Merge branch 'perf/urgent' into perf/core, to pick up dependencies
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905         cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913         return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921         return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451         if (event->attr.pinned)
1452                 return &ctx->pinned_groups;
1453         else
1454                 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465         lockdep_assert_held(&ctx->lock);
1466
1467         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468         event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470         /*
1471          * If we're a stand alone event or group leader, we go to the context
1472          * list, group events are kept attached to the group so that
1473          * perf_group_detach can, at all times, locate all siblings.
1474          */
1475         if (event->group_leader == event) {
1476                 struct list_head *list;
1477
1478                 if (is_software_event(event))
1479                         event->group_flags |= PERF_GROUP_SOFTWARE;
1480
1481                 list = ctx_group_list(event, ctx);
1482                 list_add_tail(&event->group_entry, list);
1483         }
1484
1485         list_update_cgroup_event(event, ctx, true);
1486
1487         list_add_rcu(&event->event_entry, &ctx->event_list);
1488         ctx->nr_events++;
1489         if (event->attr.inherit_stat)
1490                 ctx->nr_stat++;
1491
1492         ctx->generation++;
1493 }
1494
1495 /*
1496  * Initialize event state based on the perf_event_attr::disabled.
1497  */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501                                               PERF_EVENT_STATE_INACTIVE;
1502 }
1503
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506         int entry = sizeof(u64); /* value */
1507         int size = 0;
1508         int nr = 1;
1509
1510         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511                 size += sizeof(u64);
1512
1513         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514                 size += sizeof(u64);
1515
1516         if (event->attr.read_format & PERF_FORMAT_ID)
1517                 entry += sizeof(u64);
1518
1519         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520                 nr += nr_siblings;
1521                 size += sizeof(u64);
1522         }
1523
1524         size += entry * nr;
1525         event->read_size = size;
1526 }
1527
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530         struct perf_sample_data *data;
1531         u16 size = 0;
1532
1533         if (sample_type & PERF_SAMPLE_IP)
1534                 size += sizeof(data->ip);
1535
1536         if (sample_type & PERF_SAMPLE_ADDR)
1537                 size += sizeof(data->addr);
1538
1539         if (sample_type & PERF_SAMPLE_PERIOD)
1540                 size += sizeof(data->period);
1541
1542         if (sample_type & PERF_SAMPLE_WEIGHT)
1543                 size += sizeof(data->weight);
1544
1545         if (sample_type & PERF_SAMPLE_READ)
1546                 size += event->read_size;
1547
1548         if (sample_type & PERF_SAMPLE_DATA_SRC)
1549                 size += sizeof(data->data_src.val);
1550
1551         if (sample_type & PERF_SAMPLE_TRANSACTION)
1552                 size += sizeof(data->txn);
1553
1554         event->header_size = size;
1555 }
1556
1557 /*
1558  * Called at perf_event creation and when events are attached/detached from a
1559  * group.
1560  */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563         __perf_event_read_size(event,
1564                                event->group_leader->nr_siblings);
1565         __perf_event_header_size(event, event->attr.sample_type);
1566 }
1567
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570         struct perf_sample_data *data;
1571         u64 sample_type = event->attr.sample_type;
1572         u16 size = 0;
1573
1574         if (sample_type & PERF_SAMPLE_TID)
1575                 size += sizeof(data->tid_entry);
1576
1577         if (sample_type & PERF_SAMPLE_TIME)
1578                 size += sizeof(data->time);
1579
1580         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581                 size += sizeof(data->id);
1582
1583         if (sample_type & PERF_SAMPLE_ID)
1584                 size += sizeof(data->id);
1585
1586         if (sample_type & PERF_SAMPLE_STREAM_ID)
1587                 size += sizeof(data->stream_id);
1588
1589         if (sample_type & PERF_SAMPLE_CPU)
1590                 size += sizeof(data->cpu_entry);
1591
1592         event->id_header_size = size;
1593 }
1594
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597         /*
1598          * The values computed here will be over-written when we actually
1599          * attach the event.
1600          */
1601         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603         perf_event__id_header_size(event);
1604
1605         /*
1606          * Sum the lot; should not exceed the 64k limit we have on records.
1607          * Conservative limit to allow for callchains and other variable fields.
1608          */
1609         if (event->read_size + event->header_size +
1610             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618         struct perf_event *group_leader = event->group_leader, *pos;
1619
1620         /*
1621          * We can have double attach due to group movement in perf_event_open.
1622          */
1623         if (event->attach_state & PERF_ATTACH_GROUP)
1624                 return;
1625
1626         event->attach_state |= PERF_ATTACH_GROUP;
1627
1628         if (group_leader == event)
1629                 return;
1630
1631         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
1633         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634                         !is_software_event(event))
1635                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638         group_leader->nr_siblings++;
1639
1640         perf_event__header_size(group_leader);
1641
1642         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643                 perf_event__header_size(pos);
1644 }
1645
1646 /*
1647  * Remove a event from the lists for its context.
1648  * Must be called with ctx->mutex and ctx->lock held.
1649  */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653         WARN_ON_ONCE(event->ctx != ctx);
1654         lockdep_assert_held(&ctx->lock);
1655
1656         /*
1657          * We can have double detach due to exit/hot-unplug + close.
1658          */
1659         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660                 return;
1661
1662         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
1664         list_update_cgroup_event(event, ctx, false);
1665
1666         ctx->nr_events--;
1667         if (event->attr.inherit_stat)
1668                 ctx->nr_stat--;
1669
1670         list_del_rcu(&event->event_entry);
1671
1672         if (event->group_leader == event)
1673                 list_del_init(&event->group_entry);
1674
1675         update_group_times(event);
1676
1677         /*
1678          * If event was in error state, then keep it
1679          * that way, otherwise bogus counts will be
1680          * returned on read(). The only way to get out
1681          * of error state is by explicit re-enabling
1682          * of the event
1683          */
1684         if (event->state > PERF_EVENT_STATE_OFF)
1685                 event->state = PERF_EVENT_STATE_OFF;
1686
1687         ctx->generation++;
1688 }
1689
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692         struct perf_event *sibling, *tmp;
1693         struct list_head *list = NULL;
1694
1695         /*
1696          * We can have double detach due to exit/hot-unplug + close.
1697          */
1698         if (!(event->attach_state & PERF_ATTACH_GROUP))
1699                 return;
1700
1701         event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703         /*
1704          * If this is a sibling, remove it from its group.
1705          */
1706         if (event->group_leader != event) {
1707                 list_del_init(&event->group_entry);
1708                 event->group_leader->nr_siblings--;
1709                 goto out;
1710         }
1711
1712         if (!list_empty(&event->group_entry))
1713                 list = &event->group_entry;
1714
1715         /*
1716          * If this was a group event with sibling events then
1717          * upgrade the siblings to singleton events by adding them
1718          * to whatever list we are on.
1719          */
1720         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721                 if (list)
1722                         list_move_tail(&sibling->group_entry, list);
1723                 sibling->group_leader = sibling;
1724
1725                 /* Inherit group flags from the previous leader */
1726                 sibling->group_flags = event->group_flags;
1727
1728                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1729         }
1730
1731 out:
1732         perf_event__header_size(event->group_leader);
1733
1734         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735                 perf_event__header_size(tmp);
1736 }
1737
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740         return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745         struct pmu *pmu = event->pmu;
1746         return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748
1749 /*
1750  * Check whether we should attempt to schedule an event group based on
1751  * PMU-specific filtering. An event group can consist of HW and SW events,
1752  * potentially with a SW leader, so we must check all the filters, to
1753  * determine whether a group is schedulable:
1754  */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757         struct perf_event *child;
1758
1759         if (!__pmu_filter_match(event))
1760                 return 0;
1761
1762         list_for_each_entry(child, &event->sibling_list, group_entry) {
1763                 if (!__pmu_filter_match(child))
1764                         return 0;
1765         }
1766
1767         return 1;
1768 }
1769
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774                perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776
1777 static void
1778 event_sched_out(struct perf_event *event,
1779                   struct perf_cpu_context *cpuctx,
1780                   struct perf_event_context *ctx)
1781 {
1782         u64 tstamp = perf_event_time(event);
1783         u64 delta;
1784
1785         WARN_ON_ONCE(event->ctx != ctx);
1786         lockdep_assert_held(&ctx->lock);
1787
1788         /*
1789          * An event which could not be activated because of
1790          * filter mismatch still needs to have its timings
1791          * maintained, otherwise bogus information is return
1792          * via read() for time_enabled, time_running:
1793          */
1794         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795             !event_filter_match(event)) {
1796                 delta = tstamp - event->tstamp_stopped;
1797                 event->tstamp_running += delta;
1798                 event->tstamp_stopped = tstamp;
1799         }
1800
1801         if (event->state != PERF_EVENT_STATE_ACTIVE)
1802                 return;
1803
1804         perf_pmu_disable(event->pmu);
1805
1806         event->tstamp_stopped = tstamp;
1807         event->pmu->del(event, 0);
1808         event->oncpu = -1;
1809         event->state = PERF_EVENT_STATE_INACTIVE;
1810         if (event->pending_disable) {
1811                 event->pending_disable = 0;
1812                 event->state = PERF_EVENT_STATE_OFF;
1813         }
1814
1815         if (!is_software_event(event))
1816                 cpuctx->active_oncpu--;
1817         if (!--ctx->nr_active)
1818                 perf_event_ctx_deactivate(ctx);
1819         if (event->attr.freq && event->attr.sample_freq)
1820                 ctx->nr_freq--;
1821         if (event->attr.exclusive || !cpuctx->active_oncpu)
1822                 cpuctx->exclusive = 0;
1823
1824         perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829                 struct perf_cpu_context *cpuctx,
1830                 struct perf_event_context *ctx)
1831 {
1832         struct perf_event *event;
1833         int state = group_event->state;
1834
1835         perf_pmu_disable(ctx->pmu);
1836
1837         event_sched_out(group_event, cpuctx, ctx);
1838
1839         /*
1840          * Schedule out siblings (if any):
1841          */
1842         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1843                 event_sched_out(event, cpuctx, ctx);
1844
1845         perf_pmu_enable(ctx->pmu);
1846
1847         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1848                 cpuctx->exclusive = 0;
1849 }
1850
1851 #define DETACH_GROUP    0x01UL
1852
1853 /*
1854  * Cross CPU call to remove a performance event
1855  *
1856  * We disable the event on the hardware level first. After that we
1857  * remove it from the context list.
1858  */
1859 static void
1860 __perf_remove_from_context(struct perf_event *event,
1861                            struct perf_cpu_context *cpuctx,
1862                            struct perf_event_context *ctx,
1863                            void *info)
1864 {
1865         unsigned long flags = (unsigned long)info;
1866
1867         event_sched_out(event, cpuctx, ctx);
1868         if (flags & DETACH_GROUP)
1869                 perf_group_detach(event);
1870         list_del_event(event, ctx);
1871
1872         if (!ctx->nr_events && ctx->is_active) {
1873                 ctx->is_active = 0;
1874                 if (ctx->task) {
1875                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1876                         cpuctx->task_ctx = NULL;
1877                 }
1878         }
1879 }
1880
1881 /*
1882  * Remove the event from a task's (or a CPU's) list of events.
1883  *
1884  * If event->ctx is a cloned context, callers must make sure that
1885  * every task struct that event->ctx->task could possibly point to
1886  * remains valid.  This is OK when called from perf_release since
1887  * that only calls us on the top-level context, which can't be a clone.
1888  * When called from perf_event_exit_task, it's OK because the
1889  * context has been detached from its task.
1890  */
1891 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1892 {
1893         lockdep_assert_held(&event->ctx->mutex);
1894
1895         event_function_call(event, __perf_remove_from_context, (void *)flags);
1896 }
1897
1898 /*
1899  * Cross CPU call to disable a performance event
1900  */
1901 static void __perf_event_disable(struct perf_event *event,
1902                                  struct perf_cpu_context *cpuctx,
1903                                  struct perf_event_context *ctx,
1904                                  void *info)
1905 {
1906         if (event->state < PERF_EVENT_STATE_INACTIVE)
1907                 return;
1908
1909         update_context_time(ctx);
1910         update_cgrp_time_from_event(event);
1911         update_group_times(event);
1912         if (event == event->group_leader)
1913                 group_sched_out(event, cpuctx, ctx);
1914         else
1915                 event_sched_out(event, cpuctx, ctx);
1916         event->state = PERF_EVENT_STATE_OFF;
1917 }
1918
1919 /*
1920  * Disable a event.
1921  *
1922  * If event->ctx is a cloned context, callers must make sure that
1923  * every task struct that event->ctx->task could possibly point to
1924  * remains valid.  This condition is satisifed when called through
1925  * perf_event_for_each_child or perf_event_for_each because they
1926  * hold the top-level event's child_mutex, so any descendant that
1927  * goes to exit will block in perf_event_exit_event().
1928  *
1929  * When called from perf_pending_event it's OK because event->ctx
1930  * is the current context on this CPU and preemption is disabled,
1931  * hence we can't get into perf_event_task_sched_out for this context.
1932  */
1933 static void _perf_event_disable(struct perf_event *event)
1934 {
1935         struct perf_event_context *ctx = event->ctx;
1936
1937         raw_spin_lock_irq(&ctx->lock);
1938         if (event->state <= PERF_EVENT_STATE_OFF) {
1939                 raw_spin_unlock_irq(&ctx->lock);
1940                 return;
1941         }
1942         raw_spin_unlock_irq(&ctx->lock);
1943
1944         event_function_call(event, __perf_event_disable, NULL);
1945 }
1946
1947 void perf_event_disable_local(struct perf_event *event)
1948 {
1949         event_function_local(event, __perf_event_disable, NULL);
1950 }
1951
1952 /*
1953  * Strictly speaking kernel users cannot create groups and therefore this
1954  * interface does not need the perf_event_ctx_lock() magic.
1955  */
1956 void perf_event_disable(struct perf_event *event)
1957 {
1958         struct perf_event_context *ctx;
1959
1960         ctx = perf_event_ctx_lock(event);
1961         _perf_event_disable(event);
1962         perf_event_ctx_unlock(event, ctx);
1963 }
1964 EXPORT_SYMBOL_GPL(perf_event_disable);
1965
1966 static void perf_set_shadow_time(struct perf_event *event,
1967                                  struct perf_event_context *ctx,
1968                                  u64 tstamp)
1969 {
1970         /*
1971          * use the correct time source for the time snapshot
1972          *
1973          * We could get by without this by leveraging the
1974          * fact that to get to this function, the caller
1975          * has most likely already called update_context_time()
1976          * and update_cgrp_time_xx() and thus both timestamp
1977          * are identical (or very close). Given that tstamp is,
1978          * already adjusted for cgroup, we could say that:
1979          *    tstamp - ctx->timestamp
1980          * is equivalent to
1981          *    tstamp - cgrp->timestamp.
1982          *
1983          * Then, in perf_output_read(), the calculation would
1984          * work with no changes because:
1985          * - event is guaranteed scheduled in
1986          * - no scheduled out in between
1987          * - thus the timestamp would be the same
1988          *
1989          * But this is a bit hairy.
1990          *
1991          * So instead, we have an explicit cgroup call to remain
1992          * within the time time source all along. We believe it
1993          * is cleaner and simpler to understand.
1994          */
1995         if (is_cgroup_event(event))
1996                 perf_cgroup_set_shadow_time(event, tstamp);
1997         else
1998                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1999 }
2000
2001 #define MAX_INTERRUPTS (~0ULL)
2002
2003 static void perf_log_throttle(struct perf_event *event, int enable);
2004 static void perf_log_itrace_start(struct perf_event *event);
2005
2006 static int
2007 event_sched_in(struct perf_event *event,
2008                  struct perf_cpu_context *cpuctx,
2009                  struct perf_event_context *ctx)
2010 {
2011         u64 tstamp = perf_event_time(event);
2012         int ret = 0;
2013
2014         lockdep_assert_held(&ctx->lock);
2015
2016         if (event->state <= PERF_EVENT_STATE_OFF)
2017                 return 0;
2018
2019         WRITE_ONCE(event->oncpu, smp_processor_id());
2020         /*
2021          * Order event::oncpu write to happen before the ACTIVE state
2022          * is visible.
2023          */
2024         smp_wmb();
2025         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2026
2027         /*
2028          * Unthrottle events, since we scheduled we might have missed several
2029          * ticks already, also for a heavily scheduling task there is little
2030          * guarantee it'll get a tick in a timely manner.
2031          */
2032         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2033                 perf_log_throttle(event, 1);
2034                 event->hw.interrupts = 0;
2035         }
2036
2037         /*
2038          * The new state must be visible before we turn it on in the hardware:
2039          */
2040         smp_wmb();
2041
2042         perf_pmu_disable(event->pmu);
2043
2044         perf_set_shadow_time(event, ctx, tstamp);
2045
2046         perf_log_itrace_start(event);
2047
2048         if (event->pmu->add(event, PERF_EF_START)) {
2049                 event->state = PERF_EVENT_STATE_INACTIVE;
2050                 event->oncpu = -1;
2051                 ret = -EAGAIN;
2052                 goto out;
2053         }
2054
2055         event->tstamp_running += tstamp - event->tstamp_stopped;
2056
2057         if (!is_software_event(event))
2058                 cpuctx->active_oncpu++;
2059         if (!ctx->nr_active++)
2060                 perf_event_ctx_activate(ctx);
2061         if (event->attr.freq && event->attr.sample_freq)
2062                 ctx->nr_freq++;
2063
2064         if (event->attr.exclusive)
2065                 cpuctx->exclusive = 1;
2066
2067 out:
2068         perf_pmu_enable(event->pmu);
2069
2070         return ret;
2071 }
2072
2073 static int
2074 group_sched_in(struct perf_event *group_event,
2075                struct perf_cpu_context *cpuctx,
2076                struct perf_event_context *ctx)
2077 {
2078         struct perf_event *event, *partial_group = NULL;
2079         struct pmu *pmu = ctx->pmu;
2080         u64 now = ctx->time;
2081         bool simulate = false;
2082
2083         if (group_event->state == PERF_EVENT_STATE_OFF)
2084                 return 0;
2085
2086         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2087
2088         if (event_sched_in(group_event, cpuctx, ctx)) {
2089                 pmu->cancel_txn(pmu);
2090                 perf_mux_hrtimer_restart(cpuctx);
2091                 return -EAGAIN;
2092         }
2093
2094         /*
2095          * Schedule in siblings as one group (if any):
2096          */
2097         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2098                 if (event_sched_in(event, cpuctx, ctx)) {
2099                         partial_group = event;
2100                         goto group_error;
2101                 }
2102         }
2103
2104         if (!pmu->commit_txn(pmu))
2105                 return 0;
2106
2107 group_error:
2108         /*
2109          * Groups can be scheduled in as one unit only, so undo any
2110          * partial group before returning:
2111          * The events up to the failed event are scheduled out normally,
2112          * tstamp_stopped will be updated.
2113          *
2114          * The failed events and the remaining siblings need to have
2115          * their timings updated as if they had gone thru event_sched_in()
2116          * and event_sched_out(). This is required to get consistent timings
2117          * across the group. This also takes care of the case where the group
2118          * could never be scheduled by ensuring tstamp_stopped is set to mark
2119          * the time the event was actually stopped, such that time delta
2120          * calculation in update_event_times() is correct.
2121          */
2122         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2123                 if (event == partial_group)
2124                         simulate = true;
2125
2126                 if (simulate) {
2127                         event->tstamp_running += now - event->tstamp_stopped;
2128                         event->tstamp_stopped = now;
2129                 } else {
2130                         event_sched_out(event, cpuctx, ctx);
2131                 }
2132         }
2133         event_sched_out(group_event, cpuctx, ctx);
2134
2135         pmu->cancel_txn(pmu);
2136
2137         perf_mux_hrtimer_restart(cpuctx);
2138
2139         return -EAGAIN;
2140 }
2141
2142 /*
2143  * Work out whether we can put this event group on the CPU now.
2144  */
2145 static int group_can_go_on(struct perf_event *event,
2146                            struct perf_cpu_context *cpuctx,
2147                            int can_add_hw)
2148 {
2149         /*
2150          * Groups consisting entirely of software events can always go on.
2151          */
2152         if (event->group_flags & PERF_GROUP_SOFTWARE)
2153                 return 1;
2154         /*
2155          * If an exclusive group is already on, no other hardware
2156          * events can go on.
2157          */
2158         if (cpuctx->exclusive)
2159                 return 0;
2160         /*
2161          * If this group is exclusive and there are already
2162          * events on the CPU, it can't go on.
2163          */
2164         if (event->attr.exclusive && cpuctx->active_oncpu)
2165                 return 0;
2166         /*
2167          * Otherwise, try to add it if all previous groups were able
2168          * to go on.
2169          */
2170         return can_add_hw;
2171 }
2172
2173 static void add_event_to_ctx(struct perf_event *event,
2174                                struct perf_event_context *ctx)
2175 {
2176         u64 tstamp = perf_event_time(event);
2177
2178         list_add_event(event, ctx);
2179         perf_group_attach(event);
2180         event->tstamp_enabled = tstamp;
2181         event->tstamp_running = tstamp;
2182         event->tstamp_stopped = tstamp;
2183 }
2184
2185 static void ctx_sched_out(struct perf_event_context *ctx,
2186                           struct perf_cpu_context *cpuctx,
2187                           enum event_type_t event_type);
2188 static void
2189 ctx_sched_in(struct perf_event_context *ctx,
2190              struct perf_cpu_context *cpuctx,
2191              enum event_type_t event_type,
2192              struct task_struct *task);
2193
2194 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2195                                struct perf_event_context *ctx)
2196 {
2197         if (!cpuctx->task_ctx)
2198                 return;
2199
2200         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2201                 return;
2202
2203         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2204 }
2205
2206 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2207                                 struct perf_event_context *ctx,
2208                                 struct task_struct *task)
2209 {
2210         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2211         if (ctx)
2212                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2213         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2214         if (ctx)
2215                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2216 }
2217
2218 static void ctx_resched(struct perf_cpu_context *cpuctx,
2219                         struct perf_event_context *task_ctx)
2220 {
2221         perf_pmu_disable(cpuctx->ctx.pmu);
2222         if (task_ctx)
2223                 task_ctx_sched_out(cpuctx, task_ctx);
2224         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2225         perf_event_sched_in(cpuctx, task_ctx, current);
2226         perf_pmu_enable(cpuctx->ctx.pmu);
2227 }
2228
2229 /*
2230  * Cross CPU call to install and enable a performance event
2231  *
2232  * Very similar to remote_function() + event_function() but cannot assume that
2233  * things like ctx->is_active and cpuctx->task_ctx are set.
2234  */
2235 static int  __perf_install_in_context(void *info)
2236 {
2237         struct perf_event *event = info;
2238         struct perf_event_context *ctx = event->ctx;
2239         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2240         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2241         bool activate = true;
2242         int ret = 0;
2243
2244         raw_spin_lock(&cpuctx->ctx.lock);
2245         if (ctx->task) {
2246                 raw_spin_lock(&ctx->lock);
2247                 task_ctx = ctx;
2248
2249                 /* If we're on the wrong CPU, try again */
2250                 if (task_cpu(ctx->task) != smp_processor_id()) {
2251                         ret = -ESRCH;
2252                         goto unlock;
2253                 }
2254
2255                 /*
2256                  * If we're on the right CPU, see if the task we target is
2257                  * current, if not we don't have to activate the ctx, a future
2258                  * context switch will do that for us.
2259                  */
2260                 if (ctx->task != current)
2261                         activate = false;
2262                 else
2263                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2264
2265         } else if (task_ctx) {
2266                 raw_spin_lock(&task_ctx->lock);
2267         }
2268
2269         if (activate) {
2270                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2271                 add_event_to_ctx(event, ctx);
2272                 ctx_resched(cpuctx, task_ctx);
2273         } else {
2274                 add_event_to_ctx(event, ctx);
2275         }
2276
2277 unlock:
2278         perf_ctx_unlock(cpuctx, task_ctx);
2279
2280         return ret;
2281 }
2282
2283 /*
2284  * Attach a performance event to a context.
2285  *
2286  * Very similar to event_function_call, see comment there.
2287  */
2288 static void
2289 perf_install_in_context(struct perf_event_context *ctx,
2290                         struct perf_event *event,
2291                         int cpu)
2292 {
2293         struct task_struct *task = READ_ONCE(ctx->task);
2294
2295         lockdep_assert_held(&ctx->mutex);
2296
2297         if (event->cpu != -1)
2298                 event->cpu = cpu;
2299
2300         /*
2301          * Ensures that if we can observe event->ctx, both the event and ctx
2302          * will be 'complete'. See perf_iterate_sb_cpu().
2303          */
2304         smp_store_release(&event->ctx, ctx);
2305
2306         if (!task) {
2307                 cpu_function_call(cpu, __perf_install_in_context, event);
2308                 return;
2309         }
2310
2311         /*
2312          * Should not happen, we validate the ctx is still alive before calling.
2313          */
2314         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2315                 return;
2316
2317         /*
2318          * Installing events is tricky because we cannot rely on ctx->is_active
2319          * to be set in case this is the nr_events 0 -> 1 transition.
2320          */
2321 again:
2322         /*
2323          * Cannot use task_function_call() because we need to run on the task's
2324          * CPU regardless of whether its current or not.
2325          */
2326         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2327                 return;
2328
2329         raw_spin_lock_irq(&ctx->lock);
2330         task = ctx->task;
2331         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2332                 /*
2333                  * Cannot happen because we already checked above (which also
2334                  * cannot happen), and we hold ctx->mutex, which serializes us
2335                  * against perf_event_exit_task_context().
2336                  */
2337                 raw_spin_unlock_irq(&ctx->lock);
2338                 return;
2339         }
2340         raw_spin_unlock_irq(&ctx->lock);
2341         /*
2342          * Since !ctx->is_active doesn't mean anything, we must IPI
2343          * unconditionally.
2344          */
2345         goto again;
2346 }
2347
2348 /*
2349  * Put a event into inactive state and update time fields.
2350  * Enabling the leader of a group effectively enables all
2351  * the group members that aren't explicitly disabled, so we
2352  * have to update their ->tstamp_enabled also.
2353  * Note: this works for group members as well as group leaders
2354  * since the non-leader members' sibling_lists will be empty.
2355  */
2356 static void __perf_event_mark_enabled(struct perf_event *event)
2357 {
2358         struct perf_event *sub;
2359         u64 tstamp = perf_event_time(event);
2360
2361         event->state = PERF_EVENT_STATE_INACTIVE;
2362         event->tstamp_enabled = tstamp - event->total_time_enabled;
2363         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2364                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2365                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2366         }
2367 }
2368
2369 /*
2370  * Cross CPU call to enable a performance event
2371  */
2372 static void __perf_event_enable(struct perf_event *event,
2373                                 struct perf_cpu_context *cpuctx,
2374                                 struct perf_event_context *ctx,
2375                                 void *info)
2376 {
2377         struct perf_event *leader = event->group_leader;
2378         struct perf_event_context *task_ctx;
2379
2380         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2381             event->state <= PERF_EVENT_STATE_ERROR)
2382                 return;
2383
2384         if (ctx->is_active)
2385                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2386
2387         __perf_event_mark_enabled(event);
2388
2389         if (!ctx->is_active)
2390                 return;
2391
2392         if (!event_filter_match(event)) {
2393                 if (is_cgroup_event(event))
2394                         perf_cgroup_defer_enabled(event);
2395                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2396                 return;
2397         }
2398
2399         /*
2400          * If the event is in a group and isn't the group leader,
2401          * then don't put it on unless the group is on.
2402          */
2403         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2404                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2405                 return;
2406         }
2407
2408         task_ctx = cpuctx->task_ctx;
2409         if (ctx->task)
2410                 WARN_ON_ONCE(task_ctx != ctx);
2411
2412         ctx_resched(cpuctx, task_ctx);
2413 }
2414
2415 /*
2416  * Enable a event.
2417  *
2418  * If event->ctx is a cloned context, callers must make sure that
2419  * every task struct that event->ctx->task could possibly point to
2420  * remains valid.  This condition is satisfied when called through
2421  * perf_event_for_each_child or perf_event_for_each as described
2422  * for perf_event_disable.
2423  */
2424 static void _perf_event_enable(struct perf_event *event)
2425 {
2426         struct perf_event_context *ctx = event->ctx;
2427
2428         raw_spin_lock_irq(&ctx->lock);
2429         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2430             event->state <  PERF_EVENT_STATE_ERROR) {
2431                 raw_spin_unlock_irq(&ctx->lock);
2432                 return;
2433         }
2434
2435         /*
2436          * If the event is in error state, clear that first.
2437          *
2438          * That way, if we see the event in error state below, we know that it
2439          * has gone back into error state, as distinct from the task having
2440          * been scheduled away before the cross-call arrived.
2441          */
2442         if (event->state == PERF_EVENT_STATE_ERROR)
2443                 event->state = PERF_EVENT_STATE_OFF;
2444         raw_spin_unlock_irq(&ctx->lock);
2445
2446         event_function_call(event, __perf_event_enable, NULL);
2447 }
2448
2449 /*
2450  * See perf_event_disable();
2451  */
2452 void perf_event_enable(struct perf_event *event)
2453 {
2454         struct perf_event_context *ctx;
2455
2456         ctx = perf_event_ctx_lock(event);
2457         _perf_event_enable(event);
2458         perf_event_ctx_unlock(event, ctx);
2459 }
2460 EXPORT_SYMBOL_GPL(perf_event_enable);
2461
2462 struct stop_event_data {
2463         struct perf_event       *event;
2464         unsigned int            restart;
2465 };
2466
2467 static int __perf_event_stop(void *info)
2468 {
2469         struct stop_event_data *sd = info;
2470         struct perf_event *event = sd->event;
2471
2472         /* if it's already INACTIVE, do nothing */
2473         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2474                 return 0;
2475
2476         /* matches smp_wmb() in event_sched_in() */
2477         smp_rmb();
2478
2479         /*
2480          * There is a window with interrupts enabled before we get here,
2481          * so we need to check again lest we try to stop another CPU's event.
2482          */
2483         if (READ_ONCE(event->oncpu) != smp_processor_id())
2484                 return -EAGAIN;
2485
2486         event->pmu->stop(event, PERF_EF_UPDATE);
2487
2488         /*
2489          * May race with the actual stop (through perf_pmu_output_stop()),
2490          * but it is only used for events with AUX ring buffer, and such
2491          * events will refuse to restart because of rb::aux_mmap_count==0,
2492          * see comments in perf_aux_output_begin().
2493          *
2494          * Since this is happening on a event-local CPU, no trace is lost
2495          * while restarting.
2496          */
2497         if (sd->restart)
2498                 event->pmu->start(event, PERF_EF_START);
2499
2500         return 0;
2501 }
2502
2503 static int perf_event_restart(struct perf_event *event)
2504 {
2505         struct stop_event_data sd = {
2506                 .event          = event,
2507                 .restart        = 1,
2508         };
2509         int ret = 0;
2510
2511         do {
2512                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2513                         return 0;
2514
2515                 /* matches smp_wmb() in event_sched_in() */
2516                 smp_rmb();
2517
2518                 /*
2519                  * We only want to restart ACTIVE events, so if the event goes
2520                  * inactive here (event->oncpu==-1), there's nothing more to do;
2521                  * fall through with ret==-ENXIO.
2522                  */
2523                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2524                                         __perf_event_stop, &sd);
2525         } while (ret == -EAGAIN);
2526
2527         return ret;
2528 }
2529
2530 /*
2531  * In order to contain the amount of racy and tricky in the address filter
2532  * configuration management, it is a two part process:
2533  *
2534  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2535  *      we update the addresses of corresponding vmas in
2536  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2537  * (p2) when an event is scheduled in (pmu::add), it calls
2538  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2539  *      if the generation has changed since the previous call.
2540  *
2541  * If (p1) happens while the event is active, we restart it to force (p2).
2542  *
2543  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2544  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2545  *     ioctl;
2546  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2547  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2548  *     for reading;
2549  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2550  *     of exec.
2551  */
2552 void perf_event_addr_filters_sync(struct perf_event *event)
2553 {
2554         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2555
2556         if (!has_addr_filter(event))
2557                 return;
2558
2559         raw_spin_lock(&ifh->lock);
2560         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2561                 event->pmu->addr_filters_sync(event);
2562                 event->hw.addr_filters_gen = event->addr_filters_gen;
2563         }
2564         raw_spin_unlock(&ifh->lock);
2565 }
2566 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2567
2568 static int _perf_event_refresh(struct perf_event *event, int refresh)
2569 {
2570         /*
2571          * not supported on inherited events
2572          */
2573         if (event->attr.inherit || !is_sampling_event(event))
2574                 return -EINVAL;
2575
2576         atomic_add(refresh, &event->event_limit);
2577         _perf_event_enable(event);
2578
2579         return 0;
2580 }
2581
2582 /*
2583  * See perf_event_disable()
2584  */
2585 int perf_event_refresh(struct perf_event *event, int refresh)
2586 {
2587         struct perf_event_context *ctx;
2588         int ret;
2589
2590         ctx = perf_event_ctx_lock(event);
2591         ret = _perf_event_refresh(event, refresh);
2592         perf_event_ctx_unlock(event, ctx);
2593
2594         return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(perf_event_refresh);
2597
2598 static void ctx_sched_out(struct perf_event_context *ctx,
2599                           struct perf_cpu_context *cpuctx,
2600                           enum event_type_t event_type)
2601 {
2602         int is_active = ctx->is_active;
2603         struct perf_event *event;
2604
2605         lockdep_assert_held(&ctx->lock);
2606
2607         if (likely(!ctx->nr_events)) {
2608                 /*
2609                  * See __perf_remove_from_context().
2610                  */
2611                 WARN_ON_ONCE(ctx->is_active);
2612                 if (ctx->task)
2613                         WARN_ON_ONCE(cpuctx->task_ctx);
2614                 return;
2615         }
2616
2617         ctx->is_active &= ~event_type;
2618         if (!(ctx->is_active & EVENT_ALL))
2619                 ctx->is_active = 0;
2620
2621         if (ctx->task) {
2622                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2623                 if (!ctx->is_active)
2624                         cpuctx->task_ctx = NULL;
2625         }
2626
2627         /*
2628          * Always update time if it was set; not only when it changes.
2629          * Otherwise we can 'forget' to update time for any but the last
2630          * context we sched out. For example:
2631          *
2632          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2633          *   ctx_sched_out(.event_type = EVENT_PINNED)
2634          *
2635          * would only update time for the pinned events.
2636          */
2637         if (is_active & EVENT_TIME) {
2638                 /* update (and stop) ctx time */
2639                 update_context_time(ctx);
2640                 update_cgrp_time_from_cpuctx(cpuctx);
2641         }
2642
2643         is_active ^= ctx->is_active; /* changed bits */
2644
2645         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2646                 return;
2647
2648         perf_pmu_disable(ctx->pmu);
2649         if (is_active & EVENT_PINNED) {
2650                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2651                         group_sched_out(event, cpuctx, ctx);
2652         }
2653
2654         if (is_active & EVENT_FLEXIBLE) {
2655                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2656                         group_sched_out(event, cpuctx, ctx);
2657         }
2658         perf_pmu_enable(ctx->pmu);
2659 }
2660
2661 /*
2662  * Test whether two contexts are equivalent, i.e. whether they have both been
2663  * cloned from the same version of the same context.
2664  *
2665  * Equivalence is measured using a generation number in the context that is
2666  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2667  * and list_del_event().
2668  */
2669 static int context_equiv(struct perf_event_context *ctx1,
2670                          struct perf_event_context *ctx2)
2671 {
2672         lockdep_assert_held(&ctx1->lock);
2673         lockdep_assert_held(&ctx2->lock);
2674
2675         /* Pinning disables the swap optimization */
2676         if (ctx1->pin_count || ctx2->pin_count)
2677                 return 0;
2678
2679         /* If ctx1 is the parent of ctx2 */
2680         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2681                 return 1;
2682
2683         /* If ctx2 is the parent of ctx1 */
2684         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2685                 return 1;
2686
2687         /*
2688          * If ctx1 and ctx2 have the same parent; we flatten the parent
2689          * hierarchy, see perf_event_init_context().
2690          */
2691         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2692                         ctx1->parent_gen == ctx2->parent_gen)
2693                 return 1;
2694
2695         /* Unmatched */
2696         return 0;
2697 }
2698
2699 static void __perf_event_sync_stat(struct perf_event *event,
2700                                      struct perf_event *next_event)
2701 {
2702         u64 value;
2703
2704         if (!event->attr.inherit_stat)
2705                 return;
2706
2707         /*
2708          * Update the event value, we cannot use perf_event_read()
2709          * because we're in the middle of a context switch and have IRQs
2710          * disabled, which upsets smp_call_function_single(), however
2711          * we know the event must be on the current CPU, therefore we
2712          * don't need to use it.
2713          */
2714         switch (event->state) {
2715         case PERF_EVENT_STATE_ACTIVE:
2716                 event->pmu->read(event);
2717                 /* fall-through */
2718
2719         case PERF_EVENT_STATE_INACTIVE:
2720                 update_event_times(event);
2721                 break;
2722
2723         default:
2724                 break;
2725         }
2726
2727         /*
2728          * In order to keep per-task stats reliable we need to flip the event
2729          * values when we flip the contexts.
2730          */
2731         value = local64_read(&next_event->count);
2732         value = local64_xchg(&event->count, value);
2733         local64_set(&next_event->count, value);
2734
2735         swap(event->total_time_enabled, next_event->total_time_enabled);
2736         swap(event->total_time_running, next_event->total_time_running);
2737
2738         /*
2739          * Since we swizzled the values, update the user visible data too.
2740          */
2741         perf_event_update_userpage(event);
2742         perf_event_update_userpage(next_event);
2743 }
2744
2745 static void perf_event_sync_stat(struct perf_event_context *ctx,
2746                                    struct perf_event_context *next_ctx)
2747 {
2748         struct perf_event *event, *next_event;
2749
2750         if (!ctx->nr_stat)
2751                 return;
2752
2753         update_context_time(ctx);
2754
2755         event = list_first_entry(&ctx->event_list,
2756                                    struct perf_event, event_entry);
2757
2758         next_event = list_first_entry(&next_ctx->event_list,
2759                                         struct perf_event, event_entry);
2760
2761         while (&event->event_entry != &ctx->event_list &&
2762                &next_event->event_entry != &next_ctx->event_list) {
2763
2764                 __perf_event_sync_stat(event, next_event);
2765
2766                 event = list_next_entry(event, event_entry);
2767                 next_event = list_next_entry(next_event, event_entry);
2768         }
2769 }
2770
2771 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2772                                          struct task_struct *next)
2773 {
2774         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2775         struct perf_event_context *next_ctx;
2776         struct perf_event_context *parent, *next_parent;
2777         struct perf_cpu_context *cpuctx;
2778         int do_switch = 1;
2779
2780         if (likely(!ctx))
2781                 return;
2782
2783         cpuctx = __get_cpu_context(ctx);
2784         if (!cpuctx->task_ctx)
2785                 return;
2786
2787         rcu_read_lock();
2788         next_ctx = next->perf_event_ctxp[ctxn];
2789         if (!next_ctx)
2790                 goto unlock;
2791
2792         parent = rcu_dereference(ctx->parent_ctx);
2793         next_parent = rcu_dereference(next_ctx->parent_ctx);
2794
2795         /* If neither context have a parent context; they cannot be clones. */
2796         if (!parent && !next_parent)
2797                 goto unlock;
2798
2799         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2800                 /*
2801                  * Looks like the two contexts are clones, so we might be
2802                  * able to optimize the context switch.  We lock both
2803                  * contexts and check that they are clones under the
2804                  * lock (including re-checking that neither has been
2805                  * uncloned in the meantime).  It doesn't matter which
2806                  * order we take the locks because no other cpu could
2807                  * be trying to lock both of these tasks.
2808                  */
2809                 raw_spin_lock(&ctx->lock);
2810                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2811                 if (context_equiv(ctx, next_ctx)) {
2812                         WRITE_ONCE(ctx->task, next);
2813                         WRITE_ONCE(next_ctx->task, task);
2814
2815                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2816
2817                         /*
2818                          * RCU_INIT_POINTER here is safe because we've not
2819                          * modified the ctx and the above modification of
2820                          * ctx->task and ctx->task_ctx_data are immaterial
2821                          * since those values are always verified under
2822                          * ctx->lock which we're now holding.
2823                          */
2824                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2825                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2826
2827                         do_switch = 0;
2828
2829                         perf_event_sync_stat(ctx, next_ctx);
2830                 }
2831                 raw_spin_unlock(&next_ctx->lock);
2832                 raw_spin_unlock(&ctx->lock);
2833         }
2834 unlock:
2835         rcu_read_unlock();
2836
2837         if (do_switch) {
2838                 raw_spin_lock(&ctx->lock);
2839                 task_ctx_sched_out(cpuctx, ctx);
2840                 raw_spin_unlock(&ctx->lock);
2841         }
2842 }
2843
2844 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2845
2846 void perf_sched_cb_dec(struct pmu *pmu)
2847 {
2848         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2849
2850         this_cpu_dec(perf_sched_cb_usages);
2851
2852         if (!--cpuctx->sched_cb_usage)
2853                 list_del(&cpuctx->sched_cb_entry);
2854 }
2855
2856
2857 void perf_sched_cb_inc(struct pmu *pmu)
2858 {
2859         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2860
2861         if (!cpuctx->sched_cb_usage++)
2862                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2863
2864         this_cpu_inc(perf_sched_cb_usages);
2865 }
2866
2867 /*
2868  * This function provides the context switch callback to the lower code
2869  * layer. It is invoked ONLY when the context switch callback is enabled.
2870  *
2871  * This callback is relevant even to per-cpu events; for example multi event
2872  * PEBS requires this to provide PID/TID information. This requires we flush
2873  * all queued PEBS records before we context switch to a new task.
2874  */
2875 static void perf_pmu_sched_task(struct task_struct *prev,
2876                                 struct task_struct *next,
2877                                 bool sched_in)
2878 {
2879         struct perf_cpu_context *cpuctx;
2880         struct pmu *pmu;
2881
2882         if (prev == next)
2883                 return;
2884
2885         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2886                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2887
2888                 if (WARN_ON_ONCE(!pmu->sched_task))
2889                         continue;
2890
2891                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2892                 perf_pmu_disable(pmu);
2893
2894                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2895
2896                 perf_pmu_enable(pmu);
2897                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2898         }
2899 }
2900
2901 static void perf_event_switch(struct task_struct *task,
2902                               struct task_struct *next_prev, bool sched_in);
2903
2904 #define for_each_task_context_nr(ctxn)                                  \
2905         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2906
2907 /*
2908  * Called from scheduler to remove the events of the current task,
2909  * with interrupts disabled.
2910  *
2911  * We stop each event and update the event value in event->count.
2912  *
2913  * This does not protect us against NMI, but disable()
2914  * sets the disabled bit in the control field of event _before_
2915  * accessing the event control register. If a NMI hits, then it will
2916  * not restart the event.
2917  */
2918 void __perf_event_task_sched_out(struct task_struct *task,
2919                                  struct task_struct *next)
2920 {
2921         int ctxn;
2922
2923         if (__this_cpu_read(perf_sched_cb_usages))
2924                 perf_pmu_sched_task(task, next, false);
2925
2926         if (atomic_read(&nr_switch_events))
2927                 perf_event_switch(task, next, false);
2928
2929         for_each_task_context_nr(ctxn)
2930                 perf_event_context_sched_out(task, ctxn, next);
2931
2932         /*
2933          * if cgroup events exist on this CPU, then we need
2934          * to check if we have to switch out PMU state.
2935          * cgroup event are system-wide mode only
2936          */
2937         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2938                 perf_cgroup_sched_out(task, next);
2939 }
2940
2941 /*
2942  * Called with IRQs disabled
2943  */
2944 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2945                               enum event_type_t event_type)
2946 {
2947         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2948 }
2949
2950 static void
2951 ctx_pinned_sched_in(struct perf_event_context *ctx,
2952                     struct perf_cpu_context *cpuctx)
2953 {
2954         struct perf_event *event;
2955
2956         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2957                 if (event->state <= PERF_EVENT_STATE_OFF)
2958                         continue;
2959                 if (!event_filter_match(event))
2960                         continue;
2961
2962                 /* may need to reset tstamp_enabled */
2963                 if (is_cgroup_event(event))
2964                         perf_cgroup_mark_enabled(event, ctx);
2965
2966                 if (group_can_go_on(event, cpuctx, 1))
2967                         group_sched_in(event, cpuctx, ctx);
2968
2969                 /*
2970                  * If this pinned group hasn't been scheduled,
2971                  * put it in error state.
2972                  */
2973                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2974                         update_group_times(event);
2975                         event->state = PERF_EVENT_STATE_ERROR;
2976                 }
2977         }
2978 }
2979
2980 static void
2981 ctx_flexible_sched_in(struct perf_event_context *ctx,
2982                       struct perf_cpu_context *cpuctx)
2983 {
2984         struct perf_event *event;
2985         int can_add_hw = 1;
2986
2987         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2988                 /* Ignore events in OFF or ERROR state */
2989                 if (event->state <= PERF_EVENT_STATE_OFF)
2990                         continue;
2991                 /*
2992                  * Listen to the 'cpu' scheduling filter constraint
2993                  * of events:
2994                  */
2995                 if (!event_filter_match(event))
2996                         continue;
2997
2998                 /* may need to reset tstamp_enabled */
2999                 if (is_cgroup_event(event))
3000                         perf_cgroup_mark_enabled(event, ctx);
3001
3002                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3003                         if (group_sched_in(event, cpuctx, ctx))
3004                                 can_add_hw = 0;
3005                 }
3006         }
3007 }
3008
3009 static void
3010 ctx_sched_in(struct perf_event_context *ctx,
3011              struct perf_cpu_context *cpuctx,
3012              enum event_type_t event_type,
3013              struct task_struct *task)
3014 {
3015         int is_active = ctx->is_active;
3016         u64 now;
3017
3018         lockdep_assert_held(&ctx->lock);
3019
3020         if (likely(!ctx->nr_events))
3021                 return;
3022
3023         ctx->is_active |= (event_type | EVENT_TIME);
3024         if (ctx->task) {
3025                 if (!is_active)
3026                         cpuctx->task_ctx = ctx;
3027                 else
3028                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3029         }
3030
3031         is_active ^= ctx->is_active; /* changed bits */
3032
3033         if (is_active & EVENT_TIME) {
3034                 /* start ctx time */
3035                 now = perf_clock();
3036                 ctx->timestamp = now;
3037                 perf_cgroup_set_timestamp(task, ctx);
3038         }
3039
3040         /*
3041          * First go through the list and put on any pinned groups
3042          * in order to give them the best chance of going on.
3043          */
3044         if (is_active & EVENT_PINNED)
3045                 ctx_pinned_sched_in(ctx, cpuctx);
3046
3047         /* Then walk through the lower prio flexible groups */
3048         if (is_active & EVENT_FLEXIBLE)
3049                 ctx_flexible_sched_in(ctx, cpuctx);
3050 }
3051
3052 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3053                              enum event_type_t event_type,
3054                              struct task_struct *task)
3055 {
3056         struct perf_event_context *ctx = &cpuctx->ctx;
3057
3058         ctx_sched_in(ctx, cpuctx, event_type, task);
3059 }
3060
3061 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3062                                         struct task_struct *task)
3063 {
3064         struct perf_cpu_context *cpuctx;
3065
3066         cpuctx = __get_cpu_context(ctx);
3067         if (cpuctx->task_ctx == ctx)
3068                 return;
3069
3070         perf_ctx_lock(cpuctx, ctx);
3071         perf_pmu_disable(ctx->pmu);
3072         /*
3073          * We want to keep the following priority order:
3074          * cpu pinned (that don't need to move), task pinned,
3075          * cpu flexible, task flexible.
3076          */
3077         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3078         perf_event_sched_in(cpuctx, ctx, task);
3079         perf_pmu_enable(ctx->pmu);
3080         perf_ctx_unlock(cpuctx, ctx);
3081 }
3082
3083 /*
3084  * Called from scheduler to add the events of the current task
3085  * with interrupts disabled.
3086  *
3087  * We restore the event value and then enable it.
3088  *
3089  * This does not protect us against NMI, but enable()
3090  * sets the enabled bit in the control field of event _before_
3091  * accessing the event control register. If a NMI hits, then it will
3092  * keep the event running.
3093  */
3094 void __perf_event_task_sched_in(struct task_struct *prev,
3095                                 struct task_struct *task)
3096 {
3097         struct perf_event_context *ctx;
3098         int ctxn;
3099
3100         /*
3101          * If cgroup events exist on this CPU, then we need to check if we have
3102          * to switch in PMU state; cgroup event are system-wide mode only.
3103          *
3104          * Since cgroup events are CPU events, we must schedule these in before
3105          * we schedule in the task events.
3106          */
3107         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3108                 perf_cgroup_sched_in(prev, task);
3109
3110         for_each_task_context_nr(ctxn) {
3111                 ctx = task->perf_event_ctxp[ctxn];
3112                 if (likely(!ctx))
3113                         continue;
3114
3115                 perf_event_context_sched_in(ctx, task);
3116         }
3117
3118         if (atomic_read(&nr_switch_events))
3119                 perf_event_switch(task, prev, true);
3120
3121         if (__this_cpu_read(perf_sched_cb_usages))
3122                 perf_pmu_sched_task(prev, task, true);
3123 }
3124
3125 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3126 {
3127         u64 frequency = event->attr.sample_freq;
3128         u64 sec = NSEC_PER_SEC;
3129         u64 divisor, dividend;
3130
3131         int count_fls, nsec_fls, frequency_fls, sec_fls;
3132
3133         count_fls = fls64(count);
3134         nsec_fls = fls64(nsec);
3135         frequency_fls = fls64(frequency);
3136         sec_fls = 30;
3137
3138         /*
3139          * We got @count in @nsec, with a target of sample_freq HZ
3140          * the target period becomes:
3141          *
3142          *             @count * 10^9
3143          * period = -------------------
3144          *          @nsec * sample_freq
3145          *
3146          */
3147
3148         /*
3149          * Reduce accuracy by one bit such that @a and @b converge
3150          * to a similar magnitude.
3151          */
3152 #define REDUCE_FLS(a, b)                \
3153 do {                                    \
3154         if (a##_fls > b##_fls) {        \
3155                 a >>= 1;                \
3156                 a##_fls--;              \
3157         } else {                        \
3158                 b >>= 1;                \
3159                 b##_fls--;              \
3160         }                               \
3161 } while (0)
3162
3163         /*
3164          * Reduce accuracy until either term fits in a u64, then proceed with
3165          * the other, so that finally we can do a u64/u64 division.
3166          */
3167         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3168                 REDUCE_FLS(nsec, frequency);
3169                 REDUCE_FLS(sec, count);
3170         }
3171
3172         if (count_fls + sec_fls > 64) {
3173                 divisor = nsec * frequency;
3174
3175                 while (count_fls + sec_fls > 64) {
3176                         REDUCE_FLS(count, sec);
3177                         divisor >>= 1;
3178                 }
3179
3180                 dividend = count * sec;
3181         } else {
3182                 dividend = count * sec;
3183
3184                 while (nsec_fls + frequency_fls > 64) {
3185                         REDUCE_FLS(nsec, frequency);
3186                         dividend >>= 1;
3187                 }
3188
3189                 divisor = nsec * frequency;
3190         }
3191
3192         if (!divisor)
3193                 return dividend;
3194
3195         return div64_u64(dividend, divisor);
3196 }
3197
3198 static DEFINE_PER_CPU(int, perf_throttled_count);
3199 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3200
3201 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3202 {
3203         struct hw_perf_event *hwc = &event->hw;
3204         s64 period, sample_period;
3205         s64 delta;
3206
3207         period = perf_calculate_period(event, nsec, count);
3208
3209         delta = (s64)(period - hwc->sample_period);
3210         delta = (delta + 7) / 8; /* low pass filter */
3211
3212         sample_period = hwc->sample_period + delta;
3213
3214         if (!sample_period)
3215                 sample_period = 1;
3216
3217         hwc->sample_period = sample_period;
3218
3219         if (local64_read(&hwc->period_left) > 8*sample_period) {
3220                 if (disable)
3221                         event->pmu->stop(event, PERF_EF_UPDATE);
3222
3223                 local64_set(&hwc->period_left, 0);
3224
3225                 if (disable)
3226                         event->pmu->start(event, PERF_EF_RELOAD);
3227         }
3228 }
3229
3230 /*
3231  * combine freq adjustment with unthrottling to avoid two passes over the
3232  * events. At the same time, make sure, having freq events does not change
3233  * the rate of unthrottling as that would introduce bias.
3234  */
3235 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3236                                            int needs_unthr)
3237 {
3238         struct perf_event *event;
3239         struct hw_perf_event *hwc;
3240         u64 now, period = TICK_NSEC;
3241         s64 delta;
3242
3243         /*
3244          * only need to iterate over all events iff:
3245          * - context have events in frequency mode (needs freq adjust)
3246          * - there are events to unthrottle on this cpu
3247          */
3248         if (!(ctx->nr_freq || needs_unthr))
3249                 return;
3250
3251         raw_spin_lock(&ctx->lock);
3252         perf_pmu_disable(ctx->pmu);
3253
3254         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3255                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3256                         continue;
3257
3258                 if (!event_filter_match(event))
3259                         continue;
3260
3261                 perf_pmu_disable(event->pmu);
3262
3263                 hwc = &event->hw;
3264
3265                 if (hwc->interrupts == MAX_INTERRUPTS) {
3266                         hwc->interrupts = 0;
3267                         perf_log_throttle(event, 1);
3268                         event->pmu->start(event, 0);
3269                 }
3270
3271                 if (!event->attr.freq || !event->attr.sample_freq)
3272                         goto next;
3273
3274                 /*
3275                  * stop the event and update event->count
3276                  */
3277                 event->pmu->stop(event, PERF_EF_UPDATE);
3278
3279                 now = local64_read(&event->count);
3280                 delta = now - hwc->freq_count_stamp;
3281                 hwc->freq_count_stamp = now;
3282
3283                 /*
3284                  * restart the event
3285                  * reload only if value has changed
3286                  * we have stopped the event so tell that
3287                  * to perf_adjust_period() to avoid stopping it
3288                  * twice.
3289                  */
3290                 if (delta > 0)
3291                         perf_adjust_period(event, period, delta, false);
3292
3293                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3294         next:
3295                 perf_pmu_enable(event->pmu);
3296         }
3297
3298         perf_pmu_enable(ctx->pmu);
3299         raw_spin_unlock(&ctx->lock);
3300 }
3301
3302 /*
3303  * Round-robin a context's events:
3304  */
3305 static void rotate_ctx(struct perf_event_context *ctx)
3306 {
3307         /*
3308          * Rotate the first entry last of non-pinned groups. Rotation might be
3309          * disabled by the inheritance code.
3310          */
3311         if (!ctx->rotate_disable)
3312                 list_rotate_left(&ctx->flexible_groups);
3313 }
3314
3315 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3316 {
3317         struct perf_event_context *ctx = NULL;
3318         int rotate = 0;
3319
3320         if (cpuctx->ctx.nr_events) {
3321                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3322                         rotate = 1;
3323         }
3324
3325         ctx = cpuctx->task_ctx;
3326         if (ctx && ctx->nr_events) {
3327                 if (ctx->nr_events != ctx->nr_active)
3328                         rotate = 1;
3329         }
3330
3331         if (!rotate)
3332                 goto done;
3333
3334         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3335         perf_pmu_disable(cpuctx->ctx.pmu);
3336
3337         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3338         if (ctx)
3339                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3340
3341         rotate_ctx(&cpuctx->ctx);
3342         if (ctx)
3343                 rotate_ctx(ctx);
3344
3345         perf_event_sched_in(cpuctx, ctx, current);
3346
3347         perf_pmu_enable(cpuctx->ctx.pmu);
3348         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3349 done:
3350
3351         return rotate;
3352 }
3353
3354 void perf_event_task_tick(void)
3355 {
3356         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3357         struct perf_event_context *ctx, *tmp;
3358         int throttled;
3359
3360         WARN_ON(!irqs_disabled());
3361
3362         __this_cpu_inc(perf_throttled_seq);
3363         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3364         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3365
3366         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3367                 perf_adjust_freq_unthr_context(ctx, throttled);
3368 }
3369
3370 static int event_enable_on_exec(struct perf_event *event,
3371                                 struct perf_event_context *ctx)
3372 {
3373         if (!event->attr.enable_on_exec)
3374                 return 0;
3375
3376         event->attr.enable_on_exec = 0;
3377         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3378                 return 0;
3379
3380         __perf_event_mark_enabled(event);
3381
3382         return 1;
3383 }
3384
3385 /*
3386  * Enable all of a task's events that have been marked enable-on-exec.
3387  * This expects task == current.
3388  */
3389 static void perf_event_enable_on_exec(int ctxn)
3390 {
3391         struct perf_event_context *ctx, *clone_ctx = NULL;
3392         struct perf_cpu_context *cpuctx;
3393         struct perf_event *event;
3394         unsigned long flags;
3395         int enabled = 0;
3396
3397         local_irq_save(flags);
3398         ctx = current->perf_event_ctxp[ctxn];
3399         if (!ctx || !ctx->nr_events)
3400                 goto out;
3401
3402         cpuctx = __get_cpu_context(ctx);
3403         perf_ctx_lock(cpuctx, ctx);
3404         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3405         list_for_each_entry(event, &ctx->event_list, event_entry)
3406                 enabled |= event_enable_on_exec(event, ctx);
3407
3408         /*
3409          * Unclone and reschedule this context if we enabled any event.
3410          */
3411         if (enabled) {
3412                 clone_ctx = unclone_ctx(ctx);
3413                 ctx_resched(cpuctx, ctx);
3414         }
3415         perf_ctx_unlock(cpuctx, ctx);
3416
3417 out:
3418         local_irq_restore(flags);
3419
3420         if (clone_ctx)
3421                 put_ctx(clone_ctx);
3422 }
3423
3424 struct perf_read_data {
3425         struct perf_event *event;
3426         bool group;
3427         int ret;
3428 };
3429
3430 /*
3431  * Cross CPU call to read the hardware event
3432  */
3433 static void __perf_event_read(void *info)
3434 {
3435         struct perf_read_data *data = info;
3436         struct perf_event *sub, *event = data->event;
3437         struct perf_event_context *ctx = event->ctx;
3438         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3439         struct pmu *pmu = event->pmu;
3440
3441         /*
3442          * If this is a task context, we need to check whether it is
3443          * the current task context of this cpu.  If not it has been
3444          * scheduled out before the smp call arrived.  In that case
3445          * event->count would have been updated to a recent sample
3446          * when the event was scheduled out.
3447          */
3448         if (ctx->task && cpuctx->task_ctx != ctx)
3449                 return;
3450
3451         raw_spin_lock(&ctx->lock);
3452         if (ctx->is_active) {
3453                 update_context_time(ctx);
3454                 update_cgrp_time_from_event(event);
3455         }
3456
3457         update_event_times(event);
3458         if (event->state != PERF_EVENT_STATE_ACTIVE)
3459                 goto unlock;
3460
3461         if (!data->group) {
3462                 pmu->read(event);
3463                 data->ret = 0;
3464                 goto unlock;
3465         }
3466
3467         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3468
3469         pmu->read(event);
3470
3471         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3472                 update_event_times(sub);
3473                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3474                         /*
3475                          * Use sibling's PMU rather than @event's since
3476                          * sibling could be on different (eg: software) PMU.
3477                          */
3478                         sub->pmu->read(sub);
3479                 }
3480         }
3481
3482         data->ret = pmu->commit_txn(pmu);
3483
3484 unlock:
3485         raw_spin_unlock(&ctx->lock);
3486 }
3487
3488 static inline u64 perf_event_count(struct perf_event *event)
3489 {
3490         if (event->pmu->count)
3491                 return event->pmu->count(event);
3492
3493         return __perf_event_count(event);
3494 }
3495
3496 /*
3497  * NMI-safe method to read a local event, that is an event that
3498  * is:
3499  *   - either for the current task, or for this CPU
3500  *   - does not have inherit set, for inherited task events
3501  *     will not be local and we cannot read them atomically
3502  *   - must not have a pmu::count method
3503  */
3504 u64 perf_event_read_local(struct perf_event *event)
3505 {
3506         unsigned long flags;
3507         u64 val;
3508
3509         /*
3510          * Disabling interrupts avoids all counter scheduling (context
3511          * switches, timer based rotation and IPIs).
3512          */
3513         local_irq_save(flags);
3514
3515         /* If this is a per-task event, it must be for current */
3516         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3517                      event->hw.target != current);
3518
3519         /* If this is a per-CPU event, it must be for this CPU */
3520         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3521                      event->cpu != smp_processor_id());
3522
3523         /*
3524          * It must not be an event with inherit set, we cannot read
3525          * all child counters from atomic context.
3526          */
3527         WARN_ON_ONCE(event->attr.inherit);
3528
3529         /*
3530          * It must not have a pmu::count method, those are not
3531          * NMI safe.
3532          */
3533         WARN_ON_ONCE(event->pmu->count);
3534
3535         /*
3536          * If the event is currently on this CPU, its either a per-task event,
3537          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3538          * oncpu == -1).
3539          */
3540         if (event->oncpu == smp_processor_id())
3541                 event->pmu->read(event);
3542
3543         val = local64_read(&event->count);
3544         local_irq_restore(flags);
3545
3546         return val;
3547 }
3548
3549 static int perf_event_read(struct perf_event *event, bool group)
3550 {
3551         int ret = 0;
3552
3553         /*
3554          * If event is enabled and currently active on a CPU, update the
3555          * value in the event structure:
3556          */
3557         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3558                 struct perf_read_data data = {
3559                         .event = event,
3560                         .group = group,
3561                         .ret = 0,
3562                 };
3563                 ret = smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3564                 /* The event must have been read from an online CPU: */
3565                 WARN_ON_ONCE(ret);
3566                 ret = ret ? : data.ret;
3567         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3568                 struct perf_event_context *ctx = event->ctx;
3569                 unsigned long flags;
3570
3571                 raw_spin_lock_irqsave(&ctx->lock, flags);
3572                 /*
3573                  * may read while context is not active
3574                  * (e.g., thread is blocked), in that case
3575                  * we cannot update context time
3576                  */
3577                 if (ctx->is_active) {
3578                         update_context_time(ctx);
3579                         update_cgrp_time_from_event(event);
3580                 }
3581                 if (group)
3582                         update_group_times(event);
3583                 else
3584                         update_event_times(event);
3585                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3586         }
3587
3588         return ret;
3589 }
3590
3591 /*
3592  * Initialize the perf_event context in a task_struct:
3593  */
3594 static void __perf_event_init_context(struct perf_event_context *ctx)
3595 {
3596         raw_spin_lock_init(&ctx->lock);
3597         mutex_init(&ctx->mutex);
3598         INIT_LIST_HEAD(&ctx->active_ctx_list);
3599         INIT_LIST_HEAD(&ctx->pinned_groups);
3600         INIT_LIST_HEAD(&ctx->flexible_groups);
3601         INIT_LIST_HEAD(&ctx->event_list);
3602         atomic_set(&ctx->refcount, 1);
3603 }
3604
3605 static struct perf_event_context *
3606 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3607 {
3608         struct perf_event_context *ctx;
3609
3610         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3611         if (!ctx)
3612                 return NULL;
3613
3614         __perf_event_init_context(ctx);
3615         if (task) {
3616                 ctx->task = task;
3617                 get_task_struct(task);
3618         }
3619         ctx->pmu = pmu;
3620
3621         return ctx;
3622 }
3623
3624 static struct task_struct *
3625 find_lively_task_by_vpid(pid_t vpid)
3626 {
3627         struct task_struct *task;
3628
3629         rcu_read_lock();
3630         if (!vpid)
3631                 task = current;
3632         else
3633                 task = find_task_by_vpid(vpid);
3634         if (task)
3635                 get_task_struct(task);
3636         rcu_read_unlock();
3637
3638         if (!task)
3639                 return ERR_PTR(-ESRCH);
3640
3641         return task;
3642 }
3643
3644 /*
3645  * Returns a matching context with refcount and pincount.
3646  */
3647 static struct perf_event_context *
3648 find_get_context(struct pmu *pmu, struct task_struct *task,
3649                 struct perf_event *event)
3650 {
3651         struct perf_event_context *ctx, *clone_ctx = NULL;
3652         struct perf_cpu_context *cpuctx;
3653         void *task_ctx_data = NULL;
3654         unsigned long flags;
3655         int ctxn, err;
3656         int cpu = event->cpu;
3657
3658         if (!task) {
3659                 /* Must be root to operate on a CPU event: */
3660                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3661                         return ERR_PTR(-EACCES);
3662
3663                 /*
3664                  * We could be clever and allow to attach a event to an
3665                  * offline CPU and activate it when the CPU comes up, but
3666                  * that's for later.
3667                  */
3668                 if (!cpu_online(cpu))
3669                         return ERR_PTR(-ENODEV);
3670
3671                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3672                 ctx = &cpuctx->ctx;
3673                 get_ctx(ctx);
3674                 ++ctx->pin_count;
3675
3676                 return ctx;
3677         }
3678
3679         err = -EINVAL;
3680         ctxn = pmu->task_ctx_nr;
3681         if (ctxn < 0)
3682                 goto errout;
3683
3684         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3685                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3686                 if (!task_ctx_data) {
3687                         err = -ENOMEM;
3688                         goto errout;
3689                 }
3690         }
3691
3692 retry:
3693         ctx = perf_lock_task_context(task, ctxn, &flags);
3694         if (ctx) {
3695                 clone_ctx = unclone_ctx(ctx);
3696                 ++ctx->pin_count;
3697
3698                 if (task_ctx_data && !ctx->task_ctx_data) {
3699                         ctx->task_ctx_data = task_ctx_data;
3700                         task_ctx_data = NULL;
3701                 }
3702                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3703
3704                 if (clone_ctx)
3705                         put_ctx(clone_ctx);
3706         } else {
3707                 ctx = alloc_perf_context(pmu, task);
3708                 err = -ENOMEM;
3709                 if (!ctx)
3710                         goto errout;
3711
3712                 if (task_ctx_data) {
3713                         ctx->task_ctx_data = task_ctx_data;
3714                         task_ctx_data = NULL;
3715                 }
3716
3717                 err = 0;
3718                 mutex_lock(&task->perf_event_mutex);
3719                 /*
3720                  * If it has already passed perf_event_exit_task().
3721                  * we must see PF_EXITING, it takes this mutex too.
3722                  */
3723                 if (task->flags & PF_EXITING)
3724                         err = -ESRCH;
3725                 else if (task->perf_event_ctxp[ctxn])
3726                         err = -EAGAIN;
3727                 else {
3728                         get_ctx(ctx);
3729                         ++ctx->pin_count;
3730                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3731                 }
3732                 mutex_unlock(&task->perf_event_mutex);
3733
3734                 if (unlikely(err)) {
3735                         put_ctx(ctx);
3736
3737                         if (err == -EAGAIN)
3738                                 goto retry;
3739                         goto errout;
3740                 }
3741         }
3742
3743         kfree(task_ctx_data);
3744         return ctx;
3745
3746 errout:
3747         kfree(task_ctx_data);
3748         return ERR_PTR(err);
3749 }
3750
3751 static void perf_event_free_filter(struct perf_event *event);
3752 static void perf_event_free_bpf_prog(struct perf_event *event);
3753
3754 static void free_event_rcu(struct rcu_head *head)
3755 {
3756         struct perf_event *event;
3757
3758         event = container_of(head, struct perf_event, rcu_head);
3759         if (event->ns)
3760                 put_pid_ns(event->ns);
3761         perf_event_free_filter(event);
3762         kfree(event);
3763 }
3764
3765 static void ring_buffer_attach(struct perf_event *event,
3766                                struct ring_buffer *rb);
3767
3768 static void detach_sb_event(struct perf_event *event)
3769 {
3770         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3771
3772         raw_spin_lock(&pel->lock);
3773         list_del_rcu(&event->sb_list);
3774         raw_spin_unlock(&pel->lock);
3775 }
3776
3777 static bool is_sb_event(struct perf_event *event)
3778 {
3779         struct perf_event_attr *attr = &event->attr;
3780
3781         if (event->parent)
3782                 return false;
3783
3784         if (event->attach_state & PERF_ATTACH_TASK)
3785                 return false;
3786
3787         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3788             attr->comm || attr->comm_exec ||
3789             attr->task ||
3790             attr->context_switch)
3791                 return true;
3792         return false;
3793 }
3794
3795 static void unaccount_pmu_sb_event(struct perf_event *event)
3796 {
3797         if (is_sb_event(event))
3798                 detach_sb_event(event);
3799 }
3800
3801 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3802 {
3803         if (event->parent)
3804                 return;
3805
3806         if (is_cgroup_event(event))
3807                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3808 }
3809
3810 #ifdef CONFIG_NO_HZ_FULL
3811 static DEFINE_SPINLOCK(nr_freq_lock);
3812 #endif
3813
3814 static void unaccount_freq_event_nohz(void)
3815 {
3816 #ifdef CONFIG_NO_HZ_FULL
3817         spin_lock(&nr_freq_lock);
3818         if (atomic_dec_and_test(&nr_freq_events))
3819                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3820         spin_unlock(&nr_freq_lock);
3821 #endif
3822 }
3823
3824 static void unaccount_freq_event(void)
3825 {
3826         if (tick_nohz_full_enabled())
3827                 unaccount_freq_event_nohz();
3828         else
3829                 atomic_dec(&nr_freq_events);
3830 }
3831
3832 static void unaccount_event(struct perf_event *event)
3833 {
3834         bool dec = false;
3835
3836         if (event->parent)
3837                 return;
3838
3839         if (event->attach_state & PERF_ATTACH_TASK)
3840                 dec = true;
3841         if (event->attr.mmap || event->attr.mmap_data)
3842                 atomic_dec(&nr_mmap_events);
3843         if (event->attr.comm)
3844                 atomic_dec(&nr_comm_events);
3845         if (event->attr.task)
3846                 atomic_dec(&nr_task_events);
3847         if (event->attr.freq)
3848                 unaccount_freq_event();
3849         if (event->attr.context_switch) {
3850                 dec = true;
3851                 atomic_dec(&nr_switch_events);
3852         }
3853         if (is_cgroup_event(event))
3854                 dec = true;
3855         if (has_branch_stack(event))
3856                 dec = true;
3857
3858         if (dec) {
3859                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3860                         schedule_delayed_work(&perf_sched_work, HZ);
3861         }
3862
3863         unaccount_event_cpu(event, event->cpu);
3864
3865         unaccount_pmu_sb_event(event);
3866 }
3867
3868 static void perf_sched_delayed(struct work_struct *work)
3869 {
3870         mutex_lock(&perf_sched_mutex);
3871         if (atomic_dec_and_test(&perf_sched_count))
3872                 static_branch_disable(&perf_sched_events);
3873         mutex_unlock(&perf_sched_mutex);
3874 }
3875
3876 /*
3877  * The following implement mutual exclusion of events on "exclusive" pmus
3878  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3879  * at a time, so we disallow creating events that might conflict, namely:
3880  *
3881  *  1) cpu-wide events in the presence of per-task events,
3882  *  2) per-task events in the presence of cpu-wide events,
3883  *  3) two matching events on the same context.
3884  *
3885  * The former two cases are handled in the allocation path (perf_event_alloc(),
3886  * _free_event()), the latter -- before the first perf_install_in_context().
3887  */
3888 static int exclusive_event_init(struct perf_event *event)
3889 {
3890         struct pmu *pmu = event->pmu;
3891
3892         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3893                 return 0;
3894
3895         /*
3896          * Prevent co-existence of per-task and cpu-wide events on the
3897          * same exclusive pmu.
3898          *
3899          * Negative pmu::exclusive_cnt means there are cpu-wide
3900          * events on this "exclusive" pmu, positive means there are
3901          * per-task events.
3902          *
3903          * Since this is called in perf_event_alloc() path, event::ctx
3904          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3905          * to mean "per-task event", because unlike other attach states it
3906          * never gets cleared.
3907          */
3908         if (event->attach_state & PERF_ATTACH_TASK) {
3909                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3910                         return -EBUSY;
3911         } else {
3912                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3913                         return -EBUSY;
3914         }
3915
3916         return 0;
3917 }
3918
3919 static void exclusive_event_destroy(struct perf_event *event)
3920 {
3921         struct pmu *pmu = event->pmu;
3922
3923         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3924                 return;
3925
3926         /* see comment in exclusive_event_init() */
3927         if (event->attach_state & PERF_ATTACH_TASK)
3928                 atomic_dec(&pmu->exclusive_cnt);
3929         else
3930                 atomic_inc(&pmu->exclusive_cnt);
3931 }
3932
3933 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3934 {
3935         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3936             (e1->cpu == e2->cpu ||
3937              e1->cpu == -1 ||
3938              e2->cpu == -1))
3939                 return true;
3940         return false;
3941 }
3942
3943 /* Called under the same ctx::mutex as perf_install_in_context() */
3944 static bool exclusive_event_installable(struct perf_event *event,
3945                                         struct perf_event_context *ctx)
3946 {
3947         struct perf_event *iter_event;
3948         struct pmu *pmu = event->pmu;
3949
3950         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3951                 return true;
3952
3953         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3954                 if (exclusive_event_match(iter_event, event))
3955                         return false;
3956         }
3957
3958         return true;
3959 }
3960
3961 static void perf_addr_filters_splice(struct perf_event *event,
3962                                        struct list_head *head);
3963
3964 static void _free_event(struct perf_event *event)
3965 {
3966         irq_work_sync(&event->pending);
3967
3968         unaccount_event(event);
3969
3970         if (event->rb) {
3971                 /*
3972                  * Can happen when we close an event with re-directed output.
3973                  *
3974                  * Since we have a 0 refcount, perf_mmap_close() will skip
3975                  * over us; possibly making our ring_buffer_put() the last.
3976                  */
3977                 mutex_lock(&event->mmap_mutex);
3978                 ring_buffer_attach(event, NULL);
3979                 mutex_unlock(&event->mmap_mutex);
3980         }
3981
3982         if (is_cgroup_event(event))
3983                 perf_detach_cgroup(event);
3984
3985         if (!event->parent) {
3986                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3987                         put_callchain_buffers();
3988         }
3989
3990         perf_event_free_bpf_prog(event);
3991         perf_addr_filters_splice(event, NULL);
3992         kfree(event->addr_filters_offs);
3993
3994         if (event->destroy)
3995                 event->destroy(event);
3996
3997         if (event->ctx)
3998                 put_ctx(event->ctx);
3999
4000         exclusive_event_destroy(event);
4001         module_put(event->pmu->module);
4002
4003         call_rcu(&event->rcu_head, free_event_rcu);
4004 }
4005
4006 /*
4007  * Used to free events which have a known refcount of 1, such as in error paths
4008  * where the event isn't exposed yet and inherited events.
4009  */
4010 static void free_event(struct perf_event *event)
4011 {
4012         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4013                                 "unexpected event refcount: %ld; ptr=%p\n",
4014                                 atomic_long_read(&event->refcount), event)) {
4015                 /* leak to avoid use-after-free */
4016                 return;
4017         }
4018
4019         _free_event(event);
4020 }
4021
4022 /*
4023  * Remove user event from the owner task.
4024  */
4025 static void perf_remove_from_owner(struct perf_event *event)
4026 {
4027         struct task_struct *owner;
4028
4029         rcu_read_lock();
4030         /*
4031          * Matches the smp_store_release() in perf_event_exit_task(). If we
4032          * observe !owner it means the list deletion is complete and we can
4033          * indeed free this event, otherwise we need to serialize on
4034          * owner->perf_event_mutex.
4035          */
4036         owner = lockless_dereference(event->owner);
4037         if (owner) {
4038                 /*
4039                  * Since delayed_put_task_struct() also drops the last
4040                  * task reference we can safely take a new reference
4041                  * while holding the rcu_read_lock().
4042                  */
4043                 get_task_struct(owner);
4044         }
4045         rcu_read_unlock();
4046
4047         if (owner) {
4048                 /*
4049                  * If we're here through perf_event_exit_task() we're already
4050                  * holding ctx->mutex which would be an inversion wrt. the
4051                  * normal lock order.
4052                  *
4053                  * However we can safely take this lock because its the child
4054                  * ctx->mutex.
4055                  */
4056                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4057
4058                 /*
4059                  * We have to re-check the event->owner field, if it is cleared
4060                  * we raced with perf_event_exit_task(), acquiring the mutex
4061                  * ensured they're done, and we can proceed with freeing the
4062                  * event.
4063                  */
4064                 if (event->owner) {
4065                         list_del_init(&event->owner_entry);
4066                         smp_store_release(&event->owner, NULL);
4067                 }
4068                 mutex_unlock(&owner->perf_event_mutex);
4069                 put_task_struct(owner);
4070         }
4071 }
4072
4073 static void put_event(struct perf_event *event)
4074 {
4075         if (!atomic_long_dec_and_test(&event->refcount))
4076                 return;
4077
4078         _free_event(event);
4079 }
4080
4081 /*
4082  * Kill an event dead; while event:refcount will preserve the event
4083  * object, it will not preserve its functionality. Once the last 'user'
4084  * gives up the object, we'll destroy the thing.
4085  */
4086 int perf_event_release_kernel(struct perf_event *event)
4087 {
4088         struct perf_event_context *ctx = event->ctx;
4089         struct perf_event *child, *tmp;
4090
4091         /*
4092          * If we got here through err_file: fput(event_file); we will not have
4093          * attached to a context yet.
4094          */
4095         if (!ctx) {
4096                 WARN_ON_ONCE(event->attach_state &
4097                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4098                 goto no_ctx;
4099         }
4100
4101         if (!is_kernel_event(event))
4102                 perf_remove_from_owner(event);
4103
4104         ctx = perf_event_ctx_lock(event);
4105         WARN_ON_ONCE(ctx->parent_ctx);
4106         perf_remove_from_context(event, DETACH_GROUP);
4107
4108         raw_spin_lock_irq(&ctx->lock);
4109         /*
4110          * Mark this even as STATE_DEAD, there is no external reference to it
4111          * anymore.
4112          *
4113          * Anybody acquiring event->child_mutex after the below loop _must_
4114          * also see this, most importantly inherit_event() which will avoid
4115          * placing more children on the list.
4116          *
4117          * Thus this guarantees that we will in fact observe and kill _ALL_
4118          * child events.
4119          */
4120         event->state = PERF_EVENT_STATE_DEAD;
4121         raw_spin_unlock_irq(&ctx->lock);
4122
4123         perf_event_ctx_unlock(event, ctx);
4124
4125 again:
4126         mutex_lock(&event->child_mutex);
4127         list_for_each_entry(child, &event->child_list, child_list) {
4128
4129                 /*
4130                  * Cannot change, child events are not migrated, see the
4131                  * comment with perf_event_ctx_lock_nested().
4132                  */
4133                 ctx = lockless_dereference(child->ctx);
4134                 /*
4135                  * Since child_mutex nests inside ctx::mutex, we must jump
4136                  * through hoops. We start by grabbing a reference on the ctx.
4137                  *
4138                  * Since the event cannot get freed while we hold the
4139                  * child_mutex, the context must also exist and have a !0
4140                  * reference count.
4141                  */
4142                 get_ctx(ctx);
4143
4144                 /*
4145                  * Now that we have a ctx ref, we can drop child_mutex, and
4146                  * acquire ctx::mutex without fear of it going away. Then we
4147                  * can re-acquire child_mutex.
4148                  */
4149                 mutex_unlock(&event->child_mutex);
4150                 mutex_lock(&ctx->mutex);
4151                 mutex_lock(&event->child_mutex);
4152
4153                 /*
4154                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4155                  * state, if child is still the first entry, it didn't get freed
4156                  * and we can continue doing so.
4157                  */
4158                 tmp = list_first_entry_or_null(&event->child_list,
4159                                                struct perf_event, child_list);
4160                 if (tmp == child) {
4161                         perf_remove_from_context(child, DETACH_GROUP);
4162                         list_del(&child->child_list);
4163                         free_event(child);
4164                         /*
4165                          * This matches the refcount bump in inherit_event();
4166                          * this can't be the last reference.
4167                          */
4168                         put_event(event);
4169                 }
4170
4171                 mutex_unlock(&event->child_mutex);
4172                 mutex_unlock(&ctx->mutex);
4173                 put_ctx(ctx);
4174                 goto again;
4175         }
4176         mutex_unlock(&event->child_mutex);
4177
4178 no_ctx:
4179         put_event(event); /* Must be the 'last' reference */
4180         return 0;
4181 }
4182 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4183
4184 /*
4185  * Called when the last reference to the file is gone.
4186  */
4187 static int perf_release(struct inode *inode, struct file *file)
4188 {
4189         perf_event_release_kernel(file->private_data);
4190         return 0;
4191 }
4192
4193 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4194 {
4195         struct perf_event *child;
4196         u64 total = 0;
4197
4198         *enabled = 0;
4199         *running = 0;
4200
4201         mutex_lock(&event->child_mutex);
4202
4203         (void)perf_event_read(event, false);
4204         total += perf_event_count(event);
4205
4206         *enabled += event->total_time_enabled +
4207                         atomic64_read(&event->child_total_time_enabled);
4208         *running += event->total_time_running +
4209                         atomic64_read(&event->child_total_time_running);
4210
4211         list_for_each_entry(child, &event->child_list, child_list) {
4212                 (void)perf_event_read(child, false);
4213                 total += perf_event_count(child);
4214                 *enabled += child->total_time_enabled;
4215                 *running += child->total_time_running;
4216         }
4217         mutex_unlock(&event->child_mutex);
4218
4219         return total;
4220 }
4221 EXPORT_SYMBOL_GPL(perf_event_read_value);
4222
4223 static int __perf_read_group_add(struct perf_event *leader,
4224                                         u64 read_format, u64 *values)
4225 {
4226         struct perf_event *sub;
4227         int n = 1; /* skip @nr */
4228         int ret;
4229
4230         ret = perf_event_read(leader, true);
4231         if (ret)
4232                 return ret;
4233
4234         /*
4235          * Since we co-schedule groups, {enabled,running} times of siblings
4236          * will be identical to those of the leader, so we only publish one
4237          * set.
4238          */
4239         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4240                 values[n++] += leader->total_time_enabled +
4241                         atomic64_read(&leader->child_total_time_enabled);
4242         }
4243
4244         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4245                 values[n++] += leader->total_time_running +
4246                         atomic64_read(&leader->child_total_time_running);
4247         }
4248
4249         /*
4250          * Write {count,id} tuples for every sibling.
4251          */
4252         values[n++] += perf_event_count(leader);
4253         if (read_format & PERF_FORMAT_ID)
4254                 values[n++] = primary_event_id(leader);
4255
4256         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4257                 values[n++] += perf_event_count(sub);
4258                 if (read_format & PERF_FORMAT_ID)
4259                         values[n++] = primary_event_id(sub);
4260         }
4261
4262         return 0;
4263 }
4264
4265 static int perf_read_group(struct perf_event *event,
4266                                    u64 read_format, char __user *buf)
4267 {
4268         struct perf_event *leader = event->group_leader, *child;
4269         struct perf_event_context *ctx = leader->ctx;
4270         int ret;
4271         u64 *values;
4272
4273         lockdep_assert_held(&ctx->mutex);
4274
4275         values = kzalloc(event->read_size, GFP_KERNEL);
4276         if (!values)
4277                 return -ENOMEM;
4278
4279         values[0] = 1 + leader->nr_siblings;
4280
4281         /*
4282          * By locking the child_mutex of the leader we effectively
4283          * lock the child list of all siblings.. XXX explain how.
4284          */
4285         mutex_lock(&leader->child_mutex);
4286
4287         ret = __perf_read_group_add(leader, read_format, values);
4288         if (ret)
4289                 goto unlock;
4290
4291         list_for_each_entry(child, &leader->child_list, child_list) {
4292                 ret = __perf_read_group_add(child, read_format, values);
4293                 if (ret)
4294                         goto unlock;
4295         }
4296
4297         mutex_unlock(&leader->child_mutex);
4298
4299         ret = event->read_size;
4300         if (copy_to_user(buf, values, event->read_size))
4301                 ret = -EFAULT;
4302         goto out;
4303
4304 unlock:
4305         mutex_unlock(&leader->child_mutex);
4306 out:
4307         kfree(values);
4308         return ret;
4309 }
4310
4311 static int perf_read_one(struct perf_event *event,
4312                                  u64 read_format, char __user *buf)
4313 {
4314         u64 enabled, running;
4315         u64 values[4];
4316         int n = 0;
4317
4318         values[n++] = perf_event_read_value(event, &enabled, &running);
4319         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4320                 values[n++] = enabled;
4321         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4322                 values[n++] = running;
4323         if (read_format & PERF_FORMAT_ID)
4324                 values[n++] = primary_event_id(event);
4325
4326         if (copy_to_user(buf, values, n * sizeof(u64)))
4327                 return -EFAULT;
4328
4329         return n * sizeof(u64);
4330 }
4331
4332 static bool is_event_hup(struct perf_event *event)
4333 {
4334         bool no_children;
4335
4336         if (event->state > PERF_EVENT_STATE_EXIT)
4337                 return false;
4338
4339         mutex_lock(&event->child_mutex);
4340         no_children = list_empty(&event->child_list);
4341         mutex_unlock(&event->child_mutex);
4342         return no_children;
4343 }
4344
4345 /*
4346  * Read the performance event - simple non blocking version for now
4347  */
4348 static ssize_t
4349 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4350 {
4351         u64 read_format = event->attr.read_format;
4352         int ret;
4353
4354         /*
4355          * Return end-of-file for a read on a event that is in
4356          * error state (i.e. because it was pinned but it couldn't be
4357          * scheduled on to the CPU at some point).
4358          */
4359         if (event->state == PERF_EVENT_STATE_ERROR)
4360                 return 0;
4361
4362         if (count < event->read_size)
4363                 return -ENOSPC;
4364
4365         WARN_ON_ONCE(event->ctx->parent_ctx);
4366         if (read_format & PERF_FORMAT_GROUP)
4367                 ret = perf_read_group(event, read_format, buf);
4368         else
4369                 ret = perf_read_one(event, read_format, buf);
4370
4371         return ret;
4372 }
4373
4374 static ssize_t
4375 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4376 {
4377         struct perf_event *event = file->private_data;
4378         struct perf_event_context *ctx;
4379         int ret;
4380
4381         ctx = perf_event_ctx_lock(event);
4382         ret = __perf_read(event, buf, count);
4383         perf_event_ctx_unlock(event, ctx);
4384
4385         return ret;
4386 }
4387
4388 static unsigned int perf_poll(struct file *file, poll_table *wait)
4389 {
4390         struct perf_event *event = file->private_data;
4391         struct ring_buffer *rb;
4392         unsigned int events = POLLHUP;
4393
4394         poll_wait(file, &event->waitq, wait);
4395
4396         if (is_event_hup(event))
4397                 return events;
4398
4399         /*
4400          * Pin the event->rb by taking event->mmap_mutex; otherwise
4401          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4402          */
4403         mutex_lock(&event->mmap_mutex);
4404         rb = event->rb;
4405         if (rb)
4406                 events = atomic_xchg(&rb->poll, 0);
4407         mutex_unlock(&event->mmap_mutex);
4408         return events;
4409 }
4410
4411 static void _perf_event_reset(struct perf_event *event)
4412 {
4413         (void)perf_event_read(event, false);
4414         local64_set(&event->count, 0);
4415         perf_event_update_userpage(event);
4416 }
4417
4418 /*
4419  * Holding the top-level event's child_mutex means that any
4420  * descendant process that has inherited this event will block
4421  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4422  * task existence requirements of perf_event_enable/disable.
4423  */
4424 static void perf_event_for_each_child(struct perf_event *event,
4425                                         void (*func)(struct perf_event *))
4426 {
4427         struct perf_event *child;
4428
4429         WARN_ON_ONCE(event->ctx->parent_ctx);
4430
4431         mutex_lock(&event->child_mutex);
4432         func(event);
4433         list_for_each_entry(child, &event->child_list, child_list)
4434                 func(child);
4435         mutex_unlock(&event->child_mutex);
4436 }
4437
4438 static void perf_event_for_each(struct perf_event *event,
4439                                   void (*func)(struct perf_event *))
4440 {
4441         struct perf_event_context *ctx = event->ctx;
4442         struct perf_event *sibling;
4443
4444         lockdep_assert_held(&ctx->mutex);
4445
4446         event = event->group_leader;
4447
4448         perf_event_for_each_child(event, func);
4449         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4450                 perf_event_for_each_child(sibling, func);
4451 }
4452
4453 static void __perf_event_period(struct perf_event *event,
4454                                 struct perf_cpu_context *cpuctx,
4455                                 struct perf_event_context *ctx,
4456                                 void *info)
4457 {
4458         u64 value = *((u64 *)info);
4459         bool active;
4460
4461         if (event->attr.freq) {
4462                 event->attr.sample_freq = value;
4463         } else {
4464                 event->attr.sample_period = value;
4465                 event->hw.sample_period = value;
4466         }
4467
4468         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4469         if (active) {
4470                 perf_pmu_disable(ctx->pmu);
4471                 /*
4472                  * We could be throttled; unthrottle now to avoid the tick
4473                  * trying to unthrottle while we already re-started the event.
4474                  */
4475                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4476                         event->hw.interrupts = 0;
4477                         perf_log_throttle(event, 1);
4478                 }
4479                 event->pmu->stop(event, PERF_EF_UPDATE);
4480         }
4481
4482         local64_set(&event->hw.period_left, 0);
4483
4484         if (active) {
4485                 event->pmu->start(event, PERF_EF_RELOAD);
4486                 perf_pmu_enable(ctx->pmu);
4487         }
4488 }
4489
4490 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4491 {
4492         u64 value;
4493
4494         if (!is_sampling_event(event))
4495                 return -EINVAL;
4496
4497         if (copy_from_user(&value, arg, sizeof(value)))
4498                 return -EFAULT;
4499
4500         if (!value)
4501                 return -EINVAL;
4502
4503         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4504                 return -EINVAL;
4505
4506         event_function_call(event, __perf_event_period, &value);
4507
4508         return 0;
4509 }
4510
4511 static const struct file_operations perf_fops;
4512
4513 static inline int perf_fget_light(int fd, struct fd *p)
4514 {
4515         struct fd f = fdget(fd);
4516         if (!f.file)
4517                 return -EBADF;
4518
4519         if (f.file->f_op != &perf_fops) {
4520                 fdput(f);
4521                 return -EBADF;
4522         }
4523         *p = f;
4524         return 0;
4525 }
4526
4527 static int perf_event_set_output(struct perf_event *event,
4528                                  struct perf_event *output_event);
4529 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4530 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4531
4532 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4533 {
4534         void (*func)(struct perf_event *);
4535         u32 flags = arg;
4536
4537         switch (cmd) {
4538         case PERF_EVENT_IOC_ENABLE:
4539                 func = _perf_event_enable;
4540                 break;
4541         case PERF_EVENT_IOC_DISABLE:
4542                 func = _perf_event_disable;
4543                 break;
4544         case PERF_EVENT_IOC_RESET:
4545                 func = _perf_event_reset;
4546                 break;
4547
4548         case PERF_EVENT_IOC_REFRESH:
4549                 return _perf_event_refresh(event, arg);
4550
4551         case PERF_EVENT_IOC_PERIOD:
4552                 return perf_event_period(event, (u64 __user *)arg);
4553
4554         case PERF_EVENT_IOC_ID:
4555         {
4556                 u64 id = primary_event_id(event);
4557
4558                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4559                         return -EFAULT;
4560                 return 0;
4561         }
4562
4563         case PERF_EVENT_IOC_SET_OUTPUT:
4564         {
4565                 int ret;
4566                 if (arg != -1) {
4567                         struct perf_event *output_event;
4568                         struct fd output;
4569                         ret = perf_fget_light(arg, &output);
4570                         if (ret)
4571                                 return ret;
4572                         output_event = output.file->private_data;
4573                         ret = perf_event_set_output(event, output_event);
4574                         fdput(output);
4575                 } else {
4576                         ret = perf_event_set_output(event, NULL);
4577                 }
4578                 return ret;
4579         }
4580
4581         case PERF_EVENT_IOC_SET_FILTER:
4582                 return perf_event_set_filter(event, (void __user *)arg);
4583
4584         case PERF_EVENT_IOC_SET_BPF:
4585                 return perf_event_set_bpf_prog(event, arg);
4586
4587         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4588                 struct ring_buffer *rb;
4589
4590                 rcu_read_lock();
4591                 rb = rcu_dereference(event->rb);
4592                 if (!rb || !rb->nr_pages) {
4593                         rcu_read_unlock();
4594                         return -EINVAL;
4595                 }
4596                 rb_toggle_paused(rb, !!arg);
4597                 rcu_read_unlock();
4598                 return 0;
4599         }
4600         default:
4601                 return -ENOTTY;
4602         }
4603
4604         if (flags & PERF_IOC_FLAG_GROUP)
4605                 perf_event_for_each(event, func);
4606         else
4607                 perf_event_for_each_child(event, func);
4608
4609         return 0;
4610 }
4611
4612 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4613 {
4614         struct perf_event *event = file->private_data;
4615         struct perf_event_context *ctx;
4616         long ret;
4617
4618         ctx = perf_event_ctx_lock(event);
4619         ret = _perf_ioctl(event, cmd, arg);
4620         perf_event_ctx_unlock(event, ctx);
4621
4622         return ret;
4623 }
4624
4625 #ifdef CONFIG_COMPAT
4626 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4627                                 unsigned long arg)
4628 {
4629         switch (_IOC_NR(cmd)) {
4630         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4631         case _IOC_NR(PERF_EVENT_IOC_ID):
4632                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4633                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4634                         cmd &= ~IOCSIZE_MASK;
4635                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4636                 }
4637                 break;
4638         }
4639         return perf_ioctl(file, cmd, arg);
4640 }
4641 #else
4642 # define perf_compat_ioctl NULL
4643 #endif
4644
4645 int perf_event_task_enable(void)
4646 {
4647         struct perf_event_context *ctx;
4648         struct perf_event *event;
4649
4650         mutex_lock(&current->perf_event_mutex);
4651         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4652                 ctx = perf_event_ctx_lock(event);
4653                 perf_event_for_each_child(event, _perf_event_enable);
4654                 perf_event_ctx_unlock(event, ctx);
4655         }
4656         mutex_unlock(&current->perf_event_mutex);
4657
4658         return 0;
4659 }
4660
4661 int perf_event_task_disable(void)
4662 {
4663         struct perf_event_context *ctx;
4664         struct perf_event *event;
4665
4666         mutex_lock(&current->perf_event_mutex);
4667         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4668                 ctx = perf_event_ctx_lock(event);
4669                 perf_event_for_each_child(event, _perf_event_disable);
4670                 perf_event_ctx_unlock(event, ctx);
4671         }
4672         mutex_unlock(&current->perf_event_mutex);
4673
4674         return 0;
4675 }
4676
4677 static int perf_event_index(struct perf_event *event)
4678 {
4679         if (event->hw.state & PERF_HES_STOPPED)
4680                 return 0;
4681
4682         if (event->state != PERF_EVENT_STATE_ACTIVE)
4683                 return 0;
4684
4685         return event->pmu->event_idx(event);
4686 }
4687
4688 static void calc_timer_values(struct perf_event *event,
4689                                 u64 *now,
4690                                 u64 *enabled,
4691                                 u64 *running)
4692 {
4693         u64 ctx_time;
4694
4695         *now = perf_clock();
4696         ctx_time = event->shadow_ctx_time + *now;
4697         *enabled = ctx_time - event->tstamp_enabled;
4698         *running = ctx_time - event->tstamp_running;
4699 }
4700
4701 static void perf_event_init_userpage(struct perf_event *event)
4702 {
4703         struct perf_event_mmap_page *userpg;
4704         struct ring_buffer *rb;
4705
4706         rcu_read_lock();
4707         rb = rcu_dereference(event->rb);
4708         if (!rb)
4709                 goto unlock;
4710
4711         userpg = rb->user_page;
4712
4713         /* Allow new userspace to detect that bit 0 is deprecated */
4714         userpg->cap_bit0_is_deprecated = 1;
4715         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4716         userpg->data_offset = PAGE_SIZE;
4717         userpg->data_size = perf_data_size(rb);
4718
4719 unlock:
4720         rcu_read_unlock();
4721 }
4722
4723 void __weak arch_perf_update_userpage(
4724         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4725 {
4726 }
4727
4728 /*
4729  * Callers need to ensure there can be no nesting of this function, otherwise
4730  * the seqlock logic goes bad. We can not serialize this because the arch
4731  * code calls this from NMI context.
4732  */
4733 void perf_event_update_userpage(struct perf_event *event)
4734 {
4735         struct perf_event_mmap_page *userpg;
4736         struct ring_buffer *rb;
4737         u64 enabled, running, now;
4738
4739         rcu_read_lock();
4740         rb = rcu_dereference(event->rb);
4741         if (!rb)
4742                 goto unlock;
4743
4744         /*
4745          * compute total_time_enabled, total_time_running
4746          * based on snapshot values taken when the event
4747          * was last scheduled in.
4748          *
4749          * we cannot simply called update_context_time()
4750          * because of locking issue as we can be called in
4751          * NMI context
4752          */
4753         calc_timer_values(event, &now, &enabled, &running);
4754
4755         userpg = rb->user_page;
4756         /*
4757          * Disable preemption so as to not let the corresponding user-space
4758          * spin too long if we get preempted.
4759          */
4760         preempt_disable();
4761         ++userpg->lock;
4762         barrier();
4763         userpg->index = perf_event_index(event);
4764         userpg->offset = perf_event_count(event);
4765         if (userpg->index)
4766                 userpg->offset -= local64_read(&event->hw.prev_count);
4767
4768         userpg->time_enabled = enabled +
4769                         atomic64_read(&event->child_total_time_enabled);
4770
4771         userpg->time_running = running +
4772                         atomic64_read(&event->child_total_time_running);
4773
4774         arch_perf_update_userpage(event, userpg, now);
4775
4776         barrier();
4777         ++userpg->lock;
4778         preempt_enable();
4779 unlock:
4780         rcu_read_unlock();
4781 }
4782
4783 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4784 {
4785         struct perf_event *event = vma->vm_file->private_data;
4786         struct ring_buffer *rb;
4787         int ret = VM_FAULT_SIGBUS;
4788
4789         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4790                 if (vmf->pgoff == 0)
4791                         ret = 0;
4792                 return ret;
4793         }
4794
4795         rcu_read_lock();
4796         rb = rcu_dereference(event->rb);
4797         if (!rb)
4798                 goto unlock;
4799
4800         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4801                 goto unlock;
4802
4803         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4804         if (!vmf->page)
4805                 goto unlock;
4806
4807         get_page(vmf->page);
4808         vmf->page->mapping = vma->vm_file->f_mapping;
4809         vmf->page->index   = vmf->pgoff;
4810
4811         ret = 0;
4812 unlock:
4813         rcu_read_unlock();
4814
4815         return ret;
4816 }
4817
4818 static void ring_buffer_attach(struct perf_event *event,
4819                                struct ring_buffer *rb)
4820 {
4821         struct ring_buffer *old_rb = NULL;
4822         unsigned long flags;
4823
4824         if (event->rb) {
4825                 /*
4826                  * Should be impossible, we set this when removing
4827                  * event->rb_entry and wait/clear when adding event->rb_entry.
4828                  */
4829                 WARN_ON_ONCE(event->rcu_pending);
4830
4831                 old_rb = event->rb;
4832                 spin_lock_irqsave(&old_rb->event_lock, flags);
4833                 list_del_rcu(&event->rb_entry);
4834                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4835
4836                 event->rcu_batches = get_state_synchronize_rcu();
4837                 event->rcu_pending = 1;
4838         }
4839
4840         if (rb) {
4841                 if (event->rcu_pending) {
4842                         cond_synchronize_rcu(event->rcu_batches);
4843                         event->rcu_pending = 0;
4844                 }
4845
4846                 spin_lock_irqsave(&rb->event_lock, flags);
4847                 list_add_rcu(&event->rb_entry, &rb->event_list);
4848                 spin_unlock_irqrestore(&rb->event_lock, flags);
4849         }
4850
4851         rcu_assign_pointer(event->rb, rb);
4852
4853         if (old_rb) {
4854                 ring_buffer_put(old_rb);
4855                 /*
4856                  * Since we detached before setting the new rb, so that we
4857                  * could attach the new rb, we could have missed a wakeup.
4858                  * Provide it now.
4859                  */
4860                 wake_up_all(&event->waitq);
4861         }
4862 }
4863
4864 static void ring_buffer_wakeup(struct perf_event *event)
4865 {
4866         struct ring_buffer *rb;
4867
4868         rcu_read_lock();
4869         rb = rcu_dereference(event->rb);
4870         if (rb) {
4871                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4872                         wake_up_all(&event->waitq);
4873         }
4874         rcu_read_unlock();
4875 }
4876
4877 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4878 {
4879         struct ring_buffer *rb;
4880
4881         rcu_read_lock();
4882         rb = rcu_dereference(event->rb);
4883         if (rb) {
4884                 if (!atomic_inc_not_zero(&rb->refcount))
4885                         rb = NULL;
4886         }
4887         rcu_read_unlock();
4888
4889         return rb;
4890 }
4891
4892 void ring_buffer_put(struct ring_buffer *rb)
4893 {
4894         if (!atomic_dec_and_test(&rb->refcount))
4895                 return;
4896
4897         WARN_ON_ONCE(!list_empty(&rb->event_list));
4898
4899         call_rcu(&rb->rcu_head, rb_free_rcu);
4900 }
4901
4902 static void perf_mmap_open(struct vm_area_struct *vma)
4903 {
4904         struct perf_event *event = vma->vm_file->private_data;
4905
4906         atomic_inc(&event->mmap_count);
4907         atomic_inc(&event->rb->mmap_count);
4908
4909         if (vma->vm_pgoff)
4910                 atomic_inc(&event->rb->aux_mmap_count);
4911
4912         if (event->pmu->event_mapped)
4913                 event->pmu->event_mapped(event);
4914 }
4915
4916 static void perf_pmu_output_stop(struct perf_event *event);
4917
4918 /*
4919  * A buffer can be mmap()ed multiple times; either directly through the same
4920  * event, or through other events by use of perf_event_set_output().
4921  *
4922  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4923  * the buffer here, where we still have a VM context. This means we need
4924  * to detach all events redirecting to us.
4925  */
4926 static void perf_mmap_close(struct vm_area_struct *vma)
4927 {
4928         struct perf_event *event = vma->vm_file->private_data;
4929
4930         struct ring_buffer *rb = ring_buffer_get(event);
4931         struct user_struct *mmap_user = rb->mmap_user;
4932         int mmap_locked = rb->mmap_locked;
4933         unsigned long size = perf_data_size(rb);
4934
4935         if (event->pmu->event_unmapped)
4936                 event->pmu->event_unmapped(event);
4937
4938         /*
4939          * rb->aux_mmap_count will always drop before rb->mmap_count and
4940          * event->mmap_count, so it is ok to use event->mmap_mutex to
4941          * serialize with perf_mmap here.
4942          */
4943         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4944             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4945                 /*
4946                  * Stop all AUX events that are writing to this buffer,
4947                  * so that we can free its AUX pages and corresponding PMU
4948                  * data. Note that after rb::aux_mmap_count dropped to zero,
4949                  * they won't start any more (see perf_aux_output_begin()).
4950                  */
4951                 perf_pmu_output_stop(event);
4952
4953                 /* now it's safe to free the pages */
4954                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4955                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4956
4957                 /* this has to be the last one */
4958                 rb_free_aux(rb);
4959                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4960
4961                 mutex_unlock(&event->mmap_mutex);
4962         }
4963
4964         atomic_dec(&rb->mmap_count);
4965
4966         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4967                 goto out_put;
4968
4969         ring_buffer_attach(event, NULL);
4970         mutex_unlock(&event->mmap_mutex);
4971
4972         /* If there's still other mmap()s of this buffer, we're done. */
4973         if (atomic_read(&rb->mmap_count))
4974                 goto out_put;
4975
4976         /*
4977          * No other mmap()s, detach from all other events that might redirect
4978          * into the now unreachable buffer. Somewhat complicated by the
4979          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4980          */
4981 again:
4982         rcu_read_lock();
4983         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4984                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4985                         /*
4986                          * This event is en-route to free_event() which will
4987                          * detach it and remove it from the list.
4988                          */
4989                         continue;
4990                 }
4991                 rcu_read_unlock();
4992
4993                 mutex_lock(&event->mmap_mutex);
4994                 /*
4995                  * Check we didn't race with perf_event_set_output() which can
4996                  * swizzle the rb from under us while we were waiting to
4997                  * acquire mmap_mutex.
4998                  *
4999                  * If we find a different rb; ignore this event, a next
5000                  * iteration will no longer find it on the list. We have to
5001                  * still restart the iteration to make sure we're not now
5002                  * iterating the wrong list.
5003                  */
5004                 if (event->rb == rb)
5005                         ring_buffer_attach(event, NULL);
5006
5007                 mutex_unlock(&event->mmap_mutex);
5008                 put_event(event);
5009
5010                 /*
5011                  * Restart the iteration; either we're on the wrong list or
5012                  * destroyed its integrity by doing a deletion.
5013                  */
5014                 goto again;
5015         }
5016         rcu_read_unlock();
5017
5018         /*
5019          * It could be there's still a few 0-ref events on the list; they'll
5020          * get cleaned up by free_event() -- they'll also still have their
5021          * ref on the rb and will free it whenever they are done with it.
5022          *
5023          * Aside from that, this buffer is 'fully' detached and unmapped,
5024          * undo the VM accounting.
5025          */
5026
5027         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5028         vma->vm_mm->pinned_vm -= mmap_locked;
5029         free_uid(mmap_user);
5030
5031 out_put:
5032         ring_buffer_put(rb); /* could be last */
5033 }
5034
5035 static const struct vm_operations_struct perf_mmap_vmops = {
5036         .open           = perf_mmap_open,
5037         .close          = perf_mmap_close, /* non mergable */
5038         .fault          = perf_mmap_fault,
5039         .page_mkwrite   = perf_mmap_fault,
5040 };
5041
5042 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5043 {
5044         struct perf_event *event = file->private_data;
5045         unsigned long user_locked, user_lock_limit;
5046         struct user_struct *user = current_user();
5047         unsigned long locked, lock_limit;
5048         struct ring_buffer *rb = NULL;
5049         unsigned long vma_size;
5050         unsigned long nr_pages;
5051         long user_extra = 0, extra = 0;
5052         int ret = 0, flags = 0;
5053
5054         /*
5055          * Don't allow mmap() of inherited per-task counters. This would
5056          * create a performance issue due to all children writing to the
5057          * same rb.
5058          */
5059         if (event->cpu == -1 && event->attr.inherit)
5060                 return -EINVAL;
5061
5062         if (!(vma->vm_flags & VM_SHARED))
5063                 return -EINVAL;
5064
5065         vma_size = vma->vm_end - vma->vm_start;
5066
5067         if (vma->vm_pgoff == 0) {
5068                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5069         } else {
5070                 /*
5071                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5072                  * mapped, all subsequent mappings should have the same size
5073                  * and offset. Must be above the normal perf buffer.
5074                  */
5075                 u64 aux_offset, aux_size;
5076
5077                 if (!event->rb)
5078                         return -EINVAL;
5079
5080                 nr_pages = vma_size / PAGE_SIZE;
5081
5082                 mutex_lock(&event->mmap_mutex);
5083                 ret = -EINVAL;
5084
5085                 rb = event->rb;
5086                 if (!rb)
5087                         goto aux_unlock;
5088
5089                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5090                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5091
5092                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5093                         goto aux_unlock;
5094
5095                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5096                         goto aux_unlock;
5097
5098                 /* already mapped with a different offset */
5099                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5100                         goto aux_unlock;
5101
5102                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5103                         goto aux_unlock;
5104
5105                 /* already mapped with a different size */
5106                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5107                         goto aux_unlock;
5108
5109                 if (!is_power_of_2(nr_pages))
5110                         goto aux_unlock;
5111
5112                 if (!atomic_inc_not_zero(&rb->mmap_count))
5113                         goto aux_unlock;
5114
5115                 if (rb_has_aux(rb)) {
5116                         atomic_inc(&rb->aux_mmap_count);
5117                         ret = 0;
5118                         goto unlock;
5119                 }
5120
5121                 atomic_set(&rb->aux_mmap_count, 1);
5122                 user_extra = nr_pages;
5123
5124                 goto accounting;
5125         }
5126
5127         /*
5128          * If we have rb pages ensure they're a power-of-two number, so we
5129          * can do bitmasks instead of modulo.
5130          */
5131         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5132                 return -EINVAL;
5133
5134         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5135                 return -EINVAL;
5136
5137         WARN_ON_ONCE(event->ctx->parent_ctx);
5138 again:
5139         mutex_lock(&event->mmap_mutex);
5140         if (event->rb) {
5141                 if (event->rb->nr_pages != nr_pages) {
5142                         ret = -EINVAL;
5143                         goto unlock;
5144                 }
5145
5146                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5147                         /*
5148                          * Raced against perf_mmap_close() through
5149                          * perf_event_set_output(). Try again, hope for better
5150                          * luck.
5151                          */
5152                         mutex_unlock(&event->mmap_mutex);
5153                         goto again;
5154                 }
5155
5156                 goto unlock;
5157         }
5158
5159         user_extra = nr_pages + 1;
5160
5161 accounting:
5162         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5163
5164         /*
5165          * Increase the limit linearly with more CPUs:
5166          */
5167         user_lock_limit *= num_online_cpus();
5168
5169         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5170
5171         if (user_locked > user_lock_limit)
5172                 extra = user_locked - user_lock_limit;
5173
5174         lock_limit = rlimit(RLIMIT_MEMLOCK);
5175         lock_limit >>= PAGE_SHIFT;
5176         locked = vma->vm_mm->pinned_vm + extra;
5177
5178         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5179                 !capable(CAP_IPC_LOCK)) {
5180                 ret = -EPERM;
5181                 goto unlock;
5182         }
5183
5184         WARN_ON(!rb && event->rb);
5185
5186         if (vma->vm_flags & VM_WRITE)
5187                 flags |= RING_BUFFER_WRITABLE;
5188
5189         if (!rb) {
5190                 rb = rb_alloc(nr_pages,
5191                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5192                               event->cpu, flags);
5193
5194                 if (!rb) {
5195                         ret = -ENOMEM;
5196                         goto unlock;
5197                 }
5198
5199                 atomic_set(&rb->mmap_count, 1);
5200                 rb->mmap_user = get_current_user();
5201                 rb->mmap_locked = extra;
5202
5203                 ring_buffer_attach(event, rb);
5204
5205                 perf_event_init_userpage(event);
5206                 perf_event_update_userpage(event);
5207         } else {
5208                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5209                                    event->attr.aux_watermark, flags);
5210                 if (!ret)
5211                         rb->aux_mmap_locked = extra;
5212         }
5213
5214 unlock:
5215         if (!ret) {
5216                 atomic_long_add(user_extra, &user->locked_vm);
5217                 vma->vm_mm->pinned_vm += extra;
5218
5219                 atomic_inc(&event->mmap_count);
5220         } else if (rb) {
5221                 atomic_dec(&rb->mmap_count);
5222         }
5223 aux_unlock:
5224         mutex_unlock(&event->mmap_mutex);
5225
5226         /*
5227          * Since pinned accounting is per vm we cannot allow fork() to copy our
5228          * vma.
5229          */
5230         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5231         vma->vm_ops = &perf_mmap_vmops;
5232
5233         if (event->pmu->event_mapped)
5234                 event->pmu->event_mapped(event);
5235
5236         return ret;
5237 }
5238
5239 static int perf_fasync(int fd, struct file *filp, int on)
5240 {
5241         struct inode *inode = file_inode(filp);
5242         struct perf_event *event = filp->private_data;
5243         int retval;
5244
5245         inode_lock(inode);
5246         retval = fasync_helper(fd, filp, on, &event->fasync);
5247         inode_unlock(inode);
5248
5249         if (retval < 0)
5250                 return retval;
5251
5252         return 0;
5253 }
5254
5255 static const struct file_operations perf_fops = {
5256         .llseek                 = no_llseek,
5257         .release                = perf_release,
5258         .read                   = perf_read,
5259         .poll                   = perf_poll,
5260         .unlocked_ioctl         = perf_ioctl,
5261         .compat_ioctl           = perf_compat_ioctl,
5262         .mmap                   = perf_mmap,
5263         .fasync                 = perf_fasync,
5264 };
5265
5266 /*
5267  * Perf event wakeup
5268  *
5269  * If there's data, ensure we set the poll() state and publish everything
5270  * to user-space before waking everybody up.
5271  */
5272
5273 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5274 {
5275         /* only the parent has fasync state */
5276         if (event->parent)
5277                 event = event->parent;
5278         return &event->fasync;
5279 }
5280
5281 void perf_event_wakeup(struct perf_event *event)
5282 {
5283         ring_buffer_wakeup(event);
5284
5285         if (event->pending_kill) {
5286                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5287                 event->pending_kill = 0;
5288         }
5289 }
5290
5291 static void perf_pending_event(struct irq_work *entry)
5292 {
5293         struct perf_event *event = container_of(entry,
5294                         struct perf_event, pending);
5295         int rctx;
5296
5297         rctx = perf_swevent_get_recursion_context();
5298         /*
5299          * If we 'fail' here, that's OK, it means recursion is already disabled
5300          * and we won't recurse 'further'.
5301          */
5302
5303         if (event->pending_disable) {
5304                 event->pending_disable = 0;
5305                 perf_event_disable_local(event);
5306         }
5307
5308         if (event->pending_wakeup) {
5309                 event->pending_wakeup = 0;
5310                 perf_event_wakeup(event);
5311         }
5312
5313         if (rctx >= 0)
5314                 perf_swevent_put_recursion_context(rctx);
5315 }
5316
5317 /*
5318  * We assume there is only KVM supporting the callbacks.
5319  * Later on, we might change it to a list if there is
5320  * another virtualization implementation supporting the callbacks.
5321  */
5322 struct perf_guest_info_callbacks *perf_guest_cbs;
5323
5324 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5325 {
5326         perf_guest_cbs = cbs;
5327         return 0;
5328 }
5329 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5330
5331 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5332 {
5333         perf_guest_cbs = NULL;
5334         return 0;
5335 }
5336 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5337
5338 static void
5339 perf_output_sample_regs(struct perf_output_handle *handle,
5340                         struct pt_regs *regs, u64 mask)
5341 {
5342         int bit;
5343
5344         for_each_set_bit(bit, (const unsigned long *) &mask,
5345                          sizeof(mask) * BITS_PER_BYTE) {
5346                 u64 val;
5347
5348                 val = perf_reg_value(regs, bit);
5349                 perf_output_put(handle, val);
5350         }
5351 }
5352
5353 static void perf_sample_regs_user(struct perf_regs *regs_user,
5354                                   struct pt_regs *regs,
5355                                   struct pt_regs *regs_user_copy)
5356 {
5357         if (user_mode(regs)) {
5358                 regs_user->abi = perf_reg_abi(current);
5359                 regs_user->regs = regs;
5360         } else if (current->mm) {
5361                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5362         } else {
5363                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5364                 regs_user->regs = NULL;
5365         }
5366 }
5367
5368 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5369                                   struct pt_regs *regs)
5370 {
5371         regs_intr->regs = regs;
5372         regs_intr->abi  = perf_reg_abi(current);
5373 }
5374
5375
5376 /*
5377  * Get remaining task size from user stack pointer.
5378  *
5379  * It'd be better to take stack vma map and limit this more
5380  * precisly, but there's no way to get it safely under interrupt,
5381  * so using TASK_SIZE as limit.
5382  */
5383 static u64 perf_ustack_task_size(struct pt_regs *regs)
5384 {
5385         unsigned long addr = perf_user_stack_pointer(regs);
5386
5387         if (!addr || addr >= TASK_SIZE)
5388                 return 0;
5389
5390         return TASK_SIZE - addr;
5391 }
5392
5393 static u16
5394 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5395                         struct pt_regs *regs)
5396 {
5397         u64 task_size;
5398
5399         /* No regs, no stack pointer, no dump. */
5400         if (!regs)
5401                 return 0;
5402
5403         /*
5404          * Check if we fit in with the requested stack size into the:
5405          * - TASK_SIZE
5406          *   If we don't, we limit the size to the TASK_SIZE.
5407          *
5408          * - remaining sample size
5409          *   If we don't, we customize the stack size to
5410          *   fit in to the remaining sample size.
5411          */
5412
5413         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5414         stack_size = min(stack_size, (u16) task_size);
5415
5416         /* Current header size plus static size and dynamic size. */
5417         header_size += 2 * sizeof(u64);
5418
5419         /* Do we fit in with the current stack dump size? */
5420         if ((u16) (header_size + stack_size) < header_size) {
5421                 /*
5422                  * If we overflow the maximum size for the sample,
5423                  * we customize the stack dump size to fit in.
5424                  */
5425                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5426                 stack_size = round_up(stack_size, sizeof(u64));
5427         }
5428
5429         return stack_size;
5430 }
5431
5432 static void
5433 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5434                           struct pt_regs *regs)
5435 {
5436         /* Case of a kernel thread, nothing to dump */
5437         if (!regs) {
5438                 u64 size = 0;
5439                 perf_output_put(handle, size);
5440         } else {
5441                 unsigned long sp;
5442                 unsigned int rem;
5443                 u64 dyn_size;
5444
5445                 /*
5446                  * We dump:
5447                  * static size
5448                  *   - the size requested by user or the best one we can fit
5449                  *     in to the sample max size
5450                  * data
5451                  *   - user stack dump data
5452                  * dynamic size
5453                  *   - the actual dumped size
5454                  */
5455
5456                 /* Static size. */
5457                 perf_output_put(handle, dump_size);
5458
5459                 /* Data. */
5460                 sp = perf_user_stack_pointer(regs);
5461                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5462                 dyn_size = dump_size - rem;
5463
5464                 perf_output_skip(handle, rem);
5465
5466                 /* Dynamic size. */
5467                 perf_output_put(handle, dyn_size);
5468         }
5469 }
5470
5471 static void __perf_event_header__init_id(struct perf_event_header *header,
5472                                          struct perf_sample_data *data,
5473                                          struct perf_event *event)
5474 {
5475         u64 sample_type = event->attr.sample_type;
5476
5477         data->type = sample_type;
5478         header->size += event->id_header_size;
5479
5480         if (sample_type & PERF_SAMPLE_TID) {
5481                 /* namespace issues */
5482                 data->tid_entry.pid = perf_event_pid(event, current);
5483                 data->tid_entry.tid = perf_event_tid(event, current);
5484         }
5485
5486         if (sample_type & PERF_SAMPLE_TIME)
5487                 data->time = perf_event_clock(event);
5488
5489         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5490                 data->id = primary_event_id(event);
5491
5492         if (sample_type & PERF_SAMPLE_STREAM_ID)
5493                 data->stream_id = event->id;
5494
5495         if (sample_type & PERF_SAMPLE_CPU) {
5496                 data->cpu_entry.cpu      = raw_smp_processor_id();
5497                 data->cpu_entry.reserved = 0;
5498         }
5499 }
5500
5501 void perf_event_header__init_id(struct perf_event_header *header,
5502                                 struct perf_sample_data *data,
5503                                 struct perf_event *event)
5504 {
5505         if (event->attr.sample_id_all)
5506                 __perf_event_header__init_id(header, data, event);
5507 }
5508
5509 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5510                                            struct perf_sample_data *data)
5511 {
5512         u64 sample_type = data->type;
5513
5514         if (sample_type & PERF_SAMPLE_TID)
5515                 perf_output_put(handle, data->tid_entry);
5516
5517         if (sample_type & PERF_SAMPLE_TIME)
5518                 perf_output_put(handle, data->time);
5519
5520         if (sample_type & PERF_SAMPLE_ID)
5521                 perf_output_put(handle, data->id);
5522
5523         if (sample_type & PERF_SAMPLE_STREAM_ID)
5524                 perf_output_put(handle, data->stream_id);
5525
5526         if (sample_type & PERF_SAMPLE_CPU)
5527                 perf_output_put(handle, data->cpu_entry);
5528
5529         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5530                 perf_output_put(handle, data->id);
5531 }
5532
5533 void perf_event__output_id_sample(struct perf_event *event,
5534                                   struct perf_output_handle *handle,
5535                                   struct perf_sample_data *sample)
5536 {
5537         if (event->attr.sample_id_all)
5538                 __perf_event__output_id_sample(handle, sample);
5539 }
5540
5541 static void perf_output_read_one(struct perf_output_handle *handle,
5542                                  struct perf_event *event,
5543                                  u64 enabled, u64 running)
5544 {
5545         u64 read_format = event->attr.read_format;
5546         u64 values[4];
5547         int n = 0;
5548
5549         values[n++] = perf_event_count(event);
5550         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5551                 values[n++] = enabled +
5552                         atomic64_read(&event->child_total_time_enabled);
5553         }
5554         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5555                 values[n++] = running +
5556                         atomic64_read(&event->child_total_time_running);
5557         }
5558         if (read_format & PERF_FORMAT_ID)
5559                 values[n++] = primary_event_id(event);
5560
5561         __output_copy(handle, values, n * sizeof(u64));
5562 }
5563
5564 /*
5565  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5566  */
5567 static void perf_output_read_group(struct perf_output_handle *handle,
5568                             struct perf_event *event,
5569                             u64 enabled, u64 running)
5570 {
5571         struct perf_event *leader = event->group_leader, *sub;
5572         u64 read_format = event->attr.read_format;
5573         u64 values[5];
5574         int n = 0;
5575
5576         values[n++] = 1 + leader->nr_siblings;
5577
5578         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5579                 values[n++] = enabled;
5580
5581         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5582                 values[n++] = running;
5583
5584         if (leader != event)
5585                 leader->pmu->read(leader);
5586
5587         values[n++] = perf_event_count(leader);
5588         if (read_format & PERF_FORMAT_ID)
5589                 values[n++] = primary_event_id(leader);
5590
5591         __output_copy(handle, values, n * sizeof(u64));
5592
5593         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5594                 n = 0;
5595
5596                 if ((sub != event) &&
5597                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5598                         sub->pmu->read(sub);
5599
5600                 values[n++] = perf_event_count(sub);
5601                 if (read_format & PERF_FORMAT_ID)
5602                         values[n++] = primary_event_id(sub);
5603
5604                 __output_copy(handle, values, n * sizeof(u64));
5605         }
5606 }
5607
5608 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5609                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5610
5611 static void perf_output_read(struct perf_output_handle *handle,
5612                              struct perf_event *event)
5613 {
5614         u64 enabled = 0, running = 0, now;
5615         u64 read_format = event->attr.read_format;
5616
5617         /*
5618          * compute total_time_enabled, total_time_running
5619          * based on snapshot values taken when the event
5620          * was last scheduled in.
5621          *
5622          * we cannot simply called update_context_time()
5623          * because of locking issue as we are called in
5624          * NMI context
5625          */
5626         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5627                 calc_timer_values(event, &now, &enabled, &running);
5628
5629         if (event->attr.read_format & PERF_FORMAT_GROUP)
5630                 perf_output_read_group(handle, event, enabled, running);
5631         else
5632                 perf_output_read_one(handle, event, enabled, running);
5633 }
5634
5635 void perf_output_sample(struct perf_output_handle *handle,
5636                         struct perf_event_header *header,
5637                         struct perf_sample_data *data,
5638                         struct perf_event *event)
5639 {
5640         u64 sample_type = data->type;
5641
5642         perf_output_put(handle, *header);
5643
5644         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5645                 perf_output_put(handle, data->id);
5646
5647         if (sample_type & PERF_SAMPLE_IP)
5648                 perf_output_put(handle, data->ip);
5649
5650         if (sample_type & PERF_SAMPLE_TID)
5651                 perf_output_put(handle, data->tid_entry);
5652
5653         if (sample_type & PERF_SAMPLE_TIME)
5654                 perf_output_put(handle, data->time);
5655
5656         if (sample_type & PERF_SAMPLE_ADDR)
5657                 perf_output_put(handle, data->addr);
5658
5659         if (sample_type & PERF_SAMPLE_ID)
5660                 perf_output_put(handle, data->id);
5661
5662         if (sample_type & PERF_SAMPLE_STREAM_ID)
5663                 perf_output_put(handle, data->stream_id);
5664
5665         if (sample_type & PERF_SAMPLE_CPU)
5666                 perf_output_put(handle, data->cpu_entry);
5667
5668         if (sample_type & PERF_SAMPLE_PERIOD)
5669                 perf_output_put(handle, data->period);
5670
5671         if (sample_type & PERF_SAMPLE_READ)
5672                 perf_output_read(handle, event);
5673
5674         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5675                 if (data->callchain) {
5676                         int size = 1;
5677
5678                         if (data->callchain)
5679                                 size += data->callchain->nr;
5680
5681                         size *= sizeof(u64);
5682
5683                         __output_copy(handle, data->callchain, size);
5684                 } else {
5685                         u64 nr = 0;
5686                         perf_output_put(handle, nr);
5687                 }
5688         }
5689
5690         if (sample_type & PERF_SAMPLE_RAW) {
5691                 struct perf_raw_record *raw = data->raw;
5692
5693                 if (raw) {
5694                         struct perf_raw_frag *frag = &raw->frag;
5695
5696                         perf_output_put(handle, raw->size);
5697                         do {
5698                                 if (frag->copy) {
5699                                         __output_custom(handle, frag->copy,
5700                                                         frag->data, frag->size);
5701                                 } else {
5702                                         __output_copy(handle, frag->data,
5703                                                       frag->size);
5704                                 }
5705                                 if (perf_raw_frag_last(frag))
5706                                         break;
5707                                 frag = frag->next;
5708                         } while (1);
5709                         if (frag->pad)
5710                                 __output_skip(handle, NULL, frag->pad);
5711                 } else {
5712                         struct {
5713                                 u32     size;
5714                                 u32     data;
5715                         } raw = {
5716                                 .size = sizeof(u32),
5717                                 .data = 0,
5718                         };
5719                         perf_output_put(handle, raw);
5720                 }
5721         }
5722
5723         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5724                 if (data->br_stack) {
5725                         size_t size;
5726
5727                         size = data->br_stack->nr
5728                              * sizeof(struct perf_branch_entry);
5729
5730                         perf_output_put(handle, data->br_stack->nr);
5731                         perf_output_copy(handle, data->br_stack->entries, size);
5732                 } else {
5733                         /*
5734                          * we always store at least the value of nr
5735                          */
5736                         u64 nr = 0;
5737                         perf_output_put(handle, nr);
5738                 }
5739         }
5740
5741         if (sample_type & PERF_SAMPLE_REGS_USER) {
5742                 u64 abi = data->regs_user.abi;
5743
5744                 /*
5745                  * If there are no regs to dump, notice it through
5746                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5747                  */
5748                 perf_output_put(handle, abi);
5749
5750                 if (abi) {
5751                         u64 mask = event->attr.sample_regs_user;
5752                         perf_output_sample_regs(handle,
5753                                                 data->regs_user.regs,
5754                                                 mask);
5755                 }
5756         }
5757
5758         if (sample_type & PERF_SAMPLE_STACK_USER) {
5759                 perf_output_sample_ustack(handle,
5760                                           data->stack_user_size,
5761                                           data->regs_user.regs);
5762         }
5763
5764         if (sample_type & PERF_SAMPLE_WEIGHT)
5765                 perf_output_put(handle, data->weight);
5766
5767         if (sample_type & PERF_SAMPLE_DATA_SRC)
5768                 perf_output_put(handle, data->data_src.val);
5769
5770         if (sample_type & PERF_SAMPLE_TRANSACTION)
5771                 perf_output_put(handle, data->txn);
5772
5773         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5774                 u64 abi = data->regs_intr.abi;
5775                 /*
5776                  * If there are no regs to dump, notice it through
5777                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5778                  */
5779                 perf_output_put(handle, abi);
5780
5781                 if (abi) {
5782                         u64 mask = event->attr.sample_regs_intr;
5783
5784                         perf_output_sample_regs(handle,
5785                                                 data->regs_intr.regs,
5786                                                 mask);
5787                 }
5788         }
5789
5790         if (!event->attr.watermark) {
5791                 int wakeup_events = event->attr.wakeup_events;
5792
5793                 if (wakeup_events) {
5794                         struct ring_buffer *rb = handle->rb;
5795                         int events = local_inc_return(&rb->events);
5796
5797                         if (events >= wakeup_events) {
5798                                 local_sub(wakeup_events, &rb->events);
5799                                 local_inc(&rb->wakeup);
5800                         }
5801                 }
5802         }
5803 }
5804
5805 void perf_prepare_sample(struct perf_event_header *header,
5806                          struct perf_sample_data *data,
5807                          struct perf_event *event,
5808                          struct pt_regs *regs)
5809 {
5810         u64 sample_type = event->attr.sample_type;
5811
5812         header->type = PERF_RECORD_SAMPLE;
5813         header->size = sizeof(*header) + event->header_size;
5814
5815         header->misc = 0;
5816         header->misc |= perf_misc_flags(regs);
5817
5818         __perf_event_header__init_id(header, data, event);
5819
5820         if (sample_type & PERF_SAMPLE_IP)
5821                 data->ip = perf_instruction_pointer(regs);
5822
5823         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5824                 int size = 1;
5825
5826                 data->callchain = perf_callchain(event, regs);
5827
5828                 if (data->callchain)
5829                         size += data->callchain->nr;
5830
5831                 header->size += size * sizeof(u64);
5832         }
5833
5834         if (sample_type & PERF_SAMPLE_RAW) {
5835                 struct perf_raw_record *raw = data->raw;
5836                 int size;
5837
5838                 if (raw) {
5839                         struct perf_raw_frag *frag = &raw->frag;
5840                         u32 sum = 0;
5841
5842                         do {
5843                                 sum += frag->size;
5844                                 if (perf_raw_frag_last(frag))
5845                                         break;
5846                                 frag = frag->next;
5847                         } while (1);
5848
5849                         size = round_up(sum + sizeof(u32), sizeof(u64));
5850                         raw->size = size - sizeof(u32);
5851                         frag->pad = raw->size - sum;
5852                 } else {
5853                         size = sizeof(u64);
5854                 }
5855
5856                 header->size += size;
5857         }
5858
5859         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5860                 int size = sizeof(u64); /* nr */
5861                 if (data->br_stack) {
5862                         size += data->br_stack->nr
5863                               * sizeof(struct perf_branch_entry);
5864                 }
5865                 header->size += size;
5866         }
5867
5868         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5869                 perf_sample_regs_user(&data->regs_user, regs,
5870                                       &data->regs_user_copy);
5871
5872         if (sample_type & PERF_SAMPLE_REGS_USER) {
5873                 /* regs dump ABI info */
5874                 int size = sizeof(u64);
5875
5876                 if (data->regs_user.regs) {
5877                         u64 mask = event->attr.sample_regs_user;
5878                         size += hweight64(mask) * sizeof(u64);
5879                 }
5880
5881                 header->size += size;
5882         }
5883
5884         if (sample_type & PERF_SAMPLE_STACK_USER) {
5885                 /*
5886                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5887                  * processed as the last one or have additional check added
5888                  * in case new sample type is added, because we could eat
5889                  * up the rest of the sample size.
5890                  */
5891                 u16 stack_size = event->attr.sample_stack_user;
5892                 u16 size = sizeof(u64);
5893
5894                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5895                                                      data->regs_user.regs);
5896
5897                 /*
5898                  * If there is something to dump, add space for the dump
5899                  * itself and for the field that tells the dynamic size,
5900                  * which is how many have been actually dumped.
5901                  */
5902                 if (stack_size)
5903                         size += sizeof(u64) + stack_size;
5904
5905                 data->stack_user_size = stack_size;
5906                 header->size += size;
5907         }
5908
5909         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5910                 /* regs dump ABI info */
5911                 int size = sizeof(u64);
5912
5913                 perf_sample_regs_intr(&data->regs_intr, regs);
5914
5915                 if (data->regs_intr.regs) {
5916                         u64 mask = event->attr.sample_regs_intr;
5917
5918                         size += hweight64(mask) * sizeof(u64);
5919                 }
5920
5921                 header->size += size;
5922         }
5923 }
5924
5925 static void __always_inline
5926 __perf_event_output(struct perf_event *event,
5927                     struct perf_sample_data *data,
5928                     struct pt_regs *regs,
5929                     int (*output_begin)(struct perf_output_handle *,
5930                                         struct perf_event *,
5931                                         unsigned int))
5932 {
5933         struct perf_output_handle handle;
5934         struct perf_event_header header;
5935
5936         /* protect the callchain buffers */
5937         rcu_read_lock();
5938
5939         perf_prepare_sample(&header, data, event, regs);
5940
5941         if (output_begin(&handle, event, header.size))
5942                 goto exit;
5943
5944         perf_output_sample(&handle, &header, data, event);
5945
5946         perf_output_end(&handle);
5947
5948 exit:
5949         rcu_read_unlock();
5950 }
5951
5952 void
5953 perf_event_output_forward(struct perf_event *event,
5954                          struct perf_sample_data *data,
5955                          struct pt_regs *regs)
5956 {
5957         __perf_event_output(event, data, regs, perf_output_begin_forward);
5958 }
5959
5960 void
5961 perf_event_output_backward(struct perf_event *event,
5962                            struct perf_sample_data *data,
5963                            struct pt_regs *regs)
5964 {
5965         __perf_event_output(event, data, regs, perf_output_begin_backward);
5966 }
5967
5968 void
5969 perf_event_output(struct perf_event *event,
5970                   struct perf_sample_data *data,
5971                   struct pt_regs *regs)
5972 {
5973         __perf_event_output(event, data, regs, perf_output_begin);
5974 }
5975
5976 /*
5977  * read event_id
5978  */
5979
5980 struct perf_read_event {
5981         struct perf_event_header        header;
5982
5983         u32                             pid;
5984         u32                             tid;
5985 };
5986
5987 static void
5988 perf_event_read_event(struct perf_event *event,
5989                         struct task_struct *task)
5990 {
5991         struct perf_output_handle handle;
5992         struct perf_sample_data sample;
5993         struct perf_read_event read_event = {
5994                 .header = {
5995                         .type = PERF_RECORD_READ,
5996                         .misc = 0,
5997                         .size = sizeof(read_event) + event->read_size,
5998                 },
5999                 .pid = perf_event_pid(event, task),
6000                 .tid = perf_event_tid(event, task),
6001         };
6002         int ret;
6003
6004         perf_event_header__init_id(&read_event.header, &sample, event);
6005         ret = perf_output_begin(&handle, event, read_event.header.size);
6006         if (ret)
6007                 return;
6008
6009         perf_output_put(&handle, read_event);
6010         perf_output_read(&handle, event);
6011         perf_event__output_id_sample(event, &handle, &sample);
6012
6013         perf_output_end(&handle);
6014 }
6015
6016 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6017
6018 static void
6019 perf_iterate_ctx(struct perf_event_context *ctx,
6020                    perf_iterate_f output,
6021                    void *data, bool all)
6022 {
6023         struct perf_event *event;
6024
6025         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6026                 if (!all) {
6027                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6028                                 continue;
6029                         if (!event_filter_match(event))
6030                                 continue;
6031                 }
6032
6033                 output(event, data);
6034         }
6035 }
6036
6037 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6038 {
6039         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6040         struct perf_event *event;
6041
6042         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6043                 /*
6044                  * Skip events that are not fully formed yet; ensure that
6045                  * if we observe event->ctx, both event and ctx will be
6046                  * complete enough. See perf_install_in_context().
6047                  */
6048                 if (!smp_load_acquire(&event->ctx))
6049                         continue;
6050
6051                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6052                         continue;
6053                 if (!event_filter_match(event))
6054                         continue;
6055                 output(event, data);
6056         }
6057 }
6058
6059 /*
6060  * Iterate all events that need to receive side-band events.
6061  *
6062  * For new callers; ensure that account_pmu_sb_event() includes
6063  * your event, otherwise it might not get delivered.
6064  */
6065 static void
6066 perf_iterate_sb(perf_iterate_f output, void *data,
6067                struct perf_event_context *task_ctx)
6068 {
6069         struct perf_event_context *ctx;
6070         int ctxn;
6071
6072         rcu_read_lock();
6073         preempt_disable();
6074
6075         /*
6076          * If we have task_ctx != NULL we only notify the task context itself.
6077          * The task_ctx is set only for EXIT events before releasing task
6078          * context.
6079          */
6080         if (task_ctx) {
6081                 perf_iterate_ctx(task_ctx, output, data, false);
6082                 goto done;
6083         }
6084
6085         perf_iterate_sb_cpu(output, data);
6086
6087         for_each_task_context_nr(ctxn) {
6088                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6089                 if (ctx)
6090                         perf_iterate_ctx(ctx, output, data, false);
6091         }
6092 done:
6093         preempt_enable();
6094         rcu_read_unlock();
6095 }
6096
6097 /*
6098  * Clear all file-based filters at exec, they'll have to be
6099  * re-instated when/if these objects are mmapped again.
6100  */
6101 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6102 {
6103         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6104         struct perf_addr_filter *filter;
6105         unsigned int restart = 0, count = 0;
6106         unsigned long flags;
6107
6108         if (!has_addr_filter(event))
6109                 return;
6110
6111         raw_spin_lock_irqsave(&ifh->lock, flags);
6112         list_for_each_entry(filter, &ifh->list, entry) {
6113                 if (filter->inode) {
6114                         event->addr_filters_offs[count] = 0;
6115                         restart++;
6116                 }
6117
6118                 count++;
6119         }
6120
6121         if (restart)
6122                 event->addr_filters_gen++;
6123         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6124
6125         if (restart)
6126                 perf_event_restart(event);
6127 }
6128
6129 void perf_event_exec(void)
6130 {
6131         struct perf_event_context *ctx;
6132         int ctxn;
6133
6134         rcu_read_lock();
6135         for_each_task_context_nr(ctxn) {
6136                 ctx = current->perf_event_ctxp[ctxn];
6137                 if (!ctx)
6138                         continue;
6139
6140                 perf_event_enable_on_exec(ctxn);
6141
6142                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6143                                    true);
6144         }
6145         rcu_read_unlock();
6146 }
6147
6148 struct remote_output {
6149         struct ring_buffer      *rb;
6150         int                     err;
6151 };
6152
6153 static void __perf_event_output_stop(struct perf_event *event, void *data)
6154 {
6155         struct perf_event *parent = event->parent;
6156         struct remote_output *ro = data;
6157         struct ring_buffer *rb = ro->rb;
6158         struct stop_event_data sd = {
6159                 .event  = event,
6160         };
6161
6162         if (!has_aux(event))
6163                 return;
6164
6165         if (!parent)
6166                 parent = event;
6167
6168         /*
6169          * In case of inheritance, it will be the parent that links to the
6170          * ring-buffer, but it will be the child that's actually using it:
6171          */
6172         if (rcu_dereference(parent->rb) == rb)
6173                 ro->err = __perf_event_stop(&sd);
6174 }
6175
6176 static int __perf_pmu_output_stop(void *info)
6177 {
6178         struct perf_event *event = info;
6179         struct pmu *pmu = event->pmu;
6180         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6181         struct remote_output ro = {
6182                 .rb     = event->rb,
6183         };
6184
6185         rcu_read_lock();
6186         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6187         if (cpuctx->task_ctx)
6188                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6189                                    &ro, false);
6190         rcu_read_unlock();
6191
6192         return ro.err;
6193 }
6194
6195 static void perf_pmu_output_stop(struct perf_event *event)
6196 {
6197         struct perf_event *iter;
6198         int err, cpu;
6199
6200 restart:
6201         rcu_read_lock();
6202         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6203                 /*
6204                  * For per-CPU events, we need to make sure that neither they
6205                  * nor their children are running; for cpu==-1 events it's
6206                  * sufficient to stop the event itself if it's active, since
6207                  * it can't have children.
6208                  */
6209                 cpu = iter->cpu;
6210                 if (cpu == -1)
6211                         cpu = READ_ONCE(iter->oncpu);
6212
6213                 if (cpu == -1)
6214                         continue;
6215
6216                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6217                 if (err == -EAGAIN) {
6218                         rcu_read_unlock();
6219                         goto restart;
6220                 }
6221         }
6222         rcu_read_unlock();
6223 }
6224
6225 /*
6226  * task tracking -- fork/exit
6227  *
6228  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6229  */
6230
6231 struct perf_task_event {
6232         struct task_struct              *task;
6233         struct perf_event_context       *task_ctx;
6234
6235         struct {
6236                 struct perf_event_header        header;
6237
6238                 u32                             pid;
6239                 u32                             ppid;
6240                 u32                             tid;
6241                 u32                             ptid;
6242                 u64                             time;
6243         } event_id;
6244 };
6245
6246 static int perf_event_task_match(struct perf_event *event)
6247 {
6248         return event->attr.comm  || event->attr.mmap ||
6249                event->attr.mmap2 || event->attr.mmap_data ||
6250                event->attr.task;
6251 }
6252
6253 static void perf_event_task_output(struct perf_event *event,
6254                                    void *data)
6255 {
6256         struct perf_task_event *task_event = data;
6257         struct perf_output_handle handle;
6258         struct perf_sample_data sample;
6259         struct task_struct *task = task_event->task;
6260         int ret, size = task_event->event_id.header.size;
6261
6262         if (!perf_event_task_match(event))
6263                 return;
6264
6265         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6266
6267         ret = perf_output_begin(&handle, event,
6268                                 task_event->event_id.header.size);
6269         if (ret)
6270                 goto out;
6271
6272         task_event->event_id.pid = perf_event_pid(event, task);
6273         task_event->event_id.ppid = perf_event_pid(event, current);
6274
6275         task_event->event_id.tid = perf_event_tid(event, task);
6276         task_event->event_id.ptid = perf_event_tid(event, current);
6277
6278         task_event->event_id.time = perf_event_clock(event);
6279
6280         perf_output_put(&handle, task_event->event_id);
6281
6282         perf_event__output_id_sample(event, &handle, &sample);
6283
6284         perf_output_end(&handle);
6285 out:
6286         task_event->event_id.header.size = size;
6287 }
6288
6289 static void perf_event_task(struct task_struct *task,
6290                               struct perf_event_context *task_ctx,
6291                               int new)
6292 {
6293         struct perf_task_event task_event;
6294
6295         if (!atomic_read(&nr_comm_events) &&
6296             !atomic_read(&nr_mmap_events) &&
6297             !atomic_read(&nr_task_events))
6298                 return;
6299
6300         task_event = (struct perf_task_event){
6301                 .task     = task,
6302                 .task_ctx = task_ctx,
6303                 .event_id    = {
6304                         .header = {
6305                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6306                                 .misc = 0,
6307                                 .size = sizeof(task_event.event_id),
6308                         },
6309                         /* .pid  */
6310                         /* .ppid */
6311                         /* .tid  */
6312                         /* .ptid */
6313                         /* .time */
6314                 },
6315         };
6316
6317         perf_iterate_sb(perf_event_task_output,
6318                        &task_event,
6319                        task_ctx);
6320 }
6321
6322 void perf_event_fork(struct task_struct *task)
6323 {
6324         perf_event_task(task, NULL, 1);
6325 }
6326
6327 /*
6328  * comm tracking
6329  */
6330
6331 struct perf_comm_event {
6332         struct task_struct      *task;
6333         char                    *comm;
6334         int                     comm_size;
6335
6336         struct {
6337                 struct perf_event_header        header;
6338
6339                 u32                             pid;
6340                 u32                             tid;
6341         } event_id;
6342 };
6343
6344 static int perf_event_comm_match(struct perf_event *event)
6345 {
6346         return event->attr.comm;
6347 }
6348
6349 static void perf_event_comm_output(struct perf_event *event,
6350                                    void *data)
6351 {
6352         struct perf_comm_event *comm_event = data;
6353         struct perf_output_handle handle;
6354         struct perf_sample_data sample;
6355         int size = comm_event->event_id.header.size;
6356         int ret;
6357
6358         if (!perf_event_comm_match(event))
6359                 return;
6360
6361         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6362         ret = perf_output_begin(&handle, event,
6363                                 comm_event->event_id.header.size);
6364
6365         if (ret)
6366                 goto out;
6367
6368         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6369         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6370
6371         perf_output_put(&handle, comm_event->event_id);
6372         __output_copy(&handle, comm_event->comm,
6373                                    comm_event->comm_size);
6374
6375         perf_event__output_id_sample(event, &handle, &sample);
6376
6377         perf_output_end(&handle);
6378 out:
6379         comm_event->event_id.header.size = size;
6380 }
6381
6382 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6383 {
6384         char comm[TASK_COMM_LEN];
6385         unsigned int size;
6386
6387         memset(comm, 0, sizeof(comm));
6388         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6389         size = ALIGN(strlen(comm)+1, sizeof(u64));
6390
6391         comm_event->comm = comm;
6392         comm_event->comm_size = size;
6393
6394         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6395
6396         perf_iterate_sb(perf_event_comm_output,
6397                        comm_event,
6398                        NULL);
6399 }
6400
6401 void perf_event_comm(struct task_struct *task, bool exec)
6402 {
6403         struct perf_comm_event comm_event;
6404
6405         if (!atomic_read(&nr_comm_events))
6406                 return;
6407
6408         comm_event = (struct perf_comm_event){
6409                 .task   = task,
6410                 /* .comm      */
6411                 /* .comm_size */
6412                 .event_id  = {
6413                         .header = {
6414                                 .type = PERF_RECORD_COMM,
6415                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6416                                 /* .size */
6417                         },
6418                         /* .pid */
6419                         /* .tid */
6420                 },
6421         };
6422
6423         perf_event_comm_event(&comm_event);
6424 }
6425
6426 /*
6427  * mmap tracking
6428  */
6429
6430 struct perf_mmap_event {
6431         struct vm_area_struct   *vma;
6432
6433         const char              *file_name;
6434         int                     file_size;
6435         int                     maj, min;
6436         u64                     ino;
6437         u64                     ino_generation;
6438         u32                     prot, flags;
6439
6440         struct {
6441                 struct perf_event_header        header;
6442
6443                 u32                             pid;
6444                 u32                             tid;
6445                 u64                             start;
6446                 u64                             len;
6447                 u64                             pgoff;
6448         } event_id;
6449 };
6450
6451 static int perf_event_mmap_match(struct perf_event *event,
6452                                  void *data)
6453 {
6454         struct perf_mmap_event *mmap_event = data;
6455         struct vm_area_struct *vma = mmap_event->vma;
6456         int executable = vma->vm_flags & VM_EXEC;
6457
6458         return (!executable && event->attr.mmap_data) ||
6459                (executable && (event->attr.mmap || event->attr.mmap2));
6460 }
6461
6462 static void perf_event_mmap_output(struct perf_event *event,
6463                                    void *data)
6464 {
6465         struct perf_mmap_event *mmap_event = data;
6466         struct perf_output_handle handle;
6467         struct perf_sample_data sample;
6468         int size = mmap_event->event_id.header.size;
6469         int ret;
6470
6471         if (!perf_event_mmap_match(event, data))
6472                 return;
6473
6474         if (event->attr.mmap2) {
6475                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6476                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6477                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6478                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6479                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6480                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6481                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6482         }
6483
6484         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6485         ret = perf_output_begin(&handle, event,
6486                                 mmap_event->event_id.header.size);
6487         if (ret)
6488                 goto out;
6489
6490         mmap_event->event_id.pid = perf_event_pid(event, current);
6491         mmap_event->event_id.tid = perf_event_tid(event, current);
6492
6493         perf_output_put(&handle, mmap_event->event_id);
6494
6495         if (event->attr.mmap2) {
6496                 perf_output_put(&handle, mmap_event->maj);
6497                 perf_output_put(&handle, mmap_event->min);
6498                 perf_output_put(&handle, mmap_event->ino);
6499                 perf_output_put(&handle, mmap_event->ino_generation);
6500                 perf_output_put(&handle, mmap_event->prot);
6501                 perf_output_put(&handle, mmap_event->flags);
6502         }
6503
6504         __output_copy(&handle, mmap_event->file_name,
6505                                    mmap_event->file_size);
6506
6507         perf_event__output_id_sample(event, &handle, &sample);
6508
6509         perf_output_end(&handle);
6510 out:
6511         mmap_event->event_id.header.size = size;
6512 }
6513
6514 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6515 {
6516         struct vm_area_struct *vma = mmap_event->vma;
6517         struct file *file = vma->vm_file;
6518         int maj = 0, min = 0;
6519         u64 ino = 0, gen = 0;
6520         u32 prot = 0, flags = 0;
6521         unsigned int size;
6522         char tmp[16];
6523         char *buf = NULL;
6524         char *name;
6525
6526         if (file) {
6527                 struct inode *inode;
6528                 dev_t dev;
6529
6530                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6531                 if (!buf) {
6532                         name = "//enomem";
6533                         goto cpy_name;
6534                 }
6535                 /*
6536                  * d_path() works from the end of the rb backwards, so we
6537                  * need to add enough zero bytes after the string to handle
6538                  * the 64bit alignment we do later.
6539                  */
6540                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6541                 if (IS_ERR(name)) {
6542                         name = "//toolong";
6543                         goto cpy_name;
6544                 }
6545                 inode = file_inode(vma->vm_file);
6546                 dev = inode->i_sb->s_dev;
6547                 ino = inode->i_ino;
6548                 gen = inode->i_generation;
6549                 maj = MAJOR(dev);
6550                 min = MINOR(dev);
6551
6552                 if (vma->vm_flags & VM_READ)
6553                         prot |= PROT_READ;
6554                 if (vma->vm_flags & VM_WRITE)
6555                         prot |= PROT_WRITE;
6556                 if (vma->vm_flags & VM_EXEC)
6557                         prot |= PROT_EXEC;
6558
6559                 if (vma->vm_flags & VM_MAYSHARE)
6560                         flags = MAP_SHARED;
6561                 else
6562                         flags = MAP_PRIVATE;
6563
6564                 if (vma->vm_flags & VM_DENYWRITE)
6565                         flags |= MAP_DENYWRITE;
6566                 if (vma->vm_flags & VM_MAYEXEC)
6567                         flags |= MAP_EXECUTABLE;
6568                 if (vma->vm_flags & VM_LOCKED)
6569                         flags |= MAP_LOCKED;
6570                 if (vma->vm_flags & VM_HUGETLB)
6571                         flags |= MAP_HUGETLB;
6572
6573                 goto got_name;
6574         } else {
6575                 if (vma->vm_ops && vma->vm_ops->name) {
6576                         name = (char *) vma->vm_ops->name(vma);
6577                         if (name)
6578                                 goto cpy_name;
6579                 }
6580
6581                 name = (char *)arch_vma_name(vma);
6582                 if (name)
6583                         goto cpy_name;
6584
6585                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6586                                 vma->vm_end >= vma->vm_mm->brk) {
6587                         name = "[heap]";
6588                         goto cpy_name;
6589                 }
6590                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6591                                 vma->vm_end >= vma->vm_mm->start_stack) {
6592                         name = "[stack]";
6593                         goto cpy_name;
6594                 }
6595
6596                 name = "//anon";
6597                 goto cpy_name;
6598         }
6599
6600 cpy_name:
6601         strlcpy(tmp, name, sizeof(tmp));
6602         name = tmp;
6603 got_name:
6604         /*
6605          * Since our buffer works in 8 byte units we need to align our string
6606          * size to a multiple of 8. However, we must guarantee the tail end is
6607          * zero'd out to avoid leaking random bits to userspace.
6608          */
6609         size = strlen(name)+1;
6610         while (!IS_ALIGNED(size, sizeof(u64)))
6611                 name[size++] = '\0';
6612
6613         mmap_event->file_name = name;
6614         mmap_event->file_size = size;
6615         mmap_event->maj = maj;
6616         mmap_event->min = min;
6617         mmap_event->ino = ino;
6618         mmap_event->ino_generation = gen;
6619         mmap_event->prot = prot;
6620         mmap_event->flags = flags;
6621
6622         if (!(vma->vm_flags & VM_EXEC))
6623                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6624
6625         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6626
6627         perf_iterate_sb(perf_event_mmap_output,
6628                        mmap_event,
6629                        NULL);
6630
6631         kfree(buf);
6632 }
6633
6634 /*
6635  * Check whether inode and address range match filter criteria.
6636  */
6637 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6638                                      struct file *file, unsigned long offset,
6639                                      unsigned long size)
6640 {
6641         if (filter->inode != file->f_inode)
6642                 return false;
6643
6644         if (filter->offset > offset + size)
6645                 return false;
6646
6647         if (filter->offset + filter->size < offset)
6648                 return false;
6649
6650         return true;
6651 }
6652
6653 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6654 {
6655         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6656         struct vm_area_struct *vma = data;
6657         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6658         struct file *file = vma->vm_file;
6659         struct perf_addr_filter *filter;
6660         unsigned int restart = 0, count = 0;
6661
6662         if (!has_addr_filter(event))
6663                 return;
6664
6665         if (!file)
6666                 return;
6667
6668         raw_spin_lock_irqsave(&ifh->lock, flags);
6669         list_for_each_entry(filter, &ifh->list, entry) {
6670                 if (perf_addr_filter_match(filter, file, off,
6671                                              vma->vm_end - vma->vm_start)) {
6672                         event->addr_filters_offs[count] = vma->vm_start;
6673                         restart++;
6674                 }
6675
6676                 count++;
6677         }
6678
6679         if (restart)
6680                 event->addr_filters_gen++;
6681         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6682
6683         if (restart)
6684                 perf_event_restart(event);
6685 }
6686
6687 /*
6688  * Adjust all task's events' filters to the new vma
6689  */
6690 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6691 {
6692         struct perf_event_context *ctx;
6693         int ctxn;
6694
6695         /*
6696          * Data tracing isn't supported yet and as such there is no need
6697          * to keep track of anything that isn't related to executable code:
6698          */
6699         if (!(vma->vm_flags & VM_EXEC))
6700                 return;
6701
6702         rcu_read_lock();
6703         for_each_task_context_nr(ctxn) {
6704                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6705                 if (!ctx)
6706                         continue;
6707
6708                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6709         }
6710         rcu_read_unlock();
6711 }
6712
6713 void perf_event_mmap(struct vm_area_struct *vma)
6714 {
6715         struct perf_mmap_event mmap_event;
6716
6717         if (!atomic_read(&nr_mmap_events))
6718                 return;
6719
6720         mmap_event = (struct perf_mmap_event){
6721                 .vma    = vma,
6722                 /* .file_name */
6723                 /* .file_size */
6724                 .event_id  = {
6725                         .header = {
6726                                 .type = PERF_RECORD_MMAP,
6727                                 .misc = PERF_RECORD_MISC_USER,
6728                                 /* .size */
6729                         },
6730                         /* .pid */
6731                         /* .tid */
6732                         .start  = vma->vm_start,
6733                         .len    = vma->vm_end - vma->vm_start,
6734                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6735                 },
6736                 /* .maj (attr_mmap2 only) */
6737                 /* .min (attr_mmap2 only) */
6738                 /* .ino (attr_mmap2 only) */
6739                 /* .ino_generation (attr_mmap2 only) */
6740                 /* .prot (attr_mmap2 only) */
6741                 /* .flags (attr_mmap2 only) */
6742         };
6743
6744         perf_addr_filters_adjust(vma);
6745         perf_event_mmap_event(&mmap_event);
6746 }
6747
6748 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6749                           unsigned long size, u64 flags)
6750 {
6751         struct perf_output_handle handle;
6752         struct perf_sample_data sample;
6753         struct perf_aux_event {
6754                 struct perf_event_header        header;
6755                 u64                             offset;
6756                 u64                             size;
6757                 u64                             flags;
6758         } rec = {
6759                 .header = {
6760                         .type = PERF_RECORD_AUX,
6761                         .misc = 0,
6762                         .size = sizeof(rec),
6763                 },
6764                 .offset         = head,
6765                 .size           = size,
6766                 .flags          = flags,
6767         };
6768         int ret;
6769
6770         perf_event_header__init_id(&rec.header, &sample, event);
6771         ret = perf_output_begin(&handle, event, rec.header.size);
6772
6773         if (ret)
6774                 return;
6775
6776         perf_output_put(&handle, rec);
6777         perf_event__output_id_sample(event, &handle, &sample);
6778
6779         perf_output_end(&handle);
6780 }
6781
6782 /*
6783  * Lost/dropped samples logging
6784  */
6785 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6786 {
6787         struct perf_output_handle handle;
6788         struct perf_sample_data sample;
6789         int ret;
6790
6791         struct {
6792                 struct perf_event_header        header;
6793                 u64                             lost;
6794         } lost_samples_event = {
6795                 .header = {
6796                         .type = PERF_RECORD_LOST_SAMPLES,
6797                         .misc = 0,
6798                         .size = sizeof(lost_samples_event),
6799                 },
6800                 .lost           = lost,
6801         };
6802
6803         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6804
6805         ret = perf_output_begin(&handle, event,
6806                                 lost_samples_event.header.size);
6807         if (ret)
6808                 return;
6809
6810         perf_output_put(&handle, lost_samples_event);
6811         perf_event__output_id_sample(event, &handle, &sample);
6812         perf_output_end(&handle);
6813 }
6814
6815 /*
6816  * context_switch tracking
6817  */
6818
6819 struct perf_switch_event {
6820         struct task_struct      *task;
6821         struct task_struct      *next_prev;
6822
6823         struct {
6824                 struct perf_event_header        header;
6825                 u32                             next_prev_pid;
6826                 u32                             next_prev_tid;
6827         } event_id;
6828 };
6829
6830 static int perf_event_switch_match(struct perf_event *event)
6831 {
6832         return event->attr.context_switch;
6833 }
6834
6835 static void perf_event_switch_output(struct perf_event *event, void *data)
6836 {
6837         struct perf_switch_event *se = data;
6838         struct perf_output_handle handle;
6839         struct perf_sample_data sample;
6840         int ret;
6841
6842         if (!perf_event_switch_match(event))
6843                 return;
6844
6845         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6846         if (event->ctx->task) {
6847                 se->event_id.header.type = PERF_RECORD_SWITCH;
6848                 se->event_id.header.size = sizeof(se->event_id.header);
6849         } else {
6850                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6851                 se->event_id.header.size = sizeof(se->event_id);
6852                 se->event_id.next_prev_pid =
6853                                         perf_event_pid(event, se->next_prev);
6854                 se->event_id.next_prev_tid =
6855                                         perf_event_tid(event, se->next_prev);
6856         }
6857
6858         perf_event_header__init_id(&se->event_id.header, &sample, event);
6859
6860         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6861         if (ret)
6862                 return;
6863
6864         if (event->ctx->task)
6865                 perf_output_put(&handle, se->event_id.header);
6866         else
6867                 perf_output_put(&handle, se->event_id);
6868
6869         perf_event__output_id_sample(event, &handle, &sample);
6870
6871         perf_output_end(&handle);
6872 }
6873
6874 static void perf_event_switch(struct task_struct *task,
6875                               struct task_struct *next_prev, bool sched_in)
6876 {
6877         struct perf_switch_event switch_event;
6878
6879         /* N.B. caller checks nr_switch_events != 0 */
6880
6881         switch_event = (struct perf_switch_event){
6882                 .task           = task,
6883                 .next_prev      = next_prev,
6884                 .event_id       = {
6885                         .header = {
6886                                 /* .type */
6887                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6888                                 /* .size */
6889                         },
6890                         /* .next_prev_pid */
6891                         /* .next_prev_tid */
6892                 },
6893         };
6894
6895         perf_iterate_sb(perf_event_switch_output,
6896                        &switch_event,
6897                        NULL);
6898 }
6899
6900 /*
6901  * IRQ throttle logging
6902  */
6903
6904 static void perf_log_throttle(struct perf_event *event, int enable)
6905 {
6906         struct perf_output_handle handle;
6907         struct perf_sample_data sample;
6908         int ret;
6909
6910         struct {
6911                 struct perf_event_header        header;
6912                 u64                             time;
6913                 u64                             id;
6914                 u64                             stream_id;
6915         } throttle_event = {
6916                 .header = {
6917                         .type = PERF_RECORD_THROTTLE,
6918                         .misc = 0,
6919                         .size = sizeof(throttle_event),
6920                 },
6921                 .time           = perf_event_clock(event),
6922                 .id             = primary_event_id(event),
6923                 .stream_id      = event->id,
6924         };
6925
6926         if (enable)
6927                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6928
6929         perf_event_header__init_id(&throttle_event.header, &sample, event);
6930
6931         ret = perf_output_begin(&handle, event,
6932                                 throttle_event.header.size);
6933         if (ret)
6934                 return;
6935
6936         perf_output_put(&handle, throttle_event);
6937         perf_event__output_id_sample(event, &handle, &sample);
6938         perf_output_end(&handle);
6939 }
6940
6941 static void perf_log_itrace_start(struct perf_event *event)
6942 {
6943         struct perf_output_handle handle;
6944         struct perf_sample_data sample;
6945         struct perf_aux_event {
6946                 struct perf_event_header        header;
6947                 u32                             pid;
6948                 u32                             tid;
6949         } rec;
6950         int ret;
6951
6952         if (event->parent)
6953                 event = event->parent;
6954
6955         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6956             event->hw.itrace_started)
6957                 return;
6958
6959         rec.header.type = PERF_RECORD_ITRACE_START;
6960         rec.header.misc = 0;
6961         rec.header.size = sizeof(rec);
6962         rec.pid = perf_event_pid(event, current);
6963         rec.tid = perf_event_tid(event, current);
6964
6965         perf_event_header__init_id(&rec.header, &sample, event);
6966         ret = perf_output_begin(&handle, event, rec.header.size);
6967
6968         if (ret)
6969                 return;
6970
6971         perf_output_put(&handle, rec);
6972         perf_event__output_id_sample(event, &handle, &sample);
6973
6974         perf_output_end(&handle);
6975 }
6976
6977 /*
6978  * Generic event overflow handling, sampling.
6979  */
6980
6981 static int __perf_event_overflow(struct perf_event *event,
6982                                    int throttle, struct perf_sample_data *data,
6983                                    struct pt_regs *regs)
6984 {
6985         int events = atomic_read(&event->event_limit);
6986         struct hw_perf_event *hwc = &event->hw;
6987         u64 seq;
6988         int ret = 0;
6989
6990         /*
6991          * Non-sampling counters might still use the PMI to fold short
6992          * hardware counters, ignore those.
6993          */
6994         if (unlikely(!is_sampling_event(event)))
6995                 return 0;
6996
6997         seq = __this_cpu_read(perf_throttled_seq);
6998         if (seq != hwc->interrupts_seq) {
6999                 hwc->interrupts_seq = seq;
7000                 hwc->interrupts = 1;
7001         } else {
7002                 hwc->interrupts++;
7003                 if (unlikely(throttle
7004                              && hwc->interrupts >= max_samples_per_tick)) {
7005                         __this_cpu_inc(perf_throttled_count);
7006                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7007                         hwc->interrupts = MAX_INTERRUPTS;
7008                         perf_log_throttle(event, 0);
7009                         ret = 1;
7010                 }
7011         }
7012
7013         if (event->attr.freq) {
7014                 u64 now = perf_clock();
7015                 s64 delta = now - hwc->freq_time_stamp;
7016
7017                 hwc->freq_time_stamp = now;
7018
7019                 if (delta > 0 && delta < 2*TICK_NSEC)
7020                         perf_adjust_period(event, delta, hwc->last_period, true);
7021         }
7022
7023         /*
7024          * XXX event_limit might not quite work as expected on inherited
7025          * events
7026          */
7027
7028         event->pending_kill = POLL_IN;
7029         if (events && atomic_dec_and_test(&event->event_limit)) {
7030                 ret = 1;
7031                 event->pending_kill = POLL_HUP;
7032                 event->pending_disable = 1;
7033                 irq_work_queue(&event->pending);
7034         }
7035
7036         event->overflow_handler(event, data, regs);
7037
7038         if (*perf_event_fasync(event) && event->pending_kill) {
7039                 event->pending_wakeup = 1;
7040                 irq_work_queue(&event->pending);
7041         }
7042
7043         return ret;
7044 }
7045
7046 int perf_event_overflow(struct perf_event *event,
7047                           struct perf_sample_data *data,
7048                           struct pt_regs *regs)
7049 {
7050         return __perf_event_overflow(event, 1, data, regs);
7051 }
7052
7053 /*
7054  * Generic software event infrastructure
7055  */
7056
7057 struct swevent_htable {
7058         struct swevent_hlist            *swevent_hlist;
7059         struct mutex                    hlist_mutex;
7060         int                             hlist_refcount;
7061
7062         /* Recursion avoidance in each contexts */
7063         int                             recursion[PERF_NR_CONTEXTS];
7064 };
7065
7066 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7067
7068 /*
7069  * We directly increment event->count and keep a second value in
7070  * event->hw.period_left to count intervals. This period event
7071  * is kept in the range [-sample_period, 0] so that we can use the
7072  * sign as trigger.
7073  */
7074
7075 u64 perf_swevent_set_period(struct perf_event *event)
7076 {
7077         struct hw_perf_event *hwc = &event->hw;
7078         u64 period = hwc->last_period;
7079         u64 nr, offset;
7080         s64 old, val;
7081
7082         hwc->last_period = hwc->sample_period;
7083
7084 again:
7085         old = val = local64_read(&hwc->period_left);
7086         if (val < 0)
7087                 return 0;
7088
7089         nr = div64_u64(period + val, period);
7090         offset = nr * period;
7091         val -= offset;
7092         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7093                 goto again;
7094
7095         return nr;
7096 }
7097
7098 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7099                                     struct perf_sample_data *data,
7100                                     struct pt_regs *regs)
7101 {
7102         struct hw_perf_event *hwc = &event->hw;
7103         int throttle = 0;
7104
7105         if (!overflow)
7106                 overflow = perf_swevent_set_period(event);
7107
7108         if (hwc->interrupts == MAX_INTERRUPTS)
7109                 return;
7110
7111         for (; overflow; overflow--) {
7112                 if (__perf_event_overflow(event, throttle,
7113                                             data, regs)) {
7114                         /*
7115                          * We inhibit the overflow from happening when
7116                          * hwc->interrupts == MAX_INTERRUPTS.
7117                          */
7118                         break;
7119                 }
7120                 throttle = 1;
7121         }
7122 }
7123
7124 static void perf_swevent_event(struct perf_event *event, u64 nr,
7125                                struct perf_sample_data *data,
7126                                struct pt_regs *regs)
7127 {
7128         struct hw_perf_event *hwc = &event->hw;
7129
7130         local64_add(nr, &event->count);
7131
7132         if (!regs)
7133                 return;
7134
7135         if (!is_sampling_event(event))
7136                 return;
7137
7138         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7139                 data->period = nr;
7140                 return perf_swevent_overflow(event, 1, data, regs);
7141         } else
7142                 data->period = event->hw.last_period;
7143
7144         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7145                 return perf_swevent_overflow(event, 1, data, regs);
7146
7147         if (local64_add_negative(nr, &hwc->period_left))
7148                 return;
7149
7150         perf_swevent_overflow(event, 0, data, regs);
7151 }
7152
7153 static int perf_exclude_event(struct perf_event *event,
7154                               struct pt_regs *regs)
7155 {
7156         if (event->hw.state & PERF_HES_STOPPED)
7157                 return 1;
7158
7159         if (regs) {
7160                 if (event->attr.exclude_user && user_mode(regs))
7161                         return 1;
7162
7163                 if (event->attr.exclude_kernel && !user_mode(regs))
7164                         return 1;
7165         }
7166
7167         return 0;
7168 }
7169
7170 static int perf_swevent_match(struct perf_event *event,
7171                                 enum perf_type_id type,
7172                                 u32 event_id,
7173                                 struct perf_sample_data *data,
7174                                 struct pt_regs *regs)
7175 {
7176         if (event->attr.type != type)
7177                 return 0;
7178
7179         if (event->attr.config != event_id)
7180                 return 0;
7181
7182         if (perf_exclude_event(event, regs))
7183                 return 0;
7184
7185         return 1;
7186 }
7187
7188 static inline u64 swevent_hash(u64 type, u32 event_id)
7189 {
7190         u64 val = event_id | (type << 32);
7191
7192         return hash_64(val, SWEVENT_HLIST_BITS);
7193 }
7194
7195 static inline struct hlist_head *
7196 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7197 {
7198         u64 hash = swevent_hash(type, event_id);
7199
7200         return &hlist->heads[hash];
7201 }
7202
7203 /* For the read side: events when they trigger */
7204 static inline struct hlist_head *
7205 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7206 {
7207         struct swevent_hlist *hlist;
7208
7209         hlist = rcu_dereference(swhash->swevent_hlist);
7210         if (!hlist)
7211                 return NULL;
7212
7213         return __find_swevent_head(hlist, type, event_id);
7214 }
7215
7216 /* For the event head insertion and removal in the hlist */
7217 static inline struct hlist_head *
7218 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7219 {
7220         struct swevent_hlist *hlist;
7221         u32 event_id = event->attr.config;
7222         u64 type = event->attr.type;
7223
7224         /*
7225          * Event scheduling is always serialized against hlist allocation
7226          * and release. Which makes the protected version suitable here.
7227          * The context lock guarantees that.
7228          */
7229         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7230                                           lockdep_is_held(&event->ctx->lock));
7231         if (!hlist)
7232                 return NULL;
7233
7234         return __find_swevent_head(hlist, type, event_id);
7235 }
7236
7237 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7238                                     u64 nr,
7239                                     struct perf_sample_data *data,
7240                                     struct pt_regs *regs)
7241 {
7242         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7243         struct perf_event *event;
7244         struct hlist_head *head;
7245
7246         rcu_read_lock();
7247         head = find_swevent_head_rcu(swhash, type, event_id);
7248         if (!head)
7249                 goto end;
7250
7251         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7252                 if (perf_swevent_match(event, type, event_id, data, regs))
7253                         perf_swevent_event(event, nr, data, regs);
7254         }
7255 end:
7256         rcu_read_unlock();
7257 }
7258
7259 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7260
7261 int perf_swevent_get_recursion_context(void)
7262 {
7263         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7264
7265         return get_recursion_context(swhash->recursion);
7266 }
7267 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7268
7269 void perf_swevent_put_recursion_context(int rctx)
7270 {
7271         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7272
7273         put_recursion_context(swhash->recursion, rctx);
7274 }
7275
7276 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7277 {
7278         struct perf_sample_data data;
7279
7280         if (WARN_ON_ONCE(!regs))
7281                 return;
7282
7283         perf_sample_data_init(&data, addr, 0);
7284         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7285 }
7286
7287 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7288 {
7289         int rctx;
7290
7291         preempt_disable_notrace();
7292         rctx = perf_swevent_get_recursion_context();
7293         if (unlikely(rctx < 0))
7294                 goto fail;
7295
7296         ___perf_sw_event(event_id, nr, regs, addr);
7297
7298         perf_swevent_put_recursion_context(rctx);
7299 fail:
7300         preempt_enable_notrace();
7301 }
7302
7303 static void perf_swevent_read(struct perf_event *event)
7304 {
7305 }
7306
7307 static int perf_swevent_add(struct perf_event *event, int flags)
7308 {
7309         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7310         struct hw_perf_event *hwc = &event->hw;
7311         struct hlist_head *head;
7312
7313         if (is_sampling_event(event)) {
7314                 hwc->last_period = hwc->sample_period;
7315                 perf_swevent_set_period(event);
7316         }
7317
7318         hwc->state = !(flags & PERF_EF_START);
7319
7320         head = find_swevent_head(swhash, event);
7321         if (WARN_ON_ONCE(!head))
7322                 return -EINVAL;
7323
7324         hlist_add_head_rcu(&event->hlist_entry, head);
7325         perf_event_update_userpage(event);
7326
7327         return 0;
7328 }
7329
7330 static void perf_swevent_del(struct perf_event *event, int flags)
7331 {
7332         hlist_del_rcu(&event->hlist_entry);
7333 }
7334
7335 static void perf_swevent_start(struct perf_event *event, int flags)
7336 {
7337         event->hw.state = 0;
7338 }
7339
7340 static void perf_swevent_stop(struct perf_event *event, int flags)
7341 {
7342         event->hw.state = PERF_HES_STOPPED;
7343 }
7344
7345 /* Deref the hlist from the update side */
7346 static inline struct swevent_hlist *
7347 swevent_hlist_deref(struct swevent_htable *swhash)
7348 {
7349         return rcu_dereference_protected(swhash->swevent_hlist,
7350                                          lockdep_is_held(&swhash->hlist_mutex));
7351 }
7352
7353 static void swevent_hlist_release(struct swevent_htable *swhash)
7354 {
7355         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7356
7357         if (!hlist)
7358                 return;
7359
7360         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7361         kfree_rcu(hlist, rcu_head);
7362 }
7363
7364 static void swevent_hlist_put_cpu(int cpu)
7365 {
7366         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7367
7368         mutex_lock(&swhash->hlist_mutex);
7369
7370         if (!--swhash->hlist_refcount)
7371                 swevent_hlist_release(swhash);
7372
7373         mutex_unlock(&swhash->hlist_mutex);
7374 }
7375
7376 static void swevent_hlist_put(void)
7377 {
7378         int cpu;
7379
7380         for_each_possible_cpu(cpu)
7381                 swevent_hlist_put_cpu(cpu);
7382 }
7383
7384 static int swevent_hlist_get_cpu(int cpu)
7385 {
7386         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7387         int err = 0;
7388
7389         mutex_lock(&swhash->hlist_mutex);
7390         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7391                 struct swevent_hlist *hlist;
7392
7393                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7394                 if (!hlist) {
7395                         err = -ENOMEM;
7396                         goto exit;
7397                 }
7398                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7399         }
7400         swhash->hlist_refcount++;
7401 exit:
7402         mutex_unlock(&swhash->hlist_mutex);
7403
7404         return err;
7405 }
7406
7407 static int swevent_hlist_get(void)
7408 {
7409         int err, cpu, failed_cpu;
7410
7411         get_online_cpus();
7412         for_each_possible_cpu(cpu) {
7413                 err = swevent_hlist_get_cpu(cpu);
7414                 if (err) {
7415                         failed_cpu = cpu;
7416                         goto fail;
7417                 }
7418         }
7419         put_online_cpus();
7420
7421         return 0;
7422 fail:
7423         for_each_possible_cpu(cpu) {
7424                 if (cpu == failed_cpu)
7425                         break;
7426                 swevent_hlist_put_cpu(cpu);
7427         }
7428
7429         put_online_cpus();
7430         return err;
7431 }
7432
7433 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7434
7435 static void sw_perf_event_destroy(struct perf_event *event)
7436 {
7437         u64 event_id = event->attr.config;
7438
7439         WARN_ON(event->parent);
7440
7441         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7442         swevent_hlist_put();
7443 }
7444
7445 static int perf_swevent_init(struct perf_event *event)
7446 {
7447         u64 event_id = event->attr.config;
7448
7449         if (event->attr.type != PERF_TYPE_SOFTWARE)
7450                 return -ENOENT;
7451
7452         /*
7453          * no branch sampling for software events
7454          */
7455         if (has_branch_stack(event))
7456                 return -EOPNOTSUPP;
7457
7458         switch (event_id) {
7459         case PERF_COUNT_SW_CPU_CLOCK:
7460         case PERF_COUNT_SW_TASK_CLOCK:
7461                 return -ENOENT;
7462
7463         default:
7464                 break;
7465         }
7466
7467         if (event_id >= PERF_COUNT_SW_MAX)
7468                 return -ENOENT;
7469
7470         if (!event->parent) {
7471                 int err;
7472
7473                 err = swevent_hlist_get();
7474                 if (err)
7475                         return err;
7476
7477                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7478                 event->destroy = sw_perf_event_destroy;
7479         }
7480
7481         return 0;
7482 }
7483
7484 static struct pmu perf_swevent = {
7485         .task_ctx_nr    = perf_sw_context,
7486
7487         .capabilities   = PERF_PMU_CAP_NO_NMI,
7488
7489         .event_init     = perf_swevent_init,
7490         .add            = perf_swevent_add,
7491         .del            = perf_swevent_del,
7492         .start          = perf_swevent_start,
7493         .stop           = perf_swevent_stop,
7494         .read           = perf_swevent_read,
7495 };
7496
7497 #ifdef CONFIG_EVENT_TRACING
7498
7499 static int perf_tp_filter_match(struct perf_event *event,
7500                                 struct perf_sample_data *data)
7501 {
7502         void *record = data->raw->frag.data;
7503
7504         /* only top level events have filters set */
7505         if (event->parent)
7506                 event = event->parent;
7507
7508         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7509                 return 1;
7510         return 0;
7511 }
7512
7513 static int perf_tp_event_match(struct perf_event *event,
7514                                 struct perf_sample_data *data,
7515                                 struct pt_regs *regs)
7516 {
7517         if (event->hw.state & PERF_HES_STOPPED)
7518                 return 0;
7519         /*
7520          * All tracepoints are from kernel-space.
7521          */
7522         if (event->attr.exclude_kernel)
7523                 return 0;
7524
7525         if (!perf_tp_filter_match(event, data))
7526                 return 0;
7527
7528         return 1;
7529 }
7530
7531 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7532                                struct trace_event_call *call, u64 count,
7533                                struct pt_regs *regs, struct hlist_head *head,
7534                                struct task_struct *task)
7535 {
7536         struct bpf_prog *prog = call->prog;
7537
7538         if (prog) {
7539                 *(struct pt_regs **)raw_data = regs;
7540                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7541                         perf_swevent_put_recursion_context(rctx);
7542                         return;
7543                 }
7544         }
7545         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7546                       rctx, task);
7547 }
7548 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7549
7550 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7551                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7552                    struct task_struct *task)
7553 {
7554         struct perf_sample_data data;
7555         struct perf_event *event;
7556
7557         struct perf_raw_record raw = {
7558                 .frag = {
7559                         .size = entry_size,
7560                         .data = record,
7561                 },
7562         };
7563
7564         perf_sample_data_init(&data, 0, 0);
7565         data.raw = &raw;
7566
7567         perf_trace_buf_update(record, event_type);
7568
7569         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7570                 if (perf_tp_event_match(event, &data, regs))
7571                         perf_swevent_event(event, count, &data, regs);
7572         }
7573
7574         /*
7575          * If we got specified a target task, also iterate its context and
7576          * deliver this event there too.
7577          */
7578         if (task && task != current) {
7579                 struct perf_event_context *ctx;
7580                 struct trace_entry *entry = record;
7581
7582                 rcu_read_lock();
7583                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7584                 if (!ctx)
7585                         goto unlock;
7586
7587                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7588                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7589                                 continue;
7590                         if (event->attr.config != entry->type)
7591                                 continue;
7592                         if (perf_tp_event_match(event, &data, regs))
7593                                 perf_swevent_event(event, count, &data, regs);
7594                 }
7595 unlock:
7596                 rcu_read_unlock();
7597         }
7598
7599         perf_swevent_put_recursion_context(rctx);
7600 }
7601 EXPORT_SYMBOL_GPL(perf_tp_event);
7602
7603 static void tp_perf_event_destroy(struct perf_event *event)
7604 {
7605         perf_trace_destroy(event);
7606 }
7607
7608 static int perf_tp_event_init(struct perf_event *event)
7609 {
7610         int err;
7611
7612         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7613                 return -ENOENT;
7614
7615         /*
7616          * no branch sampling for tracepoint events
7617          */
7618         if (has_branch_stack(event))
7619                 return -EOPNOTSUPP;
7620
7621         err = perf_trace_init(event);
7622         if (err)
7623                 return err;
7624
7625         event->destroy = tp_perf_event_destroy;
7626
7627         return 0;
7628 }
7629
7630 static struct pmu perf_tracepoint = {
7631         .task_ctx_nr    = perf_sw_context,
7632
7633         .event_init     = perf_tp_event_init,
7634         .add            = perf_trace_add,
7635         .del            = perf_trace_del,
7636         .start          = perf_swevent_start,
7637         .stop           = perf_swevent_stop,
7638         .read           = perf_swevent_read,
7639 };
7640
7641 static inline void perf_tp_register(void)
7642 {
7643         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7644 }
7645
7646 static void perf_event_free_filter(struct perf_event *event)
7647 {
7648         ftrace_profile_free_filter(event);
7649 }
7650
7651 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7652 {
7653         bool is_kprobe, is_tracepoint;
7654         struct bpf_prog *prog;
7655
7656         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7657                 return -EINVAL;
7658
7659         if (event->tp_event->prog)
7660                 return -EEXIST;
7661
7662         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7663         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7664         if (!is_kprobe && !is_tracepoint)
7665                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7666                 return -EINVAL;
7667
7668         prog = bpf_prog_get(prog_fd);
7669         if (IS_ERR(prog))
7670                 return PTR_ERR(prog);
7671
7672         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7673             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7674                 /* valid fd, but invalid bpf program type */
7675                 bpf_prog_put(prog);
7676                 return -EINVAL;
7677         }
7678
7679         if (is_tracepoint) {
7680                 int off = trace_event_get_offsets(event->tp_event);
7681
7682                 if (prog->aux->max_ctx_offset > off) {
7683                         bpf_prog_put(prog);
7684                         return -EACCES;
7685                 }
7686         }
7687         event->tp_event->prog = prog;
7688
7689         return 0;
7690 }
7691
7692 static void perf_event_free_bpf_prog(struct perf_event *event)
7693 {
7694         struct bpf_prog *prog;
7695
7696         if (!event->tp_event)
7697                 return;
7698
7699         prog = event->tp_event->prog;
7700         if (prog) {
7701                 event->tp_event->prog = NULL;
7702                 bpf_prog_put(prog);
7703         }
7704 }
7705
7706 #else
7707
7708 static inline void perf_tp_register(void)
7709 {
7710 }
7711
7712 static void perf_event_free_filter(struct perf_event *event)
7713 {
7714 }
7715
7716 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7717 {
7718         return -ENOENT;
7719 }
7720
7721 static void perf_event_free_bpf_prog(struct perf_event *event)
7722 {
7723 }
7724 #endif /* CONFIG_EVENT_TRACING */
7725
7726 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7727 void perf_bp_event(struct perf_event *bp, void *data)
7728 {
7729         struct perf_sample_data sample;
7730         struct pt_regs *regs = data;
7731
7732         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7733
7734         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7735                 perf_swevent_event(bp, 1, &sample, regs);
7736 }
7737 #endif
7738
7739 /*
7740  * Allocate a new address filter
7741  */
7742 static struct perf_addr_filter *
7743 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7744 {
7745         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7746         struct perf_addr_filter *filter;
7747
7748         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7749         if (!filter)
7750                 return NULL;
7751
7752         INIT_LIST_HEAD(&filter->entry);
7753         list_add_tail(&filter->entry, filters);
7754
7755         return filter;
7756 }
7757
7758 static void free_filters_list(struct list_head *filters)
7759 {
7760         struct perf_addr_filter *filter, *iter;
7761
7762         list_for_each_entry_safe(filter, iter, filters, entry) {
7763                 if (filter->inode)
7764                         iput(filter->inode);
7765                 list_del(&filter->entry);
7766                 kfree(filter);
7767         }
7768 }
7769
7770 /*
7771  * Free existing address filters and optionally install new ones
7772  */
7773 static void perf_addr_filters_splice(struct perf_event *event,
7774                                      struct list_head *head)
7775 {
7776         unsigned long flags;
7777         LIST_HEAD(list);
7778
7779         if (!has_addr_filter(event))
7780                 return;
7781
7782         /* don't bother with children, they don't have their own filters */
7783         if (event->parent)
7784                 return;
7785
7786         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7787
7788         list_splice_init(&event->addr_filters.list, &list);
7789         if (head)
7790                 list_splice(head, &event->addr_filters.list);
7791
7792         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7793
7794         free_filters_list(&list);
7795 }
7796
7797 /*
7798  * Scan through mm's vmas and see if one of them matches the
7799  * @filter; if so, adjust filter's address range.
7800  * Called with mm::mmap_sem down for reading.
7801  */
7802 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7803                                             struct mm_struct *mm)
7804 {
7805         struct vm_area_struct *vma;
7806
7807         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7808                 struct file *file = vma->vm_file;
7809                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7810                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7811
7812                 if (!file)
7813                         continue;
7814
7815                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7816                         continue;
7817
7818                 return vma->vm_start;
7819         }
7820
7821         return 0;
7822 }
7823
7824 /*
7825  * Update event's address range filters based on the
7826  * task's existing mappings, if any.
7827  */
7828 static void perf_event_addr_filters_apply(struct perf_event *event)
7829 {
7830         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7831         struct task_struct *task = READ_ONCE(event->ctx->task);
7832         struct perf_addr_filter *filter;
7833         struct mm_struct *mm = NULL;
7834         unsigned int count = 0;
7835         unsigned long flags;
7836
7837         /*
7838          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7839          * will stop on the parent's child_mutex that our caller is also holding
7840          */
7841         if (task == TASK_TOMBSTONE)
7842                 return;
7843
7844         mm = get_task_mm(event->ctx->task);
7845         if (!mm)
7846                 goto restart;
7847
7848         down_read(&mm->mmap_sem);
7849
7850         raw_spin_lock_irqsave(&ifh->lock, flags);
7851         list_for_each_entry(filter, &ifh->list, entry) {
7852                 event->addr_filters_offs[count] = 0;
7853
7854                 /*
7855                  * Adjust base offset if the filter is associated to a binary
7856                  * that needs to be mapped:
7857                  */
7858                 if (filter->inode)
7859                         event->addr_filters_offs[count] =
7860                                 perf_addr_filter_apply(filter, mm);
7861
7862                 count++;
7863         }
7864
7865         event->addr_filters_gen++;
7866         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7867
7868         up_read(&mm->mmap_sem);
7869
7870         mmput(mm);
7871
7872 restart:
7873         perf_event_restart(event);
7874 }
7875
7876 /*
7877  * Address range filtering: limiting the data to certain
7878  * instruction address ranges. Filters are ioctl()ed to us from
7879  * userspace as ascii strings.
7880  *
7881  * Filter string format:
7882  *
7883  * ACTION RANGE_SPEC
7884  * where ACTION is one of the
7885  *  * "filter": limit the trace to this region
7886  *  * "start": start tracing from this address
7887  *  * "stop": stop tracing at this address/region;
7888  * RANGE_SPEC is
7889  *  * for kernel addresses: <start address>[/<size>]
7890  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7891  *
7892  * if <size> is not specified, the range is treated as a single address.
7893  */
7894 enum {
7895         IF_ACT_FILTER,
7896         IF_ACT_START,
7897         IF_ACT_STOP,
7898         IF_SRC_FILE,
7899         IF_SRC_KERNEL,
7900         IF_SRC_FILEADDR,
7901         IF_SRC_KERNELADDR,
7902 };
7903
7904 enum {
7905         IF_STATE_ACTION = 0,
7906         IF_STATE_SOURCE,
7907         IF_STATE_END,
7908 };
7909
7910 static const match_table_t if_tokens = {
7911         { IF_ACT_FILTER,        "filter" },
7912         { IF_ACT_START,         "start" },
7913         { IF_ACT_STOP,          "stop" },
7914         { IF_SRC_FILE,          "%u/%u@%s" },
7915         { IF_SRC_KERNEL,        "%u/%u" },
7916         { IF_SRC_FILEADDR,      "%u@%s" },
7917         { IF_SRC_KERNELADDR,    "%u" },
7918 };
7919
7920 /*
7921  * Address filter string parser
7922  */
7923 static int
7924 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7925                              struct list_head *filters)
7926 {
7927         struct perf_addr_filter *filter = NULL;
7928         char *start, *orig, *filename = NULL;
7929         struct path path;
7930         substring_t args[MAX_OPT_ARGS];
7931         int state = IF_STATE_ACTION, token;
7932         unsigned int kernel = 0;
7933         int ret = -EINVAL;
7934
7935         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7936         if (!fstr)
7937                 return -ENOMEM;
7938
7939         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7940                 ret = -EINVAL;
7941
7942                 if (!*start)
7943                         continue;
7944
7945                 /* filter definition begins */
7946                 if (state == IF_STATE_ACTION) {
7947                         filter = perf_addr_filter_new(event, filters);
7948                         if (!filter)
7949                                 goto fail;
7950                 }
7951
7952                 token = match_token(start, if_tokens, args);
7953                 switch (token) {
7954                 case IF_ACT_FILTER:
7955                 case IF_ACT_START:
7956                         filter->filter = 1;
7957
7958                 case IF_ACT_STOP:
7959                         if (state != IF_STATE_ACTION)
7960                                 goto fail;
7961
7962                         state = IF_STATE_SOURCE;
7963                         break;
7964
7965                 case IF_SRC_KERNELADDR:
7966                 case IF_SRC_KERNEL:
7967                         kernel = 1;
7968
7969                 case IF_SRC_FILEADDR:
7970                 case IF_SRC_FILE:
7971                         if (state != IF_STATE_SOURCE)
7972                                 goto fail;
7973
7974                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7975                                 filter->range = 1;
7976
7977                         *args[0].to = 0;
7978                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7979                         if (ret)
7980                                 goto fail;
7981
7982                         if (filter->range) {
7983                                 *args[1].to = 0;
7984                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7985                                 if (ret)
7986                                         goto fail;
7987                         }
7988
7989                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
7990                                 int fpos = filter->range ? 2 : 1;
7991
7992                                 filename = match_strdup(&args[fpos]);
7993                                 if (!filename) {
7994                                         ret = -ENOMEM;
7995                                         goto fail;
7996                                 }
7997                         }
7998
7999                         state = IF_STATE_END;
8000                         break;
8001
8002                 default:
8003                         goto fail;
8004                 }
8005
8006                 /*
8007                  * Filter definition is fully parsed, validate and install it.
8008                  * Make sure that it doesn't contradict itself or the event's
8009                  * attribute.
8010                  */
8011                 if (state == IF_STATE_END) {
8012                         if (kernel && event->attr.exclude_kernel)
8013                                 goto fail;
8014
8015                         if (!kernel) {
8016                                 if (!filename)
8017                                         goto fail;
8018
8019                                 /* look up the path and grab its inode */
8020                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8021                                 if (ret)
8022                                         goto fail_free_name;
8023
8024                                 filter->inode = igrab(d_inode(path.dentry));
8025                                 path_put(&path);
8026                                 kfree(filename);
8027                                 filename = NULL;
8028
8029                                 ret = -EINVAL;
8030                                 if (!filter->inode ||
8031                                     !S_ISREG(filter->inode->i_mode))
8032                                         /* free_filters_list() will iput() */
8033                                         goto fail;
8034                         }
8035
8036                         /* ready to consume more filters */
8037                         state = IF_STATE_ACTION;
8038                         filter = NULL;
8039                 }
8040         }
8041
8042         if (state != IF_STATE_ACTION)
8043                 goto fail;
8044
8045         kfree(orig);
8046
8047         return 0;
8048
8049 fail_free_name:
8050         kfree(filename);
8051 fail:
8052         free_filters_list(filters);
8053         kfree(orig);
8054
8055         return ret;
8056 }
8057
8058 static int
8059 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8060 {
8061         LIST_HEAD(filters);
8062         int ret;
8063
8064         /*
8065          * Since this is called in perf_ioctl() path, we're already holding
8066          * ctx::mutex.
8067          */
8068         lockdep_assert_held(&event->ctx->mutex);
8069
8070         if (WARN_ON_ONCE(event->parent))
8071                 return -EINVAL;
8072
8073         /*
8074          * For now, we only support filtering in per-task events; doing so
8075          * for CPU-wide events requires additional context switching trickery,
8076          * since same object code will be mapped at different virtual
8077          * addresses in different processes.
8078          */
8079         if (!event->ctx->task)
8080                 return -EOPNOTSUPP;
8081
8082         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8083         if (ret)
8084                 return ret;
8085
8086         ret = event->pmu->addr_filters_validate(&filters);
8087         if (ret) {
8088                 free_filters_list(&filters);
8089                 return ret;
8090         }
8091
8092         /* remove existing filters, if any */
8093         perf_addr_filters_splice(event, &filters);
8094
8095         /* install new filters */
8096         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8097
8098         return ret;
8099 }
8100
8101 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8102 {
8103         char *filter_str;
8104         int ret = -EINVAL;
8105
8106         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8107             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8108             !has_addr_filter(event))
8109                 return -EINVAL;
8110
8111         filter_str = strndup_user(arg, PAGE_SIZE);
8112         if (IS_ERR(filter_str))
8113                 return PTR_ERR(filter_str);
8114
8115         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8116             event->attr.type == PERF_TYPE_TRACEPOINT)
8117                 ret = ftrace_profile_set_filter(event, event->attr.config,
8118                                                 filter_str);
8119         else if (has_addr_filter(event))
8120                 ret = perf_event_set_addr_filter(event, filter_str);
8121
8122         kfree(filter_str);
8123         return ret;
8124 }
8125
8126 /*
8127  * hrtimer based swevent callback
8128  */
8129
8130 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8131 {
8132         enum hrtimer_restart ret = HRTIMER_RESTART;
8133         struct perf_sample_data data;
8134         struct pt_regs *regs;
8135         struct perf_event *event;
8136         u64 period;
8137
8138         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8139
8140         if (event->state != PERF_EVENT_STATE_ACTIVE)
8141                 return HRTIMER_NORESTART;
8142
8143         event->pmu->read(event);
8144
8145         perf_sample_data_init(&data, 0, event->hw.last_period);
8146         regs = get_irq_regs();
8147
8148         if (regs && !perf_exclude_event(event, regs)) {
8149                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8150                         if (__perf_event_overflow(event, 1, &data, regs))
8151                                 ret = HRTIMER_NORESTART;
8152         }
8153
8154         period = max_t(u64, 10000, event->hw.sample_period);
8155         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8156
8157         return ret;
8158 }
8159
8160 static void perf_swevent_start_hrtimer(struct perf_event *event)
8161 {
8162         struct hw_perf_event *hwc = &event->hw;
8163         s64 period;
8164
8165         if (!is_sampling_event(event))
8166                 return;
8167
8168         period = local64_read(&hwc->period_left);
8169         if (period) {
8170                 if (period < 0)
8171                         period = 10000;
8172
8173                 local64_set(&hwc->period_left, 0);
8174         } else {
8175                 period = max_t(u64, 10000, hwc->sample_period);
8176         }
8177         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8178                       HRTIMER_MODE_REL_PINNED);
8179 }
8180
8181 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8182 {
8183         struct hw_perf_event *hwc = &event->hw;
8184
8185         if (is_sampling_event(event)) {
8186                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8187                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8188
8189                 hrtimer_cancel(&hwc->hrtimer);
8190         }
8191 }
8192
8193 static void perf_swevent_init_hrtimer(struct perf_event *event)
8194 {
8195         struct hw_perf_event *hwc = &event->hw;
8196
8197         if (!is_sampling_event(event))
8198                 return;
8199
8200         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8201         hwc->hrtimer.function = perf_swevent_hrtimer;
8202
8203         /*
8204          * Since hrtimers have a fixed rate, we can do a static freq->period
8205          * mapping and avoid the whole period adjust feedback stuff.
8206          */
8207         if (event->attr.freq) {
8208                 long freq = event->attr.sample_freq;
8209
8210                 event->attr.sample_period = NSEC_PER_SEC / freq;
8211                 hwc->sample_period = event->attr.sample_period;
8212                 local64_set(&hwc->period_left, hwc->sample_period);
8213                 hwc->last_period = hwc->sample_period;
8214                 event->attr.freq = 0;
8215         }
8216 }
8217
8218 /*
8219  * Software event: cpu wall time clock
8220  */
8221
8222 static void cpu_clock_event_update(struct perf_event *event)
8223 {
8224         s64 prev;
8225         u64 now;
8226
8227         now = local_clock();
8228         prev = local64_xchg(&event->hw.prev_count, now);
8229         local64_add(now - prev, &event->count);
8230 }
8231
8232 static void cpu_clock_event_start(struct perf_event *event, int flags)
8233 {
8234         local64_set(&event->hw.prev_count, local_clock());
8235         perf_swevent_start_hrtimer(event);
8236 }
8237
8238 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8239 {
8240         perf_swevent_cancel_hrtimer(event);
8241         cpu_clock_event_update(event);
8242 }
8243
8244 static int cpu_clock_event_add(struct perf_event *event, int flags)
8245 {
8246         if (flags & PERF_EF_START)
8247                 cpu_clock_event_start(event, flags);
8248         perf_event_update_userpage(event);
8249
8250         return 0;
8251 }
8252
8253 static void cpu_clock_event_del(struct perf_event *event, int flags)
8254 {
8255         cpu_clock_event_stop(event, flags);
8256 }
8257
8258 static void cpu_clock_event_read(struct perf_event *event)
8259 {
8260         cpu_clock_event_update(event);
8261 }
8262
8263 static int cpu_clock_event_init(struct perf_event *event)
8264 {
8265         if (event->attr.type != PERF_TYPE_SOFTWARE)
8266                 return -ENOENT;
8267
8268         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8269                 return -ENOENT;
8270
8271         /*
8272          * no branch sampling for software events
8273          */
8274         if (has_branch_stack(event))
8275                 return -EOPNOTSUPP;
8276
8277         perf_swevent_init_hrtimer(event);
8278
8279         return 0;
8280 }
8281
8282 static struct pmu perf_cpu_clock = {
8283         .task_ctx_nr    = perf_sw_context,
8284
8285         .capabilities   = PERF_PMU_CAP_NO_NMI,
8286
8287         .event_init     = cpu_clock_event_init,
8288         .add            = cpu_clock_event_add,
8289         .del            = cpu_clock_event_del,
8290         .start          = cpu_clock_event_start,
8291         .stop           = cpu_clock_event_stop,
8292         .read           = cpu_clock_event_read,
8293 };
8294
8295 /*
8296  * Software event: task time clock
8297  */
8298
8299 static void task_clock_event_update(struct perf_event *event, u64 now)
8300 {
8301         u64 prev;
8302         s64 delta;
8303
8304         prev = local64_xchg(&event->hw.prev_count, now);
8305         delta = now - prev;
8306         local64_add(delta, &event->count);
8307 }
8308
8309 static void task_clock_event_start(struct perf_event *event, int flags)
8310 {
8311         local64_set(&event->hw.prev_count, event->ctx->time);
8312         perf_swevent_start_hrtimer(event);
8313 }
8314
8315 static void task_clock_event_stop(struct perf_event *event, int flags)
8316 {
8317         perf_swevent_cancel_hrtimer(event);
8318         task_clock_event_update(event, event->ctx->time);
8319 }
8320
8321 static int task_clock_event_add(struct perf_event *event, int flags)
8322 {
8323         if (flags & PERF_EF_START)
8324                 task_clock_event_start(event, flags);
8325         perf_event_update_userpage(event);
8326
8327         return 0;
8328 }
8329
8330 static void task_clock_event_del(struct perf_event *event, int flags)
8331 {
8332         task_clock_event_stop(event, PERF_EF_UPDATE);
8333 }
8334
8335 static void task_clock_event_read(struct perf_event *event)
8336 {
8337         u64 now = perf_clock();
8338         u64 delta = now - event->ctx->timestamp;
8339         u64 time = event->ctx->time + delta;
8340
8341         task_clock_event_update(event, time);
8342 }
8343
8344 static int task_clock_event_init(struct perf_event *event)
8345 {
8346         if (event->attr.type != PERF_TYPE_SOFTWARE)
8347                 return -ENOENT;
8348
8349         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8350                 return -ENOENT;
8351
8352         /*
8353          * no branch sampling for software events
8354          */
8355         if (has_branch_stack(event))
8356                 return -EOPNOTSUPP;
8357
8358         perf_swevent_init_hrtimer(event);
8359
8360         return 0;
8361 }
8362
8363 static struct pmu perf_task_clock = {
8364         .task_ctx_nr    = perf_sw_context,
8365
8366         .capabilities   = PERF_PMU_CAP_NO_NMI,
8367
8368         .event_init     = task_clock_event_init,
8369         .add            = task_clock_event_add,
8370         .del            = task_clock_event_del,
8371         .start          = task_clock_event_start,
8372         .stop           = task_clock_event_stop,
8373         .read           = task_clock_event_read,
8374 };
8375
8376 static void perf_pmu_nop_void(struct pmu *pmu)
8377 {
8378 }
8379
8380 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8381 {
8382 }
8383
8384 static int perf_pmu_nop_int(struct pmu *pmu)
8385 {
8386         return 0;
8387 }
8388
8389 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8390
8391 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8392 {
8393         __this_cpu_write(nop_txn_flags, flags);
8394
8395         if (flags & ~PERF_PMU_TXN_ADD)
8396                 return;
8397
8398         perf_pmu_disable(pmu);
8399 }
8400
8401 static int perf_pmu_commit_txn(struct pmu *pmu)
8402 {
8403         unsigned int flags = __this_cpu_read(nop_txn_flags);
8404
8405         __this_cpu_write(nop_txn_flags, 0);
8406
8407         if (flags & ~PERF_PMU_TXN_ADD)
8408                 return 0;
8409
8410         perf_pmu_enable(pmu);
8411         return 0;
8412 }
8413
8414 static void perf_pmu_cancel_txn(struct pmu *pmu)
8415 {
8416         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8417
8418         __this_cpu_write(nop_txn_flags, 0);
8419
8420         if (flags & ~PERF_PMU_TXN_ADD)
8421                 return;
8422
8423         perf_pmu_enable(pmu);
8424 }
8425
8426 static int perf_event_idx_default(struct perf_event *event)
8427 {
8428         return 0;
8429 }
8430
8431 /*
8432  * Ensures all contexts with the same task_ctx_nr have the same
8433  * pmu_cpu_context too.
8434  */
8435 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8436 {
8437         struct pmu *pmu;
8438
8439         if (ctxn < 0)
8440                 return NULL;
8441
8442         list_for_each_entry(pmu, &pmus, entry) {
8443                 if (pmu->task_ctx_nr == ctxn)
8444                         return pmu->pmu_cpu_context;
8445         }
8446
8447         return NULL;
8448 }
8449
8450 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8451 {
8452         int cpu;
8453
8454         for_each_possible_cpu(cpu) {
8455                 struct perf_cpu_context *cpuctx;
8456
8457                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8458
8459                 if (cpuctx->unique_pmu == old_pmu)
8460                         cpuctx->unique_pmu = pmu;
8461         }
8462 }
8463
8464 static void free_pmu_context(struct pmu *pmu)
8465 {
8466         struct pmu *i;
8467
8468         mutex_lock(&pmus_lock);
8469         /*
8470          * Like a real lame refcount.
8471          */
8472         list_for_each_entry(i, &pmus, entry) {
8473                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8474                         update_pmu_context(i, pmu);
8475                         goto out;
8476                 }
8477         }
8478
8479         free_percpu(pmu->pmu_cpu_context);
8480 out:
8481         mutex_unlock(&pmus_lock);
8482 }
8483
8484 /*
8485  * Let userspace know that this PMU supports address range filtering:
8486  */
8487 static ssize_t nr_addr_filters_show(struct device *dev,
8488                                     struct device_attribute *attr,
8489                                     char *page)
8490 {
8491         struct pmu *pmu = dev_get_drvdata(dev);
8492
8493         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8494 }
8495 DEVICE_ATTR_RO(nr_addr_filters);
8496
8497 static struct idr pmu_idr;
8498
8499 static ssize_t
8500 type_show(struct device *dev, struct device_attribute *attr, char *page)
8501 {
8502         struct pmu *pmu = dev_get_drvdata(dev);
8503
8504         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8505 }
8506 static DEVICE_ATTR_RO(type);
8507
8508 static ssize_t
8509 perf_event_mux_interval_ms_show(struct device *dev,
8510                                 struct device_attribute *attr,
8511                                 char *page)
8512 {
8513         struct pmu *pmu = dev_get_drvdata(dev);
8514
8515         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8516 }
8517
8518 static DEFINE_MUTEX(mux_interval_mutex);
8519
8520 static ssize_t
8521 perf_event_mux_interval_ms_store(struct device *dev,
8522                                  struct device_attribute *attr,
8523                                  const char *buf, size_t count)
8524 {
8525         struct pmu *pmu = dev_get_drvdata(dev);
8526         int timer, cpu, ret;
8527
8528         ret = kstrtoint(buf, 0, &timer);
8529         if (ret)
8530                 return ret;
8531
8532         if (timer < 1)
8533                 return -EINVAL;
8534
8535         /* same value, noting to do */
8536         if (timer == pmu->hrtimer_interval_ms)
8537                 return count;
8538
8539         mutex_lock(&mux_interval_mutex);
8540         pmu->hrtimer_interval_ms = timer;
8541
8542         /* update all cpuctx for this PMU */
8543         get_online_cpus();
8544         for_each_online_cpu(cpu) {
8545                 struct perf_cpu_context *cpuctx;
8546                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8547                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8548
8549                 cpu_function_call(cpu,
8550                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8551         }
8552         put_online_cpus();
8553         mutex_unlock(&mux_interval_mutex);
8554
8555         return count;
8556 }
8557 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8558
8559 static struct attribute *pmu_dev_attrs[] = {
8560         &dev_attr_type.attr,
8561         &dev_attr_perf_event_mux_interval_ms.attr,
8562         NULL,
8563 };
8564 ATTRIBUTE_GROUPS(pmu_dev);
8565
8566 static int pmu_bus_running;
8567 static struct bus_type pmu_bus = {
8568         .name           = "event_source",
8569         .dev_groups     = pmu_dev_groups,
8570 };
8571
8572 static void pmu_dev_release(struct device *dev)
8573 {
8574         kfree(dev);
8575 }
8576
8577 static int pmu_dev_alloc(struct pmu *pmu)
8578 {
8579         int ret = -ENOMEM;
8580
8581         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8582         if (!pmu->dev)
8583                 goto out;
8584
8585         pmu->dev->groups = pmu->attr_groups;
8586         device_initialize(pmu->dev);
8587         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8588         if (ret)
8589                 goto free_dev;
8590
8591         dev_set_drvdata(pmu->dev, pmu);
8592         pmu->dev->bus = &pmu_bus;
8593         pmu->dev->release = pmu_dev_release;
8594         ret = device_add(pmu->dev);
8595         if (ret)
8596                 goto free_dev;
8597
8598         /* For PMUs with address filters, throw in an extra attribute: */
8599         if (pmu->nr_addr_filters)
8600                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8601
8602         if (ret)
8603                 goto del_dev;
8604
8605 out:
8606         return ret;
8607
8608 del_dev:
8609         device_del(pmu->dev);
8610
8611 free_dev:
8612         put_device(pmu->dev);
8613         goto out;
8614 }
8615
8616 static struct lock_class_key cpuctx_mutex;
8617 static struct lock_class_key cpuctx_lock;
8618
8619 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8620 {
8621         int cpu, ret;
8622
8623         mutex_lock(&pmus_lock);
8624         ret = -ENOMEM;
8625         pmu->pmu_disable_count = alloc_percpu(int);
8626         if (!pmu->pmu_disable_count)
8627                 goto unlock;
8628
8629         pmu->type = -1;
8630         if (!name)
8631                 goto skip_type;
8632         pmu->name = name;
8633
8634         if (type < 0) {
8635                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8636                 if (type < 0) {
8637                         ret = type;
8638                         goto free_pdc;
8639                 }
8640         }
8641         pmu->type = type;
8642
8643         if (pmu_bus_running) {
8644                 ret = pmu_dev_alloc(pmu);
8645                 if (ret)
8646                         goto free_idr;
8647         }
8648
8649 skip_type:
8650         if (pmu->task_ctx_nr == perf_hw_context) {
8651                 static int hw_context_taken = 0;
8652
8653                 /*
8654                  * Other than systems with heterogeneous CPUs, it never makes
8655                  * sense for two PMUs to share perf_hw_context. PMUs which are
8656                  * uncore must use perf_invalid_context.
8657                  */
8658                 if (WARN_ON_ONCE(hw_context_taken &&
8659                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8660                         pmu->task_ctx_nr = perf_invalid_context;
8661
8662                 hw_context_taken = 1;
8663         }
8664
8665         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8666         if (pmu->pmu_cpu_context)
8667                 goto got_cpu_context;
8668
8669         ret = -ENOMEM;
8670         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8671         if (!pmu->pmu_cpu_context)
8672                 goto free_dev;
8673
8674         for_each_possible_cpu(cpu) {
8675                 struct perf_cpu_context *cpuctx;
8676
8677                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8678                 __perf_event_init_context(&cpuctx->ctx);
8679                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8680                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8681                 cpuctx->ctx.pmu = pmu;
8682
8683                 __perf_mux_hrtimer_init(cpuctx, cpu);
8684
8685                 cpuctx->unique_pmu = pmu;
8686         }
8687
8688 got_cpu_context:
8689         if (!pmu->start_txn) {
8690                 if (pmu->pmu_enable) {
8691                         /*
8692                          * If we have pmu_enable/pmu_disable calls, install
8693                          * transaction stubs that use that to try and batch
8694                          * hardware accesses.
8695                          */
8696                         pmu->start_txn  = perf_pmu_start_txn;
8697                         pmu->commit_txn = perf_pmu_commit_txn;
8698                         pmu->cancel_txn = perf_pmu_cancel_txn;
8699                 } else {
8700                         pmu->start_txn  = perf_pmu_nop_txn;
8701                         pmu->commit_txn = perf_pmu_nop_int;
8702                         pmu->cancel_txn = perf_pmu_nop_void;
8703                 }
8704         }
8705
8706         if (!pmu->pmu_enable) {
8707                 pmu->pmu_enable  = perf_pmu_nop_void;
8708                 pmu->pmu_disable = perf_pmu_nop_void;
8709         }
8710
8711         if (!pmu->event_idx)
8712                 pmu->event_idx = perf_event_idx_default;
8713
8714         list_add_rcu(&pmu->entry, &pmus);
8715         atomic_set(&pmu->exclusive_cnt, 0);
8716         ret = 0;
8717 unlock:
8718         mutex_unlock(&pmus_lock);
8719
8720         return ret;
8721
8722 free_dev:
8723         device_del(pmu->dev);
8724         put_device(pmu->dev);
8725
8726 free_idr:
8727         if (pmu->type >= PERF_TYPE_MAX)
8728                 idr_remove(&pmu_idr, pmu->type);
8729
8730 free_pdc:
8731         free_percpu(pmu->pmu_disable_count);
8732         goto unlock;
8733 }
8734 EXPORT_SYMBOL_GPL(perf_pmu_register);
8735
8736 void perf_pmu_unregister(struct pmu *pmu)
8737 {
8738         mutex_lock(&pmus_lock);
8739         list_del_rcu(&pmu->entry);
8740         mutex_unlock(&pmus_lock);
8741
8742         /*
8743          * We dereference the pmu list under both SRCU and regular RCU, so
8744          * synchronize against both of those.
8745          */
8746         synchronize_srcu(&pmus_srcu);
8747         synchronize_rcu();
8748
8749         free_percpu(pmu->pmu_disable_count);
8750         if (pmu->type >= PERF_TYPE_MAX)
8751                 idr_remove(&pmu_idr, pmu->type);
8752         if (pmu->nr_addr_filters)
8753                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8754         device_del(pmu->dev);
8755         put_device(pmu->dev);
8756         free_pmu_context(pmu);
8757 }
8758 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8759
8760 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8761 {
8762         struct perf_event_context *ctx = NULL;
8763         int ret;
8764
8765         if (!try_module_get(pmu->module))
8766                 return -ENODEV;
8767
8768         if (event->group_leader != event) {
8769                 /*
8770                  * This ctx->mutex can nest when we're called through
8771                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8772                  */
8773                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8774                                                  SINGLE_DEPTH_NESTING);
8775                 BUG_ON(!ctx);
8776         }
8777
8778         event->pmu = pmu;
8779         ret = pmu->event_init(event);
8780
8781         if (ctx)
8782                 perf_event_ctx_unlock(event->group_leader, ctx);
8783
8784         if (ret)
8785                 module_put(pmu->module);
8786
8787         return ret;
8788 }
8789
8790 static struct pmu *perf_init_event(struct perf_event *event)
8791 {
8792         struct pmu *pmu = NULL;
8793         int idx;
8794         int ret;
8795
8796         idx = srcu_read_lock(&pmus_srcu);
8797
8798         rcu_read_lock();
8799         pmu = idr_find(&pmu_idr, event->attr.type);
8800         rcu_read_unlock();
8801         if (pmu) {
8802                 ret = perf_try_init_event(pmu, event);
8803                 if (ret)
8804                         pmu = ERR_PTR(ret);
8805                 goto unlock;
8806         }
8807
8808         list_for_each_entry_rcu(pmu, &pmus, entry) {
8809                 ret = perf_try_init_event(pmu, event);
8810                 if (!ret)
8811                         goto unlock;
8812
8813                 if (ret != -ENOENT) {
8814                         pmu = ERR_PTR(ret);
8815                         goto unlock;
8816                 }
8817         }
8818         pmu = ERR_PTR(-ENOENT);
8819 unlock:
8820         srcu_read_unlock(&pmus_srcu, idx);
8821
8822         return pmu;
8823 }
8824
8825 static void attach_sb_event(struct perf_event *event)
8826 {
8827         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8828
8829         raw_spin_lock(&pel->lock);
8830         list_add_rcu(&event->sb_list, &pel->list);
8831         raw_spin_unlock(&pel->lock);
8832 }
8833
8834 /*
8835  * We keep a list of all !task (and therefore per-cpu) events
8836  * that need to receive side-band records.
8837  *
8838  * This avoids having to scan all the various PMU per-cpu contexts
8839  * looking for them.
8840  */
8841 static void account_pmu_sb_event(struct perf_event *event)
8842 {
8843         if (is_sb_event(event))
8844                 attach_sb_event(event);
8845 }
8846
8847 static void account_event_cpu(struct perf_event *event, int cpu)
8848 {
8849         if (event->parent)
8850                 return;
8851
8852         if (is_cgroup_event(event))
8853                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8854 }
8855
8856 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8857 static void account_freq_event_nohz(void)
8858 {
8859 #ifdef CONFIG_NO_HZ_FULL
8860         /* Lock so we don't race with concurrent unaccount */
8861         spin_lock(&nr_freq_lock);
8862         if (atomic_inc_return(&nr_freq_events) == 1)
8863                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8864         spin_unlock(&nr_freq_lock);
8865 #endif
8866 }
8867
8868 static void account_freq_event(void)
8869 {
8870         if (tick_nohz_full_enabled())
8871                 account_freq_event_nohz();
8872         else
8873                 atomic_inc(&nr_freq_events);
8874 }
8875
8876
8877 static void account_event(struct perf_event *event)
8878 {
8879         bool inc = false;
8880
8881         if (event->parent)
8882                 return;
8883
8884         if (event->attach_state & PERF_ATTACH_TASK)
8885                 inc = true;
8886         if (event->attr.mmap || event->attr.mmap_data)
8887                 atomic_inc(&nr_mmap_events);
8888         if (event->attr.comm)
8889                 atomic_inc(&nr_comm_events);
8890         if (event->attr.task)
8891                 atomic_inc(&nr_task_events);
8892         if (event->attr.freq)
8893                 account_freq_event();
8894         if (event->attr.context_switch) {
8895                 atomic_inc(&nr_switch_events);
8896                 inc = true;
8897         }
8898         if (has_branch_stack(event))
8899                 inc = true;
8900         if (is_cgroup_event(event))
8901                 inc = true;
8902
8903         if (inc) {
8904                 if (atomic_inc_not_zero(&perf_sched_count))
8905                         goto enabled;
8906
8907                 mutex_lock(&perf_sched_mutex);
8908                 if (!atomic_read(&perf_sched_count)) {
8909                         static_branch_enable(&perf_sched_events);
8910                         /*
8911                          * Guarantee that all CPUs observe they key change and
8912                          * call the perf scheduling hooks before proceeding to
8913                          * install events that need them.
8914                          */
8915                         synchronize_sched();
8916                 }
8917                 /*
8918                  * Now that we have waited for the sync_sched(), allow further
8919                  * increments to by-pass the mutex.
8920                  */
8921                 atomic_inc(&perf_sched_count);
8922                 mutex_unlock(&perf_sched_mutex);
8923         }
8924 enabled:
8925
8926         account_event_cpu(event, event->cpu);
8927
8928         account_pmu_sb_event(event);
8929 }
8930
8931 /*
8932  * Allocate and initialize a event structure
8933  */
8934 static struct perf_event *
8935 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8936                  struct task_struct *task,
8937                  struct perf_event *group_leader,
8938                  struct perf_event *parent_event,
8939                  perf_overflow_handler_t overflow_handler,
8940                  void *context, int cgroup_fd)
8941 {
8942         struct pmu *pmu;
8943         struct perf_event *event;
8944         struct hw_perf_event *hwc;
8945         long err = -EINVAL;
8946
8947         if ((unsigned)cpu >= nr_cpu_ids) {
8948                 if (!task || cpu != -1)
8949                         return ERR_PTR(-EINVAL);
8950         }
8951
8952         event = kzalloc(sizeof(*event), GFP_KERNEL);
8953         if (!event)
8954                 return ERR_PTR(-ENOMEM);
8955
8956         /*
8957          * Single events are their own group leaders, with an
8958          * empty sibling list:
8959          */
8960         if (!group_leader)
8961                 group_leader = event;
8962
8963         mutex_init(&event->child_mutex);
8964         INIT_LIST_HEAD(&event->child_list);
8965
8966         INIT_LIST_HEAD(&event->group_entry);
8967         INIT_LIST_HEAD(&event->event_entry);
8968         INIT_LIST_HEAD(&event->sibling_list);
8969         INIT_LIST_HEAD(&event->rb_entry);
8970         INIT_LIST_HEAD(&event->active_entry);
8971         INIT_LIST_HEAD(&event->addr_filters.list);
8972         INIT_HLIST_NODE(&event->hlist_entry);
8973
8974
8975         init_waitqueue_head(&event->waitq);
8976         init_irq_work(&event->pending, perf_pending_event);
8977
8978         mutex_init(&event->mmap_mutex);
8979         raw_spin_lock_init(&event->addr_filters.lock);
8980
8981         atomic_long_set(&event->refcount, 1);
8982         event->cpu              = cpu;
8983         event->attr             = *attr;
8984         event->group_leader     = group_leader;
8985         event->pmu              = NULL;
8986         event->oncpu            = -1;
8987
8988         event->parent           = parent_event;
8989
8990         event->ns               = get_pid_ns(task_active_pid_ns(current));
8991         event->id               = atomic64_inc_return(&perf_event_id);
8992
8993         event->state            = PERF_EVENT_STATE_INACTIVE;
8994
8995         if (task) {
8996                 event->attach_state = PERF_ATTACH_TASK;
8997                 /*
8998                  * XXX pmu::event_init needs to know what task to account to
8999                  * and we cannot use the ctx information because we need the
9000                  * pmu before we get a ctx.
9001                  */
9002                 event->hw.target = task;
9003         }
9004
9005         event->clock = &local_clock;
9006         if (parent_event)
9007                 event->clock = parent_event->clock;
9008
9009         if (!overflow_handler && parent_event) {
9010                 overflow_handler = parent_event->overflow_handler;
9011                 context = parent_event->overflow_handler_context;
9012         }
9013
9014         if (overflow_handler) {
9015                 event->overflow_handler = overflow_handler;
9016                 event->overflow_handler_context = context;
9017         } else if (is_write_backward(event)){
9018                 event->overflow_handler = perf_event_output_backward;
9019                 event->overflow_handler_context = NULL;
9020         } else {
9021                 event->overflow_handler = perf_event_output_forward;
9022                 event->overflow_handler_context = NULL;
9023         }
9024
9025         perf_event__state_init(event);
9026
9027         pmu = NULL;
9028
9029         hwc = &event->hw;
9030         hwc->sample_period = attr->sample_period;
9031         if (attr->freq && attr->sample_freq)
9032                 hwc->sample_period = 1;
9033         hwc->last_period = hwc->sample_period;
9034
9035         local64_set(&hwc->period_left, hwc->sample_period);
9036
9037         /*
9038          * we currently do not support PERF_FORMAT_GROUP on inherited events
9039          */
9040         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9041                 goto err_ns;
9042
9043         if (!has_branch_stack(event))
9044                 event->attr.branch_sample_type = 0;
9045
9046         if (cgroup_fd != -1) {
9047                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9048                 if (err)
9049                         goto err_ns;
9050         }
9051
9052         pmu = perf_init_event(event);
9053         if (!pmu)
9054                 goto err_ns;
9055         else if (IS_ERR(pmu)) {
9056                 err = PTR_ERR(pmu);
9057                 goto err_ns;
9058         }
9059
9060         err = exclusive_event_init(event);
9061         if (err)
9062                 goto err_pmu;
9063
9064         if (has_addr_filter(event)) {
9065                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9066                                                    sizeof(unsigned long),
9067                                                    GFP_KERNEL);
9068                 if (!event->addr_filters_offs)
9069                         goto err_per_task;
9070
9071                 /* force hw sync on the address filters */
9072                 event->addr_filters_gen = 1;
9073         }
9074
9075         if (!event->parent) {
9076                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9077                         err = get_callchain_buffers(attr->sample_max_stack);
9078                         if (err)
9079                                 goto err_addr_filters;
9080                 }
9081         }
9082
9083         /* symmetric to unaccount_event() in _free_event() */
9084         account_event(event);
9085
9086         return event;
9087
9088 err_addr_filters:
9089         kfree(event->addr_filters_offs);
9090
9091 err_per_task:
9092         exclusive_event_destroy(event);
9093
9094 err_pmu:
9095         if (event->destroy)
9096                 event->destroy(event);
9097         module_put(pmu->module);
9098 err_ns:
9099         if (is_cgroup_event(event))
9100                 perf_detach_cgroup(event);
9101         if (event->ns)
9102                 put_pid_ns(event->ns);
9103         kfree(event);
9104
9105         return ERR_PTR(err);
9106 }
9107
9108 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9109                           struct perf_event_attr *attr)
9110 {
9111         u32 size;
9112         int ret;
9113
9114         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9115                 return -EFAULT;
9116
9117         /*
9118          * zero the full structure, so that a short copy will be nice.
9119          */
9120         memset(attr, 0, sizeof(*attr));
9121
9122         ret = get_user(size, &uattr->size);
9123         if (ret)
9124                 return ret;
9125
9126         if (size > PAGE_SIZE)   /* silly large */
9127                 goto err_size;
9128
9129         if (!size)              /* abi compat */
9130                 size = PERF_ATTR_SIZE_VER0;
9131
9132         if (size < PERF_ATTR_SIZE_VER0)
9133                 goto err_size;
9134
9135         /*
9136          * If we're handed a bigger struct than we know of,
9137          * ensure all the unknown bits are 0 - i.e. new
9138          * user-space does not rely on any kernel feature
9139          * extensions we dont know about yet.
9140          */
9141         if (size > sizeof(*attr)) {
9142                 unsigned char __user *addr;
9143                 unsigned char __user *end;
9144                 unsigned char val;
9145
9146                 addr = (void __user *)uattr + sizeof(*attr);
9147                 end  = (void __user *)uattr + size;
9148
9149                 for (; addr < end; addr++) {
9150                         ret = get_user(val, addr);
9151                         if (ret)
9152                                 return ret;
9153                         if (val)
9154                                 goto err_size;
9155                 }
9156                 size = sizeof(*attr);
9157         }
9158
9159         ret = copy_from_user(attr, uattr, size);
9160         if (ret)
9161                 return -EFAULT;
9162
9163         if (attr->__reserved_1)
9164                 return -EINVAL;
9165
9166         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9167                 return -EINVAL;
9168
9169         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9170                 return -EINVAL;
9171
9172         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9173                 u64 mask = attr->branch_sample_type;
9174
9175                 /* only using defined bits */
9176                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9177                         return -EINVAL;
9178
9179                 /* at least one branch bit must be set */
9180                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9181                         return -EINVAL;
9182
9183                 /* propagate priv level, when not set for branch */
9184                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9185
9186                         /* exclude_kernel checked on syscall entry */
9187                         if (!attr->exclude_kernel)
9188                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9189
9190                         if (!attr->exclude_user)
9191                                 mask |= PERF_SAMPLE_BRANCH_USER;
9192
9193                         if (!attr->exclude_hv)
9194                                 mask |= PERF_SAMPLE_BRANCH_HV;
9195                         /*
9196                          * adjust user setting (for HW filter setup)
9197                          */
9198                         attr->branch_sample_type = mask;
9199                 }
9200                 /* privileged levels capture (kernel, hv): check permissions */
9201                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9202                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9203                         return -EACCES;
9204         }
9205
9206         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9207                 ret = perf_reg_validate(attr->sample_regs_user);
9208                 if (ret)
9209                         return ret;
9210         }
9211
9212         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9213                 if (!arch_perf_have_user_stack_dump())
9214                         return -ENOSYS;
9215
9216                 /*
9217                  * We have __u32 type for the size, but so far
9218                  * we can only use __u16 as maximum due to the
9219                  * __u16 sample size limit.
9220                  */
9221                 if (attr->sample_stack_user >= USHRT_MAX)
9222                         ret = -EINVAL;
9223                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9224                         ret = -EINVAL;
9225         }
9226
9227         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9228                 ret = perf_reg_validate(attr->sample_regs_intr);
9229 out:
9230         return ret;
9231
9232 err_size:
9233         put_user(sizeof(*attr), &uattr->size);
9234         ret = -E2BIG;
9235         goto out;
9236 }
9237
9238 static int
9239 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9240 {
9241         struct ring_buffer *rb = NULL;
9242         int ret = -EINVAL;
9243
9244         if (!output_event)
9245                 goto set;
9246
9247         /* don't allow circular references */
9248         if (event == output_event)
9249                 goto out;
9250
9251         /*
9252          * Don't allow cross-cpu buffers
9253          */
9254         if (output_event->cpu != event->cpu)
9255                 goto out;
9256
9257         /*
9258          * If its not a per-cpu rb, it must be the same task.
9259          */
9260         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9261                 goto out;
9262
9263         /*
9264          * Mixing clocks in the same buffer is trouble you don't need.
9265          */
9266         if (output_event->clock != event->clock)
9267                 goto out;
9268
9269         /*
9270          * Either writing ring buffer from beginning or from end.
9271          * Mixing is not allowed.
9272          */
9273         if (is_write_backward(output_event) != is_write_backward(event))
9274                 goto out;
9275
9276         /*
9277          * If both events generate aux data, they must be on the same PMU
9278          */
9279         if (has_aux(event) && has_aux(output_event) &&
9280             event->pmu != output_event->pmu)
9281                 goto out;
9282
9283 set:
9284         mutex_lock(&event->mmap_mutex);
9285         /* Can't redirect output if we've got an active mmap() */
9286         if (atomic_read(&event->mmap_count))
9287                 goto unlock;
9288
9289         if (output_event) {
9290                 /* get the rb we want to redirect to */
9291                 rb = ring_buffer_get(output_event);
9292                 if (!rb)
9293                         goto unlock;
9294         }
9295
9296         ring_buffer_attach(event, rb);
9297
9298         ret = 0;
9299 unlock:
9300         mutex_unlock(&event->mmap_mutex);
9301
9302 out:
9303         return ret;
9304 }
9305
9306 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9307 {
9308         if (b < a)
9309                 swap(a, b);
9310
9311         mutex_lock(a);
9312         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9313 }
9314
9315 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9316 {
9317         bool nmi_safe = false;
9318
9319         switch (clk_id) {
9320         case CLOCK_MONOTONIC:
9321                 event->clock = &ktime_get_mono_fast_ns;
9322                 nmi_safe = true;
9323                 break;
9324
9325         case CLOCK_MONOTONIC_RAW:
9326                 event->clock = &ktime_get_raw_fast_ns;
9327                 nmi_safe = true;
9328                 break;
9329
9330         case CLOCK_REALTIME:
9331                 event->clock = &ktime_get_real_ns;
9332                 break;
9333
9334         case CLOCK_BOOTTIME:
9335                 event->clock = &ktime_get_boot_ns;
9336                 break;
9337
9338         case CLOCK_TAI:
9339                 event->clock = &ktime_get_tai_ns;
9340                 break;
9341
9342         default:
9343                 return -EINVAL;
9344         }
9345
9346         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9347                 return -EINVAL;
9348
9349         return 0;
9350 }
9351
9352 /**
9353  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9354  *
9355  * @attr_uptr:  event_id type attributes for monitoring/sampling
9356  * @pid:                target pid
9357  * @cpu:                target cpu
9358  * @group_fd:           group leader event fd
9359  */
9360 SYSCALL_DEFINE5(perf_event_open,
9361                 struct perf_event_attr __user *, attr_uptr,
9362                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9363 {
9364         struct perf_event *group_leader = NULL, *output_event = NULL;
9365         struct perf_event *event, *sibling;
9366         struct perf_event_attr attr;
9367         struct perf_event_context *ctx, *uninitialized_var(gctx);
9368         struct file *event_file = NULL;
9369         struct fd group = {NULL, 0};
9370         struct task_struct *task = NULL;
9371         struct pmu *pmu;
9372         int event_fd;
9373         int move_group = 0;
9374         int err;
9375         int f_flags = O_RDWR;
9376         int cgroup_fd = -1;
9377
9378         /* for future expandability... */
9379         if (flags & ~PERF_FLAG_ALL)
9380                 return -EINVAL;
9381
9382         err = perf_copy_attr(attr_uptr, &attr);
9383         if (err)
9384                 return err;
9385
9386         if (!attr.exclude_kernel) {
9387                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9388                         return -EACCES;
9389         }
9390
9391         if (attr.freq) {
9392                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9393                         return -EINVAL;
9394         } else {
9395                 if (attr.sample_period & (1ULL << 63))
9396                         return -EINVAL;
9397         }
9398
9399         if (!attr.sample_max_stack)
9400                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9401
9402         /*
9403          * In cgroup mode, the pid argument is used to pass the fd
9404          * opened to the cgroup directory in cgroupfs. The cpu argument
9405          * designates the cpu on which to monitor threads from that
9406          * cgroup.
9407          */
9408         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9409                 return -EINVAL;
9410
9411         if (flags & PERF_FLAG_FD_CLOEXEC)
9412                 f_flags |= O_CLOEXEC;
9413
9414         event_fd = get_unused_fd_flags(f_flags);
9415         if (event_fd < 0)
9416                 return event_fd;
9417
9418         if (group_fd != -1) {
9419                 err = perf_fget_light(group_fd, &group);
9420                 if (err)
9421                         goto err_fd;
9422                 group_leader = group.file->private_data;
9423                 if (flags & PERF_FLAG_FD_OUTPUT)
9424                         output_event = group_leader;
9425                 if (flags & PERF_FLAG_FD_NO_GROUP)
9426                         group_leader = NULL;
9427         }
9428
9429         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9430                 task = find_lively_task_by_vpid(pid);
9431                 if (IS_ERR(task)) {
9432                         err = PTR_ERR(task);
9433                         goto err_group_fd;
9434                 }
9435         }
9436
9437         if (task && group_leader &&
9438             group_leader->attr.inherit != attr.inherit) {
9439                 err = -EINVAL;
9440                 goto err_task;
9441         }
9442
9443         get_online_cpus();
9444
9445         if (task) {
9446                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9447                 if (err)
9448                         goto err_cpus;
9449
9450                 /*
9451                  * Reuse ptrace permission checks for now.
9452                  *
9453                  * We must hold cred_guard_mutex across this and any potential
9454                  * perf_install_in_context() call for this new event to
9455                  * serialize against exec() altering our credentials (and the
9456                  * perf_event_exit_task() that could imply).
9457                  */
9458                 err = -EACCES;
9459                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9460                         goto err_cred;
9461         }
9462
9463         if (flags & PERF_FLAG_PID_CGROUP)
9464                 cgroup_fd = pid;
9465
9466         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9467                                  NULL, NULL, cgroup_fd);
9468         if (IS_ERR(event)) {
9469                 err = PTR_ERR(event);
9470                 goto err_cred;
9471         }
9472
9473         if (is_sampling_event(event)) {
9474                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9475                         err = -EOPNOTSUPP;
9476                         goto err_alloc;
9477                 }
9478         }
9479
9480         /*
9481          * Special case software events and allow them to be part of
9482          * any hardware group.
9483          */
9484         pmu = event->pmu;
9485
9486         if (attr.use_clockid) {
9487                 err = perf_event_set_clock(event, attr.clockid);
9488                 if (err)
9489                         goto err_alloc;
9490         }
9491
9492         if (group_leader &&
9493             (is_software_event(event) != is_software_event(group_leader))) {
9494                 if (is_software_event(event)) {
9495                         /*
9496                          * If event and group_leader are not both a software
9497                          * event, and event is, then group leader is not.
9498                          *
9499                          * Allow the addition of software events to !software
9500                          * groups, this is safe because software events never
9501                          * fail to schedule.
9502                          */
9503                         pmu = group_leader->pmu;
9504                 } else if (is_software_event(group_leader) &&
9505                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9506                         /*
9507                          * In case the group is a pure software group, and we
9508                          * try to add a hardware event, move the whole group to
9509                          * the hardware context.
9510                          */
9511                         move_group = 1;
9512                 }
9513         }
9514
9515         /*
9516          * Get the target context (task or percpu):
9517          */
9518         ctx = find_get_context(pmu, task, event);
9519         if (IS_ERR(ctx)) {
9520                 err = PTR_ERR(ctx);
9521                 goto err_alloc;
9522         }
9523
9524         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9525                 err = -EBUSY;
9526                 goto err_context;
9527         }
9528
9529         /*
9530          * Look up the group leader (we will attach this event to it):
9531          */
9532         if (group_leader) {
9533                 err = -EINVAL;
9534
9535                 /*
9536                  * Do not allow a recursive hierarchy (this new sibling
9537                  * becoming part of another group-sibling):
9538                  */
9539                 if (group_leader->group_leader != group_leader)
9540                         goto err_context;
9541
9542                 /* All events in a group should have the same clock */
9543                 if (group_leader->clock != event->clock)
9544                         goto err_context;
9545
9546                 /*
9547                  * Do not allow to attach to a group in a different
9548                  * task or CPU context:
9549                  */
9550                 if (move_group) {
9551                         /*
9552                          * Make sure we're both on the same task, or both
9553                          * per-cpu events.
9554                          */
9555                         if (group_leader->ctx->task != ctx->task)
9556                                 goto err_context;
9557
9558                         /*
9559                          * Make sure we're both events for the same CPU;
9560                          * grouping events for different CPUs is broken; since
9561                          * you can never concurrently schedule them anyhow.
9562                          */
9563                         if (group_leader->cpu != event->cpu)
9564                                 goto err_context;
9565                 } else {
9566                         if (group_leader->ctx != ctx)
9567                                 goto err_context;
9568                 }
9569
9570                 /*
9571                  * Only a group leader can be exclusive or pinned
9572                  */
9573                 if (attr.exclusive || attr.pinned)
9574                         goto err_context;
9575         }
9576
9577         if (output_event) {
9578                 err = perf_event_set_output(event, output_event);
9579                 if (err)
9580                         goto err_context;
9581         }
9582
9583         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9584                                         f_flags);
9585         if (IS_ERR(event_file)) {
9586                 err = PTR_ERR(event_file);
9587                 event_file = NULL;
9588                 goto err_context;
9589         }
9590
9591         if (move_group) {
9592                 gctx = group_leader->ctx;
9593                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9594                 if (gctx->task == TASK_TOMBSTONE) {
9595                         err = -ESRCH;
9596                         goto err_locked;
9597                 }
9598         } else {
9599                 mutex_lock(&ctx->mutex);
9600         }
9601
9602         if (ctx->task == TASK_TOMBSTONE) {
9603                 err = -ESRCH;
9604                 goto err_locked;
9605         }
9606
9607         if (!perf_event_validate_size(event)) {
9608                 err = -E2BIG;
9609                 goto err_locked;
9610         }
9611
9612         /*
9613          * Must be under the same ctx::mutex as perf_install_in_context(),
9614          * because we need to serialize with concurrent event creation.
9615          */
9616         if (!exclusive_event_installable(event, ctx)) {
9617                 /* exclusive and group stuff are assumed mutually exclusive */
9618                 WARN_ON_ONCE(move_group);
9619
9620                 err = -EBUSY;
9621                 goto err_locked;
9622         }
9623
9624         WARN_ON_ONCE(ctx->parent_ctx);
9625
9626         /*
9627          * This is the point on no return; we cannot fail hereafter. This is
9628          * where we start modifying current state.
9629          */
9630
9631         if (move_group) {
9632                 /*
9633                  * See perf_event_ctx_lock() for comments on the details
9634                  * of swizzling perf_event::ctx.
9635                  */
9636                 perf_remove_from_context(group_leader, 0);
9637
9638                 list_for_each_entry(sibling, &group_leader->sibling_list,
9639                                     group_entry) {
9640                         perf_remove_from_context(sibling, 0);
9641                         put_ctx(gctx);
9642                 }
9643
9644                 /*
9645                  * Wait for everybody to stop referencing the events through
9646                  * the old lists, before installing it on new lists.
9647                  */
9648                 synchronize_rcu();
9649
9650                 /*
9651                  * Install the group siblings before the group leader.
9652                  *
9653                  * Because a group leader will try and install the entire group
9654                  * (through the sibling list, which is still in-tact), we can
9655                  * end up with siblings installed in the wrong context.
9656                  *
9657                  * By installing siblings first we NO-OP because they're not
9658                  * reachable through the group lists.
9659                  */
9660                 list_for_each_entry(sibling, &group_leader->sibling_list,
9661                                     group_entry) {
9662                         perf_event__state_init(sibling);
9663                         perf_install_in_context(ctx, sibling, sibling->cpu);
9664                         get_ctx(ctx);
9665                 }
9666
9667                 /*
9668                  * Removing from the context ends up with disabled
9669                  * event. What we want here is event in the initial
9670                  * startup state, ready to be add into new context.
9671                  */
9672                 perf_event__state_init(group_leader);
9673                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9674                 get_ctx(ctx);
9675
9676                 /*
9677                  * Now that all events are installed in @ctx, nothing
9678                  * references @gctx anymore, so drop the last reference we have
9679                  * on it.
9680                  */
9681                 put_ctx(gctx);
9682         }
9683
9684         /*
9685          * Precalculate sample_data sizes; do while holding ctx::mutex such
9686          * that we're serialized against further additions and before
9687          * perf_install_in_context() which is the point the event is active and
9688          * can use these values.
9689          */
9690         perf_event__header_size(event);
9691         perf_event__id_header_size(event);
9692
9693         event->owner = current;
9694
9695         perf_install_in_context(ctx, event, event->cpu);
9696         perf_unpin_context(ctx);
9697
9698         if (move_group)
9699                 mutex_unlock(&gctx->mutex);
9700         mutex_unlock(&ctx->mutex);
9701
9702         if (task) {
9703                 mutex_unlock(&task->signal->cred_guard_mutex);
9704                 put_task_struct(task);
9705         }
9706
9707         put_online_cpus();
9708
9709         mutex_lock(&current->perf_event_mutex);
9710         list_add_tail(&event->owner_entry, &current->perf_event_list);
9711         mutex_unlock(&current->perf_event_mutex);
9712
9713         /*
9714          * Drop the reference on the group_event after placing the
9715          * new event on the sibling_list. This ensures destruction
9716          * of the group leader will find the pointer to itself in
9717          * perf_group_detach().
9718          */
9719         fdput(group);
9720         fd_install(event_fd, event_file);
9721         return event_fd;
9722
9723 err_locked:
9724         if (move_group)
9725                 mutex_unlock(&gctx->mutex);
9726         mutex_unlock(&ctx->mutex);
9727 /* err_file: */
9728         fput(event_file);
9729 err_context:
9730         perf_unpin_context(ctx);
9731         put_ctx(ctx);
9732 err_alloc:
9733         /*
9734          * If event_file is set, the fput() above will have called ->release()
9735          * and that will take care of freeing the event.
9736          */
9737         if (!event_file)
9738                 free_event(event);
9739 err_cred:
9740         if (task)
9741                 mutex_unlock(&task->signal->cred_guard_mutex);
9742 err_cpus:
9743         put_online_cpus();
9744 err_task:
9745         if (task)
9746                 put_task_struct(task);
9747 err_group_fd:
9748         fdput(group);
9749 err_fd:
9750         put_unused_fd(event_fd);
9751         return err;
9752 }
9753
9754 /**
9755  * perf_event_create_kernel_counter
9756  *
9757  * @attr: attributes of the counter to create
9758  * @cpu: cpu in which the counter is bound
9759  * @task: task to profile (NULL for percpu)
9760  */
9761 struct perf_event *
9762 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9763                                  struct task_struct *task,
9764                                  perf_overflow_handler_t overflow_handler,
9765                                  void *context)
9766 {
9767         struct perf_event_context *ctx;
9768         struct perf_event *event;
9769         int err;
9770
9771         /*
9772          * Get the target context (task or percpu):
9773          */
9774
9775         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9776                                  overflow_handler, context, -1);
9777         if (IS_ERR(event)) {
9778                 err = PTR_ERR(event);
9779                 goto err;
9780         }
9781
9782         /* Mark owner so we could distinguish it from user events. */
9783         event->owner = TASK_TOMBSTONE;
9784
9785         ctx = find_get_context(event->pmu, task, event);
9786         if (IS_ERR(ctx)) {
9787                 err = PTR_ERR(ctx);
9788                 goto err_free;
9789         }
9790
9791         WARN_ON_ONCE(ctx->parent_ctx);
9792         mutex_lock(&ctx->mutex);
9793         if (ctx->task == TASK_TOMBSTONE) {
9794                 err = -ESRCH;
9795                 goto err_unlock;
9796         }
9797
9798         if (!exclusive_event_installable(event, ctx)) {
9799                 err = -EBUSY;
9800                 goto err_unlock;
9801         }
9802
9803         perf_install_in_context(ctx, event, cpu);
9804         perf_unpin_context(ctx);
9805         mutex_unlock(&ctx->mutex);
9806
9807         return event;
9808
9809 err_unlock:
9810         mutex_unlock(&ctx->mutex);
9811         perf_unpin_context(ctx);
9812         put_ctx(ctx);
9813 err_free:
9814         free_event(event);
9815 err:
9816         return ERR_PTR(err);
9817 }
9818 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9819
9820 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9821 {
9822         struct perf_event_context *src_ctx;
9823         struct perf_event_context *dst_ctx;
9824         struct perf_event *event, *tmp;
9825         LIST_HEAD(events);
9826
9827         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9828         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9829
9830         /*
9831          * See perf_event_ctx_lock() for comments on the details
9832          * of swizzling perf_event::ctx.
9833          */
9834         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9835         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9836                                  event_entry) {
9837                 perf_remove_from_context(event, 0);
9838                 unaccount_event_cpu(event, src_cpu);
9839                 put_ctx(src_ctx);
9840                 list_add(&event->migrate_entry, &events);
9841         }
9842
9843         /*
9844          * Wait for the events to quiesce before re-instating them.
9845          */
9846         synchronize_rcu();
9847
9848         /*
9849          * Re-instate events in 2 passes.
9850          *
9851          * Skip over group leaders and only install siblings on this first
9852          * pass, siblings will not get enabled without a leader, however a
9853          * leader will enable its siblings, even if those are still on the old
9854          * context.
9855          */
9856         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9857                 if (event->group_leader == event)
9858                         continue;
9859
9860                 list_del(&event->migrate_entry);
9861                 if (event->state >= PERF_EVENT_STATE_OFF)
9862                         event->state = PERF_EVENT_STATE_INACTIVE;
9863                 account_event_cpu(event, dst_cpu);
9864                 perf_install_in_context(dst_ctx, event, dst_cpu);
9865                 get_ctx(dst_ctx);
9866         }
9867
9868         /*
9869          * Once all the siblings are setup properly, install the group leaders
9870          * to make it go.
9871          */
9872         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9873                 list_del(&event->migrate_entry);
9874                 if (event->state >= PERF_EVENT_STATE_OFF)
9875                         event->state = PERF_EVENT_STATE_INACTIVE;
9876                 account_event_cpu(event, dst_cpu);
9877                 perf_install_in_context(dst_ctx, event, dst_cpu);
9878                 get_ctx(dst_ctx);
9879         }
9880         mutex_unlock(&dst_ctx->mutex);
9881         mutex_unlock(&src_ctx->mutex);
9882 }
9883 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9884
9885 static void sync_child_event(struct perf_event *child_event,
9886                                struct task_struct *child)
9887 {
9888         struct perf_event *parent_event = child_event->parent;
9889         u64 child_val;
9890
9891         if (child_event->attr.inherit_stat)
9892                 perf_event_read_event(child_event, child);
9893
9894         child_val = perf_event_count(child_event);
9895
9896         /*
9897          * Add back the child's count to the parent's count:
9898          */
9899         atomic64_add(child_val, &parent_event->child_count);
9900         atomic64_add(child_event->total_time_enabled,
9901                      &parent_event->child_total_time_enabled);
9902         atomic64_add(child_event->total_time_running,
9903                      &parent_event->child_total_time_running);
9904 }
9905
9906 static void
9907 perf_event_exit_event(struct perf_event *child_event,
9908                       struct perf_event_context *child_ctx,
9909                       struct task_struct *child)
9910 {
9911         struct perf_event *parent_event = child_event->parent;
9912
9913         /*
9914          * Do not destroy the 'original' grouping; because of the context
9915          * switch optimization the original events could've ended up in a
9916          * random child task.
9917          *
9918          * If we were to destroy the original group, all group related
9919          * operations would cease to function properly after this random
9920          * child dies.
9921          *
9922          * Do destroy all inherited groups, we don't care about those
9923          * and being thorough is better.
9924          */
9925         raw_spin_lock_irq(&child_ctx->lock);
9926         WARN_ON_ONCE(child_ctx->is_active);
9927
9928         if (parent_event)
9929                 perf_group_detach(child_event);
9930         list_del_event(child_event, child_ctx);
9931         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9932         raw_spin_unlock_irq(&child_ctx->lock);
9933
9934         /*
9935          * Parent events are governed by their filedesc, retain them.
9936          */
9937         if (!parent_event) {
9938                 perf_event_wakeup(child_event);
9939                 return;
9940         }
9941         /*
9942          * Child events can be cleaned up.
9943          */
9944
9945         sync_child_event(child_event, child);
9946
9947         /*
9948          * Remove this event from the parent's list
9949          */
9950         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9951         mutex_lock(&parent_event->child_mutex);
9952         list_del_init(&child_event->child_list);
9953         mutex_unlock(&parent_event->child_mutex);
9954
9955         /*
9956          * Kick perf_poll() for is_event_hup().
9957          */
9958         perf_event_wakeup(parent_event);
9959         free_event(child_event);
9960         put_event(parent_event);
9961 }
9962
9963 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9964 {
9965         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9966         struct perf_event *child_event, *next;
9967
9968         WARN_ON_ONCE(child != current);
9969
9970         child_ctx = perf_pin_task_context(child, ctxn);
9971         if (!child_ctx)
9972                 return;
9973
9974         /*
9975          * In order to reduce the amount of tricky in ctx tear-down, we hold
9976          * ctx::mutex over the entire thing. This serializes against almost
9977          * everything that wants to access the ctx.
9978          *
9979          * The exception is sys_perf_event_open() /
9980          * perf_event_create_kernel_count() which does find_get_context()
9981          * without ctx::mutex (it cannot because of the move_group double mutex
9982          * lock thing). See the comments in perf_install_in_context().
9983          */
9984         mutex_lock(&child_ctx->mutex);
9985
9986         /*
9987          * In a single ctx::lock section, de-schedule the events and detach the
9988          * context from the task such that we cannot ever get it scheduled back
9989          * in.
9990          */
9991         raw_spin_lock_irq(&child_ctx->lock);
9992         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9993
9994         /*
9995          * Now that the context is inactive, destroy the task <-> ctx relation
9996          * and mark the context dead.
9997          */
9998         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9999         put_ctx(child_ctx); /* cannot be last */
10000         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10001         put_task_struct(current); /* cannot be last */
10002
10003         clone_ctx = unclone_ctx(child_ctx);
10004         raw_spin_unlock_irq(&child_ctx->lock);
10005
10006         if (clone_ctx)
10007                 put_ctx(clone_ctx);
10008
10009         /*
10010          * Report the task dead after unscheduling the events so that we
10011          * won't get any samples after PERF_RECORD_EXIT. We can however still
10012          * get a few PERF_RECORD_READ events.
10013          */
10014         perf_event_task(child, child_ctx, 0);
10015
10016         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10017                 perf_event_exit_event(child_event, child_ctx, child);
10018
10019         mutex_unlock(&child_ctx->mutex);
10020
10021         put_ctx(child_ctx);
10022 }
10023
10024 /*
10025  * When a child task exits, feed back event values to parent events.
10026  *
10027  * Can be called with cred_guard_mutex held when called from
10028  * install_exec_creds().
10029  */
10030 void perf_event_exit_task(struct task_struct *child)
10031 {
10032         struct perf_event *event, *tmp;
10033         int ctxn;
10034
10035         mutex_lock(&child->perf_event_mutex);
10036         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10037                                  owner_entry) {
10038                 list_del_init(&event->owner_entry);
10039
10040                 /*
10041                  * Ensure the list deletion is visible before we clear
10042                  * the owner, closes a race against perf_release() where
10043                  * we need to serialize on the owner->perf_event_mutex.
10044                  */
10045                 smp_store_release(&event->owner, NULL);
10046         }
10047         mutex_unlock(&child->perf_event_mutex);
10048
10049         for_each_task_context_nr(ctxn)
10050                 perf_event_exit_task_context(child, ctxn);
10051
10052         /*
10053          * The perf_event_exit_task_context calls perf_event_task
10054          * with child's task_ctx, which generates EXIT events for
10055          * child contexts and sets child->perf_event_ctxp[] to NULL.
10056          * At this point we need to send EXIT events to cpu contexts.
10057          */
10058         perf_event_task(child, NULL, 0);
10059 }
10060
10061 static void perf_free_event(struct perf_event *event,
10062                             struct perf_event_context *ctx)
10063 {
10064         struct perf_event *parent = event->parent;
10065
10066         if (WARN_ON_ONCE(!parent))
10067                 return;
10068
10069         mutex_lock(&parent->child_mutex);
10070         list_del_init(&event->child_list);
10071         mutex_unlock(&parent->child_mutex);
10072
10073         put_event(parent);
10074
10075         raw_spin_lock_irq(&ctx->lock);
10076         perf_group_detach(event);
10077         list_del_event(event, ctx);
10078         raw_spin_unlock_irq(&ctx->lock);
10079         free_event(event);
10080 }
10081
10082 /*
10083  * Free an unexposed, unused context as created by inheritance by
10084  * perf_event_init_task below, used by fork() in case of fail.
10085  *
10086  * Not all locks are strictly required, but take them anyway to be nice and
10087  * help out with the lockdep assertions.
10088  */
10089 void perf_event_free_task(struct task_struct *task)
10090 {
10091         struct perf_event_context *ctx;
10092         struct perf_event *event, *tmp;
10093         int ctxn;
10094
10095         for_each_task_context_nr(ctxn) {
10096                 ctx = task->perf_event_ctxp[ctxn];
10097                 if (!ctx)
10098                         continue;
10099
10100                 mutex_lock(&ctx->mutex);
10101 again:
10102                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10103                                 group_entry)
10104                         perf_free_event(event, ctx);
10105
10106                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10107                                 group_entry)
10108                         perf_free_event(event, ctx);
10109
10110                 if (!list_empty(&ctx->pinned_groups) ||
10111                                 !list_empty(&ctx->flexible_groups))
10112                         goto again;
10113
10114                 mutex_unlock(&ctx->mutex);
10115
10116                 put_ctx(ctx);
10117         }
10118 }
10119
10120 void perf_event_delayed_put(struct task_struct *task)
10121 {
10122         int ctxn;
10123
10124         for_each_task_context_nr(ctxn)
10125                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10126 }
10127
10128 struct file *perf_event_get(unsigned int fd)
10129 {
10130         struct file *file;
10131
10132         file = fget_raw(fd);
10133         if (!file)
10134                 return ERR_PTR(-EBADF);
10135
10136         if (file->f_op != &perf_fops) {
10137                 fput(file);
10138                 return ERR_PTR(-EBADF);
10139         }
10140
10141         return file;
10142 }
10143
10144 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10145 {
10146         if (!event)
10147                 return ERR_PTR(-EINVAL);
10148
10149         return &event->attr;
10150 }
10151
10152 /*
10153  * inherit a event from parent task to child task:
10154  */
10155 static struct perf_event *
10156 inherit_event(struct perf_event *parent_event,
10157               struct task_struct *parent,
10158               struct perf_event_context *parent_ctx,
10159               struct task_struct *child,
10160               struct perf_event *group_leader,
10161               struct perf_event_context *child_ctx)
10162 {
10163         enum perf_event_active_state parent_state = parent_event->state;
10164         struct perf_event *child_event;
10165         unsigned long flags;
10166
10167         /*
10168          * Instead of creating recursive hierarchies of events,
10169          * we link inherited events back to the original parent,
10170          * which has a filp for sure, which we use as the reference
10171          * count:
10172          */
10173         if (parent_event->parent)
10174                 parent_event = parent_event->parent;
10175
10176         child_event = perf_event_alloc(&parent_event->attr,
10177                                            parent_event->cpu,
10178                                            child,
10179                                            group_leader, parent_event,
10180                                            NULL, NULL, -1);
10181         if (IS_ERR(child_event))
10182                 return child_event;
10183
10184         /*
10185          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10186          * must be under the same lock in order to serialize against
10187          * perf_event_release_kernel(), such that either we must observe
10188          * is_orphaned_event() or they will observe us on the child_list.
10189          */
10190         mutex_lock(&parent_event->child_mutex);
10191         if (is_orphaned_event(parent_event) ||
10192             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10193                 mutex_unlock(&parent_event->child_mutex);
10194                 free_event(child_event);
10195                 return NULL;
10196         }
10197
10198         get_ctx(child_ctx);
10199
10200         /*
10201          * Make the child state follow the state of the parent event,
10202          * not its attr.disabled bit.  We hold the parent's mutex,
10203          * so we won't race with perf_event_{en, dis}able_family.
10204          */
10205         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10206                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10207         else
10208                 child_event->state = PERF_EVENT_STATE_OFF;
10209
10210         if (parent_event->attr.freq) {
10211                 u64 sample_period = parent_event->hw.sample_period;
10212                 struct hw_perf_event *hwc = &child_event->hw;
10213
10214                 hwc->sample_period = sample_period;
10215                 hwc->last_period   = sample_period;
10216
10217                 local64_set(&hwc->period_left, sample_period);
10218         }
10219
10220         child_event->ctx = child_ctx;
10221         child_event->overflow_handler = parent_event->overflow_handler;
10222         child_event->overflow_handler_context
10223                 = parent_event->overflow_handler_context;
10224
10225         /*
10226          * Precalculate sample_data sizes
10227          */
10228         perf_event__header_size(child_event);
10229         perf_event__id_header_size(child_event);
10230
10231         /*
10232          * Link it up in the child's context:
10233          */
10234         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10235         add_event_to_ctx(child_event, child_ctx);
10236         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10237
10238         /*
10239          * Link this into the parent event's child list
10240          */
10241         list_add_tail(&child_event->child_list, &parent_event->child_list);
10242         mutex_unlock(&parent_event->child_mutex);
10243
10244         return child_event;
10245 }
10246
10247 static int inherit_group(struct perf_event *parent_event,
10248               struct task_struct *parent,
10249               struct perf_event_context *parent_ctx,
10250               struct task_struct *child,
10251               struct perf_event_context *child_ctx)
10252 {
10253         struct perf_event *leader;
10254         struct perf_event *sub;
10255         struct perf_event *child_ctr;
10256
10257         leader = inherit_event(parent_event, parent, parent_ctx,
10258                                  child, NULL, child_ctx);
10259         if (IS_ERR(leader))
10260                 return PTR_ERR(leader);
10261         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10262                 child_ctr = inherit_event(sub, parent, parent_ctx,
10263                                             child, leader, child_ctx);
10264                 if (IS_ERR(child_ctr))
10265                         return PTR_ERR(child_ctr);
10266         }
10267         return 0;
10268 }
10269
10270 static int
10271 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10272                    struct perf_event_context *parent_ctx,
10273                    struct task_struct *child, int ctxn,
10274                    int *inherited_all)
10275 {
10276         int ret;
10277         struct perf_event_context *child_ctx;
10278
10279         if (!event->attr.inherit) {
10280                 *inherited_all = 0;
10281                 return 0;
10282         }
10283
10284         child_ctx = child->perf_event_ctxp[ctxn];
10285         if (!child_ctx) {
10286                 /*
10287                  * This is executed from the parent task context, so
10288                  * inherit events that have been marked for cloning.
10289                  * First allocate and initialize a context for the
10290                  * child.
10291                  */
10292
10293                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10294                 if (!child_ctx)
10295                         return -ENOMEM;
10296
10297                 child->perf_event_ctxp[ctxn] = child_ctx;
10298         }
10299
10300         ret = inherit_group(event, parent, parent_ctx,
10301                             child, child_ctx);
10302
10303         if (ret)
10304                 *inherited_all = 0;
10305
10306         return ret;
10307 }
10308
10309 /*
10310  * Initialize the perf_event context in task_struct
10311  */
10312 static int perf_event_init_context(struct task_struct *child, int ctxn)
10313 {
10314         struct perf_event_context *child_ctx, *parent_ctx;
10315         struct perf_event_context *cloned_ctx;
10316         struct perf_event *event;
10317         struct task_struct *parent = current;
10318         int inherited_all = 1;
10319         unsigned long flags;
10320         int ret = 0;
10321
10322         if (likely(!parent->perf_event_ctxp[ctxn]))
10323                 return 0;
10324
10325         /*
10326          * If the parent's context is a clone, pin it so it won't get
10327          * swapped under us.
10328          */
10329         parent_ctx = perf_pin_task_context(parent, ctxn);
10330         if (!parent_ctx)
10331                 return 0;
10332
10333         /*
10334          * No need to check if parent_ctx != NULL here; since we saw
10335          * it non-NULL earlier, the only reason for it to become NULL
10336          * is if we exit, and since we're currently in the middle of
10337          * a fork we can't be exiting at the same time.
10338          */
10339
10340         /*
10341          * Lock the parent list. No need to lock the child - not PID
10342          * hashed yet and not running, so nobody can access it.
10343          */
10344         mutex_lock(&parent_ctx->mutex);
10345
10346         /*
10347          * We dont have to disable NMIs - we are only looking at
10348          * the list, not manipulating it:
10349          */
10350         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10351                 ret = inherit_task_group(event, parent, parent_ctx,
10352                                          child, ctxn, &inherited_all);
10353                 if (ret)
10354                         break;
10355         }
10356
10357         /*
10358          * We can't hold ctx->lock when iterating the ->flexible_group list due
10359          * to allocations, but we need to prevent rotation because
10360          * rotate_ctx() will change the list from interrupt context.
10361          */
10362         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10363         parent_ctx->rotate_disable = 1;
10364         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10365
10366         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10367                 ret = inherit_task_group(event, parent, parent_ctx,
10368                                          child, ctxn, &inherited_all);
10369                 if (ret)
10370                         break;
10371         }
10372
10373         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10374         parent_ctx->rotate_disable = 0;
10375
10376         child_ctx = child->perf_event_ctxp[ctxn];
10377
10378         if (child_ctx && inherited_all) {
10379                 /*
10380                  * Mark the child context as a clone of the parent
10381                  * context, or of whatever the parent is a clone of.
10382                  *
10383                  * Note that if the parent is a clone, the holding of
10384                  * parent_ctx->lock avoids it from being uncloned.
10385                  */
10386                 cloned_ctx = parent_ctx->parent_ctx;
10387                 if (cloned_ctx) {
10388                         child_ctx->parent_ctx = cloned_ctx;
10389                         child_ctx->parent_gen = parent_ctx->parent_gen;
10390                 } else {
10391                         child_ctx->parent_ctx = parent_ctx;
10392                         child_ctx->parent_gen = parent_ctx->generation;
10393                 }
10394                 get_ctx(child_ctx->parent_ctx);
10395         }
10396
10397         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10398         mutex_unlock(&parent_ctx->mutex);
10399
10400         perf_unpin_context(parent_ctx);
10401         put_ctx(parent_ctx);
10402
10403         return ret;
10404 }
10405
10406 /*
10407  * Initialize the perf_event context in task_struct
10408  */
10409 int perf_event_init_task(struct task_struct *child)
10410 {
10411         int ctxn, ret;
10412
10413         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10414         mutex_init(&child->perf_event_mutex);
10415         INIT_LIST_HEAD(&child->perf_event_list);
10416
10417         for_each_task_context_nr(ctxn) {
10418                 ret = perf_event_init_context(child, ctxn);
10419                 if (ret) {
10420                         perf_event_free_task(child);
10421                         return ret;
10422                 }
10423         }
10424
10425         return 0;
10426 }
10427
10428 static void __init perf_event_init_all_cpus(void)
10429 {
10430         struct swevent_htable *swhash;
10431         int cpu;
10432
10433         for_each_possible_cpu(cpu) {
10434                 swhash = &per_cpu(swevent_htable, cpu);
10435                 mutex_init(&swhash->hlist_mutex);
10436                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10437
10438                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10439                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10440
10441                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10442         }
10443 }
10444
10445 int perf_event_init_cpu(unsigned int cpu)
10446 {
10447         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10448
10449         mutex_lock(&swhash->hlist_mutex);
10450         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10451                 struct swevent_hlist *hlist;
10452
10453                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10454                 WARN_ON(!hlist);
10455                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10456         }
10457         mutex_unlock(&swhash->hlist_mutex);
10458         return 0;
10459 }
10460
10461 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10462 static void __perf_event_exit_context(void *__info)
10463 {
10464         struct perf_event_context *ctx = __info;
10465         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10466         struct perf_event *event;
10467
10468         raw_spin_lock(&ctx->lock);
10469         list_for_each_entry(event, &ctx->event_list, event_entry)
10470                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10471         raw_spin_unlock(&ctx->lock);
10472 }
10473
10474 static void perf_event_exit_cpu_context(int cpu)
10475 {
10476         struct perf_event_context *ctx;
10477         struct pmu *pmu;
10478         int idx;
10479
10480         idx = srcu_read_lock(&pmus_srcu);
10481         list_for_each_entry_rcu(pmu, &pmus, entry) {
10482                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10483
10484                 mutex_lock(&ctx->mutex);
10485                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10486                 mutex_unlock(&ctx->mutex);
10487         }
10488         srcu_read_unlock(&pmus_srcu, idx);
10489 }
10490 #else
10491
10492 static void perf_event_exit_cpu_context(int cpu) { }
10493
10494 #endif
10495
10496 int perf_event_exit_cpu(unsigned int cpu)
10497 {
10498         perf_event_exit_cpu_context(cpu);
10499         return 0;
10500 }
10501
10502 static int
10503 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10504 {
10505         int cpu;
10506
10507         for_each_online_cpu(cpu)
10508                 perf_event_exit_cpu(cpu);
10509
10510         return NOTIFY_OK;
10511 }
10512
10513 /*
10514  * Run the perf reboot notifier at the very last possible moment so that
10515  * the generic watchdog code runs as long as possible.
10516  */
10517 static struct notifier_block perf_reboot_notifier = {
10518         .notifier_call = perf_reboot,
10519         .priority = INT_MIN,
10520 };
10521
10522 void __init perf_event_init(void)
10523 {
10524         int ret;
10525
10526         idr_init(&pmu_idr);
10527
10528         perf_event_init_all_cpus();
10529         init_srcu_struct(&pmus_srcu);
10530         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10531         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10532         perf_pmu_register(&perf_task_clock, NULL, -1);
10533         perf_tp_register();
10534         perf_event_init_cpu(smp_processor_id());
10535         register_reboot_notifier(&perf_reboot_notifier);
10536
10537         ret = init_hw_breakpoint();
10538         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10539
10540         /*
10541          * Build time assertion that we keep the data_head at the intended
10542          * location.  IOW, validation we got the __reserved[] size right.
10543          */
10544         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10545                      != 1024);
10546 }
10547
10548 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10549                               char *page)
10550 {
10551         struct perf_pmu_events_attr *pmu_attr =
10552                 container_of(attr, struct perf_pmu_events_attr, attr);
10553
10554         if (pmu_attr->event_str)
10555                 return sprintf(page, "%s\n", pmu_attr->event_str);
10556
10557         return 0;
10558 }
10559 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10560
10561 static int __init perf_event_sysfs_init(void)
10562 {
10563         struct pmu *pmu;
10564         int ret;
10565
10566         mutex_lock(&pmus_lock);
10567
10568         ret = bus_register(&pmu_bus);
10569         if (ret)
10570                 goto unlock;
10571
10572         list_for_each_entry(pmu, &pmus, entry) {
10573                 if (!pmu->name || pmu->type < 0)
10574                         continue;
10575
10576                 ret = pmu_dev_alloc(pmu);
10577                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10578         }
10579         pmu_bus_running = 1;
10580         ret = 0;
10581
10582 unlock:
10583         mutex_unlock(&pmus_lock);
10584
10585         return ret;
10586 }
10587 device_initcall(perf_event_sysfs_init);
10588
10589 #ifdef CONFIG_CGROUP_PERF
10590 static struct cgroup_subsys_state *
10591 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10592 {
10593         struct perf_cgroup *jc;
10594
10595         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10596         if (!jc)
10597                 return ERR_PTR(-ENOMEM);
10598
10599         jc->info = alloc_percpu(struct perf_cgroup_info);
10600         if (!jc->info) {
10601                 kfree(jc);
10602                 return ERR_PTR(-ENOMEM);
10603         }
10604
10605         return &jc->css;
10606 }
10607
10608 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10609 {
10610         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10611
10612         free_percpu(jc->info);
10613         kfree(jc);
10614 }
10615
10616 static int __perf_cgroup_move(void *info)
10617 {
10618         struct task_struct *task = info;
10619         rcu_read_lock();
10620         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10621         rcu_read_unlock();
10622         return 0;
10623 }
10624
10625 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10626 {
10627         struct task_struct *task;
10628         struct cgroup_subsys_state *css;
10629
10630         cgroup_taskset_for_each(task, css, tset)
10631                 task_function_call(task, __perf_cgroup_move, task);
10632 }
10633
10634 struct cgroup_subsys perf_event_cgrp_subsys = {
10635         .css_alloc      = perf_cgroup_css_alloc,
10636         .css_free       = perf_cgroup_css_free,
10637         .attach         = perf_cgroup_attach,
10638 };
10639 #endif /* CONFIG_CGROUP_PERF */