_active_pid_ns(current));
9081         event->id               = atomic64_inc_return(&perf_event_id);
9082
9083         event->state            = PERF_EVENT_STATE_INACTIVE;
9084
9085         if (task) {
9086                 event->attach_state = PERF_ATTACH_TASK;
9087                 /*
9088                  * XXX pmu::event_init needs to know what task to account to
9089                  * and we cannot use the ctx information because we need the
9090                  * pmu before we get a ctx.
9091                  */
9092                 event->hw.target = task;
9093         }
9094
9095         event->clock = &local_clock;
9096         if (parent_event)
9097                 event->clock = parent_event->clock;
9098
9099         if (!overflow_handler && parent_event) {
9100                 overflow_handler = parent_event->overflow_handler;
9101                 context = parent_event->overflow_handler_context;
9102 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9103                 if (overflow_handler == bpf_overflow_handler) {
9104                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9105
9106                         if (IS_ERR(prog)) {
9107                                 err = PTR_ERR(prog);
9108                                 goto err_ns;
9109                         }
9110                         event->prog = prog;
9111                         event->orig_overflow_handler =
9112                                 parent_event->orig_overflow_handler;
9113                 }
9114 #endif
9115         }
9116
9117         if (overflow_handler) {
9118                 event->overflow_handler = overflow_handler;
9119                 event->overflow_handler_context = context;
9120         } else if (is_write_backward(event)){
9121                 event->overflow_handler = perf_event_output_backward;
9122                 event->overflow_handler_context = NULL;
9123         } else {
9124                 event->overflow_handler = perf_event_output_forward;
9125                 event->overflow_handler_context = NULL;
9126         }
9127
9128         perf_event__state_init(event);
9129
9130         pmu = NULL;
9131
9132         hwc = &event->hw;
9133         hwc->sample_period = attr->sample_period;
9134         if (attr->freq && attr->sample_freq)
9135                 hwc->sample_period = 1;
9136         hwc->last_period = hwc->sample_period;
9137
9138         local64_set(&hwc->period_left, hwc->sample_period);
9139
9140         /*
9141          * we currently do not support PERF_FORMAT_GROUP on inherited events
9142          */
9143         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9144                 goto err_ns;
9145
9146         if (!has_branch_stack(event))
9147                 event->attr.branch_sample_type = 0;
9148
9149         if (cgroup_fd != -1) {
9150                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9151                 if (err)
9152                         goto err_ns;
9153         }
9154
9155         pmu = perf_init_event(event);
9156         if (!pmu)
9157                 goto err_ns;
9158         else if (IS_ERR(pmu)) {
9159                 err = PTR_ERR(pmu);
9160                 goto err_ns;
9161         }
9162
9163         err = exclusive_event_init(event);
9164         if (err)
9165                 goto err_pmu;
9166
9167         if (has_addr_filter(event)) {
9168                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9169                                                    sizeof(unsigned long),
9170                                                    GFP_KERNEL);
9171                 if (!event->addr_filters_offs)
9172                         goto err_per_task;
9173
9174                 /* force hw sync on the address filters */
9175                 event->addr_filters_gen = 1;
9176         }
9177
9178         if (!event->parent) {
9179                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9180                         err = get_callchain_buffers(attr->sample_max_stack);
9181                         if (err)
9182                                 goto err_addr_filters;
9183                 }
9184         }
9185
9186         /* symmetric to unaccount_event() in _free_event() */
9187         account_event(event);
9188
9189         return event;
9190
9191 err_addr_filters:
9192         kfree(event->addr_filters_offs);
9193
9194 err_per_task:
9195         exclusive_event_destroy(event);
9196
9197 err_pmu:
9198         if (event->destroy)
9199                 event->destroy(event);
9200         module_put(pmu->module);
9201 err_ns:
9202         if (is_cgroup_event(event))
9203                 perf_detach_cgroup(event);
9204         if (event->ns)
9205                 put_pid_ns(event->ns);
9206         kfree(event);
9207
9208         return ERR_PTR(err);
9209 }
9210
9211 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9212                           struct perf_event_attr *attr)
9213 {
9214         u32 size;
9215         int ret;
9216
9217         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9218                 return -EFAULT;
9219
9220         /*
9221          * zero the full structure, so that a short copy will be nice.
9222          */
9223         memset(attr, 0, sizeof(*attr));
9224
9225         ret = get_user(size, &uattr->size);
9226         if (ret)
9227                 return ret;
9228
9229         if (size > PAGE_SIZE)   /* silly large */
9230                 goto err_size;
9231
9232         if (!size)              /* abi compat */
9233                 size = PERF_ATTR_SIZE_VER0;
9234
9235         if (size < PERF_ATTR_SIZE_VER0)
9236                 goto err_size;
9237
9238         /*
9239          * If we're handed a bigger struct than we know of,
9240          * ensure all the unknown bits are 0 - i.e. new
9241          * user-space does not rely on any kernel feature
9242          * extensions we dont know about yet.
9243          */
9244         if (size > sizeof(*attr)) {
9245                 unsigned char __user *addr;
9246                 unsigned char __user *end;
9247                 unsigned char val;
9248
9249                 addr = (void __user *)uattr + sizeof(*attr);
9250                 end  = (void __user *)uattr + size;
9251
9252                 for (; addr < end; addr++) {
9253                         ret = get_user(val, addr);
9254                         if (ret)
9255                                 return ret;
9256                         if (val)
9257                                 goto err_size;
9258                 }
9259                 size = sizeof(*attr);
9260         }
9261
9262         ret = copy_from_user(attr, uattr, size);
9263         if (ret)
9264                 return -EFAULT;
9265
9266         if (attr->__reserved_1)
9267                 return -EINVAL;
9268
9269         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9270                 return -EINVAL;
9271
9272         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9273                 return -EINVAL;
9274
9275         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9276                 u64 mask = attr->branch_sample_type;
9277
9278                 /* only using defined bits */
9279                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9280                         return -EINVAL;
9281
9282                 /* at least one branch bit must be set */
9283                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9284                         return -EINVAL;
9285
9286                 /* propagate priv level, when not set for branch */
9287                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9288
9289                         /* exclude_kernel checked on syscall entry */
9290                         if (!attr->exclude_kernel)
9291                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9292
9293                         if (!attr->exclude_user)
9294                                 mask |= PERF_SAMPLE_BRANCH_USER;
9295
9296                         if (!attr->exclude_hv)
9297                                 mask |= PERF_SAMPLE_BRANCH_HV;
9298                         /*
9299                          * adjust user setting (for HW filter setup)
9300                          */
9301                         attr->branch_sample_type = mask;
9302                 }
9303                 /* privileged levels capture (kernel, hv): check permissions */
9304                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9305                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9306                         return -EACCES;
9307         }
9308
9309         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9310                 ret = perf_reg_validate(attr->sample_regs_user);
9311                 if (ret)
9312                         return ret;
9313         }
9314
9315         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9316                 if (!arch_perf_have_user_stack_dump())
9317                         return -ENOSYS;
9318
9319                 /*
9320                  * We have __u32 type for the size, but so far
9321                  * we can only use __u16 as maximum due to the
9322                  * __u16 sample size limit.
9323                  */
9324                 if (attr->sample_stack_user >= USHRT_MAX)
9325                         ret = -EINVAL;
9326                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9327                         ret = -EINVAL;
9328         }
9329
9330         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9331                 ret = perf_reg_validate(attr->sample_regs_intr);
9332 out:
9333         return ret;
9334
9335 err_size:
9336         put_user(sizeof(*attr), &uattr->size);
9337         ret = -E2BIG;
9338         goto out;
9339 }
9340
9341 static int
9342 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9343 {
9344         struct ring_buffer *rb = NULL;
9345         int ret = -EINVAL;
9346
9347         if (!output_event)
9348                 goto set;
9349
9350         /* don't allow circular references */
9351         if (event == output_event)
9352                 goto out;
9353
9354         /*
9355          * Don't allow cross-cpu buffers
9356          */
9357         if (output_event->cpu != event->cpu)
9358                 goto out;
9359
9360         /*
9361          * If its not a per-cpu rb, it must be the same task.
9362          */
9363         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9364                 goto out;
9365
9366         /*
9367          * Mixing clocks in the same buffer is trouble you don't need.
9368          */
9369         if (output_event->clock != event->clock)
9370                 goto out;
9371
9372         /*
9373          * Either writing ring buffer from beginning or from end.
9374          * Mixing is not allowed.
9375          */
9376         if (is_write_backward(output_event) != is_write_backward(event))
9377                 goto out;
9378
9379         /*
9380          * If both events generate aux data, they must be on the same PMU
9381          */
9382         if (has_aux(event) && has_aux(output_event) &&
9383             event->pmu != output_event->pmu)
9384                 goto out;
9385
9386 set:
9387         mutex_lock(&event->mmap_mutex);
9388         /* Can't redirect output if we've got an active mmap() */
9389         if (atomic_read(&event->mmap_count))
9390                 goto unlock;
9391
9392         if (output_event) {
9393                 /* get the rb we want to redirect to */
9394                 rb = ring_buffer_get(output_event);
9395                 if (!rb)
9396                         goto unlock;
9397         }
9398
9399         ring_buffer_attach(event, rb);
9400
9401         ret = 0;
9402 unlock:
9403         mutex_unlock(&event->mmap_mutex);
9404
9405 out:
9406         return ret;
9407 }
9408
9409 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9410 {
9411         if (b < a)
9412                 swap(a, b);
9413
9414         mutex_lock(a);
9415         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9416 }
9417
9418 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9419 {
9420         bool nmi_safe = false;
9421
9422         switch (clk_id) {
9423         case CLOCK_MONOTONIC:
9424                 event->clock = &ktime_get_mono_fast_ns;
9425                 nmi_safe = true;
9426                 break;
9427
9428         case CLOCK_MONOTONIC_RAW:
9429                 event->clock = &ktime_get_raw_fast_ns;
9430                 nmi_safe = true;
9431                 break;
9432
9433         case CLOCK_REALTIME:
9434                 event->clock = &ktime_get_real_ns;
9435                 break;
9436
9437         case CLOCK_BOOTTIME:
9438                 event->clock = &ktime_get_boot_ns;
9439                 break;
9440
9441         case CLOCK_TAI:
9442                 event->clock = &ktime_get_tai_ns;
9443                 break;
9444
9445         default:
9446                 return -EINVAL;
9447         }
9448
9449         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9450                 return -EINVAL;
9451
9452         return 0;
9453 }
9454
9455 /**
9456  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9457  *
9458  * @attr_uptr:  event_id type attributes for monitoring/sampling
9459  * @pid:                target pid
9460  * @cpu:                target cpu
9461  * @group_fd:           group leader event fd
9462  */
9463 SYSCALL_DEFINE5(perf_event_open,
9464                 struct perf_event_attr __user *, attr_uptr,
9465                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9466 {
9467         struct perf_event *group_leader = NULL, *output_event = NULL;
9468         struct perf_event *event, *sibling;
9469         struct perf_event_attr attr;
9470         struct perf_event_context *ctx, *uninitialized_var(gctx);
9471         struct file *event_file = NULL;
9472         struct fd group = {NULL, 0};
9473         struct task_struct *task = NULL;
9474         struct pmu *pmu;
9475         int event_fd;
9476         int move_group = 0;
9477         int err;
9478         int f_flags = O_RDWR;
9479         int cgroup_fd = -1;
9480
9481         /* for future expandability... */
9482         if (flags & ~PERF_FLAG_ALL)
9483                 return -EINVAL;
9484
9485         err = perf_copy_attr(attr_uptr, &attr);
9486         if (err)
9487                 return err;
9488
9489         if (!attr.exclude_kernel) {
9490                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9491                         return -EACCES;
9492         }
9493
9494         if (attr.freq) {
9495                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9496                         return -EINVAL;
9497         } else {
9498                 if (attr.sample_period & (1ULL << 63))
9499                         return -EINVAL;
9500         }
9501
9502         if (!attr.sample_max_stack)
9503                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9504
9505         /*
9506          * In cgroup mode, the pid argument is used to pass the fd
9507          * opened to the cgroup directory in cgroupfs. The cpu argument
9508          * designates the cpu on which to monitor threads from that
9509          * cgroup.
9510          */
9511         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9512                 return -EINVAL;
9513
9514         if (flags & PERF_FLAG_FD_CLOEXEC)
9515                 f_flags |= O_CLOEXEC;
9516
9517         event_fd = get_unused_fd_flags(f_flags);
9518         if (event_fd < 0)
9519                 return event_fd;
9520
9521         if (group_fd != -1) {
9522                 err = perf_fget_light(group_fd, &group);
9523                 if (err)
9524                         goto err_fd;
9525                 group_leader = group.file->private_data;
9526                 if (flags & PERF_FLAG_FD_OUTPUT)
9527                         output_event = group_leader;
9528                 if (flags & PERF_FLAG_FD_NO_GROUP)
9529                         group_leader = NULL;
9530         }
9531
9532         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9533                 task = find_lively_task_by_vpid(pid);
9534                 if (IS_ERR(task)) {
9535                         err = PTR_ERR(task);
9536                         goto err_group_fd;
9537                 }
9538         }
9539
9540         if (task && group_leader &&
9541             group_leader->attr.inherit != attr.inherit) {
9542                 err = -EINVAL;
9543                 goto err_task;
9544         }
9545
9546         get_online_cpus();
9547
9548         if (task) {
9549                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9550                 if (err)
9551                         goto err_cpus;
9552
9553                 /*
9554                  * Reuse ptrace permission checks for now.
9555                  *
9556                  * We must hold cred_guard_mutex across this and any potential
9557                  * perf_install_in_context() call for this new event to
9558                  * serialize against exec() altering our credentials (and the
9559                  * perf_event_exit_task() that could imply).
9560                  */
9561                 err = -EACCES;
9562                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9563                         goto err_cred;
9564         }
9565
9566         if (flags & PERF_FLAG_PID_CGROUP)
9567                 cgroup_fd = pid;
9568
9569         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9570                                  NULL, NULL, cgroup_fd);
9571         if (IS_ERR(event)) {
9572                 err = PTR_ERR(event);
9573                 goto err_cred;
9574         }
9575
9576         if (is_sampling_event(event)) {
9577                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9578                         err = -EOPNOTSUPP;
9579                         goto err_alloc;
9580                 }
9581         }
9582
9583         /*
9584          * Special case software events and allow them to be part of
9585          * any hardware group.
9586          */
9587         pmu = event->pmu;
9588
9589         if (attr.use_clockid) {
9590                 err = perf_event_set_clock(event, attr.clockid);
9591                 if (err)
9592                         goto err_alloc;
9593         }
9594
9595         if (group_leader &&
9596             (is_software_event(event) != is_software_event(group_leader))) {
9597                 if (is_software_event(event)) {
9598                         /*
9599                          * If event and group_leader are not both a software
9600                          * event, and event is, then group leader is not.
9601                          *
9602                          * Allow the addition of software events to !software
9603                          * groups, this is safe because software events never
9604                          * fail to schedule.
9605                          */
9606                         pmu = group_leader->pmu;
9607                 } else if (is_software_event(group_leader) &&
9608                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9609                         /*
9610                          * In case the group is a pure software group, and we
9611                          * try to add a hardware event, move the whole group to
9612                          * the hardware context.
9613                          */
9614                         move_group = 1;
9615                 }
9616         }
9617
9618         /*
9619          * Get the target context (task or percpu):
9620          */
9621         ctx = find_get_context(pmu, task, event);
9622         if (IS_ERR(ctx)) {
9623                 err = PTR_ERR(ctx);
9624                 goto err_alloc;
9625         }
9626
9627         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9628                 err = -EBUSY;
9629                 goto err_context;
9630         }
9631
9632         /*
9633          * Look up the group leader (we will attach this event to it):
9634          */
9635         if (group_leader) {
9636                 err = -EINVAL;
9637
9638                 /*
9639                  * Do not allow a recursive hierarchy (this new sibling
9640                  * becoming part of another group-sibling):
9641                  */
9642                 if (group_leader->group_leader != group_leader)
9643                         goto err_context;
9644
9645                 /* All events in a group should have the same clock */
9646                 if (group_leader->clock != event->clock)
9647                         goto err_context;
9648
9649                 /*
9650                  * Do not allow to attach to a group in a different
9651                  * task or CPU context:
9652                  */
9653                 if (move_group) {
9654                         /*
9655                          * Make sure we're both on the same task, or both
9656                          * per-cpu events.
9657                          */
9658                         if (group_leader->ctx->task != ctx->task)
9659                                 goto err_context;
9660
9661                         /*
9662                          * Make sure we're both events for the same CPU;
9663                          * grouping events for different CPUs is broken; since
9664                          * you can never concurrently schedule them anyhow.
9665                          */
9666                         if (group_leader->cpu != event->cpu)
9667                                 goto err_context;
9668                 } else {
9669                         if (group_leader->ctx != ctx)
9670                                 goto err_context;
9671                 }
9672
9673                 /*
9674                  * Only a group leader can be exclusive or pinned
9675                  */
9676                 if (attr.exclusive || attr.pinned)
9677                         goto err_context;
9678         }
9679
9680         if (output_event) {
9681                 err = perf_event_set_output(event, output_event);
9682                 if (err)
9683                         goto err_context;
9684         }
9685
9686         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9687                                         f_flags);
9688         if (IS_ERR(event_file)) {
9689                 err = PTR_ERR(event_file);
9690                 event_file = NULL;
9691                 goto err_context;
9692         }
9693
9694         if (move_group) {
9695                 gctx = group_leader->ctx;
9696                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9697                 if (gctx->task == TASK_TOMBSTONE) {
9698                         err = -ESRCH;
9699                         goto err_locked;
9700                 }
9701         } else {
9702                 mutex_lock(&ctx->mutex);
9703         }
9704
9705         if (ctx->task == TASK_TOMBSTONE) {
9706                 err = -ESRCH;
9707                 goto err_locked;
9708         }
9709
9710         if (!perf_event_validate_size(event)) {
9711                 err = -E2BIG;
9712                 goto err_locked;
9713         }
9714
9715         /*
9716          * Must be under the same ctx::mutex as perf_install_in_context(),
9717          * because we need to serialize with concurrent event creation.
9718          */
9719         if (!exclusive_event_installable(event, ctx)) {
9720                 /* exclusive and group stuff are assumed mutually exclusive */
9721                 WARN_ON_ONCE(move_group);
9722
9723                 err = -EBUSY;
9724                 goto err_locked;
9725         }
9726
9727         WARN_ON_ONCE(ctx->parent_ctx);
9728
9729         /*
9730          * This is the point on no return; we cannot fail hereafter. This is
9731          * where we start modifying current state.
9732          */
9733
9734         if (move_group) {
9735                 /*
9736                  * See perf_event_ctx_lock() for comments on the details
9737                  * of swizzling perf_event::ctx.
9738                  */
9739                 perf_remove_from_context(group_leader, 0);
9740
9741                 list_for_each_entry(sibling, &group_leader->sibling_list,
9742                                     group_entry) {
9743                         perf_remove_from_context(sibling, 0);
9744                         put_ctx(gctx);
9745                 }
9746
9747                 /*
9748                  * Wait for everybody to stop referencing the events through
9749                  * the old lists, before installing it on new lists.
9750                  */
9751                 synchronize_rcu();
9752
9753                 /*
9754                  * Install the group siblings before the group leader.
9755                  *
9756                  * Because a group leader will try and install the entire group
9757                  * (through the sibling list, which is still in-tact), we can
9758                  * end up with siblings installed in the wrong context.
9759                  *
9760                  * By installing siblings first we NO-OP because they're not
9761                  * reachable through the group lists.
9762                  */
9763                 list_for_each_entry(sibling, &group_leader->sibling_list,
9764                                     group_entry) {
9765                         perf_event__state_init(sibling);
9766                         perf_install_in_context(ctx, sibling, sibling->cpu);
9767                         get_ctx(ctx);
9768                 }
9769
9770                 /*
9771                  * Removing from the context ends up with disabled
9772                  * event. What we want here is event in the initial
9773                  * startup state, ready to be add into new context.
9774                  */
9775                 perf_event__state_init(group_leader);
9776                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9777                 get_ctx(ctx);
9778
9779                 /*
9780                  * Now that all events are installed in @ctx, nothing
9781                  * references @gctx anymore, so drop the last reference we have
9782                  * on it.
9783                  */
9784                 put_ctx(gctx);
9785         }
9786
9787         /*
9788          * Precalculate sample_data sizes; do while holding ctx::mutex such
9789          * that we're serialized against further additions and before
9790          * perf_install_in_context() which is the point the event is active and
9791          * can use these values.
9792          */
9793         perf_event__header_size(event);
9794         perf_event__id_header_size(event);
9795
9796         event->owner = current;
9797
9798         perf_install_in_context(ctx, event, event->cpu);
9799         perf_unpin_context(ctx);
9800
9801         if (move_group)
9802                 mutex_unlock(&gctx->mutex);
9803         mutex_unlock(&ctx->mutex);
9804
9805         if (task) {
9806                 mutex_unlock(&task->signal->cred_guard_mutex);
9807                 put_task_struct(task);
9808         }
9809
9810         put_online_cpus();
9811
9812         mutex_lock(&current->perf_event_mutex);
9813         list_add_tail(&event->owner_entry, &current->perf_event_list);
9814         mutex_unlock(&current->perf_event_mutex);
9815
9816         /*
9817          * Drop the reference on the group_event after placing the
9818          * new event on the sibling_list. This ensures destruction
9819          * of the group leader will find the pointer to itself in
9820          * perf_group_detach().
9821          */
9822         fdput(group);
9823         fd_install(event_fd, event_file);
9824         return event_fd;
9825
9826 err_locked:
9827         if (move_group)
9828                 mutex_unlock(&gctx->mutex);
9829         mutex_unlock(&ctx->mutex);
9830 /* err_file: */
9831         fput(event_file);
9832 err_context:
9833         perf_unpin_context(ctx);
9834         put_ctx(ctx);
9835 err_alloc:
9836         /*
9837          * If event_file is set, the fput() above will have called ->release()
9838          * and that will take care of freeing the event.
9839          */
9840         if (!event_file)
9841                 free_event(event);
9842 err_cred:
9843         if (task)
9844                 mutex_unlock(&task->signal->cred_guard_mutex);
9845 err_cpus:
9846         put_online_cpus();
9847 err_task:
9848         if (task)
9849                 put_task_struct(task);
9850 err_group_fd:
9851         fdput(group);
9852 err_fd:
9853         put_unused_fd(event_fd);
9854         return err;
9855 }
9856
9857 /**
9858  * perf_event_create_kernel_counter
9859  *
9860  * @attr: attributes of the counter to create
9861  * @cpu: cpu in which the counter is bound
9862  * @task: task to profile (NULL for percpu)
9863  */
9864 struct perf_event *
9865 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9866                                  struct task_struct *task,
9867                                  perf_overflow_handler_t overflow_handler,
9868                                  void *context)
9869 {
9870         struct perf_event_context *ctx;
9871         struct perf_event *event;
9872         int err;
9873
9874         /*
9875          * Get the target context (task or percpu):
9876          */
9877
9878         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9879                                  overflow_handler, context, -1);
9880         if (IS_ERR(event)) {
9881                 err = PTR_ERR(event);
9882                 goto err;
9883         }
9884
9885         /* Mark owner so we could distinguish it from user events. */
9886         event->owner = TASK_TOMBSTONE;
9887
9888         ctx = find_get_context(event->pmu, task, event);
9889         if (IS_ERR(ctx)) {
9890                 err = PTR_ERR(ctx);
9891                 goto err_free;
9892         }
9893
9894         WARN_ON_ONCE(ctx->parent_ctx);
9895         mutex_lock(&ctx->mutex);
9896         if (ctx->task == TASK_TOMBSTONE) {
9897                 err = -ESRCH;
9898                 goto err_unlock;
9899         }
9900
9901         if (!exclusive_event_installable(event, ctx)) {
9902                 err = -EBUSY;
9903                 goto err_unlock;
9904         }
9905
9906         perf_install_in_context(ctx, event, cpu);
9907         perf_unpin_context(ctx);
9908         mutex_unlock(&ctx->mutex);
9909
9910         return event;
9911
9912 err_unlock:
9913         mutex_unlock(&ctx->mutex);
9914         perf_unpin_context(ctx);
9915         put_ctx(ctx);
9916 err_free:
9917         free_event(event);
9918 err:
9919         return ERR_PTR(err);
9920 }
9921 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9922
9923 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9924 {
9925         struct perf_event_context *src_ctx;
9926         struct perf_event_context *dst_ctx;
9927         struct perf_event *event, *tmp;
9928         LIST_HEAD(events);
9929
9930         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9931         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9932
9933         /*
9934          * See perf_event_ctx_lock() for comments on the details
9935          * of swizzling perf_event::ctx.
9936          */
9937         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9938         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9939                                  event_entry) {
9940                 perf_remove_from_context(event, 0);
9941                 unaccount_event_cpu(event, src_cpu);
9942                 put_ctx(src_ctx);
9943                 list_add(&event->migrate_entry, &events);
9944         }
9945
9946         /*
9947          * Wait for the events to quiesce before re-instating them.
9948          */
9949         synchronize_rcu();
9950
9951         /*
9952          * Re-instate events in 2 passes.
9953          *
9954          * Skip over group leaders and only install siblings on this first
9955          * pass, siblings will not get enabled without a leader, however a
9956          * leader will enable its siblings, even if those are still on the old
9957          * context.
9958          */
9959         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9960                 if (event->group_leader == event)
9961                         continue;
9962
9963                 list_del(&event->migrate_entry);
9964                 if (event->state >= PERF_EVENT_STATE_OFF)
9965                         event->state = PERF_EVENT_STATE_INACTIVE;
9966                 account_event_cpu(event, dst_cpu);
9967                 perf_install_in_context(dst_ctx, event, dst_cpu);
9968                 get_ctx(dst_ctx);
9969         }
9970
9971         /*
9972          * Once all the siblings are setup properly, install the group leaders
9973          * to make it go.
9974          */
9975         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9976                 list_del(&event->migrate_entry);
9977                 if (event->state >= PERF_EVENT_STATE_OFF)
9978                         event->state = PERF_EVENT_STATE_INACTIVE;
9979                 account_event_cpu(event, dst_cpu);
9980                 perf_install_in_context(dst_ctx, event, dst_cpu);
9981                 get_ctx(dst_ctx);
9982         }
9983         mutex_unlock(&dst_ctx->mutex);
9984         mutex_unlock(&src_ctx->mutex);
9985 }
9986 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9987
9988 static void sync_child_event(struct perf_event *child_event,
9989                                struct task_struct *child)
9990 {
9991         struct perf_event *parent_event = child_event->parent;
9992         u64 child_val;
9993
9994         if (child_event->attr.inherit_stat)
9995                 perf_event_read_event(child_event, child);
9996
9997         child_val = perf_event_count(child_event);
9998
9999         /*
10000          * Add back the child's count to the parent's count:
10001          */
10002         atomic64_add(child_val, &parent_event->child_count);
10003         atomic64_add(child_event->total_time_enabled,
10004                      &parent_event->child_total_time_enabled);
10005         atomic64_add(child_event->total_time_running,
10006                      &parent_event->child_total_time_running);
10007 }
10008
10009 static void
10010 perf_event_exit_event(struct perf_event *child_event,
10011                       struct perf_event_context *child_ctx,
10012                       struct task_struct *child)
10013 {
10014         struct perf_event *parent_event = child_event->parent;
10015
10016         /*
10017          * Do not destroy the 'original' grouping; because of the context
10018          * switch optimization the original events could've ended up in a
10019          * random child task.
10020          *
10021          * If we were to destroy the original group, all group related
10022          * operations would cease to function properly after this random
10023          * child dies.
10024          *
10025          * Do destroy all inherited groups, we don't care about those
10026          * and being thorough is better.
10027          */
10028         raw_spin_lock_irq(&child_ctx->lock);
10029         WARN_ON_ONCE(child_ctx->is_active);
10030
10031         if (parent_event)
10032                 perf_group_detach(child_event);
10033         list_del_event(child_event, child_ctx);
10034         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10035         raw_spin_unlock_irq(&child_ctx->lock);
10036
10037         /*
10038          * Parent events are governed by their filedesc, retain them.
10039          */
10040         if (!parent_event) {
10041                 perf_event_wakeup(child_event);
10042                 return;
10043         }
10044         /*
10045          * Child events can be cleaned up.
10046          */
10047
10048         sync_child_event(child_event, child);
10049
10050         /*
10051          * Remove this event from the parent's list
10052          */
10053         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10054         mutex_lock(&parent_event->child_mutex);
10055         list_del_init(&child_event->child_list);
10056         mutex_unlock(&parent_event->child_mutex);
10057
10058         /*
10059          * Kick perf_poll() for is_event_hup().
10060          */
10061         perf_event_wakeup(parent_event);
10062         free_event(child_event);
10063         put_event(parent_event);
10064 }
10065
10066 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10067 {
10068         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10069         struct perf_event *child_event, *next;
10070
10071         WARN_ON_ONCE(child != current);
10072
10073         child_ctx = perf_pin_task_context(child, ctxn);
10074         if (!child_ctx)
10075                 return;
10076
10077         /*
10078          * In order to reduce the amount of tricky in ctx tear-down, we hold
10079          * ctx::mutex over the entire thing. This serializes against almost
10080          * everything that wants to access the ctx.
10081          *
10082          * The exception is sys_perf_event_open() /
10083          * perf_event_create_kernel_count() which does find_get_context()
10084          * without ctx::mutex (it cannot because of the move_group double mutex
10085          * lock thing). See the comments in perf_install_in_context().
10086          */
10087         mutex_lock(&child_ctx->mutex);
10088
10089         /*
10090          * In a single ctx::lock section, de-schedule the events and detach the
10091          * context from the task such that we cannot ever get it scheduled back
10092          * in.
10093          */
10094         raw_spin_lock_irq(&child_ctx->lock);
10095         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10096
10097         /*
10098          * Now that the context is inactive, destroy the task <-> ctx relation
10099          * and mark the context dead.
10100          */
10101         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10102         put_ctx(child_ctx); /* cannot be last */
10103         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10104         put_task_struct(current); /* cannot be last */
10105
10106         clone_ctx = unclone_ctx(child_ctx);
10107         raw_spin_unlock_irq(&child_ctx->lock);
10108
10109         if (clone_ctx)
10110                 put_ctx(clone_ctx);
10111
10112         /*
10113          * Report the task dead after unscheduling the events so that we
10114          * won't get any samples after PERF_RECORD_EXIT. We can however still
10115          * get a few PERF_RECORD_READ events.
10116          */
10117         perf_event_task(child, child_ctx, 0);
10118
10119         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10120                 perf_event_exit_event(child_event, child_ctx, child);
10121
10122         mutex_unlock(&child_ctx->mutex);
10123
10124         put_ctx(child_ctx);
10125 }
10126
10127 /*
10128  * When a child task exits, feed back event values to parent events.
10129  *
10130  * Can be called with cred_guard_mutex held when called from
10131  * install_exec_creds().
10132  */
10133 void perf_event_exit_task(struct task_struct *child)
10134 {
10135         struct perf_event *event, *tmp;
10136         int ctxn;
10137
10138         mutex_lock(&child->perf_event_mutex);
10139         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10140                                  owner_entry) {
10141                 list_del_init(&event->owner_entry);
10142
10143                 /*
10144                  * Ensure the list deletion is visible before we clear
10145                  * the owner, closes a race against perf_release() where
10146                  * we need to serialize on the owner->perf_event_mutex.
10147                  */
10148                 smp_store_release(&event->owner, NULL);
10149         }
10150         mutex_unlock(&child->perf_event_mutex);
10151
10152         for_each_task_context_nr(ctxn)
10153                 perf_event_exit_task_context(child, ctxn);
10154
10155         /*
10156          * The perf_event_exit_task_context calls perf_event_task
10157          * with child's task_ctx, which generates EXIT events for
10158          * child contexts and sets child->perf_event_ctxp[] to NULL.
10159          * At this point we need to send EXIT events to cpu contexts.
10160          */
10161         perf_event_task(child, NULL, 0);
10162 }
10163
10164 static void perf_free_event(struct perf_event *event,
10165                             struct perf_event_context *ctx)
10166 {
10167         struct perf_event *parent = event->parent;
10168
10169         if (WARN_ON_ONCE(!parent))
10170                 return;
10171
10172         mutex_lock(&parent->child_mutex);
10173         list_del_init(&event->child_list);
10174         mutex_unlock(&parent->child_mutex);
10175
10176         put_event(parent);
10177
10178         raw_spin_lock_irq(&ctx->lock);
10179         perf_group_detach(event);
10180         list_del_event(event, ctx);
10181         raw_spin_unlock_irq(&ctx->lock);
10182         free_event(event);
10183 }
10184
10185 /*
10186  * Free an unexposed, unused context as created by inheritance by
10187  * perf_event_init_task below, used by fork() in case of fail.
10188  *
10189  * Not all locks are strictly required, but take them anyway to be nice and
10190  * help out with the lockdep assertions.
10191  */
10192 void perf_event_free_task(struct task_struct *task)
10193 {
10194         struct perf_event_context *ctx;
10195         struct perf_event *event, *tmp;
10196         int ctxn;
10197
10198         for_each_task_context_nr(ctxn) {
10199                 ctx = task->perf_event_ctxp[ctxn];
10200                 if (!ctx)
10201                         continue;
10202
10203                 mutex_lock(&ctx->mutex);
10204 again:
10205                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10206                                 group_entry)
10207                         perf_free_event(event, ctx);
10208
10209                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10210                                 group_entry)
10211                         perf_free_event(event, ctx);
10212
10213                 if (!list_empty(&ctx->pinned_groups) ||
10214                                 !list_empty(&ctx->flexible_groups))
10215                         goto again;
10216
10217                 mutex_unlock(&ctx->mutex);
10218
10219                 put_ctx(ctx);
10220         }
10221 }
10222
10223 void perf_event_delayed_put(struct task_struct *task)
10224 {
10225         int ctxn;
10226
10227         for_each_task_context_nr(ctxn)
10228                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10229 }
10230
10231 struct file *perf_event_get(unsigned int fd)
10232 {
10233         struct file *file;
10234
10235         file = fget_raw(fd);
10236         if (!file)
10237                 return ERR_PTR(-EBADF);
10238
10239         if (file->f_op != &perf_fops) {
10240                 fput(file);
10241                 return ERR_PTR(-EBADF);
10242         }
10243
10244         return file;
10245 }
10246
10247 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10248 {
10249         if (!event)
10250                 return ERR_PTR(-EINVAL);
10251
10252         return &event->attr;
10253 }
10254
10255 /*
10256  * inherit a event from parent task to child task:
10257  */
10258 static struct perf_event *
10259 inherit_event(struct perf_event *parent_event,
10260               struct task_struct *parent,
10261               struct perf_event_context *parent_ctx,
10262               struct task_struct *child,
10263               struct perf_event *group_leader,
10264               struct perf_event_context *child_ctx)
10265 {
10266         enum perf_event_active_state parent_state = parent_event->state;
10267         struct perf_event *child_event;
10268         unsigned long flags;
10269
10270         /*
10271          * Instead of creating recursive hierarchies of events,
10272          * we link inherited events back to the original parent,
10273          * which has a filp for sure, which we use as the reference
10274          * count:
10275          */
10276         if (parent_event->parent)
10277                 parent_event = parent_event->parent;
10278
10279         child_event = perf_event_alloc(&parent_event->attr,
10280                                            parent_event->cpu,
10281                                            child,
10282                                            group_leader, parent_event,
10283                                            NULL, NULL, -1);
10284         if (IS_ERR(child_event))
10285                 return child_event;
10286
10287         /*
10288          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10289          * must be under the same lock in order to serialize against
10290          * perf_event_release_kernel(), such that either we must observe
10291          * is_orphaned_event() or they will observe us on the child_list.
10292          */
10293         mutex_lock(&parent_event->child_mutex);
10294         if (is_orphaned_event(parent_event) ||
10295             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10296                 mutex_unlock(&parent_event->child_mutex);
10297                 free_event(child_event);
10298                 return NULL;
10299         }
10300
10301         get_ctx(child_ctx);
10302
10303         /*
10304          * Make the child state follow the state of the parent event,
10305          * not its attr.disabled bit.  We hold the parent's mutex,
10306          * so we won't race with perf_event_{en, dis}able_family.
10307          */
10308         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10309                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10310         else
10311                 child_event->state = PERF_EVENT_STATE_OFF;
10312
10313         if (parent_event->attr.freq) {
10314                 u64 sample_period = parent_event->hw.sample_period;
10315                 struct hw_perf_event *hwc = &child_event->hw;
10316
10317                 hwc->sample_period = sample_period;
10318                 hwc->last_period   = sample_period;
10319
10320                 local64_set(&hwc->period_left, sample_period);
10321         }
10322
10323         child_event->ctx = child_ctx;
10324         child_event->overflow_handler = parent_event->overflow_handler;
10325         child_event->overflow_handler_context
10326                 = parent_event->overflow_handler_context;
10327
10328         /*
10329          * Precalculate sample_data sizes
10330          */
10331         perf_event__header_size(child_event);
10332         perf_event__id_header_size(child_event);
10333
10334         /*
10335          * Link it up in the child's context:
10336          */
10337         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10338         add_event_to_ctx(child_event, child_ctx);
10339         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10340
10341         /*
10342          * Link this into the parent event's child list
10343          */
10344         list_add_tail(&child_event->child_list, &parent_event->child_list);
10345         mutex_unlock(&parent_event->child_mutex);
10346
10347         return child_event;
10348 }
10349
10350 static int inherit_group(struct perf_event *parent_event,
10351               struct task_struct *parent,
10352               struct perf_event_context *parent_ctx,
10353               struct task_struct *child,
10354               struct perf_event_context *child_ctx)
10355 {
10356         struct perf_event *leader;
10357         struct perf_event *sub;
10358         struct perf_event *child_ctr;
10359
10360         leader = inherit_event(parent_event, parent, parent_ctx,
10361                                  child, NULL, child_ctx);
10362         if (IS_ERR(leader))
10363                 return PTR_ERR(leader);
10364         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10365                 child_ctr = inherit_event(sub, parent, parent_ctx,
10366                                             child, leader, child_ctx);
10367                 if (IS_ERR(child_ctr))
10368                         return PTR_ERR(child_ctr);
10369         }
10370         return 0;
10371 }
10372
10373 static int
10374 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10375                    struct perf_event_context *parent_ctx,
10376                    struct task_struct *child, int ctxn,
10377                    int *inherited_all)
10378 {
10379         int ret;
10380         struct perf_event_context *child_ctx;
10381
10382         if (!event->attr.inherit) {
10383                 *inherited_all = 0;
10384                 return 0;
10385         }
10386
10387         child_ctx = child->perf_event_ctxp[ctxn];
10388         if (!child_ctx) {
10389                 /*
10390                  * This is executed from the parent task context, so
10391                  * inherit events that have been marked for cloning.
10392                  * First allocate and initialize a context for the
10393                  * child.
10394                  */
10395
10396                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10397                 if (!child_ctx)
10398                         return -ENOMEM;
10399
10400                 child->perf_event_ctxp[ctxn] = child_ctx;
10401         }
10402
10403         ret = inherit_group(event, parent, parent_ctx,
10404                             child, child_ctx);
10405
10406         if (ret)
10407                 *inherited_all = 0;
10408
10409         return ret;
10410 }
10411
10412 /*
10413  * Initialize the perf_event context in task_struct
10414  */
10415 static int perf_event_init_context(struct task_struct *child, int ctxn)
10416 {
10417         struct perf_event_context *child_ctx, *parent_ctx;
10418         struct perf_event_context *cloned_ctx;
10419         struct perf_event *event;
10420         struct task_struct *parent = current;
10421         int inherited_all = 1;
10422         unsigned long flags;
10423         int ret = 0;
10424
10425         if (likely(!parent->perf_event_ctxp[ctxn]))
10426                 return 0;
10427
10428         /*
10429          * If the parent's context is a clone, pin it so it won't get
10430          * swapped under us.
10431          */
10432         parent_ctx = perf_pin_task_context(parent, ctxn);
10433         if (!parent_ctx)
10434                 return 0;
10435
10436         /*
10437          * No need to check if parent_ctx != NULL here; since we saw
10438          * it non-NULL earlier, the only reason for it to become NULL
10439          * is if we exit, and since we're currently in the middle of
10440          * a fork we can't be exiting at the same time.
10441          */
10442
10443         /*
10444          * Lock the parent list. No need to lock the child - not PID
10445          * hashed yet and not running, so nobody can access it.
10446          */
10447         mutex_lock(&parent_ctx->mutex);
10448
10449         /*
10450          * We dont have to disable NMIs - we are only looking at
10451          * the list, not manipulating it:
10452          */
10453         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10454                 ret = inherit_task_group(event, parent, parent_ctx,
10455                                          child, ctxn, &inherited_all);
10456                 if (ret)
10457                         break;
10458         }
10459
10460         /*
10461          * We can't hold ctx->lock when iterating the ->flexible_group list due
10462          * to allocations, but we need to prevent rotation because
10463          * rotate_ctx() will change the list from interrupt context.
10464          */
10465         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10466         parent_ctx->rotate_disable = 1;
10467         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10468
10469         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10470                 ret = inherit_task_group(event, parent, parent_ctx,
10471                                          child, ctxn, &inherited_all);
10472                 if (ret)
10473                         break;
10474         }
10475
10476         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10477         parent_ctx->rotate_disable = 0;
10478
10479         child_ctx = child->perf_event_ctxp[ctxn];
10480
10481         if (child_ctx && inherited_all) {
10482                 /*
10483                  * Mark the child context as a clone of the parent
10484                  * context, or of whatever the parent is a clone of.
10485                  *
10486                  * Note that if the parent is a clone, the holding of
10487                  * parent_ctx->lock avoids it from being uncloned.
10488                  */
10489                 cloned_ctx = parent_ctx->parent_ctx;
10490                 if (cloned_ctx) {
10491                         child_ctx->parent_ctx = cloned_ctx;
10492                         child_ctx->parent_gen = parent_ctx->parent_gen;
10493                 } else {
10494                         child_ctx->parent_ctx = parent_ctx;
10495                         child_ctx->parent_gen = parent_ctx->generation;
10496                 }
10497                 get_ctx(child_ctx->parent_ctx);
10498         }
10499
10500         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10501         mutex_unlock(&parent_ctx->mutex);
10502
10503         perf_unpin_context(parent_ctx);
10504         put_ctx(parent_ctx);
10505
10506         return ret;
10507 }
10508
10509 /*
10510  * Initialize the perf_event context in task_struct
10511  */
10512 int perf_event_init_task(struct task_struct *child)
10513 {
10514         int ctxn, ret;
10515
10516         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10517         mutex_init(&child->perf_event_mutex);
10518         INIT_LIST_HEAD(&child->perf_event_list);
10519
10520         for_each_task_context_nr(ctxn) {
10521                 ret = perf_event_init_context(child, ctxn);
10522                 if (ret) {
10523                         perf_event_free_task(child);
10524                         return ret;
10525                 }
10526         }
10527
10528         return 0;
10529 }
10530
10531 static void __init perf_event_init_all_cpus(void)
10532 {
10533         struct swevent_htable *swhash;
10534         int cpu;
10535
10536         for_each_possible_cpu(cpu) {
10537                 swhash = &per_cpu(swevent_htable, cpu);
10538                 mutex_init(&swhash->hlist_mutex);
10539                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10540
10541                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10542                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10543         }
10544 }
10545
10546 int perf_event_init_cpu(unsigned int cpu)
10547 {
10548         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10549
10550         mutex_lock(&swhash->hlist_mutex);
10551         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10552                 struct swevent_hlist *hlist;
10553
10554                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10555                 WARN_ON(!hlist);
10556                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10557         }
10558         mutex_unlock(&swhash->hlist_mutex);
10559         return 0;
10560 }
10561
10562 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10563 static void __perf_event_exit_context(void *__info)
10564 {
10565         struct perf_event_context *ctx = __info;
10566         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10567         struct perf_event *event;
10568
10569         raw_spin_lock(&ctx->lock);
10570         list_for_each_entry(event, &ctx->event_list, event_entry)
10571                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10572         raw_spin_unlock(&ctx->lock);
10573 }
10574
10575 static void perf_event_exit_cpu_context(int cpu)
10576 {
10577         struct perf_event_context *ctx;
10578         struct pmu *pmu;
10579         int idx;
10580
10581         idx = srcu_read_lock(&pmus_srcu);
10582         list_for_each_entry_rcu(pmu, &pmus, entry) {
10583                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10584
10585                 mutex_lock(&ctx->mutex);
10586                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10587                 mutex_unlock(&ctx->mutex);
10588         }
10589         srcu_read_unlock(&pmus_srcu, idx);
10590 }
10591 #else
10592
10593 static void perf_event_exit_cpu_context(int cpu) { }
10594
10595 #endif
10596
10597 int perf_event_exit_cpu(unsigned int cpu)
10598 {
10599         perf_event_exit_cpu_context(cpu);
10600         return 0;
10601 }
10602
10603 static int
10604 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10605 {
10606         int cpu;
10607
10608         for_each_online_cpu(cpu)
10609                 perf_event_exit_cpu(cpu);
10610
10611         return NOTIFY_OK;
10612 }
10613
10614 /*
10615  * Run the perf reboot notifier at the very last possible moment so that
10616  * the generic watchdog code runs as long as possible.
10617  */
10618 static struct notifier_block perf_reboot_notifier = {
10619         .notifier_call = perf_reboot,
10620         .priority = INT_MIN,
10621 };
10622
10623 void __init perf_event_init(void)
10624 {
10625         int ret;
10626
10627         idr_init(&pmu_idr);
10628
10629         perf_event_init_all_cpus();
10630         init_srcu_struct(&pmus_srcu);
10631         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10632         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10633         perf_pmu_register(&perf_task_clock, NULL, -1);
10634         perf_tp_register();
10635         perf_event_init_cpu(smp_processor_id());
10636         register_reboot_notifier(&perf_reboot_notifier);
10637
10638         ret = init_hw_breakpoint();
10639         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10640
10641         /*
10642          * Build time assertion that we keep the data_head at the intended
10643          * location.  IOW, validation we got the __reserved[] size right.
10644          */
10645         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10646                      != 1024);
10647 }
10648
10649 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10650                               char *page)
10651 {
10652         struct perf_pmu_events_attr *pmu_attr =
10653                 container_of(attr, struct perf_pmu_events_attr, attr);
10654
10655         if (pmu_attr->event_str)
10656                 return sprintf(page, "%s\n", pmu_attr->event_str);
10657
10658         return 0;
10659 }
10660 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10661
10662 static int __init perf_event_sysfs_init(void)
10663 {
10664         struct pmu *pmu;
10665         int ret;
10666
10667         mutex_lock(&pmus_lock);
10668
10669         ret = bus_register(&pmu_bus);
10670         if (ret)
10671                 goto unlock;
10672
10673         list_for_each_entry(pmu, &pmus, entry) {
10674                 if (!pmu->name || pmu->type < 0)
10675                         continue;
10676
10677                 ret = pmu_dev_alloc(pmu);
10678                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10679         }
10680         pmu_bus_running = 1;
10681         ret = 0;
10682
10683 unlock:
10684         mutex_unlock(&pmus_lock);
10685
10686         return ret;
10687 }
10688 device_initcall(perf_event_sysfs_init);
10689
10690 #ifdef CONFIG_CGROUP_PERF
10691 static struct cgroup_subsys_state *
10692 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10693 {
10694         struct perf_cgroup *jc;
10695
10696         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10697         if (!jc)
10698                 return ERR_PTR(-ENOMEM);
10699
10700         jc->info = alloc_percpu(struct perf_cgroup_info);
10701         if (!jc->info) {
10702                 kfree(jc);
10703                 return ERR_PTR(-ENOMEM);
10704         }
10705
10706         return &jc->css;
10707 }
10708
10709 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10710 {
10711         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10712
10713         free_percpu(jc->info);
10714         kfree(jc);
10715 }
10716
10717 static int __perf_cgroup_move(void *info)
10718 {
10719         struct task_struct *task = info;
10720         rcu_read_lock();
10721         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10722         rcu_read_unlock();
10723         return 0;
10724 }
10725
10726 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10727 {
10728         struct task_struct *task;
10729         struct cgroup_subsys_state *css;
10730
10731         cgroup_taskset_for_each(task, css, tset)
10732                 task_function_call(task, __perf_cgroup_move, task);
10733 }
10734
10735 struct cgroup_subsys perf_event_cgrp_subsys = {
10736         .css_alloc      = perf_cgroup_css_alloc,
10737         .css_free       = perf_cgroup_css_free,
10738         .attach         = perf_cgroup_attach,
10739 };
10740 #endif /* CONFIG_CGROUP_PERF */