Merge branch 'perf/urgent' into perf/core, to pick up fixed and resolve conflicts
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905         cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913         return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921         return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451         if (event->attr.pinned)
1452                 return &ctx->pinned_groups;
1453         else
1454                 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465         lockdep_assert_held(&ctx->lock);
1466
1467         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468         event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470         /*
1471          * If we're a stand alone event or group leader, we go to the context
1472          * list, group events are kept attached to the group so that
1473          * perf_group_detach can, at all times, locate all siblings.
1474          */
1475         if (event->group_leader == event) {
1476                 struct list_head *list;
1477
1478                 event->group_caps = event->event_caps;
1479
1480                 list = ctx_group_list(event, ctx);
1481                 list_add_tail(&event->group_entry, list);
1482         }
1483
1484         list_update_cgroup_event(event, ctx, true);
1485
1486         list_add_rcu(&event->event_entry, &ctx->event_list);
1487         ctx->nr_events++;
1488         if (event->attr.inherit_stat)
1489                 ctx->nr_stat++;
1490
1491         ctx->generation++;
1492 }
1493
1494 /*
1495  * Initialize event state based on the perf_event_attr::disabled.
1496  */
1497 static inline void perf_event__state_init(struct perf_event *event)
1498 {
1499         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500                                               PERF_EVENT_STATE_INACTIVE;
1501 }
1502
1503 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 {
1505         int entry = sizeof(u64); /* value */
1506         int size = 0;
1507         int nr = 1;
1508
1509         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510                 size += sizeof(u64);
1511
1512         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513                 size += sizeof(u64);
1514
1515         if (event->attr.read_format & PERF_FORMAT_ID)
1516                 entry += sizeof(u64);
1517
1518         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1519                 nr += nr_siblings;
1520                 size += sizeof(u64);
1521         }
1522
1523         size += entry * nr;
1524         event->read_size = size;
1525 }
1526
1527 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 {
1529         struct perf_sample_data *data;
1530         u16 size = 0;
1531
1532         if (sample_type & PERF_SAMPLE_IP)
1533                 size += sizeof(data->ip);
1534
1535         if (sample_type & PERF_SAMPLE_ADDR)
1536                 size += sizeof(data->addr);
1537
1538         if (sample_type & PERF_SAMPLE_PERIOD)
1539                 size += sizeof(data->period);
1540
1541         if (sample_type & PERF_SAMPLE_WEIGHT)
1542                 size += sizeof(data->weight);
1543
1544         if (sample_type & PERF_SAMPLE_READ)
1545                 size += event->read_size;
1546
1547         if (sample_type & PERF_SAMPLE_DATA_SRC)
1548                 size += sizeof(data->data_src.val);
1549
1550         if (sample_type & PERF_SAMPLE_TRANSACTION)
1551                 size += sizeof(data->txn);
1552
1553         event->header_size = size;
1554 }
1555
1556 /*
1557  * Called at perf_event creation and when events are attached/detached from a
1558  * group.
1559  */
1560 static void perf_event__header_size(struct perf_event *event)
1561 {
1562         __perf_event_read_size(event,
1563                                event->group_leader->nr_siblings);
1564         __perf_event_header_size(event, event->attr.sample_type);
1565 }
1566
1567 static void perf_event__id_header_size(struct perf_event *event)
1568 {
1569         struct perf_sample_data *data;
1570         u64 sample_type = event->attr.sample_type;
1571         u16 size = 0;
1572
1573         if (sample_type & PERF_SAMPLE_TID)
1574                 size += sizeof(data->tid_entry);
1575
1576         if (sample_type & PERF_SAMPLE_TIME)
1577                 size += sizeof(data->time);
1578
1579         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580                 size += sizeof(data->id);
1581
1582         if (sample_type & PERF_SAMPLE_ID)
1583                 size += sizeof(data->id);
1584
1585         if (sample_type & PERF_SAMPLE_STREAM_ID)
1586                 size += sizeof(data->stream_id);
1587
1588         if (sample_type & PERF_SAMPLE_CPU)
1589                 size += sizeof(data->cpu_entry);
1590
1591         event->id_header_size = size;
1592 }
1593
1594 static bool perf_event_validate_size(struct perf_event *event)
1595 {
1596         /*
1597          * The values computed here will be over-written when we actually
1598          * attach the event.
1599          */
1600         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602         perf_event__id_header_size(event);
1603
1604         /*
1605          * Sum the lot; should not exceed the 64k limit we have on records.
1606          * Conservative limit to allow for callchains and other variable fields.
1607          */
1608         if (event->read_size + event->header_size +
1609             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610                 return false;
1611
1612         return true;
1613 }
1614
1615 static void perf_group_attach(struct perf_event *event)
1616 {
1617         struct perf_event *group_leader = event->group_leader, *pos;
1618
1619         /*
1620          * We can have double attach due to group movement in perf_event_open.
1621          */
1622         if (event->attach_state & PERF_ATTACH_GROUP)
1623                 return;
1624
1625         event->attach_state |= PERF_ATTACH_GROUP;
1626
1627         if (group_leader == event)
1628                 return;
1629
1630         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631
1632         group_leader->group_caps &= event->event_caps;
1633
1634         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635         group_leader->nr_siblings++;
1636
1637         perf_event__header_size(group_leader);
1638
1639         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640                 perf_event__header_size(pos);
1641 }
1642
1643 /*
1644  * Remove a event from the lists for its context.
1645  * Must be called with ctx->mutex and ctx->lock held.
1646  */
1647 static void
1648 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         WARN_ON_ONCE(event->ctx != ctx);
1651         lockdep_assert_held(&ctx->lock);
1652
1653         /*
1654          * We can have double detach due to exit/hot-unplug + close.
1655          */
1656         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657                 return;
1658
1659         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660
1661         list_update_cgroup_event(event, ctx, false);
1662
1663         ctx->nr_events--;
1664         if (event->attr.inherit_stat)
1665                 ctx->nr_stat--;
1666
1667         list_del_rcu(&event->event_entry);
1668
1669         if (event->group_leader == event)
1670                 list_del_init(&event->group_entry);
1671
1672         update_group_times(event);
1673
1674         /*
1675          * If event was in error state, then keep it
1676          * that way, otherwise bogus counts will be
1677          * returned on read(). The only way to get out
1678          * of error state is by explicit re-enabling
1679          * of the event
1680          */
1681         if (event->state > PERF_EVENT_STATE_OFF)
1682                 event->state = PERF_EVENT_STATE_OFF;
1683
1684         ctx->generation++;
1685 }
1686
1687 static void perf_group_detach(struct perf_event *event)
1688 {
1689         struct perf_event *sibling, *tmp;
1690         struct list_head *list = NULL;
1691
1692         /*
1693          * We can have double detach due to exit/hot-unplug + close.
1694          */
1695         if (!(event->attach_state & PERF_ATTACH_GROUP))
1696                 return;
1697
1698         event->attach_state &= ~PERF_ATTACH_GROUP;
1699
1700         /*
1701          * If this is a sibling, remove it from its group.
1702          */
1703         if (event->group_leader != event) {
1704                 list_del_init(&event->group_entry);
1705                 event->group_leader->nr_siblings--;
1706                 goto out;
1707         }
1708
1709         if (!list_empty(&event->group_entry))
1710                 list = &event->group_entry;
1711
1712         /*
1713          * If this was a group event with sibling events then
1714          * upgrade the siblings to singleton events by adding them
1715          * to whatever list we are on.
1716          */
1717         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718                 if (list)
1719                         list_move_tail(&sibling->group_entry, list);
1720                 sibling->group_leader = sibling;
1721
1722                 /* Inherit group flags from the previous leader */
1723                 sibling->group_caps = event->group_caps;
1724
1725                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1726         }
1727
1728 out:
1729         perf_event__header_size(event->group_leader);
1730
1731         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732                 perf_event__header_size(tmp);
1733 }
1734
1735 static bool is_orphaned_event(struct perf_event *event)
1736 {
1737         return event->state == PERF_EVENT_STATE_DEAD;
1738 }
1739
1740 static inline int __pmu_filter_match(struct perf_event *event)
1741 {
1742         struct pmu *pmu = event->pmu;
1743         return pmu->filter_match ? pmu->filter_match(event) : 1;
1744 }
1745
1746 /*
1747  * Check whether we should attempt to schedule an event group based on
1748  * PMU-specific filtering. An event group can consist of HW and SW events,
1749  * potentially with a SW leader, so we must check all the filters, to
1750  * determine whether a group is schedulable:
1751  */
1752 static inline int pmu_filter_match(struct perf_event *event)
1753 {
1754         struct perf_event *child;
1755
1756         if (!__pmu_filter_match(event))
1757                 return 0;
1758
1759         list_for_each_entry(child, &event->sibling_list, group_entry) {
1760                 if (!__pmu_filter_match(child))
1761                         return 0;
1762         }
1763
1764         return 1;
1765 }
1766
1767 static inline int
1768 event_filter_match(struct perf_event *event)
1769 {
1770         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771                perf_cgroup_match(event) && pmu_filter_match(event);
1772 }
1773
1774 static void
1775 event_sched_out(struct perf_event *event,
1776                   struct perf_cpu_context *cpuctx,
1777                   struct perf_event_context *ctx)
1778 {
1779         u64 tstamp = perf_event_time(event);
1780         u64 delta;
1781
1782         WARN_ON_ONCE(event->ctx != ctx);
1783         lockdep_assert_held(&ctx->lock);
1784
1785         /*
1786          * An event which could not be activated because of
1787          * filter mismatch still needs to have its timings
1788          * maintained, otherwise bogus information is return
1789          * via read() for time_enabled, time_running:
1790          */
1791         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792             !event_filter_match(event)) {
1793                 delta = tstamp - event->tstamp_stopped;
1794                 event->tstamp_running += delta;
1795                 event->tstamp_stopped = tstamp;
1796         }
1797
1798         if (event->state != PERF_EVENT_STATE_ACTIVE)
1799                 return;
1800
1801         perf_pmu_disable(event->pmu);
1802
1803         event->tstamp_stopped = tstamp;
1804         event->pmu->del(event, 0);
1805         event->oncpu = -1;
1806         event->state = PERF_EVENT_STATE_INACTIVE;
1807         if (event->pending_disable) {
1808                 event->pending_disable = 0;
1809                 event->state = PERF_EVENT_STATE_OFF;
1810         }
1811
1812         if (!is_software_event(event))
1813                 cpuctx->active_oncpu--;
1814         if (!--ctx->nr_active)
1815                 perf_event_ctx_deactivate(ctx);
1816         if (event->attr.freq && event->attr.sample_freq)
1817                 ctx->nr_freq--;
1818         if (event->attr.exclusive || !cpuctx->active_oncpu)
1819                 cpuctx->exclusive = 0;
1820
1821         perf_pmu_enable(event->pmu);
1822 }
1823
1824 static void
1825 group_sched_out(struct perf_event *group_event,
1826                 struct perf_cpu_context *cpuctx,
1827                 struct perf_event_context *ctx)
1828 {
1829         struct perf_event *event;
1830         int state = group_event->state;
1831
1832         perf_pmu_disable(ctx->pmu);
1833
1834         event_sched_out(group_event, cpuctx, ctx);
1835
1836         /*
1837          * Schedule out siblings (if any):
1838          */
1839         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840                 event_sched_out(event, cpuctx, ctx);
1841
1842         perf_pmu_enable(ctx->pmu);
1843
1844         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845                 cpuctx->exclusive = 0;
1846 }
1847
1848 #define DETACH_GROUP    0x01UL
1849
1850 /*
1851  * Cross CPU call to remove a performance event
1852  *
1853  * We disable the event on the hardware level first. After that we
1854  * remove it from the context list.
1855  */
1856 static void
1857 __perf_remove_from_context(struct perf_event *event,
1858                            struct perf_cpu_context *cpuctx,
1859                            struct perf_event_context *ctx,
1860                            void *info)
1861 {
1862         unsigned long flags = (unsigned long)info;
1863
1864         event_sched_out(event, cpuctx, ctx);
1865         if (flags & DETACH_GROUP)
1866                 perf_group_detach(event);
1867         list_del_event(event, ctx);
1868
1869         if (!ctx->nr_events && ctx->is_active) {
1870                 ctx->is_active = 0;
1871                 if (ctx->task) {
1872                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873                         cpuctx->task_ctx = NULL;
1874                 }
1875         }
1876 }
1877
1878 /*
1879  * Remove the event from a task's (or a CPU's) list of events.
1880  *
1881  * If event->ctx is a cloned context, callers must make sure that
1882  * every task struct that event->ctx->task could possibly point to
1883  * remains valid.  This is OK when called from perf_release since
1884  * that only calls us on the top-level context, which can't be a clone.
1885  * When called from perf_event_exit_task, it's OK because the
1886  * context has been detached from its task.
1887  */
1888 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1889 {
1890         lockdep_assert_held(&event->ctx->mutex);
1891
1892         event_function_call(event, __perf_remove_from_context, (void *)flags);
1893 }
1894
1895 /*
1896  * Cross CPU call to disable a performance event
1897  */
1898 static void __perf_event_disable(struct perf_event *event,
1899                                  struct perf_cpu_context *cpuctx,
1900                                  struct perf_event_context *ctx,
1901                                  void *info)
1902 {
1903         if (event->state < PERF_EVENT_STATE_INACTIVE)
1904                 return;
1905
1906         update_context_time(ctx);
1907         update_cgrp_time_from_event(event);
1908         update_group_times(event);
1909         if (event == event->group_leader)
1910                 group_sched_out(event, cpuctx, ctx);
1911         else
1912                 event_sched_out(event, cpuctx, ctx);
1913         event->state = PERF_EVENT_STATE_OFF;
1914 }
1915
1916 /*
1917  * Disable a event.
1918  *
1919  * If event->ctx is a cloned context, callers must make sure that
1920  * every task struct that event->ctx->task could possibly point to
1921  * remains valid.  This condition is satisifed when called through
1922  * perf_event_for_each_child or perf_event_for_each because they
1923  * hold the top-level event's child_mutex, so any descendant that
1924  * goes to exit will block in perf_event_exit_event().
1925  *
1926  * When called from perf_pending_event it's OK because event->ctx
1927  * is the current context on this CPU and preemption is disabled,
1928  * hence we can't get into perf_event_task_sched_out for this context.
1929  */
1930 static void _perf_event_disable(struct perf_event *event)
1931 {
1932         struct perf_event_context *ctx = event->ctx;
1933
1934         raw_spin_lock_irq(&ctx->lock);
1935         if (event->state <= PERF_EVENT_STATE_OFF) {
1936                 raw_spin_unlock_irq(&ctx->lock);
1937                 return;
1938         }
1939         raw_spin_unlock_irq(&ctx->lock);
1940
1941         event_function_call(event, __perf_event_disable, NULL);
1942 }
1943
1944 void perf_event_disable_local(struct perf_event *event)
1945 {
1946         event_function_local(event, __perf_event_disable, NULL);
1947 }
1948
1949 /*
1950  * Strictly speaking kernel users cannot create groups and therefore this
1951  * interface does not need the perf_event_ctx_lock() magic.
1952  */
1953 void perf_event_disable(struct perf_event *event)
1954 {
1955         struct perf_event_context *ctx;
1956
1957         ctx = perf_event_ctx_lock(event);
1958         _perf_event_disable(event);
1959         perf_event_ctx_unlock(event, ctx);
1960 }
1961 EXPORT_SYMBOL_GPL(perf_event_disable);
1962
1963 static void perf_set_shadow_time(struct perf_event *event,
1964                                  struct perf_event_context *ctx,
1965                                  u64 tstamp)
1966 {
1967         /*
1968          * use the correct time source for the time snapshot
1969          *
1970          * We could get by without this by leveraging the
1971          * fact that to get to this function, the caller
1972          * has most likely already called update_context_time()
1973          * and update_cgrp_time_xx() and thus both timestamp
1974          * are identical (or very close). Given that tstamp is,
1975          * already adjusted for cgroup, we could say that:
1976          *    tstamp - ctx->timestamp
1977          * is equivalent to
1978          *    tstamp - cgrp->timestamp.
1979          *
1980          * Then, in perf_output_read(), the calculation would
1981          * work with no changes because:
1982          * - event is guaranteed scheduled in
1983          * - no scheduled out in between
1984          * - thus the timestamp would be the same
1985          *
1986          * But this is a bit hairy.
1987          *
1988          * So instead, we have an explicit cgroup call to remain
1989          * within the time time source all along. We believe it
1990          * is cleaner and simpler to understand.
1991          */
1992         if (is_cgroup_event(event))
1993                 perf_cgroup_set_shadow_time(event, tstamp);
1994         else
1995                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1996 }
1997
1998 #define MAX_INTERRUPTS (~0ULL)
1999
2000 static void perf_log_throttle(struct perf_event *event, int enable);
2001 static void perf_log_itrace_start(struct perf_event *event);
2002
2003 static int
2004 event_sched_in(struct perf_event *event,
2005                  struct perf_cpu_context *cpuctx,
2006                  struct perf_event_context *ctx)
2007 {
2008         u64 tstamp = perf_event_time(event);
2009         int ret = 0;
2010
2011         lockdep_assert_held(&ctx->lock);
2012
2013         if (event->state <= PERF_EVENT_STATE_OFF)
2014                 return 0;
2015
2016         WRITE_ONCE(event->oncpu, smp_processor_id());
2017         /*
2018          * Order event::oncpu write to happen before the ACTIVE state
2019          * is visible.
2020          */
2021         smp_wmb();
2022         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2023
2024         /*
2025          * Unthrottle events, since we scheduled we might have missed several
2026          * ticks already, also for a heavily scheduling task there is little
2027          * guarantee it'll get a tick in a timely manner.
2028          */
2029         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2030                 perf_log_throttle(event, 1);
2031                 event->hw.interrupts = 0;
2032         }
2033
2034         /*
2035          * The new state must be visible before we turn it on in the hardware:
2036          */
2037         smp_wmb();
2038
2039         perf_pmu_disable(event->pmu);
2040
2041         perf_set_shadow_time(event, ctx, tstamp);
2042
2043         perf_log_itrace_start(event);
2044
2045         if (event->pmu->add(event, PERF_EF_START)) {
2046                 event->state = PERF_EVENT_STATE_INACTIVE;
2047                 event->oncpu = -1;
2048                 ret = -EAGAIN;
2049                 goto out;
2050         }
2051
2052         event->tstamp_running += tstamp - event->tstamp_stopped;
2053
2054         if (!is_software_event(event))
2055                 cpuctx->active_oncpu++;
2056         if (!ctx->nr_active++)
2057                 perf_event_ctx_activate(ctx);
2058         if (event->attr.freq && event->attr.sample_freq)
2059                 ctx->nr_freq++;
2060
2061         if (event->attr.exclusive)
2062                 cpuctx->exclusive = 1;
2063
2064 out:
2065         perf_pmu_enable(event->pmu);
2066
2067         return ret;
2068 }
2069
2070 static int
2071 group_sched_in(struct perf_event *group_event,
2072                struct perf_cpu_context *cpuctx,
2073                struct perf_event_context *ctx)
2074 {
2075         struct perf_event *event, *partial_group = NULL;
2076         struct pmu *pmu = ctx->pmu;
2077         u64 now = ctx->time;
2078         bool simulate = false;
2079
2080         if (group_event->state == PERF_EVENT_STATE_OFF)
2081                 return 0;
2082
2083         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2084
2085         if (event_sched_in(group_event, cpuctx, ctx)) {
2086                 pmu->cancel_txn(pmu);
2087                 perf_mux_hrtimer_restart(cpuctx);
2088                 return -EAGAIN;
2089         }
2090
2091         /*
2092          * Schedule in siblings as one group (if any):
2093          */
2094         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2095                 if (event_sched_in(event, cpuctx, ctx)) {
2096                         partial_group = event;
2097                         goto group_error;
2098                 }
2099         }
2100
2101         if (!pmu->commit_txn(pmu))
2102                 return 0;
2103
2104 group_error:
2105         /*
2106          * Groups can be scheduled in as one unit only, so undo any
2107          * partial group before returning:
2108          * The events up to the failed event are scheduled out normally,
2109          * tstamp_stopped will be updated.
2110          *
2111          * The failed events and the remaining siblings need to have
2112          * their timings updated as if they had gone thru event_sched_in()
2113          * and event_sched_out(). This is required to get consistent timings
2114          * across the group. This also takes care of the case where the group
2115          * could never be scheduled by ensuring tstamp_stopped is set to mark
2116          * the time the event was actually stopped, such that time delta
2117          * calculation in update_event_times() is correct.
2118          */
2119         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2120                 if (event == partial_group)
2121                         simulate = true;
2122
2123                 if (simulate) {
2124                         event->tstamp_running += now - event->tstamp_stopped;
2125                         event->tstamp_stopped = now;
2126                 } else {
2127                         event_sched_out(event, cpuctx, ctx);
2128                 }
2129         }
2130         event_sched_out(group_event, cpuctx, ctx);
2131
2132         pmu->cancel_txn(pmu);
2133
2134         perf_mux_hrtimer_restart(cpuctx);
2135
2136         return -EAGAIN;
2137 }
2138
2139 /*
2140  * Work out whether we can put this event group on the CPU now.
2141  */
2142 static int group_can_go_on(struct perf_event *event,
2143                            struct perf_cpu_context *cpuctx,
2144                            int can_add_hw)
2145 {
2146         /*
2147          * Groups consisting entirely of software events can always go on.
2148          */
2149         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2150                 return 1;
2151         /*
2152          * If an exclusive group is already on, no other hardware
2153          * events can go on.
2154          */
2155         if (cpuctx->exclusive)
2156                 return 0;
2157         /*
2158          * If this group is exclusive and there are already
2159          * events on the CPU, it can't go on.
2160          */
2161         if (event->attr.exclusive && cpuctx->active_oncpu)
2162                 return 0;
2163         /*
2164          * Otherwise, try to add it if all previous groups were able
2165          * to go on.
2166          */
2167         return can_add_hw;
2168 }
2169
2170 static void add_event_to_ctx(struct perf_event *event,
2171                                struct perf_event_context *ctx)
2172 {
2173         u64 tstamp = perf_event_time(event);
2174
2175         list_add_event(event, ctx);
2176         perf_group_attach(event);
2177         event->tstamp_enabled = tstamp;
2178         event->tstamp_running = tstamp;
2179         event->tstamp_stopped = tstamp;
2180 }
2181
2182 static void ctx_sched_out(struct perf_event_context *ctx,
2183                           struct perf_cpu_context *cpuctx,
2184                           enum event_type_t event_type);
2185 static void
2186 ctx_sched_in(struct perf_event_context *ctx,
2187              struct perf_cpu_context *cpuctx,
2188              enum event_type_t event_type,
2189              struct task_struct *task);
2190
2191 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2192                                struct perf_event_context *ctx)
2193 {
2194         if (!cpuctx->task_ctx)
2195                 return;
2196
2197         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2198                 return;
2199
2200         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2201 }
2202
2203 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2204                                 struct perf_event_context *ctx,
2205                                 struct task_struct *task)
2206 {
2207         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2208         if (ctx)
2209                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2210         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2211         if (ctx)
2212                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2213 }
2214
2215 static void ctx_resched(struct perf_cpu_context *cpuctx,
2216                         struct perf_event_context *task_ctx)
2217 {
2218         perf_pmu_disable(cpuctx->ctx.pmu);
2219         if (task_ctx)
2220                 task_ctx_sched_out(cpuctx, task_ctx);
2221         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2222         perf_event_sched_in(cpuctx, task_ctx, current);
2223         perf_pmu_enable(cpuctx->ctx.pmu);
2224 }
2225
2226 /*
2227  * Cross CPU call to install and enable a performance event
2228  *
2229  * Very similar to remote_function() + event_function() but cannot assume that
2230  * things like ctx->is_active and cpuctx->task_ctx are set.
2231  */
2232 static int  __perf_install_in_context(void *info)
2233 {
2234         struct perf_event *event = info;
2235         struct perf_event_context *ctx = event->ctx;
2236         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2237         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2238         bool activate = true;
2239         int ret = 0;
2240
2241         raw_spin_lock(&cpuctx->ctx.lock);
2242         if (ctx->task) {
2243                 raw_spin_lock(&ctx->lock);
2244                 task_ctx = ctx;
2245
2246                 /* If we're on the wrong CPU, try again */
2247                 if (task_cpu(ctx->task) != smp_processor_id()) {
2248                         ret = -ESRCH;
2249                         goto unlock;
2250                 }
2251
2252                 /*
2253                  * If we're on the right CPU, see if the task we target is
2254                  * current, if not we don't have to activate the ctx, a future
2255                  * context switch will do that for us.
2256                  */
2257                 if (ctx->task != current)
2258                         activate = false;
2259                 else
2260                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2261
2262         } else if (task_ctx) {
2263                 raw_spin_lock(&task_ctx->lock);
2264         }
2265
2266         if (activate) {
2267                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2268                 add_event_to_ctx(event, ctx);
2269                 ctx_resched(cpuctx, task_ctx);
2270         } else {
2271                 add_event_to_ctx(event, ctx);
2272         }
2273
2274 unlock:
2275         perf_ctx_unlock(cpuctx, task_ctx);
2276
2277         return ret;
2278 }
2279
2280 /*
2281  * Attach a performance event to a context.
2282  *
2283  * Very similar to event_function_call, see comment there.
2284  */
2285 static void
2286 perf_install_in_context(struct perf_event_context *ctx,
2287                         struct perf_event *event,
2288                         int cpu)
2289 {
2290         struct task_struct *task = READ_ONCE(ctx->task);
2291
2292         lockdep_assert_held(&ctx->mutex);
2293
2294         if (event->cpu != -1)
2295                 event->cpu = cpu;
2296
2297         /*
2298          * Ensures that if we can observe event->ctx, both the event and ctx
2299          * will be 'complete'. See perf_iterate_sb_cpu().
2300          */
2301         smp_store_release(&event->ctx, ctx);
2302
2303         if (!task) {
2304                 cpu_function_call(cpu, __perf_install_in_context, event);
2305                 return;
2306         }
2307
2308         /*
2309          * Should not happen, we validate the ctx is still alive before calling.
2310          */
2311         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2312                 return;
2313
2314         /*
2315          * Installing events is tricky because we cannot rely on ctx->is_active
2316          * to be set in case this is the nr_events 0 -> 1 transition.
2317          */
2318 again:
2319         /*
2320          * Cannot use task_function_call() because we need to run on the task's
2321          * CPU regardless of whether its current or not.
2322          */
2323         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2324                 return;
2325
2326         raw_spin_lock_irq(&ctx->lock);
2327         task = ctx->task;
2328         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2329                 /*
2330                  * Cannot happen because we already checked above (which also
2331                  * cannot happen), and we hold ctx->mutex, which serializes us
2332                  * against perf_event_exit_task_context().
2333                  */
2334                 raw_spin_unlock_irq(&ctx->lock);
2335                 return;
2336         }
2337         raw_spin_unlock_irq(&ctx->lock);
2338         /*
2339          * Since !ctx->is_active doesn't mean anything, we must IPI
2340          * unconditionally.
2341          */
2342         goto again;
2343 }
2344
2345 /*
2346  * Put a event into inactive state and update time fields.
2347  * Enabling the leader of a group effectively enables all
2348  * the group members that aren't explicitly disabled, so we
2349  * have to update their ->tstamp_enabled also.
2350  * Note: this works for group members as well as group leaders
2351  * since the non-leader members' sibling_lists will be empty.
2352  */
2353 static void __perf_event_mark_enabled(struct perf_event *event)
2354 {
2355         struct perf_event *sub;
2356         u64 tstamp = perf_event_time(event);
2357
2358         event->state = PERF_EVENT_STATE_INACTIVE;
2359         event->tstamp_enabled = tstamp - event->total_time_enabled;
2360         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2361                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2362                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2363         }
2364 }
2365
2366 /*
2367  * Cross CPU call to enable a performance event
2368  */
2369 static void __perf_event_enable(struct perf_event *event,
2370                                 struct perf_cpu_context *cpuctx,
2371                                 struct perf_event_context *ctx,
2372                                 void *info)
2373 {
2374         struct perf_event *leader = event->group_leader;
2375         struct perf_event_context *task_ctx;
2376
2377         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2378             event->state <= PERF_EVENT_STATE_ERROR)
2379                 return;
2380
2381         if (ctx->is_active)
2382                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2383
2384         __perf_event_mark_enabled(event);
2385
2386         if (!ctx->is_active)
2387                 return;
2388
2389         if (!event_filter_match(event)) {
2390                 if (is_cgroup_event(event))
2391                         perf_cgroup_defer_enabled(event);
2392                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2393                 return;
2394         }
2395
2396         /*
2397          * If the event is in a group and isn't the group leader,
2398          * then don't put it on unless the group is on.
2399          */
2400         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2401                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2402                 return;
2403         }
2404
2405         task_ctx = cpuctx->task_ctx;
2406         if (ctx->task)
2407                 WARN_ON_ONCE(task_ctx != ctx);
2408
2409         ctx_resched(cpuctx, task_ctx);
2410 }
2411
2412 /*
2413  * Enable a event.
2414  *
2415  * If event->ctx is a cloned context, callers must make sure that
2416  * every task struct that event->ctx->task could possibly point to
2417  * remains valid.  This condition is satisfied when called through
2418  * perf_event_for_each_child or perf_event_for_each as described
2419  * for perf_event_disable.
2420  */
2421 static void _perf_event_enable(struct perf_event *event)
2422 {
2423         struct perf_event_context *ctx = event->ctx;
2424
2425         raw_spin_lock_irq(&ctx->lock);
2426         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2427             event->state <  PERF_EVENT_STATE_ERROR) {
2428                 raw_spin_unlock_irq(&ctx->lock);
2429                 return;
2430         }
2431
2432         /*
2433          * If the event is in error state, clear that first.
2434          *
2435          * That way, if we see the event in error state below, we know that it
2436          * has gone back into error state, as distinct from the task having
2437          * been scheduled away before the cross-call arrived.
2438          */
2439         if (event->state == PERF_EVENT_STATE_ERROR)
2440                 event->state = PERF_EVENT_STATE_OFF;
2441         raw_spin_unlock_irq(&ctx->lock);
2442
2443         event_function_call(event, __perf_event_enable, NULL);
2444 }
2445
2446 /*
2447  * See perf_event_disable();
2448  */
2449 void perf_event_enable(struct perf_event *event)
2450 {
2451         struct perf_event_context *ctx;
2452
2453         ctx = perf_event_ctx_lock(event);
2454         _perf_event_enable(event);
2455         perf_event_ctx_unlock(event, ctx);
2456 }
2457 EXPORT_SYMBOL_GPL(perf_event_enable);
2458
2459 struct stop_event_data {
2460         struct perf_event       *event;
2461         unsigned int            restart;
2462 };
2463
2464 static int __perf_event_stop(void *info)
2465 {
2466         struct stop_event_data *sd = info;
2467         struct perf_event *event = sd->event;
2468
2469         /* if it's already INACTIVE, do nothing */
2470         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2471                 return 0;
2472
2473         /* matches smp_wmb() in event_sched_in() */
2474         smp_rmb();
2475
2476         /*
2477          * There is a window with interrupts enabled before we get here,
2478          * so we need to check again lest we try to stop another CPU's event.
2479          */
2480         if (READ_ONCE(event->oncpu) != smp_processor_id())
2481                 return -EAGAIN;
2482
2483         event->pmu->stop(event, PERF_EF_UPDATE);
2484
2485         /*
2486          * May race with the actual stop (through perf_pmu_output_stop()),
2487          * but it is only used for events with AUX ring buffer, and such
2488          * events will refuse to restart because of rb::aux_mmap_count==0,
2489          * see comments in perf_aux_output_begin().
2490          *
2491          * Since this is happening on a event-local CPU, no trace is lost
2492          * while restarting.
2493          */
2494         if (sd->restart)
2495                 event->pmu->start(event, PERF_EF_START);
2496
2497         return 0;
2498 }
2499
2500 static int perf_event_restart(struct perf_event *event)
2501 {
2502         struct stop_event_data sd = {
2503                 .event          = event,
2504                 .restart        = 1,
2505         };
2506         int ret = 0;
2507
2508         do {
2509                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2510                         return 0;
2511
2512                 /* matches smp_wmb() in event_sched_in() */
2513                 smp_rmb();
2514
2515                 /*
2516                  * We only want to restart ACTIVE events, so if the event goes
2517                  * inactive here (event->oncpu==-1), there's nothing more to do;
2518                  * fall through with ret==-ENXIO.
2519                  */
2520                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2521                                         __perf_event_stop, &sd);
2522         } while (ret == -EAGAIN);
2523
2524         return ret;
2525 }
2526
2527 /*
2528  * In order to contain the amount of racy and tricky in the address filter
2529  * configuration management, it is a two part process:
2530  *
2531  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532  *      we update the addresses of corresponding vmas in
2533  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2534  * (p2) when an event is scheduled in (pmu::add), it calls
2535  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536  *      if the generation has changed since the previous call.
2537  *
2538  * If (p1) happens while the event is active, we restart it to force (p2).
2539  *
2540  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2542  *     ioctl;
2543  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2545  *     for reading;
2546  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2547  *     of exec.
2548  */
2549 void perf_event_addr_filters_sync(struct perf_event *event)
2550 {
2551         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2552
2553         if (!has_addr_filter(event))
2554                 return;
2555
2556         raw_spin_lock(&ifh->lock);
2557         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2558                 event->pmu->addr_filters_sync(event);
2559                 event->hw.addr_filters_gen = event->addr_filters_gen;
2560         }
2561         raw_spin_unlock(&ifh->lock);
2562 }
2563 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2564
2565 static int _perf_event_refresh(struct perf_event *event, int refresh)
2566 {
2567         /*
2568          * not supported on inherited events
2569          */
2570         if (event->attr.inherit || !is_sampling_event(event))
2571                 return -EINVAL;
2572
2573         atomic_add(refresh, &event->event_limit);
2574         _perf_event_enable(event);
2575
2576         return 0;
2577 }
2578
2579 /*
2580  * See perf_event_disable()
2581  */
2582 int perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584         struct perf_event_context *ctx;
2585         int ret;
2586
2587         ctx = perf_event_ctx_lock(event);
2588         ret = _perf_event_refresh(event, refresh);
2589         perf_event_ctx_unlock(event, ctx);
2590
2591         return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(perf_event_refresh);
2594
2595 static void ctx_sched_out(struct perf_event_context *ctx,
2596                           struct perf_cpu_context *cpuctx,
2597                           enum event_type_t event_type)
2598 {
2599         int is_active = ctx->is_active;
2600         struct perf_event *event;
2601
2602         lockdep_assert_held(&ctx->lock);
2603
2604         if (likely(!ctx->nr_events)) {
2605                 /*
2606                  * See __perf_remove_from_context().
2607                  */
2608                 WARN_ON_ONCE(ctx->is_active);
2609                 if (ctx->task)
2610                         WARN_ON_ONCE(cpuctx->task_ctx);
2611                 return;
2612         }
2613
2614         ctx->is_active &= ~event_type;
2615         if (!(ctx->is_active & EVENT_ALL))
2616                 ctx->is_active = 0;
2617
2618         if (ctx->task) {
2619                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2620                 if (!ctx->is_active)
2621                         cpuctx->task_ctx = NULL;
2622         }
2623
2624         /*
2625          * Always update time if it was set; not only when it changes.
2626          * Otherwise we can 'forget' to update time for any but the last
2627          * context we sched out. For example:
2628          *
2629          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630          *   ctx_sched_out(.event_type = EVENT_PINNED)
2631          *
2632          * would only update time for the pinned events.
2633          */
2634         if (is_active & EVENT_TIME) {
2635                 /* update (and stop) ctx time */
2636                 update_context_time(ctx);
2637                 update_cgrp_time_from_cpuctx(cpuctx);
2638         }
2639
2640         is_active ^= ctx->is_active; /* changed bits */
2641
2642         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2643                 return;
2644
2645         perf_pmu_disable(ctx->pmu);
2646         if (is_active & EVENT_PINNED) {
2647                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2648                         group_sched_out(event, cpuctx, ctx);
2649         }
2650
2651         if (is_active & EVENT_FLEXIBLE) {
2652                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2653                         group_sched_out(event, cpuctx, ctx);
2654         }
2655         perf_pmu_enable(ctx->pmu);
2656 }
2657
2658 /*
2659  * Test whether two contexts are equivalent, i.e. whether they have both been
2660  * cloned from the same version of the same context.
2661  *
2662  * Equivalence is measured using a generation number in the context that is
2663  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664  * and list_del_event().
2665  */
2666 static int context_equiv(struct perf_event_context *ctx1,
2667                          struct perf_event_context *ctx2)
2668 {
2669         lockdep_assert_held(&ctx1->lock);
2670         lockdep_assert_held(&ctx2->lock);
2671
2672         /* Pinning disables the swap optimization */
2673         if (ctx1->pin_count || ctx2->pin_count)
2674                 return 0;
2675
2676         /* If ctx1 is the parent of ctx2 */
2677         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2678                 return 1;
2679
2680         /* If ctx2 is the parent of ctx1 */
2681         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2682                 return 1;
2683
2684         /*
2685          * If ctx1 and ctx2 have the same parent; we flatten the parent
2686          * hierarchy, see perf_event_init_context().
2687          */
2688         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2689                         ctx1->parent_gen == ctx2->parent_gen)
2690                 return 1;
2691
2692         /* Unmatched */
2693         return 0;
2694 }
2695
2696 static void __perf_event_sync_stat(struct perf_event *event,
2697                                      struct perf_event *next_event)
2698 {
2699         u64 value;
2700
2701         if (!event->attr.inherit_stat)
2702                 return;
2703
2704         /*
2705          * Update the event value, we cannot use perf_event_read()
2706          * because we're in the middle of a context switch and have IRQs
2707          * disabled, which upsets smp_call_function_single(), however
2708          * we know the event must be on the current CPU, therefore we
2709          * don't need to use it.
2710          */
2711         switch (event->state) {
2712         case PERF_EVENT_STATE_ACTIVE:
2713                 event->pmu->read(event);
2714                 /* fall-through */
2715
2716         case PERF_EVENT_STATE_INACTIVE:
2717                 update_event_times(event);
2718                 break;
2719
2720         default:
2721                 break;
2722         }
2723
2724         /*
2725          * In order to keep per-task stats reliable we need to flip the event
2726          * values when we flip the contexts.
2727          */
2728         value = local64_read(&next_event->count);
2729         value = local64_xchg(&event->count, value);
2730         local64_set(&next_event->count, value);
2731
2732         swap(event->total_time_enabled, next_event->total_time_enabled);
2733         swap(event->total_time_running, next_event->total_time_running);
2734
2735         /*
2736          * Since we swizzled the values, update the user visible data too.
2737          */
2738         perf_event_update_userpage(event);
2739         perf_event_update_userpage(next_event);
2740 }
2741
2742 static void perf_event_sync_stat(struct perf_event_context *ctx,
2743                                    struct perf_event_context *next_ctx)
2744 {
2745         struct perf_event *event, *next_event;
2746
2747         if (!ctx->nr_stat)
2748                 return;
2749
2750         update_context_time(ctx);
2751
2752         event = list_first_entry(&ctx->event_list,
2753                                    struct perf_event, event_entry);
2754
2755         next_event = list_first_entry(&next_ctx->event_list,
2756                                         struct perf_event, event_entry);
2757
2758         while (&event->event_entry != &ctx->event_list &&
2759                &next_event->event_entry != &next_ctx->event_list) {
2760
2761                 __perf_event_sync_stat(event, next_event);
2762
2763                 event = list_next_entry(event, event_entry);
2764                 next_event = list_next_entry(next_event, event_entry);
2765         }
2766 }
2767
2768 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2769                                          struct task_struct *next)
2770 {
2771         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2772         struct perf_event_context *next_ctx;
2773         struct perf_event_context *parent, *next_parent;
2774         struct perf_cpu_context *cpuctx;
2775         int do_switch = 1;
2776
2777         if (likely(!ctx))
2778                 return;
2779
2780         cpuctx = __get_cpu_context(ctx);
2781         if (!cpuctx->task_ctx)
2782                 return;
2783
2784         rcu_read_lock();
2785         next_ctx = next->perf_event_ctxp[ctxn];
2786         if (!next_ctx)
2787                 goto unlock;
2788
2789         parent = rcu_dereference(ctx->parent_ctx);
2790         next_parent = rcu_dereference(next_ctx->parent_ctx);
2791
2792         /* If neither context have a parent context; they cannot be clones. */
2793         if (!parent && !next_parent)
2794                 goto unlock;
2795
2796         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2797                 /*
2798                  * Looks like the two contexts are clones, so we might be
2799                  * able to optimize the context switch.  We lock both
2800                  * contexts and check that they are clones under the
2801                  * lock (including re-checking that neither has been
2802                  * uncloned in the meantime).  It doesn't matter which
2803                  * order we take the locks because no other cpu could
2804                  * be trying to lock both of these tasks.
2805                  */
2806                 raw_spin_lock(&ctx->lock);
2807                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2808                 if (context_equiv(ctx, next_ctx)) {
2809                         WRITE_ONCE(ctx->task, next);
2810                         WRITE_ONCE(next_ctx->task, task);
2811
2812                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2813
2814                         /*
2815                          * RCU_INIT_POINTER here is safe because we've not
2816                          * modified the ctx and the above modification of
2817                          * ctx->task and ctx->task_ctx_data are immaterial
2818                          * since those values are always verified under
2819                          * ctx->lock which we're now holding.
2820                          */
2821                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2822                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2823
2824                         do_switch = 0;
2825
2826                         perf_event_sync_stat(ctx, next_ctx);
2827                 }
2828                 raw_spin_unlock(&next_ctx->lock);
2829                 raw_spin_unlock(&ctx->lock);
2830         }
2831 unlock:
2832         rcu_read_unlock();
2833
2834         if (do_switch) {
2835                 raw_spin_lock(&ctx->lock);
2836                 task_ctx_sched_out(cpuctx, ctx);
2837                 raw_spin_unlock(&ctx->lock);
2838         }
2839 }
2840
2841 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2842
2843 void perf_sched_cb_dec(struct pmu *pmu)
2844 {
2845         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2846
2847         this_cpu_dec(perf_sched_cb_usages);
2848
2849         if (!--cpuctx->sched_cb_usage)
2850                 list_del(&cpuctx->sched_cb_entry);
2851 }
2852
2853
2854 void perf_sched_cb_inc(struct pmu *pmu)
2855 {
2856         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2857
2858         if (!cpuctx->sched_cb_usage++)
2859                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2860
2861         this_cpu_inc(perf_sched_cb_usages);
2862 }
2863
2864 /*
2865  * This function provides the context switch callback to the lower code
2866  * layer. It is invoked ONLY when the context switch callback is enabled.
2867  *
2868  * This callback is relevant even to per-cpu events; for example multi event
2869  * PEBS requires this to provide PID/TID information. This requires we flush
2870  * all queued PEBS records before we context switch to a new task.
2871  */
2872 static void perf_pmu_sched_task(struct task_struct *prev,
2873                                 struct task_struct *next,
2874                                 bool sched_in)
2875 {
2876         struct perf_cpu_context *cpuctx;
2877         struct pmu *pmu;
2878
2879         if (prev == next)
2880                 return;
2881
2882         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2883                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2884
2885                 if (WARN_ON_ONCE(!pmu->sched_task))
2886                         continue;
2887
2888                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2889                 perf_pmu_disable(pmu);
2890
2891                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2892
2893                 perf_pmu_enable(pmu);
2894                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2895         }
2896 }
2897
2898 static void perf_event_switch(struct task_struct *task,
2899                               struct task_struct *next_prev, bool sched_in);
2900
2901 #define for_each_task_context_nr(ctxn)                                  \
2902         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2903
2904 /*
2905  * Called from scheduler to remove the events of the current task,
2906  * with interrupts disabled.
2907  *
2908  * We stop each event and update the event value in event->count.
2909  *
2910  * This does not protect us against NMI, but disable()
2911  * sets the disabled bit in the control field of event _before_
2912  * accessing the event control register. If a NMI hits, then it will
2913  * not restart the event.
2914  */
2915 void __perf_event_task_sched_out(struct task_struct *task,
2916                                  struct task_struct *next)
2917 {
2918         int ctxn;
2919
2920         if (__this_cpu_read(perf_sched_cb_usages))
2921                 perf_pmu_sched_task(task, next, false);
2922
2923         if (atomic_read(&nr_switch_events))
2924                 perf_event_switch(task, next, false);
2925
2926         for_each_task_context_nr(ctxn)
2927                 perf_event_context_sched_out(task, ctxn, next);
2928
2929         /*
2930          * if cgroup events exist on this CPU, then we need
2931          * to check if we have to switch out PMU state.
2932          * cgroup event are system-wide mode only
2933          */
2934         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2935                 perf_cgroup_sched_out(task, next);
2936 }
2937
2938 /*
2939  * Called with IRQs disabled
2940  */
2941 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2942                               enum event_type_t event_type)
2943 {
2944         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2945 }
2946
2947 static void
2948 ctx_pinned_sched_in(struct perf_event_context *ctx,
2949                     struct perf_cpu_context *cpuctx)
2950 {
2951         struct perf_event *event;
2952
2953         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2954                 if (event->state <= PERF_EVENT_STATE_OFF)
2955                         continue;
2956                 if (!event_filter_match(event))
2957                         continue;
2958
2959                 /* may need to reset tstamp_enabled */
2960                 if (is_cgroup_event(event))
2961                         perf_cgroup_mark_enabled(event, ctx);
2962
2963                 if (group_can_go_on(event, cpuctx, 1))
2964                         group_sched_in(event, cpuctx, ctx);
2965
2966                 /*
2967                  * If this pinned group hasn't been scheduled,
2968                  * put it in error state.
2969                  */
2970                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2971                         update_group_times(event);
2972                         event->state = PERF_EVENT_STATE_ERROR;
2973                 }
2974         }
2975 }
2976
2977 static void
2978 ctx_flexible_sched_in(struct perf_event_context *ctx,
2979                       struct perf_cpu_context *cpuctx)
2980 {
2981         struct perf_event *event;
2982         int can_add_hw = 1;
2983
2984         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2985                 /* Ignore events in OFF or ERROR state */
2986                 if (event->state <= PERF_EVENT_STATE_OFF)
2987                         continue;
2988                 /*
2989                  * Listen to the 'cpu' scheduling filter constraint
2990                  * of events:
2991                  */
2992                 if (!event_filter_match(event))
2993                         continue;
2994
2995                 /* may need to reset tstamp_enabled */
2996                 if (is_cgroup_event(event))
2997                         perf_cgroup_mark_enabled(event, ctx);
2998
2999                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3000                         if (group_sched_in(event, cpuctx, ctx))
3001                                 can_add_hw = 0;
3002                 }
3003         }
3004 }
3005
3006 static void
3007 ctx_sched_in(struct perf_event_context *ctx,
3008              struct perf_cpu_context *cpuctx,
3009              enum event_type_t event_type,
3010              struct task_struct *task)
3011 {
3012         int is_active = ctx->is_active;
3013         u64 now;
3014
3015         lockdep_assert_held(&ctx->lock);
3016
3017         if (likely(!ctx->nr_events))
3018                 return;
3019
3020         ctx->is_active |= (event_type | EVENT_TIME);
3021         if (ctx->task) {
3022                 if (!is_active)
3023                         cpuctx->task_ctx = ctx;
3024                 else
3025                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3026         }
3027
3028         is_active ^= ctx->is_active; /* changed bits */
3029
3030         if (is_active & EVENT_TIME) {
3031                 /* start ctx time */
3032                 now = perf_clock();
3033                 ctx->timestamp = now;
3034                 perf_cgroup_set_timestamp(task, ctx);
3035         }
3036
3037         /*
3038          * First go through the list and put on any pinned groups
3039          * in order to give them the best chance of going on.
3040          */
3041         if (is_active & EVENT_PINNED)
3042                 ctx_pinned_sched_in(ctx, cpuctx);
3043
3044         /* Then walk through the lower prio flexible groups */
3045         if (is_active & EVENT_FLEXIBLE)
3046                 ctx_flexible_sched_in(ctx, cpuctx);
3047 }
3048
3049 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3050                              enum event_type_t event_type,
3051                              struct task_struct *task)
3052 {
3053         struct perf_event_context *ctx = &cpuctx->ctx;
3054
3055         ctx_sched_in(ctx, cpuctx, event_type, task);
3056 }
3057
3058 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3059                                         struct task_struct *task)
3060 {
3061         struct perf_cpu_context *cpuctx;
3062
3063         cpuctx = __get_cpu_context(ctx);
3064         if (cpuctx->task_ctx == ctx)
3065                 return;
3066
3067         perf_ctx_lock(cpuctx, ctx);
3068         perf_pmu_disable(ctx->pmu);
3069         /*
3070          * We want to keep the following priority order:
3071          * cpu pinned (that don't need to move), task pinned,
3072          * cpu flexible, task flexible.
3073          */
3074         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3075         perf_event_sched_in(cpuctx, ctx, task);
3076         perf_pmu_enable(ctx->pmu);
3077         perf_ctx_unlock(cpuctx, ctx);
3078 }
3079
3080 /*
3081  * Called from scheduler to add the events of the current task
3082  * with interrupts disabled.
3083  *
3084  * We restore the event value and then enable it.
3085  *
3086  * This does not protect us against NMI, but enable()
3087  * sets the enabled bit in the control field of event _before_
3088  * accessing the event control register. If a NMI hits, then it will
3089  * keep the event running.
3090  */
3091 void __perf_event_task_sched_in(struct task_struct *prev,
3092                                 struct task_struct *task)
3093 {
3094         struct perf_event_context *ctx;
3095         int ctxn;
3096
3097         /*
3098          * If cgroup events exist on this CPU, then we need to check if we have
3099          * to switch in PMU state; cgroup event are system-wide mode only.
3100          *
3101          * Since cgroup events are CPU events, we must schedule these in before
3102          * we schedule in the task events.
3103          */
3104         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3105                 perf_cgroup_sched_in(prev, task);
3106
3107         for_each_task_context_nr(ctxn) {
3108                 ctx = task->perf_event_ctxp[ctxn];
3109                 if (likely(!ctx))
3110                         continue;
3111
3112                 perf_event_context_sched_in(ctx, task);
3113         }
3114
3115         if (atomic_read(&nr_switch_events))
3116                 perf_event_switch(task, prev, true);
3117
3118         if (__this_cpu_read(perf_sched_cb_usages))
3119                 perf_pmu_sched_task(prev, task, true);
3120 }
3121
3122 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3123 {
3124         u64 frequency = event->attr.sample_freq;
3125         u64 sec = NSEC_PER_SEC;
3126         u64 divisor, dividend;
3127
3128         int count_fls, nsec_fls, frequency_fls, sec_fls;
3129
3130         count_fls = fls64(count);
3131         nsec_fls = fls64(nsec);
3132         frequency_fls = fls64(frequency);
3133         sec_fls = 30;
3134
3135         /*
3136          * We got @count in @nsec, with a target of sample_freq HZ
3137          * the target period becomes:
3138          *
3139          *             @count * 10^9
3140          * period = -------------------
3141          *          @nsec * sample_freq
3142          *
3143          */
3144
3145         /*
3146          * Reduce accuracy by one bit such that @a and @b converge
3147          * to a similar magnitude.
3148          */
3149 #define REDUCE_FLS(a, b)                \
3150 do {                                    \
3151         if (a##_fls > b##_fls) {        \
3152                 a >>= 1;                \
3153                 a##_fls--;              \
3154         } else {                        \
3155                 b >>= 1;                \
3156                 b##_fls--;              \
3157         }                               \
3158 } while (0)
3159
3160         /*
3161          * Reduce accuracy until either term fits in a u64, then proceed with
3162          * the other, so that finally we can do a u64/u64 division.
3163          */
3164         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3165                 REDUCE_FLS(nsec, frequency);
3166                 REDUCE_FLS(sec, count);
3167         }
3168
3169         if (count_fls + sec_fls > 64) {
3170                 divisor = nsec * frequency;
3171
3172                 while (count_fls + sec_fls > 64) {
3173                         REDUCE_FLS(count, sec);
3174                         divisor >>= 1;
3175                 }
3176
3177                 dividend = count * sec;
3178         } else {
3179                 dividend = count * sec;
3180
3181                 while (nsec_fls + frequency_fls > 64) {
3182                         REDUCE_FLS(nsec, frequency);
3183                         dividend >>= 1;
3184                 }
3185
3186                 divisor = nsec * frequency;
3187         }
3188
3189         if (!divisor)
3190                 return dividend;
3191
3192         return div64_u64(dividend, divisor);
3193 }
3194
3195 static DEFINE_PER_CPU(int, perf_throttled_count);
3196 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3197
3198 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3199 {
3200         struct hw_perf_event *hwc = &event->hw;
3201         s64 period, sample_period;
3202         s64 delta;
3203
3204         period = perf_calculate_period(event, nsec, count);
3205
3206         delta = (s64)(period - hwc->sample_period);
3207         delta = (delta + 7) / 8; /* low pass filter */
3208
3209         sample_period = hwc->sample_period + delta;
3210
3211         if (!sample_period)
3212                 sample_period = 1;
3213
3214         hwc->sample_period = sample_period;
3215
3216         if (local64_read(&hwc->period_left) > 8*sample_period) {
3217                 if (disable)
3218                         event->pmu->stop(event, PERF_EF_UPDATE);
3219
3220                 local64_set(&hwc->period_left, 0);
3221
3222                 if (disable)
3223                         event->pmu->start(event, PERF_EF_RELOAD);
3224         }
3225 }
3226
3227 /*
3228  * combine freq adjustment with unthrottling to avoid two passes over the
3229  * events. At the same time, make sure, having freq events does not change
3230  * the rate of unthrottling as that would introduce bias.
3231  */
3232 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3233                                            int needs_unthr)
3234 {
3235         struct perf_event *event;
3236         struct hw_perf_event *hwc;
3237         u64 now, period = TICK_NSEC;
3238         s64 delta;
3239
3240         /*
3241          * only need to iterate over all events iff:
3242          * - context have events in frequency mode (needs freq adjust)
3243          * - there are events to unthrottle on this cpu
3244          */
3245         if (!(ctx->nr_freq || needs_unthr))
3246                 return;
3247
3248         raw_spin_lock(&ctx->lock);
3249         perf_pmu_disable(ctx->pmu);
3250
3251         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3252                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3253                         continue;
3254
3255                 if (!event_filter_match(event))
3256                         continue;
3257
3258                 perf_pmu_disable(event->pmu);
3259
3260                 hwc = &event->hw;
3261
3262                 if (hwc->interrupts == MAX_INTERRUPTS) {
3263                         hwc->interrupts = 0;
3264                         perf_log_throttle(event, 1);
3265                         event->pmu->start(event, 0);
3266                 }
3267
3268                 if (!event->attr.freq || !event->attr.sample_freq)
3269                         goto next;
3270
3271                 /*
3272                  * stop the event and update event->count
3273                  */
3274                 event->pmu->stop(event, PERF_EF_UPDATE);
3275
3276                 now = local64_read(&event->count);
3277                 delta = now - hwc->freq_count_stamp;
3278                 hwc->freq_count_stamp = now;
3279
3280                 /*
3281                  * restart the event
3282                  * reload only if value has changed
3283                  * we have stopped the event so tell that
3284                  * to perf_adjust_period() to avoid stopping it
3285                  * twice.
3286                  */
3287                 if (delta > 0)
3288                         perf_adjust_period(event, period, delta, false);
3289
3290                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3291         next:
3292                 perf_pmu_enable(event->pmu);
3293         }
3294
3295         perf_pmu_enable(ctx->pmu);
3296         raw_spin_unlock(&ctx->lock);
3297 }
3298
3299 /*
3300  * Round-robin a context's events:
3301  */
3302 static void rotate_ctx(struct perf_event_context *ctx)
3303 {
3304         /*
3305          * Rotate the first entry last of non-pinned groups. Rotation might be
3306          * disabled by the inheritance code.
3307          */
3308         if (!ctx->rotate_disable)
3309                 list_rotate_left(&ctx->flexible_groups);
3310 }
3311
3312 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3313 {
3314         struct perf_event_context *ctx = NULL;
3315         int rotate = 0;
3316
3317         if (cpuctx->ctx.nr_events) {
3318                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3319                         rotate = 1;
3320         }
3321
3322         ctx = cpuctx->task_ctx;
3323         if (ctx && ctx->nr_events) {
3324                 if (ctx->nr_events != ctx->nr_active)
3325                         rotate = 1;
3326         }
3327
3328         if (!rotate)
3329                 goto done;
3330
3331         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332         perf_pmu_disable(cpuctx->ctx.pmu);
3333
3334         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3335         if (ctx)
3336                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3337
3338         rotate_ctx(&cpuctx->ctx);
3339         if (ctx)
3340                 rotate_ctx(ctx);
3341
3342         perf_event_sched_in(cpuctx, ctx, current);
3343
3344         perf_pmu_enable(cpuctx->ctx.pmu);
3345         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3346 done:
3347
3348         return rotate;
3349 }
3350
3351 void perf_event_task_tick(void)
3352 {
3353         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3354         struct perf_event_context *ctx, *tmp;
3355         int throttled;
3356
3357         WARN_ON(!irqs_disabled());
3358
3359         __this_cpu_inc(perf_throttled_seq);
3360         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3361         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3362
3363         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3364                 perf_adjust_freq_unthr_context(ctx, throttled);
3365 }
3366
3367 static int event_enable_on_exec(struct perf_event *event,
3368                                 struct perf_event_context *ctx)
3369 {
3370         if (!event->attr.enable_on_exec)
3371                 return 0;
3372
3373         event->attr.enable_on_exec = 0;
3374         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3375                 return 0;
3376
3377         __perf_event_mark_enabled(event);
3378
3379         return 1;
3380 }
3381
3382 /*
3383  * Enable all of a task's events that have been marked enable-on-exec.
3384  * This expects task == current.
3385  */
3386 static void perf_event_enable_on_exec(int ctxn)
3387 {
3388         struct perf_event_context *ctx, *clone_ctx = NULL;
3389         struct perf_cpu_context *cpuctx;
3390         struct perf_event *event;
3391         unsigned long flags;
3392         int enabled = 0;
3393
3394         local_irq_save(flags);
3395         ctx = current->perf_event_ctxp[ctxn];
3396         if (!ctx || !ctx->nr_events)
3397                 goto out;
3398
3399         cpuctx = __get_cpu_context(ctx);
3400         perf_ctx_lock(cpuctx, ctx);
3401         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3402         list_for_each_entry(event, &ctx->event_list, event_entry)
3403                 enabled |= event_enable_on_exec(event, ctx);
3404
3405         /*
3406          * Unclone and reschedule this context if we enabled any event.
3407          */
3408         if (enabled) {
3409                 clone_ctx = unclone_ctx(ctx);
3410                 ctx_resched(cpuctx, ctx);
3411         }
3412         perf_ctx_unlock(cpuctx, ctx);
3413
3414 out:
3415         local_irq_restore(flags);
3416
3417         if (clone_ctx)
3418                 put_ctx(clone_ctx);
3419 }
3420
3421 struct perf_read_data {
3422         struct perf_event *event;
3423         bool group;
3424         int ret;
3425 };
3426
3427 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3428 {
3429         int event_cpu = event->oncpu;
3430         u16 local_pkg, event_pkg;
3431
3432         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3433                 event_pkg =  topology_physical_package_id(event_cpu);
3434                 local_pkg =  topology_physical_package_id(local_cpu);
3435
3436                 if (event_pkg == local_pkg)
3437                         return local_cpu;
3438         }
3439
3440         return event_cpu;
3441 }
3442
3443 /*
3444  * Cross CPU call to read the hardware event
3445  */
3446 static void __perf_event_read(void *info)
3447 {
3448         struct perf_read_data *data = info;
3449         struct perf_event *sub, *event = data->event;
3450         struct perf_event_context *ctx = event->ctx;
3451         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3452         struct pmu *pmu = event->pmu;
3453
3454         /*
3455          * If this is a task context, we need to check whether it is
3456          * the current task context of this cpu.  If not it has been
3457          * scheduled out before the smp call arrived.  In that case
3458          * event->count would have been updated to a recent sample
3459          * when the event was scheduled out.
3460          */
3461         if (ctx->task && cpuctx->task_ctx != ctx)
3462                 return;
3463
3464         raw_spin_lock(&ctx->lock);
3465         if (ctx->is_active) {
3466                 update_context_time(ctx);
3467                 update_cgrp_time_from_event(event);
3468         }
3469
3470         update_event_times(event);
3471         if (event->state != PERF_EVENT_STATE_ACTIVE)
3472                 goto unlock;
3473
3474         if (!data->group) {
3475                 pmu->read(event);
3476                 data->ret = 0;
3477                 goto unlock;
3478         }
3479
3480         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3481
3482         pmu->read(event);
3483
3484         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3485                 update_event_times(sub);
3486                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3487                         /*
3488                          * Use sibling's PMU rather than @event's since
3489                          * sibling could be on different (eg: software) PMU.
3490                          */
3491                         sub->pmu->read(sub);
3492                 }
3493         }
3494
3495         data->ret = pmu->commit_txn(pmu);
3496
3497 unlock:
3498         raw_spin_unlock(&ctx->lock);
3499 }
3500
3501 static inline u64 perf_event_count(struct perf_event *event)
3502 {
3503         if (event->pmu->count)
3504                 return event->pmu->count(event);
3505
3506         return __perf_event_count(event);
3507 }
3508
3509 /*
3510  * NMI-safe method to read a local event, that is an event that
3511  * is:
3512  *   - either for the current task, or for this CPU
3513  *   - does not have inherit set, for inherited task events
3514  *     will not be local and we cannot read them atomically
3515  *   - must not have a pmu::count method
3516  */
3517 u64 perf_event_read_local(struct perf_event *event)
3518 {
3519         unsigned long flags;
3520         u64 val;
3521
3522         /*
3523          * Disabling interrupts avoids all counter scheduling (context
3524          * switches, timer based rotation and IPIs).
3525          */
3526         local_irq_save(flags);
3527
3528         /* If this is a per-task event, it must be for current */
3529         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3530                      event->hw.target != current);
3531
3532         /* If this is a per-CPU event, it must be for this CPU */
3533         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3534                      event->cpu != smp_processor_id());
3535
3536         /*
3537          * It must not be an event with inherit set, we cannot read
3538          * all child counters from atomic context.
3539          */
3540         WARN_ON_ONCE(event->attr.inherit);
3541
3542         /*
3543          * It must not have a pmu::count method, those are not
3544          * NMI safe.
3545          */
3546         WARN_ON_ONCE(event->pmu->count);
3547
3548         /*
3549          * If the event is currently on this CPU, its either a per-task event,
3550          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3551          * oncpu == -1).
3552          */
3553         if (event->oncpu == smp_processor_id())
3554                 event->pmu->read(event);
3555
3556         val = local64_read(&event->count);
3557         local_irq_restore(flags);
3558
3559         return val;
3560 }
3561
3562 static int perf_event_read(struct perf_event *event, bool group)
3563 {
3564         int ret = 0, cpu_to_read, local_cpu;
3565
3566         /*
3567          * If event is enabled and currently active on a CPU, update the
3568          * value in the event structure:
3569          */
3570         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3571                 struct perf_read_data data = {
3572                         .event = event,
3573                         .group = group,
3574                         .ret = 0,
3575                 };
3576
3577                 local_cpu = get_cpu();
3578                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3579                 put_cpu();
3580
3581                 /*
3582                  * Purposely ignore the smp_call_function_single() return
3583                  * value.
3584                  *
3585                  * If event->oncpu isn't a valid CPU it means the event got
3586                  * scheduled out and that will have updated the event count.
3587                  *
3588                  * Therefore, either way, we'll have an up-to-date event count
3589                  * after this.
3590                  */
3591                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3592                 ret = data.ret;
3593         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3594                 struct perf_event_context *ctx = event->ctx;
3595                 unsigned long flags;
3596
3597                 raw_spin_lock_irqsave(&ctx->lock, flags);
3598                 /*
3599                  * may read while context is not active
3600                  * (e.g., thread is blocked), in that case
3601                  * we cannot update context time
3602                  */
3603                 if (ctx->is_active) {
3604                         update_context_time(ctx);
3605                         update_cgrp_time_from_event(event);
3606                 }
3607                 if (group)
3608                         update_group_times(event);
3609                 else
3610                         update_event_times(event);
3611                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3612         }
3613
3614         return ret;
3615 }
3616
3617 /*
3618  * Initialize the perf_event context in a task_struct:
3619  */
3620 static void __perf_event_init_context(struct perf_event_context *ctx)
3621 {
3622         raw_spin_lock_init(&ctx->lock);
3623         mutex_init(&ctx->mutex);
3624         INIT_LIST_HEAD(&ctx->active_ctx_list);
3625         INIT_LIST_HEAD(&ctx->pinned_groups);
3626         INIT_LIST_HEAD(&ctx->flexible_groups);
3627         INIT_LIST_HEAD(&ctx->event_list);
3628         atomic_set(&ctx->refcount, 1);
3629 }
3630
3631 static struct perf_event_context *
3632 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3633 {
3634         struct perf_event_context *ctx;
3635
3636         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3637         if (!ctx)
3638                 return NULL;
3639
3640         __perf_event_init_context(ctx);
3641         if (task) {
3642                 ctx->task = task;
3643                 get_task_struct(task);
3644         }
3645         ctx->pmu = pmu;
3646
3647         return ctx;
3648 }
3649
3650 static struct task_struct *
3651 find_lively_task_by_vpid(pid_t vpid)
3652 {
3653         struct task_struct *task;
3654
3655         rcu_read_lock();
3656         if (!vpid)
3657                 task = current;
3658         else
3659                 task = find_task_by_vpid(vpid);
3660         if (task)
3661                 get_task_struct(task);
3662         rcu_read_unlock();
3663
3664         if (!task)
3665                 return ERR_PTR(-ESRCH);
3666
3667         return task;
3668 }
3669
3670 /*
3671  * Returns a matching context with refcount and pincount.
3672  */
3673 static struct perf_event_context *
3674 find_get_context(struct pmu *pmu, struct task_struct *task,
3675                 struct perf_event *event)
3676 {
3677         struct perf_event_context *ctx, *clone_ctx = NULL;
3678         struct perf_cpu_context *cpuctx;
3679         void *task_ctx_data = NULL;
3680         unsigned long flags;
3681         int ctxn, err;
3682         int cpu = event->cpu;
3683
3684         if (!task) {
3685                 /* Must be root to operate on a CPU event: */
3686                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3687                         return ERR_PTR(-EACCES);
3688
3689                 /*
3690                  * We could be clever and allow to attach a event to an
3691                  * offline CPU and activate it when the CPU comes up, but
3692                  * that's for later.
3693                  */
3694                 if (!cpu_online(cpu))
3695                         return ERR_PTR(-ENODEV);
3696
3697                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3698                 ctx = &cpuctx->ctx;
3699                 get_ctx(ctx);
3700                 ++ctx->pin_count;
3701
3702                 return ctx;
3703         }
3704
3705         err = -EINVAL;
3706         ctxn = pmu->task_ctx_nr;
3707         if (ctxn < 0)
3708                 goto errout;
3709
3710         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3711                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3712                 if (!task_ctx_data) {
3713                         err = -ENOMEM;
3714                         goto errout;
3715                 }
3716         }
3717
3718 retry:
3719         ctx = perf_lock_task_context(task, ctxn, &flags);
3720         if (ctx) {
3721                 clone_ctx = unclone_ctx(ctx);
3722                 ++ctx->pin_count;
3723
3724                 if (task_ctx_data && !ctx->task_ctx_data) {
3725                         ctx->task_ctx_data = task_ctx_data;
3726                         task_ctx_data = NULL;
3727                 }
3728                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3729
3730                 if (clone_ctx)
3731                         put_ctx(clone_ctx);
3732         } else {
3733                 ctx = alloc_perf_context(pmu, task);
3734                 err = -ENOMEM;
3735                 if (!ctx)
3736                         goto errout;
3737
3738                 if (task_ctx_data) {
3739                         ctx->task_ctx_data = task_ctx_data;
3740                         task_ctx_data = NULL;
3741                 }
3742
3743                 err = 0;
3744                 mutex_lock(&task->perf_event_mutex);
3745                 /*
3746                  * If it has already passed perf_event_exit_task().
3747                  * we must see PF_EXITING, it takes this mutex too.
3748                  */
3749                 if (task->flags & PF_EXITING)
3750                         err = -ESRCH;
3751                 else if (task->perf_event_ctxp[ctxn])
3752                         err = -EAGAIN;
3753                 else {
3754                         get_ctx(ctx);
3755                         ++ctx->pin_count;
3756                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3757                 }
3758                 mutex_unlock(&task->perf_event_mutex);
3759
3760                 if (unlikely(err)) {
3761                         put_ctx(ctx);
3762
3763                         if (err == -EAGAIN)
3764                                 goto retry;
3765                         goto errout;
3766                 }
3767         }
3768
3769         kfree(task_ctx_data);
3770         return ctx;
3771
3772 errout:
3773         kfree(task_ctx_data);
3774         return ERR_PTR(err);
3775 }
3776
3777 static void perf_event_free_filter(struct perf_event *event);
3778 static void perf_event_free_bpf_prog(struct perf_event *event);
3779
3780 static void free_event_rcu(struct rcu_head *head)
3781 {
3782         struct perf_event *event;
3783
3784         event = container_of(head, struct perf_event, rcu_head);
3785         if (event->ns)
3786                 put_pid_ns(event->ns);
3787         perf_event_free_filter(event);
3788         kfree(event);
3789 }
3790
3791 static void ring_buffer_attach(struct perf_event *event,
3792                                struct ring_buffer *rb);
3793
3794 static void detach_sb_event(struct perf_event *event)
3795 {
3796         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3797
3798         raw_spin_lock(&pel->lock);
3799         list_del_rcu(&event->sb_list);
3800         raw_spin_unlock(&pel->lock);
3801 }
3802
3803 static bool is_sb_event(struct perf_event *event)
3804 {
3805         struct perf_event_attr *attr = &event->attr;
3806
3807         if (event->parent)
3808                 return false;
3809
3810         if (event->attach_state & PERF_ATTACH_TASK)
3811                 return false;
3812
3813         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3814             attr->comm || attr->comm_exec ||
3815             attr->task ||
3816             attr->context_switch)
3817                 return true;
3818         return false;
3819 }
3820
3821 static void unaccount_pmu_sb_event(struct perf_event *event)
3822 {
3823         if (is_sb_event(event))
3824                 detach_sb_event(event);
3825 }
3826
3827 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3828 {
3829         if (event->parent)
3830                 return;
3831
3832         if (is_cgroup_event(event))
3833                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3834 }
3835
3836 #ifdef CONFIG_NO_HZ_FULL
3837 static DEFINE_SPINLOCK(nr_freq_lock);
3838 #endif
3839
3840 static void unaccount_freq_event_nohz(void)
3841 {
3842 #ifdef CONFIG_NO_HZ_FULL
3843         spin_lock(&nr_freq_lock);
3844         if (atomic_dec_and_test(&nr_freq_events))
3845                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3846         spin_unlock(&nr_freq_lock);
3847 #endif
3848 }
3849
3850 static void unaccount_freq_event(void)
3851 {
3852         if (tick_nohz_full_enabled())
3853                 unaccount_freq_event_nohz();
3854         else
3855                 atomic_dec(&nr_freq_events);
3856 }
3857
3858 static void unaccount_event(struct perf_event *event)
3859 {
3860         bool dec = false;
3861
3862         if (event->parent)
3863                 return;
3864
3865         if (event->attach_state & PERF_ATTACH_TASK)
3866                 dec = true;
3867         if (event->attr.mmap || event->attr.mmap_data)
3868                 atomic_dec(&nr_mmap_events);
3869         if (event->attr.comm)
3870                 atomic_dec(&nr_comm_events);
3871         if (event->attr.task)
3872                 atomic_dec(&nr_task_events);
3873         if (event->attr.freq)
3874                 unaccount_freq_event();
3875         if (event->attr.context_switch) {
3876                 dec = true;
3877                 atomic_dec(&nr_switch_events);
3878         }
3879         if (is_cgroup_event(event))
3880                 dec = true;
3881         if (has_branch_stack(event))
3882                 dec = true;
3883
3884         if (dec) {
3885                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3886                         schedule_delayed_work(&perf_sched_work, HZ);
3887         }
3888
3889         unaccount_event_cpu(event, event->cpu);
3890
3891         unaccount_pmu_sb_event(event);
3892 }
3893
3894 static void perf_sched_delayed(struct work_struct *work)
3895 {
3896         mutex_lock(&perf_sched_mutex);
3897         if (atomic_dec_and_test(&perf_sched_count))
3898                 static_branch_disable(&perf_sched_events);
3899         mutex_unlock(&perf_sched_mutex);
3900 }
3901
3902 /*
3903  * The following implement mutual exclusion of events on "exclusive" pmus
3904  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905  * at a time, so we disallow creating events that might conflict, namely:
3906  *
3907  *  1) cpu-wide events in the presence of per-task events,
3908  *  2) per-task events in the presence of cpu-wide events,
3909  *  3) two matching events on the same context.
3910  *
3911  * The former two cases are handled in the allocation path (perf_event_alloc(),
3912  * _free_event()), the latter -- before the first perf_install_in_context().
3913  */
3914 static int exclusive_event_init(struct perf_event *event)
3915 {
3916         struct pmu *pmu = event->pmu;
3917
3918         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3919                 return 0;
3920
3921         /*
3922          * Prevent co-existence of per-task and cpu-wide events on the
3923          * same exclusive pmu.
3924          *
3925          * Negative pmu::exclusive_cnt means there are cpu-wide
3926          * events on this "exclusive" pmu, positive means there are
3927          * per-task events.
3928          *
3929          * Since this is called in perf_event_alloc() path, event::ctx
3930          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931          * to mean "per-task event", because unlike other attach states it
3932          * never gets cleared.
3933          */
3934         if (event->attach_state & PERF_ATTACH_TASK) {
3935                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3936                         return -EBUSY;
3937         } else {
3938                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3939                         return -EBUSY;
3940         }
3941
3942         return 0;
3943 }
3944
3945 static void exclusive_event_destroy(struct perf_event *event)
3946 {
3947         struct pmu *pmu = event->pmu;
3948
3949         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3950                 return;
3951
3952         /* see comment in exclusive_event_init() */
3953         if (event->attach_state & PERF_ATTACH_TASK)
3954                 atomic_dec(&pmu->exclusive_cnt);
3955         else
3956                 atomic_inc(&pmu->exclusive_cnt);
3957 }
3958
3959 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3960 {
3961         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3962             (e1->cpu == e2->cpu ||
3963              e1->cpu == -1 ||
3964              e2->cpu == -1))
3965                 return true;
3966         return false;
3967 }
3968
3969 /* Called under the same ctx::mutex as perf_install_in_context() */
3970 static bool exclusive_event_installable(struct perf_event *event,
3971                                         struct perf_event_context *ctx)
3972 {
3973         struct perf_event *iter_event;
3974         struct pmu *pmu = event->pmu;
3975
3976         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3977                 return true;
3978
3979         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3980                 if (exclusive_event_match(iter_event, event))
3981                         return false;
3982         }
3983
3984         return true;
3985 }
3986
3987 static void perf_addr_filters_splice(struct perf_event *event,
3988                                        struct list_head *head);
3989
3990 static void _free_event(struct perf_event *event)
3991 {
3992         irq_work_sync(&event->pending);
3993
3994         unaccount_event(event);
3995
3996         if (event->rb) {
3997                 /*
3998                  * Can happen when we close an event with re-directed output.
3999                  *
4000                  * Since we have a 0 refcount, perf_mmap_close() will skip
4001                  * over us; possibly making our ring_buffer_put() the last.
4002                  */
4003                 mutex_lock(&event->mmap_mutex);
4004                 ring_buffer_attach(event, NULL);
4005                 mutex_unlock(&event->mmap_mutex);
4006         }
4007
4008         if (is_cgroup_event(event))
4009                 perf_detach_cgroup(event);
4010
4011         if (!event->parent) {
4012                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4013                         put_callchain_buffers();
4014         }
4015
4016         perf_event_free_bpf_prog(event);
4017         perf_addr_filters_splice(event, NULL);
4018         kfree(event->addr_filters_offs);
4019
4020         if (event->destroy)
4021                 event->destroy(event);
4022
4023         if (event->ctx)
4024                 put_ctx(event->ctx);
4025
4026         exclusive_event_destroy(event);
4027         module_put(event->pmu->module);
4028
4029         call_rcu(&event->rcu_head, free_event_rcu);
4030 }
4031
4032 /*
4033  * Used to free events which have a known refcount of 1, such as in error paths
4034  * where the event isn't exposed yet and inherited events.
4035  */
4036 static void free_event(struct perf_event *event)
4037 {
4038         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4039                                 "unexpected event refcount: %ld; ptr=%p\n",
4040                                 atomic_long_read(&event->refcount), event)) {
4041                 /* leak to avoid use-after-free */
4042                 return;
4043         }
4044
4045         _free_event(event);
4046 }
4047
4048 /*
4049  * Remove user event from the owner task.
4050  */
4051 static void perf_remove_from_owner(struct perf_event *event)
4052 {
4053         struct task_struct *owner;
4054
4055         rcu_read_lock();
4056         /*
4057          * Matches the smp_store_release() in perf_event_exit_task(). If we
4058          * observe !owner it means the list deletion is complete and we can
4059          * indeed free this event, otherwise we need to serialize on
4060          * owner->perf_event_mutex.
4061          */
4062         owner = lockless_dereference(event->owner);
4063         if (owner) {
4064                 /*
4065                  * Since delayed_put_task_struct() also drops the last
4066                  * task reference we can safely take a new reference
4067                  * while holding the rcu_read_lock().
4068                  */
4069                 get_task_struct(owner);
4070         }
4071         rcu_read_unlock();
4072
4073         if (owner) {
4074                 /*
4075                  * If we're here through perf_event_exit_task() we're already
4076                  * holding ctx->mutex which would be an inversion wrt. the
4077                  * normal lock order.
4078                  *
4079                  * However we can safely take this lock because its the child
4080                  * ctx->mutex.
4081                  */
4082                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4083
4084                 /*
4085                  * We have to re-check the event->owner field, if it is cleared
4086                  * we raced with perf_event_exit_task(), acquiring the mutex
4087                  * ensured they're done, and we can proceed with freeing the
4088                  * event.
4089                  */
4090                 if (event->owner) {
4091                         list_del_init(&event->owner_entry);
4092                         smp_store_release(&event->owner, NULL);
4093                 }
4094                 mutex_unlock(&owner->perf_event_mutex);
4095                 put_task_struct(owner);
4096         }
4097 }
4098
4099 static void put_event(struct perf_event *event)
4100 {
4101         if (!atomic_long_dec_and_test(&event->refcount))
4102                 return;
4103
4104         _free_event(event);
4105 }
4106
4107 /*
4108  * Kill an event dead; while event:refcount will preserve the event
4109  * object, it will not preserve its functionality. Once the last 'user'
4110  * gives up the object, we'll destroy the thing.
4111  */
4112 int perf_event_release_kernel(struct perf_event *event)
4113 {
4114         struct perf_event_context *ctx = event->ctx;
4115         struct perf_event *child, *tmp;
4116
4117         /*
4118          * If we got here through err_file: fput(event_file); we will not have
4119          * attached to a context yet.
4120          */
4121         if (!ctx) {
4122                 WARN_ON_ONCE(event->attach_state &
4123                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4124                 goto no_ctx;
4125         }
4126
4127         if (!is_kernel_event(event))
4128                 perf_remove_from_owner(event);
4129
4130         ctx = perf_event_ctx_lock(event);
4131         WARN_ON_ONCE(ctx->parent_ctx);
4132         perf_remove_from_context(event, DETACH_GROUP);
4133
4134         raw_spin_lock_irq(&ctx->lock);
4135         /*
4136          * Mark this even as STATE_DEAD, there is no external reference to it
4137          * anymore.
4138          *
4139          * Anybody acquiring event->child_mutex after the below loop _must_
4140          * also see this, most importantly inherit_event() which will avoid
4141          * placing more children on the list.
4142          *
4143          * Thus this guarantees that we will in fact observe and kill _ALL_
4144          * child events.
4145          */
4146         event->state = PERF_EVENT_STATE_DEAD;
4147         raw_spin_unlock_irq(&ctx->lock);
4148
4149         perf_event_ctx_unlock(event, ctx);
4150
4151 again:
4152         mutex_lock(&event->child_mutex);
4153         list_for_each_entry(child, &event->child_list, child_list) {
4154
4155                 /*
4156                  * Cannot change, child events are not migrated, see the
4157                  * comment with perf_event_ctx_lock_nested().
4158                  */
4159                 ctx = lockless_dereference(child->ctx);
4160                 /*
4161                  * Since child_mutex nests inside ctx::mutex, we must jump
4162                  * through hoops. We start by grabbing a reference on the ctx.
4163                  *
4164                  * Since the event cannot get freed while we hold the
4165                  * child_mutex, the context must also exist and have a !0
4166                  * reference count.
4167                  */
4168                 get_ctx(ctx);
4169
4170                 /*
4171                  * Now that we have a ctx ref, we can drop child_mutex, and
4172                  * acquire ctx::mutex without fear of it going away. Then we
4173                  * can re-acquire child_mutex.
4174                  */
4175                 mutex_unlock(&event->child_mutex);
4176                 mutex_lock(&ctx->mutex);
4177                 mutex_lock(&event->child_mutex);
4178
4179                 /*
4180                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4181                  * state, if child is still the first entry, it didn't get freed
4182                  * and we can continue doing so.
4183                  */
4184                 tmp = list_first_entry_or_null(&event->child_list,
4185                                                struct perf_event, child_list);
4186                 if (tmp == child) {
4187                         perf_remove_from_context(child, DETACH_GROUP);
4188                         list_del(&child->child_list);
4189                         free_event(child);
4190                         /*
4191                          * This matches the refcount bump in inherit_event();
4192                          * this can't be the last reference.
4193                          */
4194                         put_event(event);
4195                 }
4196
4197                 mutex_unlock(&event->child_mutex);
4198                 mutex_unlock(&ctx->mutex);
4199                 put_ctx(ctx);
4200                 goto again;
4201         }
4202         mutex_unlock(&event->child_mutex);
4203
4204 no_ctx:
4205         put_event(event); /* Must be the 'last' reference */
4206         return 0;
4207 }
4208 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4209
4210 /*
4211  * Called when the last reference to the file is gone.
4212  */
4213 static int perf_release(struct inode *inode, struct file *file)
4214 {
4215         perf_event_release_kernel(file->private_data);
4216         return 0;
4217 }
4218
4219 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4220 {
4221         struct perf_event *child;
4222         u64 total = 0;
4223
4224         *enabled = 0;
4225         *running = 0;
4226
4227         mutex_lock(&event->child_mutex);
4228
4229         (void)perf_event_read(event, false);
4230         total += perf_event_count(event);
4231
4232         *enabled += event->total_time_enabled +
4233                         atomic64_read(&event->child_total_time_enabled);
4234         *running += event->total_time_running +
4235                         atomic64_read(&event->child_total_time_running);
4236
4237         list_for_each_entry(child, &event->child_list, child_list) {
4238                 (void)perf_event_read(child, false);
4239                 total += perf_event_count(child);
4240                 *enabled += child->total_time_enabled;
4241                 *running += child->total_time_running;
4242         }
4243         mutex_unlock(&event->child_mutex);
4244
4245         return total;
4246 }
4247 EXPORT_SYMBOL_GPL(perf_event_read_value);
4248
4249 static int __perf_read_group_add(struct perf_event *leader,
4250                                         u64 read_format, u64 *values)
4251 {
4252         struct perf_event *sub;
4253         int n = 1; /* skip @nr */
4254         int ret;
4255
4256         ret = perf_event_read(leader, true);
4257         if (ret)
4258                 return ret;
4259
4260         /*
4261          * Since we co-schedule groups, {enabled,running} times of siblings
4262          * will be identical to those of the leader, so we only publish one
4263          * set.
4264          */
4265         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4266                 values[n++] += leader->total_time_enabled +
4267                         atomic64_read(&leader->child_total_time_enabled);
4268         }
4269
4270         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4271                 values[n++] += leader->total_time_running +
4272                         atomic64_read(&leader->child_total_time_running);
4273         }
4274
4275         /*
4276          * Write {count,id} tuples for every sibling.
4277          */
4278         values[n++] += perf_event_count(leader);
4279         if (read_format & PERF_FORMAT_ID)
4280                 values[n++] = primary_event_id(leader);
4281
4282         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4283                 values[n++] += perf_event_count(sub);
4284                 if (read_format & PERF_FORMAT_ID)
4285                         values[n++] = primary_event_id(sub);
4286         }
4287
4288         return 0;
4289 }
4290
4291 static int perf_read_group(struct perf_event *event,
4292                                    u64 read_format, char __user *buf)
4293 {
4294         struct perf_event *leader = event->group_leader, *child;
4295         struct perf_event_context *ctx = leader->ctx;
4296         int ret;
4297         u64 *values;
4298
4299         lockdep_assert_held(&ctx->mutex);
4300
4301         values = kzalloc(event->read_size, GFP_KERNEL);
4302         if (!values)
4303                 return -ENOMEM;
4304
4305         values[0] = 1 + leader->nr_siblings;
4306
4307         /*
4308          * By locking the child_mutex of the leader we effectively
4309          * lock the child list of all siblings.. XXX explain how.
4310          */
4311         mutex_lock(&leader->child_mutex);
4312
4313         ret = __perf_read_group_add(leader, read_format, values);
4314         if (ret)
4315                 goto unlock;
4316
4317         list_for_each_entry(child, &leader->child_list, child_list) {
4318                 ret = __perf_read_group_add(child, read_format, values);
4319                 if (ret)
4320                         goto unlock;
4321         }
4322
4323         mutex_unlock(&leader->child_mutex);
4324
4325         ret = event->read_size;
4326         if (copy_to_user(buf, values, event->read_size))
4327                 ret = -EFAULT;
4328         goto out;
4329
4330 unlock:
4331         mutex_unlock(&leader->child_mutex);
4332 out:
4333         kfree(values);
4334         return ret;
4335 }
4336
4337 static int perf_read_one(struct perf_event *event,
4338                                  u64 read_format, char __user *buf)
4339 {
4340         u64 enabled, running;
4341         u64 values[4];
4342         int n = 0;
4343
4344         values[n++] = perf_event_read_value(event, &enabled, &running);
4345         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4346                 values[n++] = enabled;
4347         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4348                 values[n++] = running;
4349         if (read_format & PERF_FORMAT_ID)
4350                 values[n++] = primary_event_id(event);
4351
4352         if (copy_to_user(buf, values, n * sizeof(u64)))
4353                 return -EFAULT;
4354
4355         return n * sizeof(u64);
4356 }
4357
4358 static bool is_event_hup(struct perf_event *event)
4359 {
4360         bool no_children;
4361
4362         if (event->state > PERF_EVENT_STATE_EXIT)
4363                 return false;
4364
4365         mutex_lock(&event->child_mutex);
4366         no_children = list_empty(&event->child_list);
4367         mutex_unlock(&event->child_mutex);
4368         return no_children;
4369 }
4370
4371 /*
4372  * Read the performance event - simple non blocking version for now
4373  */
4374 static ssize_t
4375 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4376 {
4377         u64 read_format = event->attr.read_format;
4378         int ret;
4379
4380         /*
4381          * Return end-of-file for a read on a event that is in
4382          * error state (i.e. because it was pinned but it couldn't be
4383          * scheduled on to the CPU at some point).
4384          */
4385         if (event->state == PERF_EVENT_STATE_ERROR)
4386                 return 0;
4387
4388         if (count < event->read_size)
4389                 return -ENOSPC;
4390
4391         WARN_ON_ONCE(event->ctx->parent_ctx);
4392         if (read_format & PERF_FORMAT_GROUP)
4393                 ret = perf_read_group(event, read_format, buf);
4394         else
4395                 ret = perf_read_one(event, read_format, buf);
4396
4397         return ret;
4398 }
4399
4400 static ssize_t
4401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4402 {
4403         struct perf_event *event = file->private_data;
4404         struct perf_event_context *ctx;
4405         int ret;
4406
4407         ctx = perf_event_ctx_lock(event);
4408         ret = __perf_read(event, buf, count);
4409         perf_event_ctx_unlock(event, ctx);
4410
4411         return ret;
4412 }
4413
4414 static unsigned int perf_poll(struct file *file, poll_table *wait)
4415 {
4416         struct perf_event *event = file->private_data;
4417         struct ring_buffer *rb;
4418         unsigned int events = POLLHUP;
4419
4420         poll_wait(file, &event->waitq, wait);
4421
4422         if (is_event_hup(event))
4423                 return events;
4424
4425         /*
4426          * Pin the event->rb by taking event->mmap_mutex; otherwise
4427          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4428          */
4429         mutex_lock(&event->mmap_mutex);
4430         rb = event->rb;
4431         if (rb)
4432                 events = atomic_xchg(&rb->poll, 0);
4433         mutex_unlock(&event->mmap_mutex);
4434         return events;
4435 }
4436
4437 static void _perf_event_reset(struct perf_event *event)
4438 {
4439         (void)perf_event_read(event, false);
4440         local64_set(&event->count, 0);
4441         perf_event_update_userpage(event);
4442 }
4443
4444 /*
4445  * Holding the top-level event's child_mutex means that any
4446  * descendant process that has inherited this event will block
4447  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448  * task existence requirements of perf_event_enable/disable.
4449  */
4450 static void perf_event_for_each_child(struct perf_event *event,
4451                                         void (*func)(struct perf_event *))
4452 {
4453         struct perf_event *child;
4454
4455         WARN_ON_ONCE(event->ctx->parent_ctx);
4456
4457         mutex_lock(&event->child_mutex);
4458         func(event);
4459         list_for_each_entry(child, &event->child_list, child_list)
4460                 func(child);
4461         mutex_unlock(&event->child_mutex);
4462 }
4463
4464 static void perf_event_for_each(struct perf_event *event,
4465                                   void (*func)(struct perf_event *))
4466 {
4467         struct perf_event_context *ctx = event->ctx;
4468         struct perf_event *sibling;
4469
4470         lockdep_assert_held(&ctx->mutex);
4471
4472         event = event->group_leader;
4473
4474         perf_event_for_each_child(event, func);
4475         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4476                 perf_event_for_each_child(sibling, func);
4477 }
4478
4479 static void __perf_event_period(struct perf_event *event,
4480                                 struct perf_cpu_context *cpuctx,
4481                                 struct perf_event_context *ctx,
4482                                 void *info)
4483 {
4484         u64 value = *((u64 *)info);
4485         bool active;
4486
4487         if (event->attr.freq) {
4488                 event->attr.sample_freq = value;
4489         } else {
4490                 event->attr.sample_period = value;
4491                 event->hw.sample_period = value;
4492         }
4493
4494         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4495         if (active) {
4496                 perf_pmu_disable(ctx->pmu);
4497                 /*
4498                  * We could be throttled; unthrottle now to avoid the tick
4499                  * trying to unthrottle while we already re-started the event.
4500                  */
4501                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4502                         event->hw.interrupts = 0;
4503                         perf_log_throttle(event, 1);
4504                 }
4505                 event->pmu->stop(event, PERF_EF_UPDATE);
4506         }
4507
4508         local64_set(&event->hw.period_left, 0);
4509
4510         if (active) {
4511                 event->pmu->start(event, PERF_EF_RELOAD);
4512                 perf_pmu_enable(ctx->pmu);
4513         }
4514 }
4515
4516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4517 {
4518         u64 value;
4519
4520         if (!is_sampling_event(event))
4521                 return -EINVAL;
4522
4523         if (copy_from_user(&value, arg, sizeof(value)))
4524                 return -EFAULT;
4525
4526         if (!value)
4527                 return -EINVAL;
4528
4529         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4530                 return -EINVAL;
4531
4532         event_function_call(event, __perf_event_period, &value);
4533
4534         return 0;
4535 }
4536
4537 static const struct file_operations perf_fops;
4538
4539 static inline int perf_fget_light(int fd, struct fd *p)
4540 {
4541         struct fd f = fdget(fd);
4542         if (!f.file)
4543                 return -EBADF;
4544
4545         if (f.file->f_op != &perf_fops) {
4546                 fdput(f);
4547                 return -EBADF;
4548         }
4549         *p = f;
4550         return 0;
4551 }
4552
4553 static int perf_event_set_output(struct perf_event *event,
4554                                  struct perf_event *output_event);
4555 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4556 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4557
4558 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4559 {
4560         void (*func)(struct perf_event *);
4561         u32 flags = arg;
4562
4563         switch (cmd) {
4564         case PERF_EVENT_IOC_ENABLE:
4565                 func = _perf_event_enable;
4566                 break;
4567         case PERF_EVENT_IOC_DISABLE:
4568                 func = _perf_event_disable;
4569                 break;
4570         case PERF_EVENT_IOC_RESET:
4571                 func = _perf_event_reset;
4572                 break;
4573
4574         case PERF_EVENT_IOC_REFRESH:
4575                 return _perf_event_refresh(event, arg);
4576
4577         case PERF_EVENT_IOC_PERIOD:
4578                 return perf_event_period(event, (u64 __user *)arg);
4579
4580         case PERF_EVENT_IOC_ID:
4581         {
4582                 u64 id = primary_event_id(event);
4583
4584                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4585                         return -EFAULT;
4586                 return 0;
4587         }
4588
4589         case PERF_EVENT_IOC_SET_OUTPUT:
4590         {
4591                 int ret;
4592                 if (arg != -1) {
4593                         struct perf_event *output_event;
4594                         struct fd output;
4595                         ret = perf_fget_light(arg, &output);
4596                         if (ret)
4597                                 return ret;
4598                         output_event = output.file->private_data;
4599                         ret = perf_event_set_output(event, output_event);
4600                         fdput(output);
4601                 } else {
4602                         ret = perf_event_set_output(event, NULL);
4603                 }
4604                 return ret;
4605         }
4606
4607         case PERF_EVENT_IOC_SET_FILTER:
4608                 return perf_event_set_filter(event, (void __user *)arg);
4609
4610         case PERF_EVENT_IOC_SET_BPF:
4611                 return perf_event_set_bpf_prog(event, arg);
4612
4613         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4614                 struct ring_buffer *rb;
4615
4616                 rcu_read_lock();
4617                 rb = rcu_dereference(event->rb);
4618                 if (!rb || !rb->nr_pages) {
4619                         rcu_read_unlock();
4620                         return -EINVAL;
4621                 }
4622                 rb_toggle_paused(rb, !!arg);
4623                 rcu_read_unlock();
4624                 return 0;
4625         }
4626         default:
4627                 return -ENOTTY;
4628         }
4629
4630         if (flags & PERF_IOC_FLAG_GROUP)
4631                 perf_event_for_each(event, func);
4632         else
4633                 perf_event_for_each_child(event, func);
4634
4635         return 0;
4636 }
4637
4638 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4639 {
4640         struct perf_event *event = file->private_data;
4641         struct perf_event_context *ctx;
4642         long ret;
4643
4644         ctx = perf_event_ctx_lock(event);
4645         ret = _perf_ioctl(event, cmd, arg);
4646         perf_event_ctx_unlock(event, ctx);
4647
4648         return ret;
4649 }
4650
4651 #ifdef CONFIG_COMPAT
4652 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4653                                 unsigned long arg)
4654 {
4655         switch (_IOC_NR(cmd)) {
4656         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4657         case _IOC_NR(PERF_EVENT_IOC_ID):
4658                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4660                         cmd &= ~IOCSIZE_MASK;
4661                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4662                 }
4663                 break;
4664         }
4665         return perf_ioctl(file, cmd, arg);
4666 }
4667 #else
4668 # define perf_compat_ioctl NULL
4669 #endif
4670
4671 int perf_event_task_enable(void)
4672 {
4673         struct perf_event_context *ctx;
4674         struct perf_event *event;
4675
4676         mutex_lock(&current->perf_event_mutex);
4677         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4678                 ctx = perf_event_ctx_lock(event);
4679                 perf_event_for_each_child(event, _perf_event_enable);
4680                 perf_event_ctx_unlock(event, ctx);
4681         }
4682         mutex_unlock(&current->perf_event_mutex);
4683
4684         return 0;
4685 }
4686
4687 int perf_event_task_disable(void)
4688 {
4689         struct perf_event_context *ctx;
4690         struct perf_event *event;
4691
4692         mutex_lock(&current->perf_event_mutex);
4693         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4694                 ctx = perf_event_ctx_lock(event);
4695                 perf_event_for_each_child(event, _perf_event_disable);
4696                 perf_event_ctx_unlock(event, ctx);
4697         }
4698         mutex_unlock(&current->perf_event_mutex);
4699
4700         return 0;
4701 }
4702
4703 static int perf_event_index(struct perf_event *event)
4704 {
4705         if (event->hw.state & PERF_HES_STOPPED)
4706                 return 0;
4707
4708         if (event->state != PERF_EVENT_STATE_ACTIVE)
4709                 return 0;
4710
4711         return event->pmu->event_idx(event);
4712 }
4713
4714 static void calc_timer_values(struct perf_event *event,
4715                                 u64 *now,
4716                                 u64 *enabled,
4717                                 u64 *running)
4718 {
4719         u64 ctx_time;
4720
4721         *now = perf_clock();
4722         ctx_time = event->shadow_ctx_time + *now;
4723         *enabled = ctx_time - event->tstamp_enabled;
4724         *running = ctx_time - event->tstamp_running;
4725 }
4726
4727 static void perf_event_init_userpage(struct perf_event *event)
4728 {
4729         struct perf_event_mmap_page *userpg;
4730         struct ring_buffer *rb;
4731
4732         rcu_read_lock();
4733         rb = rcu_dereference(event->rb);
4734         if (!rb)
4735                 goto unlock;
4736
4737         userpg = rb->user_page;
4738
4739         /* Allow new userspace to detect that bit 0 is deprecated */
4740         userpg->cap_bit0_is_deprecated = 1;
4741         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4742         userpg->data_offset = PAGE_SIZE;
4743         userpg->data_size = perf_data_size(rb);
4744
4745 unlock:
4746         rcu_read_unlock();
4747 }
4748
4749 void __weak arch_perf_update_userpage(
4750         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4751 {
4752 }
4753
4754 /*
4755  * Callers need to ensure there can be no nesting of this function, otherwise
4756  * the seqlock logic goes bad. We can not serialize this because the arch
4757  * code calls this from NMI context.
4758  */
4759 void perf_event_update_userpage(struct perf_event *event)
4760 {
4761         struct perf_event_mmap_page *userpg;
4762         struct ring_buffer *rb;
4763         u64 enabled, running, now;
4764
4765         rcu_read_lock();
4766         rb = rcu_dereference(event->rb);
4767         if (!rb)
4768                 goto unlock;
4769
4770         /*
4771          * compute total_time_enabled, total_time_running
4772          * based on snapshot values taken when the event
4773          * was last scheduled in.
4774          *
4775          * we cannot simply called update_context_time()
4776          * because of locking issue as we can be called in
4777          * NMI context
4778          */
4779         calc_timer_values(event, &now, &enabled, &running);
4780
4781         userpg = rb->user_page;
4782         /*
4783          * Disable preemption so as to not let the corresponding user-space
4784          * spin too long if we get preempted.
4785          */
4786         preempt_disable();
4787         ++userpg->lock;
4788         barrier();
4789         userpg->index = perf_event_index(event);
4790         userpg->offset = perf_event_count(event);
4791         if (userpg->index)
4792                 userpg->offset -= local64_read(&event->hw.prev_count);
4793
4794         userpg->time_enabled = enabled +
4795                         atomic64_read(&event->child_total_time_enabled);
4796
4797         userpg->time_running = running +
4798                         atomic64_read(&event->child_total_time_running);
4799
4800         arch_perf_update_userpage(event, userpg, now);
4801
4802         barrier();
4803         ++userpg->lock;
4804         preempt_enable();
4805 unlock:
4806         rcu_read_unlock();
4807 }
4808
4809 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4810 {
4811         struct perf_event *event = vma->vm_file->private_data;
4812         struct ring_buffer *rb;
4813         int ret = VM_FAULT_SIGBUS;
4814
4815         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4816                 if (vmf->pgoff == 0)
4817                         ret = 0;
4818                 return ret;
4819         }
4820
4821         rcu_read_lock();
4822         rb = rcu_dereference(event->rb);
4823         if (!rb)
4824                 goto unlock;
4825
4826         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4827                 goto unlock;
4828
4829         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4830         if (!vmf->page)
4831                 goto unlock;
4832
4833         get_page(vmf->page);
4834         vmf->page->mapping = vma->vm_file->f_mapping;
4835         vmf->page->index   = vmf->pgoff;
4836
4837         ret = 0;
4838 unlock:
4839         rcu_read_unlock();
4840
4841         return ret;
4842 }
4843
4844 static void ring_buffer_attach(struct perf_event *event,
4845                                struct ring_buffer *rb)
4846 {
4847         struct ring_buffer *old_rb = NULL;
4848         unsigned long flags;
4849
4850         if (event->rb) {
4851                 /*
4852                  * Should be impossible, we set this when removing
4853                  * event->rb_entry and wait/clear when adding event->rb_entry.
4854                  */
4855                 WARN_ON_ONCE(event->rcu_pending);
4856
4857                 old_rb = event->rb;
4858                 spin_lock_irqsave(&old_rb->event_lock, flags);
4859                 list_del_rcu(&event->rb_entry);
4860                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4861
4862                 event->rcu_batches = get_state_synchronize_rcu();
4863                 event->rcu_pending = 1;
4864         }
4865
4866         if (rb) {
4867                 if (event->rcu_pending) {
4868                         cond_synchronize_rcu(event->rcu_batches);
4869                         event->rcu_pending = 0;
4870                 }
4871
4872                 spin_lock_irqsave(&rb->event_lock, flags);
4873                 list_add_rcu(&event->rb_entry, &rb->event_list);
4874                 spin_unlock_irqrestore(&rb->event_lock, flags);
4875         }
4876
4877         rcu_assign_pointer(event->rb, rb);
4878
4879         if (old_rb) {
4880                 ring_buffer_put(old_rb);
4881                 /*
4882                  * Since we detached before setting the new rb, so that we
4883                  * could attach the new rb, we could have missed a wakeup.
4884                  * Provide it now.
4885                  */
4886                 wake_up_all(&event->waitq);
4887         }
4888 }
4889
4890 static void ring_buffer_wakeup(struct perf_event *event)
4891 {
4892         struct ring_buffer *rb;
4893
4894         rcu_read_lock();
4895         rb = rcu_dereference(event->rb);
4896         if (rb) {
4897                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4898                         wake_up_all(&event->waitq);
4899         }
4900         rcu_read_unlock();
4901 }
4902
4903 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4904 {
4905         struct ring_buffer *rb;
4906
4907         rcu_read_lock();
4908         rb = rcu_dereference(event->rb);
4909         if (rb) {
4910                 if (!atomic_inc_not_zero(&rb->refcount))
4911                         rb = NULL;
4912         }
4913         rcu_read_unlock();
4914
4915         return rb;
4916 }
4917
4918 void ring_buffer_put(struct ring_buffer *rb)
4919 {
4920         if (!atomic_dec_and_test(&rb->refcount))
4921                 return;
4922
4923         WARN_ON_ONCE(!list_empty(&rb->event_list));
4924
4925         call_rcu(&rb->rcu_head, rb_free_rcu);
4926 }
4927
4928 static void perf_mmap_open(struct vm_area_struct *vma)
4929 {
4930         struct perf_event *event = vma->vm_file->private_data;
4931
4932         atomic_inc(&event->mmap_count);
4933         atomic_inc(&event->rb->mmap_count);
4934
4935         if (vma->vm_pgoff)
4936                 atomic_inc(&event->rb->aux_mmap_count);
4937
4938         if (event->pmu->event_mapped)
4939                 event->pmu->event_mapped(event);
4940 }
4941
4942 static void perf_pmu_output_stop(struct perf_event *event);
4943
4944 /*
4945  * A buffer can be mmap()ed multiple times; either directly through the same
4946  * event, or through other events by use of perf_event_set_output().
4947  *
4948  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4949  * the buffer here, where we still have a VM context. This means we need
4950  * to detach all events redirecting to us.
4951  */
4952 static void perf_mmap_close(struct vm_area_struct *vma)
4953 {
4954         struct perf_event *event = vma->vm_file->private_data;
4955
4956         struct ring_buffer *rb = ring_buffer_get(event);
4957         struct user_struct *mmap_user = rb->mmap_user;
4958         int mmap_locked = rb->mmap_locked;
4959         unsigned long size = perf_data_size(rb);
4960
4961         if (event->pmu->event_unmapped)
4962                 event->pmu->event_unmapped(event);
4963
4964         /*
4965          * rb->aux_mmap_count will always drop before rb->mmap_count and
4966          * event->mmap_count, so it is ok to use event->mmap_mutex to
4967          * serialize with perf_mmap here.
4968          */
4969         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4970             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4971                 /*
4972                  * Stop all AUX events that are writing to this buffer,
4973                  * so that we can free its AUX pages and corresponding PMU
4974                  * data. Note that after rb::aux_mmap_count dropped to zero,
4975                  * they won't start any more (see perf_aux_output_begin()).
4976                  */
4977                 perf_pmu_output_stop(event);
4978
4979                 /* now it's safe to free the pages */
4980                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4981                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4982
4983                 /* this has to be the last one */
4984                 rb_free_aux(rb);
4985                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4986
4987                 mutex_unlock(&event->mmap_mutex);
4988         }
4989
4990         atomic_dec(&rb->mmap_count);
4991
4992         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4993                 goto out_put;
4994
4995         ring_buffer_attach(event, NULL);
4996         mutex_unlock(&event->mmap_mutex);
4997
4998         /* If there's still other mmap()s of this buffer, we're done. */
4999         if (atomic_read(&rb->mmap_count))
5000                 goto out_put;
5001
5002         /*
5003          * No other mmap()s, detach from all other events that might redirect
5004          * into the now unreachable buffer. Somewhat complicated by the
5005          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5006          */
5007 again:
5008         rcu_read_lock();
5009         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5010                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5011                         /*
5012                          * This event is en-route to free_event() which will
5013                          * detach it and remove it from the list.
5014                          */
5015                         continue;
5016                 }
5017                 rcu_read_unlock();
5018
5019                 mutex_lock(&event->mmap_mutex);
5020                 /*
5021                  * Check we didn't race with perf_event_set_output() which can
5022                  * swizzle the rb from under us while we were waiting to
5023                  * acquire mmap_mutex.
5024                  *
5025                  * If we find a different rb; ignore this event, a next
5026                  * iteration will no longer find it on the list. We have to
5027                  * still restart the iteration to make sure we're not now
5028                  * iterating the wrong list.
5029                  */
5030                 if (event->rb == rb)
5031                         ring_buffer_attach(event, NULL);
5032
5033                 mutex_unlock(&event->mmap_mutex);
5034                 put_event(event);
5035
5036                 /*
5037                  * Restart the iteration; either we're on the wrong list or
5038                  * destroyed its integrity by doing a deletion.
5039                  */
5040                 goto again;
5041         }
5042         rcu_read_unlock();
5043
5044         /*
5045          * It could be there's still a few 0-ref events on the list; they'll
5046          * get cleaned up by free_event() -- they'll also still have their
5047          * ref on the rb and will free it whenever they are done with it.
5048          *
5049          * Aside from that, this buffer is 'fully' detached and unmapped,
5050          * undo the VM accounting.
5051          */
5052
5053         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5054         vma->vm_mm->pinned_vm -= mmap_locked;
5055         free_uid(mmap_user);
5056
5057 out_put:
5058         ring_buffer_put(rb); /* could be last */
5059 }
5060
5061 static const struct vm_operations_struct perf_mmap_vmops = {
5062         .open           = perf_mmap_open,
5063         .close          = perf_mmap_close, /* non mergable */
5064         .fault          = perf_mmap_fault,
5065         .page_mkwrite   = perf_mmap_fault,
5066 };
5067
5068 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5069 {
5070         struct perf_event *event = file->private_data;
5071         unsigned long user_locked, user_lock_limit;
5072         struct user_struct *user = current_user();
5073         unsigned long locked, lock_limit;
5074         struct ring_buffer *rb = NULL;
5075         unsigned long vma_size;
5076         unsigned long nr_pages;
5077         long user_extra = 0, extra = 0;
5078         int ret = 0, flags = 0;
5079
5080         /*
5081          * Don't allow mmap() of inherited per-task counters. This would
5082          * create a performance issue due to all children writing to the
5083          * same rb.
5084          */
5085         if (event->cpu == -1 && event->attr.inherit)
5086                 return -EINVAL;
5087
5088         if (!(vma->vm_flags & VM_SHARED))
5089                 return -EINVAL;
5090
5091         vma_size = vma->vm_end - vma->vm_start;
5092
5093         if (vma->vm_pgoff == 0) {
5094                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5095         } else {
5096                 /*
5097                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5098                  * mapped, all subsequent mappings should have the same size
5099                  * and offset. Must be above the normal perf buffer.
5100                  */
5101                 u64 aux_offset, aux_size;
5102
5103                 if (!event->rb)
5104                         return -EINVAL;
5105
5106                 nr_pages = vma_size / PAGE_SIZE;
5107
5108                 mutex_lock(&event->mmap_mutex);
5109                 ret = -EINVAL;
5110
5111                 rb = event->rb;
5112                 if (!rb)
5113                         goto aux_unlock;
5114
5115                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5116                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5117
5118                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5119                         goto aux_unlock;
5120
5121                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5122                         goto aux_unlock;
5123
5124                 /* already mapped with a different offset */
5125                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5126                         goto aux_unlock;
5127
5128                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5129                         goto aux_unlock;
5130
5131                 /* already mapped with a different size */
5132                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5133                         goto aux_unlock;
5134
5135                 if (!is_power_of_2(nr_pages))
5136                         goto aux_unlock;
5137
5138                 if (!atomic_inc_not_zero(&rb->mmap_count))
5139                         goto aux_unlock;
5140
5141                 if (rb_has_aux(rb)) {
5142                         atomic_inc(&rb->aux_mmap_count);
5143                         ret = 0;
5144                         goto unlock;
5145                 }
5146
5147                 atomic_set(&rb->aux_mmap_count, 1);
5148                 user_extra = nr_pages;
5149
5150                 goto accounting;
5151         }
5152
5153         /*
5154          * If we have rb pages ensure they're a power-of-two number, so we
5155          * can do bitmasks instead of modulo.
5156          */
5157         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5158                 return -EINVAL;
5159
5160         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5161                 return -EINVAL;
5162
5163         WARN_ON_ONCE(event->ctx->parent_ctx);
5164 again:
5165         mutex_lock(&event->mmap_mutex);
5166         if (event->rb) {
5167                 if (event->rb->nr_pages != nr_pages) {
5168                         ret = -EINVAL;
5169                         goto unlock;
5170                 }
5171
5172                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5173                         /*
5174                          * Raced against perf_mmap_close() through
5175                          * perf_event_set_output(). Try again, hope for better
5176                          * luck.
5177                          */
5178                         mutex_unlock(&event->mmap_mutex);
5179                         goto again;
5180                 }
5181
5182                 goto unlock;
5183         }
5184
5185         user_extra = nr_pages + 1;
5186
5187 accounting:
5188         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5189
5190         /*
5191          * Increase the limit linearly with more CPUs:
5192          */
5193         user_lock_limit *= num_online_cpus();
5194
5195         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5196
5197         if (user_locked > user_lock_limit)
5198                 extra = user_locked - user_lock_limit;
5199
5200         lock_limit = rlimit(RLIMIT_MEMLOCK);
5201         lock_limit >>= PAGE_SHIFT;
5202         locked = vma->vm_mm->pinned_vm + extra;
5203
5204         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5205                 !capable(CAP_IPC_LOCK)) {
5206                 ret = -EPERM;
5207                 goto unlock;
5208         }
5209
5210         WARN_ON(!rb && event->rb);
5211
5212         if (vma->vm_flags & VM_WRITE)
5213                 flags |= RING_BUFFER_WRITABLE;
5214
5215         if (!rb) {
5216                 rb = rb_alloc(nr_pages,
5217                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5218                               event->cpu, flags);
5219
5220                 if (!rb) {
5221                         ret = -ENOMEM;
5222                         goto unlock;
5223                 }
5224
5225                 atomic_set(&rb->mmap_count, 1);
5226                 rb->mmap_user = get_current_user();
5227                 rb->mmap_locked = extra;
5228
5229                 ring_buffer_attach(event, rb);
5230
5231                 perf_event_init_userpage(event);
5232                 perf_event_update_userpage(event);
5233         } else {
5234                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5235                                    event->attr.aux_watermark, flags);
5236                 if (!ret)
5237                         rb->aux_mmap_locked = extra;
5238         }
5239
5240 unlock:
5241         if (!ret) {
5242                 atomic_long_add(user_extra, &user->locked_vm);
5243                 vma->vm_mm->pinned_vm += extra;
5244
5245                 atomic_inc(&event->mmap_count);
5246         } else if (rb) {
5247                 atomic_dec(&rb->mmap_count);
5248         }
5249 aux_unlock:
5250         mutex_unlock(&event->mmap_mutex);
5251
5252         /*
5253          * Since pinned accounting is per vm we cannot allow fork() to copy our
5254          * vma.
5255          */
5256         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5257         vma->vm_ops = &perf_mmap_vmops;
5258
5259         if (event->pmu->event_mapped)
5260                 event->pmu->event_mapped(event);
5261
5262         return ret;
5263 }
5264
5265 static int perf_fasync(int fd, struct file *filp, int on)
5266 {
5267         struct inode *inode = file_inode(filp);
5268         struct perf_event *event = filp->private_data;
5269         int retval;
5270
5271         inode_lock(inode);
5272         retval = fasync_helper(fd, filp, on, &event->fasync);
5273         inode_unlock(inode);
5274
5275         if (retval < 0)
5276                 return retval;
5277
5278         return 0;
5279 }
5280
5281 static const struct file_operations perf_fops = {
5282         .llseek                 = no_llseek,
5283         .release                = perf_release,
5284         .read                   = perf_read,
5285         .poll                   = perf_poll,
5286         .unlocked_ioctl         = perf_ioctl,
5287         .compat_ioctl           = perf_compat_ioctl,
5288         .mmap                   = perf_mmap,
5289         .fasync                 = perf_fasync,
5290 };
5291
5292 /*
5293  * Perf event wakeup
5294  *
5295  * If there's data, ensure we set the poll() state and publish everything
5296  * to user-space before waking everybody up.
5297  */
5298
5299 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5300 {
5301         /* only the parent has fasync state */
5302         if (event->parent)
5303                 event = event->parent;
5304         return &event->fasync;
5305 }
5306
5307 void perf_event_wakeup(struct perf_event *event)
5308 {
5309         ring_buffer_wakeup(event);
5310
5311         if (event->pending_kill) {
5312                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5313                 event->pending_kill = 0;
5314         }
5315 }
5316
5317 static void perf_pending_event(struct irq_work *entry)
5318 {
5319         struct perf_event *event = container_of(entry,
5320                         struct perf_event, pending);
5321         int rctx;
5322
5323         rctx = perf_swevent_get_recursion_context();
5324         /*
5325          * If we 'fail' here, that's OK, it means recursion is already disabled
5326          * and we won't recurse 'further'.
5327          */
5328
5329         if (event->pending_disable) {
5330                 event->pending_disable = 0;
5331                 perf_event_disable_local(event);
5332         }
5333
5334         if (event->pending_wakeup) {
5335                 event->pending_wakeup = 0;
5336                 perf_event_wakeup(event);
5337         }
5338
5339         if (rctx >= 0)
5340                 perf_swevent_put_recursion_context(rctx);
5341 }
5342
5343 /*
5344  * We assume there is only KVM supporting the callbacks.
5345  * Later on, we might change it to a list if there is
5346  * another virtualization implementation supporting the callbacks.
5347  */
5348 struct perf_guest_info_callbacks *perf_guest_cbs;
5349
5350 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5351 {
5352         perf_guest_cbs = cbs;
5353         return 0;
5354 }
5355 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5356
5357 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5358 {
5359         perf_guest_cbs = NULL;
5360         return 0;
5361 }
5362 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5363
5364 static void
5365 perf_output_sample_regs(struct perf_output_handle *handle,
5366                         struct pt_regs *regs, u64 mask)
5367 {
5368         int bit;
5369         DECLARE_BITMAP(_mask, 64);
5370
5371         bitmap_from_u64(_mask, mask);
5372         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5373                 u64 val;
5374
5375                 val = perf_reg_value(regs, bit);
5376                 perf_output_put(handle, val);
5377         }
5378 }
5379
5380 static void perf_sample_regs_user(struct perf_regs *regs_user,
5381                                   struct pt_regs *regs,
5382                                   struct pt_regs *regs_user_copy)
5383 {
5384         if (user_mode(regs)) {
5385                 regs_user->abi = perf_reg_abi(current);
5386                 regs_user->regs = regs;
5387         } else if (current->mm) {
5388                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5389         } else {
5390                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5391                 regs_user->regs = NULL;
5392         }
5393 }
5394
5395 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5396                                   struct pt_regs *regs)
5397 {
5398         regs_intr->regs = regs;
5399         regs_intr->abi  = perf_reg_abi(current);
5400 }
5401
5402
5403 /*
5404  * Get remaining task size from user stack pointer.
5405  *
5406  * It'd be better to take stack vma map and limit this more
5407  * precisly, but there's no way to get it safely under interrupt,
5408  * so using TASK_SIZE as limit.
5409  */
5410 static u64 perf_ustack_task_size(struct pt_regs *regs)
5411 {
5412         unsigned long addr = perf_user_stack_pointer(regs);
5413
5414         if (!addr || addr >= TASK_SIZE)
5415                 return 0;
5416
5417         return TASK_SIZE - addr;
5418 }
5419
5420 static u16
5421 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5422                         struct pt_regs *regs)
5423 {
5424         u64 task_size;
5425
5426         /* No regs, no stack pointer, no dump. */
5427         if (!regs)
5428                 return 0;
5429
5430         /*
5431          * Check if we fit in with the requested stack size into the:
5432          * - TASK_SIZE
5433          *   If we don't, we limit the size to the TASK_SIZE.
5434          *
5435          * - remaining sample size
5436          *   If we don't, we customize the stack size to
5437          *   fit in to the remaining sample size.
5438          */
5439
5440         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5441         stack_size = min(stack_size, (u16) task_size);
5442
5443         /* Current header size plus static size and dynamic size. */
5444         header_size += 2 * sizeof(u64);
5445
5446         /* Do we fit in with the current stack dump size? */
5447         if ((u16) (header_size + stack_size) < header_size) {
5448                 /*
5449                  * If we overflow the maximum size for the sample,
5450                  * we customize the stack dump size to fit in.
5451                  */
5452                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5453                 stack_size = round_up(stack_size, sizeof(u64));
5454         }
5455
5456         return stack_size;
5457 }
5458
5459 static void
5460 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5461                           struct pt_regs *regs)
5462 {
5463         /* Case of a kernel thread, nothing to dump */
5464         if (!regs) {
5465                 u64 size = 0;
5466                 perf_output_put(handle, size);
5467         } else {
5468                 unsigned long sp;
5469                 unsigned int rem;
5470                 u64 dyn_size;
5471
5472                 /*
5473                  * We dump:
5474                  * static size
5475                  *   - the size requested by user or the best one we can fit
5476                  *     in to the sample max size
5477                  * data
5478                  *   - user stack dump data
5479                  * dynamic size
5480                  *   - the actual dumped size
5481                  */
5482
5483                 /* Static size. */
5484                 perf_output_put(handle, dump_size);
5485
5486                 /* Data. */
5487                 sp = perf_user_stack_pointer(regs);
5488                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5489                 dyn_size = dump_size - rem;
5490
5491                 perf_output_skip(handle, rem);
5492
5493                 /* Dynamic size. */
5494                 perf_output_put(handle, dyn_size);
5495         }
5496 }
5497
5498 static void __perf_event_header__init_id(struct perf_event_header *header,
5499                                          struct perf_sample_data *data,
5500                                          struct perf_event *event)
5501 {
5502         u64 sample_type = event->attr.sample_type;
5503
5504         data->type = sample_type;
5505         header->size += event->id_header_size;
5506
5507         if (sample_type & PERF_SAMPLE_TID) {
5508                 /* namespace issues */
5509                 data->tid_entry.pid = perf_event_pid(event, current);
5510                 data->tid_entry.tid = perf_event_tid(event, current);
5511         }
5512
5513         if (sample_type & PERF_SAMPLE_TIME)
5514                 data->time = perf_event_clock(event);
5515
5516         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5517                 data->id = primary_event_id(event);
5518
5519         if (sample_type & PERF_SAMPLE_STREAM_ID)
5520                 data->stream_id = event->id;
5521
5522         if (sample_type & PERF_SAMPLE_CPU) {
5523                 data->cpu_entry.cpu      = raw_smp_processor_id();
5524                 data->cpu_entry.reserved = 0;
5525         }
5526 }
5527
5528 void perf_event_header__init_id(struct perf_event_header *header,
5529                                 struct perf_sample_data *data,
5530                                 struct perf_event *event)
5531 {
5532         if (event->attr.sample_id_all)
5533                 __perf_event_header__init_id(header, data, event);
5534 }
5535
5536 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5537                                            struct perf_sample_data *data)
5538 {
5539         u64 sample_type = data->type;
5540
5541         if (sample_type & PERF_SAMPLE_TID)
5542                 perf_output_put(handle, data->tid_entry);
5543
5544         if (sample_type & PERF_SAMPLE_TIME)
5545                 perf_output_put(handle, data->time);
5546
5547         if (sample_type & PERF_SAMPLE_ID)
5548                 perf_output_put(handle, data->id);
5549
5550         if (sample_type & PERF_SAMPLE_STREAM_ID)
5551                 perf_output_put(handle, data->stream_id);
5552
5553         if (sample_type & PERF_SAMPLE_CPU)
5554                 perf_output_put(handle, data->cpu_entry);
5555
5556         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5557                 perf_output_put(handle, data->id);
5558 }
5559
5560 void perf_event__output_id_sample(struct perf_event *event,
5561                                   struct perf_output_handle *handle,
5562                                   struct perf_sample_data *sample)
5563 {
5564         if (event->attr.sample_id_all)
5565                 __perf_event__output_id_sample(handle, sample);
5566 }
5567
5568 static void perf_output_read_one(struct perf_output_handle *handle,
5569                                  struct perf_event *event,
5570                                  u64 enabled, u64 running)
5571 {
5572         u64 read_format = event->attr.read_format;
5573         u64 values[4];
5574         int n = 0;
5575
5576         values[n++] = perf_event_count(event);
5577         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5578                 values[n++] = enabled +
5579                         atomic64_read(&event->child_total_time_enabled);
5580         }
5581         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5582                 values[n++] = running +
5583                         atomic64_read(&event->child_total_time_running);
5584         }
5585         if (read_format & PERF_FORMAT_ID)
5586                 values[n++] = primary_event_id(event);
5587
5588         __output_copy(handle, values, n * sizeof(u64));
5589 }
5590
5591 /*
5592  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5593  */
5594 static void perf_output_read_group(struct perf_output_handle *handle,
5595                             struct perf_event *event,
5596                             u64 enabled, u64 running)
5597 {
5598         struct perf_event *leader = event->group_leader, *sub;
5599         u64 read_format = event->attr.read_format;
5600         u64 values[5];
5601         int n = 0;
5602
5603         values[n++] = 1 + leader->nr_siblings;
5604
5605         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5606                 values[n++] = enabled;
5607
5608         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5609                 values[n++] = running;
5610
5611         if (leader != event)
5612                 leader->pmu->read(leader);
5613
5614         values[n++] = perf_event_count(leader);
5615         if (read_format & PERF_FORMAT_ID)
5616                 values[n++] = primary_event_id(leader);
5617
5618         __output_copy(handle, values, n * sizeof(u64));
5619
5620         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5621                 n = 0;
5622
5623                 if ((sub != event) &&
5624                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5625                         sub->pmu->read(sub);
5626
5627                 values[n++] = perf_event_count(sub);
5628                 if (read_format & PERF_FORMAT_ID)
5629                         values[n++] = primary_event_id(sub);
5630
5631                 __output_copy(handle, values, n * sizeof(u64));
5632         }
5633 }
5634
5635 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5636                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5637
5638 static void perf_output_read(struct perf_output_handle *handle,
5639                              struct perf_event *event)
5640 {
5641         u64 enabled = 0, running = 0, now;
5642         u64 read_format = event->attr.read_format;
5643
5644         /*
5645          * compute total_time_enabled, total_time_running
5646          * based on snapshot values taken when the event
5647          * was last scheduled in.
5648          *
5649          * we cannot simply called update_context_time()
5650          * because of locking issue as we are called in
5651          * NMI context
5652          */
5653         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5654                 calc_timer_values(event, &now, &enabled, &running);
5655
5656         if (event->attr.read_format & PERF_FORMAT_GROUP)
5657                 perf_output_read_group(handle, event, enabled, running);
5658         else
5659                 perf_output_read_one(handle, event, enabled, running);
5660 }
5661
5662 void perf_output_sample(struct perf_output_handle *handle,
5663                         struct perf_event_header *header,
5664                         struct perf_sample_data *data,
5665                         struct perf_event *event)
5666 {
5667         u64 sample_type = data->type;
5668
5669         perf_output_put(handle, *header);
5670
5671         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5672                 perf_output_put(handle, data->id);
5673
5674         if (sample_type & PERF_SAMPLE_IP)
5675                 perf_output_put(handle, data->ip);
5676
5677         if (sample_type & PERF_SAMPLE_TID)
5678                 perf_output_put(handle, data->tid_entry);
5679
5680         if (sample_type & PERF_SAMPLE_TIME)
5681                 perf_output_put(handle, data->time);
5682
5683         if (sample_type & PERF_SAMPLE_ADDR)
5684                 perf_output_put(handle, data->addr);
5685
5686         if (sample_type & PERF_SAMPLE_ID)
5687                 perf_output_put(handle, data->id);
5688
5689         if (sample_type & PERF_SAMPLE_STREAM_ID)
5690                 perf_output_put(handle, data->stream_id);
5691
5692         if (sample_type & PERF_SAMPLE_CPU)
5693                 perf_output_put(handle, data->cpu_entry);
5694
5695         if (sample_type & PERF_SAMPLE_PERIOD)
5696                 perf_output_put(handle, data->period);
5697
5698         if (sample_type & PERF_SAMPLE_READ)
5699                 perf_output_read(handle, event);
5700
5701         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5702                 if (data->callchain) {
5703                         int size = 1;
5704
5705                         if (data->callchain)
5706                                 size += data->callchain->nr;
5707
5708                         size *= sizeof(u64);
5709
5710                         __output_copy(handle, data->callchain, size);
5711                 } else {
5712                         u64 nr = 0;
5713                         perf_output_put(handle, nr);
5714                 }
5715         }
5716
5717         if (sample_type & PERF_SAMPLE_RAW) {
5718                 struct perf_raw_record *raw = data->raw;
5719
5720                 if (raw) {
5721                         struct perf_raw_frag *frag = &raw->frag;
5722
5723                         perf_output_put(handle, raw->size);
5724                         do {
5725                                 if (frag->copy) {
5726                                         __output_custom(handle, frag->copy,
5727                                                         frag->data, frag->size);
5728                                 } else {
5729                                         __output_copy(handle, frag->data,
5730                                                       frag->size);
5731                                 }
5732                                 if (perf_raw_frag_last(frag))
5733                                         break;
5734                                 frag = frag->next;
5735                         } while (1);
5736                         if (frag->pad)
5737                                 __output_skip(handle, NULL, frag->pad);
5738                 } else {
5739                         struct {
5740                                 u32     size;
5741                                 u32     data;
5742                         } raw = {
5743                                 .size = sizeof(u32),
5744                                 .data = 0,
5745                         };
5746                         perf_output_put(handle, raw);
5747                 }
5748         }
5749
5750         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5751                 if (data->br_stack) {
5752                         size_t size;
5753
5754                         size = data->br_stack->nr
5755                              * sizeof(struct perf_branch_entry);
5756
5757                         perf_output_put(handle, data->br_stack->nr);
5758                         perf_output_copy(handle, data->br_stack->entries, size);
5759                 } else {
5760                         /*
5761                          * we always store at least the value of nr
5762                          */
5763                         u64 nr = 0;
5764                         perf_output_put(handle, nr);
5765                 }
5766         }
5767
5768         if (sample_type & PERF_SAMPLE_REGS_USER) {
5769                 u64 abi = data->regs_user.abi;
5770
5771                 /*
5772                  * If there are no regs to dump, notice it through
5773                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5774                  */
5775                 perf_output_put(handle, abi);
5776
5777                 if (abi) {
5778                         u64 mask = event->attr.sample_regs_user;
5779                         perf_output_sample_regs(handle,
5780                                                 data->regs_user.regs,
5781                                                 mask);
5782                 }
5783         }
5784
5785         if (sample_type & PERF_SAMPLE_STACK_USER) {
5786                 perf_output_sample_ustack(handle,
5787                                           data->stack_user_size,
5788                                           data->regs_user.regs);
5789         }
5790
5791         if (sample_type & PERF_SAMPLE_WEIGHT)
5792                 perf_output_put(handle, data->weight);
5793
5794         if (sample_type & PERF_SAMPLE_DATA_SRC)
5795                 perf_output_put(handle, data->data_src.val);
5796
5797         if (sample_type & PERF_SAMPLE_TRANSACTION)
5798                 perf_output_put(handle, data->txn);
5799
5800         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5801                 u64 abi = data->regs_intr.abi;
5802                 /*
5803                  * If there are no regs to dump, notice it through
5804                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5805                  */
5806                 perf_output_put(handle, abi);
5807
5808                 if (abi) {
5809                         u64 mask = event->attr.sample_regs_intr;
5810
5811                         perf_output_sample_regs(handle,
5812                                                 data->regs_intr.regs,
5813                                                 mask);
5814                 }
5815         }
5816
5817         if (!event->attr.watermark) {
5818                 int wakeup_events = event->attr.wakeup_events;
5819
5820                 if (wakeup_events) {
5821                         struct ring_buffer *rb = handle->rb;
5822                         int events = local_inc_return(&rb->events);
5823
5824                         if (events >= wakeup_events) {
5825                                 local_sub(wakeup_events, &rb->events);
5826                                 local_inc(&rb->wakeup);
5827                         }
5828                 }
5829         }
5830 }
5831
5832 void perf_prepare_sample(struct perf_event_header *header,
5833                          struct perf_sample_data *data,
5834                          struct perf_event *event,
5835                          struct pt_regs *regs)
5836 {
5837         u64 sample_type = event->attr.sample_type;
5838
5839         header->type = PERF_RECORD_SAMPLE;
5840         header->size = sizeof(*header) + event->header_size;
5841
5842         header->misc = 0;
5843         header->misc |= perf_misc_flags(regs);
5844
5845         __perf_event_header__init_id(header, data, event);
5846
5847         if (sample_type & PERF_SAMPLE_IP)
5848                 data->ip = perf_instruction_pointer(regs);
5849
5850         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5851                 int size = 1;
5852
5853                 data->callchain = perf_callchain(event, regs);
5854
5855                 if (data->callchain)
5856                         size += data->callchain->nr;
5857
5858                 header->size += size * sizeof(u64);
5859         }
5860
5861         if (sample_type & PERF_SAMPLE_RAW) {
5862                 struct perf_raw_record *raw = data->raw;
5863                 int size;
5864
5865                 if (raw) {
5866                         struct perf_raw_frag *frag = &raw->frag;
5867                         u32 sum = 0;
5868
5869                         do {
5870                                 sum += frag->size;
5871                                 if (perf_raw_frag_last(frag))
5872                                         break;
5873                                 frag = frag->next;
5874                         } while (1);
5875
5876                         size = round_up(sum + sizeof(u32), sizeof(u64));
5877                         raw->size = size - sizeof(u32);
5878                         frag->pad = raw->size - sum;
5879                 } else {
5880                         size = sizeof(u64);
5881                 }
5882
5883                 header->size += size;
5884         }
5885
5886         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5887                 int size = sizeof(u64); /* nr */
5888                 if (data->br_stack) {
5889                         size += data->br_stack->nr
5890                               * sizeof(struct perf_branch_entry);
5891                 }
5892                 header->size += size;
5893         }
5894
5895         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5896                 perf_sample_regs_user(&data->regs_user, regs,
5897                                       &data->regs_user_copy);
5898
5899         if (sample_type & PERF_SAMPLE_REGS_USER) {
5900                 /* regs dump ABI info */
5901                 int size = sizeof(u64);
5902
5903                 if (data->regs_user.regs) {
5904                         u64 mask = event->attr.sample_regs_user;
5905                         size += hweight64(mask) * sizeof(u64);
5906                 }
5907
5908                 header->size += size;
5909         }
5910
5911         if (sample_type & PERF_SAMPLE_STACK_USER) {
5912                 /*
5913                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5914                  * processed as the last one or have additional check added
5915                  * in case new sample type is added, because we could eat
5916                  * up the rest of the sample size.
5917                  */
5918                 u16 stack_size = event->attr.sample_stack_user;
5919                 u16 size = sizeof(u64);
5920
5921                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5922                                                      data->regs_user.regs);
5923
5924                 /*
5925                  * If there is something to dump, add space for the dump
5926                  * itself and for the field that tells the dynamic size,
5927                  * which is how many have been actually dumped.
5928                  */
5929                 if (stack_size)
5930                         size += sizeof(u64) + stack_size;
5931
5932                 data->stack_user_size = stack_size;
5933                 header->size += size;
5934         }
5935
5936         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5937                 /* regs dump ABI info */
5938                 int size = sizeof(u64);
5939
5940                 perf_sample_regs_intr(&data->regs_intr, regs);
5941
5942                 if (data->regs_intr.regs) {
5943                         u64 mask = event->attr.sample_regs_intr;
5944
5945                         size += hweight64(mask) * sizeof(u64);
5946                 }
5947
5948                 header->size += size;
5949         }
5950 }
5951
5952 static void __always_inline
5953 __perf_event_output(struct perf_event *event,
5954                     struct perf_sample_data *data,
5955                     struct pt_regs *regs,
5956                     int (*output_begin)(struct perf_output_handle *,
5957                                         struct perf_event *,
5958                                         unsigned int))
5959 {
5960         struct perf_output_handle handle;
5961         struct perf_event_header header;
5962
5963         /* protect the callchain buffers */
5964         rcu_read_lock();
5965
5966         perf_prepare_sample(&header, data, event, regs);
5967
5968         if (output_begin(&handle, event, header.size))
5969                 goto exit;
5970
5971         perf_output_sample(&handle, &header, data, event);
5972
5973         perf_output_end(&handle);
5974
5975 exit:
5976         rcu_read_unlock();
5977 }
5978
5979 void
5980 perf_event_output_forward(struct perf_event *event,
5981                          struct perf_sample_data *data,
5982                          struct pt_regs *regs)
5983 {
5984         __perf_event_output(event, data, regs, perf_output_begin_forward);
5985 }
5986
5987 void
5988 perf_event_output_backward(struct perf_event *event,
5989                            struct perf_sample_data *data,
5990                            struct pt_regs *regs)
5991 {
5992         __perf_event_output(event, data, regs, perf_output_begin_backward);
5993 }
5994
5995 void
5996 perf_event_output(struct perf_event *event,
5997                   struct perf_sample_data *data,
5998                   struct pt_regs *regs)
5999 {
6000         __perf_event_output(event, data, regs, perf_output_begin);
6001 }
6002
6003 /*
6004  * read event_id
6005  */
6006
6007 struct perf_read_event {
6008         struct perf_event_header        header;
6009
6010         u32                             pid;
6011         u32                             tid;
6012 };
6013
6014 static void
6015 perf_event_read_event(struct perf_event *event,
6016                         struct task_struct *task)
6017 {
6018         struct perf_output_handle handle;
6019         struct perf_sample_data sample;
6020         struct perf_read_event read_event = {
6021                 .header = {
6022                         .type = PERF_RECORD_READ,
6023                         .misc = 0,
6024                         .size = sizeof(read_event) + event->read_size,
6025                 },
6026                 .pid = perf_event_pid(event, task),
6027                 .tid = perf_event_tid(event, task),
6028         };
6029         int ret;
6030
6031         perf_event_header__init_id(&read_event.header, &sample, event);
6032         ret = perf_output_begin(&handle, event, read_event.header.size);
6033         if (ret)
6034                 return;
6035
6036         perf_output_put(&handle, read_event);
6037         perf_output_read(&handle, event);
6038         perf_event__output_id_sample(event, &handle, &sample);
6039
6040         perf_output_end(&handle);
6041 }
6042
6043 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6044
6045 static void
6046 perf_iterate_ctx(struct perf_event_context *ctx,
6047                    perf_iterate_f output,
6048                    void *data, bool all)
6049 {
6050         struct perf_event *event;
6051
6052         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6053                 if (!all) {
6054                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6055                                 continue;
6056                         if (!event_filter_match(event))
6057                                 continue;
6058                 }
6059
6060                 output(event, data);
6061         }
6062 }
6063
6064 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6065 {
6066         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6067         struct perf_event *event;
6068
6069         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6070                 /*
6071                  * Skip events that are not fully formed yet; ensure that
6072                  * if we observe event->ctx, both event and ctx will be
6073                  * complete enough. See perf_install_in_context().
6074                  */
6075                 if (!smp_load_acquire(&event->ctx))
6076                         continue;
6077
6078                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6079                         continue;
6080                 if (!event_filter_match(event))
6081                         continue;
6082                 output(event, data);
6083         }
6084 }
6085
6086 /*
6087  * Iterate all events that need to receive side-band events.
6088  *
6089  * For new callers; ensure that account_pmu_sb_event() includes
6090  * your event, otherwise it might not get delivered.
6091  */
6092 static void
6093 perf_iterate_sb(perf_iterate_f output, void *data,
6094                struct perf_event_context *task_ctx)
6095 {
6096         struct perf_event_context *ctx;
6097         int ctxn;
6098
6099         rcu_read_lock();
6100         preempt_disable();
6101
6102         /*
6103          * If we have task_ctx != NULL we only notify the task context itself.
6104          * The task_ctx is set only for EXIT events before releasing task
6105          * context.
6106          */
6107         if (task_ctx) {
6108                 perf_iterate_ctx(task_ctx, output, data, false);
6109                 goto done;
6110         }
6111
6112         perf_iterate_sb_cpu(output, data);
6113
6114         for_each_task_context_nr(ctxn) {
6115                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6116                 if (ctx)
6117                         perf_iterate_ctx(ctx, output, data, false);
6118         }
6119 done:
6120         preempt_enable();
6121         rcu_read_unlock();
6122 }
6123
6124 /*
6125  * Clear all file-based filters at exec, they'll have to be
6126  * re-instated when/if these objects are mmapped again.
6127  */
6128 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6129 {
6130         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6131         struct perf_addr_filter *filter;
6132         unsigned int restart = 0, count = 0;
6133         unsigned long flags;
6134
6135         if (!has_addr_filter(event))
6136                 return;
6137
6138         raw_spin_lock_irqsave(&ifh->lock, flags);
6139         list_for_each_entry(filter, &ifh->list, entry) {
6140                 if (filter->inode) {
6141                         event->addr_filters_offs[count] = 0;
6142                         restart++;
6143                 }
6144
6145                 count++;
6146         }
6147
6148         if (restart)
6149                 event->addr_filters_gen++;
6150         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6151
6152         if (restart)
6153                 perf_event_restart(event);
6154 }
6155
6156 void perf_event_exec(void)
6157 {
6158         struct perf_event_context *ctx;
6159         int ctxn;
6160
6161         rcu_read_lock();
6162         for_each_task_context_nr(ctxn) {
6163                 ctx = current->perf_event_ctxp[ctxn];
6164                 if (!ctx)
6165                         continue;
6166
6167                 perf_event_enable_on_exec(ctxn);
6168
6169                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6170                                    true);
6171         }
6172         rcu_read_unlock();
6173 }
6174
6175 struct remote_output {
6176         struct ring_buffer      *rb;
6177         int                     err;
6178 };
6179
6180 static void __perf_event_output_stop(struct perf_event *event, void *data)
6181 {
6182         struct perf_event *parent = event->parent;
6183         struct remote_output *ro = data;
6184         struct ring_buffer *rb = ro->rb;
6185         struct stop_event_data sd = {
6186                 .event  = event,
6187         };
6188
6189         if (!has_aux(event))
6190                 return;
6191
6192         if (!parent)
6193                 parent = event;
6194
6195         /*
6196          * In case of inheritance, it will be the parent that links to the
6197          * ring-buffer, but it will be the child that's actually using it:
6198          */
6199         if (rcu_dereference(parent->rb) == rb)
6200                 ro->err = __perf_event_stop(&sd);
6201 }
6202
6203 static int __perf_pmu_output_stop(void *info)
6204 {
6205         struct perf_event *event = info;
6206         struct pmu *pmu = event->pmu;
6207         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6208         struct remote_output ro = {
6209                 .rb     = event->rb,
6210         };
6211
6212         rcu_read_lock();
6213         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6214         if (cpuctx->task_ctx)
6215                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6216                                    &ro, false);
6217         rcu_read_unlock();
6218
6219         return ro.err;
6220 }
6221
6222 static void perf_pmu_output_stop(struct perf_event *event)
6223 {
6224         struct perf_event *iter;
6225         int err, cpu;
6226
6227 restart:
6228         rcu_read_lock();
6229         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6230                 /*
6231                  * For per-CPU events, we need to make sure that neither they
6232                  * nor their children are running; for cpu==-1 events it's
6233                  * sufficient to stop the event itself if it's active, since
6234                  * it can't have children.
6235                  */
6236                 cpu = iter->cpu;
6237                 if (cpu == -1)
6238                         cpu = READ_ONCE(iter->oncpu);
6239
6240                 if (cpu == -1)
6241                         continue;
6242
6243                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6244                 if (err == -EAGAIN) {
6245                         rcu_read_unlock();
6246                         goto restart;
6247                 }
6248         }
6249         rcu_read_unlock();
6250 }
6251
6252 /*
6253  * task tracking -- fork/exit
6254  *
6255  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6256  */
6257
6258 struct perf_task_event {
6259         struct task_struct              *task;
6260         struct perf_event_context       *task_ctx;
6261
6262         struct {
6263                 struct perf_event_header        header;
6264
6265                 u32                             pid;
6266                 u32                             ppid;
6267                 u32                             tid;
6268                 u32                             ptid;
6269                 u64                             time;
6270         } event_id;
6271 };
6272
6273 static int perf_event_task_match(struct perf_event *event)
6274 {
6275         return event->attr.comm  || event->attr.mmap ||
6276                event->attr.mmap2 || event->attr.mmap_data ||
6277                event->attr.task;
6278 }
6279
6280 static void perf_event_task_output(struct perf_event *event,
6281                                    void *data)
6282 {
6283         struct perf_task_event *task_event = data;
6284         struct perf_output_handle handle;
6285         struct perf_sample_data sample;
6286         struct task_struct *task = task_event->task;
6287         int ret, size = task_event->event_id.header.size;
6288
6289         if (!perf_event_task_match(event))
6290                 return;
6291
6292         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6293
6294         ret = perf_output_begin(&handle, event,
6295                                 task_event->event_id.header.size);
6296         if (ret)
6297                 goto out;
6298
6299         task_event->event_id.pid = perf_event_pid(event, task);
6300         task_event->event_id.ppid = perf_event_pid(event, current);
6301
6302         task_event->event_id.tid = perf_event_tid(event, task);
6303         task_event->event_id.ptid = perf_event_tid(event, current);
6304
6305         task_event->event_id.time = perf_event_clock(event);
6306
6307         perf_output_put(&handle, task_event->event_id);
6308
6309         perf_event__output_id_sample(event, &handle, &sample);
6310
6311         perf_output_end(&handle);
6312 out:
6313         task_event->event_id.header.size = size;
6314 }
6315
6316 static void perf_event_task(struct task_struct *task,
6317                               struct perf_event_context *task_ctx,
6318                               int new)
6319 {
6320         struct perf_task_event task_event;
6321
6322         if (!atomic_read(&nr_comm_events) &&
6323             !atomic_read(&nr_mmap_events) &&
6324             !atomic_read(&nr_task_events))
6325                 return;
6326
6327         task_event = (struct perf_task_event){
6328                 .task     = task,
6329                 .task_ctx = task_ctx,
6330                 .event_id    = {
6331                         .header = {
6332                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6333                                 .misc = 0,
6334                                 .size = sizeof(task_event.event_id),
6335                         },
6336                         /* .pid  */
6337                         /* .ppid */
6338                         /* .tid  */
6339                         /* .ptid */
6340                         /* .time */
6341                 },
6342         };
6343
6344         perf_iterate_sb(perf_event_task_output,
6345                        &task_event,
6346                        task_ctx);
6347 }
6348
6349 void perf_event_fork(struct task_struct *task)
6350 {
6351         perf_event_task(task, NULL, 1);
6352 }
6353
6354 /*
6355  * comm tracking
6356  */
6357
6358 struct perf_comm_event {
6359         struct task_struct      *task;
6360         char                    *comm;
6361         int                     comm_size;
6362
6363         struct {
6364                 struct perf_event_header        header;
6365
6366                 u32                             pid;
6367                 u32                             tid;
6368         } event_id;
6369 };
6370
6371 static int perf_event_comm_match(struct perf_event *event)
6372 {
6373         return event->attr.comm;
6374 }
6375
6376 static void perf_event_comm_output(struct perf_event *event,
6377                                    void *data)
6378 {
6379         struct perf_comm_event *comm_event = data;
6380         struct perf_output_handle handle;
6381         struct perf_sample_data sample;
6382         int size = comm_event->event_id.header.size;
6383         int ret;
6384
6385         if (!perf_event_comm_match(event))
6386                 return;
6387
6388         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6389         ret = perf_output_begin(&handle, event,
6390                                 comm_event->event_id.header.size);
6391
6392         if (ret)
6393                 goto out;
6394
6395         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6396         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6397
6398         perf_output_put(&handle, comm_event->event_id);
6399         __output_copy(&handle, comm_event->comm,
6400                                    comm_event->comm_size);
6401
6402         perf_event__output_id_sample(event, &handle, &sample);
6403
6404         perf_output_end(&handle);
6405 out:
6406         comm_event->event_id.header.size = size;
6407 }
6408
6409 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6410 {
6411         char comm[TASK_COMM_LEN];
6412         unsigned int size;
6413
6414         memset(comm, 0, sizeof(comm));
6415         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6416         size = ALIGN(strlen(comm)+1, sizeof(u64));
6417
6418         comm_event->comm = comm;
6419         comm_event->comm_size = size;
6420
6421         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6422
6423         perf_iterate_sb(perf_event_comm_output,
6424                        comm_event,
6425                        NULL);
6426 }
6427
6428 void perf_event_comm(struct task_struct *task, bool exec)
6429 {
6430         struct perf_comm_event comm_event;
6431
6432         if (!atomic_read(&nr_comm_events))
6433                 return;
6434
6435         comm_event = (struct perf_comm_event){
6436                 .task   = task,
6437                 /* .comm      */
6438                 /* .comm_size */
6439                 .event_id  = {
6440                         .header = {
6441                                 .type = PERF_RECORD_COMM,
6442                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6443                                 /* .size */
6444                         },
6445                         /* .pid */
6446                         /* .tid */
6447                 },
6448         };
6449
6450         perf_event_comm_event(&comm_event);
6451 }
6452
6453 /*
6454  * mmap tracking
6455  */
6456
6457 struct perf_mmap_event {
6458         struct vm_area_struct   *vma;
6459
6460         const char              *file_name;
6461         int                     file_size;
6462         int                     maj, min;
6463         u64                     ino;
6464         u64                     ino_generation;
6465         u32                     prot, flags;
6466
6467         struct {
6468                 struct perf_event_header        header;
6469
6470                 u32                             pid;
6471                 u32                             tid;
6472                 u64                             start;
6473                 u64                             len;
6474                 u64                             pgoff;
6475         } event_id;
6476 };
6477
6478 static int perf_event_mmap_match(struct perf_event *event,
6479                                  void *data)
6480 {
6481         struct perf_mmap_event *mmap_event = data;
6482         struct vm_area_struct *vma = mmap_event->vma;
6483         int executable = vma->vm_flags & VM_EXEC;
6484
6485         return (!executable && event->attr.mmap_data) ||
6486                (executable && (event->attr.mmap || event->attr.mmap2));
6487 }
6488
6489 static void perf_event_mmap_output(struct perf_event *event,
6490                                    void *data)
6491 {
6492         struct perf_mmap_event *mmap_event = data;
6493         struct perf_output_handle handle;
6494         struct perf_sample_data sample;
6495         int size = mmap_event->event_id.header.size;
6496         int ret;
6497
6498         if (!perf_event_mmap_match(event, data))
6499                 return;
6500
6501         if (event->attr.mmap2) {
6502                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6503                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6504                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6505                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6506                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6507                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6508                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6509         }
6510
6511         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6512         ret = perf_output_begin(&handle, event,
6513                                 mmap_event->event_id.header.size);
6514         if (ret)
6515                 goto out;
6516
6517         mmap_event->event_id.pid = perf_event_pid(event, current);
6518         mmap_event->event_id.tid = perf_event_tid(event, current);
6519
6520         perf_output_put(&handle, mmap_event->event_id);
6521
6522         if (event->attr.mmap2) {
6523                 perf_output_put(&handle, mmap_event->maj);
6524                 perf_output_put(&handle, mmap_event->min);
6525                 perf_output_put(&handle, mmap_event->ino);
6526                 perf_output_put(&handle, mmap_event->ino_generation);
6527                 perf_output_put(&handle, mmap_event->prot);
6528                 perf_output_put(&handle, mmap_event->flags);
6529         }
6530
6531         __output_copy(&handle, mmap_event->file_name,
6532                                    mmap_event->file_size);
6533
6534         perf_event__output_id_sample(event, &handle, &sample);
6535
6536         perf_output_end(&handle);
6537 out:
6538         mmap_event->event_id.header.size = size;
6539 }
6540
6541 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6542 {
6543         struct vm_area_struct *vma = mmap_event->vma;
6544         struct file *file = vma->vm_file;
6545         int maj = 0, min = 0;
6546         u64 ino = 0, gen = 0;
6547         u32 prot = 0, flags = 0;
6548         unsigned int size;
6549         char tmp[16];
6550         char *buf = NULL;
6551         char *name;
6552
6553         if (file) {
6554                 struct inode *inode;
6555                 dev_t dev;
6556
6557                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6558                 if (!buf) {
6559                         name = "//enomem";
6560                         goto cpy_name;
6561                 }
6562                 /*
6563                  * d_path() works from the end of the rb backwards, so we
6564                  * need to add enough zero bytes after the string to handle
6565                  * the 64bit alignment we do later.
6566                  */
6567                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6568                 if (IS_ERR(name)) {
6569                         name = "//toolong";
6570                         goto cpy_name;
6571                 }
6572                 inode = file_inode(vma->vm_file);
6573                 dev = inode->i_sb->s_dev;
6574                 ino = inode->i_ino;
6575                 gen = inode->i_generation;
6576                 maj = MAJOR(dev);
6577                 min = MINOR(dev);
6578
6579                 if (vma->vm_flags & VM_READ)
6580                         prot |= PROT_READ;
6581                 if (vma->vm_flags & VM_WRITE)
6582                         prot |= PROT_WRITE;
6583                 if (vma->vm_flags & VM_EXEC)
6584                         prot |= PROT_EXEC;
6585
6586                 if (vma->vm_flags & VM_MAYSHARE)
6587                         flags = MAP_SHARED;
6588                 else
6589                         flags = MAP_PRIVATE;
6590
6591                 if (vma->vm_flags & VM_DENYWRITE)
6592                         flags |= MAP_DENYWRITE;
6593                 if (vma->vm_flags & VM_MAYEXEC)
6594                         flags |= MAP_EXECUTABLE;
6595                 if (vma->vm_flags & VM_LOCKED)
6596                         flags |= MAP_LOCKED;
6597                 if (vma->vm_flags & VM_HUGETLB)
6598                         flags |= MAP_HUGETLB;
6599
6600                 goto got_name;
6601         } else {
6602                 if (vma->vm_ops && vma->vm_ops->name) {
6603                         name = (char *) vma->vm_ops->name(vma);
6604                         if (name)
6605                                 goto cpy_name;
6606                 }
6607
6608                 name = (char *)arch_vma_name(vma);
6609                 if (name)
6610                         goto cpy_name;
6611
6612                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6613                                 vma->vm_end >= vma->vm_mm->brk) {
6614                         name = "[heap]";
6615                         goto cpy_name;
6616                 }
6617                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6618                                 vma->vm_end >= vma->vm_mm->start_stack) {
6619                         name = "[stack]";
6620                         goto cpy_name;
6621                 }
6622
6623                 name = "//anon";
6624                 goto cpy_name;
6625         }
6626
6627 cpy_name:
6628         strlcpy(tmp, name, sizeof(tmp));
6629         name = tmp;
6630 got_name:
6631         /*
6632          * Since our buffer works in 8 byte units we need to align our string
6633          * size to a multiple of 8. However, we must guarantee the tail end is
6634          * zero'd out to avoid leaking random bits to userspace.
6635          */
6636         size = strlen(name)+1;
6637         while (!IS_ALIGNED(size, sizeof(u64)))
6638                 name[size++] = '\0';
6639
6640         mmap_event->file_name = name;
6641         mmap_event->file_size = size;
6642         mmap_event->maj = maj;
6643         mmap_event->min = min;
6644         mmap_event->ino = ino;
6645         mmap_event->ino_generation = gen;
6646         mmap_event->prot = prot;
6647         mmap_event->flags = flags;
6648
6649         if (!(vma->vm_flags & VM_EXEC))
6650                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6651
6652         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6653
6654         perf_iterate_sb(perf_event_mmap_output,
6655                        mmap_event,
6656                        NULL);
6657
6658         kfree(buf);
6659 }
6660
6661 /*
6662  * Check whether inode and address range match filter criteria.
6663  */
6664 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6665                                      struct file *file, unsigned long offset,
6666                                      unsigned long size)
6667 {
6668         if (filter->inode != file->f_inode)
6669                 return false;
6670
6671         if (filter->offset > offset + size)
6672                 return false;
6673
6674         if (filter->offset + filter->size < offset)
6675                 return false;
6676
6677         return true;
6678 }
6679
6680 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6681 {
6682         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6683         struct vm_area_struct *vma = data;
6684         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6685         struct file *file = vma->vm_file;
6686         struct perf_addr_filter *filter;
6687         unsigned int restart = 0, count = 0;
6688
6689         if (!has_addr_filter(event))
6690                 return;
6691
6692         if (!file)
6693                 return;
6694
6695         raw_spin_lock_irqsave(&ifh->lock, flags);
6696         list_for_each_entry(filter, &ifh->list, entry) {
6697                 if (perf_addr_filter_match(filter, file, off,
6698                                              vma->vm_end - vma->vm_start)) {
6699                         event->addr_filters_offs[count] = vma->vm_start;
6700                         restart++;
6701                 }
6702
6703                 count++;
6704         }
6705
6706         if (restart)
6707                 event->addr_filters_gen++;
6708         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6709
6710         if (restart)
6711                 perf_event_restart(event);
6712 }
6713
6714 /*
6715  * Adjust all task's events' filters to the new vma
6716  */
6717 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6718 {
6719         struct perf_event_context *ctx;
6720         int ctxn;
6721
6722         /*
6723          * Data tracing isn't supported yet and as such there is no need
6724          * to keep track of anything that isn't related to executable code:
6725          */
6726         if (!(vma->vm_flags & VM_EXEC))
6727                 return;
6728
6729         rcu_read_lock();
6730         for_each_task_context_nr(ctxn) {
6731                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6732                 if (!ctx)
6733                         continue;
6734
6735                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6736         }
6737         rcu_read_unlock();
6738 }
6739
6740 void perf_event_mmap(struct vm_area_struct *vma)
6741 {
6742         struct perf_mmap_event mmap_event;
6743
6744         if (!atomic_read(&nr_mmap_events))
6745                 return;
6746
6747         mmap_event = (struct perf_mmap_event){
6748                 .vma    = vma,
6749                 /* .file_name */
6750                 /* .file_size */
6751                 .event_id  = {
6752                         .header = {
6753                                 .type = PERF_RECORD_MMAP,
6754                                 .misc = PERF_RECORD_MISC_USER,
6755                                 /* .size */
6756                         },
6757                         /* .pid */
6758                         /* .tid */
6759                         .start  = vma->vm_start,
6760                         .len    = vma->vm_end - vma->vm_start,
6761                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6762                 },
6763                 /* .maj (attr_mmap2 only) */
6764                 /* .min (attr_mmap2 only) */
6765                 /* .ino (attr_mmap2 only) */
6766                 /* .ino_generation (attr_mmap2 only) */
6767                 /* .prot (attr_mmap2 only) */
6768                 /* .flags (attr_mmap2 only) */
6769         };
6770
6771         perf_addr_filters_adjust(vma);
6772         perf_event_mmap_event(&mmap_event);
6773 }
6774
6775 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6776                           unsigned long size, u64 flags)
6777 {
6778         struct perf_output_handle handle;
6779         struct perf_sample_data sample;
6780         struct perf_aux_event {
6781                 struct perf_event_header        header;
6782                 u64                             offset;
6783                 u64                             size;
6784                 u64                             flags;
6785         } rec = {
6786                 .header = {
6787                         .type = PERF_RECORD_AUX,
6788                         .misc = 0,
6789                         .size = sizeof(rec),
6790                 },
6791                 .offset         = head,
6792                 .size           = size,
6793                 .flags          = flags,
6794         };
6795         int ret;
6796
6797         perf_event_header__init_id(&rec.header, &sample, event);
6798         ret = perf_output_begin(&handle, event, rec.header.size);
6799
6800         if (ret)
6801                 return;
6802
6803         perf_output_put(&handle, rec);
6804         perf_event__output_id_sample(event, &handle, &sample);
6805
6806         perf_output_end(&handle);
6807 }
6808
6809 /*
6810  * Lost/dropped samples logging
6811  */
6812 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6813 {
6814         struct perf_output_handle handle;
6815         struct perf_sample_data sample;
6816         int ret;
6817
6818         struct {
6819                 struct perf_event_header        header;
6820                 u64                             lost;
6821         } lost_samples_event = {
6822                 .header = {
6823                         .type = PERF_RECORD_LOST_SAMPLES,
6824                         .misc = 0,
6825                         .size = sizeof(lost_samples_event),
6826                 },
6827                 .lost           = lost,
6828         };
6829
6830         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6831
6832         ret = perf_output_begin(&handle, event,
6833                                 lost_samples_event.header.size);
6834         if (ret)
6835                 return;
6836
6837         perf_output_put(&handle, lost_samples_event);
6838         perf_event__output_id_sample(event, &handle, &sample);
6839         perf_output_end(&handle);
6840 }
6841
6842 /*
6843  * context_switch tracking
6844  */
6845
6846 struct perf_switch_event {
6847         struct task_struct      *task;
6848         struct task_struct      *next_prev;
6849
6850         struct {
6851                 struct perf_event_header        header;
6852                 u32                             next_prev_pid;
6853                 u32                             next_prev_tid;
6854         } event_id;
6855 };
6856
6857 static int perf_event_switch_match(struct perf_event *event)
6858 {
6859         return event->attr.context_switch;
6860 }
6861
6862 static void perf_event_switch_output(struct perf_event *event, void *data)
6863 {
6864         struct perf_switch_event *se = data;
6865         struct perf_output_handle handle;
6866         struct perf_sample_data sample;
6867         int ret;
6868
6869         if (!perf_event_switch_match(event))
6870                 return;
6871
6872         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6873         if (event->ctx->task) {
6874                 se->event_id.header.type = PERF_RECORD_SWITCH;
6875                 se->event_id.header.size = sizeof(se->event_id.header);
6876         } else {
6877                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6878                 se->event_id.header.size = sizeof(se->event_id);
6879                 se->event_id.next_prev_pid =
6880                                         perf_event_pid(event, se->next_prev);
6881                 se->event_id.next_prev_tid =
6882                                         perf_event_tid(event, se->next_prev);
6883         }
6884
6885         perf_event_header__init_id(&se->event_id.header, &sample, event);
6886
6887         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6888         if (ret)
6889                 return;
6890
6891         if (event->ctx->task)
6892                 perf_output_put(&handle, se->event_id.header);
6893         else
6894                 perf_output_put(&handle, se->event_id);
6895
6896         perf_event__output_id_sample(event, &handle, &sample);
6897
6898         perf_output_end(&handle);
6899 }
6900
6901 static void perf_event_switch(struct task_struct *task,
6902                               struct task_struct *next_prev, bool sched_in)
6903 {
6904         struct perf_switch_event switch_event;
6905
6906         /* N.B. caller checks nr_switch_events != 0 */
6907
6908         switch_event = (struct perf_switch_event){
6909                 .task           = task,
6910                 .next_prev      = next_prev,
6911                 .event_id       = {
6912                         .header = {
6913                                 /* .type */
6914                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6915                                 /* .size */
6916                         },
6917                         /* .next_prev_pid */
6918                         /* .next_prev_tid */
6919                 },
6920         };
6921
6922         perf_iterate_sb(perf_event_switch_output,
6923                        &switch_event,
6924                        NULL);
6925 }
6926
6927 /*
6928  * IRQ throttle logging
6929  */
6930
6931 static void perf_log_throttle(struct perf_event *event, int enable)
6932 {
6933         struct perf_output_handle handle;
6934         struct perf_sample_data sample;
6935         int ret;
6936
6937         struct {
6938                 struct perf_event_header        header;
6939                 u64                             time;
6940                 u64                             id;
6941                 u64                             stream_id;
6942         } throttle_event = {
6943                 .header = {
6944                         .type = PERF_RECORD_THROTTLE,
6945                         .misc = 0,
6946                         .size = sizeof(throttle_event),
6947                 },
6948                 .time           = perf_event_clock(event),
6949                 .id             = primary_event_id(event),
6950                 .stream_id      = event->id,
6951         };
6952
6953         if (enable)
6954                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6955
6956         perf_event_header__init_id(&throttle_event.header, &sample, event);
6957
6958         ret = perf_output_begin(&handle, event,
6959                                 throttle_event.header.size);
6960         if (ret)
6961                 return;
6962
6963         perf_output_put(&handle, throttle_event);
6964         perf_event__output_id_sample(event, &handle, &sample);
6965         perf_output_end(&handle);
6966 }
6967
6968 static void perf_log_itrace_start(struct perf_event *event)
6969 {
6970         struct perf_output_handle handle;
6971         struct perf_sample_data sample;
6972         struct perf_aux_event {
6973                 struct perf_event_header        header;
6974                 u32                             pid;
6975                 u32                             tid;
6976         } rec;
6977         int ret;
6978
6979         if (event->parent)
6980                 event = event->parent;
6981
6982         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6983             event->hw.itrace_started)
6984                 return;
6985
6986         rec.header.type = PERF_RECORD_ITRACE_START;
6987         rec.header.misc = 0;
6988         rec.header.size = sizeof(rec);
6989         rec.pid = perf_event_pid(event, current);
6990         rec.tid = perf_event_tid(event, current);
6991
6992         perf_event_header__init_id(&rec.header, &sample, event);
6993         ret = perf_output_begin(&handle, event, rec.header.size);
6994
6995         if (ret)
6996                 return;
6997
6998         perf_output_put(&handle, rec);
6999         perf_event__output_id_sample(event, &handle, &sample);
7000
7001         perf_output_end(&handle);
7002 }
7003
7004 /*
7005  * Generic event overflow handling, sampling.
7006  */
7007
7008 static int __perf_event_overflow(struct perf_event *event,
7009                                    int throttle, struct perf_sample_data *data,
7010                                    struct pt_regs *regs)
7011 {
7012         int events = atomic_read(&event->event_limit);
7013         struct hw_perf_event *hwc = &event->hw;
7014         u64 seq;
7015         int ret = 0;
7016
7017         /*
7018          * Non-sampling counters might still use the PMI to fold short
7019          * hardware counters, ignore those.
7020          */
7021         if (unlikely(!is_sampling_event(event)))
7022                 return 0;
7023
7024         seq = __this_cpu_read(perf_throttled_seq);
7025         if (seq != hwc->interrupts_seq) {
7026                 hwc->interrupts_seq = seq;
7027                 hwc->interrupts = 1;
7028         } else {
7029                 hwc->interrupts++;
7030                 if (unlikely(throttle
7031                              && hwc->interrupts >= max_samples_per_tick)) {
7032                         __this_cpu_inc(perf_throttled_count);
7033                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7034                         hwc->interrupts = MAX_INTERRUPTS;
7035                         perf_log_throttle(event, 0);
7036                         ret = 1;
7037                 }
7038         }
7039
7040         if (event->attr.freq) {
7041                 u64 now = perf_clock();
7042                 s64 delta = now - hwc->freq_time_stamp;
7043
7044                 hwc->freq_time_stamp = now;
7045
7046                 if (delta > 0 && delta < 2*TICK_NSEC)
7047                         perf_adjust_period(event, delta, hwc->last_period, true);
7048         }
7049
7050         /*
7051          * XXX event_limit might not quite work as expected on inherited
7052          * events
7053          */
7054
7055         event->pending_kill = POLL_IN;
7056         if (events && atomic_dec_and_test(&event->event_limit)) {
7057                 ret = 1;
7058                 event->pending_kill = POLL_HUP;
7059                 event->pending_disable = 1;
7060                 irq_work_queue(&event->pending);
7061         }
7062
7063         event->overflow_handler(event, data, regs);
7064
7065         if (*perf_event_fasync(event) && event->pending_kill) {
7066                 event->pending_wakeup = 1;
7067                 irq_work_queue(&event->pending);
7068         }
7069
7070         return ret;
7071 }
7072
7073 int perf_event_overflow(struct perf_event *event,
7074                           struct perf_sample_data *data,
7075                           struct pt_regs *regs)
7076 {
7077         return __perf_event_overflow(event, 1, data, regs);
7078 }
7079
7080 /*
7081  * Generic software event infrastructure
7082  */
7083
7084 struct swevent_htable {
7085         struct swevent_hlist            *swevent_hlist;
7086         struct mutex                    hlist_mutex;
7087         int                             hlist_refcount;
7088
7089         /* Recursion avoidance in each contexts */
7090         int                             recursion[PERF_NR_CONTEXTS];
7091 };
7092
7093 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7094
7095 /*
7096  * We directly increment event->count and keep a second value in
7097  * event->hw.period_left to count intervals. This period event
7098  * is kept in the range [-sample_period, 0] so that we can use the
7099  * sign as trigger.
7100  */
7101
7102 u64 perf_swevent_set_period(struct perf_event *event)
7103 {
7104         struct hw_perf_event *hwc = &event->hw;
7105         u64 period = hwc->last_period;
7106         u64 nr, offset;
7107         s64 old, val;
7108
7109         hwc->last_period = hwc->sample_period;
7110
7111 again:
7112         old = val = local64_read(&hwc->period_left);
7113         if (val < 0)
7114                 return 0;
7115
7116         nr = div64_u64(period + val, period);
7117         offset = nr * period;
7118         val -= offset;
7119         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7120                 goto again;
7121
7122         return nr;
7123 }
7124
7125 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7126                                     struct perf_sample_data *data,
7127                                     struct pt_regs *regs)
7128 {
7129         struct hw_perf_event *hwc = &event->hw;
7130         int throttle = 0;
7131
7132         if (!overflow)
7133                 overflow = perf_swevent_set_period(event);
7134
7135         if (hwc->interrupts == MAX_INTERRUPTS)
7136                 return;
7137
7138         for (; overflow; overflow--) {
7139                 if (__perf_event_overflow(event, throttle,
7140                                             data, regs)) {
7141                         /*
7142                          * We inhibit the overflow from happening when
7143                          * hwc->interrupts == MAX_INTERRUPTS.
7144                          */
7145                         break;
7146                 }
7147                 throttle = 1;
7148         }
7149 }
7150
7151 static void perf_swevent_event(struct perf_event *event, u64 nr,
7152                                struct perf_sample_data *data,
7153                                struct pt_regs *regs)
7154 {
7155         struct hw_perf_event *hwc = &event->hw;
7156
7157         local64_add(nr, &event->count);
7158
7159         if (!regs)
7160                 return;
7161
7162         if (!is_sampling_event(event))
7163                 return;
7164
7165         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7166                 data->period = nr;
7167                 return perf_swevent_overflow(event, 1, data, regs);
7168         } else
7169                 data->period = event->hw.last_period;
7170
7171         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7172                 return perf_swevent_overflow(event, 1, data, regs);
7173
7174         if (local64_add_negative(nr, &hwc->period_left))
7175                 return;
7176
7177         perf_swevent_overflow(event, 0, data, regs);
7178 }
7179
7180 static int perf_exclude_event(struct perf_event *event,
7181                               struct pt_regs *regs)
7182 {
7183         if (event->hw.state & PERF_HES_STOPPED)
7184                 return 1;
7185
7186         if (regs) {
7187                 if (event->attr.exclude_user && user_mode(regs))
7188                         return 1;
7189
7190                 if (event->attr.exclude_kernel && !user_mode(regs))
7191                         return 1;
7192         }
7193
7194         return 0;
7195 }
7196
7197 static int perf_swevent_match(struct perf_event *event,
7198                                 enum perf_type_id type,
7199                                 u32 event_id,
7200                                 struct perf_sample_data *data,
7201                                 struct pt_regs *regs)
7202 {
7203         if (event->attr.type != type)
7204                 return 0;
7205
7206         if (event->attr.config != event_id)
7207                 return 0;
7208
7209         if (perf_exclude_event(event, regs))
7210                 return 0;
7211
7212         return 1;
7213 }
7214
7215 static inline u64 swevent_hash(u64 type, u32 event_id)
7216 {
7217         u64 val = event_id | (type << 32);
7218
7219         return hash_64(val, SWEVENT_HLIST_BITS);
7220 }
7221
7222 static inline struct hlist_head *
7223 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7224 {
7225         u64 hash = swevent_hash(type, event_id);
7226
7227         return &hlist->heads[hash];
7228 }
7229
7230 /* For the read side: events when they trigger */
7231 static inline struct hlist_head *
7232 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7233 {
7234         struct swevent_hlist *hlist;
7235
7236         hlist = rcu_dereference(swhash->swevent_hlist);
7237         if (!hlist)
7238                 return NULL;
7239
7240         return __find_swevent_head(hlist, type, event_id);
7241 }
7242
7243 /* For the event head insertion and removal in the hlist */
7244 static inline struct hlist_head *
7245 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7246 {
7247         struct swevent_hlist *hlist;
7248         u32 event_id = event->attr.config;
7249         u64 type = event->attr.type;
7250
7251         /*
7252          * Event scheduling is always serialized against hlist allocation
7253          * and release. Which makes the protected version suitable here.
7254          * The context lock guarantees that.
7255          */
7256         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7257                                           lockdep_is_held(&event->ctx->lock));
7258         if (!hlist)
7259                 return NULL;
7260
7261         return __find_swevent_head(hlist, type, event_id);
7262 }
7263
7264 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7265                                     u64 nr,
7266                                     struct perf_sample_data *data,
7267                                     struct pt_regs *regs)
7268 {
7269         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7270         struct perf_event *event;
7271         struct hlist_head *head;
7272
7273         rcu_read_lock();
7274         head = find_swevent_head_rcu(swhash, type, event_id);
7275         if (!head)
7276                 goto end;
7277
7278         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7279                 if (perf_swevent_match(event, type, event_id, data, regs))
7280                         perf_swevent_event(event, nr, data, regs);
7281         }
7282 end:
7283         rcu_read_unlock();
7284 }
7285
7286 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7287
7288 int perf_swevent_get_recursion_context(void)
7289 {
7290         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7291
7292         return get_recursion_context(swhash->recursion);
7293 }
7294 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7295
7296 void perf_swevent_put_recursion_context(int rctx)
7297 {
7298         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7299
7300         put_recursion_context(swhash->recursion, rctx);
7301 }
7302
7303 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7304 {
7305         struct perf_sample_data data;
7306
7307         if (WARN_ON_ONCE(!regs))
7308                 return;
7309
7310         perf_sample_data_init(&data, addr, 0);
7311         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7312 }
7313
7314 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7315 {
7316         int rctx;
7317
7318         preempt_disable_notrace();
7319         rctx = perf_swevent_get_recursion_context();
7320         if (unlikely(rctx < 0))
7321                 goto fail;
7322
7323         ___perf_sw_event(event_id, nr, regs, addr);
7324
7325         perf_swevent_put_recursion_context(rctx);
7326 fail:
7327         preempt_enable_notrace();
7328 }
7329
7330 static void perf_swevent_read(struct perf_event *event)
7331 {
7332 }
7333
7334 static int perf_swevent_add(struct perf_event *event, int flags)
7335 {
7336         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7337         struct hw_perf_event *hwc = &event->hw;
7338         struct hlist_head *head;
7339
7340         if (is_sampling_event(event)) {
7341                 hwc->last_period = hwc->sample_period;
7342                 perf_swevent_set_period(event);
7343         }
7344
7345         hwc->state = !(flags & PERF_EF_START);
7346
7347         head = find_swevent_head(swhash, event);
7348         if (WARN_ON_ONCE(!head))
7349                 return -EINVAL;
7350
7351         hlist_add_head_rcu(&event->hlist_entry, head);
7352         perf_event_update_userpage(event);
7353
7354         return 0;
7355 }
7356
7357 static void perf_swevent_del(struct perf_event *event, int flags)
7358 {
7359         hlist_del_rcu(&event->hlist_entry);
7360 }
7361
7362 static void perf_swevent_start(struct perf_event *event, int flags)
7363 {
7364         event->hw.state = 0;
7365 }
7366
7367 static void perf_swevent_stop(struct perf_event *event, int flags)
7368 {
7369         event->hw.state = PERF_HES_STOPPED;
7370 }
7371
7372 /* Deref the hlist from the update side */
7373 static inline struct swevent_hlist *
7374 swevent_hlist_deref(struct swevent_htable *swhash)
7375 {
7376         return rcu_dereference_protected(swhash->swevent_hlist,
7377                                          lockdep_is_held(&swhash->hlist_mutex));
7378 }
7379
7380 static void swevent_hlist_release(struct swevent_htable *swhash)
7381 {
7382         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7383
7384         if (!hlist)
7385                 return;
7386
7387         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7388         kfree_rcu(hlist, rcu_head);
7389 }
7390
7391 static void swevent_hlist_put_cpu(int cpu)
7392 {
7393         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7394
7395         mutex_lock(&swhash->hlist_mutex);
7396
7397         if (!--swhash->hlist_refcount)
7398                 swevent_hlist_release(swhash);
7399
7400         mutex_unlock(&swhash->hlist_mutex);
7401 }
7402
7403 static void swevent_hlist_put(void)
7404 {
7405         int cpu;
7406
7407         for_each_possible_cpu(cpu)
7408                 swevent_hlist_put_cpu(cpu);
7409 }
7410
7411 static int swevent_hlist_get_cpu(int cpu)
7412 {
7413         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7414         int err = 0;
7415
7416         mutex_lock(&swhash->hlist_mutex);
7417         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7418                 struct swevent_hlist *hlist;
7419
7420                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7421                 if (!hlist) {
7422                         err = -ENOMEM;
7423                         goto exit;
7424                 }
7425                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7426         }
7427         swhash->hlist_refcount++;
7428 exit:
7429         mutex_unlock(&swhash->hlist_mutex);
7430
7431         return err;
7432 }
7433
7434 static int swevent_hlist_get(void)
7435 {
7436         int err, cpu, failed_cpu;
7437
7438         get_online_cpus();
7439         for_each_possible_cpu(cpu) {
7440                 err = swevent_hlist_get_cpu(cpu);
7441                 if (err) {
7442                         failed_cpu = cpu;
7443                         goto fail;
7444                 }
7445         }
7446         put_online_cpus();
7447
7448         return 0;
7449 fail:
7450         for_each_possible_cpu(cpu) {
7451                 if (cpu == failed_cpu)
7452                         break;
7453                 swevent_hlist_put_cpu(cpu);
7454         }
7455
7456         put_online_cpus();
7457         return err;
7458 }
7459
7460 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7461
7462 static void sw_perf_event_destroy(struct perf_event *event)
7463 {
7464         u64 event_id = event->attr.config;
7465
7466         WARN_ON(event->parent);
7467
7468         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7469         swevent_hlist_put();
7470 }
7471
7472 static int perf_swevent_init(struct perf_event *event)
7473 {
7474         u64 event_id = event->attr.config;
7475
7476         if (event->attr.type != PERF_TYPE_SOFTWARE)
7477                 return -ENOENT;
7478
7479         /*
7480          * no branch sampling for software events
7481          */
7482         if (has_branch_stack(event))
7483                 return -EOPNOTSUPP;
7484
7485         switch (event_id) {
7486         case PERF_COUNT_SW_CPU_CLOCK:
7487         case PERF_COUNT_SW_TASK_CLOCK:
7488                 return -ENOENT;
7489
7490         default:
7491                 break;
7492         }
7493
7494         if (event_id >= PERF_COUNT_SW_MAX)
7495                 return -ENOENT;
7496
7497         if (!event->parent) {
7498                 int err;
7499
7500                 err = swevent_hlist_get();
7501                 if (err)
7502                         return err;
7503
7504                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7505                 event->destroy = sw_perf_event_destroy;
7506         }
7507
7508         return 0;
7509 }
7510
7511 static struct pmu perf_swevent = {
7512         .task_ctx_nr    = perf_sw_context,
7513
7514         .capabilities   = PERF_PMU_CAP_NO_NMI,
7515
7516         .event_init     = perf_swevent_init,
7517         .add            = perf_swevent_add,
7518         .del            = perf_swevent_del,
7519         .start          = perf_swevent_start,
7520         .stop           = perf_swevent_stop,
7521         .read           = perf_swevent_read,
7522 };
7523
7524 #ifdef CONFIG_EVENT_TRACING
7525
7526 static int perf_tp_filter_match(struct perf_event *event,
7527                                 struct perf_sample_data *data)
7528 {
7529         void *record = data->raw->frag.data;
7530
7531         /* only top level events have filters set */
7532         if (event->parent)
7533                 event = event->parent;
7534
7535         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7536                 return 1;
7537         return 0;
7538 }
7539
7540 static int perf_tp_event_match(struct perf_event *event,
7541                                 struct perf_sample_data *data,
7542                                 struct pt_regs *regs)
7543 {
7544         if (event->hw.state & PERF_HES_STOPPED)
7545                 return 0;
7546         /*
7547          * All tracepoints are from kernel-space.
7548          */
7549         if (event->attr.exclude_kernel)
7550                 return 0;
7551
7552         if (!perf_tp_filter_match(event, data))
7553                 return 0;
7554
7555         return 1;
7556 }
7557
7558 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7559                                struct trace_event_call *call, u64 count,
7560                                struct pt_regs *regs, struct hlist_head *head,
7561                                struct task_struct *task)
7562 {
7563         struct bpf_prog *prog = call->prog;
7564
7565         if (prog) {
7566                 *(struct pt_regs **)raw_data = regs;
7567                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7568                         perf_swevent_put_recursion_context(rctx);
7569                         return;
7570                 }
7571         }
7572         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7573                       rctx, task);
7574 }
7575 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7576
7577 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7578                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7579                    struct task_struct *task)
7580 {
7581         struct perf_sample_data data;
7582         struct perf_event *event;
7583
7584         struct perf_raw_record raw = {
7585                 .frag = {
7586                         .size = entry_size,
7587                         .data = record,
7588                 },
7589         };
7590
7591         perf_sample_data_init(&data, 0, 0);
7592         data.raw = &raw;
7593
7594         perf_trace_buf_update(record, event_type);
7595
7596         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7597                 if (perf_tp_event_match(event, &data, regs))
7598                         perf_swevent_event(event, count, &data, regs);
7599         }
7600
7601         /*
7602          * If we got specified a target task, also iterate its context and
7603          * deliver this event there too.
7604          */
7605         if (task && task != current) {
7606                 struct perf_event_context *ctx;
7607                 struct trace_entry *entry = record;
7608
7609                 rcu_read_lock();
7610                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7611                 if (!ctx)
7612                         goto unlock;
7613
7614                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7615                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7616                                 continue;
7617                         if (event->attr.config != entry->type)
7618                                 continue;
7619                         if (perf_tp_event_match(event, &data, regs))
7620                                 perf_swevent_event(event, count, &data, regs);
7621                 }
7622 unlock:
7623                 rcu_read_unlock();
7624         }
7625
7626         perf_swevent_put_recursion_context(rctx);
7627 }
7628 EXPORT_SYMBOL_GPL(perf_tp_event);
7629
7630 static void tp_perf_event_destroy(struct perf_event *event)
7631 {
7632         perf_trace_destroy(event);
7633 }
7634
7635 static int perf_tp_event_init(struct perf_event *event)
7636 {
7637         int err;
7638
7639         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7640                 return -ENOENT;
7641
7642         /*
7643          * no branch sampling for tracepoint events
7644          */
7645         if (has_branch_stack(event))
7646                 return -EOPNOTSUPP;
7647
7648         err = perf_trace_init(event);
7649         if (err)
7650                 return err;
7651
7652         event->destroy = tp_perf_event_destroy;
7653
7654         return 0;
7655 }
7656
7657 static struct pmu perf_tracepoint = {
7658         .task_ctx_nr    = perf_sw_context,
7659
7660         .event_init     = perf_tp_event_init,
7661         .add            = perf_trace_add,
7662         .del            = perf_trace_del,
7663         .start          = perf_swevent_start,
7664         .stop           = perf_swevent_stop,
7665         .read           = perf_swevent_read,
7666 };
7667
7668 static inline void perf_tp_register(void)
7669 {
7670         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7671 }
7672
7673 static void perf_event_free_filter(struct perf_event *event)
7674 {
7675         ftrace_profile_free_filter(event);
7676 }
7677
7678 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7679 {
7680         bool is_kprobe, is_tracepoint;
7681         struct bpf_prog *prog;
7682
7683         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7684                 return -EINVAL;
7685
7686         if (event->tp_event->prog)
7687                 return -EEXIST;
7688
7689         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7690         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7691         if (!is_kprobe && !is_tracepoint)
7692                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7693                 return -EINVAL;
7694
7695         prog = bpf_prog_get(prog_fd);
7696         if (IS_ERR(prog))
7697                 return PTR_ERR(prog);
7698
7699         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7700             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7701                 /* valid fd, but invalid bpf program type */
7702                 bpf_prog_put(prog);
7703                 return -EINVAL;
7704         }
7705
7706         if (is_tracepoint) {
7707                 int off = trace_event_get_offsets(event->tp_event);
7708
7709                 if (prog->aux->max_ctx_offset > off) {
7710                         bpf_prog_put(prog);
7711                         return -EACCES;
7712                 }
7713         }
7714         event->tp_event->prog = prog;
7715
7716         return 0;
7717 }
7718
7719 static void perf_event_free_bpf_prog(struct perf_event *event)
7720 {
7721         struct bpf_prog *prog;
7722
7723         if (!event->tp_event)
7724                 return;
7725
7726         prog = event->tp_event->prog;
7727         if (prog) {
7728                 event->tp_event->prog = NULL;
7729                 bpf_prog_put(prog);
7730         }
7731 }
7732
7733 #else
7734
7735 static inline void perf_tp_register(void)
7736 {
7737 }
7738
7739 static void perf_event_free_filter(struct perf_event *event)
7740 {
7741 }
7742
7743 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7744 {
7745         return -ENOENT;
7746 }
7747
7748 static void perf_event_free_bpf_prog(struct perf_event *event)
7749 {
7750 }
7751 #endif /* CONFIG_EVENT_TRACING */
7752
7753 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7754 void perf_bp_event(struct perf_event *bp, void *data)
7755 {
7756         struct perf_sample_data sample;
7757         struct pt_regs *regs = data;
7758
7759         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7760
7761         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7762                 perf_swevent_event(bp, 1, &sample, regs);
7763 }
7764 #endif
7765
7766 /*
7767  * Allocate a new address filter
7768  */
7769 static struct perf_addr_filter *
7770 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7771 {
7772         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7773         struct perf_addr_filter *filter;
7774
7775         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7776         if (!filter)
7777                 return NULL;
7778
7779         INIT_LIST_HEAD(&filter->entry);
7780         list_add_tail(&filter->entry, filters);
7781
7782         return filter;
7783 }
7784
7785 static void free_filters_list(struct list_head *filters)
7786 {
7787         struct perf_addr_filter *filter, *iter;
7788
7789         list_for_each_entry_safe(filter, iter, filters, entry) {
7790                 if (filter->inode)
7791                         iput(filter->inode);
7792                 list_del(&filter->entry);
7793                 kfree(filter);
7794         }
7795 }
7796
7797 /*
7798  * Free existing address filters and optionally install new ones
7799  */
7800 static void perf_addr_filters_splice(struct perf_event *event,
7801                                      struct list_head *head)
7802 {
7803         unsigned long flags;
7804         LIST_HEAD(list);
7805
7806         if (!has_addr_filter(event))
7807                 return;
7808
7809         /* don't bother with children, they don't have their own filters */
7810         if (event->parent)
7811                 return;
7812
7813         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7814
7815         list_splice_init(&event->addr_filters.list, &list);
7816         if (head)
7817                 list_splice(head, &event->addr_filters.list);
7818
7819         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7820
7821         free_filters_list(&list);
7822 }
7823
7824 /*
7825  * Scan through mm's vmas and see if one of them matches the
7826  * @filter; if so, adjust filter's address range.
7827  * Called with mm::mmap_sem down for reading.
7828  */
7829 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7830                                             struct mm_struct *mm)
7831 {
7832         struct vm_area_struct *vma;
7833
7834         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7835                 struct file *file = vma->vm_file;
7836                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7837                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7838
7839                 if (!file)
7840                         continue;
7841
7842                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7843                         continue;
7844
7845                 return vma->vm_start;
7846         }
7847
7848         return 0;
7849 }
7850
7851 /*
7852  * Update event's address range filters based on the
7853  * task's existing mappings, if any.
7854  */
7855 static void perf_event_addr_filters_apply(struct perf_event *event)
7856 {
7857         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7858         struct task_struct *task = READ_ONCE(event->ctx->task);
7859         struct perf_addr_filter *filter;
7860         struct mm_struct *mm = NULL;
7861         unsigned int count = 0;
7862         unsigned long flags;
7863
7864         /*
7865          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7866          * will stop on the parent's child_mutex that our caller is also holding
7867          */
7868         if (task == TASK_TOMBSTONE)
7869                 return;
7870
7871         mm = get_task_mm(event->ctx->task);
7872         if (!mm)
7873                 goto restart;
7874
7875         down_read(&mm->mmap_sem);
7876
7877         raw_spin_lock_irqsave(&ifh->lock, flags);
7878         list_for_each_entry(filter, &ifh->list, entry) {
7879                 event->addr_filters_offs[count] = 0;
7880
7881                 /*
7882                  * Adjust base offset if the filter is associated to a binary
7883                  * that needs to be mapped:
7884                  */
7885                 if (filter->inode)
7886                         event->addr_filters_offs[count] =
7887                                 perf_addr_filter_apply(filter, mm);
7888
7889                 count++;
7890         }
7891
7892         event->addr_filters_gen++;
7893         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7894
7895         up_read(&mm->mmap_sem);
7896
7897         mmput(mm);
7898
7899 restart:
7900         perf_event_restart(event);
7901 }
7902
7903 /*
7904  * Address range filtering: limiting the data to certain
7905  * instruction address ranges. Filters are ioctl()ed to us from
7906  * userspace as ascii strings.
7907  *
7908  * Filter string format:
7909  *
7910  * ACTION RANGE_SPEC
7911  * where ACTION is one of the
7912  *  * "filter": limit the trace to this region
7913  *  * "start": start tracing from this address
7914  *  * "stop": stop tracing at this address/region;
7915  * RANGE_SPEC is
7916  *  * for kernel addresses: <start address>[/<size>]
7917  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7918  *
7919  * if <size> is not specified, the range is treated as a single address.
7920  */
7921 enum {
7922         IF_ACT_FILTER,
7923         IF_ACT_START,
7924         IF_ACT_STOP,
7925         IF_SRC_FILE,
7926         IF_SRC_KERNEL,
7927         IF_SRC_FILEADDR,
7928         IF_SRC_KERNELADDR,
7929 };
7930
7931 enum {
7932         IF_STATE_ACTION = 0,
7933         IF_STATE_SOURCE,
7934         IF_STATE_END,
7935 };
7936
7937 static const match_table_t if_tokens = {
7938         { IF_ACT_FILTER,        "filter" },
7939         { IF_ACT_START,         "start" },
7940         { IF_ACT_STOP,          "stop" },
7941         { IF_SRC_FILE,          "%u/%u@%s" },
7942         { IF_SRC_KERNEL,        "%u/%u" },
7943         { IF_SRC_FILEADDR,      "%u@%s" },
7944         { IF_SRC_KERNELADDR,    "%u" },
7945 };
7946
7947 /*
7948  * Address filter string parser
7949  */
7950 static int
7951 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7952                              struct list_head *filters)
7953 {
7954         struct perf_addr_filter *filter = NULL;
7955         char *start, *orig, *filename = NULL;
7956         struct path path;
7957         substring_t args[MAX_OPT_ARGS];
7958         int state = IF_STATE_ACTION, token;
7959         unsigned int kernel = 0;
7960         int ret = -EINVAL;
7961
7962         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7963         if (!fstr)
7964                 return -ENOMEM;
7965
7966         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7967                 ret = -EINVAL;
7968
7969                 if (!*start)
7970                         continue;
7971
7972                 /* filter definition begins */
7973                 if (state == IF_STATE_ACTION) {
7974                         filter = perf_addr_filter_new(event, filters);
7975                         if (!filter)
7976                                 goto fail;
7977                 }
7978
7979                 token = match_token(start, if_tokens, args);
7980                 switch (token) {
7981                 case IF_ACT_FILTER:
7982                 case IF_ACT_START:
7983                         filter->filter = 1;
7984
7985                 case IF_ACT_STOP:
7986                         if (state != IF_STATE_ACTION)
7987                                 goto fail;
7988
7989                         state = IF_STATE_SOURCE;
7990                         break;
7991
7992                 case IF_SRC_KERNELADDR:
7993                 case IF_SRC_KERNEL:
7994                         kernel = 1;
7995
7996                 case IF_SRC_FILEADDR:
7997                 case IF_SRC_FILE:
7998                         if (state != IF_STATE_SOURCE)
7999                                 goto fail;
8000
8001                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8002                                 filter->range = 1;
8003
8004                         *args[0].to = 0;
8005                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8006                         if (ret)
8007                                 goto fail;
8008
8009                         if (filter->range) {
8010                                 *args[1].to = 0;
8011                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8012                                 if (ret)
8013                                         goto fail;
8014                         }
8015
8016                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8017                                 int fpos = filter->range ? 2 : 1;
8018
8019                                 filename = match_strdup(&args[fpos]);
8020                                 if (!filename) {
8021                                         ret = -ENOMEM;
8022                                         goto fail;
8023                                 }
8024                         }
8025
8026                         state = IF_STATE_END;
8027                         break;
8028
8029                 default:
8030                         goto fail;
8031                 }
8032
8033                 /*
8034                  * Filter definition is fully parsed, validate and install it.
8035                  * Make sure that it doesn't contradict itself or the event's
8036                  * attribute.
8037                  */
8038                 if (state == IF_STATE_END) {
8039                         if (kernel && event->attr.exclude_kernel)
8040                                 goto fail;
8041
8042                         if (!kernel) {
8043                                 if (!filename)
8044                                         goto fail;
8045
8046                                 /* look up the path and grab its inode */
8047                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8048                                 if (ret)
8049                                         goto fail_free_name;
8050
8051                                 filter->inode = igrab(d_inode(path.dentry));
8052                                 path_put(&path);
8053                                 kfree(filename);
8054                                 filename = NULL;
8055
8056                                 ret = -EINVAL;
8057                                 if (!filter->inode ||
8058                                     !S_ISREG(filter->inode->i_mode))
8059                                         /* free_filters_list() will iput() */
8060                                         goto fail;
8061                         }
8062
8063                         /* ready to consume more filters */
8064                         state = IF_STATE_ACTION;
8065                         filter = NULL;
8066                 }
8067         }
8068
8069         if (state != IF_STATE_ACTION)
8070                 goto fail;
8071
8072         kfree(orig);
8073
8074         return 0;
8075
8076 fail_free_name:
8077         kfree(filename);
8078 fail:
8079         free_filters_list(filters);
8080         kfree(orig);
8081
8082         return ret;
8083 }
8084
8085 static int
8086 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8087 {
8088         LIST_HEAD(filters);
8089         int ret;
8090
8091         /*
8092          * Since this is called in perf_ioctl() path, we're already holding
8093          * ctx::mutex.
8094          */
8095         lockdep_assert_held(&event->ctx->mutex);
8096
8097         if (WARN_ON_ONCE(event->parent))
8098                 return -EINVAL;
8099
8100         /*
8101          * For now, we only support filtering in per-task events; doing so
8102          * for CPU-wide events requires additional context switching trickery,
8103          * since same object code will be mapped at different virtual
8104          * addresses in different processes.
8105          */
8106         if (!event->ctx->task)
8107                 return -EOPNOTSUPP;
8108
8109         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8110         if (ret)
8111                 return ret;
8112
8113         ret = event->pmu->addr_filters_validate(&filters);
8114         if (ret) {
8115                 free_filters_list(&filters);
8116                 return ret;
8117         }
8118
8119         /* remove existing filters, if any */
8120         perf_addr_filters_splice(event, &filters);
8121
8122         /* install new filters */
8123         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8124
8125         return ret;
8126 }
8127
8128 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8129 {
8130         char *filter_str;
8131         int ret = -EINVAL;
8132
8133         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8134             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8135             !has_addr_filter(event))
8136                 return -EINVAL;
8137
8138         filter_str = strndup_user(arg, PAGE_SIZE);
8139         if (IS_ERR(filter_str))
8140                 return PTR_ERR(filter_str);
8141
8142         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8143             event->attr.type == PERF_TYPE_TRACEPOINT)
8144                 ret = ftrace_profile_set_filter(event, event->attr.config,
8145                                                 filter_str);
8146         else if (has_addr_filter(event))
8147                 ret = perf_event_set_addr_filter(event, filter_str);
8148
8149         kfree(filter_str);
8150         return ret;
8151 }
8152
8153 /*
8154  * hrtimer based swevent callback
8155  */
8156
8157 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8158 {
8159         enum hrtimer_restart ret = HRTIMER_RESTART;
8160         struct perf_sample_data data;
8161         struct pt_regs *regs;
8162         struct perf_event *event;
8163         u64 period;
8164
8165         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8166
8167         if (event->state != PERF_EVENT_STATE_ACTIVE)
8168                 return HRTIMER_NORESTART;
8169
8170         event->pmu->read(event);
8171
8172         perf_sample_data_init(&data, 0, event->hw.last_period);
8173         regs = get_irq_regs();
8174
8175         if (regs && !perf_exclude_event(event, regs)) {
8176                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8177                         if (__perf_event_overflow(event, 1, &data, regs))
8178                                 ret = HRTIMER_NORESTART;
8179         }
8180
8181         period = max_t(u64, 10000, event->hw.sample_period);
8182         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8183
8184         return ret;
8185 }
8186
8187 static void perf_swevent_start_hrtimer(struct perf_event *event)
8188 {
8189         struct hw_perf_event *hwc = &event->hw;
8190         s64 period;
8191
8192         if (!is_sampling_event(event))
8193                 return;
8194
8195         period = local64_read(&hwc->period_left);
8196         if (period) {
8197                 if (period < 0)
8198                         period = 10000;
8199
8200                 local64_set(&hwc->period_left, 0);
8201         } else {
8202                 period = max_t(u64, 10000, hwc->sample_period);
8203         }
8204         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8205                       HRTIMER_MODE_REL_PINNED);
8206 }
8207
8208 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8209 {
8210         struct hw_perf_event *hwc = &event->hw;
8211
8212         if (is_sampling_event(event)) {
8213                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8214                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8215
8216                 hrtimer_cancel(&hwc->hrtimer);
8217         }
8218 }
8219
8220 static void perf_swevent_init_hrtimer(struct perf_event *event)
8221 {
8222         struct hw_perf_event *hwc = &event->hw;
8223
8224         if (!is_sampling_event(event))
8225                 return;
8226
8227         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8228         hwc->hrtimer.function = perf_swevent_hrtimer;
8229
8230         /*
8231          * Since hrtimers have a fixed rate, we can do a static freq->period
8232          * mapping and avoid the whole period adjust feedback stuff.
8233          */
8234         if (event->attr.freq) {
8235                 long freq = event->attr.sample_freq;
8236
8237                 event->attr.sample_period = NSEC_PER_SEC / freq;
8238                 hwc->sample_period = event->attr.sample_period;
8239                 local64_set(&hwc->period_left, hwc->sample_period);
8240                 hwc->last_period = hwc->sample_period;
8241                 event->attr.freq = 0;
8242         }
8243 }
8244
8245 /*
8246  * Software event: cpu wall time clock
8247  */
8248
8249 static void cpu_clock_event_update(struct perf_event *event)
8250 {
8251         s64 prev;
8252         u64 now;
8253
8254         now = local_clock();
8255         prev = local64_xchg(&event->hw.prev_count, now);
8256         local64_add(now - prev, &event->count);
8257 }
8258
8259 static void cpu_clock_event_start(struct perf_event *event, int flags)
8260 {
8261         local64_set(&event->hw.prev_count, local_clock());
8262         perf_swevent_start_hrtimer(event);
8263 }
8264
8265 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8266 {
8267         perf_swevent_cancel_hrtimer(event);
8268         cpu_clock_event_update(event);
8269 }
8270
8271 static int cpu_clock_event_add(struct perf_event *event, int flags)
8272 {
8273         if (flags & PERF_EF_START)
8274                 cpu_clock_event_start(event, flags);
8275         perf_event_update_userpage(event);
8276
8277         return 0;
8278 }
8279
8280 static void cpu_clock_event_del(struct perf_event *event, int flags)
8281 {
8282         cpu_clock_event_stop(event, flags);
8283 }
8284
8285 static void cpu_clock_event_read(struct perf_event *event)
8286 {
8287         cpu_clock_event_update(event);
8288 }
8289
8290 static int cpu_clock_event_init(struct perf_event *event)
8291 {
8292         if (event->attr.type != PERF_TYPE_SOFTWARE)
8293                 return -ENOENT;
8294
8295         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8296                 return -ENOENT;
8297
8298         /*
8299          * no branch sampling for software events
8300          */
8301         if (has_branch_stack(event))
8302                 return -EOPNOTSUPP;
8303
8304         perf_swevent_init_hrtimer(event);
8305
8306         return 0;
8307 }
8308
8309 static struct pmu perf_cpu_clock = {
8310         .task_ctx_nr    = perf_sw_context,
8311
8312         .capabilities   = PERF_PMU_CAP_NO_NMI,
8313
8314         .event_init     = cpu_clock_event_init,
8315         .add            = cpu_clock_event_add,
8316         .del            = cpu_clock_event_del,
8317         .start          = cpu_clock_event_start,
8318         .stop           = cpu_clock_event_stop,
8319         .read           = cpu_clock_event_read,
8320 };
8321
8322 /*
8323  * Software event: task time clock
8324  */
8325
8326 static void task_clock_event_update(struct perf_event *event, u64 now)
8327 {
8328         u64 prev;
8329         s64 delta;
8330
8331         prev = local64_xchg(&event->hw.prev_count, now);
8332         delta = now - prev;
8333         local64_add(delta, &event->count);
8334 }
8335
8336 static void task_clock_event_start(struct perf_event *event, int flags)
8337 {
8338         local64_set(&event->hw.prev_count, event->ctx->time);
8339         perf_swevent_start_hrtimer(event);
8340 }
8341
8342 static void task_clock_event_stop(struct perf_event *event, int flags)
8343 {
8344         perf_swevent_cancel_hrtimer(event);
8345         task_clock_event_update(event, event->ctx->time);
8346 }
8347
8348 static int task_clock_event_add(struct perf_event *event, int flags)
8349 {
8350         if (flags & PERF_EF_START)
8351                 task_clock_event_start(event, flags);
8352         perf_event_update_userpage(event);
8353
8354         return 0;
8355 }
8356
8357 static void task_clock_event_del(struct perf_event *event, int flags)
8358 {
8359         task_clock_event_stop(event, PERF_EF_UPDATE);
8360 }
8361
8362 static void task_clock_event_read(struct perf_event *event)
8363 {
8364         u64 now = perf_clock();
8365         u64 delta = now - event->ctx->timestamp;
8366         u64 time = event->ctx->time + delta;
8367
8368         task_clock_event_update(event, time);
8369 }
8370
8371 static int task_clock_event_init(struct perf_event *event)
8372 {
8373         if (event->attr.type != PERF_TYPE_SOFTWARE)
8374                 return -ENOENT;
8375
8376         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8377                 return -ENOENT;
8378
8379         /*
8380          * no branch sampling for software events
8381          */
8382         if (has_branch_stack(event))
8383                 return -EOPNOTSUPP;
8384
8385         perf_swevent_init_hrtimer(event);
8386
8387         return 0;
8388 }
8389
8390 static struct pmu perf_task_clock = {
8391         .task_ctx_nr    = perf_sw_context,
8392
8393         .capabilities   = PERF_PMU_CAP_NO_NMI,
8394
8395         .event_init     = task_clock_event_init,
8396         .add            = task_clock_event_add,
8397         .del            = task_clock_event_del,
8398         .start          = task_clock_event_start,
8399         .stop           = task_clock_event_stop,
8400         .read           = task_clock_event_read,
8401 };
8402
8403 static void perf_pmu_nop_void(struct pmu *pmu)
8404 {
8405 }
8406
8407 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8408 {
8409 }
8410
8411 static int perf_pmu_nop_int(struct pmu *pmu)
8412 {
8413         return 0;
8414 }
8415
8416 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8417
8418 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8419 {
8420         __this_cpu_write(nop_txn_flags, flags);
8421
8422         if (flags & ~PERF_PMU_TXN_ADD)
8423                 return;
8424
8425         perf_pmu_disable(pmu);
8426 }
8427
8428 static int perf_pmu_commit_txn(struct pmu *pmu)
8429 {
8430         unsigned int flags = __this_cpu_read(nop_txn_flags);
8431
8432         __this_cpu_write(nop_txn_flags, 0);
8433
8434         if (flags & ~PERF_PMU_TXN_ADD)
8435                 return 0;
8436
8437         perf_pmu_enable(pmu);
8438         return 0;
8439 }
8440
8441 static void perf_pmu_cancel_txn(struct pmu *pmu)
8442 {
8443         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8444
8445         __this_cpu_write(nop_txn_flags, 0);
8446
8447         if (flags & ~PERF_PMU_TXN_ADD)
8448                 return;
8449
8450         perf_pmu_enable(pmu);
8451 }
8452
8453 static int perf_event_idx_default(struct perf_event *event)
8454 {
8455         return 0;
8456 }
8457
8458 /*
8459  * Ensures all contexts with the same task_ctx_nr have the same
8460  * pmu_cpu_context too.
8461  */
8462 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8463 {
8464         struct pmu *pmu;
8465
8466         if (ctxn < 0)
8467                 return NULL;
8468
8469         list_for_each_entry(pmu, &pmus, entry) {
8470                 if (pmu->task_ctx_nr == ctxn)
8471                         return pmu->pmu_cpu_context;
8472         }
8473
8474         return NULL;
8475 }
8476
8477 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8478 {
8479         int cpu;
8480
8481         for_each_possible_cpu(cpu) {
8482                 struct perf_cpu_context *cpuctx;
8483
8484                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8485
8486                 if (cpuctx->unique_pmu == old_pmu)
8487                         cpuctx->unique_pmu = pmu;
8488         }
8489 }
8490
8491 static void free_pmu_context(struct pmu *pmu)
8492 {
8493         struct pmu *i;
8494
8495         mutex_lock(&pmus_lock);
8496         /*
8497          * Like a real lame refcount.
8498          */
8499         list_for_each_entry(i, &pmus, entry) {
8500                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8501                         update_pmu_context(i, pmu);
8502                         goto out;
8503                 }
8504         }
8505
8506         free_percpu(pmu->pmu_cpu_context);
8507 out:
8508         mutex_unlock(&pmus_lock);
8509 }
8510
8511 /*
8512  * Let userspace know that this PMU supports address range filtering:
8513  */
8514 static ssize_t nr_addr_filters_show(struct device *dev,
8515                                     struct device_attribute *attr,
8516                                     char *page)
8517 {
8518         struct pmu *pmu = dev_get_drvdata(dev);
8519
8520         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8521 }
8522 DEVICE_ATTR_RO(nr_addr_filters);
8523
8524 static struct idr pmu_idr;
8525
8526 static ssize_t
8527 type_show(struct device *dev, struct device_attribute *attr, char *page)
8528 {
8529         struct pmu *pmu = dev_get_drvdata(dev);
8530
8531         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8532 }
8533 static DEVICE_ATTR_RO(type);
8534
8535 static ssize_t
8536 perf_event_mux_interval_ms_show(struct device *dev,
8537                                 struct device_attribute *attr,
8538                                 char *page)
8539 {
8540         struct pmu *pmu = dev_get_drvdata(dev);
8541
8542         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8543 }
8544
8545 static DEFINE_MUTEX(mux_interval_mutex);
8546
8547 static ssize_t
8548 perf_event_mux_interval_ms_store(struct device *dev,
8549                                  struct device_attribute *attr,
8550                                  const char *buf, size_t count)
8551 {
8552         struct pmu *pmu = dev_get_drvdata(dev);
8553         int timer, cpu, ret;
8554
8555         ret = kstrtoint(buf, 0, &timer);
8556         if (ret)
8557                 return ret;
8558
8559         if (timer < 1)
8560                 return -EINVAL;
8561
8562         /* same value, noting to do */
8563         if (timer == pmu->hrtimer_interval_ms)
8564                 return count;
8565
8566         mutex_lock(&mux_interval_mutex);
8567         pmu->hrtimer_interval_ms = timer;
8568
8569         /* update all cpuctx for this PMU */
8570         get_online_cpus();
8571         for_each_online_cpu(cpu) {
8572                 struct perf_cpu_context *cpuctx;
8573                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8574                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8575
8576                 cpu_function_call(cpu,
8577                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8578         }
8579         put_online_cpus();
8580         mutex_unlock(&mux_interval_mutex);
8581
8582         return count;
8583 }
8584 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8585
8586 static struct attribute *pmu_dev_attrs[] = {
8587         &dev_attr_type.attr,
8588         &dev_attr_perf_event_mux_interval_ms.attr,
8589         NULL,
8590 };
8591 ATTRIBUTE_GROUPS(pmu_dev);
8592
8593 static int pmu_bus_running;
8594 static struct bus_type pmu_bus = {
8595         .name           = "event_source",
8596         .dev_groups     = pmu_dev_groups,
8597 };
8598
8599 static void pmu_dev_release(struct device *dev)
8600 {
8601         kfree(dev);
8602 }
8603
8604 static int pmu_dev_alloc(struct pmu *pmu)
8605 {
8606         int ret = -ENOMEM;
8607
8608         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8609         if (!pmu->dev)
8610                 goto out;
8611
8612         pmu->dev->groups = pmu->attr_groups;
8613         device_initialize(pmu->dev);
8614         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8615         if (ret)
8616                 goto free_dev;
8617
8618         dev_set_drvdata(pmu->dev, pmu);
8619         pmu->dev->bus = &pmu_bus;
8620         pmu->dev->release = pmu_dev_release;
8621         ret = device_add(pmu->dev);
8622         if (ret)
8623                 goto free_dev;
8624
8625         /* For PMUs with address filters, throw in an extra attribute: */
8626         if (pmu->nr_addr_filters)
8627                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8628
8629         if (ret)
8630                 goto del_dev;
8631
8632 out:
8633         return ret;
8634
8635 del_dev:
8636         device_del(pmu->dev);
8637
8638 free_dev:
8639         put_device(pmu->dev);
8640         goto out;
8641 }
8642
8643 static struct lock_class_key cpuctx_mutex;
8644 static struct lock_class_key cpuctx_lock;
8645
8646 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8647 {
8648         int cpu, ret;
8649
8650         mutex_lock(&pmus_lock);
8651         ret = -ENOMEM;
8652         pmu->pmu_disable_count = alloc_percpu(int);
8653         if (!pmu->pmu_disable_count)
8654                 goto unlock;
8655
8656         pmu->type = -1;
8657         if (!name)
8658                 goto skip_type;
8659         pmu->name = name;
8660
8661         if (type < 0) {
8662                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8663                 if (type < 0) {
8664                         ret = type;
8665                         goto free_pdc;
8666                 }
8667         }
8668         pmu->type = type;
8669
8670         if (pmu_bus_running) {
8671                 ret = pmu_dev_alloc(pmu);
8672                 if (ret)
8673                         goto free_idr;
8674         }
8675
8676 skip_type:
8677         if (pmu->task_ctx_nr == perf_hw_context) {
8678                 static int hw_context_taken = 0;
8679
8680                 /*
8681                  * Other than systems with heterogeneous CPUs, it never makes
8682                  * sense for two PMUs to share perf_hw_context. PMUs which are
8683                  * uncore must use perf_invalid_context.
8684                  */
8685                 if (WARN_ON_ONCE(hw_context_taken &&
8686                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8687                         pmu->task_ctx_nr = perf_invalid_context;
8688
8689                 hw_context_taken = 1;
8690         }
8691
8692         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8693         if (pmu->pmu_cpu_context)
8694                 goto got_cpu_context;
8695
8696         ret = -ENOMEM;
8697         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8698         if (!pmu->pmu_cpu_context)
8699                 goto free_dev;
8700
8701         for_each_possible_cpu(cpu) {
8702                 struct perf_cpu_context *cpuctx;
8703
8704                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8705                 __perf_event_init_context(&cpuctx->ctx);
8706                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8707                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8708                 cpuctx->ctx.pmu = pmu;
8709
8710                 __perf_mux_hrtimer_init(cpuctx, cpu);
8711
8712                 cpuctx->unique_pmu = pmu;
8713         }
8714
8715 got_cpu_context:
8716         if (!pmu->start_txn) {
8717                 if (pmu->pmu_enable) {
8718                         /*
8719                          * If we have pmu_enable/pmu_disable calls, install
8720                          * transaction stubs that use that to try and batch
8721                          * hardware accesses.
8722                          */
8723                         pmu->start_txn  = perf_pmu_start_txn;
8724                         pmu->commit_txn = perf_pmu_commit_txn;
8725                         pmu->cancel_txn = perf_pmu_cancel_txn;
8726                 } else {
8727                         pmu->start_txn  = perf_pmu_nop_txn;
8728                         pmu->commit_txn = perf_pmu_nop_int;
8729                         pmu->cancel_txn = perf_pmu_nop_void;
8730                 }
8731         }
8732
8733         if (!pmu->pmu_enable) {
8734                 pmu->pmu_enable  = perf_pmu_nop_void;
8735                 pmu->pmu_disable = perf_pmu_nop_void;
8736         }
8737
8738         if (!pmu->event_idx)
8739                 pmu->event_idx = perf_event_idx_default;
8740
8741         list_add_rcu(&pmu->entry, &pmus);
8742         atomic_set(&pmu->exclusive_cnt, 0);
8743         ret = 0;
8744 unlock:
8745         mutex_unlock(&pmus_lock);
8746
8747         return ret;
8748
8749 free_dev:
8750         device_del(pmu->dev);
8751         put_device(pmu->dev);
8752
8753 free_idr:
8754         if (pmu->type >= PERF_TYPE_MAX)
8755                 idr_remove(&pmu_idr, pmu->type);
8756
8757 free_pdc:
8758         free_percpu(pmu->pmu_disable_count);
8759         goto unlock;
8760 }
8761 EXPORT_SYMBOL_GPL(perf_pmu_register);
8762
8763 void perf_pmu_unregister(struct pmu *pmu)
8764 {
8765         mutex_lock(&pmus_lock);
8766         list_del_rcu(&pmu->entry);
8767         mutex_unlock(&pmus_lock);
8768
8769         /*
8770          * We dereference the pmu list under both SRCU and regular RCU, so
8771          * synchronize against both of those.
8772          */
8773         synchronize_srcu(&pmus_srcu);
8774         synchronize_rcu();
8775
8776         free_percpu(pmu->pmu_disable_count);
8777         if (pmu->type >= PERF_TYPE_MAX)
8778                 idr_remove(&pmu_idr, pmu->type);
8779         if (pmu->nr_addr_filters)
8780                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8781         device_del(pmu->dev);
8782         put_device(pmu->dev);
8783         free_pmu_context(pmu);
8784 }
8785 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8786
8787 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8788 {
8789         struct perf_event_context *ctx = NULL;
8790         int ret;
8791
8792         if (!try_module_get(pmu->module))
8793                 return -ENODEV;
8794
8795         if (event->group_leader != event) {
8796                 /*
8797                  * This ctx->mutex can nest when we're called through
8798                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8799                  */
8800                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8801                                                  SINGLE_DEPTH_NESTING);
8802                 BUG_ON(!ctx);
8803         }
8804
8805         event->pmu = pmu;
8806         ret = pmu->event_init(event);
8807
8808         if (ctx)
8809                 perf_event_ctx_unlock(event->group_leader, ctx);
8810
8811         if (ret)
8812                 module_put(pmu->module);
8813
8814         return ret;
8815 }
8816
8817 static struct pmu *perf_init_event(struct perf_event *event)
8818 {
8819         struct pmu *pmu = NULL;
8820         int idx;
8821         int ret;
8822
8823         idx = srcu_read_lock(&pmus_srcu);
8824
8825         rcu_read_lock();
8826         pmu = idr_find(&pmu_idr, event->attr.type);
8827         rcu_read_unlock();
8828         if (pmu) {
8829                 ret = perf_try_init_event(pmu, event);
8830                 if (ret)
8831                         pmu = ERR_PTR(ret);
8832                 goto unlock;
8833         }
8834
8835         list_for_each_entry_rcu(pmu, &pmus, entry) {
8836                 ret = perf_try_init_event(pmu, event);
8837                 if (!ret)
8838                         goto unlock;
8839
8840                 if (ret != -ENOENT) {
8841                         pmu = ERR_PTR(ret);
8842                         goto unlock;
8843                 }
8844         }
8845         pmu = ERR_PTR(-ENOENT);
8846 unlock:
8847         srcu_read_unlock(&pmus_srcu, idx);
8848
8849         return pmu;
8850 }
8851
8852 static void attach_sb_event(struct perf_event *event)
8853 {
8854         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8855
8856         raw_spin_lock(&pel->lock);
8857         list_add_rcu(&event->sb_list, &pel->list);
8858         raw_spin_unlock(&pel->lock);
8859 }
8860
8861 /*
8862  * We keep a list of all !task (and therefore per-cpu) events
8863  * that need to receive side-band records.
8864  *
8865  * This avoids having to scan all the various PMU per-cpu contexts
8866  * looking for them.
8867  */
8868 static void account_pmu_sb_event(struct perf_event *event)
8869 {
8870         if (is_sb_event(event))
8871                 attach_sb_event(event);
8872 }
8873
8874 static void account_event_cpu(struct perf_event *event, int cpu)
8875 {
8876         if (event->parent)
8877                 return;
8878
8879         if (is_cgroup_event(event))
8880                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8881 }
8882
8883 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8884 static void account_freq_event_nohz(void)
8885 {
8886 #ifdef CONFIG_NO_HZ_FULL
8887         /* Lock so we don't race with concurrent unaccount */
8888         spin_lock(&nr_freq_lock);
8889         if (atomic_inc_return(&nr_freq_events) == 1)
8890                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8891         spin_unlock(&nr_freq_lock);
8892 #endif
8893 }
8894
8895 static void account_freq_event(void)
8896 {
8897         if (tick_nohz_full_enabled())
8898                 account_freq_event_nohz();
8899         else
8900                 atomic_inc(&nr_freq_events);
8901 }
8902
8903
8904 static void account_event(struct perf_event *event)
8905 {
8906         bool inc = false;
8907
8908         if (event->parent)
8909                 return;
8910
8911         if (event->attach_state & PERF_ATTACH_TASK)
8912                 inc = true;
8913         if (event->attr.mmap || event->attr.mmap_data)
8914                 atomic_inc(&nr_mmap_events);
8915         if (event->attr.comm)
8916                 atomic_inc(&nr_comm_events);
8917         if (event->attr.task)
8918                 atomic_inc(&nr_task_events);
8919         if (event->attr.freq)
8920                 account_freq_event();
8921         if (event->attr.context_switch) {
8922                 atomic_inc(&nr_switch_events);
8923                 inc = true;
8924         }
8925         if (has_branch_stack(event))
8926                 inc = true;
8927         if (is_cgroup_event(event))
8928                 inc = true;
8929
8930         if (inc) {
8931                 if (atomic_inc_not_zero(&perf_sched_count))
8932                         goto enabled;
8933
8934                 mutex_lock(&perf_sched_mutex);
8935                 if (!atomic_read(&perf_sched_count)) {
8936                         static_branch_enable(&perf_sched_events);
8937                         /*
8938                          * Guarantee that all CPUs observe they key change and
8939                          * call the perf scheduling hooks before proceeding to
8940                          * install events that need them.
8941                          */
8942                         synchronize_sched();
8943                 }
8944                 /*
8945                  * Now that we have waited for the sync_sched(), allow further
8946                  * increments to by-pass the mutex.
8947                  */
8948                 atomic_inc(&perf_sched_count);
8949                 mutex_unlock(&perf_sched_mutex);
8950         }
8951 enabled:
8952
8953         account_event_cpu(event, event->cpu);
8954
8955         account_pmu_sb_event(event);
8956 }
8957
8958 /*
8959  * Allocate and initialize a event structure
8960  */
8961 static struct perf_event *
8962 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8963                  struct task_struct *task,
8964                  struct perf_event *group_leader,
8965                  struct perf_event *parent_event,
8966                  perf_overflow_handler_t overflow_handler,
8967                  void *context, int cgroup_fd)
8968 {
8969         struct pmu *pmu;
8970         struct perf_event *event;
8971         struct hw_perf_event *hwc;
8972         long err = -EINVAL;
8973
8974         if ((unsigned)cpu >= nr_cpu_ids) {
8975                 if (!task || cpu != -1)
8976                         return ERR_PTR(-EINVAL);
8977         }
8978
8979         event = kzalloc(sizeof(*event), GFP_KERNEL);
8980         if (!event)
8981                 return ERR_PTR(-ENOMEM);
8982
8983         /*
8984          * Single events are their own group leaders, with an
8985          * empty sibling list:
8986          */
8987         if (!group_leader)
8988                 group_leader = event;
8989
8990         mutex_init(&event->child_mutex);
8991         INIT_LIST_HEAD(&event->child_list);
8992
8993         INIT_LIST_HEAD(&event->group_entry);
8994         INIT_LIST_HEAD(&event->event_entry);
8995         INIT_LIST_HEAD(&event->sibling_list);
8996         INIT_LIST_HEAD(&event->rb_entry);
8997         INIT_LIST_HEAD(&event->active_entry);
8998         INIT_LIST_HEAD(&event->addr_filters.list);
8999         INIT_HLIST_NODE(&event->hlist_entry);
9000
9001
9002         init_waitqueue_head(&event->waitq);
9003         init_irq_work(&event->pending, perf_pending_event);
9004
9005         mutex_init(&event->mmap_mutex);
9006         raw_spin_lock_init(&event->addr_filters.lock);
9007
9008         atomic_long_set(&event->refcount, 1);
9009         event->cpu              = cpu;
9010         event->attr             = *attr;
9011         event->group_leader     = group_leader;
9012         event->pmu              = NULL;
9013         event->oncpu            = -1;
9014
9015         event->parent           = parent_event;
9016
9017         event->ns               = get_pid_ns(task_active_pid_ns(current));
9018         event->id               = atomic64_inc_return(&perf_event_id);
9019
9020         event->state            = PERF_EVENT_STATE_INACTIVE;
9021
9022         if (task) {
9023                 event->attach_state = PERF_ATTACH_TASK;
9024                 /*
9025                  * XXX pmu::event_init needs to know what task to account to
9026                  * and we cannot use the ctx information because we need the
9027                  * pmu before we get a ctx.
9028                  */
9029                 event->hw.target = task;
9030         }
9031
9032         event->clock = &local_clock;
9033         if (parent_event)
9034                 event->clock = parent_event->clock;
9035
9036         if (!overflow_handler && parent_event) {
9037                 overflow_handler = parent_event->overflow_handler;
9038                 context = parent_event->overflow_handler_context;
9039         }
9040
9041         if (overflow_handler) {
9042                 event->overflow_handler = overflow_handler;
9043                 event->overflow_handler_context = context;
9044         } else if (is_write_backward(event)){
9045                 event->overflow_handler = perf_event_output_backward;
9046                 event->overflow_handler_context = NULL;
9047         } else {
9048                 event->overflow_handler = perf_event_output_forward;
9049                 event->overflow_handler_context = NULL;
9050         }
9051
9052         perf_event__state_init(event);
9053
9054         pmu = NULL;
9055
9056         hwc = &event->hw;
9057         hwc->sample_period = attr->sample_period;
9058         if (attr->freq && attr->sample_freq)
9059                 hwc->sample_period = 1;
9060         hwc->last_period = hwc->sample_period;
9061
9062         local64_set(&hwc->period_left, hwc->sample_period);
9063
9064         /*
9065          * we currently do not support PERF_FORMAT_GROUP on inherited events
9066          */
9067         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9068                 goto err_ns;
9069
9070         if (!has_branch_stack(event))
9071                 event->attr.branch_sample_type = 0;
9072
9073         if (cgroup_fd != -1) {
9074                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9075                 if (err)
9076                         goto err_ns;
9077         }
9078
9079         pmu = perf_init_event(event);
9080         if (!pmu)
9081                 goto err_ns;
9082         else if (IS_ERR(pmu)) {
9083                 err = PTR_ERR(pmu);
9084                 goto err_ns;
9085         }
9086
9087         err = exclusive_event_init(event);
9088         if (err)
9089                 goto err_pmu;
9090
9091         if (has_addr_filter(event)) {
9092                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9093                                                    sizeof(unsigned long),
9094                                                    GFP_KERNEL);
9095                 if (!event->addr_filters_offs)
9096                         goto err_per_task;
9097
9098                 /* force hw sync on the address filters */
9099                 event->addr_filters_gen = 1;
9100         }
9101
9102         if (!event->parent) {
9103                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9104                         err = get_callchain_buffers(attr->sample_max_stack);
9105                         if (err)
9106                                 goto err_addr_filters;
9107                 }
9108         }
9109
9110         /* symmetric to unaccount_event() in _free_event() */
9111         account_event(event);
9112
9113         return event;
9114
9115 err_addr_filters:
9116         kfree(event->addr_filters_offs);
9117
9118 err_per_task:
9119         exclusive_event_destroy(event);
9120
9121 err_pmu:
9122         if (event->destroy)
9123                 event->destroy(event);
9124         module_put(pmu->module);
9125 err_ns:
9126         if (is_cgroup_event(event))
9127                 perf_detach_cgroup(event);
9128         if (event->ns)
9129                 put_pid_ns(event->ns);
9130         kfree(event);
9131
9132         return ERR_PTR(err);
9133 }
9134
9135 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9136                           struct perf_event_attr *attr)
9137 {
9138         u32 size;
9139         int ret;
9140
9141         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9142                 return -EFAULT;
9143
9144         /*
9145          * zero the full structure, so that a short copy will be nice.
9146          */
9147         memset(attr, 0, sizeof(*attr));
9148
9149         ret = get_user(size, &uattr->size);
9150         if (ret)
9151                 return ret;
9152
9153         if (size > PAGE_SIZE)   /* silly large */
9154                 goto err_size;
9155
9156         if (!size)              /* abi compat */
9157                 size = PERF_ATTR_SIZE_VER0;
9158
9159         if (size < PERF_ATTR_SIZE_VER0)
9160                 goto err_size;
9161
9162         /*
9163          * If we're handed a bigger struct than we know of,
9164          * ensure all the unknown bits are 0 - i.e. new
9165          * user-space does not rely on any kernel feature
9166          * extensions we dont know about yet.
9167          */
9168         if (size > sizeof(*attr)) {
9169                 unsigned char __user *addr;
9170                 unsigned char __user *end;
9171                 unsigned char val;
9172
9173                 addr = (void __user *)uattr + sizeof(*attr);
9174                 end  = (void __user *)uattr + size;
9175
9176                 for (; addr < end; addr++) {
9177                         ret = get_user(val, addr);
9178                         if (ret)
9179                                 return ret;
9180                         if (val)
9181                                 goto err_size;
9182                 }
9183                 size = sizeof(*attr);
9184         }
9185
9186         ret = copy_from_user(attr, uattr, size);
9187         if (ret)
9188                 return -EFAULT;
9189
9190         if (attr->__reserved_1)
9191                 return -EINVAL;
9192
9193         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9194                 return -EINVAL;
9195
9196         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9197                 return -EINVAL;
9198
9199         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9200                 u64 mask = attr->branch_sample_type;
9201
9202                 /* only using defined bits */
9203                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9204                         return -EINVAL;
9205
9206                 /* at least one branch bit must be set */
9207                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9208                         return -EINVAL;
9209
9210                 /* propagate priv level, when not set for branch */
9211                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9212
9213                         /* exclude_kernel checked on syscall entry */
9214                         if (!attr->exclude_kernel)
9215                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9216
9217                         if (!attr->exclude_user)
9218                                 mask |= PERF_SAMPLE_BRANCH_USER;
9219
9220                         if (!attr->exclude_hv)
9221                                 mask |= PERF_SAMPLE_BRANCH_HV;
9222                         /*
9223                          * adjust user setting (for HW filter setup)
9224                          */
9225                         attr->branch_sample_type = mask;
9226                 }
9227                 /* privileged levels capture (kernel, hv): check permissions */
9228                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9229                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9230                         return -EACCES;
9231         }
9232
9233         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9234                 ret = perf_reg_validate(attr->sample_regs_user);
9235                 if (ret)
9236                         return ret;
9237         }
9238
9239         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9240                 if (!arch_perf_have_user_stack_dump())
9241                         return -ENOSYS;
9242
9243                 /*
9244                  * We have __u32 type for the size, but so far
9245                  * we can only use __u16 as maximum due to the
9246                  * __u16 sample size limit.
9247                  */
9248                 if (attr->sample_stack_user >= USHRT_MAX)
9249                         ret = -EINVAL;
9250                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9251                         ret = -EINVAL;
9252         }
9253
9254         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9255                 ret = perf_reg_validate(attr->sample_regs_intr);
9256 out:
9257         return ret;
9258
9259 err_size:
9260         put_user(sizeof(*attr), &uattr->size);
9261         ret = -E2BIG;
9262         goto out;
9263 }
9264
9265 static int
9266 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9267 {
9268         struct ring_buffer *rb = NULL;
9269         int ret = -EINVAL;
9270
9271         if (!output_event)
9272                 goto set;
9273
9274         /* don't allow circular references */
9275         if (event == output_event)
9276                 goto out;
9277
9278         /*
9279          * Don't allow cross-cpu buffers
9280          */
9281         if (output_event->cpu != event->cpu)
9282                 goto out;
9283
9284         /*
9285          * If its not a per-cpu rb, it must be the same task.
9286          */
9287         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9288                 goto out;
9289
9290         /*
9291          * Mixing clocks in the same buffer is trouble you don't need.
9292          */
9293         if (output_event->clock != event->clock)
9294                 goto out;
9295
9296         /*
9297          * Either writing ring buffer from beginning or from end.
9298          * Mixing is not allowed.
9299          */
9300         if (is_write_backward(output_event) != is_write_backward(event))
9301                 goto out;
9302
9303         /*
9304          * If both events generate aux data, they must be on the same PMU
9305          */
9306         if (has_aux(event) && has_aux(output_event) &&
9307             event->pmu != output_event->pmu)
9308                 goto out;
9309
9310 set:
9311         mutex_lock(&event->mmap_mutex);
9312         /* Can't redirect output if we've got an active mmap() */
9313         if (atomic_read(&event->mmap_count))
9314                 goto unlock;
9315
9316         if (output_event) {
9317                 /* get the rb we want to redirect to */
9318                 rb = ring_buffer_get(output_event);
9319                 if (!rb)
9320                         goto unlock;
9321         }
9322
9323         ring_buffer_attach(event, rb);
9324
9325         ret = 0;
9326 unlock:
9327         mutex_unlock(&event->mmap_mutex);
9328
9329 out:
9330         return ret;
9331 }
9332
9333 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9334 {
9335         if (b < a)
9336                 swap(a, b);
9337
9338         mutex_lock(a);
9339         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9340 }
9341
9342 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9343 {
9344         bool nmi_safe = false;
9345
9346         switch (clk_id) {
9347         case CLOCK_MONOTONIC:
9348                 event->clock = &ktime_get_mono_fast_ns;
9349                 nmi_safe = true;
9350                 break;
9351
9352         case CLOCK_MONOTONIC_RAW:
9353                 event->clock = &ktime_get_raw_fast_ns;
9354                 nmi_safe = true;
9355                 break;
9356
9357         case CLOCK_REALTIME:
9358                 event->clock = &ktime_get_real_ns;
9359                 break;
9360
9361         case CLOCK_BOOTTIME:
9362                 event->clock = &ktime_get_boot_ns;
9363                 break;
9364
9365         case CLOCK_TAI:
9366                 event->clock = &ktime_get_tai_ns;
9367                 break;
9368
9369         default:
9370                 return -EINVAL;
9371         }
9372
9373         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9374                 return -EINVAL;
9375
9376         return 0;
9377 }
9378
9379 /**
9380  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9381  *
9382  * @attr_uptr:  event_id type attributes for monitoring/sampling
9383  * @pid:                target pid
9384  * @cpu:                target cpu
9385  * @group_fd:           group leader event fd
9386  */
9387 SYSCALL_DEFINE5(perf_event_open,
9388                 struct perf_event_attr __user *, attr_uptr,
9389                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9390 {
9391         struct perf_event *group_leader = NULL, *output_event = NULL;
9392         struct perf_event *event, *sibling;
9393         struct perf_event_attr attr;
9394         struct perf_event_context *ctx, *uninitialized_var(gctx);
9395         struct file *event_file = NULL;
9396         struct fd group = {NULL, 0};
9397         struct task_struct *task = NULL;
9398         struct pmu *pmu;
9399         int event_fd;
9400         int move_group = 0;
9401         int err;
9402         int f_flags = O_RDWR;
9403         int cgroup_fd = -1;
9404
9405         /* for future expandability... */
9406         if (flags & ~PERF_FLAG_ALL)
9407                 return -EINVAL;
9408
9409         err = perf_copy_attr(attr_uptr, &attr);
9410         if (err)
9411                 return err;
9412
9413         if (!attr.exclude_kernel) {
9414                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9415                         return -EACCES;
9416         }
9417
9418         if (attr.freq) {
9419                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9420                         return -EINVAL;
9421         } else {
9422                 if (attr.sample_period & (1ULL << 63))
9423                         return -EINVAL;
9424         }
9425
9426         if (!attr.sample_max_stack)
9427                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9428
9429         /*
9430          * In cgroup mode, the pid argument is used to pass the fd
9431          * opened to the cgroup directory in cgroupfs. The cpu argument
9432          * designates the cpu on which to monitor threads from that
9433          * cgroup.
9434          */
9435         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9436                 return -EINVAL;
9437
9438         if (flags & PERF_FLAG_FD_CLOEXEC)
9439                 f_flags |= O_CLOEXEC;
9440
9441         event_fd = get_unused_fd_flags(f_flags);
9442         if (event_fd < 0)
9443                 return event_fd;
9444
9445         if (group_fd != -1) {
9446                 err = perf_fget_light(group_fd, &group);
9447                 if (err)
9448                         goto err_fd;
9449                 group_leader = group.file->private_data;
9450                 if (flags & PERF_FLAG_FD_OUTPUT)
9451                         output_event = group_leader;
9452                 if (flags & PERF_FLAG_FD_NO_GROUP)
9453                         group_leader = NULL;
9454         }
9455
9456         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9457                 task = find_lively_task_by_vpid(pid);
9458                 if (IS_ERR(task)) {
9459                         err = PTR_ERR(task);
9460                         goto err_group_fd;
9461                 }
9462         }
9463
9464         if (task && group_leader &&
9465             group_leader->attr.inherit != attr.inherit) {
9466                 err = -EINVAL;
9467                 goto err_task;
9468         }
9469
9470         get_online_cpus();
9471
9472         if (task) {
9473                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9474                 if (err)
9475                         goto err_cpus;
9476
9477                 /*
9478                  * Reuse ptrace permission checks for now.
9479                  *
9480                  * We must hold cred_guard_mutex across this and any potential
9481                  * perf_install_in_context() call for this new event to
9482                  * serialize against exec() altering our credentials (and the
9483                  * perf_event_exit_task() that could imply).
9484                  */
9485                 err = -EACCES;
9486                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9487                         goto err_cred;
9488         }
9489
9490         if (flags & PERF_FLAG_PID_CGROUP)
9491                 cgroup_fd = pid;
9492
9493         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9494                                  NULL, NULL, cgroup_fd);
9495         if (IS_ERR(event)) {
9496                 err = PTR_ERR(event);
9497                 goto err_cred;
9498         }
9499
9500         if (is_sampling_event(event)) {
9501                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9502                         err = -EOPNOTSUPP;
9503                         goto err_alloc;
9504                 }
9505         }
9506
9507         /*
9508          * Special case software events and allow them to be part of
9509          * any hardware group.
9510          */
9511         pmu = event->pmu;
9512
9513         if (attr.use_clockid) {
9514                 err = perf_event_set_clock(event, attr.clockid);
9515                 if (err)
9516                         goto err_alloc;
9517         }
9518
9519         if (pmu->task_ctx_nr == perf_sw_context)
9520                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9521
9522         if (group_leader &&
9523             (is_software_event(event) != is_software_event(group_leader))) {
9524                 if (is_software_event(event)) {
9525                         /*
9526                          * If event and group_leader are not both a software
9527                          * event, and event is, then group leader is not.
9528                          *
9529                          * Allow the addition of software events to !software
9530                          * groups, this is safe because software events never
9531                          * fail to schedule.
9532                          */
9533                         pmu = group_leader->pmu;
9534                 } else if (is_software_event(group_leader) &&
9535                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9536                         /*
9537                          * In case the group is a pure software group, and we
9538                          * try to add a hardware event, move the whole group to
9539                          * the hardware context.
9540                          */
9541                         move_group = 1;
9542                 }
9543         }
9544
9545         /*
9546          * Get the target context (task or percpu):
9547          */
9548         ctx = find_get_context(pmu, task, event);
9549         if (IS_ERR(ctx)) {
9550                 err = PTR_ERR(ctx);
9551                 goto err_alloc;
9552         }
9553
9554         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9555                 err = -EBUSY;
9556                 goto err_context;
9557         }
9558
9559         /*
9560          * Look up the group leader (we will attach this event to it):
9561          */
9562         if (group_leader) {
9563                 err = -EINVAL;
9564
9565                 /*
9566                  * Do not allow a recursive hierarchy (this new sibling
9567                  * becoming part of another group-sibling):
9568                  */
9569                 if (group_leader->group_leader != group_leader)
9570                         goto err_context;
9571
9572                 /* All events in a group should have the same clock */
9573                 if (group_leader->clock != event->clock)
9574                         goto err_context;
9575
9576                 /*
9577                  * Do not allow to attach to a group in a different
9578                  * task or CPU context:
9579                  */
9580                 if (move_group) {
9581                         /*
9582                          * Make sure we're both on the same task, or both
9583                          * per-cpu events.
9584                          */
9585                         if (group_leader->ctx->task != ctx->task)
9586                                 goto err_context;
9587
9588                         /*
9589                          * Make sure we're both events for the same CPU;
9590                          * grouping events for different CPUs is broken; since
9591                          * you can never concurrently schedule them anyhow.
9592                          */
9593                         if (group_leader->cpu != event->cpu)
9594                                 goto err_context;
9595                 } else {
9596                         if (group_leader->ctx != ctx)
9597                                 goto err_context;
9598                 }
9599
9600                 /*
9601                  * Only a group leader can be exclusive or pinned
9602                  */
9603                 if (attr.exclusive || attr.pinned)
9604                         goto err_context;
9605         }
9606
9607         if (output_event) {
9608                 err = perf_event_set_output(event, output_event);
9609                 if (err)
9610                         goto err_context;
9611         }
9612
9613         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9614                                         f_flags);
9615         if (IS_ERR(event_file)) {
9616                 err = PTR_ERR(event_file);
9617                 event_file = NULL;
9618                 goto err_context;
9619         }
9620
9621         if (move_group) {
9622                 gctx = group_leader->ctx;
9623                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9624                 if (gctx->task == TASK_TOMBSTONE) {
9625                         err = -ESRCH;
9626                         goto err_locked;
9627                 }
9628         } else {
9629                 mutex_lock(&ctx->mutex);
9630         }
9631
9632         if (ctx->task == TASK_TOMBSTONE) {
9633                 err = -ESRCH;
9634                 goto err_locked;
9635         }
9636
9637         if (!perf_event_validate_size(event)) {
9638                 err = -E2BIG;
9639                 goto err_locked;
9640         }
9641
9642         /*
9643          * Must be under the same ctx::mutex as perf_install_in_context(),
9644          * because we need to serialize with concurrent event creation.
9645          */
9646         if (!exclusive_event_installable(event, ctx)) {
9647                 /* exclusive and group stuff are assumed mutually exclusive */
9648                 WARN_ON_ONCE(move_group);
9649
9650                 err = -EBUSY;
9651                 goto err_locked;
9652         }
9653
9654         WARN_ON_ONCE(ctx->parent_ctx);
9655
9656         /*
9657          * This is the point on no return; we cannot fail hereafter. This is
9658          * where we start modifying current state.
9659          */
9660
9661         if (move_group) {
9662                 /*
9663                  * See perf_event_ctx_lock() for comments on the details
9664                  * of swizzling perf_event::ctx.
9665                  */
9666                 perf_remove_from_context(group_leader, 0);
9667
9668                 list_for_each_entry(sibling, &group_leader->sibling_list,
9669                                     group_entry) {
9670                         perf_remove_from_context(sibling, 0);
9671                         put_ctx(gctx);
9672                 }
9673
9674                 /*
9675                  * Wait for everybody to stop referencing the events through
9676                  * the old lists, before installing it on new lists.
9677                  */
9678                 synchronize_rcu();
9679
9680                 /*
9681                  * Install the group siblings before the group leader.
9682                  *
9683                  * Because a group leader will try and install the entire group
9684                  * (through the sibling list, which is still in-tact), we can
9685                  * end up with siblings installed in the wrong context.
9686                  *
9687                  * By installing siblings first we NO-OP because they're not
9688                  * reachable through the group lists.
9689                  */
9690                 list_for_each_entry(sibling, &group_leader->sibling_list,
9691                                     group_entry) {
9692                         perf_event__state_init(sibling);
9693                         perf_install_in_context(ctx, sibling, sibling->cpu);
9694                         get_ctx(ctx);
9695                 }
9696
9697                 /*
9698                  * Removing from the context ends up with disabled
9699                  * event. What we want here is event in the initial
9700                  * startup state, ready to be add into new context.
9701                  */
9702                 perf_event__state_init(group_leader);
9703                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9704                 get_ctx(ctx);
9705
9706                 /*
9707                  * Now that all events are installed in @ctx, nothing
9708                  * references @gctx anymore, so drop the last reference we have
9709                  * on it.
9710                  */
9711                 put_ctx(gctx);
9712         }
9713
9714         /*
9715          * Precalculate sample_data sizes; do while holding ctx::mutex such
9716          * that we're serialized against further additions and before
9717          * perf_install_in_context() which is the point the event is active and
9718          * can use these values.
9719          */
9720         perf_event__header_size(event);
9721         perf_event__id_header_size(event);
9722
9723         event->owner = current;
9724
9725         perf_install_in_context(ctx, event, event->cpu);
9726         perf_unpin_context(ctx);
9727
9728         if (move_group)
9729                 mutex_unlock(&gctx->mutex);
9730         mutex_unlock(&ctx->mutex);
9731
9732         if (task) {
9733                 mutex_unlock(&task->signal->cred_guard_mutex);
9734                 put_task_struct(task);
9735         }
9736
9737         put_online_cpus();
9738
9739         mutex_lock(&current->perf_event_mutex);
9740         list_add_tail(&event->owner_entry, &current->perf_event_list);
9741         mutex_unlock(&current->perf_event_mutex);
9742
9743         /*
9744          * Drop the reference on the group_event after placing the
9745          * new event on the sibling_list. This ensures destruction
9746          * of the group leader will find the pointer to itself in
9747          * perf_group_detach().
9748          */
9749         fdput(group);
9750         fd_install(event_fd, event_file);
9751         return event_fd;
9752
9753 err_locked:
9754         if (move_group)
9755                 mutex_unlock(&gctx->mutex);
9756         mutex_unlock(&ctx->mutex);
9757 /* err_file: */
9758         fput(event_file);
9759 err_context:
9760         perf_unpin_context(ctx);
9761         put_ctx(ctx);
9762 err_alloc:
9763         /*
9764          * If event_file is set, the fput() above will have called ->release()
9765          * and that will take care of freeing the event.
9766          */
9767         if (!event_file)
9768                 free_event(event);
9769 err_cred:
9770         if (task)
9771                 mutex_unlock(&task->signal->cred_guard_mutex);
9772 err_cpus:
9773         put_online_cpus();
9774 err_task:
9775         if (task)
9776                 put_task_struct(task);
9777 err_group_fd:
9778         fdput(group);
9779 err_fd:
9780         put_unused_fd(event_fd);
9781         return err;
9782 }
9783
9784 /**
9785  * perf_event_create_kernel_counter
9786  *
9787  * @attr: attributes of the counter to create
9788  * @cpu: cpu in which the counter is bound
9789  * @task: task to profile (NULL for percpu)
9790  */
9791 struct perf_event *
9792 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9793                                  struct task_struct *task,
9794                                  perf_overflow_handler_t overflow_handler,
9795                                  void *context)
9796 {
9797         struct perf_event_context *ctx;
9798         struct perf_event *event;
9799         int err;
9800
9801         /*
9802          * Get the target context (task or percpu):
9803          */
9804
9805         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9806                                  overflow_handler, context, -1);
9807         if (IS_ERR(event)) {
9808                 err = PTR_ERR(event);
9809                 goto err;
9810         }
9811
9812         /* Mark owner so we could distinguish it from user events. */
9813         event->owner = TASK_TOMBSTONE;
9814
9815         ctx = find_get_context(event->pmu, task, event);
9816         if (IS_ERR(ctx)) {
9817                 err = PTR_ERR(ctx);
9818                 goto err_free;
9819         }
9820
9821         WARN_ON_ONCE(ctx->parent_ctx);
9822         mutex_lock(&ctx->mutex);
9823         if (ctx->task == TASK_TOMBSTONE) {
9824                 err = -ESRCH;
9825                 goto err_unlock;
9826         }
9827
9828         if (!exclusive_event_installable(event, ctx)) {
9829                 err = -EBUSY;
9830                 goto err_unlock;
9831         }
9832
9833         perf_install_in_context(ctx, event, cpu);
9834         perf_unpin_context(ctx);
9835         mutex_unlock(&ctx->mutex);
9836
9837         return event;
9838
9839 err_unlock:
9840         mutex_unlock(&ctx->mutex);
9841         perf_unpin_context(ctx);
9842         put_ctx(ctx);
9843 err_free:
9844         free_event(event);
9845 err:
9846         return ERR_PTR(err);
9847 }
9848 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9849
9850 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9851 {
9852         struct perf_event_context *src_ctx;
9853         struct perf_event_context *dst_ctx;
9854         struct perf_event *event, *tmp;
9855         LIST_HEAD(events);
9856
9857         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9858         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9859
9860         /*
9861          * See perf_event_ctx_lock() for comments on the details
9862          * of swizzling perf_event::ctx.
9863          */
9864         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9865         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9866                                  event_entry) {
9867                 perf_remove_from_context(event, 0);
9868                 unaccount_event_cpu(event, src_cpu);
9869                 put_ctx(src_ctx);
9870                 list_add(&event->migrate_entry, &events);
9871         }
9872
9873         /*
9874          * Wait for the events to quiesce before re-instating them.
9875          */
9876         synchronize_rcu();
9877
9878         /*
9879          * Re-instate events in 2 passes.
9880          *
9881          * Skip over group leaders and only install siblings on this first
9882          * pass, siblings will not get enabled without a leader, however a
9883          * leader will enable its siblings, even if those are still on the old
9884          * context.
9885          */
9886         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9887                 if (event->group_leader == event)
9888                         continue;
9889
9890                 list_del(&event->migrate_entry);
9891                 if (event->state >= PERF_EVENT_STATE_OFF)
9892                         event->state = PERF_EVENT_STATE_INACTIVE;
9893                 account_event_cpu(event, dst_cpu);
9894                 perf_install_in_context(dst_ctx, event, dst_cpu);
9895                 get_ctx(dst_ctx);
9896         }
9897
9898         /*
9899          * Once all the siblings are setup properly, install the group leaders
9900          * to make it go.
9901          */
9902         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9903                 list_del(&event->migrate_entry);
9904                 if (event->state >= PERF_EVENT_STATE_OFF)
9905                         event->state = PERF_EVENT_STATE_INACTIVE;
9906                 account_event_cpu(event, dst_cpu);
9907                 perf_install_in_context(dst_ctx, event, dst_cpu);
9908                 get_ctx(dst_ctx);
9909         }
9910         mutex_unlock(&dst_ctx->mutex);
9911         mutex_unlock(&src_ctx->mutex);
9912 }
9913 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9914
9915 static void sync_child_event(struct perf_event *child_event,
9916                                struct task_struct *child)
9917 {
9918         struct perf_event *parent_event = child_event->parent;
9919         u64 child_val;
9920
9921         if (child_event->attr.inherit_stat)
9922                 perf_event_read_event(child_event, child);
9923
9924         child_val = perf_event_count(child_event);
9925
9926         /*
9927          * Add back the child's count to the parent's count:
9928          */
9929         atomic64_add(child_val, &parent_event->child_count);
9930         atomic64_add(child_event->total_time_enabled,
9931                      &parent_event->child_total_time_enabled);
9932         atomic64_add(child_event->total_time_running,
9933                      &parent_event->child_total_time_running);
9934 }
9935
9936 static void
9937 perf_event_exit_event(struct perf_event *child_event,
9938                       struct perf_event_context *child_ctx,
9939                       struct task_struct *child)
9940 {
9941         struct perf_event *parent_event = child_event->parent;
9942
9943         /*
9944          * Do not destroy the 'original' grouping; because of the context
9945          * switch optimization the original events could've ended up in a
9946          * random child task.
9947          *
9948          * If we were to destroy the original group, all group related
9949          * operations would cease to function properly after this random
9950          * child dies.
9951          *
9952          * Do destroy all inherited groups, we don't care about those
9953          * and being thorough is better.
9954          */
9955         raw_spin_lock_irq(&child_ctx->lock);
9956         WARN_ON_ONCE(child_ctx->is_active);
9957
9958         if (parent_event)
9959                 perf_group_detach(child_event);
9960         list_del_event(child_event, child_ctx);
9961         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9962         raw_spin_unlock_irq(&child_ctx->lock);
9963
9964         /*
9965          * Parent events are governed by their filedesc, retain them.
9966          */
9967         if (!parent_event) {
9968                 perf_event_wakeup(child_event);
9969                 return;
9970         }
9971         /*
9972          * Child events can be cleaned up.
9973          */
9974
9975         sync_child_event(child_event, child);
9976
9977         /*
9978          * Remove this event from the parent's list
9979          */
9980         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9981         mutex_lock(&parent_event->child_mutex);
9982         list_del_init(&child_event->child_list);
9983         mutex_unlock(&parent_event->child_mutex);
9984
9985         /*
9986          * Kick perf_poll() for is_event_hup().
9987          */
9988         perf_event_wakeup(parent_event);
9989         free_event(child_event);
9990         put_event(parent_event);
9991 }
9992
9993 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9994 {
9995         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9996         struct perf_event *child_event, *next;
9997
9998         WARN_ON_ONCE(child != current);
9999
10000         child_ctx = perf_pin_task_context(child, ctxn);
10001         if (!child_ctx)
10002                 return;
10003
10004         /*
10005          * In order to reduce the amount of tricky in ctx tear-down, we hold
10006          * ctx::mutex over the entire thing. This serializes against almost
10007          * everything that wants to access the ctx.
10008          *
10009          * The exception is sys_perf_event_open() /
10010          * perf_event_create_kernel_count() which does find_get_context()
10011          * without ctx::mutex (it cannot because of the move_group double mutex
10012          * lock thing). See the comments in perf_install_in_context().
10013          */
10014         mutex_lock(&child_ctx->mutex);
10015
10016         /*
10017          * In a single ctx::lock section, de-schedule the events and detach the
10018          * context from the task such that we cannot ever get it scheduled back
10019          * in.
10020          */
10021         raw_spin_lock_irq(&child_ctx->lock);
10022         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10023
10024         /*
10025          * Now that the context is inactive, destroy the task <-> ctx relation
10026          * and mark the context dead.
10027          */
10028         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10029         put_ctx(child_ctx); /* cannot be last */
10030         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10031         put_task_struct(current); /* cannot be last */
10032
10033         clone_ctx = unclone_ctx(child_ctx);
10034         raw_spin_unlock_irq(&child_ctx->lock);
10035
10036         if (clone_ctx)
10037                 put_ctx(clone_ctx);
10038
10039         /*
10040          * Report the task dead after unscheduling the events so that we
10041          * won't get any samples after PERF_RECORD_EXIT. We can however still
10042          * get a few PERF_RECORD_READ events.
10043          */
10044         perf_event_task(child, child_ctx, 0);
10045
10046         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10047                 perf_event_exit_event(child_event, child_ctx, child);
10048
10049         mutex_unlock(&child_ctx->mutex);
10050
10051         put_ctx(child_ctx);
10052 }
10053
10054 /*
10055  * When a child task exits, feed back event values to parent events.
10056  *
10057  * Can be called with cred_guard_mutex held when called from
10058  * install_exec_creds().
10059  */
10060 void perf_event_exit_task(struct task_struct *child)
10061 {
10062         struct perf_event *event, *tmp;
10063         int ctxn;
10064
10065         mutex_lock(&child->perf_event_mutex);
10066         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10067                                  owner_entry) {
10068                 list_del_init(&event->owner_entry);
10069
10070                 /*
10071                  * Ensure the list deletion is visible before we clear
10072                  * the owner, closes a race against perf_release() where
10073                  * we need to serialize on the owner->perf_event_mutex.
10074                  */
10075                 smp_store_release(&event->owner, NULL);
10076         }
10077         mutex_unlock(&child->perf_event_mutex);
10078
10079         for_each_task_context_nr(ctxn)
10080                 perf_event_exit_task_context(child, ctxn);
10081
10082         /*
10083          * The perf_event_exit_task_context calls perf_event_task
10084          * with child's task_ctx, which generates EXIT events for
10085          * child contexts and sets child->perf_event_ctxp[] to NULL.
10086          * At this point we need to send EXIT events to cpu contexts.
10087          */
10088         perf_event_task(child, NULL, 0);
10089 }
10090
10091 static void perf_free_event(struct perf_event *event,
10092                             struct perf_event_context *ctx)
10093 {
10094         struct perf_event *parent = event->parent;
10095
10096         if (WARN_ON_ONCE(!parent))
10097                 return;
10098
10099         mutex_lock(&parent->child_mutex);
10100         list_del_init(&event->child_list);
10101         mutex_unlock(&parent->child_mutex);
10102
10103         put_event(parent);
10104
10105         raw_spin_lock_irq(&ctx->lock);
10106         perf_group_detach(event);
10107         list_del_event(event, ctx);
10108         raw_spin_unlock_irq(&ctx->lock);
10109         free_event(event);
10110 }
10111
10112 /*
10113  * Free an unexposed, unused context as created by inheritance by
10114  * perf_event_init_task below, used by fork() in case of fail.
10115  *
10116  * Not all locks are strictly required, but take them anyway to be nice and
10117  * help out with the lockdep assertions.
10118  */
10119 void perf_event_free_task(struct task_struct *task)
10120 {
10121         struct perf_event_context *ctx;
10122         struct perf_event *event, *tmp;
10123         int ctxn;
10124
10125         for_each_task_context_nr(ctxn) {
10126                 ctx = task->perf_event_ctxp[ctxn];
10127                 if (!ctx)
10128                         continue;
10129
10130                 mutex_lock(&ctx->mutex);
10131 again:
10132                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10133                                 group_entry)
10134                         perf_free_event(event, ctx);
10135
10136                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10137                                 group_entry)
10138                         perf_free_event(event, ctx);
10139
10140                 if (!list_empty(&ctx->pinned_groups) ||
10141                                 !list_empty(&ctx->flexible_groups))
10142                         goto again;
10143
10144                 mutex_unlock(&ctx->mutex);
10145
10146                 put_ctx(ctx);
10147         }
10148 }
10149
10150 void perf_event_delayed_put(struct task_struct *task)
10151 {
10152         int ctxn;
10153
10154         for_each_task_context_nr(ctxn)
10155                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10156 }
10157
10158 struct file *perf_event_get(unsigned int fd)
10159 {
10160         struct file *file;
10161
10162         file = fget_raw(fd);
10163         if (!file)
10164                 return ERR_PTR(-EBADF);
10165
10166         if (file->f_op != &perf_fops) {
10167                 fput(file);
10168                 return ERR_PTR(-EBADF);
10169         }
10170
10171         return file;
10172 }
10173
10174 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10175 {
10176         if (!event)
10177                 return ERR_PTR(-EINVAL);
10178
10179         return &event->attr;
10180 }
10181
10182 /*
10183  * inherit a event from parent task to child task:
10184  */
10185 static struct perf_event *
10186 inherit_event(struct perf_event *parent_event,
10187               struct task_struct *parent,
10188               struct perf_event_context *parent_ctx,
10189               struct task_struct *child,
10190               struct perf_event *group_leader,
10191               struct perf_event_context *child_ctx)
10192 {
10193         enum perf_event_active_state parent_state = parent_event->state;
10194         struct perf_event *child_event;
10195         unsigned long flags;
10196
10197         /*
10198          * Instead of creating recursive hierarchies of events,
10199          * we link inherited events back to the original parent,
10200          * which has a filp for sure, which we use as the reference
10201          * count:
10202          */
10203         if (parent_event->parent)
10204                 parent_event = parent_event->parent;
10205
10206         child_event = perf_event_alloc(&parent_event->attr,
10207                                            parent_event->cpu,
10208                                            child,
10209                                            group_leader, parent_event,
10210                                            NULL, NULL, -1);
10211         if (IS_ERR(child_event))
10212                 return child_event;
10213
10214         /*
10215          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10216          * must be under the same lock in order to serialize against
10217          * perf_event_release_kernel(), such that either we must observe
10218          * is_orphaned_event() or they will observe us on the child_list.
10219          */
10220         mutex_lock(&parent_event->child_mutex);
10221         if (is_orphaned_event(parent_event) ||
10222             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10223                 mutex_unlock(&parent_event->child_mutex);
10224                 free_event(child_event);
10225                 return NULL;
10226         }
10227
10228         get_ctx(child_ctx);
10229
10230         /*
10231          * Make the child state follow the state of the parent event,
10232          * not its attr.disabled bit.  We hold the parent's mutex,
10233          * so we won't race with perf_event_{en, dis}able_family.
10234          */
10235         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10236                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10237         else
10238                 child_event->state = PERF_EVENT_STATE_OFF;
10239
10240         if (parent_event->attr.freq) {
10241                 u64 sample_period = parent_event->hw.sample_period;
10242                 struct hw_perf_event *hwc = &child_event->hw;
10243
10244                 hwc->sample_period = sample_period;
10245                 hwc->last_period   = sample_period;
10246
10247                 local64_set(&hwc->period_left, sample_period);
10248         }
10249
10250         child_event->ctx = child_ctx;
10251         child_event->overflow_handler = parent_event->overflow_handler;
10252         child_event->overflow_handler_context
10253                 = parent_event->overflow_handler_context;
10254
10255         /*
10256          * Precalculate sample_data sizes
10257          */
10258         perf_event__header_size(child_event);
10259         perf_event__id_header_size(child_event);
10260
10261         /*
10262          * Link it up in the child's context:
10263          */
10264         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10265         add_event_to_ctx(child_event, child_ctx);
10266         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10267
10268         /*
10269          * Link this into the parent event's child list
10270          */
10271         list_add_tail(&child_event->child_list, &parent_event->child_list);
10272         mutex_unlock(&parent_event->child_mutex);
10273
10274         return child_event;
10275 }
10276
10277 static int inherit_group(struct perf_event *parent_event,
10278               struct task_struct *parent,
10279               struct perf_event_context *parent_ctx,
10280               struct task_struct *child,
10281               struct perf_event_context *child_ctx)
10282 {
10283         struct perf_event *leader;
10284         struct perf_event *sub;
10285         struct perf_event *child_ctr;
10286
10287         leader = inherit_event(parent_event, parent, parent_ctx,
10288                                  child, NULL, child_ctx);
10289         if (IS_ERR(leader))
10290                 return PTR_ERR(leader);
10291         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10292                 child_ctr = inherit_event(sub, parent, parent_ctx,
10293                                             child, leader, child_ctx);
10294                 if (IS_ERR(child_ctr))
10295                         return PTR_ERR(child_ctr);
10296         }
10297         return 0;
10298 }
10299
10300 static int
10301 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10302                    struct perf_event_context *parent_ctx,
10303                    struct task_struct *child, int ctxn,
10304                    int *inherited_all)
10305 {
10306         int ret;
10307         struct perf_event_context *child_ctx;
10308
10309         if (!event->attr.inherit) {
10310                 *inherited_all = 0;
10311                 return 0;
10312         }
10313
10314         child_ctx = child->perf_event_ctxp[ctxn];
10315         if (!child_ctx) {
10316                 /*
10317                  * This is executed from the parent task context, so
10318                  * inherit events that have been marked for cloning.
10319                  * First allocate and initialize a context for the
10320                  * child.
10321                  */
10322
10323                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10324                 if (!child_ctx)
10325                         return -ENOMEM;
10326
10327                 child->perf_event_ctxp[ctxn] = child_ctx;
10328         }
10329
10330         ret = inherit_group(event, parent, parent_ctx,
10331                             child, child_ctx);
10332
10333         if (ret)
10334                 *inherited_all = 0;
10335
10336         return ret;
10337 }
10338
10339 /*
10340  * Initialize the perf_event context in task_struct
10341  */
10342 static int perf_event_init_context(struct task_struct *child, int ctxn)
10343 {
10344         struct perf_event_context *child_ctx, *parent_ctx;
10345         struct perf_event_context *cloned_ctx;
10346         struct perf_event *event;
10347         struct task_struct *parent = current;
10348         int inherited_all = 1;
10349         unsigned long flags;
10350         int ret = 0;
10351
10352         if (likely(!parent->perf_event_ctxp[ctxn]))
10353                 return 0;
10354
10355         /*
10356          * If the parent's context is a clone, pin it so it won't get
10357          * swapped under us.
10358          */
10359         parent_ctx = perf_pin_task_context(parent, ctxn);
10360         if (!parent_ctx)
10361                 return 0;
10362
10363         /*
10364          * No need to check if parent_ctx != NULL here; since we saw
10365          * it non-NULL earlier, the only reason for it to become NULL
10366          * is if we exit, and since we're currently in the middle of
10367          * a fork we can't be exiting at the same time.
10368          */
10369
10370         /*
10371          * Lock the parent list. No need to lock the child - not PID
10372          * hashed yet and not running, so nobody can access it.
10373          */
10374         mutex_lock(&parent_ctx->mutex);
10375
10376         /*
10377          * We dont have to disable NMIs - we are only looking at
10378          * the list, not manipulating it:
10379          */
10380         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10381                 ret = inherit_task_group(event, parent, parent_ctx,
10382                                          child, ctxn, &inherited_all);
10383                 if (ret)
10384                         break;
10385         }
10386
10387         /*
10388          * We can't hold ctx->lock when iterating the ->flexible_group list due
10389          * to allocations, but we need to prevent rotation because
10390          * rotate_ctx() will change the list from interrupt context.
10391          */
10392         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10393         parent_ctx->rotate_disable = 1;
10394         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10395
10396         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10397                 ret = inherit_task_group(event, parent, parent_ctx,
10398                                          child, ctxn, &inherited_all);
10399                 if (ret)
10400                         break;
10401         }
10402
10403         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10404         parent_ctx->rotate_disable = 0;
10405
10406         child_ctx = child->perf_event_ctxp[ctxn];
10407
10408         if (child_ctx && inherited_all) {
10409                 /*
10410                  * Mark the child context as a clone of the parent
10411                  * context, or of whatever the parent is a clone of.
10412                  *
10413                  * Note that if the parent is a clone, the holding of
10414                  * parent_ctx->lock avoids it from being uncloned.
10415                  */
10416                 cloned_ctx = parent_ctx->parent_ctx;
10417                 if (cloned_ctx) {
10418                         child_ctx->parent_ctx = cloned_ctx;
10419                         child_ctx->parent_gen = parent_ctx->parent_gen;
10420                 } else {
10421                         child_ctx->parent_ctx = parent_ctx;
10422                         child_ctx->parent_gen = parent_ctx->generation;
10423                 }
10424                 get_ctx(child_ctx->parent_ctx);
10425         }
10426
10427         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10428         mutex_unlock(&parent_ctx->mutex);
10429
10430         perf_unpin_context(parent_ctx);
10431         put_ctx(parent_ctx);
10432
10433         return ret;
10434 }
10435
10436 /*
10437  * Initialize the perf_event context in task_struct
10438  */
10439 int perf_event_init_task(struct task_struct *child)
10440 {
10441         int ctxn, ret;
10442
10443         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10444         mutex_init(&child->perf_event_mutex);
10445         INIT_LIST_HEAD(&child->perf_event_list);
10446
10447         for_each_task_context_nr(ctxn) {
10448                 ret = perf_event_init_context(child, ctxn);
10449                 if (ret) {
10450                         perf_event_free_task(child);
10451                         return ret;
10452                 }
10453         }
10454
10455         return 0;
10456 }
10457
10458 static void __init perf_event_init_all_cpus(void)
10459 {
10460         struct swevent_htable *swhash;
10461         int cpu;
10462
10463         for_each_possible_cpu(cpu) {
10464                 swhash = &per_cpu(swevent_htable, cpu);
10465                 mutex_init(&swhash->hlist_mutex);
10466                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10467
10468                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10469                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10470
10471                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10472         }
10473 }
10474
10475 int perf_event_init_cpu(unsigned int cpu)
10476 {
10477         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10478
10479         mutex_lock(&swhash->hlist_mutex);
10480         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10481                 struct swevent_hlist *hlist;
10482
10483                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10484                 WARN_ON(!hlist);
10485                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10486         }
10487         mutex_unlock(&swhash->hlist_mutex);
10488         return 0;
10489 }
10490
10491 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10492 static void __perf_event_exit_context(void *__info)
10493 {
10494         struct perf_event_context *ctx = __info;
10495         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10496         struct perf_event *event;
10497
10498         raw_spin_lock(&ctx->lock);
10499         list_for_each_entry(event, &ctx->event_list, event_entry)
10500                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10501         raw_spin_unlock(&ctx->lock);
10502 }
10503
10504 static void perf_event_exit_cpu_context(int cpu)
10505 {
10506         struct perf_event_context *ctx;
10507         struct pmu *pmu;
10508         int idx;
10509
10510         idx = srcu_read_lock(&pmus_srcu);
10511         list_for_each_entry_rcu(pmu, &pmus, entry) {
10512                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10513
10514                 mutex_lock(&ctx->mutex);
10515                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10516                 mutex_unlock(&ctx->mutex);
10517         }
10518         srcu_read_unlock(&pmus_srcu, idx);
10519 }
10520 #else
10521
10522 static void perf_event_exit_cpu_context(int cpu) { }
10523
10524 #endif
10525
10526 int perf_event_exit_cpu(unsigned int cpu)
10527 {
10528         perf_event_exit_cpu_context(cpu);
10529         return 0;
10530 }
10531
10532 static int
10533 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10534 {
10535         int cpu;
10536
10537         for_each_online_cpu(cpu)
10538                 perf_event_exit_cpu(cpu);
10539
10540         return NOTIFY_OK;
10541 }
10542
10543 /*
10544  * Run the perf reboot notifier at the very last possible moment so that
10545  * the generic watchdog code runs as long as possible.
10546  */
10547 static struct notifier_block perf_reboot_notifier = {
10548         .notifier_call = perf_reboot,
10549         .priority = INT_MIN,
10550 };
10551
10552 void __init perf_event_init(void)
10553 {
10554         int ret;
10555
10556         idr_init(&pmu_idr);
10557
10558         perf_event_init_all_cpus();
10559         init_srcu_struct(&pmus_srcu);
10560         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10561         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10562         perf_pmu_register(&perf_task_clock, NULL, -1);
10563         perf_tp_register();
10564         perf_event_init_cpu(smp_processor_id());
10565         register_reboot_notifier(&perf_reboot_notifier);
10566
10567         ret = init_hw_breakpoint();
10568         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10569
10570         /*
10571          * Build time assertion that we keep the data_head at the intended
10572          * location.  IOW, validation we got the __reserved[] size right.
10573          */
10574         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10575                      != 1024);
10576 }
10577
10578 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10579                               char *page)
10580 {
10581         struct perf_pmu_events_attr *pmu_attr =
10582                 container_of(attr, struct perf_pmu_events_attr, attr);
10583
10584         if (pmu_attr->event_str)
10585                 return sprintf(page, "%s\n", pmu_attr->event_str);
10586
10587         return 0;
10588 }
10589 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10590
10591 static int __init perf_event_sysfs_init(void)
10592 {
10593         struct pmu *pmu;
10594         int ret;
10595
10596         mutex_lock(&pmus_lock);
10597
10598         ret = bus_register(&pmu_bus);
10599         if (ret)
10600                 goto unlock;
10601
10602         list_for_each_entry(pmu, &pmus, entry) {
10603                 if (!pmu->name || pmu->type < 0)
10604                         continue;
10605
10606                 ret = pmu_dev_alloc(pmu);
10607                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10608         }
10609         pmu_bus_running = 1;
10610         ret = 0;
10611
10612 unlock:
10613         mutex_unlock(&pmus_lock);
10614
10615         return ret;
10616 }
10617 device_initcall(perf_event_sysfs_init);
10618
10619 #ifdef CONFIG_CGROUP_PERF
10620 static struct cgroup_subsys_state *
10621 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10622 {
10623         struct perf_cgroup *jc;
10624
10625         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10626         if (!jc)
10627                 return ERR_PTR(-ENOMEM);
10628
10629         jc->info = alloc_percpu(struct perf_cgroup_info);
10630         if (!jc->info) {
10631                 kfree(jc);
10632                 return ERR_PTR(-ENOMEM);
10633         }
10634
10635         return &jc->css;
10636 }
10637
10638 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10639 {
10640         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10641
10642         free_percpu(jc->info);
10643         kfree(jc);
10644 }
10645
10646 static int __perf_cgroup_move(void *info)
10647 {
10648         struct task_struct *task = info;
10649         rcu_read_lock();
10650         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10651         rcu_read_unlock();
10652         return 0;
10653 }
10654
10655 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10656 {
10657         struct task_struct *task;
10658         struct cgroup_subsys_state *css;
10659
10660         cgroup_taskset_for_each(task, css, tset)
10661                 task_function_call(task, __perf_cgroup_move, task);
10662 }
10663
10664 struct cgroup_subsys perf_event_cgrp_subsys = {
10665         .css_alloc      = perf_cgroup_css_alloc,
10666         .css_free       = perf_cgroup_css_free,
10667         .attach         = perf_cgroup_attach,
10668 };
10669 #endif /* CONFIG_CGROUP_PERF */