Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905         cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913         return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921         return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451         if (event->attr.pinned)
1452                 return &ctx->pinned_groups;
1453         else
1454                 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465         lockdep_assert_held(&ctx->lock);
1466
1467         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468         event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470         /*
1471          * If we're a stand alone event or group leader, we go to the context
1472          * list, group events are kept attached to the group so that
1473          * perf_group_detach can, at all times, locate all siblings.
1474          */
1475         if (event->group_leader == event) {
1476                 struct list_head *list;
1477
1478                 event->group_caps = event->event_caps;
1479
1480                 list = ctx_group_list(event, ctx);
1481                 list_add_tail(&event->group_entry, list);
1482         }
1483
1484         list_update_cgroup_event(event, ctx, true);
1485
1486         list_add_rcu(&event->event_entry, &ctx->event_list);
1487         ctx->nr_events++;
1488         if (event->attr.inherit_stat)
1489                 ctx->nr_stat++;
1490
1491         ctx->generation++;
1492 }
1493
1494 /*
1495  * Initialize event state based on the perf_event_attr::disabled.
1496  */
1497 static inline void perf_event__state_init(struct perf_event *event)
1498 {
1499         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500                                               PERF_EVENT_STATE_INACTIVE;
1501 }
1502
1503 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 {
1505         int entry = sizeof(u64); /* value */
1506         int size = 0;
1507         int nr = 1;
1508
1509         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510                 size += sizeof(u64);
1511
1512         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513                 size += sizeof(u64);
1514
1515         if (event->attr.read_format & PERF_FORMAT_ID)
1516                 entry += sizeof(u64);
1517
1518         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1519                 nr += nr_siblings;
1520                 size += sizeof(u64);
1521         }
1522
1523         size += entry * nr;
1524         event->read_size = size;
1525 }
1526
1527 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 {
1529         struct perf_sample_data *data;
1530         u16 size = 0;
1531
1532         if (sample_type & PERF_SAMPLE_IP)
1533                 size += sizeof(data->ip);
1534
1535         if (sample_type & PERF_SAMPLE_ADDR)
1536                 size += sizeof(data->addr);
1537
1538         if (sample_type & PERF_SAMPLE_PERIOD)
1539                 size += sizeof(data->period);
1540
1541         if (sample_type & PERF_SAMPLE_WEIGHT)
1542                 size += sizeof(data->weight);
1543
1544         if (sample_type & PERF_SAMPLE_READ)
1545                 size += event->read_size;
1546
1547         if (sample_type & PERF_SAMPLE_DATA_SRC)
1548                 size += sizeof(data->data_src.val);
1549
1550         if (sample_type & PERF_SAMPLE_TRANSACTION)
1551                 size += sizeof(data->txn);
1552
1553         event->header_size = size;
1554 }
1555
1556 /*
1557  * Called at perf_event creation and when events are attached/detached from a
1558  * group.
1559  */
1560 static void perf_event__header_size(struct perf_event *event)
1561 {
1562         __perf_event_read_size(event,
1563                                event->group_leader->nr_siblings);
1564         __perf_event_header_size(event, event->attr.sample_type);
1565 }
1566
1567 static void perf_event__id_header_size(struct perf_event *event)
1568 {
1569         struct perf_sample_data *data;
1570         u64 sample_type = event->attr.sample_type;
1571         u16 size = 0;
1572
1573         if (sample_type & PERF_SAMPLE_TID)
1574                 size += sizeof(data->tid_entry);
1575
1576         if (sample_type & PERF_SAMPLE_TIME)
1577                 size += sizeof(data->time);
1578
1579         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580                 size += sizeof(data->id);
1581
1582         if (sample_type & PERF_SAMPLE_ID)
1583                 size += sizeof(data->id);
1584
1585         if (sample_type & PERF_SAMPLE_STREAM_ID)
1586                 size += sizeof(data->stream_id);
1587
1588         if (sample_type & PERF_SAMPLE_CPU)
1589                 size += sizeof(data->cpu_entry);
1590
1591         event->id_header_size = size;
1592 }
1593
1594 static bool perf_event_validate_size(struct perf_event *event)
1595 {
1596         /*
1597          * The values computed here will be over-written when we actually
1598          * attach the event.
1599          */
1600         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602         perf_event__id_header_size(event);
1603
1604         /*
1605          * Sum the lot; should not exceed the 64k limit we have on records.
1606          * Conservative limit to allow for callchains and other variable fields.
1607          */
1608         if (event->read_size + event->header_size +
1609             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610                 return false;
1611
1612         return true;
1613 }
1614
1615 static void perf_group_attach(struct perf_event *event)
1616 {
1617         struct perf_event *group_leader = event->group_leader, *pos;
1618
1619         /*
1620          * We can have double attach due to group movement in perf_event_open.
1621          */
1622         if (event->attach_state & PERF_ATTACH_GROUP)
1623                 return;
1624
1625         event->attach_state |= PERF_ATTACH_GROUP;
1626
1627         if (group_leader == event)
1628                 return;
1629
1630         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631
1632         group_leader->group_caps &= event->event_caps;
1633
1634         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635         group_leader->nr_siblings++;
1636
1637         perf_event__header_size(group_leader);
1638
1639         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640                 perf_event__header_size(pos);
1641 }
1642
1643 /*
1644  * Remove a event from the lists for its context.
1645  * Must be called with ctx->mutex and ctx->lock held.
1646  */
1647 static void
1648 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         WARN_ON_ONCE(event->ctx != ctx);
1651         lockdep_assert_held(&ctx->lock);
1652
1653         /*
1654          * We can have double detach due to exit/hot-unplug + close.
1655          */
1656         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657                 return;
1658
1659         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660
1661         list_update_cgroup_event(event, ctx, false);
1662
1663         ctx->nr_events--;
1664         if (event->attr.inherit_stat)
1665                 ctx->nr_stat--;
1666
1667         list_del_rcu(&event->event_entry);
1668
1669         if (event->group_leader == event)
1670                 list_del_init(&event->group_entry);
1671
1672         update_group_times(event);
1673
1674         /*
1675          * If event was in error state, then keep it
1676          * that way, otherwise bogus counts will be
1677          * returned on read(). The only way to get out
1678          * of error state is by explicit re-enabling
1679          * of the event
1680          */
1681         if (event->state > PERF_EVENT_STATE_OFF)
1682                 event->state = PERF_EVENT_STATE_OFF;
1683
1684         ctx->generation++;
1685 }
1686
1687 static void perf_group_detach(struct perf_event *event)
1688 {
1689         struct perf_event *sibling, *tmp;
1690         struct list_head *list = NULL;
1691
1692         /*
1693          * We can have double detach due to exit/hot-unplug + close.
1694          */
1695         if (!(event->attach_state & PERF_ATTACH_GROUP))
1696                 return;
1697
1698         event->attach_state &= ~PERF_ATTACH_GROUP;
1699
1700         /*
1701          * If this is a sibling, remove it from its group.
1702          */
1703         if (event->group_leader != event) {
1704                 list_del_init(&event->group_entry);
1705                 event->group_leader->nr_siblings--;
1706                 goto out;
1707         }
1708
1709         if (!list_empty(&event->group_entry))
1710                 list = &event->group_entry;
1711
1712         /*
1713          * If this was a group event with sibling events then
1714          * upgrade the siblings to singleton events by adding them
1715          * to whatever list we are on.
1716          */
1717         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718                 if (list)
1719                         list_move_tail(&sibling->group_entry, list);
1720                 sibling->group_leader = sibling;
1721
1722                 /* Inherit group flags from the previous leader */
1723                 sibling->group_caps = event->group_caps;
1724
1725                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1726         }
1727
1728 out:
1729         perf_event__header_size(event->group_leader);
1730
1731         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732                 perf_event__header_size(tmp);
1733 }
1734
1735 static bool is_orphaned_event(struct perf_event *event)
1736 {
1737         return event->state == PERF_EVENT_STATE_DEAD;
1738 }
1739
1740 static inline int __pmu_filter_match(struct perf_event *event)
1741 {
1742         struct pmu *pmu = event->pmu;
1743         return pmu->filter_match ? pmu->filter_match(event) : 1;
1744 }
1745
1746 /*
1747  * Check whether we should attempt to schedule an event group based on
1748  * PMU-specific filtering. An event group can consist of HW and SW events,
1749  * potentially with a SW leader, so we must check all the filters, to
1750  * determine whether a group is schedulable:
1751  */
1752 static inline int pmu_filter_match(struct perf_event *event)
1753 {
1754         struct perf_event *child;
1755
1756         if (!__pmu_filter_match(event))
1757                 return 0;
1758
1759         list_for_each_entry(child, &event->sibling_list, group_entry) {
1760                 if (!__pmu_filter_match(child))
1761                         return 0;
1762         }
1763
1764         return 1;
1765 }
1766
1767 static inline int
1768 event_filter_match(struct perf_event *event)
1769 {
1770         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771                perf_cgroup_match(event) && pmu_filter_match(event);
1772 }
1773
1774 static void
1775 event_sched_out(struct perf_event *event,
1776                   struct perf_cpu_context *cpuctx,
1777                   struct perf_event_context *ctx)
1778 {
1779         u64 tstamp = perf_event_time(event);
1780         u64 delta;
1781
1782         WARN_ON_ONCE(event->ctx != ctx);
1783         lockdep_assert_held(&ctx->lock);
1784
1785         /*
1786          * An event which could not be activated because of
1787          * filter mismatch still needs to have its timings
1788          * maintained, otherwise bogus information is return
1789          * via read() for time_enabled, time_running:
1790          */
1791         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792             !event_filter_match(event)) {
1793                 delta = tstamp - event->tstamp_stopped;
1794                 event->tstamp_running += delta;
1795                 event->tstamp_stopped = tstamp;
1796         }
1797
1798         if (event->state != PERF_EVENT_STATE_ACTIVE)
1799                 return;
1800
1801         perf_pmu_disable(event->pmu);
1802
1803         event->tstamp_stopped = tstamp;
1804         event->pmu->del(event, 0);
1805         event->oncpu = -1;
1806         event->state = PERF_EVENT_STATE_INACTIVE;
1807         if (event->pending_disable) {
1808                 event->pending_disable = 0;
1809                 event->state = PERF_EVENT_STATE_OFF;
1810         }
1811
1812         if (!is_software_event(event))
1813                 cpuctx->active_oncpu--;
1814         if (!--ctx->nr_active)
1815                 perf_event_ctx_deactivate(ctx);
1816         if (event->attr.freq && event->attr.sample_freq)
1817                 ctx->nr_freq--;
1818         if (event->attr.exclusive || !cpuctx->active_oncpu)
1819                 cpuctx->exclusive = 0;
1820
1821         perf_pmu_enable(event->pmu);
1822 }
1823
1824 static void
1825 group_sched_out(struct perf_event *group_event,
1826                 struct perf_cpu_context *cpuctx,
1827                 struct perf_event_context *ctx)
1828 {
1829         struct perf_event *event;
1830         int state = group_event->state;
1831
1832         perf_pmu_disable(ctx->pmu);
1833
1834         event_sched_out(group_event, cpuctx, ctx);
1835
1836         /*
1837          * Schedule out siblings (if any):
1838          */
1839         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840                 event_sched_out(event, cpuctx, ctx);
1841
1842         perf_pmu_enable(ctx->pmu);
1843
1844         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845                 cpuctx->exclusive = 0;
1846 }
1847
1848 #define DETACH_GROUP    0x01UL
1849
1850 /*
1851  * Cross CPU call to remove a performance event
1852  *
1853  * We disable the event on the hardware level first. After that we
1854  * remove it from the context list.
1855  */
1856 static void
1857 __perf_remove_from_context(struct perf_event *event,
1858                            struct perf_cpu_context *cpuctx,
1859                            struct perf_event_context *ctx,
1860                            void *info)
1861 {
1862         unsigned long flags = (unsigned long)info;
1863
1864         event_sched_out(event, cpuctx, ctx);
1865         if (flags & DETACH_GROUP)
1866                 perf_group_detach(event);
1867         list_del_event(event, ctx);
1868
1869         if (!ctx->nr_events && ctx->is_active) {
1870                 ctx->is_active = 0;
1871                 if (ctx->task) {
1872                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873                         cpuctx->task_ctx = NULL;
1874                 }
1875         }
1876 }
1877
1878 /*
1879  * Remove the event from a task's (or a CPU's) list of events.
1880  *
1881  * If event->ctx is a cloned context, callers must make sure that
1882  * every task struct that event->ctx->task could possibly point to
1883  * remains valid.  This is OK when called from perf_release since
1884  * that only calls us on the top-level context, which can't be a clone.
1885  * When called from perf_event_exit_task, it's OK because the
1886  * context has been detached from its task.
1887  */
1888 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1889 {
1890         lockdep_assert_held(&event->ctx->mutex);
1891
1892         event_function_call(event, __perf_remove_from_context, (void *)flags);
1893 }
1894
1895 /*
1896  * Cross CPU call to disable a performance event
1897  */
1898 static void __perf_event_disable(struct perf_event *event,
1899                                  struct perf_cpu_context *cpuctx,
1900                                  struct perf_event_context *ctx,
1901                                  void *info)
1902 {
1903         if (event->state < PERF_EVENT_STATE_INACTIVE)
1904                 return;
1905
1906         update_context_time(ctx);
1907         update_cgrp_time_from_event(event);
1908         update_group_times(event);
1909         if (event == event->group_leader)
1910                 group_sched_out(event, cpuctx, ctx);
1911         else
1912                 event_sched_out(event, cpuctx, ctx);
1913         event->state = PERF_EVENT_STATE_OFF;
1914 }
1915
1916 /*
1917  * Disable a event.
1918  *
1919  * If event->ctx is a cloned context, callers must make sure that
1920  * every task struct that event->ctx->task could possibly point to
1921  * remains valid.  This condition is satisifed when called through
1922  * perf_event_for_each_child or perf_event_for_each because they
1923  * hold the top-level event's child_mutex, so any descendant that
1924  * goes to exit will block in perf_event_exit_event().
1925  *
1926  * When called from perf_pending_event it's OK because event->ctx
1927  * is the current context on this CPU and preemption is disabled,
1928  * hence we can't get into perf_event_task_sched_out for this context.
1929  */
1930 static void _perf_event_disable(struct perf_event *event)
1931 {
1932         struct perf_event_context *ctx = event->ctx;
1933
1934         raw_spin_lock_irq(&ctx->lock);
1935         if (event->state <= PERF_EVENT_STATE_OFF) {
1936                 raw_spin_unlock_irq(&ctx->lock);
1937                 return;
1938         }
1939         raw_spin_unlock_irq(&ctx->lock);
1940
1941         event_function_call(event, __perf_event_disable, NULL);
1942 }
1943
1944 void perf_event_disable_local(struct perf_event *event)
1945 {
1946         event_function_local(event, __perf_event_disable, NULL);
1947 }
1948
1949 /*
1950  * Strictly speaking kernel users cannot create groups and therefore this
1951  * interface does not need the perf_event_ctx_lock() magic.
1952  */
1953 void perf_event_disable(struct perf_event *event)
1954 {
1955         struct perf_event_context *ctx;
1956
1957         ctx = perf_event_ctx_lock(event);
1958         _perf_event_disable(event);
1959         perf_event_ctx_unlock(event, ctx);
1960 }
1961 EXPORT_SYMBOL_GPL(perf_event_disable);
1962
1963 static void perf_set_shadow_time(struct perf_event *event,
1964                                  struct perf_event_context *ctx,
1965                                  u64 tstamp)
1966 {
1967         /*
1968          * use the correct time source for the time snapshot
1969          *
1970          * We could get by without this by leveraging the
1971          * fact that to get to this function, the caller
1972          * has most likely already called update_context_time()
1973          * and update_cgrp_time_xx() and thus both timestamp
1974          * are identical (or very close). Given that tstamp is,
1975          * already adjusted for cgroup, we could say that:
1976          *    tstamp - ctx->timestamp
1977          * is equivalent to
1978          *    tstamp - cgrp->timestamp.
1979          *
1980          * Then, in perf_output_read(), the calculation would
1981          * work with no changes because:
1982          * - event is guaranteed scheduled in
1983          * - no scheduled out in between
1984          * - thus the timestamp would be the same
1985          *
1986          * But this is a bit hairy.
1987          *
1988          * So instead, we have an explicit cgroup call to remain
1989          * within the time time source all along. We believe it
1990          * is cleaner and simpler to understand.
1991          */
1992         if (is_cgroup_event(event))
1993                 perf_cgroup_set_shadow_time(event, tstamp);
1994         else
1995                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1996 }
1997
1998 #define MAX_INTERRUPTS (~0ULL)
1999
2000 static void perf_log_throttle(struct perf_event *event, int enable);
2001 static void perf_log_itrace_start(struct perf_event *event);
2002
2003 static int
2004 event_sched_in(struct perf_event *event,
2005                  struct perf_cpu_context *cpuctx,
2006                  struct perf_event_context *ctx)
2007 {
2008         u64 tstamp = perf_event_time(event);
2009         int ret = 0;
2010
2011         lockdep_assert_held(&ctx->lock);
2012
2013         if (event->state <= PERF_EVENT_STATE_OFF)
2014                 return 0;
2015
2016         WRITE_ONCE(event->oncpu, smp_processor_id());
2017         /*
2018          * Order event::oncpu write to happen before the ACTIVE state
2019          * is visible.
2020          */
2021         smp_wmb();
2022         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2023
2024         /*
2025          * Unthrottle events, since we scheduled we might have missed several
2026          * ticks already, also for a heavily scheduling task there is little
2027          * guarantee it'll get a tick in a timely manner.
2028          */
2029         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2030                 perf_log_throttle(event, 1);
2031                 event->hw.interrupts = 0;
2032         }
2033
2034         /*
2035          * The new state must be visible before we turn it on in the hardware:
2036          */
2037         smp_wmb();
2038
2039         perf_pmu_disable(event->pmu);
2040
2041         perf_set_shadow_time(event, ctx, tstamp);
2042
2043         perf_log_itrace_start(event);
2044
2045         if (event->pmu->add(event, PERF_EF_START)) {
2046                 event->state = PERF_EVENT_STATE_INACTIVE;
2047                 event->oncpu = -1;
2048                 ret = -EAGAIN;
2049                 goto out;
2050         }
2051
2052         event->tstamp_running += tstamp - event->tstamp_stopped;
2053
2054         if (!is_software_event(event))
2055                 cpuctx->active_oncpu++;
2056         if (!ctx->nr_active++)
2057                 perf_event_ctx_activate(ctx);
2058         if (event->attr.freq && event->attr.sample_freq)
2059                 ctx->nr_freq++;
2060
2061         if (event->attr.exclusive)
2062                 cpuctx->exclusive = 1;
2063
2064 out:
2065         perf_pmu_enable(event->pmu);
2066
2067         return ret;
2068 }
2069
2070 static int
2071 group_sched_in(struct perf_event *group_event,
2072                struct perf_cpu_context *cpuctx,
2073                struct perf_event_context *ctx)
2074 {
2075         struct perf_event *event, *partial_group = NULL;
2076         struct pmu *pmu = ctx->pmu;
2077         u64 now = ctx->time;
2078         bool simulate = false;
2079
2080         if (group_event->state == PERF_EVENT_STATE_OFF)
2081                 return 0;
2082
2083         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2084
2085         if (event_sched_in(group_event, cpuctx, ctx)) {
2086                 pmu->cancel_txn(pmu);
2087                 perf_mux_hrtimer_restart(cpuctx);
2088                 return -EAGAIN;
2089         }
2090
2091         /*
2092          * Schedule in siblings as one group (if any):
2093          */
2094         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2095                 if (event_sched_in(event, cpuctx, ctx)) {
2096                         partial_group = event;
2097                         goto group_error;
2098                 }
2099         }
2100
2101         if (!pmu->commit_txn(pmu))
2102                 return 0;
2103
2104 group_error:
2105         /*
2106          * Groups can be scheduled in as one unit only, so undo any
2107          * partial group before returning:
2108          * The events up to the failed event are scheduled out normally,
2109          * tstamp_stopped will be updated.
2110          *
2111          * The failed events and the remaining siblings need to have
2112          * their timings updated as if they had gone thru event_sched_in()
2113          * and event_sched_out(). This is required to get consistent timings
2114          * across the group. This also takes care of the case where the group
2115          * could never be scheduled by ensuring tstamp_stopped is set to mark
2116          * the time the event was actually stopped, such that time delta
2117          * calculation in update_event_times() is correct.
2118          */
2119         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2120                 if (event == partial_group)
2121                         simulate = true;
2122
2123                 if (simulate) {
2124                         event->tstamp_running += now - event->tstamp_stopped;
2125                         event->tstamp_stopped = now;
2126                 } else {
2127                         event_sched_out(event, cpuctx, ctx);
2128                 }
2129         }
2130         event_sched_out(group_event, cpuctx, ctx);
2131
2132         pmu->cancel_txn(pmu);
2133
2134         perf_mux_hrtimer_restart(cpuctx);
2135
2136         return -EAGAIN;
2137 }
2138
2139 /*
2140  * Work out whether we can put this event group on the CPU now.
2141  */
2142 static int group_can_go_on(struct perf_event *event,
2143                            struct perf_cpu_context *cpuctx,
2144                            int can_add_hw)
2145 {
2146         /*
2147          * Groups consisting entirely of software events can always go on.
2148          */
2149         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2150                 return 1;
2151         /*
2152          * If an exclusive group is already on, no other hardware
2153          * events can go on.
2154          */
2155         if (cpuctx->exclusive)
2156                 return 0;
2157         /*
2158          * If this group is exclusive and there are already
2159          * events on the CPU, it can't go on.
2160          */
2161         if (event->attr.exclusive && cpuctx->active_oncpu)
2162                 return 0;
2163         /*
2164          * Otherwise, try to add it if all previous groups were able
2165          * to go on.
2166          */
2167         return can_add_hw;
2168 }
2169
2170 static void add_event_to_ctx(struct perf_event *event,
2171                                struct perf_event_context *ctx)
2172 {
2173         u64 tstamp = perf_event_time(event);
2174
2175         list_add_event(event, ctx);
2176         perf_group_attach(event);
2177         event->tstamp_enabled = tstamp;
2178         event->tstamp_running = tstamp;
2179         event->tstamp_stopped = tstamp;
2180 }
2181
2182 static void ctx_sched_out(struct perf_event_context *ctx,
2183                           struct perf_cpu_context *cpuctx,
2184                           enum event_type_t event_type);
2185 static void
2186 ctx_sched_in(struct perf_event_context *ctx,
2187              struct perf_cpu_context *cpuctx,
2188              enum event_type_t event_type,
2189              struct task_struct *task);
2190
2191 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2192                                struct perf_event_context *ctx)
2193 {
2194         if (!cpuctx->task_ctx)
2195                 return;
2196
2197         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2198                 return;
2199
2200         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2201 }
2202
2203 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2204                                 struct perf_event_context *ctx,
2205                                 struct task_struct *task)
2206 {
2207         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2208         if (ctx)
2209                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2210         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2211         if (ctx)
2212                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2213 }
2214
2215 static void ctx_resched(struct perf_cpu_context *cpuctx,
2216                         struct perf_event_context *task_ctx)
2217 {
2218         perf_pmu_disable(cpuctx->ctx.pmu);
2219         if (task_ctx)
2220                 task_ctx_sched_out(cpuctx, task_ctx);
2221         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2222         perf_event_sched_in(cpuctx, task_ctx, current);
2223         perf_pmu_enable(cpuctx->ctx.pmu);
2224 }
2225
2226 /*
2227  * Cross CPU call to install and enable a performance event
2228  *
2229  * Very similar to remote_function() + event_function() but cannot assume that
2230  * things like ctx->is_active and cpuctx->task_ctx are set.
2231  */
2232 static int  __perf_install_in_context(void *info)
2233 {
2234         struct perf_event *event = info;
2235         struct perf_event_context *ctx = event->ctx;
2236         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2237         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2238         bool activate = true;
2239         int ret = 0;
2240
2241         raw_spin_lock(&cpuctx->ctx.lock);
2242         if (ctx->task) {
2243                 raw_spin_lock(&ctx->lock);
2244                 task_ctx = ctx;
2245
2246                 /* If we're on the wrong CPU, try again */
2247                 if (task_cpu(ctx->task) != smp_processor_id()) {
2248                         ret = -ESRCH;
2249                         goto unlock;
2250                 }
2251
2252                 /*
2253                  * If we're on the right CPU, see if the task we target is
2254                  * current, if not we don't have to activate the ctx, a future
2255                  * context switch will do that for us.
2256                  */
2257                 if (ctx->task != current)
2258                         activate = false;
2259                 else
2260                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2261
2262         } else if (task_ctx) {
2263                 raw_spin_lock(&task_ctx->lock);
2264         }
2265
2266         if (activate) {
2267                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2268                 add_event_to_ctx(event, ctx);
2269                 ctx_resched(cpuctx, task_ctx);
2270         } else {
2271                 add_event_to_ctx(event, ctx);
2272         }
2273
2274 unlock:
2275         perf_ctx_unlock(cpuctx, task_ctx);
2276
2277         return ret;
2278 }
2279
2280 /*
2281  * Attach a performance event to a context.
2282  *
2283  * Very similar to event_function_call, see comment there.
2284  */
2285 static void
2286 perf_install_in_context(struct perf_event_context *ctx,
2287                         struct perf_event *event,
2288                         int cpu)
2289 {
2290         struct task_struct *task = READ_ONCE(ctx->task);
2291
2292         lockdep_assert_held(&ctx->mutex);
2293
2294         if (event->cpu != -1)
2295                 event->cpu = cpu;
2296
2297         /*
2298          * Ensures that if we can observe event->ctx, both the event and ctx
2299          * will be 'complete'. See perf_iterate_sb_cpu().
2300          */
2301         smp_store_release(&event->ctx, ctx);
2302
2303         if (!task) {
2304                 cpu_function_call(cpu, __perf_install_in_context, event);
2305                 return;
2306         }
2307
2308         /*
2309          * Should not happen, we validate the ctx is still alive before calling.
2310          */
2311         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2312                 return;
2313
2314         /*
2315          * Installing events is tricky because we cannot rely on ctx->is_active
2316          * to be set in case this is the nr_events 0 -> 1 transition.
2317          */
2318 again:
2319         /*
2320          * Cannot use task_function_call() because we need to run on the task's
2321          * CPU regardless of whether its current or not.
2322          */
2323         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2324                 return;
2325
2326         raw_spin_lock_irq(&ctx->lock);
2327         task = ctx->task;
2328         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2329                 /*
2330                  * Cannot happen because we already checked above (which also
2331                  * cannot happen), and we hold ctx->mutex, which serializes us
2332                  * against perf_event_exit_task_context().
2333                  */
2334                 raw_spin_unlock_irq(&ctx->lock);
2335                 return;
2336         }
2337         raw_spin_unlock_irq(&ctx->lock);
2338         /*
2339          * Since !ctx->is_active doesn't mean anything, we must IPI
2340          * unconditionally.
2341          */
2342         goto again;
2343 }
2344
2345 /*
2346  * Put a event into inactive state and update time fields.
2347  * Enabling the leader of a group effectively enables all
2348  * the group members that aren't explicitly disabled, so we
2349  * have to update their ->tstamp_enabled also.
2350  * Note: this works for group members as well as group leaders
2351  * since the non-leader members' sibling_lists will be empty.
2352  */
2353 static void __perf_event_mark_enabled(struct perf_event *event)
2354 {
2355         struct perf_event *sub;
2356         u64 tstamp = perf_event_time(event);
2357
2358         event->state = PERF_EVENT_STATE_INACTIVE;
2359         event->tstamp_enabled = tstamp - event->total_time_enabled;
2360         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2361                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2362                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2363         }
2364 }
2365
2366 /*
2367  * Cross CPU call to enable a performance event
2368  */
2369 static void __perf_event_enable(struct perf_event *event,
2370                                 struct perf_cpu_context *cpuctx,
2371                                 struct perf_event_context *ctx,
2372                                 void *info)
2373 {
2374         struct perf_event *leader = event->group_leader;
2375         struct perf_event_context *task_ctx;
2376
2377         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2378             event->state <= PERF_EVENT_STATE_ERROR)
2379                 return;
2380
2381         if (ctx->is_active)
2382                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2383
2384         __perf_event_mark_enabled(event);
2385
2386         if (!ctx->is_active)
2387                 return;
2388
2389         if (!event_filter_match(event)) {
2390                 if (is_cgroup_event(event))
2391                         perf_cgroup_defer_enabled(event);
2392                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2393                 return;
2394         }
2395
2396         /*
2397          * If the event is in a group and isn't the group leader,
2398          * then don't put it on unless the group is on.
2399          */
2400         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2401                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2402                 return;
2403         }
2404
2405         task_ctx = cpuctx->task_ctx;
2406         if (ctx->task)
2407                 WARN_ON_ONCE(task_ctx != ctx);
2408
2409         ctx_resched(cpuctx, task_ctx);
2410 }
2411
2412 /*
2413  * Enable a event.
2414  *
2415  * If event->ctx is a cloned context, callers must make sure that
2416  * every task struct that event->ctx->task could possibly point to
2417  * remains valid.  This condition is satisfied when called through
2418  * perf_event_for_each_child or perf_event_for_each as described
2419  * for perf_event_disable.
2420  */
2421 static void _perf_event_enable(struct perf_event *event)
2422 {
2423         struct perf_event_context *ctx = event->ctx;
2424
2425         raw_spin_lock_irq(&ctx->lock);
2426         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2427             event->state <  PERF_EVENT_STATE_ERROR) {
2428                 raw_spin_unlock_irq(&ctx->lock);
2429                 return;
2430         }
2431
2432         /*
2433          * If the event is in error state, clear that first.
2434          *
2435          * That way, if we see the event in error state below, we know that it
2436          * has gone back into error state, as distinct from the task having
2437          * been scheduled away before the cross-call arrived.
2438          */
2439         if (event->state == PERF_EVENT_STATE_ERROR)
2440                 event->state = PERF_EVENT_STATE_OFF;
2441         raw_spin_unlock_irq(&ctx->lock);
2442
2443         event_function_call(event, __perf_event_enable, NULL);
2444 }
2445
2446 /*
2447  * See perf_event_disable();
2448  */
2449 void perf_event_enable(struct perf_event *event)
2450 {
2451         struct perf_event_context *ctx;
2452
2453         ctx = perf_event_ctx_lock(event);
2454         _perf_event_enable(event);
2455         perf_event_ctx_unlock(event, ctx);
2456 }
2457 EXPORT_SYMBOL_GPL(perf_event_enable);
2458
2459 struct stop_event_data {
2460         struct perf_event       *event;
2461         unsigned int            restart;
2462 };
2463
2464 static int __perf_event_stop(void *info)
2465 {
2466         struct stop_event_data *sd = info;
2467         struct perf_event *event = sd->event;
2468
2469         /* if it's already INACTIVE, do nothing */
2470         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2471                 return 0;
2472
2473         /* matches smp_wmb() in event_sched_in() */
2474         smp_rmb();
2475
2476         /*
2477          * There is a window with interrupts enabled before we get here,
2478          * so we need to check again lest we try to stop another CPU's event.
2479          */
2480         if (READ_ONCE(event->oncpu) != smp_processor_id())
2481                 return -EAGAIN;
2482
2483         event->pmu->stop(event, PERF_EF_UPDATE);
2484
2485         /*
2486          * May race with the actual stop (through perf_pmu_output_stop()),
2487          * but it is only used for events with AUX ring buffer, and such
2488          * events will refuse to restart because of rb::aux_mmap_count==0,
2489          * see comments in perf_aux_output_begin().
2490          *
2491          * Since this is happening on a event-local CPU, no trace is lost
2492          * while restarting.
2493          */
2494         if (sd->restart)
2495                 event->pmu->start(event, 0);
2496
2497         return 0;
2498 }
2499
2500 static int perf_event_stop(struct perf_event *event, int restart)
2501 {
2502         struct stop_event_data sd = {
2503                 .event          = event,
2504                 .restart        = restart,
2505         };
2506         int ret = 0;
2507
2508         do {
2509                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2510                         return 0;
2511
2512                 /* matches smp_wmb() in event_sched_in() */
2513                 smp_rmb();
2514
2515                 /*
2516                  * We only want to restart ACTIVE events, so if the event goes
2517                  * inactive here (event->oncpu==-1), there's nothing more to do;
2518                  * fall through with ret==-ENXIO.
2519                  */
2520                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2521                                         __perf_event_stop, &sd);
2522         } while (ret == -EAGAIN);
2523
2524         return ret;
2525 }
2526
2527 /*
2528  * In order to contain the amount of racy and tricky in the address filter
2529  * configuration management, it is a two part process:
2530  *
2531  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532  *      we update the addresses of corresponding vmas in
2533  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2534  * (p2) when an event is scheduled in (pmu::add), it calls
2535  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536  *      if the generation has changed since the previous call.
2537  *
2538  * If (p1) happens while the event is active, we restart it to force (p2).
2539  *
2540  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2542  *     ioctl;
2543  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2545  *     for reading;
2546  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2547  *     of exec.
2548  */
2549 void perf_event_addr_filters_sync(struct perf_event *event)
2550 {
2551         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2552
2553         if (!has_addr_filter(event))
2554                 return;
2555
2556         raw_spin_lock(&ifh->lock);
2557         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2558                 event->pmu->addr_filters_sync(event);
2559                 event->hw.addr_filters_gen = event->addr_filters_gen;
2560         }
2561         raw_spin_unlock(&ifh->lock);
2562 }
2563 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2564
2565 static int _perf_event_refresh(struct perf_event *event, int refresh)
2566 {
2567         /*
2568          * not supported on inherited events
2569          */
2570         if (event->attr.inherit || !is_sampling_event(event))
2571                 return -EINVAL;
2572
2573         atomic_add(refresh, &event->event_limit);
2574         _perf_event_enable(event);
2575
2576         return 0;
2577 }
2578
2579 /*
2580  * See perf_event_disable()
2581  */
2582 int perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584         struct perf_event_context *ctx;
2585         int ret;
2586
2587         ctx = perf_event_ctx_lock(event);
2588         ret = _perf_event_refresh(event, refresh);
2589         perf_event_ctx_unlock(event, ctx);
2590
2591         return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(perf_event_refresh);
2594
2595 static void ctx_sched_out(struct perf_event_context *ctx,
2596                           struct perf_cpu_context *cpuctx,
2597                           enum event_type_t event_type)
2598 {
2599         int is_active = ctx->is_active;
2600         struct perf_event *event;
2601
2602         lockdep_assert_held(&ctx->lock);
2603
2604         if (likely(!ctx->nr_events)) {
2605                 /*
2606                  * See __perf_remove_from_context().
2607                  */
2608                 WARN_ON_ONCE(ctx->is_active);
2609                 if (ctx->task)
2610                         WARN_ON_ONCE(cpuctx->task_ctx);
2611                 return;
2612         }
2613
2614         ctx->is_active &= ~event_type;
2615         if (!(ctx->is_active & EVENT_ALL))
2616                 ctx->is_active = 0;
2617
2618         if (ctx->task) {
2619                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2620                 if (!ctx->is_active)
2621                         cpuctx->task_ctx = NULL;
2622         }
2623
2624         /*
2625          * Always update time if it was set; not only when it changes.
2626          * Otherwise we can 'forget' to update time for any but the last
2627          * context we sched out. For example:
2628          *
2629          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630          *   ctx_sched_out(.event_type = EVENT_PINNED)
2631          *
2632          * would only update time for the pinned events.
2633          */
2634         if (is_active & EVENT_TIME) {
2635                 /* update (and stop) ctx time */
2636                 update_context_time(ctx);
2637                 update_cgrp_time_from_cpuctx(cpuctx);
2638         }
2639
2640         is_active ^= ctx->is_active; /* changed bits */
2641
2642         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2643                 return;
2644
2645         perf_pmu_disable(ctx->pmu);
2646         if (is_active & EVENT_PINNED) {
2647                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2648                         group_sched_out(event, cpuctx, ctx);
2649         }
2650
2651         if (is_active & EVENT_FLEXIBLE) {
2652                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2653                         group_sched_out(event, cpuctx, ctx);
2654         }
2655         perf_pmu_enable(ctx->pmu);
2656 }
2657
2658 /*
2659  * Test whether two contexts are equivalent, i.e. whether they have both been
2660  * cloned from the same version of the same context.
2661  *
2662  * Equivalence is measured using a generation number in the context that is
2663  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664  * and list_del_event().
2665  */
2666 static int context_equiv(struct perf_event_context *ctx1,
2667                          struct perf_event_context *ctx2)
2668 {
2669         lockdep_assert_held(&ctx1->lock);
2670         lockdep_assert_held(&ctx2->lock);
2671
2672         /* Pinning disables the swap optimization */
2673         if (ctx1->pin_count || ctx2->pin_count)
2674                 return 0;
2675
2676         /* If ctx1 is the parent of ctx2 */
2677         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2678                 return 1;
2679
2680         /* If ctx2 is the parent of ctx1 */
2681         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2682                 return 1;
2683
2684         /*
2685          * If ctx1 and ctx2 have the same parent; we flatten the parent
2686          * hierarchy, see perf_event_init_context().
2687          */
2688         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2689                         ctx1->parent_gen == ctx2->parent_gen)
2690                 return 1;
2691
2692         /* Unmatched */
2693         return 0;
2694 }
2695
2696 static void __perf_event_sync_stat(struct perf_event *event,
2697                                      struct perf_event *next_event)
2698 {
2699         u64 value;
2700
2701         if (!event->attr.inherit_stat)
2702                 return;
2703
2704         /*
2705          * Update the event value, we cannot use perf_event_read()
2706          * because we're in the middle of a context switch and have IRQs
2707          * disabled, which upsets smp_call_function_single(), however
2708          * we know the event must be on the current CPU, therefore we
2709          * don't need to use it.
2710          */
2711         switch (event->state) {
2712         case PERF_EVENT_STATE_ACTIVE:
2713                 event->pmu->read(event);
2714                 /* fall-through */
2715
2716         case PERF_EVENT_STATE_INACTIVE:
2717                 update_event_times(event);
2718                 break;
2719
2720         default:
2721                 break;
2722         }
2723
2724         /*
2725          * In order to keep per-task stats reliable we need to flip the event
2726          * values when we flip the contexts.
2727          */
2728         value = local64_read(&next_event->count);
2729         value = local64_xchg(&event->count, value);
2730         local64_set(&next_event->count, value);
2731
2732         swap(event->total_time_enabled, next_event->total_time_enabled);
2733         swap(event->total_time_running, next_event->total_time_running);
2734
2735         /*
2736          * Since we swizzled the values, update the user visible data too.
2737          */
2738         perf_event_update_userpage(event);
2739         perf_event_update_userpage(next_event);
2740 }
2741
2742 static void perf_event_sync_stat(struct perf_event_context *ctx,
2743                                    struct perf_event_context *next_ctx)
2744 {
2745         struct perf_event *event, *next_event;
2746
2747         if (!ctx->nr_stat)
2748                 return;
2749
2750         update_context_time(ctx);
2751
2752         event = list_first_entry(&ctx->event_list,
2753                                    struct perf_event, event_entry);
2754
2755         next_event = list_first_entry(&next_ctx->event_list,
2756                                         struct perf_event, event_entry);
2757
2758         while (&event->event_entry != &ctx->event_list &&
2759                &next_event->event_entry != &next_ctx->event_list) {
2760
2761                 __perf_event_sync_stat(event, next_event);
2762
2763                 event = list_next_entry(event, event_entry);
2764                 next_event = list_next_entry(next_event, event_entry);
2765         }
2766 }
2767
2768 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2769                                          struct task_struct *next)
2770 {
2771         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2772         struct perf_event_context *next_ctx;
2773         struct perf_event_context *parent, *next_parent;
2774         struct perf_cpu_context *cpuctx;
2775         int do_switch = 1;
2776
2777         if (likely(!ctx))
2778                 return;
2779
2780         cpuctx = __get_cpu_context(ctx);
2781         if (!cpuctx->task_ctx)
2782                 return;
2783
2784         rcu_read_lock();
2785         next_ctx = next->perf_event_ctxp[ctxn];
2786         if (!next_ctx)
2787                 goto unlock;
2788
2789         parent = rcu_dereference(ctx->parent_ctx);
2790         next_parent = rcu_dereference(next_ctx->parent_ctx);
2791
2792         /* If neither context have a parent context; they cannot be clones. */
2793         if (!parent && !next_parent)
2794                 goto unlock;
2795
2796         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2797                 /*
2798                  * Looks like the two contexts are clones, so we might be
2799                  * able to optimize the context switch.  We lock both
2800                  * contexts and check that they are clones under the
2801                  * lock (including re-checking that neither has been
2802                  * uncloned in the meantime).  It doesn't matter which
2803                  * order we take the locks because no other cpu could
2804                  * be trying to lock both of these tasks.
2805                  */
2806                 raw_spin_lock(&ctx->lock);
2807                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2808                 if (context_equiv(ctx, next_ctx)) {
2809                         WRITE_ONCE(ctx->task, next);
2810                         WRITE_ONCE(next_ctx->task, task);
2811
2812                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2813
2814                         /*
2815                          * RCU_INIT_POINTER here is safe because we've not
2816                          * modified the ctx and the above modification of
2817                          * ctx->task and ctx->task_ctx_data are immaterial
2818                          * since those values are always verified under
2819                          * ctx->lock which we're now holding.
2820                          */
2821                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2822                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2823
2824                         do_switch = 0;
2825
2826                         perf_event_sync_stat(ctx, next_ctx);
2827                 }
2828                 raw_spin_unlock(&next_ctx->lock);
2829                 raw_spin_unlock(&ctx->lock);
2830         }
2831 unlock:
2832         rcu_read_unlock();
2833
2834         if (do_switch) {
2835                 raw_spin_lock(&ctx->lock);
2836                 task_ctx_sched_out(cpuctx, ctx);
2837                 raw_spin_unlock(&ctx->lock);
2838         }
2839 }
2840
2841 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2842
2843 void perf_sched_cb_dec(struct pmu *pmu)
2844 {
2845         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2846
2847         this_cpu_dec(perf_sched_cb_usages);
2848
2849         if (!--cpuctx->sched_cb_usage)
2850                 list_del(&cpuctx->sched_cb_entry);
2851 }
2852
2853
2854 void perf_sched_cb_inc(struct pmu *pmu)
2855 {
2856         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2857
2858         if (!cpuctx->sched_cb_usage++)
2859                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2860
2861         this_cpu_inc(perf_sched_cb_usages);
2862 }
2863
2864 /*
2865  * This function provides the context switch callback to the lower code
2866  * layer. It is invoked ONLY when the context switch callback is enabled.
2867  *
2868  * This callback is relevant even to per-cpu events; for example multi event
2869  * PEBS requires this to provide PID/TID information. This requires we flush
2870  * all queued PEBS records before we context switch to a new task.
2871  */
2872 static void perf_pmu_sched_task(struct task_struct *prev,
2873                                 struct task_struct *next,
2874                                 bool sched_in)
2875 {
2876         struct perf_cpu_context *cpuctx;
2877         struct pmu *pmu;
2878
2879         if (prev == next)
2880                 return;
2881
2882         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2883                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2884
2885                 if (WARN_ON_ONCE(!pmu->sched_task))
2886                         continue;
2887
2888                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2889                 perf_pmu_disable(pmu);
2890
2891                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2892
2893                 perf_pmu_enable(pmu);
2894                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2895         }
2896 }
2897
2898 static void perf_event_switch(struct task_struct *task,
2899                               struct task_struct *next_prev, bool sched_in);
2900
2901 #define for_each_task_context_nr(ctxn)                                  \
2902         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2903
2904 /*
2905  * Called from scheduler to remove the events of the current task,
2906  * with interrupts disabled.
2907  *
2908  * We stop each event and update the event value in event->count.
2909  *
2910  * This does not protect us against NMI, but disable()
2911  * sets the disabled bit in the control field of event _before_
2912  * accessing the event control register. If a NMI hits, then it will
2913  * not restart the event.
2914  */
2915 void __perf_event_task_sched_out(struct task_struct *task,
2916                                  struct task_struct *next)
2917 {
2918         int ctxn;
2919
2920         if (__this_cpu_read(perf_sched_cb_usages))
2921                 perf_pmu_sched_task(task, next, false);
2922
2923         if (atomic_read(&nr_switch_events))
2924                 perf_event_switch(task, next, false);
2925
2926         for_each_task_context_nr(ctxn)
2927                 perf_event_context_sched_out(task, ctxn, next);
2928
2929         /*
2930          * if cgroup events exist on this CPU, then we need
2931          * to check if we have to switch out PMU state.
2932          * cgroup event are system-wide mode only
2933          */
2934         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2935                 perf_cgroup_sched_out(task, next);
2936 }
2937
2938 /*
2939  * Called with IRQs disabled
2940  */
2941 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2942                               enum event_type_t event_type)
2943 {
2944         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2945 }
2946
2947 static void
2948 ctx_pinned_sched_in(struct perf_event_context *ctx,
2949                     struct perf_cpu_context *cpuctx)
2950 {
2951         struct perf_event *event;
2952
2953         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2954                 if (event->state <= PERF_EVENT_STATE_OFF)
2955                         continue;
2956                 if (!event_filter_match(event))
2957                         continue;
2958
2959                 /* may need to reset tstamp_enabled */
2960                 if (is_cgroup_event(event))
2961                         perf_cgroup_mark_enabled(event, ctx);
2962
2963                 if (group_can_go_on(event, cpuctx, 1))
2964                         group_sched_in(event, cpuctx, ctx);
2965
2966                 /*
2967                  * If this pinned group hasn't been scheduled,
2968                  * put it in error state.
2969                  */
2970                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2971                         update_group_times(event);
2972                         event->state = PERF_EVENT_STATE_ERROR;
2973                 }
2974         }
2975 }
2976
2977 static void
2978 ctx_flexible_sched_in(struct perf_event_context *ctx,
2979                       struct perf_cpu_context *cpuctx)
2980 {
2981         struct perf_event *event;
2982         int can_add_hw = 1;
2983
2984         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2985                 /* Ignore events in OFF or ERROR state */
2986                 if (event->state <= PERF_EVENT_STATE_OFF)
2987                         continue;
2988                 /*
2989                  * Listen to the 'cpu' scheduling filter constraint
2990                  * of events:
2991                  */
2992                 if (!event_filter_match(event))
2993                         continue;
2994
2995                 /* may need to reset tstamp_enabled */
2996                 if (is_cgroup_event(event))
2997                         perf_cgroup_mark_enabled(event, ctx);
2998
2999                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3000                         if (group_sched_in(event, cpuctx, ctx))
3001                                 can_add_hw = 0;
3002                 }
3003         }
3004 }
3005
3006 static void
3007 ctx_sched_in(struct perf_event_context *ctx,
3008              struct perf_cpu_context *cpuctx,
3009              enum event_type_t event_type,
3010              struct task_struct *task)
3011 {
3012         int is_active = ctx->is_active;
3013         u64 now;
3014
3015         lockdep_assert_held(&ctx->lock);
3016
3017         if (likely(!ctx->nr_events))
3018                 return;
3019
3020         ctx->is_active |= (event_type | EVENT_TIME);
3021         if (ctx->task) {
3022                 if (!is_active)
3023                         cpuctx->task_ctx = ctx;
3024                 else
3025                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3026         }
3027
3028         is_active ^= ctx->is_active; /* changed bits */
3029
3030         if (is_active & EVENT_TIME) {
3031                 /* start ctx time */
3032                 now = perf_clock();
3033                 ctx->timestamp = now;
3034                 perf_cgroup_set_timestamp(task, ctx);
3035         }
3036
3037         /*
3038          * First go through the list and put on any pinned groups
3039          * in order to give them the best chance of going on.
3040          */
3041         if (is_active & EVENT_PINNED)
3042                 ctx_pinned_sched_in(ctx, cpuctx);
3043
3044         /* Then walk through the lower prio flexible groups */
3045         if (is_active & EVENT_FLEXIBLE)
3046                 ctx_flexible_sched_in(ctx, cpuctx);
3047 }
3048
3049 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3050                              enum event_type_t event_type,
3051                              struct task_struct *task)
3052 {
3053         struct perf_event_context *ctx = &cpuctx->ctx;
3054
3055         ctx_sched_in(ctx, cpuctx, event_type, task);
3056 }
3057
3058 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3059                                         struct task_struct *task)
3060 {
3061         struct perf_cpu_context *cpuctx;
3062
3063         cpuctx = __get_cpu_context(ctx);
3064         if (cpuctx->task_ctx == ctx)
3065                 return;
3066
3067         perf_ctx_lock(cpuctx, ctx);
3068         perf_pmu_disable(ctx->pmu);
3069         /*
3070          * We want to keep the following priority order:
3071          * cpu pinned (that don't need to move), task pinned,
3072          * cpu flexible, task flexible.
3073          */
3074         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3075         perf_event_sched_in(cpuctx, ctx, task);
3076         perf_pmu_enable(ctx->pmu);
3077         perf_ctx_unlock(cpuctx, ctx);
3078 }
3079
3080 /*
3081  * Called from scheduler to add the events of the current task
3082  * with interrupts disabled.
3083  *
3084  * We restore the event value and then enable it.
3085  *
3086  * This does not protect us against NMI, but enable()
3087  * sets the enabled bit in the control field of event _before_
3088  * accessing the event control register. If a NMI hits, then it will
3089  * keep the event running.
3090  */
3091 void __perf_event_task_sched_in(struct task_struct *prev,
3092                                 struct task_struct *task)
3093 {
3094         struct perf_event_context *ctx;
3095         int ctxn;
3096
3097         /*
3098          * If cgroup events exist on this CPU, then we need to check if we have
3099          * to switch in PMU state; cgroup event are system-wide mode only.
3100          *
3101          * Since cgroup events are CPU events, we must schedule these in before
3102          * we schedule in the task events.
3103          */
3104         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3105                 perf_cgroup_sched_in(prev, task);
3106
3107         for_each_task_context_nr(ctxn) {
3108                 ctx = task->perf_event_ctxp[ctxn];
3109                 if (likely(!ctx))
3110                         continue;
3111
3112                 perf_event_context_sched_in(ctx, task);
3113         }
3114
3115         if (atomic_read(&nr_switch_events))
3116                 perf_event_switch(task, prev, true);
3117
3118         if (__this_cpu_read(perf_sched_cb_usages))
3119                 perf_pmu_sched_task(prev, task, true);
3120 }
3121
3122 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3123 {
3124         u64 frequency = event->attr.sample_freq;
3125         u64 sec = NSEC_PER_SEC;
3126         u64 divisor, dividend;
3127
3128         int count_fls, nsec_fls, frequency_fls, sec_fls;
3129
3130         count_fls = fls64(count);
3131         nsec_fls = fls64(nsec);
3132         frequency_fls = fls64(frequency);
3133         sec_fls = 30;
3134
3135         /*
3136          * We got @count in @nsec, with a target of sample_freq HZ
3137          * the target period becomes:
3138          *
3139          *             @count * 10^9
3140          * period = -------------------
3141          *          @nsec * sample_freq
3142          *
3143          */
3144
3145         /*
3146          * Reduce accuracy by one bit such that @a and @b converge
3147          * to a similar magnitude.
3148          */
3149 #define REDUCE_FLS(a, b)                \
3150 do {                                    \
3151         if (a##_fls > b##_fls) {        \
3152                 a >>= 1;                \
3153                 a##_fls--;              \
3154         } else {                        \
3155                 b >>= 1;                \
3156                 b##_fls--;              \
3157         }                               \
3158 } while (0)
3159
3160         /*
3161          * Reduce accuracy until either term fits in a u64, then proceed with
3162          * the other, so that finally we can do a u64/u64 division.
3163          */
3164         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3165                 REDUCE_FLS(nsec, frequency);
3166                 REDUCE_FLS(sec, count);
3167         }
3168
3169         if (count_fls + sec_fls > 64) {
3170                 divisor = nsec * frequency;
3171
3172                 while (count_fls + sec_fls > 64) {
3173                         REDUCE_FLS(count, sec);
3174                         divisor >>= 1;
3175                 }
3176
3177                 dividend = count * sec;
3178         } else {
3179                 dividend = count * sec;
3180
3181                 while (nsec_fls + frequency_fls > 64) {
3182                         REDUCE_FLS(nsec, frequency);
3183                         dividend >>= 1;
3184                 }
3185
3186                 divisor = nsec * frequency;
3187         }
3188
3189         if (!divisor)
3190                 return dividend;
3191
3192         return div64_u64(dividend, divisor);
3193 }
3194
3195 static DEFINE_PER_CPU(int, perf_throttled_count);
3196 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3197
3198 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3199 {
3200         struct hw_perf_event *hwc = &event->hw;
3201         s64 period, sample_period;
3202         s64 delta;
3203
3204         period = perf_calculate_period(event, nsec, count);
3205
3206         delta = (s64)(period - hwc->sample_period);
3207         delta = (delta + 7) / 8; /* low pass filter */
3208
3209         sample_period = hwc->sample_period + delta;
3210
3211         if (!sample_period)
3212                 sample_period = 1;
3213
3214         hwc->sample_period = sample_period;
3215
3216         if (local64_read(&hwc->period_left) > 8*sample_period) {
3217                 if (disable)
3218                         event->pmu->stop(event, PERF_EF_UPDATE);
3219
3220                 local64_set(&hwc->period_left, 0);
3221
3222                 if (disable)
3223                         event->pmu->start(event, PERF_EF_RELOAD);
3224         }
3225 }
3226
3227 /*
3228  * combine freq adjustment with unthrottling to avoid two passes over the
3229  * events. At the same time, make sure, having freq events does not change
3230  * the rate of unthrottling as that would introduce bias.
3231  */
3232 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3233                                            int needs_unthr)
3234 {
3235         struct perf_event *event;
3236         struct hw_perf_event *hwc;
3237         u64 now, period = TICK_NSEC;
3238         s64 delta;
3239
3240         /*
3241          * only need to iterate over all events iff:
3242          * - context have events in frequency mode (needs freq adjust)
3243          * - there are events to unthrottle on this cpu
3244          */
3245         if (!(ctx->nr_freq || needs_unthr))
3246                 return;
3247
3248         raw_spin_lock(&ctx->lock);
3249         perf_pmu_disable(ctx->pmu);
3250
3251         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3252                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3253                         continue;
3254
3255                 if (!event_filter_match(event))
3256                         continue;
3257
3258                 perf_pmu_disable(event->pmu);
3259
3260                 hwc = &event->hw;
3261
3262                 if (hwc->interrupts == MAX_INTERRUPTS) {
3263                         hwc->interrupts = 0;
3264                         perf_log_throttle(event, 1);
3265                         event->pmu->start(event, 0);
3266                 }
3267
3268                 if (!event->attr.freq || !event->attr.sample_freq)
3269                         goto next;
3270
3271                 /*
3272                  * stop the event and update event->count
3273                  */
3274                 event->pmu->stop(event, PERF_EF_UPDATE);
3275
3276                 now = local64_read(&event->count);
3277                 delta = now - hwc->freq_count_stamp;
3278                 hwc->freq_count_stamp = now;
3279
3280                 /*
3281                  * restart the event
3282                  * reload only if value has changed
3283                  * we have stopped the event so tell that
3284                  * to perf_adjust_period() to avoid stopping it
3285                  * twice.
3286                  */
3287                 if (delta > 0)
3288                         perf_adjust_period(event, period, delta, false);
3289
3290                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3291         next:
3292                 perf_pmu_enable(event->pmu);
3293         }
3294
3295         perf_pmu_enable(ctx->pmu);
3296         raw_spin_unlock(&ctx->lock);
3297 }
3298
3299 /*
3300  * Round-robin a context's events:
3301  */
3302 static void rotate_ctx(struct perf_event_context *ctx)
3303 {
3304         /*
3305          * Rotate the first entry last of non-pinned groups. Rotation might be
3306          * disabled by the inheritance code.
3307          */
3308         if (!ctx->rotate_disable)
3309                 list_rotate_left(&ctx->flexible_groups);
3310 }
3311
3312 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3313 {
3314         struct perf_event_context *ctx = NULL;
3315         int rotate = 0;
3316
3317         if (cpuctx->ctx.nr_events) {
3318                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3319                         rotate = 1;
3320         }
3321
3322         ctx = cpuctx->task_ctx;
3323         if (ctx && ctx->nr_events) {
3324                 if (ctx->nr_events != ctx->nr_active)
3325                         rotate = 1;
3326         }
3327
3328         if (!rotate)
3329                 goto done;
3330
3331         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332         perf_pmu_disable(cpuctx->ctx.pmu);
3333
3334         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3335         if (ctx)
3336                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3337
3338         rotate_ctx(&cpuctx->ctx);
3339         if (ctx)
3340                 rotate_ctx(ctx);
3341
3342         perf_event_sched_in(cpuctx, ctx, current);
3343
3344         perf_pmu_enable(cpuctx->ctx.pmu);
3345         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3346 done:
3347
3348         return rotate;
3349 }
3350
3351 void perf_event_task_tick(void)
3352 {
3353         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3354         struct perf_event_context *ctx, *tmp;
3355         int throttled;
3356
3357         WARN_ON(!irqs_disabled());
3358
3359         __this_cpu_inc(perf_throttled_seq);
3360         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3361         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3362
3363         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3364                 perf_adjust_freq_unthr_context(ctx, throttled);
3365 }
3366
3367 static int event_enable_on_exec(struct perf_event *event,
3368                                 struct perf_event_context *ctx)
3369 {
3370         if (!event->attr.enable_on_exec)
3371                 return 0;
3372
3373         event->attr.enable_on_exec = 0;
3374         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3375                 return 0;
3376
3377         __perf_event_mark_enabled(event);
3378
3379         return 1;
3380 }
3381
3382 /*
3383  * Enable all of a task's events that have been marked enable-on-exec.
3384  * This expects task == current.
3385  */
3386 static void perf_event_enable_on_exec(int ctxn)
3387 {
3388         struct perf_event_context *ctx, *clone_ctx = NULL;
3389         struct perf_cpu_context *cpuctx;
3390         struct perf_event *event;
3391         unsigned long flags;
3392         int enabled = 0;
3393
3394         local_irq_save(flags);
3395         ctx = current->perf_event_ctxp[ctxn];
3396         if (!ctx || !ctx->nr_events)
3397                 goto out;
3398
3399         cpuctx = __get_cpu_context(ctx);
3400         perf_ctx_lock(cpuctx, ctx);
3401         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3402         list_for_each_entry(event, &ctx->event_list, event_entry)
3403                 enabled |= event_enable_on_exec(event, ctx);
3404
3405         /*
3406          * Unclone and reschedule this context if we enabled any event.
3407          */
3408         if (enabled) {
3409                 clone_ctx = unclone_ctx(ctx);
3410                 ctx_resched(cpuctx, ctx);
3411         }
3412         perf_ctx_unlock(cpuctx, ctx);
3413
3414 out:
3415         local_irq_restore(flags);
3416
3417         if (clone_ctx)
3418                 put_ctx(clone_ctx);
3419 }
3420
3421 struct perf_read_data {
3422         struct perf_event *event;
3423         bool group;
3424         int ret;
3425 };
3426
3427 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3428 {
3429         int event_cpu = event->oncpu;
3430         u16 local_pkg, event_pkg;
3431
3432         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3433                 event_pkg =  topology_physical_package_id(event_cpu);
3434                 local_pkg =  topology_physical_package_id(local_cpu);
3435
3436                 if (event_pkg == local_pkg)
3437                         return local_cpu;
3438         }
3439
3440         return event_cpu;
3441 }
3442
3443 /*
3444  * Cross CPU call to read the hardware event
3445  */
3446 static void __perf_event_read(void *info)
3447 {
3448         struct perf_read_data *data = info;
3449         struct perf_event *sub, *event = data->event;
3450         struct perf_event_context *ctx = event->ctx;
3451         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3452         struct pmu *pmu = event->pmu;
3453
3454         /*
3455          * If this is a task context, we need to check whether it is
3456          * the current task context of this cpu.  If not it has been
3457          * scheduled out before the smp call arrived.  In that case
3458          * event->count would have been updated to a recent sample
3459          * when the event was scheduled out.
3460          */
3461         if (ctx->task && cpuctx->task_ctx != ctx)
3462                 return;
3463
3464         raw_spin_lock(&ctx->lock);
3465         if (ctx->is_active) {
3466                 update_context_time(ctx);
3467                 update_cgrp_time_from_event(event);
3468         }
3469
3470         update_event_times(event);
3471         if (event->state != PERF_EVENT_STATE_ACTIVE)
3472                 goto unlock;
3473
3474         if (!data->group) {
3475                 pmu->read(event);
3476                 data->ret = 0;
3477                 goto unlock;
3478         }
3479
3480         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3481
3482         pmu->read(event);
3483
3484         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3485                 update_event_times(sub);
3486                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3487                         /*
3488                          * Use sibling's PMU rather than @event's since
3489                          * sibling could be on different (eg: software) PMU.
3490                          */
3491                         sub->pmu->read(sub);
3492                 }
3493         }
3494
3495         data->ret = pmu->commit_txn(pmu);
3496
3497 unlock:
3498         raw_spin_unlock(&ctx->lock);
3499 }
3500
3501 static inline u64 perf_event_count(struct perf_event *event)
3502 {
3503         if (event->pmu->count)
3504                 return event->pmu->count(event);
3505
3506         return __perf_event_count(event);
3507 }
3508
3509 /*
3510  * NMI-safe method to read a local event, that is an event that
3511  * is:
3512  *   - either for the current task, or for this CPU
3513  *   - does not have inherit set, for inherited task events
3514  *     will not be local and we cannot read them atomically
3515  *   - must not have a pmu::count method
3516  */
3517 u64 perf_event_read_local(struct perf_event *event)
3518 {
3519         unsigned long flags;
3520         u64 val;
3521
3522         /*
3523          * Disabling interrupts avoids all counter scheduling (context
3524          * switches, timer based rotation and IPIs).
3525          */
3526         local_irq_save(flags);
3527
3528         /* If this is a per-task event, it must be for current */
3529         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3530                      event->hw.target != current);
3531
3532         /* If this is a per-CPU event, it must be for this CPU */
3533         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3534                      event->cpu != smp_processor_id());
3535
3536         /*
3537          * It must not be an event with inherit set, we cannot read
3538          * all child counters from atomic context.
3539          */
3540         WARN_ON_ONCE(event->attr.inherit);
3541
3542         /*
3543          * It must not have a pmu::count method, those are not
3544          * NMI safe.
3545          */
3546         WARN_ON_ONCE(event->pmu->count);
3547
3548         /*
3549          * If the event is currently on this CPU, its either a per-task event,
3550          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3551          * oncpu == -1).
3552          */
3553         if (event->oncpu == smp_processor_id())
3554                 event->pmu->read(event);
3555
3556         val = local64_read(&event->count);
3557         local_irq_restore(flags);
3558
3559         return val;
3560 }
3561
3562 static int perf_event_read(struct perf_event *event, bool group)
3563 {
3564         int ret = 0, cpu_to_read, local_cpu;
3565
3566         /*
3567          * If event is enabled and currently active on a CPU, update the
3568          * value in the event structure:
3569          */
3570         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3571                 struct perf_read_data data = {
3572                         .event = event,
3573                         .group = group,
3574                         .ret = 0,
3575                 };
3576
3577                 local_cpu = get_cpu();
3578                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3579                 put_cpu();
3580
3581                 /*
3582                  * Purposely ignore the smp_call_function_single() return
3583                  * value.
3584                  *
3585                  * If event->oncpu isn't a valid CPU it means the event got
3586                  * scheduled out and that will have updated the event count.
3587                  *
3588                  * Therefore, either way, we'll have an up-to-date event count
3589                  * after this.
3590                  */
3591                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3592                 ret = data.ret;
3593         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3594                 struct perf_event_context *ctx = event->ctx;
3595                 unsigned long flags;
3596
3597                 raw_spin_lock_irqsave(&ctx->lock, flags);
3598                 /*
3599                  * may read while context is not active
3600                  * (e.g., thread is blocked), in that case
3601                  * we cannot update context time
3602                  */
3603                 if (ctx->is_active) {
3604                         update_context_time(ctx);
3605                         update_cgrp_time_from_event(event);
3606                 }
3607                 if (group)
3608                         update_group_times(event);
3609                 else
3610                         update_event_times(event);
3611                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3612         }
3613
3614         return ret;
3615 }
3616
3617 /*
3618  * Initialize the perf_event context in a task_struct:
3619  */
3620 static void __perf_event_init_context(struct perf_event_context *ctx)
3621 {
3622         raw_spin_lock_init(&ctx->lock);
3623         mutex_init(&ctx->mutex);
3624         INIT_LIST_HEAD(&ctx->active_ctx_list);
3625         INIT_LIST_HEAD(&ctx->pinned_groups);
3626         INIT_LIST_HEAD(&ctx->flexible_groups);
3627         INIT_LIST_HEAD(&ctx->event_list);
3628         atomic_set(&ctx->refcount, 1);
3629 }
3630
3631 static struct perf_event_context *
3632 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3633 {
3634         struct perf_event_context *ctx;
3635
3636         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3637         if (!ctx)
3638                 return NULL;
3639
3640         __perf_event_init_context(ctx);
3641         if (task) {
3642                 ctx->task = task;
3643                 get_task_struct(task);
3644         }
3645         ctx->pmu = pmu;
3646
3647         return ctx;
3648 }
3649
3650 static struct task_struct *
3651 find_lively_task_by_vpid(pid_t vpid)
3652 {
3653         struct task_struct *task;
3654
3655         rcu_read_lock();
3656         if (!vpid)
3657                 task = current;
3658         else
3659                 task = find_task_by_vpid(vpid);
3660         if (task)
3661                 get_task_struct(task);
3662         rcu_read_unlock();
3663
3664         if (!task)
3665                 return ERR_PTR(-ESRCH);
3666
3667         return task;
3668 }
3669
3670 /*
3671  * Returns a matching context with refcount and pincount.
3672  */
3673 static struct perf_event_context *
3674 find_get_context(struct pmu *pmu, struct task_struct *task,
3675                 struct perf_event *event)
3676 {
3677         struct perf_event_context *ctx, *clone_ctx = NULL;
3678         struct perf_cpu_context *cpuctx;
3679         void *task_ctx_data = NULL;
3680         unsigned long flags;
3681         int ctxn, err;
3682         int cpu = event->cpu;
3683
3684         if (!task) {
3685                 /* Must be root to operate on a CPU event: */
3686                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3687                         return ERR_PTR(-EACCES);
3688
3689                 /*
3690                  * We could be clever and allow to attach a event to an
3691                  * offline CPU and activate it when the CPU comes up, but
3692                  * that's for later.
3693                  */
3694                 if (!cpu_online(cpu))
3695                         return ERR_PTR(-ENODEV);
3696
3697                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3698                 ctx = &cpuctx->ctx;
3699                 get_ctx(ctx);
3700                 ++ctx->pin_count;
3701
3702                 return ctx;
3703         }
3704
3705         err = -EINVAL;
3706         ctxn = pmu->task_ctx_nr;
3707         if (ctxn < 0)
3708                 goto errout;
3709
3710         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3711                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3712                 if (!task_ctx_data) {
3713                         err = -ENOMEM;
3714                         goto errout;
3715                 }
3716         }
3717
3718 retry:
3719         ctx = perf_lock_task_context(task, ctxn, &flags);
3720         if (ctx) {
3721                 clone_ctx = unclone_ctx(ctx);
3722                 ++ctx->pin_count;
3723
3724                 if (task_ctx_data && !ctx->task_ctx_data) {
3725                         ctx->task_ctx_data = task_ctx_data;
3726                         task_ctx_data = NULL;
3727                 }
3728                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3729
3730                 if (clone_ctx)
3731                         put_ctx(clone_ctx);
3732         } else {
3733                 ctx = alloc_perf_context(pmu, task);
3734                 err = -ENOMEM;
3735                 if (!ctx)
3736                         goto errout;
3737
3738                 if (task_ctx_data) {
3739                         ctx->task_ctx_data = task_ctx_data;
3740                         task_ctx_data = NULL;
3741                 }
3742
3743                 err = 0;
3744                 mutex_lock(&task->perf_event_mutex);
3745                 /*
3746                  * If it has already passed perf_event_exit_task().
3747                  * we must see PF_EXITING, it takes this mutex too.
3748                  */
3749                 if (task->flags & PF_EXITING)
3750                         err = -ESRCH;
3751                 else if (task->perf_event_ctxp[ctxn])
3752                         err = -EAGAIN;
3753                 else {
3754                         get_ctx(ctx);
3755                         ++ctx->pin_count;
3756                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3757                 }
3758                 mutex_unlock(&task->perf_event_mutex);
3759
3760                 if (unlikely(err)) {
3761                         put_ctx(ctx);
3762
3763                         if (err == -EAGAIN)
3764                                 goto retry;
3765                         goto errout;
3766                 }
3767         }
3768
3769         kfree(task_ctx_data);
3770         return ctx;
3771
3772 errout:
3773         kfree(task_ctx_data);
3774         return ERR_PTR(err);
3775 }
3776
3777 static void perf_event_free_filter(struct perf_event *event);
3778 static void perf_event_free_bpf_prog(struct perf_event *event);
3779
3780 static void free_event_rcu(struct rcu_head *head)
3781 {
3782         struct perf_event *event;
3783
3784         event = container_of(head, struct perf_event, rcu_head);
3785         if (event->ns)
3786                 put_pid_ns(event->ns);
3787         perf_event_free_filter(event);
3788         kfree(event);
3789 }
3790
3791 static void ring_buffer_attach(struct perf_event *event,
3792                                struct ring_buffer *rb);
3793
3794 static void detach_sb_event(struct perf_event *event)
3795 {
3796         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3797
3798         raw_spin_lock(&pel->lock);
3799         list_del_rcu(&event->sb_list);
3800         raw_spin_unlock(&pel->lock);
3801 }
3802
3803 static bool is_sb_event(struct perf_event *event)
3804 {
3805         struct perf_event_attr *attr = &event->attr;
3806
3807         if (event->parent)
3808                 return false;
3809
3810         if (event->attach_state & PERF_ATTACH_TASK)
3811                 return false;
3812
3813         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3814             attr->comm || attr->comm_exec ||
3815             attr->task ||
3816             attr->context_switch)
3817                 return true;
3818         return false;
3819 }
3820
3821 static void unaccount_pmu_sb_event(struct perf_event *event)
3822 {
3823         if (is_sb_event(event))
3824                 detach_sb_event(event);
3825 }
3826
3827 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3828 {
3829         if (event->parent)
3830                 return;
3831
3832         if (is_cgroup_event(event))
3833                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3834 }
3835
3836 #ifdef CONFIG_NO_HZ_FULL
3837 static DEFINE_SPINLOCK(nr_freq_lock);
3838 #endif
3839
3840 static void unaccount_freq_event_nohz(void)
3841 {
3842 #ifdef CONFIG_NO_HZ_FULL
3843         spin_lock(&nr_freq_lock);
3844         if (atomic_dec_and_test(&nr_freq_events))
3845                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3846         spin_unlock(&nr_freq_lock);
3847 #endif
3848 }
3849
3850 static void unaccount_freq_event(void)
3851 {
3852         if (tick_nohz_full_enabled())
3853                 unaccount_freq_event_nohz();
3854         else
3855                 atomic_dec(&nr_freq_events);
3856 }
3857
3858 static void unaccount_event(struct perf_event *event)
3859 {
3860         bool dec = false;
3861
3862         if (event->parent)
3863                 return;
3864
3865         if (event->attach_state & PERF_ATTACH_TASK)
3866                 dec = true;
3867         if (event->attr.mmap || event->attr.mmap_data)
3868                 atomic_dec(&nr_mmap_events);
3869         if (event->attr.comm)
3870                 atomic_dec(&nr_comm_events);
3871         if (event->attr.task)
3872                 atomic_dec(&nr_task_events);
3873         if (event->attr.freq)
3874                 unaccount_freq_event();
3875         if (event->attr.context_switch) {
3876                 dec = true;
3877                 atomic_dec(&nr_switch_events);
3878         }
3879         if (is_cgroup_event(event))
3880                 dec = true;
3881         if (has_branch_stack(event))
3882                 dec = true;
3883
3884         if (dec) {
3885                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3886                         schedule_delayed_work(&perf_sched_work, HZ);
3887         }
3888
3889         unaccount_event_cpu(event, event->cpu);
3890
3891         unaccount_pmu_sb_event(event);
3892 }
3893
3894 static void perf_sched_delayed(struct work_struct *work)
3895 {
3896         mutex_lock(&perf_sched_mutex);
3897         if (atomic_dec_and_test(&perf_sched_count))
3898                 static_branch_disable(&perf_sched_events);
3899         mutex_unlock(&perf_sched_mutex);
3900 }
3901
3902 /*
3903  * The following implement mutual exclusion of events on "exclusive" pmus
3904  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905  * at a time, so we disallow creating events that might conflict, namely:
3906  *
3907  *  1) cpu-wide events in the presence of per-task events,
3908  *  2) per-task events in the presence of cpu-wide events,
3909  *  3) two matching events on the same context.
3910  *
3911  * The former two cases are handled in the allocation path (perf_event_alloc(),
3912  * _free_event()), the latter -- before the first perf_install_in_context().
3913  */
3914 static int exclusive_event_init(struct perf_event *event)
3915 {
3916         struct pmu *pmu = event->pmu;
3917
3918         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3919                 return 0;
3920
3921         /*
3922          * Prevent co-existence of per-task and cpu-wide events on the
3923          * same exclusive pmu.
3924          *
3925          * Negative pmu::exclusive_cnt means there are cpu-wide
3926          * events on this "exclusive" pmu, positive means there are
3927          * per-task events.
3928          *
3929          * Since this is called in perf_event_alloc() path, event::ctx
3930          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931          * to mean "per-task event", because unlike other attach states it
3932          * never gets cleared.
3933          */
3934         if (event->attach_state & PERF_ATTACH_TASK) {
3935                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3936                         return -EBUSY;
3937         } else {
3938                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3939                         return -EBUSY;
3940         }
3941
3942         return 0;
3943 }
3944
3945 static void exclusive_event_destroy(struct perf_event *event)
3946 {
3947         struct pmu *pmu = event->pmu;
3948
3949         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3950                 return;
3951
3952         /* see comment in exclusive_event_init() */
3953         if (event->attach_state & PERF_ATTACH_TASK)
3954                 atomic_dec(&pmu->exclusive_cnt);
3955         else
3956                 atomic_inc(&pmu->exclusive_cnt);
3957 }
3958
3959 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3960 {
3961         if ((e1->pmu == e2->pmu) &&
3962             (e1->cpu == e2->cpu ||
3963              e1->cpu == -1 ||
3964              e2->cpu == -1))
3965                 return true;
3966         return false;
3967 }
3968
3969 /* Called under the same ctx::mutex as perf_install_in_context() */
3970 static bool exclusive_event_installable(struct perf_event *event,
3971                                         struct perf_event_context *ctx)
3972 {
3973         struct perf_event *iter_event;
3974         struct pmu *pmu = event->pmu;
3975
3976         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3977                 return true;
3978
3979         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3980                 if (exclusive_event_match(iter_event, event))
3981                         return false;
3982         }
3983
3984         return true;
3985 }
3986
3987 static void perf_addr_filters_splice(struct perf_event *event,
3988                                        struct list_head *head);
3989
3990 static void _free_event(struct perf_event *event)
3991 {
3992         irq_work_sync(&event->pending);
3993
3994         unaccount_event(event);
3995
3996         if (event->rb) {
3997                 /*
3998                  * Can happen when we close an event with re-directed output.
3999                  *
4000                  * Since we have a 0 refcount, perf_mmap_close() will skip
4001                  * over us; possibly making our ring_buffer_put() the last.
4002                  */
4003                 mutex_lock(&event->mmap_mutex);
4004                 ring_buffer_attach(event, NULL);
4005                 mutex_unlock(&event->mmap_mutex);
4006         }
4007
4008         if (is_cgroup_event(event))
4009                 perf_detach_cgroup(event);
4010
4011         if (!event->parent) {
4012                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4013                         put_callchain_buffers();
4014         }
4015
4016         perf_event_free_bpf_prog(event);
4017         perf_addr_filters_splice(event, NULL);
4018         kfree(event->addr_filters_offs);
4019
4020         if (event->destroy)
4021                 event->destroy(event);
4022
4023         if (event->ctx)
4024                 put_ctx(event->ctx);
4025
4026         exclusive_event_destroy(event);
4027         module_put(event->pmu->module);
4028
4029         call_rcu(&event->rcu_head, free_event_rcu);
4030 }
4031
4032 /*
4033  * Used to free events which have a known refcount of 1, such as in error paths
4034  * where the event isn't exposed yet and inherited events.
4035  */
4036 static void free_event(struct perf_event *event)
4037 {
4038         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4039                                 "unexpected event refcount: %ld; ptr=%p\n",
4040                                 atomic_long_read(&event->refcount), event)) {
4041                 /* leak to avoid use-after-free */
4042                 return;
4043         }
4044
4045         _free_event(event);
4046 }
4047
4048 /*
4049  * Remove user event from the owner task.
4050  */
4051 static void perf_remove_from_owner(struct perf_event *event)
4052 {
4053         struct task_struct *owner;
4054
4055         rcu_read_lock();
4056         /*
4057          * Matches the smp_store_release() in perf_event_exit_task(). If we
4058          * observe !owner it means the list deletion is complete and we can
4059          * indeed free this event, otherwise we need to serialize on
4060          * owner->perf_event_mutex.
4061          */
4062         owner = lockless_dereference(event->owner);
4063         if (owner) {
4064                 /*
4065                  * Since delayed_put_task_struct() also drops the last
4066                  * task reference we can safely take a new reference
4067                  * while holding the rcu_read_lock().
4068                  */
4069                 get_task_struct(owner);
4070         }
4071         rcu_read_unlock();
4072
4073         if (owner) {
4074                 /*
4075                  * If we're here through perf_event_exit_task() we're already
4076                  * holding ctx->mutex which would be an inversion wrt. the
4077                  * normal lock order.
4078                  *
4079                  * However we can safely take this lock because its the child
4080                  * ctx->mutex.
4081                  */
4082                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4083
4084                 /*
4085                  * We have to re-check the event->owner field, if it is cleared
4086                  * we raced with perf_event_exit_task(), acquiring the mutex
4087                  * ensured they're done, and we can proceed with freeing the
4088                  * event.
4089                  */
4090                 if (event->owner) {
4091                         list_del_init(&event->owner_entry);
4092                         smp_store_release(&event->owner, NULL);
4093                 }
4094                 mutex_unlock(&owner->perf_event_mutex);
4095                 put_task_struct(owner);
4096         }
4097 }
4098
4099 static void put_event(struct perf_event *event)
4100 {
4101         if (!atomic_long_dec_and_test(&event->refcount))
4102                 return;
4103
4104         _free_event(event);
4105 }
4106
4107 /*
4108  * Kill an event dead; while event:refcount will preserve the event
4109  * object, it will not preserve its functionality. Once the last 'user'
4110  * gives up the object, we'll destroy the thing.
4111  */
4112 int perf_event_release_kernel(struct perf_event *event)
4113 {
4114         struct perf_event_context *ctx = event->ctx;
4115         struct perf_event *child, *tmp;
4116
4117         /*
4118          * If we got here through err_file: fput(event_file); we will not have
4119          * attached to a context yet.
4120          */
4121         if (!ctx) {
4122                 WARN_ON_ONCE(event->attach_state &
4123                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4124                 goto no_ctx;
4125         }
4126
4127         if (!is_kernel_event(event))
4128                 perf_remove_from_owner(event);
4129
4130         ctx = perf_event_ctx_lock(event);
4131         WARN_ON_ONCE(ctx->parent_ctx);
4132         perf_remove_from_context(event, DETACH_GROUP);
4133
4134         raw_spin_lock_irq(&ctx->lock);
4135         /*
4136          * Mark this even as STATE_DEAD, there is no external reference to it
4137          * anymore.
4138          *
4139          * Anybody acquiring event->child_mutex after the below loop _must_
4140          * also see this, most importantly inherit_event() which will avoid
4141          * placing more children on the list.
4142          *
4143          * Thus this guarantees that we will in fact observe and kill _ALL_
4144          * child events.
4145          */
4146         event->state = PERF_EVENT_STATE_DEAD;
4147         raw_spin_unlock_irq(&ctx->lock);
4148
4149         perf_event_ctx_unlock(event, ctx);
4150
4151 again:
4152         mutex_lock(&event->child_mutex);
4153         list_for_each_entry(child, &event->child_list, child_list) {
4154
4155                 /*
4156                  * Cannot change, child events are not migrated, see the
4157                  * comment with perf_event_ctx_lock_nested().
4158                  */
4159                 ctx = lockless_dereference(child->ctx);
4160                 /*
4161                  * Since child_mutex nests inside ctx::mutex, we must jump
4162                  * through hoops. We start by grabbing a reference on the ctx.
4163                  *
4164                  * Since the event cannot get freed while we hold the
4165                  * child_mutex, the context must also exist and have a !0
4166                  * reference count.
4167                  */
4168                 get_ctx(ctx);
4169
4170                 /*
4171                  * Now that we have a ctx ref, we can drop child_mutex, and
4172                  * acquire ctx::mutex without fear of it going away. Then we
4173                  * can re-acquire child_mutex.
4174                  */
4175                 mutex_unlock(&event->child_mutex);
4176                 mutex_lock(&ctx->mutex);
4177                 mutex_lock(&event->child_mutex);
4178
4179                 /*
4180                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4181                  * state, if child is still the first entry, it didn't get freed
4182                  * and we can continue doing so.
4183                  */
4184                 tmp = list_first_entry_or_null(&event->child_list,
4185                                                struct perf_event, child_list);
4186                 if (tmp == child) {
4187                         perf_remove_from_context(child, DETACH_GROUP);
4188                         list_del(&child->child_list);
4189                         free_event(child);
4190                         /*
4191                          * This matches the refcount bump in inherit_event();
4192                          * this can't be the last reference.
4193                          */
4194                         put_event(event);
4195                 }
4196
4197                 mutex_unlock(&event->child_mutex);
4198                 mutex_unlock(&ctx->mutex);
4199                 put_ctx(ctx);
4200                 goto again;
4201         }
4202         mutex_unlock(&event->child_mutex);
4203
4204 no_ctx:
4205         put_event(event); /* Must be the 'last' reference */
4206         return 0;
4207 }
4208 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4209
4210 /*
4211  * Called when the last reference to the file is gone.
4212  */
4213 static int perf_release(struct inode *inode, struct file *file)
4214 {
4215         perf_event_release_kernel(file->private_data);
4216         return 0;
4217 }
4218
4219 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4220 {
4221         struct perf_event *child;
4222         u64 total = 0;
4223
4224         *enabled = 0;
4225         *running = 0;
4226
4227         mutex_lock(&event->child_mutex);
4228
4229         (void)perf_event_read(event, false);
4230         total += perf_event_count(event);
4231
4232         *enabled += event->total_time_enabled +
4233                         atomic64_read(&event->child_total_time_enabled);
4234         *running += event->total_time_running +
4235                         atomic64_read(&event->child_total_time_running);
4236
4237         list_for_each_entry(child, &event->child_list, child_list) {
4238                 (void)perf_event_read(child, false);
4239                 total += perf_event_count(child);
4240                 *enabled += child->total_time_enabled;
4241                 *running += child->total_time_running;
4242         }
4243         mutex_unlock(&event->child_mutex);
4244
4245         return total;
4246 }
4247 EXPORT_SYMBOL_GPL(perf_event_read_value);
4248
4249 static int __perf_read_group_add(struct perf_event *leader,
4250                                         u64 read_format, u64 *values)
4251 {
4252         struct perf_event *sub;
4253         int n = 1; /* skip @nr */
4254         int ret;
4255
4256         ret = perf_event_read(leader, true);
4257         if (ret)
4258                 return ret;
4259
4260         /*
4261          * Since we co-schedule groups, {enabled,running} times of siblings
4262          * will be identical to those of the leader, so we only publish one
4263          * set.
4264          */
4265         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4266                 values[n++] += leader->total_time_enabled +
4267                         atomic64_read(&leader->child_total_time_enabled);
4268         }
4269
4270         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4271                 values[n++] += leader->total_time_running +
4272                         atomic64_read(&leader->child_total_time_running);
4273         }
4274
4275         /*
4276          * Write {count,id} tuples for every sibling.
4277          */
4278         values[n++] += perf_event_count(leader);
4279         if (read_format & PERF_FORMAT_ID)
4280                 values[n++] = primary_event_id(leader);
4281
4282         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4283                 values[n++] += perf_event_count(sub);
4284                 if (read_format & PERF_FORMAT_ID)
4285                         values[n++] = primary_event_id(sub);
4286         }
4287
4288         return 0;
4289 }
4290
4291 static int perf_read_group(struct perf_event *event,
4292                                    u64 read_format, char __user *buf)
4293 {
4294         struct perf_event *leader = event->group_leader, *child;
4295         struct perf_event_context *ctx = leader->ctx;
4296         int ret;
4297         u64 *values;
4298
4299         lockdep_assert_held(&ctx->mutex);
4300
4301         values = kzalloc(event->read_size, GFP_KERNEL);
4302         if (!values)
4303                 return -ENOMEM;
4304
4305         values[0] = 1 + leader->nr_siblings;
4306
4307         /*
4308          * By locking the child_mutex of the leader we effectively
4309          * lock the child list of all siblings.. XXX explain how.
4310          */
4311         mutex_lock(&leader->child_mutex);
4312
4313         ret = __perf_read_group_add(leader, read_format, values);
4314         if (ret)
4315                 goto unlock;
4316
4317         list_for_each_entry(child, &leader->child_list, child_list) {
4318                 ret = __perf_read_group_add(child, read_format, values);
4319                 if (ret)
4320                         goto unlock;
4321         }
4322
4323         mutex_unlock(&leader->child_mutex);
4324
4325         ret = event->read_size;
4326         if (copy_to_user(buf, values, event->read_size))
4327                 ret = -EFAULT;
4328         goto out;
4329
4330 unlock:
4331         mutex_unlock(&leader->child_mutex);
4332 out:
4333         kfree(values);
4334         return ret;
4335 }
4336
4337 static int perf_read_one(struct perf_event *event,
4338                                  u64 read_format, char __user *buf)
4339 {
4340         u64 enabled, running;
4341         u64 values[4];
4342         int n = 0;
4343
4344         values[n++] = perf_event_read_value(event, &enabled, &running);
4345         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4346                 values[n++] = enabled;
4347         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4348                 values[n++] = running;
4349         if (read_format & PERF_FORMAT_ID)
4350                 values[n++] = primary_event_id(event);
4351
4352         if (copy_to_user(buf, values, n * sizeof(u64)))
4353                 return -EFAULT;
4354
4355         return n * sizeof(u64);
4356 }
4357
4358 static bool is_event_hup(struct perf_event *event)
4359 {
4360         bool no_children;
4361
4362         if (event->state > PERF_EVENT_STATE_EXIT)
4363                 return false;
4364
4365         mutex_lock(&event->child_mutex);
4366         no_children = list_empty(&event->child_list);
4367         mutex_unlock(&event->child_mutex);
4368         return no_children;
4369 }
4370
4371 /*
4372  * Read the performance event - simple non blocking version for now
4373  */
4374 static ssize_t
4375 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4376 {
4377         u64 read_format = event->attr.read_format;
4378         int ret;
4379
4380         /*
4381          * Return end-of-file for a read on a event that is in
4382          * error state (i.e. because it was pinned but it couldn't be
4383          * scheduled on to the CPU at some point).
4384          */
4385         if (event->state == PERF_EVENT_STATE_ERROR)
4386                 return 0;
4387
4388         if (count < event->read_size)
4389                 return -ENOSPC;
4390
4391         WARN_ON_ONCE(event->ctx->parent_ctx);
4392         if (read_format & PERF_FORMAT_GROUP)
4393                 ret = perf_read_group(event, read_format, buf);
4394         else
4395                 ret = perf_read_one(event, read_format, buf);
4396
4397         return ret;
4398 }
4399
4400 static ssize_t
4401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4402 {
4403         struct perf_event *event = file->private_data;
4404         struct perf_event_context *ctx;
4405         int ret;
4406
4407         ctx = perf_event_ctx_lock(event);
4408         ret = __perf_read(event, buf, count);
4409         perf_event_ctx_unlock(event, ctx);
4410
4411         return ret;
4412 }
4413
4414 static unsigned int perf_poll(struct file *file, poll_table *wait)
4415 {
4416         struct perf_event *event = file->private_data;
4417         struct ring_buffer *rb;
4418         unsigned int events = POLLHUP;
4419
4420         poll_wait(file, &event->waitq, wait);
4421
4422         if (is_event_hup(event))
4423                 return events;
4424
4425         /*
4426          * Pin the event->rb by taking event->mmap_mutex; otherwise
4427          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4428          */
4429         mutex_lock(&event->mmap_mutex);
4430         rb = event->rb;
4431         if (rb)
4432                 events = atomic_xchg(&rb->poll, 0);
4433         mutex_unlock(&event->mmap_mutex);
4434         return events;
4435 }
4436
4437 static void _perf_event_reset(struct perf_event *event)
4438 {
4439         (void)perf_event_read(event, false);
4440         local64_set(&event->count, 0);
4441         perf_event_update_userpage(event);
4442 }
4443
4444 /*
4445  * Holding the top-level event's child_mutex means that any
4446  * descendant process that has inherited this event will block
4447  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448  * task existence requirements of perf_event_enable/disable.
4449  */
4450 static void perf_event_for_each_child(struct perf_event *event,
4451                                         void (*func)(struct perf_event *))
4452 {
4453         struct perf_event *child;
4454
4455         WARN_ON_ONCE(event->ctx->parent_ctx);
4456
4457         mutex_lock(&event->child_mutex);
4458         func(event);
4459         list_for_each_entry(child, &event->child_list, child_list)
4460                 func(child);
4461         mutex_unlock(&event->child_mutex);
4462 }
4463
4464 static void perf_event_for_each(struct perf_event *event,
4465                                   void (*func)(struct perf_event *))
4466 {
4467         struct perf_event_context *ctx = event->ctx;
4468         struct perf_event *sibling;
4469
4470         lockdep_assert_held(&ctx->mutex);
4471
4472         event = event->group_leader;
4473
4474         perf_event_for_each_child(event, func);
4475         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4476                 perf_event_for_each_child(sibling, func);
4477 }
4478
4479 static void __perf_event_period(struct perf_event *event,
4480                                 struct perf_cpu_context *cpuctx,
4481                                 struct perf_event_context *ctx,
4482                                 void *info)
4483 {
4484         u64 value = *((u64 *)info);
4485         bool active;
4486
4487         if (event->attr.freq) {
4488                 event->attr.sample_freq = value;
4489         } else {
4490                 event->attr.sample_period = value;
4491                 event->hw.sample_period = value;
4492         }
4493
4494         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4495         if (active) {
4496                 perf_pmu_disable(ctx->pmu);
4497                 /*
4498                  * We could be throttled; unthrottle now to avoid the tick
4499                  * trying to unthrottle while we already re-started the event.
4500                  */
4501                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4502                         event->hw.interrupts = 0;
4503                         perf_log_throttle(event, 1);
4504                 }
4505                 event->pmu->stop(event, PERF_EF_UPDATE);
4506         }
4507
4508         local64_set(&event->hw.period_left, 0);
4509
4510         if (active) {
4511                 event->pmu->start(event, PERF_EF_RELOAD);
4512                 perf_pmu_enable(ctx->pmu);
4513         }
4514 }
4515
4516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4517 {
4518         u64 value;
4519
4520         if (!is_sampling_event(event))
4521                 return -EINVAL;
4522
4523         if (copy_from_user(&value, arg, sizeof(value)))
4524                 return -EFAULT;
4525
4526         if (!value)
4527                 return -EINVAL;
4528
4529         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4530                 return -EINVAL;
4531
4532         event_function_call(event, __perf_event_period, &value);
4533
4534         return 0;
4535 }
4536
4537 static const struct file_operations perf_fops;
4538
4539 static inline int perf_fget_light(int fd, struct fd *p)
4540 {
4541         struct fd f = fdget(fd);
4542         if (!f.file)
4543                 return -EBADF;
4544
4545         if (f.file->f_op != &perf_fops) {
4546                 fdput(f);
4547                 return -EBADF;
4548         }
4549         *p = f;
4550         return 0;
4551 }
4552
4553 static int perf_event_set_output(struct perf_event *event,
4554                                  struct perf_event *output_event);
4555 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4556 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4557
4558 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4559 {
4560         void (*func)(struct perf_event *);
4561         u32 flags = arg;
4562
4563         switch (cmd) {
4564         case PERF_EVENT_IOC_ENABLE:
4565                 func = _perf_event_enable;
4566                 break;
4567         case PERF_EVENT_IOC_DISABLE:
4568                 func = _perf_event_disable;
4569                 break;
4570         case PERF_EVENT_IOC_RESET:
4571                 func = _perf_event_reset;
4572                 break;
4573
4574         case PERF_EVENT_IOC_REFRESH:
4575                 return _perf_event_refresh(event, arg);
4576
4577         case PERF_EVENT_IOC_PERIOD:
4578                 return perf_event_period(event, (u64 __user *)arg);
4579
4580         case PERF_EVENT_IOC_ID:
4581         {
4582                 u64 id = primary_event_id(event);
4583
4584                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4585                         return -EFAULT;
4586                 return 0;
4587         }
4588
4589         case PERF_EVENT_IOC_SET_OUTPUT:
4590         {
4591                 int ret;
4592                 if (arg != -1) {
4593                         struct perf_event *output_event;
4594                         struct fd output;
4595                         ret = perf_fget_light(arg, &output);
4596                         if (ret)
4597                                 return ret;
4598                         output_event = output.file->private_data;
4599                         ret = perf_event_set_output(event, output_event);
4600                         fdput(output);
4601                 } else {
4602                         ret = perf_event_set_output(event, NULL);
4603                 }
4604                 return ret;
4605         }
4606
4607         case PERF_EVENT_IOC_SET_FILTER:
4608                 return perf_event_set_filter(event, (void __user *)arg);
4609
4610         case PERF_EVENT_IOC_SET_BPF:
4611                 return perf_event_set_bpf_prog(event, arg);
4612
4613         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4614                 struct ring_buffer *rb;
4615
4616                 rcu_read_lock();
4617                 rb = rcu_dereference(event->rb);
4618                 if (!rb || !rb->nr_pages) {
4619                         rcu_read_unlock();
4620                         return -EINVAL;
4621                 }
4622                 rb_toggle_paused(rb, !!arg);
4623                 rcu_read_unlock();
4624                 return 0;
4625         }
4626         default:
4627                 return -ENOTTY;
4628         }
4629
4630         if (flags & PERF_IOC_FLAG_GROUP)
4631                 perf_event_for_each(event, func);
4632         else
4633                 perf_event_for_each_child(event, func);
4634
4635         return 0;
4636 }
4637
4638 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4639 {
4640         struct perf_event *event = file->private_data;
4641         struct perf_event_context *ctx;
4642         long ret;
4643
4644         ctx = perf_event_ctx_lock(event);
4645         ret = _perf_ioctl(event, cmd, arg);
4646         perf_event_ctx_unlock(event, ctx);
4647
4648         return ret;
4649 }
4650
4651 #ifdef CONFIG_COMPAT
4652 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4653                                 unsigned long arg)
4654 {
4655         switch (_IOC_NR(cmd)) {
4656         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4657         case _IOC_NR(PERF_EVENT_IOC_ID):
4658                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4660                         cmd &= ~IOCSIZE_MASK;
4661                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4662                 }
4663                 break;
4664         }
4665         return perf_ioctl(file, cmd, arg);
4666 }
4667 #else
4668 # define perf_compat_ioctl NULL
4669 #endif
4670
4671 int perf_event_task_enable(void)
4672 {
4673         struct perf_event_context *ctx;
4674         struct perf_event *event;
4675
4676         mutex_lock(&current->perf_event_mutex);
4677         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4678                 ctx = perf_event_ctx_lock(event);
4679                 perf_event_for_each_child(event, _perf_event_enable);
4680                 perf_event_ctx_unlock(event, ctx);
4681         }
4682         mutex_unlock(&current->perf_event_mutex);
4683
4684         return 0;
4685 }
4686
4687 int perf_event_task_disable(void)
4688 {
4689         struct perf_event_context *ctx;
4690         struct perf_event *event;
4691
4692         mutex_lock(&current->perf_event_mutex);
4693         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4694                 ctx = perf_event_ctx_lock(event);
4695                 perf_event_for_each_child(event, _perf_event_disable);
4696                 perf_event_ctx_unlock(event, ctx);
4697         }
4698         mutex_unlock(&current->perf_event_mutex);
4699
4700         return 0;
4701 }
4702
4703 static int perf_event_index(struct perf_event *event)
4704 {
4705         if (event->hw.state & PERF_HES_STOPPED)
4706                 return 0;
4707
4708         if (event->state != PERF_EVENT_STATE_ACTIVE)
4709                 return 0;
4710
4711         return event->pmu->event_idx(event);
4712 }
4713
4714 static void calc_timer_values(struct perf_event *event,
4715                                 u64 *now,
4716                                 u64 *enabled,
4717                                 u64 *running)
4718 {
4719         u64 ctx_time;
4720
4721         *now = perf_clock();
4722         ctx_time = event->shadow_ctx_time + *now;
4723         *enabled = ctx_time - event->tstamp_enabled;
4724         *running = ctx_time - event->tstamp_running;
4725 }
4726
4727 static void perf_event_init_userpage(struct perf_event *event)
4728 {
4729         struct perf_event_mmap_page *userpg;
4730         struct ring_buffer *rb;
4731
4732         rcu_read_lock();
4733         rb = rcu_dereference(event->rb);
4734         if (!rb)
4735                 goto unlock;
4736
4737         userpg = rb->user_page;
4738
4739         /* Allow new userspace to detect that bit 0 is deprecated */
4740         userpg->cap_bit0_is_deprecated = 1;
4741         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4742         userpg->data_offset = PAGE_SIZE;
4743         userpg->data_size = perf_data_size(rb);
4744
4745 unlock:
4746         rcu_read_unlock();
4747 }
4748
4749 void __weak arch_perf_update_userpage(
4750         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4751 {
4752 }
4753
4754 /*
4755  * Callers need to ensure there can be no nesting of this function, otherwise
4756  * the seqlock logic goes bad. We can not serialize this because the arch
4757  * code calls this from NMI context.
4758  */
4759 void perf_event_update_userpage(struct perf_event *event)
4760 {
4761         struct perf_event_mmap_page *userpg;
4762         struct ring_buffer *rb;
4763         u64 enabled, running, now;
4764
4765         rcu_read_lock();
4766         rb = rcu_dereference(event->rb);
4767         if (!rb)
4768                 goto unlock;
4769
4770         /*
4771          * compute total_time_enabled, total_time_running
4772          * based on snapshot values taken when the event
4773          * was last scheduled in.
4774          *
4775          * we cannot simply called update_context_time()
4776          * because of locking issue as we can be called in
4777          * NMI context
4778          */
4779         calc_timer_values(event, &now, &enabled, &running);
4780
4781         userpg = rb->user_page;
4782         /*
4783          * Disable preemption so as to not let the corresponding user-space
4784          * spin too long if we get preempted.
4785          */
4786         preempt_disable();
4787         ++userpg->lock;
4788         barrier();
4789         userpg->index = perf_event_index(event);
4790         userpg->offset = perf_event_count(event);
4791         if (userpg->index)
4792                 userpg->offset -= local64_read(&event->hw.prev_count);
4793
4794         userpg->time_enabled = enabled +
4795                         atomic64_read(&event->child_total_time_enabled);
4796
4797         userpg->time_running = running +
4798                         atomic64_read(&event->child_total_time_running);
4799
4800         arch_perf_update_userpage(event, userpg, now);
4801
4802         barrier();
4803         ++userpg->lock;
4804         preempt_enable();
4805 unlock:
4806         rcu_read_unlock();
4807 }
4808
4809 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4810 {
4811         struct perf_event *event = vma->vm_file->private_data;
4812         struct ring_buffer *rb;
4813         int ret = VM_FAULT_SIGBUS;
4814
4815         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4816                 if (vmf->pgoff == 0)
4817                         ret = 0;
4818                 return ret;
4819         }
4820
4821         rcu_read_lock();
4822         rb = rcu_dereference(event->rb);
4823         if (!rb)
4824                 goto unlock;
4825
4826         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4827                 goto unlock;
4828
4829         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4830         if (!vmf->page)
4831                 goto unlock;
4832
4833         get_page(vmf->page);
4834         vmf->page->mapping = vma->vm_file->f_mapping;
4835         vmf->page->index   = vmf->pgoff;
4836
4837         ret = 0;
4838 unlock:
4839         rcu_read_unlock();
4840
4841         return ret;
4842 }
4843
4844 static void ring_buffer_attach(struct perf_event *event,
4845                                struct ring_buffer *rb)
4846 {
4847         struct ring_buffer *old_rb = NULL;
4848         unsigned long flags;
4849
4850         if (event->rb) {
4851                 /*
4852                  * Should be impossible, we set this when removing
4853                  * event->rb_entry and wait/clear when adding event->rb_entry.
4854                  */
4855                 WARN_ON_ONCE(event->rcu_pending);
4856
4857                 old_rb = event->rb;
4858                 spin_lock_irqsave(&old_rb->event_lock, flags);
4859                 list_del_rcu(&event->rb_entry);
4860                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4861
4862                 event->rcu_batches = get_state_synchronize_rcu();
4863                 event->rcu_pending = 1;
4864         }
4865
4866         if (rb) {
4867                 if (event->rcu_pending) {
4868                         cond_synchronize_rcu(event->rcu_batches);
4869                         event->rcu_pending = 0;
4870                 }
4871
4872                 spin_lock_irqsave(&rb->event_lock, flags);
4873                 list_add_rcu(&event->rb_entry, &rb->event_list);
4874                 spin_unlock_irqrestore(&rb->event_lock, flags);
4875         }
4876
4877         /*
4878          * Avoid racing with perf_mmap_close(AUX): stop the event
4879          * before swizzling the event::rb pointer; if it's getting
4880          * unmapped, its aux_mmap_count will be 0 and it won't
4881          * restart. See the comment in __perf_pmu_output_stop().
4882          *
4883          * Data will inevitably be lost when set_output is done in
4884          * mid-air, but then again, whoever does it like this is
4885          * not in for the data anyway.
4886          */
4887         if (has_aux(event))
4888                 perf_event_stop(event, 0);
4889
4890         rcu_assign_pointer(event->rb, rb);
4891
4892         if (old_rb) {
4893                 ring_buffer_put(old_rb);
4894                 /*
4895                  * Since we detached before setting the new rb, so that we
4896                  * could attach the new rb, we could have missed a wakeup.
4897                  * Provide it now.
4898                  */
4899                 wake_up_all(&event->waitq);
4900         }
4901 }
4902
4903 static void ring_buffer_wakeup(struct perf_event *event)
4904 {
4905         struct ring_buffer *rb;
4906
4907         rcu_read_lock();
4908         rb = rcu_dereference(event->rb);
4909         if (rb) {
4910                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4911                         wake_up_all(&event->waitq);
4912         }
4913         rcu_read_unlock();
4914 }
4915
4916 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4917 {
4918         struct ring_buffer *rb;
4919
4920         rcu_read_lock();
4921         rb = rcu_dereference(event->rb);
4922         if (rb) {
4923                 if (!atomic_inc_not_zero(&rb->refcount))
4924                         rb = NULL;
4925         }
4926         rcu_read_unlock();
4927
4928         return rb;
4929 }
4930
4931 void ring_buffer_put(struct ring_buffer *rb)
4932 {
4933         if (!atomic_dec_and_test(&rb->refcount))
4934                 return;
4935
4936         WARN_ON_ONCE(!list_empty(&rb->event_list));
4937
4938         call_rcu(&rb->rcu_head, rb_free_rcu);
4939 }
4940
4941 static void perf_mmap_open(struct vm_area_struct *vma)
4942 {
4943         struct perf_event *event = vma->vm_file->private_data;
4944
4945         atomic_inc(&event->mmap_count);
4946         atomic_inc(&event->rb->mmap_count);
4947
4948         if (vma->vm_pgoff)
4949                 atomic_inc(&event->rb->aux_mmap_count);
4950
4951         if (event->pmu->event_mapped)
4952                 event->pmu->event_mapped(event);
4953 }
4954
4955 static void perf_pmu_output_stop(struct perf_event *event);
4956
4957 /*
4958  * A buffer can be mmap()ed multiple times; either directly through the same
4959  * event, or through other events by use of perf_event_set_output().
4960  *
4961  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4962  * the buffer here, where we still have a VM context. This means we need
4963  * to detach all events redirecting to us.
4964  */
4965 static void perf_mmap_close(struct vm_area_struct *vma)
4966 {
4967         struct perf_event *event = vma->vm_file->private_data;
4968
4969         struct ring_buffer *rb = ring_buffer_get(event);
4970         struct user_struct *mmap_user = rb->mmap_user;
4971         int mmap_locked = rb->mmap_locked;
4972         unsigned long size = perf_data_size(rb);
4973
4974         if (event->pmu->event_unmapped)
4975                 event->pmu->event_unmapped(event);
4976
4977         /*
4978          * rb->aux_mmap_count will always drop before rb->mmap_count and
4979          * event->mmap_count, so it is ok to use event->mmap_mutex to
4980          * serialize with perf_mmap here.
4981          */
4982         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4983             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4984                 /*
4985                  * Stop all AUX events that are writing to this buffer,
4986                  * so that we can free its AUX pages and corresponding PMU
4987                  * data. Note that after rb::aux_mmap_count dropped to zero,
4988                  * they won't start any more (see perf_aux_output_begin()).
4989                  */
4990                 perf_pmu_output_stop(event);
4991
4992                 /* now it's safe to free the pages */
4993                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4994                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4995
4996                 /* this has to be the last one */
4997                 rb_free_aux(rb);
4998                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4999
5000                 mutex_unlock(&event->mmap_mutex);
5001         }
5002
5003         atomic_dec(&rb->mmap_count);
5004
5005         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5006                 goto out_put;
5007
5008         ring_buffer_attach(event, NULL);
5009         mutex_unlock(&event->mmap_mutex);
5010
5011         /* If there's still other mmap()s of this buffer, we're done. */
5012         if (atomic_read(&rb->mmap_count))
5013                 goto out_put;
5014
5015         /*
5016          * No other mmap()s, detach from all other events that might redirect
5017          * into the now unreachable buffer. Somewhat complicated by the
5018          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5019          */
5020 again:
5021         rcu_read_lock();
5022         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5023                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5024                         /*
5025                          * This event is en-route to free_event() which will
5026                          * detach it and remove it from the list.
5027                          */
5028                         continue;
5029                 }
5030                 rcu_read_unlock();
5031
5032                 mutex_lock(&event->mmap_mutex);
5033                 /*
5034                  * Check we didn't race with perf_event_set_output() which can
5035                  * swizzle the rb from under us while we were waiting to
5036                  * acquire mmap_mutex.
5037                  *
5038                  * If we find a different rb; ignore this event, a next
5039                  * iteration will no longer find it on the list. We have to
5040                  * still restart the iteration to make sure we're not now
5041                  * iterating the wrong list.
5042                  */
5043                 if (event->rb == rb)
5044                         ring_buffer_attach(event, NULL);
5045
5046                 mutex_unlock(&event->mmap_mutex);
5047                 put_event(event);
5048
5049                 /*
5050                  * Restart the iteration; either we're on the wrong list or
5051                  * destroyed its integrity by doing a deletion.
5052                  */
5053                 goto again;
5054         }
5055         rcu_read_unlock();
5056
5057         /*
5058          * It could be there's still a few 0-ref events on the list; they'll
5059          * get cleaned up by free_event() -- they'll also still have their
5060          * ref on the rb and will free it whenever they are done with it.
5061          *
5062          * Aside from that, this buffer is 'fully' detached and unmapped,
5063          * undo the VM accounting.
5064          */
5065
5066         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5067         vma->vm_mm->pinned_vm -= mmap_locked;
5068         free_uid(mmap_user);
5069
5070 out_put:
5071         ring_buffer_put(rb); /* could be last */
5072 }
5073
5074 static const struct vm_operations_struct perf_mmap_vmops = {
5075         .open           = perf_mmap_open,
5076         .close          = perf_mmap_close, /* non mergable */
5077         .fault          = perf_mmap_fault,
5078         .page_mkwrite   = perf_mmap_fault,
5079 };
5080
5081 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5082 {
5083         struct perf_event *event = file->private_data;
5084         unsigned long user_locked, user_lock_limit;
5085         struct user_struct *user = current_user();
5086         unsigned long locked, lock_limit;
5087         struct ring_buffer *rb = NULL;
5088         unsigned long vma_size;
5089         unsigned long nr_pages;
5090         long user_extra = 0, extra = 0;
5091         int ret = 0, flags = 0;
5092
5093         /*
5094          * Don't allow mmap() of inherited per-task counters. This would
5095          * create a performance issue due to all children writing to the
5096          * same rb.
5097          */
5098         if (event->cpu == -1 && event->attr.inherit)
5099                 return -EINVAL;
5100
5101         if (!(vma->vm_flags & VM_SHARED))
5102                 return -EINVAL;
5103
5104         vma_size = vma->vm_end - vma->vm_start;
5105
5106         if (vma->vm_pgoff == 0) {
5107                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5108         } else {
5109                 /*
5110                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5111                  * mapped, all subsequent mappings should have the same size
5112                  * and offset. Must be above the normal perf buffer.
5113                  */
5114                 u64 aux_offset, aux_size;
5115
5116                 if (!event->rb)
5117                         return -EINVAL;
5118
5119                 nr_pages = vma_size / PAGE_SIZE;
5120
5121                 mutex_lock(&event->mmap_mutex);
5122                 ret = -EINVAL;
5123
5124                 rb = event->rb;
5125                 if (!rb)
5126                         goto aux_unlock;
5127
5128                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5129                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5130
5131                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5132                         goto aux_unlock;
5133
5134                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5135                         goto aux_unlock;
5136
5137                 /* already mapped with a different offset */
5138                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5139                         goto aux_unlock;
5140
5141                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5142                         goto aux_unlock;
5143
5144                 /* already mapped with a different size */
5145                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5146                         goto aux_unlock;
5147
5148                 if (!is_power_of_2(nr_pages))
5149                         goto aux_unlock;
5150
5151                 if (!atomic_inc_not_zero(&rb->mmap_count))
5152                         goto aux_unlock;
5153
5154                 if (rb_has_aux(rb)) {
5155                         atomic_inc(&rb->aux_mmap_count);
5156                         ret = 0;
5157                         goto unlock;
5158                 }
5159
5160                 atomic_set(&rb->aux_mmap_count, 1);
5161                 user_extra = nr_pages;
5162
5163                 goto accounting;
5164         }
5165
5166         /*
5167          * If we have rb pages ensure they're a power-of-two number, so we
5168          * can do bitmasks instead of modulo.
5169          */
5170         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5171                 return -EINVAL;
5172
5173         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5174                 return -EINVAL;
5175
5176         WARN_ON_ONCE(event->ctx->parent_ctx);
5177 again:
5178         mutex_lock(&event->mmap_mutex);
5179         if (event->rb) {
5180                 if (event->rb->nr_pages != nr_pages) {
5181                         ret = -EINVAL;
5182                         goto unlock;
5183                 }
5184
5185                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5186                         /*
5187                          * Raced against perf_mmap_close() through
5188                          * perf_event_set_output(). Try again, hope for better
5189                          * luck.
5190                          */
5191                         mutex_unlock(&event->mmap_mutex);
5192                         goto again;
5193                 }
5194
5195                 goto unlock;
5196         }
5197
5198         user_extra = nr_pages + 1;
5199
5200 accounting:
5201         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5202
5203         /*
5204          * Increase the limit linearly with more CPUs:
5205          */
5206         user_lock_limit *= num_online_cpus();
5207
5208         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5209
5210         if (user_locked > user_lock_limit)
5211                 extra = user_locked - user_lock_limit;
5212
5213         lock_limit = rlimit(RLIMIT_MEMLOCK);
5214         lock_limit >>= PAGE_SHIFT;
5215         locked = vma->vm_mm->pinned_vm + extra;
5216
5217         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5218                 !capable(CAP_IPC_LOCK)) {
5219                 ret = -EPERM;
5220                 goto unlock;
5221         }
5222
5223         WARN_ON(!rb && event->rb);
5224
5225         if (vma->vm_flags & VM_WRITE)
5226                 flags |= RING_BUFFER_WRITABLE;
5227
5228         if (!rb) {
5229                 rb = rb_alloc(nr_pages,
5230                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5231                               event->cpu, flags);
5232
5233                 if (!rb) {
5234                         ret = -ENOMEM;
5235                         goto unlock;
5236                 }
5237
5238                 atomic_set(&rb->mmap_count, 1);
5239                 rb->mmap_user = get_current_user();
5240                 rb->mmap_locked = extra;
5241
5242                 ring_buffer_attach(event, rb);
5243
5244                 perf_event_init_userpage(event);
5245                 perf_event_update_userpage(event);
5246         } else {
5247                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5248                                    event->attr.aux_watermark, flags);
5249                 if (!ret)
5250                         rb->aux_mmap_locked = extra;
5251         }
5252
5253 unlock:
5254         if (!ret) {
5255                 atomic_long_add(user_extra, &user->locked_vm);
5256                 vma->vm_mm->pinned_vm += extra;
5257
5258                 atomic_inc(&event->mmap_count);
5259         } else if (rb) {
5260                 atomic_dec(&rb->mmap_count);
5261         }
5262 aux_unlock:
5263         mutex_unlock(&event->mmap_mutex);
5264
5265         /*
5266          * Since pinned accounting is per vm we cannot allow fork() to copy our
5267          * vma.
5268          */
5269         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5270         vma->vm_ops = &perf_mmap_vmops;
5271
5272         if (event->pmu->event_mapped)
5273                 event->pmu->event_mapped(event);
5274
5275         return ret;
5276 }
5277
5278 static int perf_fasync(int fd, struct file *filp, int on)
5279 {
5280         struct inode *inode = file_inode(filp);
5281         struct perf_event *event = filp->private_data;
5282         int retval;
5283
5284         inode_lock(inode);
5285         retval = fasync_helper(fd, filp, on, &event->fasync);
5286         inode_unlock(inode);
5287
5288         if (retval < 0)
5289                 return retval;
5290
5291         return 0;
5292 }
5293
5294 static const struct file_operations perf_fops = {
5295         .llseek                 = no_llseek,
5296         .release                = perf_release,
5297         .read                   = perf_read,
5298         .poll                   = perf_poll,
5299         .unlocked_ioctl         = perf_ioctl,
5300         .compat_ioctl           = perf_compat_ioctl,
5301         .mmap                   = perf_mmap,
5302         .fasync                 = perf_fasync,
5303 };
5304
5305 /*
5306  * Perf event wakeup
5307  *
5308  * If there's data, ensure we set the poll() state and publish everything
5309  * to user-space before waking everybody up.
5310  */
5311
5312 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5313 {
5314         /* only the parent has fasync state */
5315         if (event->parent)
5316                 event = event->parent;
5317         return &event->fasync;
5318 }
5319
5320 void perf_event_wakeup(struct perf_event *event)
5321 {
5322         ring_buffer_wakeup(event);
5323
5324         if (event->pending_kill) {
5325                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5326                 event->pending_kill = 0;
5327         }
5328 }
5329
5330 static void perf_pending_event(struct irq_work *entry)
5331 {
5332         struct perf_event *event = container_of(entry,
5333                         struct perf_event, pending);
5334         int rctx;
5335
5336         rctx = perf_swevent_get_recursion_context();
5337         /*
5338          * If we 'fail' here, that's OK, it means recursion is already disabled
5339          * and we won't recurse 'further'.
5340          */
5341
5342         if (event->pending_disable) {
5343                 event->pending_disable = 0;
5344                 perf_event_disable_local(event);
5345         }
5346
5347         if (event->pending_wakeup) {
5348                 event->pending_wakeup = 0;
5349                 perf_event_wakeup(event);
5350         }
5351
5352         if (rctx >= 0)
5353                 perf_swevent_put_recursion_context(rctx);
5354 }
5355
5356 /*
5357  * We assume there is only KVM supporting the callbacks.
5358  * Later on, we might change it to a list if there is
5359  * another virtualization implementation supporting the callbacks.
5360  */
5361 struct perf_guest_info_callbacks *perf_guest_cbs;
5362
5363 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5364 {
5365         perf_guest_cbs = cbs;
5366         return 0;
5367 }
5368 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5369
5370 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5371 {
5372         perf_guest_cbs = NULL;
5373         return 0;
5374 }
5375 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5376
5377 static void
5378 perf_output_sample_regs(struct perf_output_handle *handle,
5379                         struct pt_regs *regs, u64 mask)
5380 {
5381         int bit;
5382         DECLARE_BITMAP(_mask, 64);
5383
5384         bitmap_from_u64(_mask, mask);
5385         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5386                 u64 val;
5387
5388                 val = perf_reg_value(regs, bit);
5389                 perf_output_put(handle, val);
5390         }
5391 }
5392
5393 static void perf_sample_regs_user(struct perf_regs *regs_user,
5394                                   struct pt_regs *regs,
5395                                   struct pt_regs *regs_user_copy)
5396 {
5397         if (user_mode(regs)) {
5398                 regs_user->abi = perf_reg_abi(current);
5399                 regs_user->regs = regs;
5400         } else if (current->mm) {
5401                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5402         } else {
5403                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5404                 regs_user->regs = NULL;
5405         }
5406 }
5407
5408 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5409                                   struct pt_regs *regs)
5410 {
5411         regs_intr->regs = regs;
5412         regs_intr->abi  = perf_reg_abi(current);
5413 }
5414
5415
5416 /*
5417  * Get remaining task size from user stack pointer.
5418  *
5419  * It'd be better to take stack vma map and limit this more
5420  * precisly, but there's no way to get it safely under interrupt,
5421  * so using TASK_SIZE as limit.
5422  */
5423 static u64 perf_ustack_task_size(struct pt_regs *regs)
5424 {
5425         unsigned long addr = perf_user_stack_pointer(regs);
5426
5427         if (!addr || addr >= TASK_SIZE)
5428                 return 0;
5429
5430         return TASK_SIZE - addr;
5431 }
5432
5433 static u16
5434 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5435                         struct pt_regs *regs)
5436 {
5437         u64 task_size;
5438
5439         /* No regs, no stack pointer, no dump. */
5440         if (!regs)
5441                 return 0;
5442
5443         /*
5444          * Check if we fit in with the requested stack size into the:
5445          * - TASK_SIZE
5446          *   If we don't, we limit the size to the TASK_SIZE.
5447          *
5448          * - remaining sample size
5449          *   If we don't, we customize the stack size to
5450          *   fit in to the remaining sample size.
5451          */
5452
5453         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5454         stack_size = min(stack_size, (u16) task_size);
5455
5456         /* Current header size plus static size and dynamic size. */
5457         header_size += 2 * sizeof(u64);
5458
5459         /* Do we fit in with the current stack dump size? */
5460         if ((u16) (header_size + stack_size) < header_size) {
5461                 /*
5462                  * If we overflow the maximum size for the sample,
5463                  * we customize the stack dump size to fit in.
5464                  */
5465                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5466                 stack_size = round_up(stack_size, sizeof(u64));
5467         }
5468
5469         return stack_size;
5470 }
5471
5472 static void
5473 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5474                           struct pt_regs *regs)
5475 {
5476         /* Case of a kernel thread, nothing to dump */
5477         if (!regs) {
5478                 u64 size = 0;
5479                 perf_output_put(handle, size);
5480         } else {
5481                 unsigned long sp;
5482                 unsigned int rem;
5483                 u64 dyn_size;
5484
5485                 /*
5486                  * We dump:
5487                  * static size
5488                  *   - the size requested by user or the best one we can fit
5489                  *     in to the sample max size
5490                  * data
5491                  *   - user stack dump data
5492                  * dynamic size
5493                  *   - the actual dumped size
5494                  */
5495
5496                 /* Static size. */
5497                 perf_output_put(handle, dump_size);
5498
5499                 /* Data. */
5500                 sp = perf_user_stack_pointer(regs);
5501                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5502                 dyn_size = dump_size - rem;
5503
5504                 perf_output_skip(handle, rem);
5505
5506                 /* Dynamic size. */
5507                 perf_output_put(handle, dyn_size);
5508         }
5509 }
5510
5511 static void __perf_event_header__init_id(struct perf_event_header *header,
5512                                          struct perf_sample_data *data,
5513                                          struct perf_event *event)
5514 {
5515         u64 sample_type = event->attr.sample_type;
5516
5517         data->type = sample_type;
5518         header->size += event->id_header_size;
5519
5520         if (sample_type & PERF_SAMPLE_TID) {
5521                 /* namespace issues */
5522                 data->tid_entry.pid = perf_event_pid(event, current);
5523                 data->tid_entry.tid = perf_event_tid(event, current);
5524         }
5525
5526         if (sample_type & PERF_SAMPLE_TIME)
5527                 data->time = perf_event_clock(event);
5528
5529         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5530                 data->id = primary_event_id(event);
5531
5532         if (sample_type & PERF_SAMPLE_STREAM_ID)
5533                 data->stream_id = event->id;
5534
5535         if (sample_type & PERF_SAMPLE_CPU) {
5536                 data->cpu_entry.cpu      = raw_smp_processor_id();
5537                 data->cpu_entry.reserved = 0;
5538         }
5539 }
5540
5541 void perf_event_header__init_id(struct perf_event_header *header,
5542                                 struct perf_sample_data *data,
5543                                 struct perf_event *event)
5544 {
5545         if (event->attr.sample_id_all)
5546                 __perf_event_header__init_id(header, data, event);
5547 }
5548
5549 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5550                                            struct perf_sample_data *data)
5551 {
5552         u64 sample_type = data->type;
5553
5554         if (sample_type & PERF_SAMPLE_TID)
5555                 perf_output_put(handle, data->tid_entry);
5556
5557         if (sample_type & PERF_SAMPLE_TIME)
5558                 perf_output_put(handle, data->time);
5559
5560         if (sample_type & PERF_SAMPLE_ID)
5561                 perf_output_put(handle, data->id);
5562
5563         if (sample_type & PERF_SAMPLE_STREAM_ID)
5564                 perf_output_put(handle, data->stream_id);
5565
5566         if (sample_type & PERF_SAMPLE_CPU)
5567                 perf_output_put(handle, data->cpu_entry);
5568
5569         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5570                 perf_output_put(handle, data->id);
5571 }
5572
5573 void perf_event__output_id_sample(struct perf_event *event,
5574                                   struct perf_output_handle *handle,
5575                                   struct perf_sample_data *sample)
5576 {
5577         if (event->attr.sample_id_all)
5578                 __perf_event__output_id_sample(handle, sample);
5579 }
5580
5581 static void perf_output_read_one(struct perf_output_handle *handle,
5582                                  struct perf_event *event,
5583                                  u64 enabled, u64 running)
5584 {
5585         u64 read_format = event->attr.read_format;
5586         u64 values[4];
5587         int n = 0;
5588
5589         values[n++] = perf_event_count(event);
5590         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5591                 values[n++] = enabled +
5592                         atomic64_read(&event->child_total_time_enabled);
5593         }
5594         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5595                 values[n++] = running +
5596                         atomic64_read(&event->child_total_time_running);
5597         }
5598         if (read_format & PERF_FORMAT_ID)
5599                 values[n++] = primary_event_id(event);
5600
5601         __output_copy(handle, values, n * sizeof(u64));
5602 }
5603
5604 /*
5605  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5606  */
5607 static void perf_output_read_group(struct perf_output_handle *handle,
5608                             struct perf_event *event,
5609                             u64 enabled, u64 running)
5610 {
5611         struct perf_event *leader = event->group_leader, *sub;
5612         u64 read_format = event->attr.read_format;
5613         u64 values[5];
5614         int n = 0;
5615
5616         values[n++] = 1 + leader->nr_siblings;
5617
5618         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619                 values[n++] = enabled;
5620
5621         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5622                 values[n++] = running;
5623
5624         if (leader != event)
5625                 leader->pmu->read(leader);
5626
5627         values[n++] = perf_event_count(leader);
5628         if (read_format & PERF_FORMAT_ID)
5629                 values[n++] = primary_event_id(leader);
5630
5631         __output_copy(handle, values, n * sizeof(u64));
5632
5633         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5634                 n = 0;
5635
5636                 if ((sub != event) &&
5637                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5638                         sub->pmu->read(sub);
5639
5640                 values[n++] = perf_event_count(sub);
5641                 if (read_format & PERF_FORMAT_ID)
5642                         values[n++] = primary_event_id(sub);
5643
5644                 __output_copy(handle, values, n * sizeof(u64));
5645         }
5646 }
5647
5648 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5649                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5650
5651 static void perf_output_read(struct perf_output_handle *handle,
5652                              struct perf_event *event)
5653 {
5654         u64 enabled = 0, running = 0, now;
5655         u64 read_format = event->attr.read_format;
5656
5657         /*
5658          * compute total_time_enabled, total_time_running
5659          * based on snapshot values taken when the event
5660          * was last scheduled in.
5661          *
5662          * we cannot simply called update_context_time()
5663          * because of locking issue as we are called in
5664          * NMI context
5665          */
5666         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5667                 calc_timer_values(event, &now, &enabled, &running);
5668
5669         if (event->attr.read_format & PERF_FORMAT_GROUP)
5670                 perf_output_read_group(handle, event, enabled, running);
5671         else
5672                 perf_output_read_one(handle, event, enabled, running);
5673 }
5674
5675 void perf_output_sample(struct perf_output_handle *handle,
5676                         struct perf_event_header *header,
5677                         struct perf_sample_data *data,
5678                         struct perf_event *event)
5679 {
5680         u64 sample_type = data->type;
5681
5682         perf_output_put(handle, *header);
5683
5684         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5685                 perf_output_put(handle, data->id);
5686
5687         if (sample_type & PERF_SAMPLE_IP)
5688                 perf_output_put(handle, data->ip);
5689
5690         if (sample_type & PERF_SAMPLE_TID)
5691                 perf_output_put(handle, data->tid_entry);
5692
5693         if (sample_type & PERF_SAMPLE_TIME)
5694                 perf_output_put(handle, data->time);
5695
5696         if (sample_type & PERF_SAMPLE_ADDR)
5697                 perf_output_put(handle, data->addr);
5698
5699         if (sample_type & PERF_SAMPLE_ID)
5700                 perf_output_put(handle, data->id);
5701
5702         if (sample_type & PERF_SAMPLE_STREAM_ID)
5703                 perf_output_put(handle, data->stream_id);
5704
5705         if (sample_type & PERF_SAMPLE_CPU)
5706                 perf_output_put(handle, data->cpu_entry);
5707
5708         if (sample_type & PERF_SAMPLE_PERIOD)
5709                 perf_output_put(handle, data->period);
5710
5711         if (sample_type & PERF_SAMPLE_READ)
5712                 perf_output_read(handle, event);
5713
5714         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5715                 if (data->callchain) {
5716                         int size = 1;
5717
5718                         if (data->callchain)
5719                                 size += data->callchain->nr;
5720
5721                         size *= sizeof(u64);
5722
5723                         __output_copy(handle, data->callchain, size);
5724                 } else {
5725                         u64 nr = 0;
5726                         perf_output_put(handle, nr);
5727                 }
5728         }
5729
5730         if (sample_type & PERF_SAMPLE_RAW) {
5731                 struct perf_raw_record *raw = data->raw;
5732
5733                 if (raw) {
5734                         struct perf_raw_frag *frag = &raw->frag;
5735
5736                         perf_output_put(handle, raw->size);
5737                         do {
5738                                 if (frag->copy) {
5739                                         __output_custom(handle, frag->copy,
5740                                                         frag->data, frag->size);
5741                                 } else {
5742                                         __output_copy(handle, frag->data,
5743                                                       frag->size);
5744                                 }
5745                                 if (perf_raw_frag_last(frag))
5746                                         break;
5747                                 frag = frag->next;
5748                         } while (1);
5749                         if (frag->pad)
5750                                 __output_skip(handle, NULL, frag->pad);
5751                 } else {
5752                         struct {
5753                                 u32     size;
5754                                 u32     data;
5755                         } raw = {
5756                                 .size = sizeof(u32),
5757                                 .data = 0,
5758                         };
5759                         perf_output_put(handle, raw);
5760                 }
5761         }
5762
5763         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5764                 if (data->br_stack) {
5765                         size_t size;
5766
5767                         size = data->br_stack->nr
5768                              * sizeof(struct perf_branch_entry);
5769
5770                         perf_output_put(handle, data->br_stack->nr);
5771                         perf_output_copy(handle, data->br_stack->entries, size);
5772                 } else {
5773                         /*
5774                          * we always store at least the value of nr
5775                          */
5776                         u64 nr = 0;
5777                         perf_output_put(handle, nr);
5778                 }
5779         }
5780
5781         if (sample_type & PERF_SAMPLE_REGS_USER) {
5782                 u64 abi = data->regs_user.abi;
5783
5784                 /*
5785                  * If there are no regs to dump, notice it through
5786                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5787                  */
5788                 perf_output_put(handle, abi);
5789
5790                 if (abi) {
5791                         u64 mask = event->attr.sample_regs_user;
5792                         perf_output_sample_regs(handle,
5793                                                 data->regs_user.regs,
5794                                                 mask);
5795                 }
5796         }
5797
5798         if (sample_type & PERF_SAMPLE_STACK_USER) {
5799                 perf_output_sample_ustack(handle,
5800                                           data->stack_user_size,
5801                                           data->regs_user.regs);
5802         }
5803
5804         if (sample_type & PERF_SAMPLE_WEIGHT)
5805                 perf_output_put(handle, data->weight);
5806
5807         if (sample_type & PERF_SAMPLE_DATA_SRC)
5808                 perf_output_put(handle, data->data_src.val);
5809
5810         if (sample_type & PERF_SAMPLE_TRANSACTION)
5811                 perf_output_put(handle, data->txn);
5812
5813         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5814                 u64 abi = data->regs_intr.abi;
5815                 /*
5816                  * If there are no regs to dump, notice it through
5817                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5818                  */
5819                 perf_output_put(handle, abi);
5820
5821                 if (abi) {
5822                         u64 mask = event->attr.sample_regs_intr;
5823
5824                         perf_output_sample_regs(handle,
5825                                                 data->regs_intr.regs,
5826                                                 mask);
5827                 }
5828         }
5829
5830         if (!event->attr.watermark) {
5831                 int wakeup_events = event->attr.wakeup_events;
5832
5833                 if (wakeup_events) {
5834                         struct ring_buffer *rb = handle->rb;
5835                         int events = local_inc_return(&rb->events);
5836
5837                         if (events >= wakeup_events) {
5838                                 local_sub(wakeup_events, &rb->events);
5839                                 local_inc(&rb->wakeup);
5840                         }
5841                 }
5842         }
5843 }
5844
5845 void perf_prepare_sample(struct perf_event_header *header,
5846                          struct perf_sample_data *data,
5847                          struct perf_event *event,
5848                          struct pt_regs *regs)
5849 {
5850         u64 sample_type = event->attr.sample_type;
5851
5852         header->type = PERF_RECORD_SAMPLE;
5853         header->size = sizeof(*header) + event->header_size;
5854
5855         header->misc = 0;
5856         header->misc |= perf_misc_flags(regs);
5857
5858         __perf_event_header__init_id(header, data, event);
5859
5860         if (sample_type & PERF_SAMPLE_IP)
5861                 data->ip = perf_instruction_pointer(regs);
5862
5863         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5864                 int size = 1;
5865
5866                 data->callchain = perf_callchain(event, regs);
5867
5868                 if (data->callchain)
5869                         size += data->callchain->nr;
5870
5871                 header->size += size * sizeof(u64);
5872         }
5873
5874         if (sample_type & PERF_SAMPLE_RAW) {
5875                 struct perf_raw_record *raw = data->raw;
5876                 int size;
5877
5878                 if (raw) {
5879                         struct perf_raw_frag *frag = &raw->frag;
5880                         u32 sum = 0;
5881
5882                         do {
5883                                 sum += frag->size;
5884                                 if (perf_raw_frag_last(frag))
5885                                         break;
5886                                 frag = frag->next;
5887                         } while (1);
5888
5889                         size = round_up(sum + sizeof(u32), sizeof(u64));
5890                         raw->size = size - sizeof(u32);
5891                         frag->pad = raw->size - sum;
5892                 } else {
5893                         size = sizeof(u64);
5894                 }
5895
5896                 header->size += size;
5897         }
5898
5899         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5900                 int size = sizeof(u64); /* nr */
5901                 if (data->br_stack) {
5902                         size += data->br_stack->nr
5903                               * sizeof(struct perf_branch_entry);
5904                 }
5905                 header->size += size;
5906         }
5907
5908         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5909                 perf_sample_regs_user(&data->regs_user, regs,
5910                                       &data->regs_user_copy);
5911
5912         if (sample_type & PERF_SAMPLE_REGS_USER) {
5913                 /* regs dump ABI info */
5914                 int size = sizeof(u64);
5915
5916                 if (data->regs_user.regs) {
5917                         u64 mask = event->attr.sample_regs_user;
5918                         size += hweight64(mask) * sizeof(u64);
5919                 }
5920
5921                 header->size += size;
5922         }
5923
5924         if (sample_type & PERF_SAMPLE_STACK_USER) {
5925                 /*
5926                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5927                  * processed as the last one or have additional check added
5928                  * in case new sample type is added, because we could eat
5929                  * up the rest of the sample size.
5930                  */
5931                 u16 stack_size = event->attr.sample_stack_user;
5932                 u16 size = sizeof(u64);
5933
5934                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5935                                                      data->regs_user.regs);
5936
5937                 /*
5938                  * If there is something to dump, add space for the dump
5939                  * itself and for the field that tells the dynamic size,
5940                  * which is how many have been actually dumped.
5941                  */
5942                 if (stack_size)
5943                         size += sizeof(u64) + stack_size;
5944
5945                 data->stack_user_size = stack_size;
5946                 header->size += size;
5947         }
5948
5949         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5950                 /* regs dump ABI info */
5951                 int size = sizeof(u64);
5952
5953                 perf_sample_regs_intr(&data->regs_intr, regs);
5954
5955                 if (data->regs_intr.regs) {
5956                         u64 mask = event->attr.sample_regs_intr;
5957
5958                         size += hweight64(mask) * sizeof(u64);
5959                 }
5960
5961                 header->size += size;
5962         }
5963 }
5964
5965 static void __always_inline
5966 __perf_event_output(struct perf_event *event,
5967                     struct perf_sample_data *data,
5968                     struct pt_regs *regs,
5969                     int (*output_begin)(struct perf_output_handle *,
5970                                         struct perf_event *,
5971                                         unsigned int))
5972 {
5973         struct perf_output_handle handle;
5974         struct perf_event_header header;
5975
5976         /* protect the callchain buffers */
5977         rcu_read_lock();
5978
5979         perf_prepare_sample(&header, data, event, regs);
5980
5981         if (output_begin(&handle, event, header.size))
5982                 goto exit;
5983
5984         perf_output_sample(&handle, &header, data, event);
5985
5986         perf_output_end(&handle);
5987
5988 exit:
5989         rcu_read_unlock();
5990 }
5991
5992 void
5993 perf_event_output_forward(struct perf_event *event,
5994                          struct perf_sample_data *data,
5995                          struct pt_regs *regs)
5996 {
5997         __perf_event_output(event, data, regs, perf_output_begin_forward);
5998 }
5999
6000 void
6001 perf_event_output_backward(struct perf_event *event,
6002                            struct perf_sample_data *data,
6003                            struct pt_regs *regs)
6004 {
6005         __perf_event_output(event, data, regs, perf_output_begin_backward);
6006 }
6007
6008 void
6009 perf_event_output(struct perf_event *event,
6010                   struct perf_sample_data *data,
6011                   struct pt_regs *regs)
6012 {
6013         __perf_event_output(event, data, regs, perf_output_begin);
6014 }
6015
6016 /*
6017  * read event_id
6018  */
6019
6020 struct perf_read_event {
6021         struct perf_event_header        header;
6022
6023         u32                             pid;
6024         u32                             tid;
6025 };
6026
6027 static void
6028 perf_event_read_event(struct perf_event *event,
6029                         struct task_struct *task)
6030 {
6031         struct perf_output_handle handle;
6032         struct perf_sample_data sample;
6033         struct perf_read_event read_event = {
6034                 .header = {
6035                         .type = PERF_RECORD_READ,
6036                         .misc = 0,
6037                         .size = sizeof(read_event) + event->read_size,
6038                 },
6039                 .pid = perf_event_pid(event, task),
6040                 .tid = perf_event_tid(event, task),
6041         };
6042         int ret;
6043
6044         perf_event_header__init_id(&read_event.header, &sample, event);
6045         ret = perf_output_begin(&handle, event, read_event.header.size);
6046         if (ret)
6047                 return;
6048
6049         perf_output_put(&handle, read_event);
6050         perf_output_read(&handle, event);
6051         perf_event__output_id_sample(event, &handle, &sample);
6052
6053         perf_output_end(&handle);
6054 }
6055
6056 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6057
6058 static void
6059 perf_iterate_ctx(struct perf_event_context *ctx,
6060                    perf_iterate_f output,
6061                    void *data, bool all)
6062 {
6063         struct perf_event *event;
6064
6065         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6066                 if (!all) {
6067                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6068                                 continue;
6069                         if (!event_filter_match(event))
6070                                 continue;
6071                 }
6072
6073                 output(event, data);
6074         }
6075 }
6076
6077 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6078 {
6079         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6080         struct perf_event *event;
6081
6082         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6083                 /*
6084                  * Skip events that are not fully formed yet; ensure that
6085                  * if we observe event->ctx, both event and ctx will be
6086                  * complete enough. See perf_install_in_context().
6087                  */
6088                 if (!smp_load_acquire(&event->ctx))
6089                         continue;
6090
6091                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6092                         continue;
6093                 if (!event_filter_match(event))
6094                         continue;
6095                 output(event, data);
6096         }
6097 }
6098
6099 /*
6100  * Iterate all events that need to receive side-band events.
6101  *
6102  * For new callers; ensure that account_pmu_sb_event() includes
6103  * your event, otherwise it might not get delivered.
6104  */
6105 static void
6106 perf_iterate_sb(perf_iterate_f output, void *data,
6107                struct perf_event_context *task_ctx)
6108 {
6109         struct perf_event_context *ctx;
6110         int ctxn;
6111
6112         rcu_read_lock();
6113         preempt_disable();
6114
6115         /*
6116          * If we have task_ctx != NULL we only notify the task context itself.
6117          * The task_ctx is set only for EXIT events before releasing task
6118          * context.
6119          */
6120         if (task_ctx) {
6121                 perf_iterate_ctx(task_ctx, output, data, false);
6122                 goto done;
6123         }
6124
6125         perf_iterate_sb_cpu(output, data);
6126
6127         for_each_task_context_nr(ctxn) {
6128                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6129                 if (ctx)
6130                         perf_iterate_ctx(ctx, output, data, false);
6131         }
6132 done:
6133         preempt_enable();
6134         rcu_read_unlock();
6135 }
6136
6137 /*
6138  * Clear all file-based filters at exec, they'll have to be
6139  * re-instated when/if these objects are mmapped again.
6140  */
6141 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6142 {
6143         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6144         struct perf_addr_filter *filter;
6145         unsigned int restart = 0, count = 0;
6146         unsigned long flags;
6147
6148         if (!has_addr_filter(event))
6149                 return;
6150
6151         raw_spin_lock_irqsave(&ifh->lock, flags);
6152         list_for_each_entry(filter, &ifh->list, entry) {
6153                 if (filter->inode) {
6154                         event->addr_filters_offs[count] = 0;
6155                         restart++;
6156                 }
6157
6158                 count++;
6159         }
6160
6161         if (restart)
6162                 event->addr_filters_gen++;
6163         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6164
6165         if (restart)
6166                 perf_event_stop(event, 1);
6167 }
6168
6169 void perf_event_exec(void)
6170 {
6171         struct perf_event_context *ctx;
6172         int ctxn;
6173
6174         rcu_read_lock();
6175         for_each_task_context_nr(ctxn) {
6176                 ctx = current->perf_event_ctxp[ctxn];
6177                 if (!ctx)
6178                         continue;
6179
6180                 perf_event_enable_on_exec(ctxn);
6181
6182                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6183                                    true);
6184         }
6185         rcu_read_unlock();
6186 }
6187
6188 struct remote_output {
6189         struct ring_buffer      *rb;
6190         int                     err;
6191 };
6192
6193 static void __perf_event_output_stop(struct perf_event *event, void *data)
6194 {
6195         struct perf_event *parent = event->parent;
6196         struct remote_output *ro = data;
6197         struct ring_buffer *rb = ro->rb;
6198         struct stop_event_data sd = {
6199                 .event  = event,
6200         };
6201
6202         if (!has_aux(event))
6203                 return;
6204
6205         if (!parent)
6206                 parent = event;
6207
6208         /*
6209          * In case of inheritance, it will be the parent that links to the
6210          * ring-buffer, but it will be the child that's actually using it.
6211          *
6212          * We are using event::rb to determine if the event should be stopped,
6213          * however this may race with ring_buffer_attach() (through set_output),
6214          * which will make us skip the event that actually needs to be stopped.
6215          * So ring_buffer_attach() has to stop an aux event before re-assigning
6216          * its rb pointer.
6217          */
6218         if (rcu_dereference(parent->rb) == rb)
6219                 ro->err = __perf_event_stop(&sd);
6220 }
6221
6222 static int __perf_pmu_output_stop(void *info)
6223 {
6224         struct perf_event *event = info;
6225         struct pmu *pmu = event->pmu;
6226         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6227         struct remote_output ro = {
6228                 .rb     = event->rb,
6229         };
6230
6231         rcu_read_lock();
6232         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6233         if (cpuctx->task_ctx)
6234                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6235                                    &ro, false);
6236         rcu_read_unlock();
6237
6238         return ro.err;
6239 }
6240
6241 static void perf_pmu_output_stop(struct perf_event *event)
6242 {
6243         struct perf_event *iter;
6244         int err, cpu;
6245
6246 restart:
6247         rcu_read_lock();
6248         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6249                 /*
6250                  * For per-CPU events, we need to make sure that neither they
6251                  * nor their children are running; for cpu==-1 events it's
6252                  * sufficient to stop the event itself if it's active, since
6253                  * it can't have children.
6254                  */
6255                 cpu = iter->cpu;
6256                 if (cpu == -1)
6257                         cpu = READ_ONCE(iter->oncpu);
6258
6259                 if (cpu == -1)
6260                         continue;
6261
6262                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6263                 if (err == -EAGAIN) {
6264                         rcu_read_unlock();
6265                         goto restart;
6266                 }
6267         }
6268         rcu_read_unlock();
6269 }
6270
6271 /*
6272  * task tracking -- fork/exit
6273  *
6274  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6275  */
6276
6277 struct perf_task_event {
6278         struct task_struct              *task;
6279         struct perf_event_context       *task_ctx;
6280
6281         struct {
6282                 struct perf_event_header        header;
6283
6284                 u32                             pid;
6285                 u32                             ppid;
6286                 u32                             tid;
6287                 u32                             ptid;
6288                 u64                             time;
6289         } event_id;
6290 };
6291
6292 static int perf_event_task_match(struct perf_event *event)
6293 {
6294         return event->attr.comm  || event->attr.mmap ||
6295                event->attr.mmap2 || event->attr.mmap_data ||
6296                event->attr.task;
6297 }
6298
6299 static void perf_event_task_output(struct perf_event *event,
6300                                    void *data)
6301 {
6302         struct perf_task_event *task_event = data;
6303         struct perf_output_handle handle;
6304         struct perf_sample_data sample;
6305         struct task_struct *task = task_event->task;
6306         int ret, size = task_event->event_id.header.size;
6307
6308         if (!perf_event_task_match(event))
6309                 return;
6310
6311         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6312
6313         ret = perf_output_begin(&handle, event,
6314                                 task_event->event_id.header.size);
6315         if (ret)
6316                 goto out;
6317
6318         task_event->event_id.pid = perf_event_pid(event, task);
6319         task_event->event_id.ppid = perf_event_pid(event, current);
6320
6321         task_event->event_id.tid = perf_event_tid(event, task);
6322         task_event->event_id.ptid = perf_event_tid(event, current);
6323
6324         task_event->event_id.time = perf_event_clock(event);
6325
6326         perf_output_put(&handle, task_event->event_id);
6327
6328         perf_event__output_id_sample(event, &handle, &sample);
6329
6330         perf_output_end(&handle);
6331 out:
6332         task_event->event_id.header.size = size;
6333 }
6334
6335 static void perf_event_task(struct task_struct *task,
6336                               struct perf_event_context *task_ctx,
6337                               int new)
6338 {
6339         struct perf_task_event task_event;
6340
6341         if (!atomic_read(&nr_comm_events) &&
6342             !atomic_read(&nr_mmap_events) &&
6343             !atomic_read(&nr_task_events))
6344                 return;
6345
6346         task_event = (struct perf_task_event){
6347                 .task     = task,
6348                 .task_ctx = task_ctx,
6349                 .event_id    = {
6350                         .header = {
6351                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6352                                 .misc = 0,
6353                                 .size = sizeof(task_event.event_id),
6354                         },
6355                         /* .pid  */
6356                         /* .ppid */
6357                         /* .tid  */
6358                         /* .ptid */
6359                         /* .time */
6360                 },
6361         };
6362
6363         perf_iterate_sb(perf_event_task_output,
6364                        &task_event,
6365                        task_ctx);
6366 }
6367
6368 void perf_event_fork(struct task_struct *task)
6369 {
6370         perf_event_task(task, NULL, 1);
6371 }
6372
6373 /*
6374  * comm tracking
6375  */
6376
6377 struct perf_comm_event {
6378         struct task_struct      *task;
6379         char                    *comm;
6380         int                     comm_size;
6381
6382         struct {
6383                 struct perf_event_header        header;
6384
6385                 u32                             pid;
6386                 u32                             tid;
6387         } event_id;
6388 };
6389
6390 static int perf_event_comm_match(struct perf_event *event)
6391 {
6392         return event->attr.comm;
6393 }
6394
6395 static void perf_event_comm_output(struct perf_event *event,
6396                                    void *data)
6397 {
6398         struct perf_comm_event *comm_event = data;
6399         struct perf_output_handle handle;
6400         struct perf_sample_data sample;
6401         int size = comm_event->event_id.header.size;
6402         int ret;
6403
6404         if (!perf_event_comm_match(event))
6405                 return;
6406
6407         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6408         ret = perf_output_begin(&handle, event,
6409                                 comm_event->event_id.header.size);
6410
6411         if (ret)
6412                 goto out;
6413
6414         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6415         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6416
6417         perf_output_put(&handle, comm_event->event_id);
6418         __output_copy(&handle, comm_event->comm,
6419                                    comm_event->comm_size);
6420
6421         perf_event__output_id_sample(event, &handle, &sample);
6422
6423         perf_output_end(&handle);
6424 out:
6425         comm_event->event_id.header.size = size;
6426 }
6427
6428 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6429 {
6430         char comm[TASK_COMM_LEN];
6431         unsigned int size;
6432
6433         memset(comm, 0, sizeof(comm));
6434         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6435         size = ALIGN(strlen(comm)+1, sizeof(u64));
6436
6437         comm_event->comm = comm;
6438         comm_event->comm_size = size;
6439
6440         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6441
6442         perf_iterate_sb(perf_event_comm_output,
6443                        comm_event,
6444                        NULL);
6445 }
6446
6447 void perf_event_comm(struct task_struct *task, bool exec)
6448 {
6449         struct perf_comm_event comm_event;
6450
6451         if (!atomic_read(&nr_comm_events))
6452                 return;
6453
6454         comm_event = (struct perf_comm_event){
6455                 .task   = task,
6456                 /* .comm      */
6457                 /* .comm_size */
6458                 .event_id  = {
6459                         .header = {
6460                                 .type = PERF_RECORD_COMM,
6461                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6462                                 /* .size */
6463                         },
6464                         /* .pid */
6465                         /* .tid */
6466                 },
6467         };
6468
6469         perf_event_comm_event(&comm_event);
6470 }
6471
6472 /*
6473  * mmap tracking
6474  */
6475
6476 struct perf_mmap_event {
6477         struct vm_area_struct   *vma;
6478
6479         const char              *file_name;
6480         int                     file_size;
6481         int                     maj, min;
6482         u64                     ino;
6483         u64                     ino_generation;
6484         u32                     prot, flags;
6485
6486         struct {
6487                 struct perf_event_header        header;
6488
6489                 u32                             pid;
6490                 u32                             tid;
6491                 u64                             start;
6492                 u64                             len;
6493                 u64                             pgoff;
6494         } event_id;
6495 };
6496
6497 static int perf_event_mmap_match(struct perf_event *event,
6498                                  void *data)
6499 {
6500         struct perf_mmap_event *mmap_event = data;
6501         struct vm_area_struct *vma = mmap_event->vma;
6502         int executable = vma->vm_flags & VM_EXEC;
6503
6504         return (!executable && event->attr.mmap_data) ||
6505                (executable && (event->attr.mmap || event->attr.mmap2));
6506 }
6507
6508 static void perf_event_mmap_output(struct perf_event *event,
6509                                    void *data)
6510 {
6511         struct perf_mmap_event *mmap_event = data;
6512         struct perf_output_handle handle;
6513         struct perf_sample_data sample;
6514         int size = mmap_event->event_id.header.size;
6515         int ret;
6516
6517         if (!perf_event_mmap_match(event, data))
6518                 return;
6519
6520         if (event->attr.mmap2) {
6521                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6522                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6523                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6524                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6525                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6526                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6527                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6528         }
6529
6530         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6531         ret = perf_output_begin(&handle, event,
6532                                 mmap_event->event_id.header.size);
6533         if (ret)
6534                 goto out;
6535
6536         mmap_event->event_id.pid = perf_event_pid(event, current);
6537         mmap_event->event_id.tid = perf_event_tid(event, current);
6538
6539         perf_output_put(&handle, mmap_event->event_id);
6540
6541         if (event->attr.mmap2) {
6542                 perf_output_put(&handle, mmap_event->maj);
6543                 perf_output_put(&handle, mmap_event->min);
6544                 perf_output_put(&handle, mmap_event->ino);
6545                 perf_output_put(&handle, mmap_event->ino_generation);
6546                 perf_output_put(&handle, mmap_event->prot);
6547                 perf_output_put(&handle, mmap_event->flags);
6548         }
6549
6550         __output_copy(&handle, mmap_event->file_name,
6551                                    mmap_event->file_size);
6552
6553         perf_event__output_id_sample(event, &handle, &sample);
6554
6555         perf_output_end(&handle);
6556 out:
6557         mmap_event->event_id.header.size = size;
6558 }
6559
6560 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6561 {
6562         struct vm_area_struct *vma = mmap_event->vma;
6563         struct file *file = vma->vm_file;
6564         int maj = 0, min = 0;
6565         u64 ino = 0, gen = 0;
6566         u32 prot = 0, flags = 0;
6567         unsigned int size;
6568         char tmp[16];
6569         char *buf = NULL;
6570         char *name;
6571
6572         if (file) {
6573                 struct inode *inode;
6574                 dev_t dev;
6575
6576                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6577                 if (!buf) {
6578                         name = "//enomem";
6579                         goto cpy_name;
6580                 }
6581                 /*
6582                  * d_path() works from the end of the rb backwards, so we
6583                  * need to add enough zero bytes after the string to handle
6584                  * the 64bit alignment we do later.
6585                  */
6586                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6587                 if (IS_ERR(name)) {
6588                         name = "//toolong";
6589                         goto cpy_name;
6590                 }
6591                 inode = file_inode(vma->vm_file);
6592                 dev = inode->i_sb->s_dev;
6593                 ino = inode->i_ino;
6594                 gen = inode->i_generation;
6595                 maj = MAJOR(dev);
6596                 min = MINOR(dev);
6597
6598                 if (vma->vm_flags & VM_READ)
6599                         prot |= PROT_READ;
6600                 if (vma->vm_flags & VM_WRITE)
6601                         prot |= PROT_WRITE;
6602                 if (vma->vm_flags & VM_EXEC)
6603                         prot |= PROT_EXEC;
6604
6605                 if (vma->vm_flags & VM_MAYSHARE)
6606                         flags = MAP_SHARED;
6607                 else
6608                         flags = MAP_PRIVATE;
6609
6610                 if (vma->vm_flags & VM_DENYWRITE)
6611                         flags |= MAP_DENYWRITE;
6612                 if (vma->vm_flags & VM_MAYEXEC)
6613                         flags |= MAP_EXECUTABLE;
6614                 if (vma->vm_flags & VM_LOCKED)
6615                         flags |= MAP_LOCKED;
6616                 if (vma->vm_flags & VM_HUGETLB)
6617                         flags |= MAP_HUGETLB;
6618
6619                 goto got_name;
6620         } else {
6621                 if (vma->vm_ops && vma->vm_ops->name) {
6622                         name = (char *) vma->vm_ops->name(vma);
6623                         if (name)
6624                                 goto cpy_name;
6625                 }
6626
6627                 name = (char *)arch_vma_name(vma);
6628                 if (name)
6629                         goto cpy_name;
6630
6631                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6632                                 vma->vm_end >= vma->vm_mm->brk) {
6633                         name = "[heap]";
6634                         goto cpy_name;
6635                 }
6636                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6637                                 vma->vm_end >= vma->vm_mm->start_stack) {
6638                         name = "[stack]";
6639                         goto cpy_name;
6640                 }
6641
6642                 name = "//anon";
6643                 goto cpy_name;
6644         }
6645
6646 cpy_name:
6647         strlcpy(tmp, name, sizeof(tmp));
6648         name = tmp;
6649 got_name:
6650         /*
6651          * Since our buffer works in 8 byte units we need to align our string
6652          * size to a multiple of 8. However, we must guarantee the tail end is
6653          * zero'd out to avoid leaking random bits to userspace.
6654          */
6655         size = strlen(name)+1;
6656         while (!IS_ALIGNED(size, sizeof(u64)))
6657                 name[size++] = '\0';
6658
6659         mmap_event->file_name = name;
6660         mmap_event->file_size = size;
6661         mmap_event->maj = maj;
6662         mmap_event->min = min;
6663         mmap_event->ino = ino;
6664         mmap_event->ino_generation = gen;
6665         mmap_event->prot = prot;
6666         mmap_event->flags = flags;
6667
6668         if (!(vma->vm_flags & VM_EXEC))
6669                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6670
6671         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6672
6673         perf_iterate_sb(perf_event_mmap_output,
6674                        mmap_event,
6675                        NULL);
6676
6677         kfree(buf);
6678 }
6679
6680 /*
6681  * Check whether inode and address range match filter criteria.
6682  */
6683 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6684                                      struct file *file, unsigned long offset,
6685                                      unsigned long size)
6686 {
6687         if (filter->inode != file->f_inode)
6688                 return false;
6689
6690         if (filter->offset > offset + size)
6691                 return false;
6692
6693         if (filter->offset + filter->size < offset)
6694                 return false;
6695
6696         return true;
6697 }
6698
6699 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6700 {
6701         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6702         struct vm_area_struct *vma = data;
6703         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6704         struct file *file = vma->vm_file;
6705         struct perf_addr_filter *filter;
6706         unsigned int restart = 0, count = 0;
6707
6708         if (!has_addr_filter(event))
6709                 return;
6710
6711         if (!file)
6712                 return;
6713
6714         raw_spin_lock_irqsave(&ifh->lock, flags);
6715         list_for_each_entry(filter, &ifh->list, entry) {
6716                 if (perf_addr_filter_match(filter, file, off,
6717                                              vma->vm_end - vma->vm_start)) {
6718                         event->addr_filters_offs[count] = vma->vm_start;
6719                         restart++;
6720                 }
6721
6722                 count++;
6723         }
6724
6725         if (restart)
6726                 event->addr_filters_gen++;
6727         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6728
6729         if (restart)
6730                 perf_event_stop(event, 1);
6731 }
6732
6733 /*
6734  * Adjust all task's events' filters to the new vma
6735  */
6736 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6737 {
6738         struct perf_event_context *ctx;
6739         int ctxn;
6740
6741         /*
6742          * Data tracing isn't supported yet and as such there is no need
6743          * to keep track of anything that isn't related to executable code:
6744          */
6745         if (!(vma->vm_flags & VM_EXEC))
6746                 return;
6747
6748         rcu_read_lock();
6749         for_each_task_context_nr(ctxn) {
6750                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6751                 if (!ctx)
6752                         continue;
6753
6754                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6755         }
6756         rcu_read_unlock();
6757 }
6758
6759 void perf_event_mmap(struct vm_area_struct *vma)
6760 {
6761         struct perf_mmap_event mmap_event;
6762
6763         if (!atomic_read(&nr_mmap_events))
6764                 return;
6765
6766         mmap_event = (struct perf_mmap_event){
6767                 .vma    = vma,
6768                 /* .file_name */
6769                 /* .file_size */
6770                 .event_id  = {
6771                         .header = {
6772                                 .type = PERF_RECORD_MMAP,
6773                                 .misc = PERF_RECORD_MISC_USER,
6774                                 /* .size */
6775                         },
6776                         /* .pid */
6777                         /* .tid */
6778                         .start  = vma->vm_start,
6779                         .len    = vma->vm_end - vma->vm_start,
6780                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6781                 },
6782                 /* .maj (attr_mmap2 only) */
6783                 /* .min (attr_mmap2 only) */
6784                 /* .ino (attr_mmap2 only) */
6785                 /* .ino_generation (attr_mmap2 only) */
6786                 /* .prot (attr_mmap2 only) */
6787                 /* .flags (attr_mmap2 only) */
6788         };
6789
6790         perf_addr_filters_adjust(vma);
6791         perf_event_mmap_event(&mmap_event);
6792 }
6793
6794 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6795                           unsigned long size, u64 flags)
6796 {
6797         struct perf_output_handle handle;
6798         struct perf_sample_data sample;
6799         struct perf_aux_event {
6800                 struct perf_event_header        header;
6801                 u64                             offset;
6802                 u64                             size;
6803                 u64                             flags;
6804         } rec = {
6805                 .header = {
6806                         .type = PERF_RECORD_AUX,
6807                         .misc = 0,
6808                         .size = sizeof(rec),
6809                 },
6810                 .offset         = head,
6811                 .size           = size,
6812                 .flags          = flags,
6813         };
6814         int ret;
6815
6816         perf_event_header__init_id(&rec.header, &sample, event);
6817         ret = perf_output_begin(&handle, event, rec.header.size);
6818
6819         if (ret)
6820                 return;
6821
6822         perf_output_put(&handle, rec);
6823         perf_event__output_id_sample(event, &handle, &sample);
6824
6825         perf_output_end(&handle);
6826 }
6827
6828 /*
6829  * Lost/dropped samples logging
6830  */
6831 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6832 {
6833         struct perf_output_handle handle;
6834         struct perf_sample_data sample;
6835         int ret;
6836
6837         struct {
6838                 struct perf_event_header        header;
6839                 u64                             lost;
6840         } lost_samples_event = {
6841                 .header = {
6842                         .type = PERF_RECORD_LOST_SAMPLES,
6843                         .misc = 0,
6844                         .size = sizeof(lost_samples_event),
6845                 },
6846                 .lost           = lost,
6847         };
6848
6849         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6850
6851         ret = perf_output_begin(&handle, event,
6852                                 lost_samples_event.header.size);
6853         if (ret)
6854                 return;
6855
6856         perf_output_put(&handle, lost_samples_event);
6857         perf_event__output_id_sample(event, &handle, &sample);
6858         perf_output_end(&handle);
6859 }
6860
6861 /*
6862  * context_switch tracking
6863  */
6864
6865 struct perf_switch_event {
6866         struct task_struct      *task;
6867         struct task_struct      *next_prev;
6868
6869         struct {
6870                 struct perf_event_header        header;
6871                 u32                             next_prev_pid;
6872                 u32                             next_prev_tid;
6873         } event_id;
6874 };
6875
6876 static int perf_event_switch_match(struct perf_event *event)
6877 {
6878         return event->attr.context_switch;
6879 }
6880
6881 static void perf_event_switch_output(struct perf_event *event, void *data)
6882 {
6883         struct perf_switch_event *se = data;
6884         struct perf_output_handle handle;
6885         struct perf_sample_data sample;
6886         int ret;
6887
6888         if (!perf_event_switch_match(event))
6889                 return;
6890
6891         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6892         if (event->ctx->task) {
6893                 se->event_id.header.type = PERF_RECORD_SWITCH;
6894                 se->event_id.header.size = sizeof(se->event_id.header);
6895         } else {
6896                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6897                 se->event_id.header.size = sizeof(se->event_id);
6898                 se->event_id.next_prev_pid =
6899                                         perf_event_pid(event, se->next_prev);
6900                 se->event_id.next_prev_tid =
6901                                         perf_event_tid(event, se->next_prev);
6902         }
6903
6904         perf_event_header__init_id(&se->event_id.header, &sample, event);
6905
6906         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6907         if (ret)
6908                 return;
6909
6910         if (event->ctx->task)
6911                 perf_output_put(&handle, se->event_id.header);
6912         else
6913                 perf_output_put(&handle, se->event_id);
6914
6915         perf_event__output_id_sample(event, &handle, &sample);
6916
6917         perf_output_end(&handle);
6918 }
6919
6920 static void perf_event_switch(struct task_struct *task,
6921                               struct task_struct *next_prev, bool sched_in)
6922 {
6923         struct perf_switch_event switch_event;
6924
6925         /* N.B. caller checks nr_switch_events != 0 */
6926
6927         switch_event = (struct perf_switch_event){
6928                 .task           = task,
6929                 .next_prev      = next_prev,
6930                 .event_id       = {
6931                         .header = {
6932                                 /* .type */
6933                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6934                                 /* .size */
6935                         },
6936                         /* .next_prev_pid */
6937                         /* .next_prev_tid */
6938                 },
6939         };
6940
6941         perf_iterate_sb(perf_event_switch_output,
6942                        &switch_event,
6943                        NULL);
6944 }
6945
6946 /*
6947  * IRQ throttle logging
6948  */
6949
6950 static void perf_log_throttle(struct perf_event *event, int enable)
6951 {
6952         struct perf_output_handle handle;
6953         struct perf_sample_data sample;
6954         int ret;
6955
6956         struct {
6957                 struct perf_event_header        header;
6958                 u64                             time;
6959                 u64                             id;
6960                 u64                             stream_id;
6961         } throttle_event = {
6962                 .header = {
6963                         .type = PERF_RECORD_THROTTLE,
6964                         .misc = 0,
6965                         .size = sizeof(throttle_event),
6966                 },
6967                 .time           = perf_event_clock(event),
6968                 .id             = primary_event_id(event),
6969                 .stream_id      = event->id,
6970         };
6971
6972         if (enable)
6973                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6974
6975         perf_event_header__init_id(&throttle_event.header, &sample, event);
6976
6977         ret = perf_output_begin(&handle, event,
6978                                 throttle_event.header.size);
6979         if (ret)
6980                 return;
6981
6982         perf_output_put(&handle, throttle_event);
6983         perf_event__output_id_sample(event, &handle, &sample);
6984         perf_output_end(&handle);
6985 }
6986
6987 static void perf_log_itrace_start(struct perf_event *event)
6988 {
6989         struct perf_output_handle handle;
6990         struct perf_sample_data sample;
6991         struct perf_aux_event {
6992                 struct perf_event_header        header;
6993                 u32                             pid;
6994                 u32                             tid;
6995         } rec;
6996         int ret;
6997
6998         if (event->parent)
6999                 event = event->parent;
7000
7001         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7002             event->hw.itrace_started)
7003                 return;
7004
7005         rec.header.type = PERF_RECORD_ITRACE_START;
7006         rec.header.misc = 0;
7007         rec.header.size = sizeof(rec);
7008         rec.pid = perf_event_pid(event, current);
7009         rec.tid = perf_event_tid(event, current);
7010
7011         perf_event_header__init_id(&rec.header, &sample, event);
7012         ret = perf_output_begin(&handle, event, rec.header.size);
7013
7014         if (ret)
7015                 return;
7016
7017         perf_output_put(&handle, rec);
7018         perf_event__output_id_sample(event, &handle, &sample);
7019
7020         perf_output_end(&handle);
7021 }
7022
7023 /*
7024  * Generic event overflow handling, sampling.
7025  */
7026
7027 static int __perf_event_overflow(struct perf_event *event,
7028                                    int throttle, struct perf_sample_data *data,
7029                                    struct pt_regs *regs)
7030 {
7031         int events = atomic_read(&event->event_limit);
7032         struct hw_perf_event *hwc = &event->hw;
7033         u64 seq;
7034         int ret = 0;
7035
7036         /*
7037          * Non-sampling counters might still use the PMI to fold short
7038          * hardware counters, ignore those.
7039          */
7040         if (unlikely(!is_sampling_event(event)))
7041                 return 0;
7042
7043         seq = __this_cpu_read(perf_throttled_seq);
7044         if (seq != hwc->interrupts_seq) {
7045                 hwc->interrupts_seq = seq;
7046                 hwc->interrupts = 1;
7047         } else {
7048                 hwc->interrupts++;
7049                 if (unlikely(throttle
7050                              && hwc->interrupts >= max_samples_per_tick)) {
7051                         __this_cpu_inc(perf_throttled_count);
7052                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7053                         hwc->interrupts = MAX_INTERRUPTS;
7054                         perf_log_throttle(event, 0);
7055                         ret = 1;
7056                 }
7057         }
7058
7059         if (event->attr.freq) {
7060                 u64 now = perf_clock();
7061                 s64 delta = now - hwc->freq_time_stamp;
7062
7063                 hwc->freq_time_stamp = now;
7064
7065                 if (delta > 0 && delta < 2*TICK_NSEC)
7066                         perf_adjust_period(event, delta, hwc->last_period, true);
7067         }
7068
7069         /*
7070          * XXX event_limit might not quite work as expected on inherited
7071          * events
7072          */
7073
7074         event->pending_kill = POLL_IN;
7075         if (events && atomic_dec_and_test(&event->event_limit)) {
7076                 ret = 1;
7077                 event->pending_kill = POLL_HUP;
7078                 event->pending_disable = 1;
7079                 irq_work_queue(&event->pending);
7080         }
7081
7082         READ_ONCE(event->overflow_handler)(event, data, regs);
7083
7084         if (*perf_event_fasync(event) && event->pending_kill) {
7085                 event->pending_wakeup = 1;
7086                 irq_work_queue(&event->pending);
7087         }
7088
7089         return ret;
7090 }
7091
7092 int perf_event_overflow(struct perf_event *event,
7093                           struct perf_sample_data *data,
7094                           struct pt_regs *regs)
7095 {
7096         return __perf_event_overflow(event, 1, data, regs);
7097 }
7098
7099 /*
7100  * Generic software event infrastructure
7101  */
7102
7103 struct swevent_htable {
7104         struct swevent_hlist            *swevent_hlist;
7105         struct mutex                    hlist_mutex;
7106         int                             hlist_refcount;
7107
7108         /* Recursion avoidance in each contexts */
7109         int                             recursion[PERF_NR_CONTEXTS];
7110 };
7111
7112 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7113
7114 /*
7115  * We directly increment event->count and keep a second value in
7116  * event->hw.period_left to count intervals. This period event
7117  * is kept in the range [-sample_period, 0] so that we can use the
7118  * sign as trigger.
7119  */
7120
7121 u64 perf_swevent_set_period(struct perf_event *event)
7122 {
7123         struct hw_perf_event *hwc = &event->hw;
7124         u64 period = hwc->last_period;
7125         u64 nr, offset;
7126         s64 old, val;
7127
7128         hwc->last_period = hwc->sample_period;
7129
7130 again:
7131         old = val = local64_read(&hwc->period_left);
7132         if (val < 0)
7133                 return 0;
7134
7135         nr = div64_u64(period + val, period);
7136         offset = nr * period;
7137         val -= offset;
7138         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7139                 goto again;
7140
7141         return nr;
7142 }
7143
7144 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7145                                     struct perf_sample_data *data,
7146                                     struct pt_regs *regs)
7147 {
7148         struct hw_perf_event *hwc = &event->hw;
7149         int throttle = 0;
7150
7151         if (!overflow)
7152                 overflow = perf_swevent_set_period(event);
7153
7154         if (hwc->interrupts == MAX_INTERRUPTS)
7155                 return;
7156
7157         for (; overflow; overflow--) {
7158                 if (__perf_event_overflow(event, throttle,
7159                                             data, regs)) {
7160                         /*
7161                          * We inhibit the overflow from happening when
7162                          * hwc->interrupts == MAX_INTERRUPTS.
7163                          */
7164                         break;
7165                 }
7166                 throttle = 1;
7167         }
7168 }
7169
7170 static void perf_swevent_event(struct perf_event *event, u64 nr,
7171                                struct perf_sample_data *data,
7172                                struct pt_regs *regs)
7173 {
7174         struct hw_perf_event *hwc = &event->hw;
7175
7176         local64_add(nr, &event->count);
7177
7178         if (!regs)
7179                 return;
7180
7181         if (!is_sampling_event(event))
7182                 return;
7183
7184         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7185                 data->period = nr;
7186                 return perf_swevent_overflow(event, 1, data, regs);
7187         } else
7188                 data->period = event->hw.last_period;
7189
7190         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7191                 return perf_swevent_overflow(event, 1, data, regs);
7192
7193         if (local64_add_negative(nr, &hwc->period_left))
7194                 return;
7195
7196         perf_swevent_overflow(event, 0, data, regs);
7197 }
7198
7199 static int perf_exclude_event(struct perf_event *event,
7200                               struct pt_regs *regs)
7201 {
7202         if (event->hw.state & PERF_HES_STOPPED)
7203                 return 1;
7204
7205         if (regs) {
7206                 if (event->attr.exclude_user && user_mode(regs))
7207                         return 1;
7208
7209                 if (event->attr.exclude_kernel && !user_mode(regs))
7210                         return 1;
7211         }
7212
7213         return 0;
7214 }
7215
7216 static int perf_swevent_match(struct perf_event *event,
7217                                 enum perf_type_id type,
7218                                 u32 event_id,
7219                                 struct perf_sample_data *data,
7220                                 struct pt_regs *regs)
7221 {
7222         if (event->attr.type != type)
7223                 return 0;
7224
7225         if (event->attr.config != event_id)
7226                 return 0;
7227
7228         if (perf_exclude_event(event, regs))
7229                 return 0;
7230
7231         return 1;
7232 }
7233
7234 static inline u64 swevent_hash(u64 type, u32 event_id)
7235 {
7236         u64 val = event_id | (type << 32);
7237
7238         return hash_64(val, SWEVENT_HLIST_BITS);
7239 }
7240
7241 static inline struct hlist_head *
7242 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7243 {
7244         u64 hash = swevent_hash(type, event_id);
7245
7246         return &hlist->heads[hash];
7247 }
7248
7249 /* For the read side: events when they trigger */
7250 static inline struct hlist_head *
7251 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7252 {
7253         struct swevent_hlist *hlist;
7254
7255         hlist = rcu_dereference(swhash->swevent_hlist);
7256         if (!hlist)
7257                 return NULL;
7258
7259         return __find_swevent_head(hlist, type, event_id);
7260 }
7261
7262 /* For the event head insertion and removal in the hlist */
7263 static inline struct hlist_head *
7264 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7265 {
7266         struct swevent_hlist *hlist;
7267         u32 event_id = event->attr.config;
7268         u64 type = event->attr.type;
7269
7270         /*
7271          * Event scheduling is always serialized against hlist allocation
7272          * and release. Which makes the protected version suitable here.
7273          * The context lock guarantees that.
7274          */
7275         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7276                                           lockdep_is_held(&event->ctx->lock));
7277         if (!hlist)
7278                 return NULL;
7279
7280         return __find_swevent_head(hlist, type, event_id);
7281 }
7282
7283 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7284                                     u64 nr,
7285                                     struct perf_sample_data *data,
7286                                     struct pt_regs *regs)
7287 {
7288         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7289         struct perf_event *event;
7290         struct hlist_head *head;
7291
7292         rcu_read_lock();
7293         head = find_swevent_head_rcu(swhash, type, event_id);
7294         if (!head)
7295                 goto end;
7296
7297         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7298                 if (perf_swevent_match(event, type, event_id, data, regs))
7299                         perf_swevent_event(event, nr, data, regs);
7300         }
7301 end:
7302         rcu_read_unlock();
7303 }
7304
7305 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7306
7307 int perf_swevent_get_recursion_context(void)
7308 {
7309         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7310
7311         return get_recursion_context(swhash->recursion);
7312 }
7313 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7314
7315 void perf_swevent_put_recursion_context(int rctx)
7316 {
7317         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7318
7319         put_recursion_context(swhash->recursion, rctx);
7320 }
7321
7322 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7323 {
7324         struct perf_sample_data data;
7325
7326         if (WARN_ON_ONCE(!regs))
7327                 return;
7328
7329         perf_sample_data_init(&data, addr, 0);
7330         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7331 }
7332
7333 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7334 {
7335         int rctx;
7336
7337         preempt_disable_notrace();
7338         rctx = perf_swevent_get_recursion_context();
7339         if (unlikely(rctx < 0))
7340                 goto fail;
7341
7342         ___perf_sw_event(event_id, nr, regs, addr);
7343
7344         perf_swevent_put_recursion_context(rctx);
7345 fail:
7346         preempt_enable_notrace();
7347 }
7348
7349 static void perf_swevent_read(struct perf_event *event)
7350 {
7351 }
7352
7353 static int perf_swevent_add(struct perf_event *event, int flags)
7354 {
7355         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7356         struct hw_perf_event *hwc = &event->hw;
7357         struct hlist_head *head;
7358
7359         if (is_sampling_event(event)) {
7360                 hwc->last_period = hwc->sample_period;
7361                 perf_swevent_set_period(event);
7362         }
7363
7364         hwc->state = !(flags & PERF_EF_START);
7365
7366         head = find_swevent_head(swhash, event);
7367         if (WARN_ON_ONCE(!head))
7368                 return -EINVAL;
7369
7370         hlist_add_head_rcu(&event->hlist_entry, head);
7371         perf_event_update_userpage(event);
7372
7373         return 0;
7374 }
7375
7376 static void perf_swevent_del(struct perf_event *event, int flags)
7377 {
7378         hlist_del_rcu(&event->hlist_entry);
7379 }
7380
7381 static void perf_swevent_start(struct perf_event *event, int flags)
7382 {
7383         event->hw.state = 0;
7384 }
7385
7386 static void perf_swevent_stop(struct perf_event *event, int flags)
7387 {
7388         event->hw.state = PERF_HES_STOPPED;
7389 }
7390
7391 /* Deref the hlist from the update side */
7392 static inline struct swevent_hlist *
7393 swevent_hlist_deref(struct swevent_htable *swhash)
7394 {
7395         return rcu_dereference_protected(swhash->swevent_hlist,
7396                                          lockdep_is_held(&swhash->hlist_mutex));
7397 }
7398
7399 static void swevent_hlist_release(struct swevent_htable *swhash)
7400 {
7401         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7402
7403         if (!hlist)
7404                 return;
7405
7406         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7407         kfree_rcu(hlist, rcu_head);
7408 }
7409
7410 static void swevent_hlist_put_cpu(int cpu)
7411 {
7412         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7413
7414         mutex_lock(&swhash->hlist_mutex);
7415
7416         if (!--swhash->hlist_refcount)
7417                 swevent_hlist_release(swhash);
7418
7419         mutex_unlock(&swhash->hlist_mutex);
7420 }
7421
7422 static void swevent_hlist_put(void)
7423 {
7424         int cpu;
7425
7426         for_each_possible_cpu(cpu)
7427                 swevent_hlist_put_cpu(cpu);
7428 }
7429
7430 static int swevent_hlist_get_cpu(int cpu)
7431 {
7432         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7433         int err = 0;
7434
7435         mutex_lock(&swhash->hlist_mutex);
7436         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7437                 struct swevent_hlist *hlist;
7438
7439                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7440                 if (!hlist) {
7441                         err = -ENOMEM;
7442                         goto exit;
7443                 }
7444                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7445         }
7446         swhash->hlist_refcount++;
7447 exit:
7448         mutex_unlock(&swhash->hlist_mutex);
7449
7450         return err;
7451 }
7452
7453 static int swevent_hlist_get(void)
7454 {
7455         int err, cpu, failed_cpu;
7456
7457         get_online_cpus();
7458         for_each_possible_cpu(cpu) {
7459                 err = swevent_hlist_get_cpu(cpu);
7460                 if (err) {
7461                         failed_cpu = cpu;
7462                         goto fail;
7463                 }
7464         }
7465         put_online_cpus();
7466
7467         return 0;
7468 fail:
7469         for_each_possible_cpu(cpu) {
7470                 if (cpu == failed_cpu)
7471                         break;
7472                 swevent_hlist_put_cpu(cpu);
7473         }
7474
7475         put_online_cpus();
7476         return err;
7477 }
7478
7479 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7480
7481 static void sw_perf_event_destroy(struct perf_event *event)
7482 {
7483         u64 event_id = event->attr.config;
7484
7485         WARN_ON(event->parent);
7486
7487         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7488         swevent_hlist_put();
7489 }
7490
7491 static int perf_swevent_init(struct perf_event *event)
7492 {
7493         u64 event_id = event->attr.config;
7494
7495         if (event->attr.type != PERF_TYPE_SOFTWARE)
7496                 return -ENOENT;
7497
7498         /*
7499          * no branch sampling for software events
7500          */
7501         if (has_branch_stack(event))
7502                 return -EOPNOTSUPP;
7503
7504         switch (event_id) {
7505         case PERF_COUNT_SW_CPU_CLOCK:
7506         case PERF_COUNT_SW_TASK_CLOCK:
7507                 return -ENOENT;
7508
7509         default:
7510                 break;
7511         }
7512
7513         if (event_id >= PERF_COUNT_SW_MAX)
7514                 return -ENOENT;
7515
7516         if (!event->parent) {
7517                 int err;
7518
7519                 err = swevent_hlist_get();
7520                 if (err)
7521                         return err;
7522
7523                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7524                 event->destroy = sw_perf_event_destroy;
7525         }
7526
7527         return 0;
7528 }
7529
7530 static struct pmu perf_swevent = {
7531         .task_ctx_nr    = perf_sw_context,
7532
7533         .capabilities   = PERF_PMU_CAP_NO_NMI,
7534
7535         .event_init     = perf_swevent_init,
7536         .add            = perf_swevent_add,
7537         .del            = perf_swevent_del,
7538         .start          = perf_swevent_start,
7539         .stop           = perf_swevent_stop,
7540         .read           = perf_swevent_read,
7541 };
7542
7543 #ifdef CONFIG_EVENT_TRACING
7544
7545 static int perf_tp_filter_match(struct perf_event *event,
7546                                 struct perf_sample_data *data)
7547 {
7548         void *record = data->raw->frag.data;
7549
7550         /* only top level events have filters set */
7551         if (event->parent)
7552                 event = event->parent;
7553
7554         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7555                 return 1;
7556         return 0;
7557 }
7558
7559 static int perf_tp_event_match(struct perf_event *event,
7560                                 struct perf_sample_data *data,
7561                                 struct pt_regs *regs)
7562 {
7563         if (event->hw.state & PERF_HES_STOPPED)
7564                 return 0;
7565         /*
7566          * All tracepoints are from kernel-space.
7567          */
7568         if (event->attr.exclude_kernel)
7569                 return 0;
7570
7571         if (!perf_tp_filter_match(event, data))
7572                 return 0;
7573
7574         return 1;
7575 }
7576
7577 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7578                                struct trace_event_call *call, u64 count,
7579                                struct pt_regs *regs, struct hlist_head *head,
7580                                struct task_struct *task)
7581 {
7582         struct bpf_prog *prog = call->prog;
7583
7584         if (prog) {
7585                 *(struct pt_regs **)raw_data = regs;
7586                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7587                         perf_swevent_put_recursion_context(rctx);
7588                         return;
7589                 }
7590         }
7591         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7592                       rctx, task);
7593 }
7594 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7595
7596 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7597                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7598                    struct task_struct *task)
7599 {
7600         struct perf_sample_data data;
7601         struct perf_event *event;
7602
7603         struct perf_raw_record raw = {
7604                 .frag = {
7605                         .size = entry_size,
7606                         .data = record,
7607                 },
7608         };
7609
7610         perf_sample_data_init(&data, 0, 0);
7611         data.raw = &raw;
7612
7613         perf_trace_buf_update(record, event_type);
7614
7615         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616                 if (perf_tp_event_match(event, &data, regs))
7617                         perf_swevent_event(event, count, &data, regs);
7618         }
7619
7620         /*
7621          * If we got specified a target task, also iterate its context and
7622          * deliver this event there too.
7623          */
7624         if (task && task != current) {
7625                 struct perf_event_context *ctx;
7626                 struct trace_entry *entry = record;
7627
7628                 rcu_read_lock();
7629                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7630                 if (!ctx)
7631                         goto unlock;
7632
7633                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7634                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7635                                 continue;
7636                         if (event->attr.config != entry->type)
7637                                 continue;
7638                         if (perf_tp_event_match(event, &data, regs))
7639                                 perf_swevent_event(event, count, &data, regs);
7640                 }
7641 unlock:
7642                 rcu_read_unlock();
7643         }
7644
7645         perf_swevent_put_recursion_context(rctx);
7646 }
7647 EXPORT_SYMBOL_GPL(perf_tp_event);
7648
7649 static void tp_perf_event_destroy(struct perf_event *event)
7650 {
7651         perf_trace_destroy(event);
7652 }
7653
7654 static int perf_tp_event_init(struct perf_event *event)
7655 {
7656         int err;
7657
7658         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7659                 return -ENOENT;
7660
7661         /*
7662          * no branch sampling for tracepoint events
7663          */
7664         if (has_branch_stack(event))
7665                 return -EOPNOTSUPP;
7666
7667         err = perf_trace_init(event);
7668         if (err)
7669                 return err;
7670
7671         event->destroy = tp_perf_event_destroy;
7672
7673         return 0;
7674 }
7675
7676 static struct pmu perf_tracepoint = {
7677         .task_ctx_nr    = perf_sw_context,
7678
7679         .event_init     = perf_tp_event_init,
7680         .add            = perf_trace_add,
7681         .del            = perf_trace_del,
7682         .start          = perf_swevent_start,
7683         .stop           = perf_swevent_stop,
7684         .read           = perf_swevent_read,
7685 };
7686
7687 static inline void perf_tp_register(void)
7688 {
7689         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7690 }
7691
7692 static void perf_event_free_filter(struct perf_event *event)
7693 {
7694         ftrace_profile_free_filter(event);
7695 }
7696
7697 #ifdef CONFIG_BPF_SYSCALL
7698 static void bpf_overflow_handler(struct perf_event *event,
7699                                  struct perf_sample_data *data,
7700                                  struct pt_regs *regs)
7701 {
7702         struct bpf_perf_event_data_kern ctx = {
7703                 .data = data,
7704                 .regs = regs,
7705         };
7706         int ret = 0;
7707
7708         preempt_disable();
7709         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7710                 goto out;
7711         rcu_read_lock();
7712         ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7713         rcu_read_unlock();
7714 out:
7715         __this_cpu_dec(bpf_prog_active);
7716         preempt_enable();
7717         if (!ret)
7718                 return;
7719
7720         event->orig_overflow_handler(event, data, regs);
7721 }
7722
7723 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7724 {
7725         struct bpf_prog *prog;
7726
7727         if (event->overflow_handler_context)
7728                 /* hw breakpoint or kernel counter */
7729                 return -EINVAL;
7730
7731         if (event->prog)
7732                 return -EEXIST;
7733
7734         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7735         if (IS_ERR(prog))
7736                 return PTR_ERR(prog);
7737
7738         event->prog = prog;
7739         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7740         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7741         return 0;
7742 }
7743
7744 static void perf_event_free_bpf_handler(struct perf_event *event)
7745 {
7746         struct bpf_prog *prog = event->prog;
7747
7748         if (!prog)
7749                 return;
7750
7751         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7752         event->prog = NULL;
7753         bpf_prog_put(prog);
7754 }
7755 #else
7756 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7757 {
7758         return -EOPNOTSUPP;
7759 }
7760 static void perf_event_free_bpf_handler(struct perf_event *event)
7761 {
7762 }
7763 #endif
7764
7765 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7766 {
7767         bool is_kprobe, is_tracepoint;
7768         struct bpf_prog *prog;
7769
7770         if (event->attr.type == PERF_TYPE_HARDWARE ||
7771             event->attr.type == PERF_TYPE_SOFTWARE)
7772                 return perf_event_set_bpf_handler(event, prog_fd);
7773
7774         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7775                 return -EINVAL;
7776
7777         if (event->tp_event->prog)
7778                 return -EEXIST;
7779
7780         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7781         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7782         if (!is_kprobe && !is_tracepoint)
7783                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7784                 return -EINVAL;
7785
7786         prog = bpf_prog_get(prog_fd);
7787         if (IS_ERR(prog))
7788                 return PTR_ERR(prog);
7789
7790         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7791             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7792                 /* valid fd, but invalid bpf program type */
7793                 bpf_prog_put(prog);
7794                 return -EINVAL;
7795         }
7796
7797         if (is_tracepoint) {
7798                 int off = trace_event_get_offsets(event->tp_event);
7799
7800                 if (prog->aux->max_ctx_offset > off) {
7801                         bpf_prog_put(prog);
7802                         return -EACCES;
7803                 }
7804         }
7805         event->tp_event->prog = prog;
7806
7807         return 0;
7808 }
7809
7810 static void perf_event_free_bpf_prog(struct perf_event *event)
7811 {
7812         struct bpf_prog *prog;
7813
7814         perf_event_free_bpf_handler(event);
7815
7816         if (!event->tp_event)
7817                 return;
7818
7819         prog = event->tp_event->prog;
7820         if (prog) {
7821                 event->tp_event->prog = NULL;
7822                 bpf_prog_put(prog);
7823         }
7824 }
7825
7826 #else
7827
7828 static inline void perf_tp_register(void)
7829 {
7830 }
7831
7832 static void perf_event_free_filter(struct perf_event *event)
7833 {
7834 }
7835
7836 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7837 {
7838         return -ENOENT;
7839 }
7840
7841 static void perf_event_free_bpf_prog(struct perf_event *event)
7842 {
7843 }
7844 #endif /* CONFIG_EVENT_TRACING */
7845
7846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7847 void perf_bp_event(struct perf_event *bp, void *data)
7848 {
7849         struct perf_sample_data sample;
7850         struct pt_regs *regs = data;
7851
7852         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7853
7854         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7855                 perf_swevent_event(bp, 1, &sample, regs);
7856 }
7857 #endif
7858
7859 /*
7860  * Allocate a new address filter
7861  */
7862 static struct perf_addr_filter *
7863 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7864 {
7865         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7866         struct perf_addr_filter *filter;
7867
7868         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7869         if (!filter)
7870                 return NULL;
7871
7872         INIT_LIST_HEAD(&filter->entry);
7873         list_add_tail(&filter->entry, filters);
7874
7875         return filter;
7876 }
7877
7878 static void free_filters_list(struct list_head *filters)
7879 {
7880         struct perf_addr_filter *filter, *iter;
7881
7882         list_for_each_entry_safe(filter, iter, filters, entry) {
7883                 if (filter->inode)
7884                         iput(filter->inode);
7885                 list_del(&filter->entry);
7886                 kfree(filter);
7887         }
7888 }
7889
7890 /*
7891  * Free existing address filters and optionally install new ones
7892  */
7893 static void perf_addr_filters_splice(struct perf_event *event,
7894                                      struct list_head *head)
7895 {
7896         unsigned long flags;
7897         LIST_HEAD(list);
7898
7899         if (!has_addr_filter(event))
7900                 return;
7901
7902         /* don't bother with children, they don't have their own filters */
7903         if (event->parent)
7904                 return;
7905
7906         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7907
7908         list_splice_init(&event->addr_filters.list, &list);
7909         if (head)
7910                 list_splice(head, &event->addr_filters.list);
7911
7912         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7913
7914         free_filters_list(&list);
7915 }
7916
7917 /*
7918  * Scan through mm's vmas and see if one of them matches the
7919  * @filter; if so, adjust filter's address range.
7920  * Called with mm::mmap_sem down for reading.
7921  */
7922 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7923                                             struct mm_struct *mm)
7924 {
7925         struct vm_area_struct *vma;
7926
7927         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7928                 struct file *file = vma->vm_file;
7929                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7930                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7931
7932                 if (!file)
7933                         continue;
7934
7935                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7936                         continue;
7937
7938                 return vma->vm_start;
7939         }
7940
7941         return 0;
7942 }
7943
7944 /*
7945  * Update event's address range filters based on the
7946  * task's existing mappings, if any.
7947  */
7948 static void perf_event_addr_filters_apply(struct perf_event *event)
7949 {
7950         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7951         struct task_struct *task = READ_ONCE(event->ctx->task);
7952         struct perf_addr_filter *filter;
7953         struct mm_struct *mm = NULL;
7954         unsigned int count = 0;
7955         unsigned long flags;
7956
7957         /*
7958          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7959          * will stop on the parent's child_mutex that our caller is also holding
7960          */
7961         if (task == TASK_TOMBSTONE)
7962                 return;
7963
7964         mm = get_task_mm(event->ctx->task);
7965         if (!mm)
7966                 goto restart;
7967
7968         down_read(&mm->mmap_sem);
7969
7970         raw_spin_lock_irqsave(&ifh->lock, flags);
7971         list_for_each_entry(filter, &ifh->list, entry) {
7972                 event->addr_filters_offs[count] = 0;
7973
7974                 /*
7975                  * Adjust base offset if the filter is associated to a binary
7976                  * that needs to be mapped:
7977                  */
7978                 if (filter->inode)
7979                         event->addr_filters_offs[count] =
7980                                 perf_addr_filter_apply(filter, mm);
7981
7982                 count++;
7983         }
7984
7985         event->addr_filters_gen++;
7986         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7987
7988         up_read(&mm->mmap_sem);
7989
7990         mmput(mm);
7991
7992 restart:
7993         perf_event_stop(event, 1);
7994 }
7995
7996 /*
7997  * Address range filtering: limiting the data to certain
7998  * instruction address ranges. Filters are ioctl()ed to us from
7999  * userspace as ascii strings.
8000  *
8001  * Filter string format:
8002  *
8003  * ACTION RANGE_SPEC
8004  * where ACTION is one of the
8005  *  * "filter": limit the trace to this region
8006  *  * "start": start tracing from this address
8007  *  * "stop": stop tracing at this address/region;
8008  * RANGE_SPEC is
8009  *  * for kernel addresses: <start address>[/<size>]
8010  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8011  *
8012  * if <size> is not specified, the range is treated as a single address.
8013  */
8014 enum {
8015         IF_ACT_FILTER,
8016         IF_ACT_START,
8017         IF_ACT_STOP,
8018         IF_SRC_FILE,
8019         IF_SRC_KERNEL,
8020         IF_SRC_FILEADDR,
8021         IF_SRC_KERNELADDR,
8022 };
8023
8024 enum {
8025         IF_STATE_ACTION = 0,
8026         IF_STATE_SOURCE,
8027         IF_STATE_END,
8028 };
8029
8030 static const match_table_t if_tokens = {
8031         { IF_ACT_FILTER,        "filter" },
8032         { IF_ACT_START,         "start" },
8033         { IF_ACT_STOP,          "stop" },
8034         { IF_SRC_FILE,          "%u/%u@%s" },
8035         { IF_SRC_KERNEL,        "%u/%u" },
8036         { IF_SRC_FILEADDR,      "%u@%s" },
8037         { IF_SRC_KERNELADDR,    "%u" },
8038 };
8039
8040 /*
8041  * Address filter string parser
8042  */
8043 static int
8044 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8045                              struct list_head *filters)
8046 {
8047         struct perf_addr_filter *filter = NULL;
8048         char *start, *orig, *filename = NULL;
8049         struct path path;
8050         substring_t args[MAX_OPT_ARGS];
8051         int state = IF_STATE_ACTION, token;
8052         unsigned int kernel = 0;
8053         int ret = -EINVAL;
8054
8055         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8056         if (!fstr)
8057                 return -ENOMEM;
8058
8059         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8060                 ret = -EINVAL;
8061
8062                 if (!*start)
8063                         continue;
8064
8065                 /* filter definition begins */
8066                 if (state == IF_STATE_ACTION) {
8067                         filter = perf_addr_filter_new(event, filters);
8068                         if (!filter)
8069                                 goto fail;
8070                 }
8071
8072                 token = match_token(start, if_tokens, args);
8073                 switch (token) {
8074                 case IF_ACT_FILTER:
8075                 case IF_ACT_START:
8076                         filter->filter = 1;
8077
8078                 case IF_ACT_STOP:
8079                         if (state != IF_STATE_ACTION)
8080                                 goto fail;
8081
8082                         state = IF_STATE_SOURCE;
8083                         break;
8084
8085                 case IF_SRC_KERNELADDR:
8086                 case IF_SRC_KERNEL:
8087                         kernel = 1;
8088
8089                 case IF_SRC_FILEADDR:
8090                 case IF_SRC_FILE:
8091                         if (state != IF_STATE_SOURCE)
8092                                 goto fail;
8093
8094                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8095                                 filter->range = 1;
8096
8097                         *args[0].to = 0;
8098                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8099                         if (ret)
8100                                 goto fail;
8101
8102                         if (filter->range) {
8103                                 *args[1].to = 0;
8104                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8105                                 if (ret)
8106                                         goto fail;
8107                         }
8108
8109                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8110                                 int fpos = filter->range ? 2 : 1;
8111
8112                                 filename = match_strdup(&args[fpos]);
8113                                 if (!filename) {
8114                                         ret = -ENOMEM;
8115                                         goto fail;
8116                                 }
8117                         }
8118
8119                         state = IF_STATE_END;
8120                         break;
8121
8122                 default:
8123                         goto fail;
8124                 }
8125
8126                 /*
8127                  * Filter definition is fully parsed, validate and install it.
8128                  * Make sure that it doesn't contradict itself or the event's
8129                  * attribute.
8130                  */
8131                 if (state == IF_STATE_END) {
8132                         if (kernel && event->attr.exclude_kernel)
8133                                 goto fail;
8134
8135                         if (!kernel) {
8136                                 if (!filename)
8137                                         goto fail;
8138
8139                                 /* look up the path and grab its inode */
8140                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8141                                 if (ret)
8142                                         goto fail_free_name;
8143
8144                                 filter->inode = igrab(d_inode(path.dentry));
8145                                 path_put(&path);
8146                                 kfree(filename);
8147                                 filename = NULL;
8148
8149                                 ret = -EINVAL;
8150                                 if (!filter->inode ||
8151                                     !S_ISREG(filter->inode->i_mode))
8152                                         /* free_filters_list() will iput() */
8153                                         goto fail;
8154                         }
8155
8156                         /* ready to consume more filters */
8157                         state = IF_STATE_ACTION;
8158                         filter = NULL;
8159                 }
8160         }
8161
8162         if (state != IF_STATE_ACTION)
8163                 goto fail;
8164
8165         kfree(orig);
8166
8167         return 0;
8168
8169 fail_free_name:
8170         kfree(filename);
8171 fail:
8172         free_filters_list(filters);
8173         kfree(orig);
8174
8175         return ret;
8176 }
8177
8178 static int
8179 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8180 {
8181         LIST_HEAD(filters);
8182         int ret;
8183
8184         /*
8185          * Since this is called in perf_ioctl() path, we're already holding
8186          * ctx::mutex.
8187          */
8188         lockdep_assert_held(&event->ctx->mutex);
8189
8190         if (WARN_ON_ONCE(event->parent))
8191                 return -EINVAL;
8192
8193         /*
8194          * For now, we only support filtering in per-task events; doing so
8195          * for CPU-wide events requires additional context switching trickery,
8196          * since same object code will be mapped at different virtual
8197          * addresses in different processes.
8198          */
8199         if (!event->ctx->task)
8200                 return -EOPNOTSUPP;
8201
8202         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8203         if (ret)
8204                 return ret;
8205
8206         ret = event->pmu->addr_filters_validate(&filters);
8207         if (ret) {
8208                 free_filters_list(&filters);
8209                 return ret;
8210         }
8211
8212         /* remove existing filters, if any */
8213         perf_addr_filters_splice(event, &filters);
8214
8215         /* install new filters */
8216         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8217
8218         return ret;
8219 }
8220
8221 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8222 {
8223         char *filter_str;
8224         int ret = -EINVAL;
8225
8226         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8227             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8228             !has_addr_filter(event))
8229                 return -EINVAL;
8230
8231         filter_str = strndup_user(arg, PAGE_SIZE);
8232         if (IS_ERR(filter_str))
8233                 return PTR_ERR(filter_str);
8234
8235         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8236             event->attr.type == PERF_TYPE_TRACEPOINT)
8237                 ret = ftrace_profile_set_filter(event, event->attr.config,
8238                                                 filter_str);
8239         else if (has_addr_filter(event))
8240                 ret = perf_event_set_addr_filter(event, filter_str);
8241
8242         kfree(filter_str);
8243         return ret;
8244 }
8245
8246 /*
8247  * hrtimer based swevent callback
8248  */
8249
8250 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8251 {
8252         enum hrtimer_restart ret = HRTIMER_RESTART;
8253         struct perf_sample_data data;
8254         struct pt_regs *regs;
8255         struct perf_event *event;
8256         u64 period;
8257
8258         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8259
8260         if (event->state != PERF_EVENT_STATE_ACTIVE)
8261                 return HRTIMER_NORESTART;
8262
8263         event->pmu->read(event);
8264
8265         perf_sample_data_init(&data, 0, event->hw.last_period);
8266         regs = get_irq_regs();
8267
8268         if (regs && !perf_exclude_event(event, regs)) {
8269                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8270                         if (__perf_event_overflow(event, 1, &data, regs))
8271                                 ret = HRTIMER_NORESTART;
8272         }
8273
8274         period = max_t(u64, 10000, event->hw.sample_period);
8275         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8276
8277         return ret;
8278 }
8279
8280 static void perf_swevent_start_hrtimer(struct perf_event *event)
8281 {
8282         struct hw_perf_event *hwc = &event->hw;
8283         s64 period;
8284
8285         if (!is_sampling_event(event))
8286                 return;
8287
8288         period = local64_read(&hwc->period_left);
8289         if (period) {
8290                 if (period < 0)
8291                         period = 10000;
8292
8293                 local64_set(&hwc->period_left, 0);
8294         } else {
8295                 period = max_t(u64, 10000, hwc->sample_period);
8296         }
8297         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8298                       HRTIMER_MODE_REL_PINNED);
8299 }
8300
8301 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8302 {
8303         struct hw_perf_event *hwc = &event->hw;
8304
8305         if (is_sampling_event(event)) {
8306                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8307                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8308
8309                 hrtimer_cancel(&hwc->hrtimer);
8310         }
8311 }
8312
8313 static void perf_swevent_init_hrtimer(struct perf_event *event)
8314 {
8315         struct hw_perf_event *hwc = &event->hw;
8316
8317         if (!is_sampling_event(event))
8318                 return;
8319
8320         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8321         hwc->hrtimer.function = perf_swevent_hrtimer;
8322
8323         /*
8324          * Since hrtimers have a fixed rate, we can do a static freq->period
8325          * mapping and avoid the whole period adjust feedback stuff.
8326          */
8327         if (event->attr.freq) {
8328                 long freq = event->attr.sample_freq;
8329
8330                 event->attr.sample_period = NSEC_PER_SEC / freq;
8331                 hwc->sample_period = event->attr.sample_period;
8332                 local64_set(&hwc->period_left, hwc->sample_period);
8333                 hwc->last_period = hwc->sample_period;
8334                 event->attr.freq = 0;
8335         }
8336 }
8337
8338 /*
8339  * Software event: cpu wall time clock
8340  */
8341
8342 static void cpu_clock_event_update(struct perf_event *event)
8343 {
8344         s64 prev;
8345         u64 now;
8346
8347         now = local_clock();
8348         prev = local64_xchg(&event->hw.prev_count, now);
8349         local64_add(now - prev, &event->count);
8350 }
8351
8352 static void cpu_clock_event_start(struct perf_event *event, int flags)
8353 {
8354         local64_set(&event->hw.prev_count, local_clock());
8355         perf_swevent_start_hrtimer(event);
8356 }
8357
8358 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8359 {
8360         perf_swevent_cancel_hrtimer(event);
8361         cpu_clock_event_update(event);
8362 }
8363
8364 static int cpu_clock_event_add(struct perf_event *event, int flags)
8365 {
8366         if (flags & PERF_EF_START)
8367                 cpu_clock_event_start(event, flags);
8368         perf_event_update_userpage(event);
8369
8370         return 0;
8371 }
8372
8373 static void cpu_clock_event_del(struct perf_event *event, int flags)
8374 {
8375         cpu_clock_event_stop(event, flags);
8376 }
8377
8378 static void cpu_clock_event_read(struct perf_event *event)
8379 {
8380         cpu_clock_event_update(event);
8381 }
8382
8383 static int cpu_clock_event_init(struct perf_event *event)
8384 {
8385         if (event->attr.type != PERF_TYPE_SOFTWARE)
8386                 return -ENOENT;
8387
8388         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8389                 return -ENOENT;
8390
8391         /*
8392          * no branch sampling for software events
8393          */
8394         if (has_branch_stack(event))
8395                 return -EOPNOTSUPP;
8396
8397         perf_swevent_init_hrtimer(event);
8398
8399         return 0;
8400 }
8401
8402 static struct pmu perf_cpu_clock = {
8403         .task_ctx_nr    = perf_sw_context,
8404
8405         .capabilities   = PERF_PMU_CAP_NO_NMI,
8406
8407         .event_init     = cpu_clock_event_init,
8408         .add            = cpu_clock_event_add,
8409         .del            = cpu_clock_event_del,
8410         .start          = cpu_clock_event_start,
8411         .stop           = cpu_clock_event_stop,
8412         .read           = cpu_clock_event_read,
8413 };
8414
8415 /*
8416  * Software event: task time clock
8417  */
8418
8419 static void task_clock_event_update(struct perf_event *event, u64 now)
8420 {
8421         u64 prev;
8422         s64 delta;
8423
8424         prev = local64_xchg(&event->hw.prev_count, now);
8425         delta = now - prev;
8426         local64_add(delta, &event->count);
8427 }
8428
8429 static void task_clock_event_start(struct perf_event *event, int flags)
8430 {
8431         local64_set(&event->hw.prev_count, event->ctx->time);
8432         perf_swevent_start_hrtimer(event);
8433 }
8434
8435 static void task_clock_event_stop(struct perf_event *event, int flags)
8436 {
8437         perf_swevent_cancel_hrtimer(event);
8438         task_clock_event_update(event, event->ctx->time);
8439 }
8440
8441 static int task_clock_event_add(struct perf_event *event, int flags)
8442 {
8443         if (flags & PERF_EF_START)
8444                 task_clock_event_start(event, flags);
8445         perf_event_update_userpage(event);
8446
8447         return 0;
8448 }
8449
8450 static void task_clock_event_del(struct perf_event *event, int flags)
8451 {
8452         task_clock_event_stop(event, PERF_EF_UPDATE);
8453 }
8454
8455 static void task_clock_event_read(struct perf_event *event)
8456 {
8457         u64 now = perf_clock();
8458         u64 delta = now - event->ctx->timestamp;
8459         u64 time = event->ctx->time + delta;
8460
8461         task_clock_event_update(event, time);
8462 }
8463
8464 static int task_clock_event_init(struct perf_event *event)
8465 {
8466         if (event->attr.type != PERF_TYPE_SOFTWARE)
8467                 return -ENOENT;
8468
8469         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8470                 return -ENOENT;
8471
8472         /*
8473          * no branch sampling for software events
8474          */
8475         if (has_branch_stack(event))
8476                 return -EOPNOTSUPP;
8477
8478         perf_swevent_init_hrtimer(event);
8479
8480         return 0;
8481 }
8482
8483 static struct pmu perf_task_clock = {
8484         .task_ctx_nr    = perf_sw_context,
8485
8486         .capabilities   = PERF_PMU_CAP_NO_NMI,
8487
8488         .event_init     = task_clock_event_init,
8489         .add            = task_clock_event_add,
8490         .del            = task_clock_event_del,
8491         .start          = task_clock_event_start,
8492         .stop           = task_clock_event_stop,
8493         .read           = task_clock_event_read,
8494 };
8495
8496 static void perf_pmu_nop_void(struct pmu *pmu)
8497 {
8498 }
8499
8500 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8501 {
8502 }
8503
8504 static int perf_pmu_nop_int(struct pmu *pmu)
8505 {
8506         return 0;
8507 }
8508
8509 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8510
8511 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8512 {
8513         __this_cpu_write(nop_txn_flags, flags);
8514
8515         if (flags & ~PERF_PMU_TXN_ADD)
8516                 return;
8517
8518         perf_pmu_disable(pmu);
8519 }
8520
8521 static int perf_pmu_commit_txn(struct pmu *pmu)
8522 {
8523         unsigned int flags = __this_cpu_read(nop_txn_flags);
8524
8525         __this_cpu_write(nop_txn_flags, 0);
8526
8527         if (flags & ~PERF_PMU_TXN_ADD)
8528                 return 0;
8529
8530         perf_pmu_enable(pmu);
8531         return 0;
8532 }
8533
8534 static void perf_pmu_cancel_txn(struct pmu *pmu)
8535 {
8536         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8537
8538         __this_cpu_write(nop_txn_flags, 0);
8539
8540         if (flags & ~PERF_PMU_TXN_ADD)
8541                 return;
8542
8543         perf_pmu_enable(pmu);
8544 }
8545
8546 static int perf_event_idx_default(struct perf_event *event)
8547 {
8548         return 0;
8549 }
8550
8551 /*
8552  * Ensures all contexts with the same task_ctx_nr have the same
8553  * pmu_cpu_context too.
8554  */
8555 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8556 {
8557         struct pmu *pmu;
8558
8559         if (ctxn < 0)
8560                 return NULL;
8561
8562         list_for_each_entry(pmu, &pmus, entry) {
8563                 if (pmu->task_ctx_nr == ctxn)
8564                         return pmu->pmu_cpu_context;
8565         }
8566
8567         return NULL;
8568 }
8569
8570 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8571 {
8572         int cpu;
8573
8574         for_each_possible_cpu(cpu) {
8575                 struct perf_cpu_context *cpuctx;
8576
8577                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8578
8579                 if (cpuctx->unique_pmu == old_pmu)
8580                         cpuctx->unique_pmu = pmu;
8581         }
8582 }
8583
8584 static void free_pmu_context(struct pmu *pmu)
8585 {
8586         struct pmu *i;
8587
8588         mutex_lock(&pmus_lock);
8589         /*
8590          * Like a real lame refcount.
8591          */
8592         list_for_each_entry(i, &pmus, entry) {
8593                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8594                         update_pmu_context(i, pmu);
8595                         goto out;
8596                 }
8597         }
8598
8599         free_percpu(pmu->pmu_cpu_context);
8600 out:
8601         mutex_unlock(&pmus_lock);
8602 }
8603
8604 /*
8605  * Let userspace know that this PMU supports address range filtering:
8606  */
8607 static ssize_t nr_addr_filters_show(struct device *dev,
8608                                     struct device_attribute *attr,
8609                                     char *page)
8610 {
8611         struct pmu *pmu = dev_get_drvdata(dev);
8612
8613         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8614 }
8615 DEVICE_ATTR_RO(nr_addr_filters);
8616
8617 static struct idr pmu_idr;
8618
8619 static ssize_t
8620 type_show(struct device *dev, struct device_attribute *attr, char *page)
8621 {
8622         struct pmu *pmu = dev_get_drvdata(dev);
8623
8624         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8625 }
8626 static DEVICE_ATTR_RO(type);
8627
8628 static ssize_t
8629 perf_event_mux_interval_ms_show(struct device *dev,
8630                                 struct device_attribute *attr,
8631                                 char *page)
8632 {
8633         struct pmu *pmu = dev_get_drvdata(dev);
8634
8635         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8636 }
8637
8638 static DEFINE_MUTEX(mux_interval_mutex);
8639
8640 static ssize_t
8641 perf_event_mux_interval_ms_store(struct device *dev,
8642                                  struct device_attribute *attr,
8643                                  const char *buf, size_t count)
8644 {
8645         struct pmu *pmu = dev_get_drvdata(dev);
8646         int timer, cpu, ret;
8647
8648         ret = kstrtoint(buf, 0, &timer);
8649         if (ret)
8650                 return ret;
8651
8652         if (timer < 1)
8653                 return -EINVAL;
8654
8655         /* same value, noting to do */
8656         if (timer == pmu->hrtimer_interval_ms)
8657                 return count;
8658
8659         mutex_lock(&mux_interval_mutex);
8660         pmu->hrtimer_interval_ms = timer;
8661
8662         /* update all cpuctx for this PMU */
8663         get_online_cpus();
8664         for_each_online_cpu(cpu) {
8665                 struct perf_cpu_context *cpuctx;
8666                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8667                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8668
8669                 cpu_function_call(cpu,
8670                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8671         }
8672         put_online_cpus();
8673         mutex_unlock(&mux_interval_mutex);
8674
8675         return count;
8676 }
8677 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8678
8679 static struct attribute *pmu_dev_attrs[] = {
8680         &dev_attr_type.attr,
8681         &dev_attr_perf_event_mux_interval_ms.attr,
8682         NULL,
8683 };
8684 ATTRIBUTE_GROUPS(pmu_dev);
8685
8686 static int pmu_bus_running;
8687 static struct bus_type pmu_bus = {
8688         .name           = "event_source",
8689         .dev_groups     = pmu_dev_groups,
8690 };
8691
8692 static void pmu_dev_release(struct device *dev)
8693 {
8694         kfree(dev);
8695 }
8696
8697 static int pmu_dev_alloc(struct pmu *pmu)
8698 {
8699         int ret = -ENOMEM;
8700
8701         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8702         if (!pmu->dev)
8703                 goto out;
8704
8705         pmu->dev->groups = pmu->attr_groups;
8706         device_initialize(pmu->dev);
8707         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8708         if (ret)
8709                 goto free_dev;
8710
8711         dev_set_drvdata(pmu->dev, pmu);
8712         pmu->dev->bus = &pmu_bus;
8713         pmu->dev->release = pmu_dev_release;
8714         ret = device_add(pmu->dev);
8715         if (ret)
8716                 goto free_dev;
8717
8718         /* For PMUs with address filters, throw in an extra attribute: */
8719         if (pmu->nr_addr_filters)
8720                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8721
8722         if (ret)
8723                 goto del_dev;
8724
8725 out:
8726         return ret;
8727
8728 del_dev:
8729         device_del(pmu->dev);
8730
8731 free_dev:
8732         put_device(pmu->dev);
8733         goto out;
8734 }
8735
8736 static struct lock_class_key cpuctx_mutex;
8737 static struct lock_class_key cpuctx_lock;
8738
8739 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8740 {
8741         int cpu, ret;
8742
8743         mutex_lock(&pmus_lock);
8744         ret = -ENOMEM;
8745         pmu->pmu_disable_count = alloc_percpu(int);
8746         if (!pmu->pmu_disable_count)
8747                 goto unlock;
8748
8749         pmu->type = -1;
8750         if (!name)
8751                 goto skip_type;
8752         pmu->name = name;
8753
8754         if (type < 0) {
8755                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8756                 if (type < 0) {
8757                         ret = type;
8758                         goto free_pdc;
8759                 }
8760         }
8761         pmu->type = type;
8762
8763         if (pmu_bus_running) {
8764                 ret = pmu_dev_alloc(pmu);
8765                 if (ret)
8766                         goto free_idr;
8767         }
8768
8769 skip_type:
8770         if (pmu->task_ctx_nr == perf_hw_context) {
8771                 static int hw_context_taken = 0;
8772
8773                 /*
8774                  * Other than systems with heterogeneous CPUs, it never makes
8775                  * sense for two PMUs to share perf_hw_context. PMUs which are
8776                  * uncore must use perf_invalid_context.
8777                  */
8778                 if (WARN_ON_ONCE(hw_context_taken &&
8779                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8780                         pmu->task_ctx_nr = perf_invalid_context;
8781
8782                 hw_context_taken = 1;
8783         }
8784
8785         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8786         if (pmu->pmu_cpu_context)
8787                 goto got_cpu_context;
8788
8789         ret = -ENOMEM;
8790         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8791         if (!pmu->pmu_cpu_context)
8792                 goto free_dev;
8793
8794         for_each_possible_cpu(cpu) {
8795                 struct perf_cpu_context *cpuctx;
8796
8797                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8798                 __perf_event_init_context(&cpuctx->ctx);
8799                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8800                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8801                 cpuctx->ctx.pmu = pmu;
8802
8803                 __perf_mux_hrtimer_init(cpuctx, cpu);
8804
8805                 cpuctx->unique_pmu = pmu;
8806         }
8807
8808 got_cpu_context:
8809         if (!pmu->start_txn) {
8810                 if (pmu->pmu_enable) {
8811                         /*
8812                          * If we have pmu_enable/pmu_disable calls, install
8813                          * transaction stubs that use that to try and batch
8814                          * hardware accesses.
8815                          */
8816                         pmu->start_txn  = perf_pmu_start_txn;
8817                         pmu->commit_txn = perf_pmu_commit_txn;
8818                         pmu->cancel_txn = perf_pmu_cancel_txn;
8819                 } else {
8820                         pmu->start_txn  = perf_pmu_nop_txn;
8821                         pmu->commit_txn = perf_pmu_nop_int;
8822                         pmu->cancel_txn = perf_pmu_nop_void;
8823                 }
8824         }
8825
8826         if (!pmu->pmu_enable) {
8827                 pmu->pmu_enable  = perf_pmu_nop_void;
8828                 pmu->pmu_disable = perf_pmu_nop_void;
8829         }
8830
8831         if (!pmu->event_idx)
8832                 pmu->event_idx = perf_event_idx_default;
8833
8834         list_add_rcu(&pmu->entry, &pmus);
8835         atomic_set(&pmu->exclusive_cnt, 0);
8836         ret = 0;
8837 unlock:
8838         mutex_unlock(&pmus_lock);
8839
8840         return ret;
8841
8842 free_dev:
8843         device_del(pmu->dev);
8844         put_device(pmu->dev);
8845
8846 free_idr:
8847         if (pmu->type >= PERF_TYPE_MAX)
8848                 idr_remove(&pmu_idr, pmu->type);
8849
8850 free_pdc:
8851         free_percpu(pmu->pmu_disable_count);
8852         goto unlock;
8853 }
8854 EXPORT_SYMBOL_GPL(perf_pmu_register);
8855
8856 void perf_pmu_unregister(struct pmu *pmu)
8857 {
8858         mutex_lock(&pmus_lock);
8859         list_del_rcu(&pmu->entry);
8860         mutex_unlock(&pmus_lock);
8861
8862         /*
8863          * We dereference the pmu list under both SRCU and regular RCU, so
8864          * synchronize against both of those.
8865          */
8866         synchronize_srcu(&pmus_srcu);
8867         synchronize_rcu();
8868
8869         free_percpu(pmu->pmu_disable_count);
8870         if (pmu->type >= PERF_TYPE_MAX)
8871                 idr_remove(&pmu_idr, pmu->type);
8872         if (pmu->nr_addr_filters)
8873                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8874         device_del(pmu->dev);
8875         put_device(pmu->dev);
8876         free_pmu_context(pmu);
8877 }
8878 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8879
8880 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8881 {
8882         struct perf_event_context *ctx = NULL;
8883         int ret;
8884
8885         if (!try_module_get(pmu->module))
8886                 return -ENODEV;
8887
8888         if (event->group_leader != event) {
8889                 /*
8890                  * This ctx->mutex can nest when we're called through
8891                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8892                  */
8893                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8894                                                  SINGLE_DEPTH_NESTING);
8895                 BUG_ON(!ctx);
8896         }
8897
8898         event->pmu = pmu;
8899         ret = pmu->event_init(event);
8900
8901         if (ctx)
8902                 perf_event_ctx_unlock(event->group_leader, ctx);
8903
8904         if (ret)
8905                 module_put(pmu->module);
8906
8907         return ret;
8908 }
8909
8910 static struct pmu *perf_init_event(struct perf_event *event)
8911 {
8912         struct pmu *pmu = NULL;
8913         int idx;
8914         int ret;
8915
8916         idx = srcu_read_lock(&pmus_srcu);
8917
8918         rcu_read_lock();
8919         pmu = idr_find(&pmu_idr, event->attr.type);
8920         rcu_read_unlock();
8921         if (pmu) {
8922                 ret = perf_try_init_event(pmu, event);
8923                 if (ret)
8924                         pmu = ERR_PTR(ret);
8925                 goto unlock;
8926         }
8927
8928         list_for_each_entry_rcu(pmu, &pmus, entry) {
8929                 ret = perf_try_init_event(pmu, event);
8930                 if (!ret)
8931                         goto unlock;
8932
8933                 if (ret != -ENOENT) {
8934                         pmu = ERR_PTR(ret);
8935                         goto unlock;
8936                 }
8937         }
8938         pmu = ERR_PTR(-ENOENT);
8939 unlock:
8940         srcu_read_unlock(&pmus_srcu, idx);
8941
8942         return pmu;
8943 }
8944
8945 static void attach_sb_event(struct perf_event *event)
8946 {
8947         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8948
8949         raw_spin_lock(&pel->lock);
8950         list_add_rcu(&event->sb_list, &pel->list);
8951         raw_spin_unlock(&pel->lock);
8952 }
8953
8954 /*
8955  * We keep a list of all !task (and therefore per-cpu) events
8956  * that need to receive side-band records.
8957  *
8958  * This avoids having to scan all the various PMU per-cpu contexts
8959  * looking for them.
8960  */
8961 static void account_pmu_sb_event(struct perf_event *event)
8962 {
8963         if (is_sb_event(event))
8964                 attach_sb_event(event);
8965 }
8966
8967 static void account_event_cpu(struct perf_event *event, int cpu)
8968 {
8969         if (event->parent)
8970                 return;
8971
8972         if (is_cgroup_event(event))
8973                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8974 }
8975
8976 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8977 static void account_freq_event_nohz(void)
8978 {
8979 #ifdef CONFIG_NO_HZ_FULL
8980         /* Lock so we don't race with concurrent unaccount */
8981         spin_lock(&nr_freq_lock);
8982         if (atomic_inc_return(&nr_freq_events) == 1)
8983                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8984         spin_unlock(&nr_freq_lock);
8985 #endif
8986 }
8987
8988 static void account_freq_event(void)
8989 {
8990         if (tick_nohz_full_enabled())
8991                 account_freq_event_nohz();
8992         else
8993                 atomic_inc(&nr_freq_events);
8994 }
8995
8996
8997 static void account_event(struct perf_event *event)
8998 {
8999         bool inc = false;
9000
9001         if (event->parent)
9002                 return;
9003
9004         if (event->attach_state & PERF_ATTACH_TASK)
9005                 inc = true;
9006         if (event->attr.mmap || event->attr.mmap_data)
9007                 atomic_inc(&nr_mmap_events);
9008         if (event->attr.comm)
9009                 atomic_inc(&nr_comm_events);
9010         if (event->attr.task)
9011                 atomic_inc(&nr_task_events);
9012         if (event->attr.freq)
9013                 account_freq_event();
9014         if (event->attr.context_switch) {
9015                 atomic_inc(&nr_switch_events);
9016                 inc = true;
9017         }
9018         if (has_branch_stack(event))
9019                 inc = true;
9020         if (is_cgroup_event(event))
9021                 inc = true;
9022
9023         if (inc) {
9024                 if (atomic_inc_not_zero(&perf_sched_count))
9025                         goto enabled;
9026
9027                 mutex_lock(&perf_sched_mutex);
9028                 if (!atomic_read(&perf_sched_count)) {
9029                         static_branch_enable(&perf_sched_events);
9030                         /*
9031                          * Guarantee that all CPUs observe they key change and
9032                          * call the perf scheduling hooks before proceeding to
9033                          * install events that need them.
9034                          */
9035                         synchronize_sched();
9036                 }
9037                 /*
9038                  * Now that we have waited for the sync_sched(), allow further
9039                  * increments to by-pass the mutex.
9040                  */
9041                 atomic_inc(&perf_sched_count);
9042                 mutex_unlock(&perf_sched_mutex);
9043         }
9044 enabled:
9045
9046         account_event_cpu(event, event->cpu);
9047
9048         account_pmu_sb_event(event);
9049 }
9050
9051 /*
9052  * Allocate and initialize a event structure
9053  */
9054 static struct perf_event *
9055 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9056                  struct task_struct *task,
9057                  struct perf_event *group_leader,
9058                  struct perf_event *parent_event,
9059                  perf_overflow_handler_t overflow_handler,
9060                  void *context, int cgroup_fd)
9061 {
9062         struct pmu *pmu;
9063         struct perf_event *event;
9064         struct hw_perf_event *hwc;
9065         long err = -EINVAL;
9066
9067         if ((unsigned)cpu >= nr_cpu_ids) {
9068                 if (!task || cpu != -1)
9069                         return ERR_PTR(-EINVAL);
9070         }
9071
9072         event = kzalloc(sizeof(*event), GFP_KERNEL);
9073         if (!event)
9074                 return ERR_PTR(-ENOMEM);
9075
9076         /*
9077          * Single events are their own group leaders, with an
9078          * empty sibling list:
9079          */
9080         if (!group_leader)
9081                 group_leader = event;
9082
9083         mutex_init(&event->child_mutex);
9084         INIT_LIST_HEAD(&event->child_list);
9085
9086         INIT_LIST_HEAD(&event->group_entry);
9087         INIT_LIST_HEAD(&event->event_entry);
9088         INIT_LIST_HEAD(&event->sibling_list);
9089         INIT_LIST_HEAD(&event->rb_entry);
9090         INIT_LIST_HEAD(&event->active_entry);
9091         INIT_LIST_HEAD(&event->addr_filters.list);
9092         INIT_HLIST_NODE(&event->hlist_entry);
9093
9094
9095         init_waitqueue_head(&event->waitq);
9096         init_irq_work(&event->pending, perf_pending_event);
9097
9098         mutex_init(&event->mmap_mutex);
9099         raw_spin_lock_init(&event->addr_filters.lock);
9100
9101         atomic_long_set(&event->refcount, 1);
9102         event->cpu              = cpu;
9103         event->attr             = *attr;
9104         event->group_leader     = group_leader;
9105         event->pmu              = NULL;
9106         event->oncpu            = -1;
9107
9108         event->parent           = parent_event;
9109
9110         event->ns               = get_pid_ns(task_active_pid_ns(current));
9111         event->id               = atomic64_inc_return(&perf_event_id);
9112
9113         event->state            = PERF_EVENT_STATE_INACTIVE;
9114
9115         if (task) {
9116                 event->attach_state = PERF_ATTACH_TASK;
9117                 /*
9118                  * XXX pmu::event_init needs to know what task to account to
9119                  * and we cannot use the ctx information because we need the
9120                  * pmu before we get a ctx.
9121                  */
9122                 event->hw.target = task;
9123         }
9124
9125         event->clock = &local_clock;
9126         if (parent_event)
9127                 event->clock = parent_event->clock;
9128
9129         if (!overflow_handler && parent_event) {
9130                 overflow_handler = parent_event->overflow_handler;
9131                 context = parent_event->overflow_handler_context;
9132 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9133                 if (overflow_handler == bpf_overflow_handler) {
9134                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9135
9136                         if (IS_ERR(prog)) {
9137                                 err = PTR_ERR(prog);
9138                                 goto err_ns;
9139                         }
9140                         event->prog = prog;
9141                         event->orig_overflow_handler =
9142                                 parent_event->orig_overflow_handler;
9143                 }
9144 #endif
9145         }
9146
9147         if (overflow_handler) {
9148                 event->overflow_handler = overflow_handler;
9149                 event->overflow_handler_context = context;
9150         } else if (is_write_backward(event)){
9151                 event->overflow_handler = perf_event_output_backward;
9152                 event->overflow_handler_context = NULL;
9153         } else {
9154                 event->overflow_handler = perf_event_output_forward;
9155                 event->overflow_handler_context = NULL;
9156         }
9157
9158         perf_event__state_init(event);
9159
9160         pmu = NULL;
9161
9162         hwc = &event->hw;
9163         hwc->sample_period = attr->sample_period;
9164         if (attr->freq && attr->sample_freq)
9165                 hwc->sample_period = 1;
9166         hwc->last_period = hwc->sample_period;
9167
9168         local64_set(&hwc->period_left, hwc->sample_period);
9169
9170         /*
9171          * we currently do not support PERF_FORMAT_GROUP on inherited events
9172          */
9173         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9174                 goto err_ns;
9175
9176         if (!has_branch_stack(event))
9177                 event->attr.branch_sample_type = 0;
9178
9179         if (cgroup_fd != -1) {
9180                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9181                 if (err)
9182                         goto err_ns;
9183         }
9184
9185         pmu = perf_init_event(event);
9186         if (!pmu)
9187                 goto err_ns;
9188         else if (IS_ERR(pmu)) {
9189                 err = PTR_ERR(pmu);
9190                 goto err_ns;
9191         }
9192
9193         err = exclusive_event_init(event);
9194         if (err)
9195                 goto err_pmu;
9196
9197         if (has_addr_filter(event)) {
9198                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9199                                                    sizeof(unsigned long),
9200                                                    GFP_KERNEL);
9201                 if (!event->addr_filters_offs)
9202                         goto err_per_task;
9203
9204                 /* force hw sync on the address filters */
9205                 event->addr_filters_gen = 1;
9206         }
9207
9208         if (!event->parent) {
9209                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9210                         err = get_callchain_buffers(attr->sample_max_stack);
9211                         if (err)
9212                                 goto err_addr_filters;
9213                 }
9214         }
9215
9216         /* symmetric to unaccount_event() in _free_event() */
9217         account_event(event);
9218
9219         return event;
9220
9221 err_addr_filters:
9222         kfree(event->addr_filters_offs);
9223
9224 err_per_task:
9225         exclusive_event_destroy(event);
9226
9227 err_pmu:
9228         if (event->destroy)
9229                 event->destroy(event);
9230         module_put(pmu->module);
9231 err_ns:
9232         if (is_cgroup_event(event))
9233                 perf_detach_cgroup(event);
9234         if (event->ns)
9235                 put_pid_ns(event->ns);
9236         kfree(event);
9237
9238         return ERR_PTR(err);
9239 }
9240
9241 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9242                           struct perf_event_attr *attr)
9243 {
9244         u32 size;
9245         int ret;
9246
9247         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9248                 return -EFAULT;
9249
9250         /*
9251          * zero the full structure, so that a short copy will be nice.
9252          */
9253         memset(attr, 0, sizeof(*attr));
9254
9255         ret = get_user(size, &uattr->size);
9256         if (ret)
9257                 return ret;
9258
9259         if (size > PAGE_SIZE)   /* silly large */
9260                 goto err_size;
9261
9262         if (!size)              /* abi compat */
9263                 size = PERF_ATTR_SIZE_VER0;
9264
9265         if (size < PERF_ATTR_SIZE_VER0)
9266                 goto err_size;
9267
9268         /*
9269          * If we're handed a bigger struct than we know of,
9270          * ensure all the unknown bits are 0 - i.e. new
9271          * user-space does not rely on any kernel feature
9272          * extensions we dont know about yet.
9273          */
9274         if (size > sizeof(*attr)) {
9275                 unsigned char __user *addr;
9276                 unsigned char __user *end;
9277                 unsigned char val;
9278
9279                 addr = (void __user *)uattr + sizeof(*attr);
9280                 end  = (void __user *)uattr + size;
9281
9282                 for (; addr < end; addr++) {
9283                         ret = get_user(val, addr);
9284                         if (ret)
9285                                 return ret;
9286                         if (val)
9287                                 goto err_size;
9288                 }
9289                 size = sizeof(*attr);
9290         }
9291
9292         ret = copy_from_user(attr, uattr, size);
9293         if (ret)
9294                 return -EFAULT;
9295
9296         if (attr->__reserved_1)
9297                 return -EINVAL;
9298
9299         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9300                 return -EINVAL;
9301
9302         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9303                 return -EINVAL;
9304
9305         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9306                 u64 mask = attr->branch_sample_type;
9307
9308                 /* only using defined bits */
9309                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9310                         return -EINVAL;
9311
9312                 /* at least one branch bit must be set */
9313                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9314                         return -EINVAL;
9315
9316                 /* propagate priv level, when not set for branch */
9317                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9318
9319                         /* exclude_kernel checked on syscall entry */
9320                         if (!attr->exclude_kernel)
9321                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9322
9323                         if (!attr->exclude_user)
9324                                 mask |= PERF_SAMPLE_BRANCH_USER;
9325
9326                         if (!attr->exclude_hv)
9327                                 mask |= PERF_SAMPLE_BRANCH_HV;
9328                         /*
9329                          * adjust user setting (for HW filter setup)
9330                          */
9331                         attr->branch_sample_type = mask;
9332                 }
9333                 /* privileged levels capture (kernel, hv): check permissions */
9334                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9335                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9336                         return -EACCES;
9337         }
9338
9339         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9340                 ret = perf_reg_validate(attr->sample_regs_user);
9341                 if (ret)
9342                         return ret;
9343         }
9344
9345         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9346                 if (!arch_perf_have_user_stack_dump())
9347                         return -ENOSYS;
9348
9349                 /*
9350                  * We have __u32 type for the size, but so far
9351                  * we can only use __u16 as maximum due to the
9352                  * __u16 sample size limit.
9353                  */
9354                 if (attr->sample_stack_user >= USHRT_MAX)
9355                         ret = -EINVAL;
9356                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9357                         ret = -EINVAL;
9358         }
9359
9360         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9361                 ret = perf_reg_validate(attr->sample_regs_intr);
9362 out:
9363         return ret;
9364
9365 err_size:
9366         put_user(sizeof(*attr), &uattr->size);
9367         ret = -E2BIG;
9368         goto out;
9369 }
9370
9371 static int
9372 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9373 {
9374         struct ring_buffer *rb = NULL;
9375         int ret = -EINVAL;
9376
9377         if (!output_event)
9378                 goto set;
9379
9380         /* don't allow circular references */
9381         if (event == output_event)
9382                 goto out;
9383
9384         /*
9385          * Don't allow cross-cpu buffers
9386          */
9387         if (output_event->cpu != event->cpu)
9388                 goto out;
9389
9390         /*
9391          * If its not a per-cpu rb, it must be the same task.
9392          */
9393         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9394                 goto out;
9395
9396         /*
9397          * Mixing clocks in the same buffer is trouble you don't need.
9398          */
9399         if (output_event->clock != event->clock)
9400                 goto out;
9401
9402         /*
9403          * Either writing ring buffer from beginning or from end.
9404          * Mixing is not allowed.
9405          */
9406         if (is_write_backward(output_event) != is_write_backward(event))
9407                 goto out;
9408
9409         /*
9410          * If both events generate aux data, they must be on the same PMU
9411          */
9412         if (has_aux(event) && has_aux(output_event) &&
9413             event->pmu != output_event->pmu)
9414                 goto out;
9415
9416 set:
9417         mutex_lock(&event->mmap_mutex);
9418         /* Can't redirect output if we've got an active mmap() */
9419         if (atomic_read(&event->mmap_count))
9420                 goto unlock;
9421
9422         if (output_event) {
9423                 /* get the rb we want to redirect to */
9424                 rb = ring_buffer_get(output_event);
9425                 if (!rb)
9426                         goto unlock;
9427         }
9428
9429         ring_buffer_attach(event, rb);
9430
9431         ret = 0;
9432 unlock:
9433         mutex_unlock(&event->mmap_mutex);
9434
9435 out:
9436         return ret;
9437 }
9438
9439 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9440 {
9441         if (b < a)
9442                 swap(a, b);
9443
9444         mutex_lock(a);
9445         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9446 }
9447
9448 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9449 {
9450         bool nmi_safe = false;
9451
9452         switch (clk_id) {
9453         case CLOCK_MONOTONIC:
9454                 event->clock = &ktime_get_mono_fast_ns;
9455                 nmi_safe = true;
9456                 break;
9457
9458         case CLOCK_MONOTONIC_RAW:
9459                 event->clock = &ktime_get_raw_fast_ns;
9460                 nmi_safe = true;
9461                 break;
9462
9463         case CLOCK_REALTIME:
9464                 event->clock = &ktime_get_real_ns;
9465                 break;
9466
9467         case CLOCK_BOOTTIME:
9468                 event->clock = &ktime_get_boot_ns;
9469                 break;
9470
9471         case CLOCK_TAI:
9472                 event->clock = &ktime_get_tai_ns;
9473                 break;
9474
9475         default:
9476                 return -EINVAL;
9477         }
9478
9479         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9480                 return -EINVAL;
9481
9482         return 0;
9483 }
9484
9485 /**
9486  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9487  *
9488  * @attr_uptr:  event_id type attributes for monitoring/sampling
9489  * @pid:                target pid
9490  * @cpu:                target cpu
9491  * @group_fd:           group leader event fd
9492  */
9493 SYSCALL_DEFINE5(perf_event_open,
9494                 struct perf_event_attr __user *, attr_uptr,
9495                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9496 {
9497         struct perf_event *group_leader = NULL, *output_event = NULL;
9498         struct perf_event *event, *sibling;
9499         struct perf_event_attr attr;
9500         struct perf_event_context *ctx, *uninitialized_var(gctx);
9501         struct file *event_file = NULL;
9502         struct fd group = {NULL, 0};
9503         struct task_struct *task = NULL;
9504         struct pmu *pmu;
9505         int event_fd;
9506         int move_group = 0;
9507         int err;
9508         int f_flags = O_RDWR;
9509         int cgroup_fd = -1;
9510
9511         /* for future expandability... */
9512         if (flags & ~PERF_FLAG_ALL)
9513                 return -EINVAL;
9514
9515         err = perf_copy_attr(attr_uptr, &attr);
9516         if (err)
9517                 return err;
9518
9519         if (!attr.exclude_kernel) {
9520                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9521                         return -EACCES;
9522         }
9523
9524         if (attr.freq) {
9525                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9526                         return -EINVAL;
9527         } else {
9528                 if (attr.sample_period & (1ULL << 63))
9529                         return -EINVAL;
9530         }
9531
9532         if (!attr.sample_max_stack)
9533                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9534
9535         /*
9536          * In cgroup mode, the pid argument is used to pass the fd
9537          * opened to the cgroup directory in cgroupfs. The cpu argument
9538          * designates the cpu on which to monitor threads from that
9539          * cgroup.
9540          */
9541         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9542                 return -EINVAL;
9543
9544         if (flags & PERF_FLAG_FD_CLOEXEC)
9545                 f_flags |= O_CLOEXEC;
9546
9547         event_fd = get_unused_fd_flags(f_flags);
9548         if (event_fd < 0)
9549                 return event_fd;
9550
9551         if (group_fd != -1) {
9552                 err = perf_fget_light(group_fd, &group);
9553                 if (err)
9554                         goto err_fd;
9555                 group_leader = group.file->private_data;
9556                 if (flags & PERF_FLAG_FD_OUTPUT)
9557                         output_event = group_leader;
9558                 if (flags & PERF_FLAG_FD_NO_GROUP)
9559                         group_leader = NULL;
9560         }
9561
9562         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9563                 task = find_lively_task_by_vpid(pid);
9564                 if (IS_ERR(task)) {
9565                         err = PTR_ERR(task);
9566                         goto err_group_fd;
9567                 }
9568         }
9569
9570         if (task && group_leader &&
9571             group_leader->attr.inherit != attr.inherit) {
9572                 err = -EINVAL;
9573                 goto err_task;
9574         }
9575
9576         get_online_cpus();
9577
9578         if (task) {
9579                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9580                 if (err)
9581                         goto err_cpus;
9582
9583                 /*
9584                  * Reuse ptrace permission checks for now.
9585                  *
9586                  * We must hold cred_guard_mutex across this and any potential
9587                  * perf_install_in_context() call for this new event to
9588                  * serialize against exec() altering our credentials (and the
9589                  * perf_event_exit_task() that could imply).
9590                  */
9591                 err = -EACCES;
9592                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9593                         goto err_cred;
9594         }
9595
9596         if (flags & PERF_FLAG_PID_CGROUP)
9597                 cgroup_fd = pid;
9598
9599         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9600                                  NULL, NULL, cgroup_fd);
9601         if (IS_ERR(event)) {
9602                 err = PTR_ERR(event);
9603                 goto err_cred;
9604         }
9605
9606         if (is_sampling_event(event)) {
9607                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9608                         err = -EOPNOTSUPP;
9609                         goto err_alloc;
9610                 }
9611         }
9612
9613         /*
9614          * Special case software events and allow them to be part of
9615          * any hardware group.
9616          */
9617         pmu = event->pmu;
9618
9619         if (attr.use_clockid) {
9620                 err = perf_event_set_clock(event, attr.clockid);
9621                 if (err)
9622                         goto err_alloc;
9623         }
9624
9625         if (pmu->task_ctx_nr == perf_sw_context)
9626                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9627
9628         if (group_leader &&
9629             (is_software_event(event) != is_software_event(group_leader))) {
9630                 if (is_software_event(event)) {
9631                         /*
9632                          * If event and group_leader are not both a software
9633                          * event, and event is, then group leader is not.
9634                          *
9635                          * Allow the addition of software events to !software
9636                          * groups, this is safe because software events never
9637                          * fail to schedule.
9638                          */
9639                         pmu = group_leader->pmu;
9640                 } else if (is_software_event(group_leader) &&
9641                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9642                         /*
9643                          * In case the group is a pure software group, and we
9644                          * try to add a hardware event, move the whole group to
9645                          * the hardware context.
9646                          */
9647                         move_group = 1;
9648                 }
9649         }
9650
9651         /*
9652          * Get the target context (task or percpu):
9653          */
9654         ctx = find_get_context(pmu, task, event);
9655         if (IS_ERR(ctx)) {
9656                 err = PTR_ERR(ctx);
9657                 goto err_alloc;
9658         }
9659
9660         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9661                 err = -EBUSY;
9662                 goto err_context;
9663         }
9664
9665         /*
9666          * Look up the group leader (we will attach this event to it):
9667          */
9668         if (group_leader) {
9669                 err = -EINVAL;
9670
9671                 /*
9672                  * Do not allow a recursive hierarchy (this new sibling
9673                  * becoming part of another group-sibling):
9674                  */
9675                 if (group_leader->group_leader != group_leader)
9676                         goto err_context;
9677
9678                 /* All events in a group should have the same clock */
9679                 if (group_leader->clock != event->clock)
9680                         goto err_context;
9681
9682                 /*
9683                  * Do not allow to attach to a group in a different
9684                  * task or CPU context:
9685                  */
9686                 if (move_group) {
9687                         /*
9688                          * Make sure we're both on the same task, or both
9689                          * per-cpu events.
9690                          */
9691                         if (group_leader->ctx->task != ctx->task)
9692                                 goto err_context;
9693
9694                         /*
9695                          * Make sure we're both events for the same CPU;
9696                          * grouping events for different CPUs is broken; since
9697                          * you can never concurrently schedule them anyhow.
9698                          */
9699                         if (group_leader->cpu != event->cpu)
9700                                 goto err_context;
9701                 } else {
9702                         if (group_leader->ctx != ctx)
9703                                 goto err_context;
9704                 }
9705
9706                 /*
9707                  * Only a group leader can be exclusive or pinned
9708                  */
9709                 if (attr.exclusive || attr.pinned)
9710                         goto err_context;
9711         }
9712
9713         if (output_event) {
9714                 err = perf_event_set_output(event, output_event);
9715                 if (err)
9716                         goto err_context;
9717         }
9718
9719         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9720                                         f_flags);
9721         if (IS_ERR(event_file)) {
9722                 err = PTR_ERR(event_file);
9723                 event_file = NULL;
9724                 goto err_context;
9725         }
9726
9727         if (move_group) {
9728                 gctx = group_leader->ctx;
9729                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9730                 if (gctx->task == TASK_TOMBSTONE) {
9731                         err = -ESRCH;
9732                         goto err_locked;
9733                 }
9734         } else {
9735                 mutex_lock(&ctx->mutex);
9736         }
9737
9738         if (ctx->task == TASK_TOMBSTONE) {
9739                 err = -ESRCH;
9740                 goto err_locked;
9741         }
9742
9743         if (!perf_event_validate_size(event)) {
9744                 err = -E2BIG;
9745                 goto err_locked;
9746         }
9747
9748         /*
9749          * Must be under the same ctx::mutex as perf_install_in_context(),
9750          * because we need to serialize with concurrent event creation.
9751          */
9752         if (!exclusive_event_installable(event, ctx)) {
9753                 /* exclusive and group stuff are assumed mutually exclusive */
9754                 WARN_ON_ONCE(move_group);
9755
9756                 err = -EBUSY;
9757                 goto err_locked;
9758         }
9759
9760         WARN_ON_ONCE(ctx->parent_ctx);
9761
9762         /*
9763          * This is the point on no return; we cannot fail hereafter. This is
9764          * where we start modifying current state.
9765          */
9766
9767         if (move_group) {
9768                 /*
9769                  * See perf_event_ctx_lock() for comments on the details
9770                  * of swizzling perf_event::ctx.
9771                  */
9772                 perf_remove_from_context(group_leader, 0);
9773
9774                 list_for_each_entry(sibling, &group_leader->sibling_list,
9775                                     group_entry) {
9776                         perf_remove_from_context(sibling, 0);
9777                         put_ctx(gctx);
9778                 }
9779
9780                 /*
9781                  * Wait for everybody to stop referencing the events through
9782                  * the old lists, before installing it on new lists.
9783                  */
9784                 synchronize_rcu();
9785
9786                 /*
9787                  * Install the group siblings before the group leader.
9788                  *
9789                  * Because a group leader will try and install the entire group
9790                  * (through the sibling list, which is still in-tact), we can
9791                  * end up with siblings installed in the wrong context.
9792                  *
9793                  * By installing siblings first we NO-OP because they're not
9794                  * reachable through the group lists.
9795                  */
9796                 list_for_each_entry(sibling, &group_leader->sibling_list,
9797                                     group_entry) {
9798                         perf_event__state_init(sibling);
9799                         perf_install_in_context(ctx, sibling, sibling->cpu);
9800                         get_ctx(ctx);
9801                 }
9802
9803                 /*
9804                  * Removing from the context ends up with disabled
9805                  * event. What we want here is event in the initial
9806                  * startup state, ready to be add into new context.
9807                  */
9808                 perf_event__state_init(group_leader);
9809                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9810                 get_ctx(ctx);
9811
9812                 /*
9813                  * Now that all events are installed in @ctx, nothing
9814                  * references @gctx anymore, so drop the last reference we have
9815                  * on it.
9816                  */
9817                 put_ctx(gctx);
9818         }
9819
9820         /*
9821          * Precalculate sample_data sizes; do while holding ctx::mutex such
9822          * that we're serialized against further additions and before
9823          * perf_install_in_context() which is the point the event is active and
9824          * can use these values.
9825          */
9826         perf_event__header_size(event);
9827         perf_event__id_header_size(event);
9828
9829         event->owner = current;
9830
9831         perf_install_in_context(ctx, event, event->cpu);
9832         perf_unpin_context(ctx);
9833
9834         if (move_group)
9835                 mutex_unlock(&gctx->mutex);
9836         mutex_unlock(&ctx->mutex);
9837
9838         if (task) {
9839                 mutex_unlock(&task->signal->cred_guard_mutex);
9840                 put_task_struct(task);
9841         }
9842
9843         put_online_cpus();
9844
9845         mutex_lock(&current->perf_event_mutex);
9846         list_add_tail(&event->owner_entry, &current->perf_event_list);
9847         mutex_unlock(&current->perf_event_mutex);
9848
9849         /*
9850          * Drop the reference on the group_event after placing the
9851          * new event on the sibling_list. This ensures destruction
9852          * of the group leader will find the pointer to itself in
9853          * perf_group_detach().
9854          */
9855         fdput(group);
9856         fd_install(event_fd, event_file);
9857         return event_fd;
9858
9859 err_locked:
9860         if (move_group)
9861                 mutex_unlock(&gctx->mutex);
9862         mutex_unlock(&ctx->mutex);
9863 /* err_file: */
9864         fput(event_file);
9865 err_context:
9866         perf_unpin_context(ctx);
9867         put_ctx(ctx);
9868 err_alloc:
9869         /*
9870          * If event_file is set, the fput() above will have called ->release()
9871          * and that will take care of freeing the event.
9872          */
9873         if (!event_file)
9874                 free_event(event);
9875 err_cred:
9876         if (task)
9877                 mutex_unlock(&task->signal->cred_guard_mutex);
9878 err_cpus:
9879         put_online_cpus();
9880 err_task:
9881         if (task)
9882                 put_task_struct(task);
9883 err_group_fd:
9884         fdput(group);
9885 err_fd:
9886         put_unused_fd(event_fd);
9887         return err;
9888 }
9889
9890 /**
9891  * perf_event_create_kernel_counter
9892  *
9893  * @attr: attributes of the counter to create
9894  * @cpu: cpu in which the counter is bound
9895  * @task: task to profile (NULL for percpu)
9896  */
9897 struct perf_event *
9898 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9899                                  struct task_struct *task,
9900                                  perf_overflow_handler_t overflow_handler,
9901                                  void *context)
9902 {
9903         struct perf_event_context *ctx;
9904         struct perf_event *event;
9905         int err;
9906
9907         /*
9908          * Get the target context (task or percpu):
9909          */
9910
9911         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9912                                  overflow_handler, context, -1);
9913         if (IS_ERR(event)) {
9914                 err = PTR_ERR(event);
9915                 goto err;
9916         }
9917
9918         /* Mark owner so we could distinguish it from user events. */
9919         event->owner = TASK_TOMBSTONE;
9920
9921         ctx = find_get_context(event->pmu, task, event);
9922         if (IS_ERR(ctx)) {
9923                 err = PTR_ERR(ctx);
9924                 goto err_free;
9925         }
9926
9927         WARN_ON_ONCE(ctx->parent_ctx);
9928         mutex_lock(&ctx->mutex);
9929         if (ctx->task == TASK_TOMBSTONE) {
9930                 err = -ESRCH;
9931                 goto err_unlock;
9932         }
9933
9934         if (!exclusive_event_installable(event, ctx)) {
9935                 err = -EBUSY;
9936                 goto err_unlock;
9937         }
9938
9939         perf_install_in_context(ctx, event, cpu);
9940         perf_unpin_context(ctx);
9941         mutex_unlock(&ctx->mutex);
9942
9943         return event;
9944
9945 err_unlock:
9946         mutex_unlock(&ctx->mutex);
9947         perf_unpin_context(ctx);
9948         put_ctx(ctx);
9949 err_free:
9950         free_event(event);
9951 err:
9952         return ERR_PTR(err);
9953 }
9954 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9955
9956 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9957 {
9958         struct perf_event_context *src_ctx;
9959         struct perf_event_context *dst_ctx;
9960         struct perf_event *event, *tmp;
9961         LIST_HEAD(events);
9962
9963         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9964         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9965
9966         /*
9967          * See perf_event_ctx_lock() for comments on the details
9968          * of swizzling perf_event::ctx.
9969          */
9970         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9971         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9972                                  event_entry) {
9973                 perf_remove_from_context(event, 0);
9974                 unaccount_event_cpu(event, src_cpu);
9975                 put_ctx(src_ctx);
9976                 list_add(&event->migrate_entry, &events);
9977         }
9978
9979         /*
9980          * Wait for the events to quiesce before re-instating them.
9981          */
9982         synchronize_rcu();
9983
9984         /*
9985          * Re-instate events in 2 passes.
9986          *
9987          * Skip over group leaders and only install siblings on this first
9988          * pass, siblings will not get enabled without a leader, however a
9989          * leader will enable its siblings, even if those are still on the old
9990          * context.
9991          */
9992         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9993                 if (event->group_leader == event)
9994                         continue;
9995
9996                 list_del(&event->migrate_entry);
9997                 if (event->state >= PERF_EVENT_STATE_OFF)
9998                         event->state = PERF_EVENT_STATE_INACTIVE;
9999                 account_event_cpu(event, dst_cpu);
10000                 perf_install_in_context(dst_ctx, event, dst_cpu);
10001                 get_ctx(dst_ctx);
10002         }
10003
10004         /*
10005          * Once all the siblings are setup properly, install the group leaders
10006          * to make it go.
10007          */
10008         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10009                 list_del(&event->migrate_entry);
10010                 if (event->state >= PERF_EVENT_STATE_OFF)
10011                         event->state = PERF_EVENT_STATE_INACTIVE;
10012                 account_event_cpu(event, dst_cpu);
10013                 perf_install_in_context(dst_ctx, event, dst_cpu);
10014                 get_ctx(dst_ctx);
10015         }
10016         mutex_unlock(&dst_ctx->mutex);
10017         mutex_unlock(&src_ctx->mutex);
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10020
10021 static void sync_child_event(struct perf_event *child_event,
10022                                struct task_struct *child)
10023 {
10024         struct perf_event *parent_event = child_event->parent;
10025         u64 child_val;
10026
10027         if (child_event->attr.inherit_stat)
10028                 perf_event_read_event(child_event, child);
10029
10030         child_val = perf_event_count(child_event);
10031
10032         /*
10033          * Add back the child's count to the parent's count:
10034          */
10035         atomic64_add(child_val, &parent_event->child_count);
10036         atomic64_add(child_event->total_time_enabled,
10037                      &parent_event->child_total_time_enabled);
10038         atomic64_add(child_event->total_time_running,
10039                      &parent_event->child_total_time_running);
10040 }
10041
10042 static void
10043 perf_event_exit_event(struct perf_event *child_event,
10044                       struct perf_event_context *child_ctx,
10045                       struct task_struct *child)
10046 {
10047         struct perf_event *parent_event = child_event->parent;
10048
10049         /*
10050          * Do not destroy the 'original' grouping; because of the context
10051          * switch optimization the original events could've ended up in a
10052          * random child task.
10053          *
10054          * If we were to destroy the original group, all group related
10055          * operations would cease to function properly after this random
10056          * child dies.
10057          *
10058          * Do destroy all inherited groups, we don't care about those
10059          * and being thorough is better.
10060          */
10061         raw_spin_lock_irq(&child_ctx->lock);
10062         WARN_ON_ONCE(child_ctx->is_active);
10063
10064         if (parent_event)
10065                 perf_group_detach(child_event);
10066         list_del_event(child_event, child_ctx);
10067         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10068         raw_spin_unlock_irq(&child_ctx->lock);
10069
10070         /*
10071          * Parent events are governed by their filedesc, retain them.
10072          */
10073         if (!parent_event) {
10074                 perf_event_wakeup(child_event);
10075                 return;
10076         }
10077         /*
10078          * Child events can be cleaned up.
10079          */
10080
10081         sync_child_event(child_event, child);
10082
10083         /*
10084          * Remove this event from the parent's list
10085          */
10086         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10087         mutex_lock(&parent_event->child_mutex);
10088         list_del_init(&child_event->child_list);
10089         mutex_unlock(&parent_event->child_mutex);
10090
10091         /*
10092          * Kick perf_poll() for is_event_hup().
10093          */
10094         perf_event_wakeup(parent_event);
10095         free_event(child_event);
10096         put_event(parent_event);
10097 }
10098
10099 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10100 {
10101         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10102         struct perf_event *child_event, *next;
10103
10104         WARN_ON_ONCE(child != current);
10105
10106         child_ctx = perf_pin_task_context(child, ctxn);
10107         if (!child_ctx)
10108                 return;
10109
10110         /*
10111          * In order to reduce the amount of tricky in ctx tear-down, we hold
10112          * ctx::mutex over the entire thing. This serializes against almost
10113          * everything that wants to access the ctx.
10114          *
10115          * The exception is sys_perf_event_open() /
10116          * perf_event_create_kernel_count() which does find_get_context()
10117          * without ctx::mutex (it cannot because of the move_group double mutex
10118          * lock thing). See the comments in perf_install_in_context().
10119          */
10120         mutex_lock(&child_ctx->mutex);
10121
10122         /*
10123          * In a single ctx::lock section, de-schedule the events and detach the
10124          * context from the task such that we cannot ever get it scheduled back
10125          * in.
10126          */
10127         raw_spin_lock_irq(&child_ctx->lock);
10128         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10129
10130         /*
10131          * Now that the context is inactive, destroy the task <-> ctx relation
10132          * and mark the context dead.
10133          */
10134         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10135         put_ctx(child_ctx); /* cannot be last */
10136         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10137         put_task_struct(current); /* cannot be last */
10138
10139         clone_ctx = unclone_ctx(child_ctx);
10140         raw_spin_unlock_irq(&child_ctx->lock);
10141
10142         if (clone_ctx)
10143                 put_ctx(clone_ctx);
10144
10145         /*
10146          * Report the task dead after unscheduling the events so that we
10147          * won't get any samples after PERF_RECORD_EXIT. We can however still
10148          * get a few PERF_RECORD_READ events.
10149          */
10150         perf_event_task(child, child_ctx, 0);
10151
10152         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10153                 perf_event_exit_event(child_event, child_ctx, child);
10154
10155         mutex_unlock(&child_ctx->mutex);
10156
10157         put_ctx(child_ctx);
10158 }
10159
10160 /*
10161  * When a child task exits, feed back event values to parent events.
10162  *
10163  * Can be called with cred_guard_mutex held when called from
10164  * install_exec_creds().
10165  */
10166 void perf_event_exit_task(struct task_struct *child)
10167 {
10168         struct perf_event *event, *tmp;
10169         int ctxn;
10170
10171         mutex_lock(&child->perf_event_mutex);
10172         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10173                                  owner_entry) {
10174                 list_del_init(&event->owner_entry);
10175
10176                 /*
10177                  * Ensure the list deletion is visible before we clear
10178                  * the owner, closes a race against perf_release() where
10179                  * we need to serialize on the owner->perf_event_mutex.
10180                  */
10181                 smp_store_release(&event->owner, NULL);
10182         }
10183         mutex_unlock(&child->perf_event_mutex);
10184
10185         for_each_task_context_nr(ctxn)
10186                 perf_event_exit_task_context(child, ctxn);
10187
10188         /*
10189          * The perf_event_exit_task_context calls perf_event_task
10190          * with child's task_ctx, which generates EXIT events for
10191          * child contexts and sets child->perf_event_ctxp[] to NULL.
10192          * At this point we need to send EXIT events to cpu contexts.
10193          */
10194         perf_event_task(child, NULL, 0);
10195 }
10196
10197 static void perf_free_event(struct perf_event *event,
10198                             struct perf_event_context *ctx)
10199 {
10200         struct perf_event *parent = event->parent;
10201
10202         if (WARN_ON_ONCE(!parent))
10203                 return;
10204
10205         mutex_lock(&parent->child_mutex);
10206         list_del_init(&event->child_list);
10207         mutex_unlock(&parent->child_mutex);
10208
10209         put_event(parent);
10210
10211         raw_spin_lock_irq(&ctx->lock);
10212         perf_group_detach(event);
10213         list_del_event(event, ctx);
10214         raw_spin_unlock_irq(&ctx->lock);
10215         free_event(event);
10216 }
10217
10218 /*
10219  * Free an unexposed, unused context as created by inheritance by
10220  * perf_event_init_task below, used by fork() in case of fail.
10221  *
10222  * Not all locks are strictly required, but take them anyway to be nice and
10223  * help out with the lockdep assertions.
10224  */
10225 void perf_event_free_task(struct task_struct *task)
10226 {
10227         struct perf_event_context *ctx;
10228         struct perf_event *event, *tmp;
10229         int ctxn;
10230
10231         for_each_task_context_nr(ctxn) {
10232                 ctx = task->perf_event_ctxp[ctxn];
10233                 if (!ctx)
10234                         continue;
10235
10236                 mutex_lock(&ctx->mutex);
10237 again:
10238                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10239                                 group_entry)
10240                         perf_free_event(event, ctx);
10241
10242                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10243                                 group_entry)
10244                         perf_free_event(event, ctx);
10245
10246                 if (!list_empty(&ctx->pinned_groups) ||
10247                                 !list_empty(&ctx->flexible_groups))
10248                         goto again;
10249
10250                 mutex_unlock(&ctx->mutex);
10251
10252                 put_ctx(ctx);
10253         }
10254 }
10255
10256 void perf_event_delayed_put(struct task_struct *task)
10257 {
10258         int ctxn;
10259
10260         for_each_task_context_nr(ctxn)
10261                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10262 }
10263
10264 struct file *perf_event_get(unsigned int fd)
10265 {
10266         struct file *file;
10267
10268         file = fget_raw(fd);
10269         if (!file)
10270                 return ERR_PTR(-EBADF);
10271
10272         if (file->f_op != &perf_fops) {
10273                 fput(file);
10274                 return ERR_PTR(-EBADF);
10275         }
10276
10277         return file;
10278 }
10279
10280 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10281 {
10282         if (!event)
10283                 return ERR_PTR(-EINVAL);
10284
10285         return &event->attr;
10286 }
10287
10288 /*
10289  * inherit a event from parent task to child task:
10290  */
10291 static struct perf_event *
10292 inherit_event(struct perf_event *parent_event,
10293               struct task_struct *parent,
10294               struct perf_event_context *parent_ctx,
10295               struct task_struct *child,
10296               struct perf_event *group_leader,
10297               struct perf_event_context *child_ctx)
10298 {
10299         enum perf_event_active_state parent_state = parent_event->state;
10300         struct perf_event *child_event;
10301         unsigned long flags;
10302
10303         /*
10304          * Instead of creating recursive hierarchies of events,
10305          * we link inherited events back to the original parent,
10306          * which has a filp for sure, which we use as the reference
10307          * count:
10308          */
10309         if (parent_event->parent)
10310                 parent_event = parent_event->parent;
10311
10312         child_event = perf_event_alloc(&parent_event->attr,
10313                                            parent_event->cpu,
10314                                            child,
10315                                            group_leader, parent_event,
10316                                            NULL, NULL, -1);
10317         if (IS_ERR(child_event))
10318                 return child_event;
10319
10320         /*
10321          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10322          * must be under the same lock in order to serialize against
10323          * perf_event_release_kernel(), such that either we must observe
10324          * is_orphaned_event() or they will observe us on the child_list.
10325          */
10326         mutex_lock(&parent_event->child_mutex);
10327         if (is_orphaned_event(parent_event) ||
10328             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10329                 mutex_unlock(&parent_event->child_mutex);
10330                 free_event(child_event);
10331                 return NULL;
10332         }
10333
10334         get_ctx(child_ctx);
10335
10336         /*
10337          * Make the child state follow the state of the parent event,
10338          * not its attr.disabled bit.  We hold the parent's mutex,
10339          * so we won't race with perf_event_{en, dis}able_family.
10340          */
10341         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10342                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10343         else
10344                 child_event->state = PERF_EVENT_STATE_OFF;
10345
10346         if (parent_event->attr.freq) {
10347                 u64 sample_period = parent_event->hw.sample_period;
10348                 struct hw_perf_event *hwc = &child_event->hw;
10349
10350                 hwc->sample_period = sample_period;
10351                 hwc->last_period   = sample_period;
10352
10353                 local64_set(&hwc->period_left, sample_period);
10354         }
10355
10356         child_event->ctx = child_ctx;
10357         child_event->overflow_handler = parent_event->overflow_handler;
10358         child_event->overflow_handler_context
10359                 = parent_event->overflow_handler_context;
10360
10361         /*
10362          * Precalculate sample_data sizes
10363          */
10364         perf_event__header_size(child_event);
10365         perf_event__id_header_size(child_event);
10366
10367         /*
10368          * Link it up in the child's context:
10369          */
10370         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10371         add_event_to_ctx(child_event, child_ctx);
10372         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10373
10374         /*
10375          * Link this into the parent event's child list
10376          */
10377         list_add_tail(&child_event->child_list, &parent_event->child_list);
10378         mutex_unlock(&parent_event->child_mutex);
10379
10380         return child_event;
10381 }
10382
10383 static int inherit_group(struct perf_event *parent_event,
10384               struct task_struct *parent,
10385               struct perf_event_context *parent_ctx,
10386               struct task_struct *child,
10387               struct perf_event_context *child_ctx)
10388 {
10389         struct perf_event *leader;
10390         struct perf_event *sub;
10391         struct perf_event *child_ctr;
10392
10393         leader = inherit_event(parent_event, parent, parent_ctx,
10394                                  child, NULL, child_ctx);
10395         if (IS_ERR(leader))
10396                 return PTR_ERR(leader);
10397         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10398                 child_ctr = inherit_event(sub, parent, parent_ctx,
10399                                             child, leader, child_ctx);
10400                 if (IS_ERR(child_ctr))
10401                         return PTR_ERR(child_ctr);
10402         }
10403         return 0;
10404 }
10405
10406 static int
10407 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10408                    struct perf_event_context *parent_ctx,
10409                    struct task_struct *child, int ctxn,
10410                    int *inherited_all)
10411 {
10412         int ret;
10413         struct perf_event_context *child_ctx;
10414
10415         if (!event->attr.inherit) {
10416                 *inherited_all = 0;
10417                 return 0;
10418         }
10419
10420         child_ctx = child->perf_event_ctxp[ctxn];
10421         if (!child_ctx) {
10422                 /*
10423                  * This is executed from the parent task context, so
10424                  * inherit events that have been marked for cloning.
10425                  * First allocate and initialize a context for the
10426                  * child.
10427                  */
10428
10429                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10430                 if (!child_ctx)
10431                         return -ENOMEM;
10432
10433                 child->perf_event_ctxp[ctxn] = child_ctx;
10434         }
10435
10436         ret = inherit_group(event, parent, parent_ctx,
10437                             child, child_ctx);
10438
10439         if (ret)
10440                 *inherited_all = 0;
10441
10442         return ret;
10443 }
10444
10445 /*
10446  * Initialize the perf_event context in task_struct
10447  */
10448 static int perf_event_init_context(struct task_struct *child, int ctxn)
10449 {
10450         struct perf_event_context *child_ctx, *parent_ctx;
10451         struct perf_event_context *cloned_ctx;
10452         struct perf_event *event;
10453         struct task_struct *parent = current;
10454         int inherited_all = 1;
10455         unsigned long flags;
10456         int ret = 0;
10457
10458         if (likely(!parent->perf_event_ctxp[ctxn]))
10459                 return 0;
10460
10461         /*
10462          * If the parent's context is a clone, pin it so it won't get
10463          * swapped under us.
10464          */
10465         parent_ctx = perf_pin_task_context(parent, ctxn);
10466         if (!parent_ctx)
10467                 return 0;
10468
10469         /*
10470          * No need to check if parent_ctx != NULL here; since we saw
10471          * it non-NULL earlier, the only reason for it to become NULL
10472          * is if we exit, and since we're currently in the middle of
10473          * a fork we can't be exiting at the same time.
10474          */
10475
10476         /*
10477          * Lock the parent list. No need to lock the child - not PID
10478          * hashed yet and not running, so nobody can access it.
10479          */
10480         mutex_lock(&parent_ctx->mutex);
10481
10482         /*
10483          * We dont have to disable NMIs - we are only looking at
10484          * the list, not manipulating it:
10485          */
10486         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10487                 ret = inherit_task_group(event, parent, parent_ctx,
10488                                          child, ctxn, &inherited_all);
10489                 if (ret)
10490                         break;
10491         }
10492
10493         /*
10494          * We can't hold ctx->lock when iterating the ->flexible_group list due
10495          * to allocations, but we need to prevent rotation because
10496          * rotate_ctx() will change the list from interrupt context.
10497          */
10498         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10499         parent_ctx->rotate_disable = 1;
10500         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10501
10502         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10503                 ret = inherit_task_group(event, parent, parent_ctx,
10504                                          child, ctxn, &inherited_all);
10505                 if (ret)
10506                         break;
10507         }
10508
10509         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10510         parent_ctx->rotate_disable = 0;
10511
10512         child_ctx = child->perf_event_ctxp[ctxn];
10513
10514         if (child_ctx && inherited_all) {
10515                 /*
10516                  * Mark the child context as a clone of the parent
10517                  * context, or of whatever the parent is a clone of.
10518                  *
10519                  * Note that if the parent is a clone, the holding of
10520                  * parent_ctx->lock avoids it from being uncloned.
10521                  */
10522                 cloned_ctx = parent_ctx->parent_ctx;
10523                 if (cloned_ctx) {
10524                         child_ctx->parent_ctx = cloned_ctx;
10525                         child_ctx->parent_gen = parent_ctx->parent_gen;
10526                 } else {
10527                         child_ctx->parent_ctx = parent_ctx;
10528                         child_ctx->parent_gen = parent_ctx->generation;
10529                 }
10530                 get_ctx(child_ctx->parent_ctx);
10531         }
10532
10533         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10534         mutex_unlock(&parent_ctx->mutex);
10535
10536         perf_unpin_context(parent_ctx);
10537         put_ctx(parent_ctx);
10538
10539         return ret;
10540 }
10541
10542 /*
10543  * Initialize the perf_event context in task_struct
10544  */
10545 int perf_event_init_task(struct task_struct *child)
10546 {
10547         int ctxn, ret;
10548
10549         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10550         mutex_init(&child->perf_event_mutex);
10551         INIT_LIST_HEAD(&child->perf_event_list);
10552
10553         for_each_task_context_nr(ctxn) {
10554                 ret = perf_event_init_context(child, ctxn);
10555                 if (ret) {
10556                         perf_event_free_task(child);
10557                         return ret;
10558                 }
10559         }
10560
10561         return 0;
10562 }
10563
10564 static void __init perf_event_init_all_cpus(void)
10565 {
10566         struct swevent_htable *swhash;
10567         int cpu;
10568
10569         for_each_possible_cpu(cpu) {
10570                 swhash = &per_cpu(swevent_htable, cpu);
10571                 mutex_init(&swhash->hlist_mutex);
10572                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10573
10574                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10575                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10576
10577                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10578         }
10579 }
10580
10581 int perf_event_init_cpu(unsigned int cpu)
10582 {
10583         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10584
10585         mutex_lock(&swhash->hlist_mutex);
10586         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10587                 struct swevent_hlist *hlist;
10588
10589                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10590                 WARN_ON(!hlist);
10591                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10592         }
10593         mutex_unlock(&swhash->hlist_mutex);
10594         return 0;
10595 }
10596
10597 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10598 static void __perf_event_exit_context(void *__info)
10599 {
10600         struct perf_event_context *ctx = __info;
10601         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10602         struct perf_event *event;
10603
10604         raw_spin_lock(&ctx->lock);
10605         list_for_each_entry(event, &ctx->event_list, event_entry)
10606                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10607         raw_spin_unlock(&ctx->lock);
10608 }
10609
10610 static void perf_event_exit_cpu_context(int cpu)
10611 {
10612         struct perf_event_context *ctx;
10613         struct pmu *pmu;
10614         int idx;
10615
10616         idx = srcu_read_lock(&pmus_srcu);
10617         list_for_each_entry_rcu(pmu, &pmus, entry) {
10618                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10619
10620                 mutex_lock(&ctx->mutex);
10621                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10622                 mutex_unlock(&ctx->mutex);
10623         }
10624         srcu_read_unlock(&pmus_srcu, idx);
10625 }
10626 #else
10627
10628 static void perf_event_exit_cpu_context(int cpu) { }
10629
10630 #endif
10631
10632 int perf_event_exit_cpu(unsigned int cpu)
10633 {
10634         perf_event_exit_cpu_context(cpu);
10635         return 0;
10636 }
10637
10638 static int
10639 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10640 {
10641         int cpu;
10642
10643         for_each_online_cpu(cpu)
10644                 perf_event_exit_cpu(cpu);
10645
10646         return NOTIFY_OK;
10647 }
10648
10649 /*
10650  * Run the perf reboot notifier at the very last possible moment so that
10651  * the generic watchdog code runs as long as possible.
10652  */
10653 static struct notifier_block perf_reboot_notifier = {
10654         .notifier_call = perf_reboot,
10655         .priority = INT_MIN,
10656 };
10657
10658 void __init perf_event_init(void)
10659 {
10660         int ret;
10661
10662         idr_init(&pmu_idr);
10663
10664         perf_event_init_all_cpus();
10665         init_srcu_struct(&pmus_srcu);
10666         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10667         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10668         perf_pmu_register(&perf_task_clock, NULL, -1);
10669         perf_tp_register();
10670         perf_event_init_cpu(smp_processor_id());
10671         register_reboot_notifier(&perf_reboot_notifier);
10672
10673         ret = init_hw_breakpoint();
10674         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10675
10676         /*
10677          * Build time assertion that we keep the data_head at the intended
10678          * location.  IOW, validation we got the __reserved[] size right.
10679          */
10680         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10681                      != 1024);
10682 }
10683
10684 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10685                               char *page)
10686 {
10687         struct perf_pmu_events_attr *pmu_attr =
10688                 container_of(attr, struct perf_pmu_events_attr, attr);
10689
10690         if (pmu_attr->event_str)
10691                 return sprintf(page, "%s\n", pmu_attr->event_str);
10692
10693         return 0;
10694 }
10695 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10696
10697 static int __init perf_event_sysfs_init(void)
10698 {
10699         struct pmu *pmu;
10700         int ret;
10701
10702         mutex_lock(&pmus_lock);
10703
10704         ret = bus_register(&pmu_bus);
10705         if (ret)
10706                 goto unlock;
10707
10708         list_for_each_entry(pmu, &pmus, entry) {
10709                 if (!pmu->name || pmu->type < 0)
10710                         continue;
10711
10712                 ret = pmu_dev_alloc(pmu);
10713                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10714         }
10715         pmu_bus_running = 1;
10716         ret = 0;
10717
10718 unlock:
10719         mutex_unlock(&pmus_lock);
10720
10721         return ret;
10722 }
10723 device_initcall(perf_event_sysfs_init);
10724
10725 #ifdef CONFIG_CGROUP_PERF
10726 static struct cgroup_subsys_state *
10727 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10728 {
10729         struct perf_cgroup *jc;
10730
10731         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10732         if (!jc)
10733                 return ERR_PTR(-ENOMEM);
10734
10735         jc->info = alloc_percpu(struct perf_cgroup_info);
10736         if (!jc->info) {
10737                 kfree(jc);
10738                 return ERR_PTR(-ENOMEM);
10739         }
10740
10741         return &jc->css;
10742 }
10743
10744 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10745 {
10746         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10747
10748         free_percpu(jc->info);
10749         kfree(jc);
10750 }
10751
10752 static int __perf_cgroup_move(void *info)
10753 {
10754         struct task_struct *task = info;
10755         rcu_read_lock();
10756         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10757         rcu_read_unlock();
10758         return 0;
10759 }
10760
10761 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10762 {
10763         struct task_struct *task;
10764         struct cgroup_subsys_state *css;
10765
10766         cgroup_taskset_for_each(task, css, tset)
10767                 task_function_call(task, __perf_cgroup_move, task);
10768 }
10769
10770 struct cgroup_subsys perf_event_cgrp_subsys = {
10771         .css_alloc      = perf_cgroup_css_alloc,
10772         .css_free       = perf_cgroup_css_free,
10773         .attach         = perf_cgroup_attach,
10774 };
10775 #endif /* CONFIG_CGROUP_PERF */