perf/core: Convert to hotplug state machine
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348
349 /*
350  * perf event paranoia level:
351  *  -1 - not paranoid at all
352  *   0 - disallow raw tracepoint access for unpriv
353  *   1 - disallow cpu events for unpriv
354  *   2 - disallow kernel profiling for unpriv
355  */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360
361 /*
362  * max perf event sample rate
363  */
364 #define DEFAULT_MAX_SAMPLE_RATE         100000
365 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
367
368 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
369
370 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
372
373 static int perf_sample_allowed_ns __read_mostly =
374         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375
376 static void update_perf_cpu_limits(void)
377 {
378         u64 tmp = perf_sample_period_ns;
379
380         tmp *= sysctl_perf_cpu_time_max_percent;
381         tmp = div_u64(tmp, 100);
382         if (!tmp)
383                 tmp = 1;
384
385         WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391                 void __user *buffer, size_t *lenp,
392                 loff_t *ppos)
393 {
394         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395
396         if (ret || !write)
397                 return ret;
398
399         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401         update_perf_cpu_limits();
402
403         return 0;
404 }
405
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409                                 void __user *buffer, size_t *lenp,
410                                 loff_t *ppos)
411 {
412         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413
414         if (ret || !write)
415                 return ret;
416
417         if (sysctl_perf_cpu_time_max_percent == 100 ||
418             sysctl_perf_cpu_time_max_percent == 0) {
419                 printk(KERN_WARNING
420                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421                 WRITE_ONCE(perf_sample_allowed_ns, 0);
422         } else {
423                 update_perf_cpu_limits();
424         }
425
426         return 0;
427 }
428
429 /*
430  * perf samples are done in some very critical code paths (NMIs).
431  * If they take too much CPU time, the system can lock up and not
432  * get any real work done.  This will drop the sample rate when
433  * we detect that events are taking too long.
434  */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437
438 static u64 __report_avg;
439 static u64 __report_allowed;
440
441 static void perf_duration_warn(struct irq_work *w)
442 {
443         printk_ratelimited(KERN_WARNING
444                 "perf: interrupt took too long (%lld > %lld), lowering "
445                 "kernel.perf_event_max_sample_rate to %d\n",
446                 __report_avg, __report_allowed,
447                 sysctl_perf_event_sample_rate);
448 }
449
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455         u64 running_len;
456         u64 avg_len;
457         u32 max;
458
459         if (max_len == 0)
460                 return;
461
462         /* Decay the counter by 1 average sample. */
463         running_len = __this_cpu_read(running_sample_length);
464         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465         running_len += sample_len_ns;
466         __this_cpu_write(running_sample_length, running_len);
467
468         /*
469          * Note: this will be biased artifically low until we have
470          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471          * from having to maintain a count.
472          */
473         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474         if (avg_len <= max_len)
475                 return;
476
477         __report_avg = avg_len;
478         __report_allowed = max_len;
479
480         /*
481          * Compute a throttle threshold 25% below the current duration.
482          */
483         avg_len += avg_len / 4;
484         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485         if (avg_len < max)
486                 max /= (u32)avg_len;
487         else
488                 max = 1;
489
490         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491         WRITE_ONCE(max_samples_per_tick, max);
492
493         sysctl_perf_event_sample_rate = max * HZ;
494         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495
496         if (!irq_work_queue(&perf_duration_work)) {
497                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498                              "kernel.perf_event_max_sample_rate to %d\n",
499                              __report_avg, __report_allowed,
500                              sysctl_perf_event_sample_rate);
501         }
502 }
503
504 static atomic64_t perf_event_id;
505
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507                               enum event_type_t event_type);
508
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510                              enum event_type_t event_type,
511                              struct task_struct *task);
512
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515
516 void __weak perf_event_print_debug(void)        { }
517
518 extern __weak const char *perf_pmu_name(void)
519 {
520         return "pmu";
521 }
522
523 static inline u64 perf_clock(void)
524 {
525         return local_clock();
526 }
527
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530         return event->clock();
531 }
532
533 #ifdef CONFIG_CGROUP_PERF
534
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538         struct perf_event_context *ctx = event->ctx;
539         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540
541         /* @event doesn't care about cgroup */
542         if (!event->cgrp)
543                 return true;
544
545         /* wants specific cgroup scope but @cpuctx isn't associated with any */
546         if (!cpuctx->cgrp)
547                 return false;
548
549         /*
550          * Cgroup scoping is recursive.  An event enabled for a cgroup is
551          * also enabled for all its descendant cgroups.  If @cpuctx's
552          * cgroup is a descendant of @event's (the test covers identity
553          * case), it's a match.
554          */
555         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556                                     event->cgrp->css.cgroup);
557 }
558
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561         css_put(&event->cgrp->css);
562         event->cgrp = NULL;
563 }
564
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567         return event->cgrp != NULL;
568 }
569
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572         struct perf_cgroup_info *t;
573
574         t = per_cpu_ptr(event->cgrp->info, event->cpu);
575         return t->time;
576 }
577
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580         struct perf_cgroup_info *info;
581         u64 now;
582
583         now = perf_clock();
584
585         info = this_cpu_ptr(cgrp->info);
586
587         info->time += now - info->timestamp;
588         info->timestamp = now;
589 }
590
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594         if (cgrp_out)
595                 __update_cgrp_time(cgrp_out);
596 }
597
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600         struct perf_cgroup *cgrp;
601
602         /*
603          * ensure we access cgroup data only when needed and
604          * when we know the cgroup is pinned (css_get)
605          */
606         if (!is_cgroup_event(event))
607                 return;
608
609         cgrp = perf_cgroup_from_task(current, event->ctx);
610         /*
611          * Do not update time when cgroup is not active
612          */
613         if (cgrp == event->cgrp)
614                 __update_cgrp_time(event->cgrp);
615 }
616
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619                           struct perf_event_context *ctx)
620 {
621         struct perf_cgroup *cgrp;
622         struct perf_cgroup_info *info;
623
624         /*
625          * ctx->lock held by caller
626          * ensure we do not access cgroup data
627          * unless we have the cgroup pinned (css_get)
628          */
629         if (!task || !ctx->nr_cgroups)
630                 return;
631
632         cgrp = perf_cgroup_from_task(task, ctx);
633         info = this_cpu_ptr(cgrp->info);
634         info->timestamp = ctx->timestamp;
635 }
636
637 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
639
640 /*
641  * reschedule events based on the cgroup constraint of task.
642  *
643  * mode SWOUT : schedule out everything
644  * mode SWIN : schedule in based on cgroup for next
645  */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648         struct perf_cpu_context *cpuctx;
649         struct pmu *pmu;
650         unsigned long flags;
651
652         /*
653          * disable interrupts to avoid geting nr_cgroup
654          * changes via __perf_event_disable(). Also
655          * avoids preemption.
656          */
657         local_irq_save(flags);
658
659         /*
660          * we reschedule only in the presence of cgroup
661          * constrained events.
662          */
663
664         list_for_each_entry_rcu(pmu, &pmus, entry) {
665                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666                 if (cpuctx->unique_pmu != pmu)
667                         continue; /* ensure we process each cpuctx once */
668
669                 /*
670                  * perf_cgroup_events says at least one
671                  * context on this CPU has cgroup events.
672                  *
673                  * ctx->nr_cgroups reports the number of cgroup
674                  * events for a context.
675                  */
676                 if (cpuctx->ctx.nr_cgroups > 0) {
677                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678                         perf_pmu_disable(cpuctx->ctx.pmu);
679
680                         if (mode & PERF_CGROUP_SWOUT) {
681                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682                                 /*
683                                  * must not be done before ctxswout due
684                                  * to event_filter_match() in event_sched_out()
685                                  */
686                                 cpuctx->cgrp = NULL;
687                         }
688
689                         if (mode & PERF_CGROUP_SWIN) {
690                                 WARN_ON_ONCE(cpuctx->cgrp);
691                                 /*
692                                  * set cgrp before ctxsw in to allow
693                                  * event_filter_match() to not have to pass
694                                  * task around
695                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
696                                  * because cgorup events are only per-cpu
697                                  */
698                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700                         }
701                         perf_pmu_enable(cpuctx->ctx.pmu);
702                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703                 }
704         }
705
706         local_irq_restore(flags);
707 }
708
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710                                          struct task_struct *next)
711 {
712         struct perf_cgroup *cgrp1;
713         struct perf_cgroup *cgrp2 = NULL;
714
715         rcu_read_lock();
716         /*
717          * we come here when we know perf_cgroup_events > 0
718          * we do not need to pass the ctx here because we know
719          * we are holding the rcu lock
720          */
721         cgrp1 = perf_cgroup_from_task(task, NULL);
722         cgrp2 = perf_cgroup_from_task(next, NULL);
723
724         /*
725          * only schedule out current cgroup events if we know
726          * that we are switching to a different cgroup. Otherwise,
727          * do no touch the cgroup events.
728          */
729         if (cgrp1 != cgrp2)
730                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731
732         rcu_read_unlock();
733 }
734
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736                                         struct task_struct *task)
737 {
738         struct perf_cgroup *cgrp1;
739         struct perf_cgroup *cgrp2 = NULL;
740
741         rcu_read_lock();
742         /*
743          * we come here when we know perf_cgroup_events > 0
744          * we do not need to pass the ctx here because we know
745          * we are holding the rcu lock
746          */
747         cgrp1 = perf_cgroup_from_task(task, NULL);
748         cgrp2 = perf_cgroup_from_task(prev, NULL);
749
750         /*
751          * only need to schedule in cgroup events if we are changing
752          * cgroup during ctxsw. Cgroup events were not scheduled
753          * out of ctxsw out if that was not the case.
754          */
755         if (cgrp1 != cgrp2)
756                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757
758         rcu_read_unlock();
759 }
760
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762                                       struct perf_event_attr *attr,
763                                       struct perf_event *group_leader)
764 {
765         struct perf_cgroup *cgrp;
766         struct cgroup_subsys_state *css;
767         struct fd f = fdget(fd);
768         int ret = 0;
769
770         if (!f.file)
771                 return -EBADF;
772
773         css = css_tryget_online_from_dir(f.file->f_path.dentry,
774                                          &perf_event_cgrp_subsys);
775         if (IS_ERR(css)) {
776                 ret = PTR_ERR(css);
777                 goto out;
778         }
779
780         cgrp = container_of(css, struct perf_cgroup, css);
781         event->cgrp = cgrp;
782
783         /*
784          * all events in a group must monitor
785          * the same cgroup because a task belongs
786          * to only one perf cgroup at a time
787          */
788         if (group_leader && group_leader->cgrp != cgrp) {
789                 perf_detach_cgroup(event);
790                 ret = -EINVAL;
791         }
792 out:
793         fdput(f);
794         return ret;
795 }
796
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800         struct perf_cgroup_info *t;
801         t = per_cpu_ptr(event->cgrp->info, event->cpu);
802         event->shadow_ctx_time = now - t->timestamp;
803 }
804
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808         /*
809          * when the current task's perf cgroup does not match
810          * the event's, we need to remember to call the
811          * perf_mark_enable() function the first time a task with
812          * a matching perf cgroup is scheduled in.
813          */
814         if (is_cgroup_event(event) && !perf_cgroup_match(event))
815                 event->cgrp_defer_enabled = 1;
816 }
817
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820                          struct perf_event_context *ctx)
821 {
822         struct perf_event *sub;
823         u64 tstamp = perf_event_time(event);
824
825         if (!event->cgrp_defer_enabled)
826                 return;
827
828         event->cgrp_defer_enabled = 0;
829
830         event->tstamp_enabled = tstamp - event->total_time_enabled;
831         list_for_each_entry(sub, &event->sibling_list, group_entry) {
832                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834                         sub->cgrp_defer_enabled = 0;
835                 }
836         }
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843         return true;
844 }
845
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851         return 0;
852 }
853
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856         return 0;
857 }
858
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868                                          struct task_struct *next)
869 {
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873                                         struct task_struct *task)
874 {
875 }
876
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878                                       struct perf_event_attr *attr,
879                                       struct perf_event *group_leader)
880 {
881         return -EINVAL;
882 }
883
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886                           struct perf_event_context *ctx)
887 {
888 }
889
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902         return 0;
903 }
904
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912                          struct perf_event_context *ctx)
913 {
914 }
915 #endif
916
917 /*
918  * set default to be dependent on timer tick just
919  * like original code
920  */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923  * function must be called with interrupts disbled
924  */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927         struct perf_cpu_context *cpuctx;
928         int rotations = 0;
929
930         WARN_ON(!irqs_disabled());
931
932         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933         rotations = perf_rotate_context(cpuctx);
934
935         raw_spin_lock(&cpuctx->hrtimer_lock);
936         if (rotations)
937                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938         else
939                 cpuctx->hrtimer_active = 0;
940         raw_spin_unlock(&cpuctx->hrtimer_lock);
941
942         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947         struct hrtimer *timer = &cpuctx->hrtimer;
948         struct pmu *pmu = cpuctx->ctx.pmu;
949         u64 interval;
950
951         /* no multiplexing needed for SW PMU */
952         if (pmu->task_ctx_nr == perf_sw_context)
953                 return;
954
955         /*
956          * check default is sane, if not set then force to
957          * default interval (1/tick)
958          */
959         interval = pmu->hrtimer_interval_ms;
960         if (interval < 1)
961                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962
963         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964
965         raw_spin_lock_init(&cpuctx->hrtimer_lock);
966         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967         timer->function = perf_mux_hrtimer_handler;
968 }
969
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972         struct hrtimer *timer = &cpuctx->hrtimer;
973         struct pmu *pmu = cpuctx->ctx.pmu;
974         unsigned long flags;
975
976         /* not for SW PMU */
977         if (pmu->task_ctx_nr == perf_sw_context)
978                 return 0;
979
980         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981         if (!cpuctx->hrtimer_active) {
982                 cpuctx->hrtimer_active = 1;
983                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985         }
986         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987
988         return 0;
989 }
990
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993         int *count = this_cpu_ptr(pmu->pmu_disable_count);
994         if (!(*count)++)
995                 pmu->pmu_disable(pmu);
996 }
997
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001         if (!--(*count))
1002                 pmu->pmu_enable(pmu);
1003 }
1004
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006
1007 /*
1008  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009  * perf_event_task_tick() are fully serialized because they're strictly cpu
1010  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011  * disabled, while perf_event_task_tick is called from IRQ context.
1012  */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016
1017         WARN_ON(!irqs_disabled());
1018
1019         WARN_ON(!list_empty(&ctx->active_ctx_list));
1020
1021         list_add(&ctx->active_ctx_list, head);
1022 }
1023
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026         WARN_ON(!irqs_disabled());
1027
1028         WARN_ON(list_empty(&ctx->active_ctx_list));
1029
1030         list_del_init(&ctx->active_ctx_list);
1031 }
1032
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040         struct perf_event_context *ctx;
1041
1042         ctx = container_of(head, struct perf_event_context, rcu_head);
1043         kfree(ctx->task_ctx_data);
1044         kfree(ctx);
1045 }
1046
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049         if (atomic_dec_and_test(&ctx->refcount)) {
1050                 if (ctx->parent_ctx)
1051                         put_ctx(ctx->parent_ctx);
1052                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053                         put_task_struct(ctx->task);
1054                 call_rcu(&ctx->rcu_head, free_ctx);
1055         }
1056 }
1057
1058 /*
1059  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060  * perf_pmu_migrate_context() we need some magic.
1061  *
1062  * Those places that change perf_event::ctx will hold both
1063  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064  *
1065  * Lock ordering is by mutex address. There are two other sites where
1066  * perf_event_context::mutex nests and those are:
1067  *
1068  *  - perf_event_exit_task_context()    [ child , 0 ]
1069  *      perf_event_exit_event()
1070  *        put_event()                   [ parent, 1 ]
1071  *
1072  *  - perf_event_init_context()         [ parent, 0 ]
1073  *      inherit_task_group()
1074  *        inherit_group()
1075  *          inherit_event()
1076  *            perf_event_alloc()
1077  *              perf_init_event()
1078  *                perf_try_init_event() [ child , 1 ]
1079  *
1080  * While it appears there is an obvious deadlock here -- the parent and child
1081  * nesting levels are inverted between the two. This is in fact safe because
1082  * life-time rules separate them. That is an exiting task cannot fork, and a
1083  * spawning task cannot (yet) exit.
1084  *
1085  * But remember that that these are parent<->child context relations, and
1086  * migration does not affect children, therefore these two orderings should not
1087  * interact.
1088  *
1089  * The change in perf_event::ctx does not affect children (as claimed above)
1090  * because the sys_perf_event_open() case will install a new event and break
1091  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092  * concerned with cpuctx and that doesn't have children.
1093  *
1094  * The places that change perf_event::ctx will issue:
1095  *
1096  *   perf_remove_from_context();
1097  *   synchronize_rcu();
1098  *   perf_install_in_context();
1099  *
1100  * to affect the change. The remove_from_context() + synchronize_rcu() should
1101  * quiesce the event, after which we can install it in the new location. This
1102  * means that only external vectors (perf_fops, prctl) can perturb the event
1103  * while in transit. Therefore all such accessors should also acquire
1104  * perf_event_context::mutex to serialize against this.
1105  *
1106  * However; because event->ctx can change while we're waiting to acquire
1107  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108  * function.
1109  *
1110  * Lock order:
1111  *    cred_guard_mutex
1112  *      task_struct::perf_event_mutex
1113  *        perf_event_context::mutex
1114  *          perf_event::child_mutex;
1115  *            perf_event_context::lock
1116  *          perf_event::mmap_mutex
1117  *          mmap_sem
1118  */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122         struct perf_event_context *ctx;
1123
1124 again:
1125         rcu_read_lock();
1126         ctx = ACCESS_ONCE(event->ctx);
1127         if (!atomic_inc_not_zero(&ctx->refcount)) {
1128                 rcu_read_unlock();
1129                 goto again;
1130         }
1131         rcu_read_unlock();
1132
1133         mutex_lock_nested(&ctx->mutex, nesting);
1134         if (event->ctx != ctx) {
1135                 mutex_unlock(&ctx->mutex);
1136                 put_ctx(ctx);
1137                 goto again;
1138         }
1139
1140         return ctx;
1141 }
1142
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146         return perf_event_ctx_lock_nested(event, 0);
1147 }
1148
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150                                   struct perf_event_context *ctx)
1151 {
1152         mutex_unlock(&ctx->mutex);
1153         put_ctx(ctx);
1154 }
1155
1156 /*
1157  * This must be done under the ctx->lock, such as to serialize against
1158  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159  * calling scheduler related locks and ctx->lock nests inside those.
1160  */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165
1166         lockdep_assert_held(&ctx->lock);
1167
1168         if (parent_ctx)
1169                 ctx->parent_ctx = NULL;
1170         ctx->generation++;
1171
1172         return parent_ctx;
1173 }
1174
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177         /*
1178          * only top level events have the pid namespace they were created in
1179          */
1180         if (event->parent)
1181                 event = event->parent;
1182
1183         return task_tgid_nr_ns(p, event->ns);
1184 }
1185
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188         /*
1189          * only top level events have the pid namespace they were created in
1190          */
1191         if (event->parent)
1192                 event = event->parent;
1193
1194         return task_pid_nr_ns(p, event->ns);
1195 }
1196
1197 /*
1198  * If we inherit events we want to return the parent event id
1199  * to userspace.
1200  */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203         u64 id = event->id;
1204
1205         if (event->parent)
1206                 id = event->parent->id;
1207
1208         return id;
1209 }
1210
1211 /*
1212  * Get the perf_event_context for a task and lock it.
1213  *
1214  * This has to cope with with the fact that until it is locked,
1215  * the context could get moved to another task.
1216  */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220         struct perf_event_context *ctx;
1221
1222 retry:
1223         /*
1224          * One of the few rules of preemptible RCU is that one cannot do
1225          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226          * part of the read side critical section was irqs-enabled -- see
1227          * rcu_read_unlock_special().
1228          *
1229          * Since ctx->lock nests under rq->lock we must ensure the entire read
1230          * side critical section has interrupts disabled.
1231          */
1232         local_irq_save(*flags);
1233         rcu_read_lock();
1234         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235         if (ctx) {
1236                 /*
1237                  * If this context is a clone of another, it might
1238                  * get swapped for another underneath us by
1239                  * perf_event_task_sched_out, though the
1240                  * rcu_read_lock() protects us from any context
1241                  * getting freed.  Lock the context and check if it
1242                  * got swapped before we could get the lock, and retry
1243                  * if so.  If we locked the right context, then it
1244                  * can't get swapped on us any more.
1245                  */
1246                 raw_spin_lock(&ctx->lock);
1247                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248                         raw_spin_unlock(&ctx->lock);
1249                         rcu_read_unlock();
1250                         local_irq_restore(*flags);
1251                         goto retry;
1252                 }
1253
1254                 if (ctx->task == TASK_TOMBSTONE ||
1255                     !atomic_inc_not_zero(&ctx->refcount)) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         ctx = NULL;
1258                 } else {
1259                         WARN_ON_ONCE(ctx->task != task);
1260                 }
1261         }
1262         rcu_read_unlock();
1263         if (!ctx)
1264                 local_irq_restore(*flags);
1265         return ctx;
1266 }
1267
1268 /*
1269  * Get the context for a task and increment its pin_count so it
1270  * can't get swapped to another task.  This also increments its
1271  * reference count so that the context can't get freed.
1272  */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276         struct perf_event_context *ctx;
1277         unsigned long flags;
1278
1279         ctx = perf_lock_task_context(task, ctxn, &flags);
1280         if (ctx) {
1281                 ++ctx->pin_count;
1282                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283         }
1284         return ctx;
1285 }
1286
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289         unsigned long flags;
1290
1291         raw_spin_lock_irqsave(&ctx->lock, flags);
1292         --ctx->pin_count;
1293         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295
1296 /*
1297  * Update the record of the current time in a context.
1298  */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301         u64 now = perf_clock();
1302
1303         ctx->time += now - ctx->timestamp;
1304         ctx->timestamp = now;
1305 }
1306
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309         struct perf_event_context *ctx = event->ctx;
1310
1311         if (is_cgroup_event(event))
1312                 return perf_cgroup_event_time(event);
1313
1314         return ctx ? ctx->time : 0;
1315 }
1316
1317 /*
1318  * Update the total_time_enabled and total_time_running fields for a event.
1319  */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322         struct perf_event_context *ctx = event->ctx;
1323         u64 run_end;
1324
1325         lockdep_assert_held(&ctx->lock);
1326
1327         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329                 return;
1330
1331         /*
1332          * in cgroup mode, time_enabled represents
1333          * the time the event was enabled AND active
1334          * tasks were in the monitored cgroup. This is
1335          * independent of the activity of the context as
1336          * there may be a mix of cgroup and non-cgroup events.
1337          *
1338          * That is why we treat cgroup events differently
1339          * here.
1340          */
1341         if (is_cgroup_event(event))
1342                 run_end = perf_cgroup_event_time(event);
1343         else if (ctx->is_active)
1344                 run_end = ctx->time;
1345         else
1346                 run_end = event->tstamp_stopped;
1347
1348         event->total_time_enabled = run_end - event->tstamp_enabled;
1349
1350         if (event->state == PERF_EVENT_STATE_INACTIVE)
1351                 run_end = event->tstamp_stopped;
1352         else
1353                 run_end = perf_event_time(event);
1354
1355         event->total_time_running = run_end - event->tstamp_running;
1356
1357 }
1358
1359 /*
1360  * Update total_time_enabled and total_time_running for all events in a group.
1361  */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364         struct perf_event *event;
1365
1366         update_event_times(leader);
1367         list_for_each_entry(event, &leader->sibling_list, group_entry)
1368                 update_event_times(event);
1369 }
1370
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374         if (event->attr.pinned)
1375                 return &ctx->pinned_groups;
1376         else
1377                 return &ctx->flexible_groups;
1378 }
1379
1380 /*
1381  * Add a event from the lists for its context.
1382  * Must be called with ctx->mutex and ctx->lock held.
1383  */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387         lockdep_assert_held(&ctx->lock);
1388
1389         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390         event->attach_state |= PERF_ATTACH_CONTEXT;
1391
1392         /*
1393          * If we're a stand alone event or group leader, we go to the context
1394          * list, group events are kept attached to the group so that
1395          * perf_group_detach can, at all times, locate all siblings.
1396          */
1397         if (event->group_leader == event) {
1398                 struct list_head *list;
1399
1400                 if (is_software_event(event))
1401                         event->group_flags |= PERF_GROUP_SOFTWARE;
1402
1403                 list = ctx_group_list(event, ctx);
1404                 list_add_tail(&event->group_entry, list);
1405         }
1406
1407         if (is_cgroup_event(event))
1408                 ctx->nr_cgroups++;
1409
1410         list_add_rcu(&event->event_entry, &ctx->event_list);
1411         ctx->nr_events++;
1412         if (event->attr.inherit_stat)
1413                 ctx->nr_stat++;
1414
1415         ctx->generation++;
1416 }
1417
1418 /*
1419  * Initialize event state based on the perf_event_attr::disabled.
1420  */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424                                               PERF_EVENT_STATE_INACTIVE;
1425 }
1426
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429         int entry = sizeof(u64); /* value */
1430         int size = 0;
1431         int nr = 1;
1432
1433         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434                 size += sizeof(u64);
1435
1436         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437                 size += sizeof(u64);
1438
1439         if (event->attr.read_format & PERF_FORMAT_ID)
1440                 entry += sizeof(u64);
1441
1442         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443                 nr += nr_siblings;
1444                 size += sizeof(u64);
1445         }
1446
1447         size += entry * nr;
1448         event->read_size = size;
1449 }
1450
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453         struct perf_sample_data *data;
1454         u16 size = 0;
1455
1456         if (sample_type & PERF_SAMPLE_IP)
1457                 size += sizeof(data->ip);
1458
1459         if (sample_type & PERF_SAMPLE_ADDR)
1460                 size += sizeof(data->addr);
1461
1462         if (sample_type & PERF_SAMPLE_PERIOD)
1463                 size += sizeof(data->period);
1464
1465         if (sample_type & PERF_SAMPLE_WEIGHT)
1466                 size += sizeof(data->weight);
1467
1468         if (sample_type & PERF_SAMPLE_READ)
1469                 size += event->read_size;
1470
1471         if (sample_type & PERF_SAMPLE_DATA_SRC)
1472                 size += sizeof(data->data_src.val);
1473
1474         if (sample_type & PERF_SAMPLE_TRANSACTION)
1475                 size += sizeof(data->txn);
1476
1477         event->header_size = size;
1478 }
1479
1480 /*
1481  * Called at perf_event creation and when events are attached/detached from a
1482  * group.
1483  */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486         __perf_event_read_size(event,
1487                                event->group_leader->nr_siblings);
1488         __perf_event_header_size(event, event->attr.sample_type);
1489 }
1490
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493         struct perf_sample_data *data;
1494         u64 sample_type = event->attr.sample_type;
1495         u16 size = 0;
1496
1497         if (sample_type & PERF_SAMPLE_TID)
1498                 size += sizeof(data->tid_entry);
1499
1500         if (sample_type & PERF_SAMPLE_TIME)
1501                 size += sizeof(data->time);
1502
1503         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504                 size += sizeof(data->id);
1505
1506         if (sample_type & PERF_SAMPLE_ID)
1507                 size += sizeof(data->id);
1508
1509         if (sample_type & PERF_SAMPLE_STREAM_ID)
1510                 size += sizeof(data->stream_id);
1511
1512         if (sample_type & PERF_SAMPLE_CPU)
1513                 size += sizeof(data->cpu_entry);
1514
1515         event->id_header_size = size;
1516 }
1517
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520         /*
1521          * The values computed here will be over-written when we actually
1522          * attach the event.
1523          */
1524         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526         perf_event__id_header_size(event);
1527
1528         /*
1529          * Sum the lot; should not exceed the 64k limit we have on records.
1530          * Conservative limit to allow for callchains and other variable fields.
1531          */
1532         if (event->read_size + event->header_size +
1533             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534                 return false;
1535
1536         return true;
1537 }
1538
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541         struct perf_event *group_leader = event->group_leader, *pos;
1542
1543         /*
1544          * We can have double attach due to group movement in perf_event_open.
1545          */
1546         if (event->attach_state & PERF_ATTACH_GROUP)
1547                 return;
1548
1549         event->attach_state |= PERF_ATTACH_GROUP;
1550
1551         if (group_leader == event)
1552                 return;
1553
1554         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555
1556         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557                         !is_software_event(event))
1558                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559
1560         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561         group_leader->nr_siblings++;
1562
1563         perf_event__header_size(group_leader);
1564
1565         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566                 perf_event__header_size(pos);
1567 }
1568
1569 /*
1570  * Remove a event from the lists for its context.
1571  * Must be called with ctx->mutex and ctx->lock held.
1572  */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576         struct perf_cpu_context *cpuctx;
1577
1578         WARN_ON_ONCE(event->ctx != ctx);
1579         lockdep_assert_held(&ctx->lock);
1580
1581         /*
1582          * We can have double detach due to exit/hot-unplug + close.
1583          */
1584         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585                 return;
1586
1587         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588
1589         if (is_cgroup_event(event)) {
1590                 ctx->nr_cgroups--;
1591                 /*
1592                  * Because cgroup events are always per-cpu events, this will
1593                  * always be called from the right CPU.
1594                  */
1595                 cpuctx = __get_cpu_context(ctx);
1596                 /*
1597                  * If there are no more cgroup events then clear cgrp to avoid
1598                  * stale pointer in update_cgrp_time_from_cpuctx().
1599                  */
1600                 if (!ctx->nr_cgroups)
1601                         cpuctx->cgrp = NULL;
1602         }
1603
1604         ctx->nr_events--;
1605         if (event->attr.inherit_stat)
1606                 ctx->nr_stat--;
1607
1608         list_del_rcu(&event->event_entry);
1609
1610         if (event->group_leader == event)
1611                 list_del_init(&event->group_entry);
1612
1613         update_group_times(event);
1614
1615         /*
1616          * If event was in error state, then keep it
1617          * that way, otherwise bogus counts will be
1618          * returned on read(). The only way to get out
1619          * of error state is by explicit re-enabling
1620          * of the event
1621          */
1622         if (event->state > PERF_EVENT_STATE_OFF)
1623                 event->state = PERF_EVENT_STATE_OFF;
1624
1625         ctx->generation++;
1626 }
1627
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630         struct perf_event *sibling, *tmp;
1631         struct list_head *list = NULL;
1632
1633         /*
1634          * We can have double detach due to exit/hot-unplug + close.
1635          */
1636         if (!(event->attach_state & PERF_ATTACH_GROUP))
1637                 return;
1638
1639         event->attach_state &= ~PERF_ATTACH_GROUP;
1640
1641         /*
1642          * If this is a sibling, remove it from its group.
1643          */
1644         if (event->group_leader != event) {
1645                 list_del_init(&event->group_entry);
1646                 event->group_leader->nr_siblings--;
1647                 goto out;
1648         }
1649
1650         if (!list_empty(&event->group_entry))
1651                 list = &event->group_entry;
1652
1653         /*
1654          * If this was a group event with sibling events then
1655          * upgrade the siblings to singleton events by adding them
1656          * to whatever list we are on.
1657          */
1658         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659                 if (list)
1660                         list_move_tail(&sibling->group_entry, list);
1661                 sibling->group_leader = sibling;
1662
1663                 /* Inherit group flags from the previous leader */
1664                 sibling->group_flags = event->group_flags;
1665
1666                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1667         }
1668
1669 out:
1670         perf_event__header_size(event->group_leader);
1671
1672         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673                 perf_event__header_size(tmp);
1674 }
1675
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678         return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680
1681 static inline int __pmu_filter_match(struct perf_event *event)
1682 {
1683         struct pmu *pmu = event->pmu;
1684         return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686
1687 /*
1688  * Check whether we should attempt to schedule an event group based on
1689  * PMU-specific filtering. An event group can consist of HW and SW events,
1690  * potentially with a SW leader, so we must check all the filters, to
1691  * determine whether a group is schedulable:
1692  */
1693 static inline int pmu_filter_match(struct perf_event *event)
1694 {
1695         struct perf_event *child;
1696
1697         if (!__pmu_filter_match(event))
1698                 return 0;
1699
1700         list_for_each_entry(child, &event->sibling_list, group_entry) {
1701                 if (!__pmu_filter_match(child))
1702                         return 0;
1703         }
1704
1705         return 1;
1706 }
1707
1708 static inline int
1709 event_filter_match(struct perf_event *event)
1710 {
1711         return (event->cpu == -1 || event->cpu == smp_processor_id())
1712             && perf_cgroup_match(event) && pmu_filter_match(event);
1713 }
1714
1715 static void
1716 event_sched_out(struct perf_event *event,
1717                   struct perf_cpu_context *cpuctx,
1718                   struct perf_event_context *ctx)
1719 {
1720         u64 tstamp = perf_event_time(event);
1721         u64 delta;
1722
1723         WARN_ON_ONCE(event->ctx != ctx);
1724         lockdep_assert_held(&ctx->lock);
1725
1726         /*
1727          * An event which could not be activated because of
1728          * filter mismatch still needs to have its timings
1729          * maintained, otherwise bogus information is return
1730          * via read() for time_enabled, time_running:
1731          */
1732         if (event->state == PERF_EVENT_STATE_INACTIVE
1733             && !event_filter_match(event)) {
1734                 delta = tstamp - event->tstamp_stopped;
1735                 event->tstamp_running += delta;
1736                 event->tstamp_stopped = tstamp;
1737         }
1738
1739         if (event->state != PERF_EVENT_STATE_ACTIVE)
1740                 return;
1741
1742         perf_pmu_disable(event->pmu);
1743
1744         event->tstamp_stopped = tstamp;
1745         event->pmu->del(event, 0);
1746         event->oncpu = -1;
1747         event->state = PERF_EVENT_STATE_INACTIVE;
1748         if (event->pending_disable) {
1749                 event->pending_disable = 0;
1750                 event->state = PERF_EVENT_STATE_OFF;
1751         }
1752
1753         if (!is_software_event(event))
1754                 cpuctx->active_oncpu--;
1755         if (!--ctx->nr_active)
1756                 perf_event_ctx_deactivate(ctx);
1757         if (event->attr.freq && event->attr.sample_freq)
1758                 ctx->nr_freq--;
1759         if (event->attr.exclusive || !cpuctx->active_oncpu)
1760                 cpuctx->exclusive = 0;
1761
1762         perf_pmu_enable(event->pmu);
1763 }
1764
1765 static void
1766 group_sched_out(struct perf_event *group_event,
1767                 struct perf_cpu_context *cpuctx,
1768                 struct perf_event_context *ctx)
1769 {
1770         struct perf_event *event;
1771         int state = group_event->state;
1772
1773         event_sched_out(group_event, cpuctx, ctx);
1774
1775         /*
1776          * Schedule out siblings (if any):
1777          */
1778         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1779                 event_sched_out(event, cpuctx, ctx);
1780
1781         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1782                 cpuctx->exclusive = 0;
1783 }
1784
1785 #define DETACH_GROUP    0x01UL
1786
1787 /*
1788  * Cross CPU call to remove a performance event
1789  *
1790  * We disable the event on the hardware level first. After that we
1791  * remove it from the context list.
1792  */
1793 static void
1794 __perf_remove_from_context(struct perf_event *event,
1795                            struct perf_cpu_context *cpuctx,
1796                            struct perf_event_context *ctx,
1797                            void *info)
1798 {
1799         unsigned long flags = (unsigned long)info;
1800
1801         event_sched_out(event, cpuctx, ctx);
1802         if (flags & DETACH_GROUP)
1803                 perf_group_detach(event);
1804         list_del_event(event, ctx);
1805
1806         if (!ctx->nr_events && ctx->is_active) {
1807                 ctx->is_active = 0;
1808                 if (ctx->task) {
1809                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1810                         cpuctx->task_ctx = NULL;
1811                 }
1812         }
1813 }
1814
1815 /*
1816  * Remove the event from a task's (or a CPU's) list of events.
1817  *
1818  * If event->ctx is a cloned context, callers must make sure that
1819  * every task struct that event->ctx->task could possibly point to
1820  * remains valid.  This is OK when called from perf_release since
1821  * that only calls us on the top-level context, which can't be a clone.
1822  * When called from perf_event_exit_task, it's OK because the
1823  * context has been detached from its task.
1824  */
1825 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1826 {
1827         lockdep_assert_held(&event->ctx->mutex);
1828
1829         event_function_call(event, __perf_remove_from_context, (void *)flags);
1830 }
1831
1832 /*
1833  * Cross CPU call to disable a performance event
1834  */
1835 static void __perf_event_disable(struct perf_event *event,
1836                                  struct perf_cpu_context *cpuctx,
1837                                  struct perf_event_context *ctx,
1838                                  void *info)
1839 {
1840         if (event->state < PERF_EVENT_STATE_INACTIVE)
1841                 return;
1842
1843         update_context_time(ctx);
1844         update_cgrp_time_from_event(event);
1845         update_group_times(event);
1846         if (event == event->group_leader)
1847                 group_sched_out(event, cpuctx, ctx);
1848         else
1849                 event_sched_out(event, cpuctx, ctx);
1850         event->state = PERF_EVENT_STATE_OFF;
1851 }
1852
1853 /*
1854  * Disable a event.
1855  *
1856  * If event->ctx is a cloned context, callers must make sure that
1857  * every task struct that event->ctx->task could possibly point to
1858  * remains valid.  This condition is satisifed when called through
1859  * perf_event_for_each_child or perf_event_for_each because they
1860  * hold the top-level event's child_mutex, so any descendant that
1861  * goes to exit will block in perf_event_exit_event().
1862  *
1863  * When called from perf_pending_event it's OK because event->ctx
1864  * is the current context on this CPU and preemption is disabled,
1865  * hence we can't get into perf_event_task_sched_out for this context.
1866  */
1867 static void _perf_event_disable(struct perf_event *event)
1868 {
1869         struct perf_event_context *ctx = event->ctx;
1870
1871         raw_spin_lock_irq(&ctx->lock);
1872         if (event->state <= PERF_EVENT_STATE_OFF) {
1873                 raw_spin_unlock_irq(&ctx->lock);
1874                 return;
1875         }
1876         raw_spin_unlock_irq(&ctx->lock);
1877
1878         event_function_call(event, __perf_event_disable, NULL);
1879 }
1880
1881 void perf_event_disable_local(struct perf_event *event)
1882 {
1883         event_function_local(event, __perf_event_disable, NULL);
1884 }
1885
1886 /*
1887  * Strictly speaking kernel users cannot create groups and therefore this
1888  * interface does not need the perf_event_ctx_lock() magic.
1889  */
1890 void perf_event_disable(struct perf_event *event)
1891 {
1892         struct perf_event_context *ctx;
1893
1894         ctx = perf_event_ctx_lock(event);
1895         _perf_event_disable(event);
1896         perf_event_ctx_unlock(event, ctx);
1897 }
1898 EXPORT_SYMBOL_GPL(perf_event_disable);
1899
1900 static void perf_set_shadow_time(struct perf_event *event,
1901                                  struct perf_event_context *ctx,
1902                                  u64 tstamp)
1903 {
1904         /*
1905          * use the correct time source for the time snapshot
1906          *
1907          * We could get by without this by leveraging the
1908          * fact that to get to this function, the caller
1909          * has most likely already called update_context_time()
1910          * and update_cgrp_time_xx() and thus both timestamp
1911          * are identical (or very close). Given that tstamp is,
1912          * already adjusted for cgroup, we could say that:
1913          *    tstamp - ctx->timestamp
1914          * is equivalent to
1915          *    tstamp - cgrp->timestamp.
1916          *
1917          * Then, in perf_output_read(), the calculation would
1918          * work with no changes because:
1919          * - event is guaranteed scheduled in
1920          * - no scheduled out in between
1921          * - thus the timestamp would be the same
1922          *
1923          * But this is a bit hairy.
1924          *
1925          * So instead, we have an explicit cgroup call to remain
1926          * within the time time source all along. We believe it
1927          * is cleaner and simpler to understand.
1928          */
1929         if (is_cgroup_event(event))
1930                 perf_cgroup_set_shadow_time(event, tstamp);
1931         else
1932                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1933 }
1934
1935 #define MAX_INTERRUPTS (~0ULL)
1936
1937 static void perf_log_throttle(struct perf_event *event, int enable);
1938 static void perf_log_itrace_start(struct perf_event *event);
1939
1940 static int
1941 event_sched_in(struct perf_event *event,
1942                  struct perf_cpu_context *cpuctx,
1943                  struct perf_event_context *ctx)
1944 {
1945         u64 tstamp = perf_event_time(event);
1946         int ret = 0;
1947
1948         lockdep_assert_held(&ctx->lock);
1949
1950         if (event->state <= PERF_EVENT_STATE_OFF)
1951                 return 0;
1952
1953         WRITE_ONCE(event->oncpu, smp_processor_id());
1954         /*
1955          * Order event::oncpu write to happen before the ACTIVE state
1956          * is visible.
1957          */
1958         smp_wmb();
1959         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1960
1961         /*
1962          * Unthrottle events, since we scheduled we might have missed several
1963          * ticks already, also for a heavily scheduling task there is little
1964          * guarantee it'll get a tick in a timely manner.
1965          */
1966         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1967                 perf_log_throttle(event, 1);
1968                 event->hw.interrupts = 0;
1969         }
1970
1971         /*
1972          * The new state must be visible before we turn it on in the hardware:
1973          */
1974         smp_wmb();
1975
1976         perf_pmu_disable(event->pmu);
1977
1978         perf_set_shadow_time(event, ctx, tstamp);
1979
1980         perf_log_itrace_start(event);
1981
1982         if (event->pmu->add(event, PERF_EF_START)) {
1983                 event->state = PERF_EVENT_STATE_INACTIVE;
1984                 event->oncpu = -1;
1985                 ret = -EAGAIN;
1986                 goto out;
1987         }
1988
1989         event->tstamp_running += tstamp - event->tstamp_stopped;
1990
1991         if (!is_software_event(event))
1992                 cpuctx->active_oncpu++;
1993         if (!ctx->nr_active++)
1994                 perf_event_ctx_activate(ctx);
1995         if (event->attr.freq && event->attr.sample_freq)
1996                 ctx->nr_freq++;
1997
1998         if (event->attr.exclusive)
1999                 cpuctx->exclusive = 1;
2000
2001 out:
2002         perf_pmu_enable(event->pmu);
2003
2004         return ret;
2005 }
2006
2007 static int
2008 group_sched_in(struct perf_event *group_event,
2009                struct perf_cpu_context *cpuctx,
2010                struct perf_event_context *ctx)
2011 {
2012         struct perf_event *event, *partial_group = NULL;
2013         struct pmu *pmu = ctx->pmu;
2014         u64 now = ctx->time;
2015         bool simulate = false;
2016
2017         if (group_event->state == PERF_EVENT_STATE_OFF)
2018                 return 0;
2019
2020         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2021
2022         if (event_sched_in(group_event, cpuctx, ctx)) {
2023                 pmu->cancel_txn(pmu);
2024                 perf_mux_hrtimer_restart(cpuctx);
2025                 return -EAGAIN;
2026         }
2027
2028         /*
2029          * Schedule in siblings as one group (if any):
2030          */
2031         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2032                 if (event_sched_in(event, cpuctx, ctx)) {
2033                         partial_group = event;
2034                         goto group_error;
2035                 }
2036         }
2037
2038         if (!pmu->commit_txn(pmu))
2039                 return 0;
2040
2041 group_error:
2042         /*
2043          * Groups can be scheduled in as one unit only, so undo any
2044          * partial group before returning:
2045          * The events up to the failed event are scheduled out normally,
2046          * tstamp_stopped will be updated.
2047          *
2048          * The failed events and the remaining siblings need to have
2049          * their timings updated as if they had gone thru event_sched_in()
2050          * and event_sched_out(). This is required to get consistent timings
2051          * across the group. This also takes care of the case where the group
2052          * could never be scheduled by ensuring tstamp_stopped is set to mark
2053          * the time the event was actually stopped, such that time delta
2054          * calculation in update_event_times() is correct.
2055          */
2056         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2057                 if (event == partial_group)
2058                         simulate = true;
2059
2060                 if (simulate) {
2061                         event->tstamp_running += now - event->tstamp_stopped;
2062                         event->tstamp_stopped = now;
2063                 } else {
2064                         event_sched_out(event, cpuctx, ctx);
2065                 }
2066         }
2067         event_sched_out(group_event, cpuctx, ctx);
2068
2069         pmu->cancel_txn(pmu);
2070
2071         perf_mux_hrtimer_restart(cpuctx);
2072
2073         return -EAGAIN;
2074 }
2075
2076 /*
2077  * Work out whether we can put this event group on the CPU now.
2078  */
2079 static int group_can_go_on(struct perf_event *event,
2080                            struct perf_cpu_context *cpuctx,
2081                            int can_add_hw)
2082 {
2083         /*
2084          * Groups consisting entirely of software events can always go on.
2085          */
2086         if (event->group_flags & PERF_GROUP_SOFTWARE)
2087                 return 1;
2088         /*
2089          * If an exclusive group is already on, no other hardware
2090          * events can go on.
2091          */
2092         if (cpuctx->exclusive)
2093                 return 0;
2094         /*
2095          * If this group is exclusive and there are already
2096          * events on the CPU, it can't go on.
2097          */
2098         if (event->attr.exclusive && cpuctx->active_oncpu)
2099                 return 0;
2100         /*
2101          * Otherwise, try to add it if all previous groups were able
2102          * to go on.
2103          */
2104         return can_add_hw;
2105 }
2106
2107 static void add_event_to_ctx(struct perf_event *event,
2108                                struct perf_event_context *ctx)
2109 {
2110         u64 tstamp = perf_event_time(event);
2111
2112         list_add_event(event, ctx);
2113         perf_group_attach(event);
2114         event->tstamp_enabled = tstamp;
2115         event->tstamp_running = tstamp;
2116         event->tstamp_stopped = tstamp;
2117 }
2118
2119 static void ctx_sched_out(struct perf_event_context *ctx,
2120                           struct perf_cpu_context *cpuctx,
2121                           enum event_type_t event_type);
2122 static void
2123 ctx_sched_in(struct perf_event_context *ctx,
2124              struct perf_cpu_context *cpuctx,
2125              enum event_type_t event_type,
2126              struct task_struct *task);
2127
2128 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2129                                struct perf_event_context *ctx)
2130 {
2131         if (!cpuctx->task_ctx)
2132                 return;
2133
2134         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2135                 return;
2136
2137         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2138 }
2139
2140 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2141                                 struct perf_event_context *ctx,
2142                                 struct task_struct *task)
2143 {
2144         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2145         if (ctx)
2146                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2147         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2148         if (ctx)
2149                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2150 }
2151
2152 static void ctx_resched(struct perf_cpu_context *cpuctx,
2153                         struct perf_event_context *task_ctx)
2154 {
2155         perf_pmu_disable(cpuctx->ctx.pmu);
2156         if (task_ctx)
2157                 task_ctx_sched_out(cpuctx, task_ctx);
2158         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2159         perf_event_sched_in(cpuctx, task_ctx, current);
2160         perf_pmu_enable(cpuctx->ctx.pmu);
2161 }
2162
2163 /*
2164  * Cross CPU call to install and enable a performance event
2165  *
2166  * Very similar to remote_function() + event_function() but cannot assume that
2167  * things like ctx->is_active and cpuctx->task_ctx are set.
2168  */
2169 static int  __perf_install_in_context(void *info)
2170 {
2171         struct perf_event *event = info;
2172         struct perf_event_context *ctx = event->ctx;
2173         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2174         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2175         bool activate = true;
2176         int ret = 0;
2177
2178         raw_spin_lock(&cpuctx->ctx.lock);
2179         if (ctx->task) {
2180                 raw_spin_lock(&ctx->lock);
2181                 task_ctx = ctx;
2182
2183                 /* If we're on the wrong CPU, try again */
2184                 if (task_cpu(ctx->task) != smp_processor_id()) {
2185                         ret = -ESRCH;
2186                         goto unlock;
2187                 }
2188
2189                 /*
2190                  * If we're on the right CPU, see if the task we target is
2191                  * current, if not we don't have to activate the ctx, a future
2192                  * context switch will do that for us.
2193                  */
2194                 if (ctx->task != current)
2195                         activate = false;
2196                 else
2197                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2198
2199         } else if (task_ctx) {
2200                 raw_spin_lock(&task_ctx->lock);
2201         }
2202
2203         if (activate) {
2204                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2205                 add_event_to_ctx(event, ctx);
2206                 ctx_resched(cpuctx, task_ctx);
2207         } else {
2208                 add_event_to_ctx(event, ctx);
2209         }
2210
2211 unlock:
2212         perf_ctx_unlock(cpuctx, task_ctx);
2213
2214         return ret;
2215 }
2216
2217 /*
2218  * Attach a performance event to a context.
2219  *
2220  * Very similar to event_function_call, see comment there.
2221  */
2222 static void
2223 perf_install_in_context(struct perf_event_context *ctx,
2224                         struct perf_event *event,
2225                         int cpu)
2226 {
2227         struct task_struct *task = READ_ONCE(ctx->task);
2228
2229         lockdep_assert_held(&ctx->mutex);
2230
2231         event->ctx = ctx;
2232         if (event->cpu != -1)
2233                 event->cpu = cpu;
2234
2235         if (!task) {
2236                 cpu_function_call(cpu, __perf_install_in_context, event);
2237                 return;
2238         }
2239
2240         /*
2241          * Should not happen, we validate the ctx is still alive before calling.
2242          */
2243         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2244                 return;
2245
2246         /*
2247          * Installing events is tricky because we cannot rely on ctx->is_active
2248          * to be set in case this is the nr_events 0 -> 1 transition.
2249          */
2250 again:
2251         /*
2252          * Cannot use task_function_call() because we need to run on the task's
2253          * CPU regardless of whether its current or not.
2254          */
2255         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2256                 return;
2257
2258         raw_spin_lock_irq(&ctx->lock);
2259         task = ctx->task;
2260         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2261                 /*
2262                  * Cannot happen because we already checked above (which also
2263                  * cannot happen), and we hold ctx->mutex, which serializes us
2264                  * against perf_event_exit_task_context().
2265                  */
2266                 raw_spin_unlock_irq(&ctx->lock);
2267                 return;
2268         }
2269         raw_spin_unlock_irq(&ctx->lock);
2270         /*
2271          * Since !ctx->is_active doesn't mean anything, we must IPI
2272          * unconditionally.
2273          */
2274         goto again;
2275 }
2276
2277 /*
2278  * Put a event into inactive state and update time fields.
2279  * Enabling the leader of a group effectively enables all
2280  * the group members that aren't explicitly disabled, so we
2281  * have to update their ->tstamp_enabled also.
2282  * Note: this works for group members as well as group leaders
2283  * since the non-leader members' sibling_lists will be empty.
2284  */
2285 static void __perf_event_mark_enabled(struct perf_event *event)
2286 {
2287         struct perf_event *sub;
2288         u64 tstamp = perf_event_time(event);
2289
2290         event->state = PERF_EVENT_STATE_INACTIVE;
2291         event->tstamp_enabled = tstamp - event->total_time_enabled;
2292         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2293                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2294                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2295         }
2296 }
2297
2298 /*
2299  * Cross CPU call to enable a performance event
2300  */
2301 static void __perf_event_enable(struct perf_event *event,
2302                                 struct perf_cpu_context *cpuctx,
2303                                 struct perf_event_context *ctx,
2304                                 void *info)
2305 {
2306         struct perf_event *leader = event->group_leader;
2307         struct perf_event_context *task_ctx;
2308
2309         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2310             event->state <= PERF_EVENT_STATE_ERROR)
2311                 return;
2312
2313         if (ctx->is_active)
2314                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2315
2316         __perf_event_mark_enabled(event);
2317
2318         if (!ctx->is_active)
2319                 return;
2320
2321         if (!event_filter_match(event)) {
2322                 if (is_cgroup_event(event))
2323                         perf_cgroup_defer_enabled(event);
2324                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2325                 return;
2326         }
2327
2328         /*
2329          * If the event is in a group and isn't the group leader,
2330          * then don't put it on unless the group is on.
2331          */
2332         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2333                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2334                 return;
2335         }
2336
2337         task_ctx = cpuctx->task_ctx;
2338         if (ctx->task)
2339                 WARN_ON_ONCE(task_ctx != ctx);
2340
2341         ctx_resched(cpuctx, task_ctx);
2342 }
2343
2344 /*
2345  * Enable a event.
2346  *
2347  * If event->ctx is a cloned context, callers must make sure that
2348  * every task struct that event->ctx->task could possibly point to
2349  * remains valid.  This condition is satisfied when called through
2350  * perf_event_for_each_child or perf_event_for_each as described
2351  * for perf_event_disable.
2352  */
2353 static void _perf_event_enable(struct perf_event *event)
2354 {
2355         struct perf_event_context *ctx = event->ctx;
2356
2357         raw_spin_lock_irq(&ctx->lock);
2358         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2359             event->state <  PERF_EVENT_STATE_ERROR) {
2360                 raw_spin_unlock_irq(&ctx->lock);
2361                 return;
2362         }
2363
2364         /*
2365          * If the event is in error state, clear that first.
2366          *
2367          * That way, if we see the event in error state below, we know that it
2368          * has gone back into error state, as distinct from the task having
2369          * been scheduled away before the cross-call arrived.
2370          */
2371         if (event->state == PERF_EVENT_STATE_ERROR)
2372                 event->state = PERF_EVENT_STATE_OFF;
2373         raw_spin_unlock_irq(&ctx->lock);
2374
2375         event_function_call(event, __perf_event_enable, NULL);
2376 }
2377
2378 /*
2379  * See perf_event_disable();
2380  */
2381 void perf_event_enable(struct perf_event *event)
2382 {
2383         struct perf_event_context *ctx;
2384
2385         ctx = perf_event_ctx_lock(event);
2386         _perf_event_enable(event);
2387         perf_event_ctx_unlock(event, ctx);
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_enable);
2390
2391 struct stop_event_data {
2392         struct perf_event       *event;
2393         unsigned int            restart;
2394 };
2395
2396 static int __perf_event_stop(void *info)
2397 {
2398         struct stop_event_data *sd = info;
2399         struct perf_event *event = sd->event;
2400
2401         /* if it's already INACTIVE, do nothing */
2402         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2403                 return 0;
2404
2405         /* matches smp_wmb() in event_sched_in() */
2406         smp_rmb();
2407
2408         /*
2409          * There is a window with interrupts enabled before we get here,
2410          * so we need to check again lest we try to stop another CPU's event.
2411          */
2412         if (READ_ONCE(event->oncpu) != smp_processor_id())
2413                 return -EAGAIN;
2414
2415         event->pmu->stop(event, PERF_EF_UPDATE);
2416
2417         /*
2418          * May race with the actual stop (through perf_pmu_output_stop()),
2419          * but it is only used for events with AUX ring buffer, and such
2420          * events will refuse to restart because of rb::aux_mmap_count==0,
2421          * see comments in perf_aux_output_begin().
2422          *
2423          * Since this is happening on a event-local CPU, no trace is lost
2424          * while restarting.
2425          */
2426         if (sd->restart)
2427                 event->pmu->start(event, PERF_EF_START);
2428
2429         return 0;
2430 }
2431
2432 static int perf_event_restart(struct perf_event *event)
2433 {
2434         struct stop_event_data sd = {
2435                 .event          = event,
2436                 .restart        = 1,
2437         };
2438         int ret = 0;
2439
2440         do {
2441                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2442                         return 0;
2443
2444                 /* matches smp_wmb() in event_sched_in() */
2445                 smp_rmb();
2446
2447                 /*
2448                  * We only want to restart ACTIVE events, so if the event goes
2449                  * inactive here (event->oncpu==-1), there's nothing more to do;
2450                  * fall through with ret==-ENXIO.
2451                  */
2452                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2453                                         __perf_event_stop, &sd);
2454         } while (ret == -EAGAIN);
2455
2456         return ret;
2457 }
2458
2459 /*
2460  * In order to contain the amount of racy and tricky in the address filter
2461  * configuration management, it is a two part process:
2462  *
2463  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2464  *      we update the addresses of corresponding vmas in
2465  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2466  * (p2) when an event is scheduled in (pmu::add), it calls
2467  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2468  *      if the generation has changed since the previous call.
2469  *
2470  * If (p1) happens while the event is active, we restart it to force (p2).
2471  *
2472  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2473  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2474  *     ioctl;
2475  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2476  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2477  *     for reading;
2478  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2479  *     of exec.
2480  */
2481 void perf_event_addr_filters_sync(struct perf_event *event)
2482 {
2483         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2484
2485         if (!has_addr_filter(event))
2486                 return;
2487
2488         raw_spin_lock(&ifh->lock);
2489         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2490                 event->pmu->addr_filters_sync(event);
2491                 event->hw.addr_filters_gen = event->addr_filters_gen;
2492         }
2493         raw_spin_unlock(&ifh->lock);
2494 }
2495 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2496
2497 static int _perf_event_refresh(struct perf_event *event, int refresh)
2498 {
2499         /*
2500          * not supported on inherited events
2501          */
2502         if (event->attr.inherit || !is_sampling_event(event))
2503                 return -EINVAL;
2504
2505         atomic_add(refresh, &event->event_limit);
2506         _perf_event_enable(event);
2507
2508         return 0;
2509 }
2510
2511 /*
2512  * See perf_event_disable()
2513  */
2514 int perf_event_refresh(struct perf_event *event, int refresh)
2515 {
2516         struct perf_event_context *ctx;
2517         int ret;
2518
2519         ctx = perf_event_ctx_lock(event);
2520         ret = _perf_event_refresh(event, refresh);
2521         perf_event_ctx_unlock(event, ctx);
2522
2523         return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(perf_event_refresh);
2526
2527 static void ctx_sched_out(struct perf_event_context *ctx,
2528                           struct perf_cpu_context *cpuctx,
2529                           enum event_type_t event_type)
2530 {
2531         int is_active = ctx->is_active;
2532         struct perf_event *event;
2533
2534         lockdep_assert_held(&ctx->lock);
2535
2536         if (likely(!ctx->nr_events)) {
2537                 /*
2538                  * See __perf_remove_from_context().
2539                  */
2540                 WARN_ON_ONCE(ctx->is_active);
2541                 if (ctx->task)
2542                         WARN_ON_ONCE(cpuctx->task_ctx);
2543                 return;
2544         }
2545
2546         ctx->is_active &= ~event_type;
2547         if (!(ctx->is_active & EVENT_ALL))
2548                 ctx->is_active = 0;
2549
2550         if (ctx->task) {
2551                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2552                 if (!ctx->is_active)
2553                         cpuctx->task_ctx = NULL;
2554         }
2555
2556         /*
2557          * Always update time if it was set; not only when it changes.
2558          * Otherwise we can 'forget' to update time for any but the last
2559          * context we sched out. For example:
2560          *
2561          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2562          *   ctx_sched_out(.event_type = EVENT_PINNED)
2563          *
2564          * would only update time for the pinned events.
2565          */
2566         if (is_active & EVENT_TIME) {
2567                 /* update (and stop) ctx time */
2568                 update_context_time(ctx);
2569                 update_cgrp_time_from_cpuctx(cpuctx);
2570         }
2571
2572         is_active ^= ctx->is_active; /* changed bits */
2573
2574         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2575                 return;
2576
2577         perf_pmu_disable(ctx->pmu);
2578         if (is_active & EVENT_PINNED) {
2579                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2580                         group_sched_out(event, cpuctx, ctx);
2581         }
2582
2583         if (is_active & EVENT_FLEXIBLE) {
2584                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2585                         group_sched_out(event, cpuctx, ctx);
2586         }
2587         perf_pmu_enable(ctx->pmu);
2588 }
2589
2590 /*
2591  * Test whether two contexts are equivalent, i.e. whether they have both been
2592  * cloned from the same version of the same context.
2593  *
2594  * Equivalence is measured using a generation number in the context that is
2595  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2596  * and list_del_event().
2597  */
2598 static int context_equiv(struct perf_event_context *ctx1,
2599                          struct perf_event_context *ctx2)
2600 {
2601         lockdep_assert_held(&ctx1->lock);
2602         lockdep_assert_held(&ctx2->lock);
2603
2604         /* Pinning disables the swap optimization */
2605         if (ctx1->pin_count || ctx2->pin_count)
2606                 return 0;
2607
2608         /* If ctx1 is the parent of ctx2 */
2609         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2610                 return 1;
2611
2612         /* If ctx2 is the parent of ctx1 */
2613         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2614                 return 1;
2615
2616         /*
2617          * If ctx1 and ctx2 have the same parent; we flatten the parent
2618          * hierarchy, see perf_event_init_context().
2619          */
2620         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2621                         ctx1->parent_gen == ctx2->parent_gen)
2622                 return 1;
2623
2624         /* Unmatched */
2625         return 0;
2626 }
2627
2628 static void __perf_event_sync_stat(struct perf_event *event,
2629                                      struct perf_event *next_event)
2630 {
2631         u64 value;
2632
2633         if (!event->attr.inherit_stat)
2634                 return;
2635
2636         /*
2637          * Update the event value, we cannot use perf_event_read()
2638          * because we're in the middle of a context switch and have IRQs
2639          * disabled, which upsets smp_call_function_single(), however
2640          * we know the event must be on the current CPU, therefore we
2641          * don't need to use it.
2642          */
2643         switch (event->state) {
2644         case PERF_EVENT_STATE_ACTIVE:
2645                 event->pmu->read(event);
2646                 /* fall-through */
2647
2648         case PERF_EVENT_STATE_INACTIVE:
2649                 update_event_times(event);
2650                 break;
2651
2652         default:
2653                 break;
2654         }
2655
2656         /*
2657          * In order to keep per-task stats reliable we need to flip the event
2658          * values when we flip the contexts.
2659          */
2660         value = local64_read(&next_event->count);
2661         value = local64_xchg(&event->count, value);
2662         local64_set(&next_event->count, value);
2663
2664         swap(event->total_time_enabled, next_event->total_time_enabled);
2665         swap(event->total_time_running, next_event->total_time_running);
2666
2667         /*
2668          * Since we swizzled the values, update the user visible data too.
2669          */
2670         perf_event_update_userpage(event);
2671         perf_event_update_userpage(next_event);
2672 }
2673
2674 static void perf_event_sync_stat(struct perf_event_context *ctx,
2675                                    struct perf_event_context *next_ctx)
2676 {
2677         struct perf_event *event, *next_event;
2678
2679         if (!ctx->nr_stat)
2680                 return;
2681
2682         update_context_time(ctx);
2683
2684         event = list_first_entry(&ctx->event_list,
2685                                    struct perf_event, event_entry);
2686
2687         next_event = list_first_entry(&next_ctx->event_list,
2688                                         struct perf_event, event_entry);
2689
2690         while (&event->event_entry != &ctx->event_list &&
2691                &next_event->event_entry != &next_ctx->event_list) {
2692
2693                 __perf_event_sync_stat(event, next_event);
2694
2695                 event = list_next_entry(event, event_entry);
2696                 next_event = list_next_entry(next_event, event_entry);
2697         }
2698 }
2699
2700 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2701                                          struct task_struct *next)
2702 {
2703         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2704         struct perf_event_context *next_ctx;
2705         struct perf_event_context *parent, *next_parent;
2706         struct perf_cpu_context *cpuctx;
2707         int do_switch = 1;
2708
2709         if (likely(!ctx))
2710                 return;
2711
2712         cpuctx = __get_cpu_context(ctx);
2713         if (!cpuctx->task_ctx)
2714                 return;
2715
2716         rcu_read_lock();
2717         next_ctx = next->perf_event_ctxp[ctxn];
2718         if (!next_ctx)
2719                 goto unlock;
2720
2721         parent = rcu_dereference(ctx->parent_ctx);
2722         next_parent = rcu_dereference(next_ctx->parent_ctx);
2723
2724         /* If neither context have a parent context; they cannot be clones. */
2725         if (!parent && !next_parent)
2726                 goto unlock;
2727
2728         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2729                 /*
2730                  * Looks like the two contexts are clones, so we might be
2731                  * able to optimize the context switch.  We lock both
2732                  * contexts and check that they are clones under the
2733                  * lock (including re-checking that neither has been
2734                  * uncloned in the meantime).  It doesn't matter which
2735                  * order we take the locks because no other cpu could
2736                  * be trying to lock both of these tasks.
2737                  */
2738                 raw_spin_lock(&ctx->lock);
2739                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2740                 if (context_equiv(ctx, next_ctx)) {
2741                         WRITE_ONCE(ctx->task, next);
2742                         WRITE_ONCE(next_ctx->task, task);
2743
2744                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2745
2746                         /*
2747                          * RCU_INIT_POINTER here is safe because we've not
2748                          * modified the ctx and the above modification of
2749                          * ctx->task and ctx->task_ctx_data are immaterial
2750                          * since those values are always verified under
2751                          * ctx->lock which we're now holding.
2752                          */
2753                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2754                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2755
2756                         do_switch = 0;
2757
2758                         perf_event_sync_stat(ctx, next_ctx);
2759                 }
2760                 raw_spin_unlock(&next_ctx->lock);
2761                 raw_spin_unlock(&ctx->lock);
2762         }
2763 unlock:
2764         rcu_read_unlock();
2765
2766         if (do_switch) {
2767                 raw_spin_lock(&ctx->lock);
2768                 task_ctx_sched_out(cpuctx, ctx);
2769                 raw_spin_unlock(&ctx->lock);
2770         }
2771 }
2772
2773 void perf_sched_cb_dec(struct pmu *pmu)
2774 {
2775         this_cpu_dec(perf_sched_cb_usages);
2776 }
2777
2778 void perf_sched_cb_inc(struct pmu *pmu)
2779 {
2780         this_cpu_inc(perf_sched_cb_usages);
2781 }
2782
2783 /*
2784  * This function provides the context switch callback to the lower code
2785  * layer. It is invoked ONLY when the context switch callback is enabled.
2786  */
2787 static void perf_pmu_sched_task(struct task_struct *prev,
2788                                 struct task_struct *next,
2789                                 bool sched_in)
2790 {
2791         struct perf_cpu_context *cpuctx;
2792         struct pmu *pmu;
2793         unsigned long flags;
2794
2795         if (prev == next)
2796                 return;
2797
2798         local_irq_save(flags);
2799
2800         rcu_read_lock();
2801
2802         list_for_each_entry_rcu(pmu, &pmus, entry) {
2803                 if (pmu->sched_task) {
2804                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2805
2806                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2807
2808                         perf_pmu_disable(pmu);
2809
2810                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2811
2812                         perf_pmu_enable(pmu);
2813
2814                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2815                 }
2816         }
2817
2818         rcu_read_unlock();
2819
2820         local_irq_restore(flags);
2821 }
2822
2823 static void perf_event_switch(struct task_struct *task,
2824                               struct task_struct *next_prev, bool sched_in);
2825
2826 #define for_each_task_context_nr(ctxn)                                  \
2827         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2828
2829 /*
2830  * Called from scheduler to remove the events of the current task,
2831  * with interrupts disabled.
2832  *
2833  * We stop each event and update the event value in event->count.
2834  *
2835  * This does not protect us against NMI, but disable()
2836  * sets the disabled bit in the control field of event _before_
2837  * accessing the event control register. If a NMI hits, then it will
2838  * not restart the event.
2839  */
2840 void __perf_event_task_sched_out(struct task_struct *task,
2841                                  struct task_struct *next)
2842 {
2843         int ctxn;
2844
2845         if (__this_cpu_read(perf_sched_cb_usages))
2846                 perf_pmu_sched_task(task, next, false);
2847
2848         if (atomic_read(&nr_switch_events))
2849                 perf_event_switch(task, next, false);
2850
2851         for_each_task_context_nr(ctxn)
2852                 perf_event_context_sched_out(task, ctxn, next);
2853
2854         /*
2855          * if cgroup events exist on this CPU, then we need
2856          * to check if we have to switch out PMU state.
2857          * cgroup event are system-wide mode only
2858          */
2859         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2860                 perf_cgroup_sched_out(task, next);
2861 }
2862
2863 /*
2864  * Called with IRQs disabled
2865  */
2866 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2867                               enum event_type_t event_type)
2868 {
2869         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2870 }
2871
2872 static void
2873 ctx_pinned_sched_in(struct perf_event_context *ctx,
2874                     struct perf_cpu_context *cpuctx)
2875 {
2876         struct perf_event *event;
2877
2878         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2879                 if (event->state <= PERF_EVENT_STATE_OFF)
2880                         continue;
2881                 if (!event_filter_match(event))
2882                         continue;
2883
2884                 /* may need to reset tstamp_enabled */
2885                 if (is_cgroup_event(event))
2886                         perf_cgroup_mark_enabled(event, ctx);
2887
2888                 if (group_can_go_on(event, cpuctx, 1))
2889                         group_sched_in(event, cpuctx, ctx);
2890
2891                 /*
2892                  * If this pinned group hasn't been scheduled,
2893                  * put it in error state.
2894                  */
2895                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2896                         update_group_times(event);
2897                         event->state = PERF_EVENT_STATE_ERROR;
2898                 }
2899         }
2900 }
2901
2902 static void
2903 ctx_flexible_sched_in(struct perf_event_context *ctx,
2904                       struct perf_cpu_context *cpuctx)
2905 {
2906         struct perf_event *event;
2907         int can_add_hw = 1;
2908
2909         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2910                 /* Ignore events in OFF or ERROR state */
2911                 if (event->state <= PERF_EVENT_STATE_OFF)
2912                         continue;
2913                 /*
2914                  * Listen to the 'cpu' scheduling filter constraint
2915                  * of events:
2916                  */
2917                 if (!event_filter_match(event))
2918                         continue;
2919
2920                 /* may need to reset tstamp_enabled */
2921                 if (is_cgroup_event(event))
2922                         perf_cgroup_mark_enabled(event, ctx);
2923
2924                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2925                         if (group_sched_in(event, cpuctx, ctx))
2926                                 can_add_hw = 0;
2927                 }
2928         }
2929 }
2930
2931 static void
2932 ctx_sched_in(struct perf_event_context *ctx,
2933              struct perf_cpu_context *cpuctx,
2934              enum event_type_t event_type,
2935              struct task_struct *task)
2936 {
2937         int is_active = ctx->is_active;
2938         u64 now;
2939
2940         lockdep_assert_held(&ctx->lock);
2941
2942         if (likely(!ctx->nr_events))
2943                 return;
2944
2945         ctx->is_active |= (event_type | EVENT_TIME);
2946         if (ctx->task) {
2947                 if (!is_active)
2948                         cpuctx->task_ctx = ctx;
2949                 else
2950                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2951         }
2952
2953         is_active ^= ctx->is_active; /* changed bits */
2954
2955         if (is_active & EVENT_TIME) {
2956                 /* start ctx time */
2957                 now = perf_clock();
2958                 ctx->timestamp = now;
2959                 perf_cgroup_set_timestamp(task, ctx);
2960         }
2961
2962         /*
2963          * First go through the list and put on any pinned groups
2964          * in order to give them the best chance of going on.
2965          */
2966         if (is_active & EVENT_PINNED)
2967                 ctx_pinned_sched_in(ctx, cpuctx);
2968
2969         /* Then walk through the lower prio flexible groups */
2970         if (is_active & EVENT_FLEXIBLE)
2971                 ctx_flexible_sched_in(ctx, cpuctx);
2972 }
2973
2974 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2975                              enum event_type_t event_type,
2976                              struct task_struct *task)
2977 {
2978         struct perf_event_context *ctx = &cpuctx->ctx;
2979
2980         ctx_sched_in(ctx, cpuctx, event_type, task);
2981 }
2982
2983 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2984                                         struct task_struct *task)
2985 {
2986         struct perf_cpu_context *cpuctx;
2987
2988         cpuctx = __get_cpu_context(ctx);
2989         if (cpuctx->task_ctx == ctx)
2990                 return;
2991
2992         perf_ctx_lock(cpuctx, ctx);
2993         perf_pmu_disable(ctx->pmu);
2994         /*
2995          * We want to keep the following priority order:
2996          * cpu pinned (that don't need to move), task pinned,
2997          * cpu flexible, task flexible.
2998          */
2999         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3000         perf_event_sched_in(cpuctx, ctx, task);
3001         perf_pmu_enable(ctx->pmu);
3002         perf_ctx_unlock(cpuctx, ctx);
3003 }
3004
3005 /*
3006  * Called from scheduler to add the events of the current task
3007  * with interrupts disabled.
3008  *
3009  * We restore the event value and then enable it.
3010  *
3011  * This does not protect us against NMI, but enable()
3012  * sets the enabled bit in the control field of event _before_
3013  * accessing the event control register. If a NMI hits, then it will
3014  * keep the event running.
3015  */
3016 void __perf_event_task_sched_in(struct task_struct *prev,
3017                                 struct task_struct *task)
3018 {
3019         struct perf_event_context *ctx;
3020         int ctxn;
3021
3022         /*
3023          * If cgroup events exist on this CPU, then we need to check if we have
3024          * to switch in PMU state; cgroup event are system-wide mode only.
3025          *
3026          * Since cgroup events are CPU events, we must schedule these in before
3027          * we schedule in the task events.
3028          */
3029         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3030                 perf_cgroup_sched_in(prev, task);
3031
3032         for_each_task_context_nr(ctxn) {
3033                 ctx = task->perf_event_ctxp[ctxn];
3034                 if (likely(!ctx))
3035                         continue;
3036
3037                 perf_event_context_sched_in(ctx, task);
3038         }
3039
3040         if (atomic_read(&nr_switch_events))
3041                 perf_event_switch(task, prev, true);
3042
3043         if (__this_cpu_read(perf_sched_cb_usages))
3044                 perf_pmu_sched_task(prev, task, true);
3045 }
3046
3047 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3048 {
3049         u64 frequency = event->attr.sample_freq;
3050         u64 sec = NSEC_PER_SEC;
3051         u64 divisor, dividend;
3052
3053         int count_fls, nsec_fls, frequency_fls, sec_fls;
3054
3055         count_fls = fls64(count);
3056         nsec_fls = fls64(nsec);
3057         frequency_fls = fls64(frequency);
3058         sec_fls = 30;
3059
3060         /*
3061          * We got @count in @nsec, with a target of sample_freq HZ
3062          * the target period becomes:
3063          *
3064          *             @count * 10^9
3065          * period = -------------------
3066          *          @nsec * sample_freq
3067          *
3068          */
3069
3070         /*
3071          * Reduce accuracy by one bit such that @a and @b converge
3072          * to a similar magnitude.
3073          */
3074 #define REDUCE_FLS(a, b)                \
3075 do {                                    \
3076         if (a##_fls > b##_fls) {        \
3077                 a >>= 1;                \
3078                 a##_fls--;              \
3079         } else {                        \
3080                 b >>= 1;                \
3081                 b##_fls--;              \
3082         }                               \
3083 } while (0)
3084
3085         /*
3086          * Reduce accuracy until either term fits in a u64, then proceed with
3087          * the other, so that finally we can do a u64/u64 division.
3088          */
3089         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3090                 REDUCE_FLS(nsec, frequency);
3091                 REDUCE_FLS(sec, count);
3092         }
3093
3094         if (count_fls + sec_fls > 64) {
3095                 divisor = nsec * frequency;
3096
3097                 while (count_fls + sec_fls > 64) {
3098                         REDUCE_FLS(count, sec);
3099                         divisor >>= 1;
3100                 }
3101
3102                 dividend = count * sec;
3103         } else {
3104                 dividend = count * sec;
3105
3106                 while (nsec_fls + frequency_fls > 64) {
3107                         REDUCE_FLS(nsec, frequency);
3108                         dividend >>= 1;
3109                 }
3110
3111                 divisor = nsec * frequency;
3112         }
3113
3114         if (!divisor)
3115                 return dividend;
3116
3117         return div64_u64(dividend, divisor);
3118 }
3119
3120 static DEFINE_PER_CPU(int, perf_throttled_count);
3121 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3122
3123 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3124 {
3125         struct hw_perf_event *hwc = &event->hw;
3126         s64 period, sample_period;
3127         s64 delta;
3128
3129         period = perf_calculate_period(event, nsec, count);
3130
3131         delta = (s64)(period - hwc->sample_period);
3132         delta = (delta + 7) / 8; /* low pass filter */
3133
3134         sample_period = hwc->sample_period + delta;
3135
3136         if (!sample_period)
3137                 sample_period = 1;
3138
3139         hwc->sample_period = sample_period;
3140
3141         if (local64_read(&hwc->period_left) > 8*sample_period) {
3142                 if (disable)
3143                         event->pmu->stop(event, PERF_EF_UPDATE);
3144
3145                 local64_set(&hwc->period_left, 0);
3146
3147                 if (disable)
3148                         event->pmu->start(event, PERF_EF_RELOAD);
3149         }
3150 }
3151
3152 /*
3153  * combine freq adjustment with unthrottling to avoid two passes over the
3154  * events. At the same time, make sure, having freq events does not change
3155  * the rate of unthrottling as that would introduce bias.
3156  */
3157 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3158                                            int needs_unthr)
3159 {
3160         struct perf_event *event;
3161         struct hw_perf_event *hwc;
3162         u64 now, period = TICK_NSEC;
3163         s64 delta;
3164
3165         /*
3166          * only need to iterate over all events iff:
3167          * - context have events in frequency mode (needs freq adjust)
3168          * - there are events to unthrottle on this cpu
3169          */
3170         if (!(ctx->nr_freq || needs_unthr))
3171                 return;
3172
3173         raw_spin_lock(&ctx->lock);
3174         perf_pmu_disable(ctx->pmu);
3175
3176         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3177                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3178                         continue;
3179
3180                 if (!event_filter_match(event))
3181                         continue;
3182
3183                 perf_pmu_disable(event->pmu);
3184
3185                 hwc = &event->hw;
3186
3187                 if (hwc->interrupts == MAX_INTERRUPTS) {
3188                         hwc->interrupts = 0;
3189                         perf_log_throttle(event, 1);
3190                         event->pmu->start(event, 0);
3191                 }
3192
3193                 if (!event->attr.freq || !event->attr.sample_freq)
3194                         goto next;
3195
3196                 /*
3197                  * stop the event and update event->count
3198                  */
3199                 event->pmu->stop(event, PERF_EF_UPDATE);
3200
3201                 now = local64_read(&event->count);
3202                 delta = now - hwc->freq_count_stamp;
3203                 hwc->freq_count_stamp = now;
3204
3205                 /*
3206                  * restart the event
3207                  * reload only if value has changed
3208                  * we have stopped the event so tell that
3209                  * to perf_adjust_period() to avoid stopping it
3210                  * twice.
3211                  */
3212                 if (delta > 0)
3213                         perf_adjust_period(event, period, delta, false);
3214
3215                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3216         next:
3217                 perf_pmu_enable(event->pmu);
3218         }
3219
3220         perf_pmu_enable(ctx->pmu);
3221         raw_spin_unlock(&ctx->lock);
3222 }
3223
3224 /*
3225  * Round-robin a context's events:
3226  */
3227 static void rotate_ctx(struct perf_event_context *ctx)
3228 {
3229         /*
3230          * Rotate the first entry last of non-pinned groups. Rotation might be
3231          * disabled by the inheritance code.
3232          */
3233         if (!ctx->rotate_disable)
3234                 list_rotate_left(&ctx->flexible_groups);
3235 }
3236
3237 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3238 {
3239         struct perf_event_context *ctx = NULL;
3240         int rotate = 0;
3241
3242         if (cpuctx->ctx.nr_events) {
3243                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3244                         rotate = 1;
3245         }
3246
3247         ctx = cpuctx->task_ctx;
3248         if (ctx && ctx->nr_events) {
3249                 if (ctx->nr_events != ctx->nr_active)
3250                         rotate = 1;
3251         }
3252
3253         if (!rotate)
3254                 goto done;
3255
3256         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3257         perf_pmu_disable(cpuctx->ctx.pmu);
3258
3259         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3260         if (ctx)
3261                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3262
3263         rotate_ctx(&cpuctx->ctx);
3264         if (ctx)
3265                 rotate_ctx(ctx);
3266
3267         perf_event_sched_in(cpuctx, ctx, current);
3268
3269         perf_pmu_enable(cpuctx->ctx.pmu);
3270         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3271 done:
3272
3273         return rotate;
3274 }
3275
3276 void perf_event_task_tick(void)
3277 {
3278         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3279         struct perf_event_context *ctx, *tmp;
3280         int throttled;
3281
3282         WARN_ON(!irqs_disabled());
3283
3284         __this_cpu_inc(perf_throttled_seq);
3285         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3286         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3287
3288         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3289                 perf_adjust_freq_unthr_context(ctx, throttled);
3290 }
3291
3292 static int event_enable_on_exec(struct perf_event *event,
3293                                 struct perf_event_context *ctx)
3294 {
3295         if (!event->attr.enable_on_exec)
3296                 return 0;
3297
3298         event->attr.enable_on_exec = 0;
3299         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3300                 return 0;
3301
3302         __perf_event_mark_enabled(event);
3303
3304         return 1;
3305 }
3306
3307 /*
3308  * Enable all of a task's events that have been marked enable-on-exec.
3309  * This expects task == current.
3310  */
3311 static void perf_event_enable_on_exec(int ctxn)
3312 {
3313         struct perf_event_context *ctx, *clone_ctx = NULL;
3314         struct perf_cpu_context *cpuctx;
3315         struct perf_event *event;
3316         unsigned long flags;
3317         int enabled = 0;
3318
3319         local_irq_save(flags);
3320         ctx = current->perf_event_ctxp[ctxn];
3321         if (!ctx || !ctx->nr_events)
3322                 goto out;
3323
3324         cpuctx = __get_cpu_context(ctx);
3325         perf_ctx_lock(cpuctx, ctx);
3326         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3327         list_for_each_entry(event, &ctx->event_list, event_entry)
3328                 enabled |= event_enable_on_exec(event, ctx);
3329
3330         /*
3331          * Unclone and reschedule this context if we enabled any event.
3332          */
3333         if (enabled) {
3334                 clone_ctx = unclone_ctx(ctx);
3335                 ctx_resched(cpuctx, ctx);
3336         }
3337         perf_ctx_unlock(cpuctx, ctx);
3338
3339 out:
3340         local_irq_restore(flags);
3341
3342         if (clone_ctx)
3343                 put_ctx(clone_ctx);
3344 }
3345
3346 struct perf_read_data {
3347         struct perf_event *event;
3348         bool group;
3349         int ret;
3350 };
3351
3352 /*
3353  * Cross CPU call to read the hardware event
3354  */
3355 static void __perf_event_read(void *info)
3356 {
3357         struct perf_read_data *data = info;
3358         struct perf_event *sub, *event = data->event;
3359         struct perf_event_context *ctx = event->ctx;
3360         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3361         struct pmu *pmu = event->pmu;
3362
3363         /*
3364          * If this is a task context, we need to check whether it is
3365          * the current task context of this cpu.  If not it has been
3366          * scheduled out before the smp call arrived.  In that case
3367          * event->count would have been updated to a recent sample
3368          * when the event was scheduled out.
3369          */
3370         if (ctx->task && cpuctx->task_ctx != ctx)
3371                 return;
3372
3373         raw_spin_lock(&ctx->lock);
3374         if (ctx->is_active) {
3375                 update_context_time(ctx);
3376                 update_cgrp_time_from_event(event);
3377         }
3378
3379         update_event_times(event);
3380         if (event->state != PERF_EVENT_STATE_ACTIVE)
3381                 goto unlock;
3382
3383         if (!data->group) {
3384                 pmu->read(event);
3385                 data->ret = 0;
3386                 goto unlock;
3387         }
3388
3389         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3390
3391         pmu->read(event);
3392
3393         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3394                 update_event_times(sub);
3395                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3396                         /*
3397                          * Use sibling's PMU rather than @event's since
3398                          * sibling could be on different (eg: software) PMU.
3399                          */
3400                         sub->pmu->read(sub);
3401                 }
3402         }
3403
3404         data->ret = pmu->commit_txn(pmu);
3405
3406 unlock:
3407         raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 static inline u64 perf_event_count(struct perf_event *event)
3411 {
3412         if (event->pmu->count)
3413                 return event->pmu->count(event);
3414
3415         return __perf_event_count(event);
3416 }
3417
3418 /*
3419  * NMI-safe method to read a local event, that is an event that
3420  * is:
3421  *   - either for the current task, or for this CPU
3422  *   - does not have inherit set, for inherited task events
3423  *     will not be local and we cannot read them atomically
3424  *   - must not have a pmu::count method
3425  */
3426 u64 perf_event_read_local(struct perf_event *event)
3427 {
3428         unsigned long flags;
3429         u64 val;
3430
3431         /*
3432          * Disabling interrupts avoids all counter scheduling (context
3433          * switches, timer based rotation and IPIs).
3434          */
3435         local_irq_save(flags);
3436
3437         /* If this is a per-task event, it must be for current */
3438         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3439                      event->hw.target != current);
3440
3441         /* If this is a per-CPU event, it must be for this CPU */
3442         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3443                      event->cpu != smp_processor_id());
3444
3445         /*
3446          * It must not be an event with inherit set, we cannot read
3447          * all child counters from atomic context.
3448          */
3449         WARN_ON_ONCE(event->attr.inherit);
3450
3451         /*
3452          * It must not have a pmu::count method, those are not
3453          * NMI safe.
3454          */
3455         WARN_ON_ONCE(event->pmu->count);
3456
3457         /*
3458          * If the event is currently on this CPU, its either a per-task event,
3459          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3460          * oncpu == -1).
3461          */
3462         if (event->oncpu == smp_processor_id())
3463                 event->pmu->read(event);
3464
3465         val = local64_read(&event->count);
3466         local_irq_restore(flags);
3467
3468         return val;
3469 }
3470
3471 static int perf_event_read(struct perf_event *event, bool group)
3472 {
3473         int ret = 0;
3474
3475         /*
3476          * If event is enabled and currently active on a CPU, update the
3477          * value in the event structure:
3478          */
3479         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3480                 struct perf_read_data data = {
3481                         .event = event,
3482                         .group = group,
3483                         .ret = 0,
3484                 };
3485                 smp_call_function_single(event->oncpu,
3486                                          __perf_event_read, &data, 1);
3487                 ret = data.ret;
3488         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3489                 struct perf_event_context *ctx = event->ctx;
3490                 unsigned long flags;
3491
3492                 raw_spin_lock_irqsave(&ctx->lock, flags);
3493                 /*
3494                  * may read while context is not active
3495                  * (e.g., thread is blocked), in that case
3496                  * we cannot update context time
3497                  */
3498                 if (ctx->is_active) {
3499                         update_context_time(ctx);
3500                         update_cgrp_time_from_event(event);
3501                 }
3502                 if (group)
3503                         update_group_times(event);
3504                 else
3505                         update_event_times(event);
3506                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3507         }
3508
3509         return ret;
3510 }
3511
3512 /*
3513  * Initialize the perf_event context in a task_struct:
3514  */
3515 static void __perf_event_init_context(struct perf_event_context *ctx)
3516 {
3517         raw_spin_lock_init(&ctx->lock);
3518         mutex_init(&ctx->mutex);
3519         INIT_LIST_HEAD(&ctx->active_ctx_list);
3520         INIT_LIST_HEAD(&ctx->pinned_groups);
3521         INIT_LIST_HEAD(&ctx->flexible_groups);
3522         INIT_LIST_HEAD(&ctx->event_list);
3523         atomic_set(&ctx->refcount, 1);
3524 }
3525
3526 static struct perf_event_context *
3527 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3528 {
3529         struct perf_event_context *ctx;
3530
3531         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3532         if (!ctx)
3533                 return NULL;
3534
3535         __perf_event_init_context(ctx);
3536         if (task) {
3537                 ctx->task = task;
3538                 get_task_struct(task);
3539         }
3540         ctx->pmu = pmu;
3541
3542         return ctx;
3543 }
3544
3545 static struct task_struct *
3546 find_lively_task_by_vpid(pid_t vpid)
3547 {
3548         struct task_struct *task;
3549
3550         rcu_read_lock();
3551         if (!vpid)
3552                 task = current;
3553         else
3554                 task = find_task_by_vpid(vpid);
3555         if (task)
3556                 get_task_struct(task);
3557         rcu_read_unlock();
3558
3559         if (!task)
3560                 return ERR_PTR(-ESRCH);
3561
3562         return task;
3563 }
3564
3565 /*
3566  * Returns a matching context with refcount and pincount.
3567  */
3568 static struct perf_event_context *
3569 find_get_context(struct pmu *pmu, struct task_struct *task,
3570                 struct perf_event *event)
3571 {
3572         struct perf_event_context *ctx, *clone_ctx = NULL;
3573         struct perf_cpu_context *cpuctx;
3574         void *task_ctx_data = NULL;
3575         unsigned long flags;
3576         int ctxn, err;
3577         int cpu = event->cpu;
3578
3579         if (!task) {
3580                 /* Must be root to operate on a CPU event: */
3581                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3582                         return ERR_PTR(-EACCES);
3583
3584                 /*
3585                  * We could be clever and allow to attach a event to an
3586                  * offline CPU and activate it when the CPU comes up, but
3587                  * that's for later.
3588                  */
3589                 if (!cpu_online(cpu))
3590                         return ERR_PTR(-ENODEV);
3591
3592                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3593                 ctx = &cpuctx->ctx;
3594                 get_ctx(ctx);
3595                 ++ctx->pin_count;
3596
3597                 return ctx;
3598         }
3599
3600         err = -EINVAL;
3601         ctxn = pmu->task_ctx_nr;
3602         if (ctxn < 0)
3603                 goto errout;
3604
3605         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3606                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3607                 if (!task_ctx_data) {
3608                         err = -ENOMEM;
3609                         goto errout;
3610                 }
3611         }
3612
3613 retry:
3614         ctx = perf_lock_task_context(task, ctxn, &flags);
3615         if (ctx) {
3616                 clone_ctx = unclone_ctx(ctx);
3617                 ++ctx->pin_count;
3618
3619                 if (task_ctx_data && !ctx->task_ctx_data) {
3620                         ctx->task_ctx_data = task_ctx_data;
3621                         task_ctx_data = NULL;
3622                 }
3623                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3624
3625                 if (clone_ctx)
3626                         put_ctx(clone_ctx);
3627         } else {
3628                 ctx = alloc_perf_context(pmu, task);
3629                 err = -ENOMEM;
3630                 if (!ctx)
3631                         goto errout;
3632
3633                 if (task_ctx_data) {
3634                         ctx->task_ctx_data = task_ctx_data;
3635                         task_ctx_data = NULL;
3636                 }
3637
3638                 err = 0;
3639                 mutex_lock(&task->perf_event_mutex);
3640                 /*
3641                  * If it has already passed perf_event_exit_task().
3642                  * we must see PF_EXITING, it takes this mutex too.
3643                  */
3644                 if (task->flags & PF_EXITING)
3645                         err = -ESRCH;
3646                 else if (task->perf_event_ctxp[ctxn])
3647                         err = -EAGAIN;
3648                 else {
3649                         get_ctx(ctx);
3650                         ++ctx->pin_count;
3651                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3652                 }
3653                 mutex_unlock(&task->perf_event_mutex);
3654
3655                 if (unlikely(err)) {
3656                         put_ctx(ctx);
3657
3658                         if (err == -EAGAIN)
3659                                 goto retry;
3660                         goto errout;
3661                 }
3662         }
3663
3664         kfree(task_ctx_data);
3665         return ctx;
3666
3667 errout:
3668         kfree(task_ctx_data);
3669         return ERR_PTR(err);
3670 }
3671
3672 static void perf_event_free_filter(struct perf_event *event);
3673 static void perf_event_free_bpf_prog(struct perf_event *event);
3674
3675 static void free_event_rcu(struct rcu_head *head)
3676 {
3677         struct perf_event *event;
3678
3679         event = container_of(head, struct perf_event, rcu_head);
3680         if (event->ns)
3681                 put_pid_ns(event->ns);
3682         perf_event_free_filter(event);
3683         kfree(event);
3684 }
3685
3686 static void ring_buffer_attach(struct perf_event *event,
3687                                struct ring_buffer *rb);
3688
3689 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3690 {
3691         if (event->parent)
3692                 return;
3693
3694         if (is_cgroup_event(event))
3695                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3696 }
3697
3698 #ifdef CONFIG_NO_HZ_FULL
3699 static DEFINE_SPINLOCK(nr_freq_lock);
3700 #endif
3701
3702 static void unaccount_freq_event_nohz(void)
3703 {
3704 #ifdef CONFIG_NO_HZ_FULL
3705         spin_lock(&nr_freq_lock);
3706         if (atomic_dec_and_test(&nr_freq_events))
3707                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3708         spin_unlock(&nr_freq_lock);
3709 #endif
3710 }
3711
3712 static void unaccount_freq_event(void)
3713 {
3714         if (tick_nohz_full_enabled())
3715                 unaccount_freq_event_nohz();
3716         else
3717                 atomic_dec(&nr_freq_events);
3718 }
3719
3720 static void unaccount_event(struct perf_event *event)
3721 {
3722         bool dec = false;
3723
3724         if (event->parent)
3725                 return;
3726
3727         if (event->attach_state & PERF_ATTACH_TASK)
3728                 dec = true;
3729         if (event->attr.mmap || event->attr.mmap_data)
3730                 atomic_dec(&nr_mmap_events);
3731         if (event->attr.comm)
3732                 atomic_dec(&nr_comm_events);
3733         if (event->attr.task)
3734                 atomic_dec(&nr_task_events);
3735         if (event->attr.freq)
3736                 unaccount_freq_event();
3737         if (event->attr.context_switch) {
3738                 dec = true;
3739                 atomic_dec(&nr_switch_events);
3740         }
3741         if (is_cgroup_event(event))
3742                 dec = true;
3743         if (has_branch_stack(event))
3744                 dec = true;
3745
3746         if (dec) {
3747                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3748                         schedule_delayed_work(&perf_sched_work, HZ);
3749         }
3750
3751         unaccount_event_cpu(event, event->cpu);
3752 }
3753
3754 static void perf_sched_delayed(struct work_struct *work)
3755 {
3756         mutex_lock(&perf_sched_mutex);
3757         if (atomic_dec_and_test(&perf_sched_count))
3758                 static_branch_disable(&perf_sched_events);
3759         mutex_unlock(&perf_sched_mutex);
3760 }
3761
3762 /*
3763  * The following implement mutual exclusion of events on "exclusive" pmus
3764  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3765  * at a time, so we disallow creating events that might conflict, namely:
3766  *
3767  *  1) cpu-wide events in the presence of per-task events,
3768  *  2) per-task events in the presence of cpu-wide events,
3769  *  3) two matching events on the same context.
3770  *
3771  * The former two cases are handled in the allocation path (perf_event_alloc(),
3772  * _free_event()), the latter -- before the first perf_install_in_context().
3773  */
3774 static int exclusive_event_init(struct perf_event *event)
3775 {
3776         struct pmu *pmu = event->pmu;
3777
3778         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3779                 return 0;
3780
3781         /*
3782          * Prevent co-existence of per-task and cpu-wide events on the
3783          * same exclusive pmu.
3784          *
3785          * Negative pmu::exclusive_cnt means there are cpu-wide
3786          * events on this "exclusive" pmu, positive means there are
3787          * per-task events.
3788          *
3789          * Since this is called in perf_event_alloc() path, event::ctx
3790          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3791          * to mean "per-task event", because unlike other attach states it
3792          * never gets cleared.
3793          */
3794         if (event->attach_state & PERF_ATTACH_TASK) {
3795                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3796                         return -EBUSY;
3797         } else {
3798                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3799                         return -EBUSY;
3800         }
3801
3802         return 0;
3803 }
3804
3805 static void exclusive_event_destroy(struct perf_event *event)
3806 {
3807         struct pmu *pmu = event->pmu;
3808
3809         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3810                 return;
3811
3812         /* see comment in exclusive_event_init() */
3813         if (event->attach_state & PERF_ATTACH_TASK)
3814                 atomic_dec(&pmu->exclusive_cnt);
3815         else
3816                 atomic_inc(&pmu->exclusive_cnt);
3817 }
3818
3819 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3820 {
3821         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3822             (e1->cpu == e2->cpu ||
3823              e1->cpu == -1 ||
3824              e2->cpu == -1))
3825                 return true;
3826         return false;
3827 }
3828
3829 /* Called under the same ctx::mutex as perf_install_in_context() */
3830 static bool exclusive_event_installable(struct perf_event *event,
3831                                         struct perf_event_context *ctx)
3832 {
3833         struct perf_event *iter_event;
3834         struct pmu *pmu = event->pmu;
3835
3836         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3837                 return true;
3838
3839         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3840                 if (exclusive_event_match(iter_event, event))
3841                         return false;
3842         }
3843
3844         return true;
3845 }
3846
3847 static void perf_addr_filters_splice(struct perf_event *event,
3848                                        struct list_head *head);
3849
3850 static void _free_event(struct perf_event *event)
3851 {
3852         irq_work_sync(&event->pending);
3853
3854         unaccount_event(event);
3855
3856         if (event->rb) {
3857                 /*
3858                  * Can happen when we close an event with re-directed output.
3859                  *
3860                  * Since we have a 0 refcount, perf_mmap_close() will skip
3861                  * over us; possibly making our ring_buffer_put() the last.
3862                  */
3863                 mutex_lock(&event->mmap_mutex);
3864                 ring_buffer_attach(event, NULL);
3865                 mutex_unlock(&event->mmap_mutex);
3866         }
3867
3868         if (is_cgroup_event(event))
3869                 perf_detach_cgroup(event);
3870
3871         if (!event->parent) {
3872                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3873                         put_callchain_buffers();
3874         }
3875
3876         perf_event_free_bpf_prog(event);
3877         perf_addr_filters_splice(event, NULL);
3878         kfree(event->addr_filters_offs);
3879
3880         if (event->destroy)
3881                 event->destroy(event);
3882
3883         if (event->ctx)
3884                 put_ctx(event->ctx);
3885
3886         exclusive_event_destroy(event);
3887         module_put(event->pmu->module);
3888
3889         call_rcu(&event->rcu_head, free_event_rcu);
3890 }
3891
3892 /*
3893  * Used to free events which have a known refcount of 1, such as in error paths
3894  * where the event isn't exposed yet and inherited events.
3895  */
3896 static void free_event(struct perf_event *event)
3897 {
3898         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3899                                 "unexpected event refcount: %ld; ptr=%p\n",
3900                                 atomic_long_read(&event->refcount), event)) {
3901                 /* leak to avoid use-after-free */
3902                 return;
3903         }
3904
3905         _free_event(event);
3906 }
3907
3908 /*
3909  * Remove user event from the owner task.
3910  */
3911 static void perf_remove_from_owner(struct perf_event *event)
3912 {
3913         struct task_struct *owner;
3914
3915         rcu_read_lock();
3916         /*
3917          * Matches the smp_store_release() in perf_event_exit_task(). If we
3918          * observe !owner it means the list deletion is complete and we can
3919          * indeed free this event, otherwise we need to serialize on
3920          * owner->perf_event_mutex.
3921          */
3922         owner = lockless_dereference(event->owner);
3923         if (owner) {
3924                 /*
3925                  * Since delayed_put_task_struct() also drops the last
3926                  * task reference we can safely take a new reference
3927                  * while holding the rcu_read_lock().
3928                  */
3929                 get_task_struct(owner);
3930         }
3931         rcu_read_unlock();
3932
3933         if (owner) {
3934                 /*
3935                  * If we're here through perf_event_exit_task() we're already
3936                  * holding ctx->mutex which would be an inversion wrt. the
3937                  * normal lock order.
3938                  *
3939                  * However we can safely take this lock because its the child
3940                  * ctx->mutex.
3941                  */
3942                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3943
3944                 /*
3945                  * We have to re-check the event->owner field, if it is cleared
3946                  * we raced with perf_event_exit_task(), acquiring the mutex
3947                  * ensured they're done, and we can proceed with freeing the
3948                  * event.
3949                  */
3950                 if (event->owner) {
3951                         list_del_init(&event->owner_entry);
3952                         smp_store_release(&event->owner, NULL);
3953                 }
3954                 mutex_unlock(&owner->perf_event_mutex);
3955                 put_task_struct(owner);
3956         }
3957 }
3958
3959 static void put_event(struct perf_event *event)
3960 {
3961         if (!atomic_long_dec_and_test(&event->refcount))
3962                 return;
3963
3964         _free_event(event);
3965 }
3966
3967 /*
3968  * Kill an event dead; while event:refcount will preserve the event
3969  * object, it will not preserve its functionality. Once the last 'user'
3970  * gives up the object, we'll destroy the thing.
3971  */
3972 int perf_event_release_kernel(struct perf_event *event)
3973 {
3974         struct perf_event_context *ctx = event->ctx;
3975         struct perf_event *child, *tmp;
3976
3977         /*
3978          * If we got here through err_file: fput(event_file); we will not have
3979          * attached to a context yet.
3980          */
3981         if (!ctx) {
3982                 WARN_ON_ONCE(event->attach_state &
3983                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3984                 goto no_ctx;
3985         }
3986
3987         if (!is_kernel_event(event))
3988                 perf_remove_from_owner(event);
3989
3990         ctx = perf_event_ctx_lock(event);
3991         WARN_ON_ONCE(ctx->parent_ctx);
3992         perf_remove_from_context(event, DETACH_GROUP);
3993
3994         raw_spin_lock_irq(&ctx->lock);
3995         /*
3996          * Mark this even as STATE_DEAD, there is no external reference to it
3997          * anymore.
3998          *
3999          * Anybody acquiring event->child_mutex after the below loop _must_
4000          * also see this, most importantly inherit_event() which will avoid
4001          * placing more children on the list.
4002          *
4003          * Thus this guarantees that we will in fact observe and kill _ALL_
4004          * child events.
4005          */
4006         event->state = PERF_EVENT_STATE_DEAD;
4007         raw_spin_unlock_irq(&ctx->lock);
4008
4009         perf_event_ctx_unlock(event, ctx);
4010
4011 again:
4012         mutex_lock(&event->child_mutex);
4013         list_for_each_entry(child, &event->child_list, child_list) {
4014
4015                 /*
4016                  * Cannot change, child events are not migrated, see the
4017                  * comment with perf_event_ctx_lock_nested().
4018                  */
4019                 ctx = lockless_dereference(child->ctx);
4020                 /*
4021                  * Since child_mutex nests inside ctx::mutex, we must jump
4022                  * through hoops. We start by grabbing a reference on the ctx.
4023                  *
4024                  * Since the event cannot get freed while we hold the
4025                  * child_mutex, the context must also exist and have a !0
4026                  * reference count.
4027                  */
4028                 get_ctx(ctx);
4029
4030                 /*
4031                  * Now that we have a ctx ref, we can drop child_mutex, and
4032                  * acquire ctx::mutex without fear of it going away. Then we
4033                  * can re-acquire child_mutex.
4034                  */
4035                 mutex_unlock(&event->child_mutex);
4036                 mutex_lock(&ctx->mutex);
4037                 mutex_lock(&event->child_mutex);
4038
4039                 /*
4040                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4041                  * state, if child is still the first entry, it didn't get freed
4042                  * and we can continue doing so.
4043                  */
4044                 tmp = list_first_entry_or_null(&event->child_list,
4045                                                struct perf_event, child_list);
4046                 if (tmp == child) {
4047                         perf_remove_from_context(child, DETACH_GROUP);
4048                         list_del(&child->child_list);
4049                         free_event(child);
4050                         /*
4051                          * This matches the refcount bump in inherit_event();
4052                          * this can't be the last reference.
4053                          */
4054                         put_event(event);
4055                 }
4056
4057                 mutex_unlock(&event->child_mutex);
4058                 mutex_unlock(&ctx->mutex);
4059                 put_ctx(ctx);
4060                 goto again;
4061         }
4062         mutex_unlock(&event->child_mutex);
4063
4064 no_ctx:
4065         put_event(event); /* Must be the 'last' reference */
4066         return 0;
4067 }
4068 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4069
4070 /*
4071  * Called when the last reference to the file is gone.
4072  */
4073 static int perf_release(struct inode *inode, struct file *file)
4074 {
4075         perf_event_release_kernel(file->private_data);
4076         return 0;
4077 }
4078
4079 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4080 {
4081         struct perf_event *child;
4082         u64 total = 0;
4083
4084         *enabled = 0;
4085         *running = 0;
4086
4087         mutex_lock(&event->child_mutex);
4088
4089         (void)perf_event_read(event, false);
4090         total += perf_event_count(event);
4091
4092         *enabled += event->total_time_enabled +
4093                         atomic64_read(&event->child_total_time_enabled);
4094         *running += event->total_time_running +
4095                         atomic64_read(&event->child_total_time_running);
4096
4097         list_for_each_entry(child, &event->child_list, child_list) {
4098                 (void)perf_event_read(child, false);
4099                 total += perf_event_count(child);
4100                 *enabled += child->total_time_enabled;
4101                 *running += child->total_time_running;
4102         }
4103         mutex_unlock(&event->child_mutex);
4104
4105         return total;
4106 }
4107 EXPORT_SYMBOL_GPL(perf_event_read_value);
4108
4109 static int __perf_read_group_add(struct perf_event *leader,
4110                                         u64 read_format, u64 *values)
4111 {
4112         struct perf_event *sub;
4113         int n = 1; /* skip @nr */
4114         int ret;
4115
4116         ret = perf_event_read(leader, true);
4117         if (ret)
4118                 return ret;
4119
4120         /*
4121          * Since we co-schedule groups, {enabled,running} times of siblings
4122          * will be identical to those of the leader, so we only publish one
4123          * set.
4124          */
4125         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4126                 values[n++] += leader->total_time_enabled +
4127                         atomic64_read(&leader->child_total_time_enabled);
4128         }
4129
4130         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4131                 values[n++] += leader->total_time_running +
4132                         atomic64_read(&leader->child_total_time_running);
4133         }
4134
4135         /*
4136          * Write {count,id} tuples for every sibling.
4137          */
4138         values[n++] += perf_event_count(leader);
4139         if (read_format & PERF_FORMAT_ID)
4140                 values[n++] = primary_event_id(leader);
4141
4142         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4143                 values[n++] += perf_event_count(sub);
4144                 if (read_format & PERF_FORMAT_ID)
4145                         values[n++] = primary_event_id(sub);
4146         }
4147
4148         return 0;
4149 }
4150
4151 static int perf_read_group(struct perf_event *event,
4152                                    u64 read_format, char __user *buf)
4153 {
4154         struct perf_event *leader = event->group_leader, *child;
4155         struct perf_event_context *ctx = leader->ctx;
4156         int ret;
4157         u64 *values;
4158
4159         lockdep_assert_held(&ctx->mutex);
4160
4161         values = kzalloc(event->read_size, GFP_KERNEL);
4162         if (!values)
4163                 return -ENOMEM;
4164
4165         values[0] = 1 + leader->nr_siblings;
4166
4167         /*
4168          * By locking the child_mutex of the leader we effectively
4169          * lock the child list of all siblings.. XXX explain how.
4170          */
4171         mutex_lock(&leader->child_mutex);
4172
4173         ret = __perf_read_group_add(leader, read_format, values);
4174         if (ret)
4175                 goto unlock;
4176
4177         list_for_each_entry(child, &leader->child_list, child_list) {
4178                 ret = __perf_read_group_add(child, read_format, values);
4179                 if (ret)
4180                         goto unlock;
4181         }
4182
4183         mutex_unlock(&leader->child_mutex);
4184
4185         ret = event->read_size;
4186         if (copy_to_user(buf, values, event->read_size))
4187                 ret = -EFAULT;
4188         goto out;
4189
4190 unlock:
4191         mutex_unlock(&leader->child_mutex);
4192 out:
4193         kfree(values);
4194         return ret;
4195 }
4196
4197 static int perf_read_one(struct perf_event *event,
4198                                  u64 read_format, char __user *buf)
4199 {
4200         u64 enabled, running;
4201         u64 values[4];
4202         int n = 0;
4203
4204         values[n++] = perf_event_read_value(event, &enabled, &running);
4205         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4206                 values[n++] = enabled;
4207         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4208                 values[n++] = running;
4209         if (read_format & PERF_FORMAT_ID)
4210                 values[n++] = primary_event_id(event);
4211
4212         if (copy_to_user(buf, values, n * sizeof(u64)))
4213                 return -EFAULT;
4214
4215         return n * sizeof(u64);
4216 }
4217
4218 static bool is_event_hup(struct perf_event *event)
4219 {
4220         bool no_children;
4221
4222         if (event->state > PERF_EVENT_STATE_EXIT)
4223                 return false;
4224
4225         mutex_lock(&event->child_mutex);
4226         no_children = list_empty(&event->child_list);
4227         mutex_unlock(&event->child_mutex);
4228         return no_children;
4229 }
4230
4231 /*
4232  * Read the performance event - simple non blocking version for now
4233  */
4234 static ssize_t
4235 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4236 {
4237         u64 read_format = event->attr.read_format;
4238         int ret;
4239
4240         /*
4241          * Return end-of-file for a read on a event that is in
4242          * error state (i.e. because it was pinned but it couldn't be
4243          * scheduled on to the CPU at some point).
4244          */
4245         if (event->state == PERF_EVENT_STATE_ERROR)
4246                 return 0;
4247
4248         if (count < event->read_size)
4249                 return -ENOSPC;
4250
4251         WARN_ON_ONCE(event->ctx->parent_ctx);
4252         if (read_format & PERF_FORMAT_GROUP)
4253                 ret = perf_read_group(event, read_format, buf);
4254         else
4255                 ret = perf_read_one(event, read_format, buf);
4256
4257         return ret;
4258 }
4259
4260 static ssize_t
4261 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4262 {
4263         struct perf_event *event = file->private_data;
4264         struct perf_event_context *ctx;
4265         int ret;
4266
4267         ctx = perf_event_ctx_lock(event);
4268         ret = __perf_read(event, buf, count);
4269         perf_event_ctx_unlock(event, ctx);
4270
4271         return ret;
4272 }
4273
4274 static unsigned int perf_poll(struct file *file, poll_table *wait)
4275 {
4276         struct perf_event *event = file->private_data;
4277         struct ring_buffer *rb;
4278         unsigned int events = POLLHUP;
4279
4280         poll_wait(file, &event->waitq, wait);
4281
4282         if (is_event_hup(event))
4283                 return events;
4284
4285         /*
4286          * Pin the event->rb by taking event->mmap_mutex; otherwise
4287          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4288          */
4289         mutex_lock(&event->mmap_mutex);
4290         rb = event->rb;
4291         if (rb)
4292                 events = atomic_xchg(&rb->poll, 0);
4293         mutex_unlock(&event->mmap_mutex);
4294         return events;
4295 }
4296
4297 static void _perf_event_reset(struct perf_event *event)
4298 {
4299         (void)perf_event_read(event, false);
4300         local64_set(&event->count, 0);
4301         perf_event_update_userpage(event);
4302 }
4303
4304 /*
4305  * Holding the top-level event's child_mutex means that any
4306  * descendant process that has inherited this event will block
4307  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4308  * task existence requirements of perf_event_enable/disable.
4309  */
4310 static void perf_event_for_each_child(struct perf_event *event,
4311                                         void (*func)(struct perf_event *))
4312 {
4313         struct perf_event *child;
4314
4315         WARN_ON_ONCE(event->ctx->parent_ctx);
4316
4317         mutex_lock(&event->child_mutex);
4318         func(event);
4319         list_for_each_entry(child, &event->child_list, child_list)
4320                 func(child);
4321         mutex_unlock(&event->child_mutex);
4322 }
4323
4324 static void perf_event_for_each(struct perf_event *event,
4325                                   void (*func)(struct perf_event *))
4326 {
4327         struct perf_event_context *ctx = event->ctx;
4328         struct perf_event *sibling;
4329
4330         lockdep_assert_held(&ctx->mutex);
4331
4332         event = event->group_leader;
4333
4334         perf_event_for_each_child(event, func);
4335         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4336                 perf_event_for_each_child(sibling, func);
4337 }
4338
4339 static void __perf_event_period(struct perf_event *event,
4340                                 struct perf_cpu_context *cpuctx,
4341                                 struct perf_event_context *ctx,
4342                                 void *info)
4343 {
4344         u64 value = *((u64 *)info);
4345         bool active;
4346
4347         if (event->attr.freq) {
4348                 event->attr.sample_freq = value;
4349         } else {
4350                 event->attr.sample_period = value;
4351                 event->hw.sample_period = value;
4352         }
4353
4354         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4355         if (active) {
4356                 perf_pmu_disable(ctx->pmu);
4357                 /*
4358                  * We could be throttled; unthrottle now to avoid the tick
4359                  * trying to unthrottle while we already re-started the event.
4360                  */
4361                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4362                         event->hw.interrupts = 0;
4363                         perf_log_throttle(event, 1);
4364                 }
4365                 event->pmu->stop(event, PERF_EF_UPDATE);
4366         }
4367
4368         local64_set(&event->hw.period_left, 0);
4369
4370         if (active) {
4371                 event->pmu->start(event, PERF_EF_RELOAD);
4372                 perf_pmu_enable(ctx->pmu);
4373         }
4374 }
4375
4376 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4377 {
4378         u64 value;
4379
4380         if (!is_sampling_event(event))
4381                 return -EINVAL;
4382
4383         if (copy_from_user(&value, arg, sizeof(value)))
4384                 return -EFAULT;
4385
4386         if (!value)
4387                 return -EINVAL;
4388
4389         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4390                 return -EINVAL;
4391
4392         event_function_call(event, __perf_event_period, &value);
4393
4394         return 0;
4395 }
4396
4397 static const struct file_operations perf_fops;
4398
4399 static inline int perf_fget_light(int fd, struct fd *p)
4400 {
4401         struct fd f = fdget(fd);
4402         if (!f.file)
4403                 return -EBADF;
4404
4405         if (f.file->f_op != &perf_fops) {
4406                 fdput(f);
4407                 return -EBADF;
4408         }
4409         *p = f;
4410         return 0;
4411 }
4412
4413 static int perf_event_set_output(struct perf_event *event,
4414                                  struct perf_event *output_event);
4415 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4416 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4417
4418 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4419 {
4420         void (*func)(struct perf_event *);
4421         u32 flags = arg;
4422
4423         switch (cmd) {
4424         case PERF_EVENT_IOC_ENABLE:
4425                 func = _perf_event_enable;
4426                 break;
4427         case PERF_EVENT_IOC_DISABLE:
4428                 func = _perf_event_disable;
4429                 break;
4430         case PERF_EVENT_IOC_RESET:
4431                 func = _perf_event_reset;
4432                 break;
4433
4434         case PERF_EVENT_IOC_REFRESH:
4435                 return _perf_event_refresh(event, arg);
4436
4437         case PERF_EVENT_IOC_PERIOD:
4438                 return perf_event_period(event, (u64 __user *)arg);
4439
4440         case PERF_EVENT_IOC_ID:
4441         {
4442                 u64 id = primary_event_id(event);
4443
4444                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4445                         return -EFAULT;
4446                 return 0;
4447         }
4448
4449         case PERF_EVENT_IOC_SET_OUTPUT:
4450         {
4451                 int ret;
4452                 if (arg != -1) {
4453                         struct perf_event *output_event;
4454                         struct fd output;
4455                         ret = perf_fget_light(arg, &output);
4456                         if (ret)
4457                                 return ret;
4458                         output_event = output.file->private_data;
4459                         ret = perf_event_set_output(event, output_event);
4460                         fdput(output);
4461                 } else {
4462                         ret = perf_event_set_output(event, NULL);
4463                 }
4464                 return ret;
4465         }
4466
4467         case PERF_EVENT_IOC_SET_FILTER:
4468                 return perf_event_set_filter(event, (void __user *)arg);
4469
4470         case PERF_EVENT_IOC_SET_BPF:
4471                 return perf_event_set_bpf_prog(event, arg);
4472
4473         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4474                 struct ring_buffer *rb;
4475
4476                 rcu_read_lock();
4477                 rb = rcu_dereference(event->rb);
4478                 if (!rb || !rb->nr_pages) {
4479                         rcu_read_unlock();
4480                         return -EINVAL;
4481                 }
4482                 rb_toggle_paused(rb, !!arg);
4483                 rcu_read_unlock();
4484                 return 0;
4485         }
4486         default:
4487                 return -ENOTTY;
4488         }
4489
4490         if (flags & PERF_IOC_FLAG_GROUP)
4491                 perf_event_for_each(event, func);
4492         else
4493                 perf_event_for_each_child(event, func);
4494
4495         return 0;
4496 }
4497
4498 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4499 {
4500         struct perf_event *event = file->private_data;
4501         struct perf_event_context *ctx;
4502         long ret;
4503
4504         ctx = perf_event_ctx_lock(event);
4505         ret = _perf_ioctl(event, cmd, arg);
4506         perf_event_ctx_unlock(event, ctx);
4507
4508         return ret;
4509 }
4510
4511 #ifdef CONFIG_COMPAT
4512 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4513                                 unsigned long arg)
4514 {
4515         switch (_IOC_NR(cmd)) {
4516         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4517         case _IOC_NR(PERF_EVENT_IOC_ID):
4518                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4519                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4520                         cmd &= ~IOCSIZE_MASK;
4521                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4522                 }
4523                 break;
4524         }
4525         return perf_ioctl(file, cmd, arg);
4526 }
4527 #else
4528 # define perf_compat_ioctl NULL
4529 #endif
4530
4531 int perf_event_task_enable(void)
4532 {
4533         struct perf_event_context *ctx;
4534         struct perf_event *event;
4535
4536         mutex_lock(&current->perf_event_mutex);
4537         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4538                 ctx = perf_event_ctx_lock(event);
4539                 perf_event_for_each_child(event, _perf_event_enable);
4540                 perf_event_ctx_unlock(event, ctx);
4541         }
4542         mutex_unlock(&current->perf_event_mutex);
4543
4544         return 0;
4545 }
4546
4547 int perf_event_task_disable(void)
4548 {
4549         struct perf_event_context *ctx;
4550         struct perf_event *event;
4551
4552         mutex_lock(&current->perf_event_mutex);
4553         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4554                 ctx = perf_event_ctx_lock(event);
4555                 perf_event_for_each_child(event, _perf_event_disable);
4556                 perf_event_ctx_unlock(event, ctx);
4557         }
4558         mutex_unlock(&current->perf_event_mutex);
4559
4560         return 0;
4561 }
4562
4563 static int perf_event_index(struct perf_event *event)
4564 {
4565         if (event->hw.state & PERF_HES_STOPPED)
4566                 return 0;
4567
4568         if (event->state != PERF_EVENT_STATE_ACTIVE)
4569                 return 0;
4570
4571         return event->pmu->event_idx(event);
4572 }
4573
4574 static void calc_timer_values(struct perf_event *event,
4575                                 u64 *now,
4576                                 u64 *enabled,
4577                                 u64 *running)
4578 {
4579         u64 ctx_time;
4580
4581         *now = perf_clock();
4582         ctx_time = event->shadow_ctx_time + *now;
4583         *enabled = ctx_time - event->tstamp_enabled;
4584         *running = ctx_time - event->tstamp_running;
4585 }
4586
4587 static void perf_event_init_userpage(struct perf_event *event)
4588 {
4589         struct perf_event_mmap_page *userpg;
4590         struct ring_buffer *rb;
4591
4592         rcu_read_lock();
4593         rb = rcu_dereference(event->rb);
4594         if (!rb)
4595                 goto unlock;
4596
4597         userpg = rb->user_page;
4598
4599         /* Allow new userspace to detect that bit 0 is deprecated */
4600         userpg->cap_bit0_is_deprecated = 1;
4601         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4602         userpg->data_offset = PAGE_SIZE;
4603         userpg->data_size = perf_data_size(rb);
4604
4605 unlock:
4606         rcu_read_unlock();
4607 }
4608
4609 void __weak arch_perf_update_userpage(
4610         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4611 {
4612 }
4613
4614 /*
4615  * Callers need to ensure there can be no nesting of this function, otherwise
4616  * the seqlock logic goes bad. We can not serialize this because the arch
4617  * code calls this from NMI context.
4618  */
4619 void perf_event_update_userpage(struct perf_event *event)
4620 {
4621         struct perf_event_mmap_page *userpg;
4622         struct ring_buffer *rb;
4623         u64 enabled, running, now;
4624
4625         rcu_read_lock();
4626         rb = rcu_dereference(event->rb);
4627         if (!rb)
4628                 goto unlock;
4629
4630         /*
4631          * compute total_time_enabled, total_time_running
4632          * based on snapshot values taken when the event
4633          * was last scheduled in.
4634          *
4635          * we cannot simply called update_context_time()
4636          * because of locking issue as we can be called in
4637          * NMI context
4638          */
4639         calc_timer_values(event, &now, &enabled, &running);
4640
4641         userpg = rb->user_page;
4642         /*
4643          * Disable preemption so as to not let the corresponding user-space
4644          * spin too long if we get preempted.
4645          */
4646         preempt_disable();
4647         ++userpg->lock;
4648         barrier();
4649         userpg->index = perf_event_index(event);
4650         userpg->offset = perf_event_count(event);
4651         if (userpg->index)
4652                 userpg->offset -= local64_read(&event->hw.prev_count);
4653
4654         userpg->time_enabled = enabled +
4655                         atomic64_read(&event->child_total_time_enabled);
4656
4657         userpg->time_running = running +
4658                         atomic64_read(&event->child_total_time_running);
4659
4660         arch_perf_update_userpage(event, userpg, now);
4661
4662         barrier();
4663         ++userpg->lock;
4664         preempt_enable();
4665 unlock:
4666         rcu_read_unlock();
4667 }
4668
4669 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4670 {
4671         struct perf_event *event = vma->vm_file->private_data;
4672         struct ring_buffer *rb;
4673         int ret = VM_FAULT_SIGBUS;
4674
4675         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4676                 if (vmf->pgoff == 0)
4677                         ret = 0;
4678                 return ret;
4679         }
4680
4681         rcu_read_lock();
4682         rb = rcu_dereference(event->rb);
4683         if (!rb)
4684                 goto unlock;
4685
4686         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4687                 goto unlock;
4688
4689         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4690         if (!vmf->page)
4691                 goto unlock;
4692
4693         get_page(vmf->page);
4694         vmf->page->mapping = vma->vm_file->f_mapping;
4695         vmf->page->index   = vmf->pgoff;
4696
4697         ret = 0;
4698 unlock:
4699         rcu_read_unlock();
4700
4701         return ret;
4702 }
4703
4704 static void ring_buffer_attach(struct perf_event *event,
4705                                struct ring_buffer *rb)
4706 {
4707         struct ring_buffer *old_rb = NULL;
4708         unsigned long flags;
4709
4710         if (event->rb) {
4711                 /*
4712                  * Should be impossible, we set this when removing
4713                  * event->rb_entry and wait/clear when adding event->rb_entry.
4714                  */
4715                 WARN_ON_ONCE(event->rcu_pending);
4716
4717                 old_rb = event->rb;
4718                 spin_lock_irqsave(&old_rb->event_lock, flags);
4719                 list_del_rcu(&event->rb_entry);
4720                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4721
4722                 event->rcu_batches = get_state_synchronize_rcu();
4723                 event->rcu_pending = 1;
4724         }
4725
4726         if (rb) {
4727                 if (event->rcu_pending) {
4728                         cond_synchronize_rcu(event->rcu_batches);
4729                         event->rcu_pending = 0;
4730                 }
4731
4732                 spin_lock_irqsave(&rb->event_lock, flags);
4733                 list_add_rcu(&event->rb_entry, &rb->event_list);
4734                 spin_unlock_irqrestore(&rb->event_lock, flags);
4735         }
4736
4737         rcu_assign_pointer(event->rb, rb);
4738
4739         if (old_rb) {
4740                 ring_buffer_put(old_rb);
4741                 /*
4742                  * Since we detached before setting the new rb, so that we
4743                  * could attach the new rb, we could have missed a wakeup.
4744                  * Provide it now.
4745                  */
4746                 wake_up_all(&event->waitq);
4747         }
4748 }
4749
4750 static void ring_buffer_wakeup(struct perf_event *event)
4751 {
4752         struct ring_buffer *rb;
4753
4754         rcu_read_lock();
4755         rb = rcu_dereference(event->rb);
4756         if (rb) {
4757                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4758                         wake_up_all(&event->waitq);
4759         }
4760         rcu_read_unlock();
4761 }
4762
4763 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4764 {
4765         struct ring_buffer *rb;
4766
4767         rcu_read_lock();
4768         rb = rcu_dereference(event->rb);
4769         if (rb) {
4770                 if (!atomic_inc_not_zero(&rb->refcount))
4771                         rb = NULL;
4772         }
4773         rcu_read_unlock();
4774
4775         return rb;
4776 }
4777
4778 void ring_buffer_put(struct ring_buffer *rb)
4779 {
4780         if (!atomic_dec_and_test(&rb->refcount))
4781                 return;
4782
4783         WARN_ON_ONCE(!list_empty(&rb->event_list));
4784
4785         call_rcu(&rb->rcu_head, rb_free_rcu);
4786 }
4787
4788 static void perf_mmap_open(struct vm_area_struct *vma)
4789 {
4790         struct perf_event *event = vma->vm_file->private_data;
4791
4792         atomic_inc(&event->mmap_count);
4793         atomic_inc(&event->rb->mmap_count);
4794
4795         if (vma->vm_pgoff)
4796                 atomic_inc(&event->rb->aux_mmap_count);
4797
4798         if (event->pmu->event_mapped)
4799                 event->pmu->event_mapped(event);
4800 }
4801
4802 static void perf_pmu_output_stop(struct perf_event *event);
4803
4804 /*
4805  * A buffer can be mmap()ed multiple times; either directly through the same
4806  * event, or through other events by use of perf_event_set_output().
4807  *
4808  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4809  * the buffer here, where we still have a VM context. This means we need
4810  * to detach all events redirecting to us.
4811  */
4812 static void perf_mmap_close(struct vm_area_struct *vma)
4813 {
4814         struct perf_event *event = vma->vm_file->private_data;
4815
4816         struct ring_buffer *rb = ring_buffer_get(event);
4817         struct user_struct *mmap_user = rb->mmap_user;
4818         int mmap_locked = rb->mmap_locked;
4819         unsigned long size = perf_data_size(rb);
4820
4821         if (event->pmu->event_unmapped)
4822                 event->pmu->event_unmapped(event);
4823
4824         /*
4825          * rb->aux_mmap_count will always drop before rb->mmap_count and
4826          * event->mmap_count, so it is ok to use event->mmap_mutex to
4827          * serialize with perf_mmap here.
4828          */
4829         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4830             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4831                 /*
4832                  * Stop all AUX events that are writing to this buffer,
4833                  * so that we can free its AUX pages and corresponding PMU
4834                  * data. Note that after rb::aux_mmap_count dropped to zero,
4835                  * they won't start any more (see perf_aux_output_begin()).
4836                  */
4837                 perf_pmu_output_stop(event);
4838
4839                 /* now it's safe to free the pages */
4840                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4841                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4842
4843                 /* this has to be the last one */
4844                 rb_free_aux(rb);
4845                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4846
4847                 mutex_unlock(&event->mmap_mutex);
4848         }
4849
4850         atomic_dec(&rb->mmap_count);
4851
4852         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4853                 goto out_put;
4854
4855         ring_buffer_attach(event, NULL);
4856         mutex_unlock(&event->mmap_mutex);
4857
4858         /* If there's still other mmap()s of this buffer, we're done. */
4859         if (atomic_read(&rb->mmap_count))
4860                 goto out_put;
4861
4862         /*
4863          * No other mmap()s, detach from all other events that might redirect
4864          * into the now unreachable buffer. Somewhat complicated by the
4865          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4866          */
4867 again:
4868         rcu_read_lock();
4869         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4870                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4871                         /*
4872                          * This event is en-route to free_event() which will
4873                          * detach it and remove it from the list.
4874                          */
4875                         continue;
4876                 }
4877                 rcu_read_unlock();
4878
4879                 mutex_lock(&event->mmap_mutex);
4880                 /*
4881                  * Check we didn't race with perf_event_set_output() which can
4882                  * swizzle the rb from under us while we were waiting to
4883                  * acquire mmap_mutex.
4884                  *
4885                  * If we find a different rb; ignore this event, a next
4886                  * iteration will no longer find it on the list. We have to
4887                  * still restart the iteration to make sure we're not now
4888                  * iterating the wrong list.
4889                  */
4890                 if (event->rb == rb)
4891                         ring_buffer_attach(event, NULL);
4892
4893                 mutex_unlock(&event->mmap_mutex);
4894                 put_event(event);
4895
4896                 /*
4897                  * Restart the iteration; either we're on the wrong list or
4898                  * destroyed its integrity by doing a deletion.
4899                  */
4900                 goto again;
4901         }
4902         rcu_read_unlock();
4903
4904         /*
4905          * It could be there's still a few 0-ref events on the list; they'll
4906          * get cleaned up by free_event() -- they'll also still have their
4907          * ref on the rb and will free it whenever they are done with it.
4908          *
4909          * Aside from that, this buffer is 'fully' detached and unmapped,
4910          * undo the VM accounting.
4911          */
4912
4913         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4914         vma->vm_mm->pinned_vm -= mmap_locked;
4915         free_uid(mmap_user);
4916
4917 out_put:
4918         ring_buffer_put(rb); /* could be last */
4919 }
4920
4921 static const struct vm_operations_struct perf_mmap_vmops = {
4922         .open           = perf_mmap_open,
4923         .close          = perf_mmap_close, /* non mergable */
4924         .fault          = perf_mmap_fault,
4925         .page_mkwrite   = perf_mmap_fault,
4926 };
4927
4928 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4929 {
4930         struct perf_event *event = file->private_data;
4931         unsigned long user_locked, user_lock_limit;
4932         struct user_struct *user = current_user();
4933         unsigned long locked, lock_limit;
4934         struct ring_buffer *rb = NULL;
4935         unsigned long vma_size;
4936         unsigned long nr_pages;
4937         long user_extra = 0, extra = 0;
4938         int ret = 0, flags = 0;
4939
4940         /*
4941          * Don't allow mmap() of inherited per-task counters. This would
4942          * create a performance issue due to all children writing to the
4943          * same rb.
4944          */
4945         if (event->cpu == -1 && event->attr.inherit)
4946                 return -EINVAL;
4947
4948         if (!(vma->vm_flags & VM_SHARED))
4949                 return -EINVAL;
4950
4951         vma_size = vma->vm_end - vma->vm_start;
4952
4953         if (vma->vm_pgoff == 0) {
4954                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4955         } else {
4956                 /*
4957                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4958                  * mapped, all subsequent mappings should have the same size
4959                  * and offset. Must be above the normal perf buffer.
4960                  */
4961                 u64 aux_offset, aux_size;
4962
4963                 if (!event->rb)
4964                         return -EINVAL;
4965
4966                 nr_pages = vma_size / PAGE_SIZE;
4967
4968                 mutex_lock(&event->mmap_mutex);
4969                 ret = -EINVAL;
4970
4971                 rb = event->rb;
4972                 if (!rb)
4973                         goto aux_unlock;
4974
4975                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4976                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4977
4978                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4979                         goto aux_unlock;
4980
4981                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4982                         goto aux_unlock;
4983
4984                 /* already mapped with a different offset */
4985                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4986                         goto aux_unlock;
4987
4988                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4989                         goto aux_unlock;
4990
4991                 /* already mapped with a different size */
4992                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4993                         goto aux_unlock;
4994
4995                 if (!is_power_of_2(nr_pages))
4996                         goto aux_unlock;
4997
4998                 if (!atomic_inc_not_zero(&rb->mmap_count))
4999                         goto aux_unlock;
5000
5001                 if (rb_has_aux(rb)) {
5002                         atomic_inc(&rb->aux_mmap_count);
5003                         ret = 0;
5004                         goto unlock;
5005                 }
5006
5007                 atomic_set(&rb->aux_mmap_count, 1);
5008                 user_extra = nr_pages;
5009
5010                 goto accounting;
5011         }
5012
5013         /*
5014          * If we have rb pages ensure they're a power-of-two number, so we
5015          * can do bitmasks instead of modulo.
5016          */
5017         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5018                 return -EINVAL;
5019
5020         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5021                 return -EINVAL;
5022
5023         WARN_ON_ONCE(event->ctx->parent_ctx);
5024 again:
5025         mutex_lock(&event->mmap_mutex);
5026         if (event->rb) {
5027                 if (event->rb->nr_pages != nr_pages) {
5028                         ret = -EINVAL;
5029                         goto unlock;
5030                 }
5031
5032                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5033                         /*
5034                          * Raced against perf_mmap_close() through
5035                          * perf_event_set_output(). Try again, hope for better
5036                          * luck.
5037                          */
5038                         mutex_unlock(&event->mmap_mutex);
5039                         goto again;
5040                 }
5041
5042                 goto unlock;
5043         }
5044
5045         user_extra = nr_pages + 1;
5046
5047 accounting:
5048         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5049
5050         /*
5051          * Increase the limit linearly with more CPUs:
5052          */
5053         user_lock_limit *= num_online_cpus();
5054
5055         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5056
5057         if (user_locked > user_lock_limit)
5058                 extra = user_locked - user_lock_limit;
5059
5060         lock_limit = rlimit(RLIMIT_MEMLOCK);
5061         lock_limit >>= PAGE_SHIFT;
5062         locked = vma->vm_mm->pinned_vm + extra;
5063
5064         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5065                 !capable(CAP_IPC_LOCK)) {
5066                 ret = -EPERM;
5067                 goto unlock;
5068         }
5069
5070         WARN_ON(!rb && event->rb);
5071
5072         if (vma->vm_flags & VM_WRITE)
5073                 flags |= RING_BUFFER_WRITABLE;
5074
5075         if (!rb) {
5076                 rb = rb_alloc(nr_pages,
5077                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5078                               event->cpu, flags);
5079
5080                 if (!rb) {
5081                         ret = -ENOMEM;
5082                         goto unlock;
5083                 }
5084
5085                 atomic_set(&rb->mmap_count, 1);
5086                 rb->mmap_user = get_current_user();
5087                 rb->mmap_locked = extra;
5088
5089                 ring_buffer_attach(event, rb);
5090
5091                 perf_event_init_userpage(event);
5092                 perf_event_update_userpage(event);
5093         } else {
5094                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5095                                    event->attr.aux_watermark, flags);
5096                 if (!ret)
5097                         rb->aux_mmap_locked = extra;
5098         }
5099
5100 unlock:
5101         if (!ret) {
5102                 atomic_long_add(user_extra, &user->locked_vm);
5103                 vma->vm_mm->pinned_vm += extra;
5104
5105                 atomic_inc(&event->mmap_count);
5106         } else if (rb) {
5107                 atomic_dec(&rb->mmap_count);
5108         }
5109 aux_unlock:
5110         mutex_unlock(&event->mmap_mutex);
5111
5112         /*
5113          * Since pinned accounting is per vm we cannot allow fork() to copy our
5114          * vma.
5115          */
5116         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5117         vma->vm_ops = &perf_mmap_vmops;
5118
5119         if (event->pmu->event_mapped)
5120                 event->pmu->event_mapped(event);
5121
5122         return ret;
5123 }
5124
5125 static int perf_fasync(int fd, struct file *filp, int on)
5126 {
5127         struct inode *inode = file_inode(filp);
5128         struct perf_event *event = filp->private_data;
5129         int retval;
5130
5131         inode_lock(inode);
5132         retval = fasync_helper(fd, filp, on, &event->fasync);
5133         inode_unlock(inode);
5134
5135         if (retval < 0)
5136                 return retval;
5137
5138         return 0;
5139 }
5140
5141 static const struct file_operations perf_fops = {
5142         .llseek                 = no_llseek,
5143         .release                = perf_release,
5144         .read                   = perf_read,
5145         .poll                   = perf_poll,
5146         .unlocked_ioctl         = perf_ioctl,
5147         .compat_ioctl           = perf_compat_ioctl,
5148         .mmap                   = perf_mmap,
5149         .fasync                 = perf_fasync,
5150 };
5151
5152 /*
5153  * Perf event wakeup
5154  *
5155  * If there's data, ensure we set the poll() state and publish everything
5156  * to user-space before waking everybody up.
5157  */
5158
5159 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5160 {
5161         /* only the parent has fasync state */
5162         if (event->parent)
5163                 event = event->parent;
5164         return &event->fasync;
5165 }
5166
5167 void perf_event_wakeup(struct perf_event *event)
5168 {
5169         ring_buffer_wakeup(event);
5170
5171         if (event->pending_kill) {
5172                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5173                 event->pending_kill = 0;
5174         }
5175 }
5176
5177 static void perf_pending_event(struct irq_work *entry)
5178 {
5179         struct perf_event *event = container_of(entry,
5180                         struct perf_event, pending);
5181         int rctx;
5182
5183         rctx = perf_swevent_get_recursion_context();
5184         /*
5185          * If we 'fail' here, that's OK, it means recursion is already disabled
5186          * and we won't recurse 'further'.
5187          */
5188
5189         if (event->pending_disable) {
5190                 event->pending_disable = 0;
5191                 perf_event_disable_local(event);
5192         }
5193
5194         if (event->pending_wakeup) {
5195                 event->pending_wakeup = 0;
5196                 perf_event_wakeup(event);
5197         }
5198
5199         if (rctx >= 0)
5200                 perf_swevent_put_recursion_context(rctx);
5201 }
5202
5203 /*
5204  * We assume there is only KVM supporting the callbacks.
5205  * Later on, we might change it to a list if there is
5206  * another virtualization implementation supporting the callbacks.
5207  */
5208 struct perf_guest_info_callbacks *perf_guest_cbs;
5209
5210 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5211 {
5212         perf_guest_cbs = cbs;
5213         return 0;
5214 }
5215 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5216
5217 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5218 {
5219         perf_guest_cbs = NULL;
5220         return 0;
5221 }
5222 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5223
5224 static void
5225 perf_output_sample_regs(struct perf_output_handle *handle,
5226                         struct pt_regs *regs, u64 mask)
5227 {
5228         int bit;
5229
5230         for_each_set_bit(bit, (const unsigned long *) &mask,
5231                          sizeof(mask) * BITS_PER_BYTE) {
5232                 u64 val;
5233
5234                 val = perf_reg_value(regs, bit);
5235                 perf_output_put(handle, val);
5236         }
5237 }
5238
5239 static void perf_sample_regs_user(struct perf_regs *regs_user,
5240                                   struct pt_regs *regs,
5241                                   struct pt_regs *regs_user_copy)
5242 {
5243         if (user_mode(regs)) {
5244                 regs_user->abi = perf_reg_abi(current);
5245                 regs_user->regs = regs;
5246         } else if (current->mm) {
5247                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5248         } else {
5249                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5250                 regs_user->regs = NULL;
5251         }
5252 }
5253
5254 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5255                                   struct pt_regs *regs)
5256 {
5257         regs_intr->regs = regs;
5258         regs_intr->abi  = perf_reg_abi(current);
5259 }
5260
5261
5262 /*
5263  * Get remaining task size from user stack pointer.
5264  *
5265  * It'd be better to take stack vma map and limit this more
5266  * precisly, but there's no way to get it safely under interrupt,
5267  * so using TASK_SIZE as limit.
5268  */
5269 static u64 perf_ustack_task_size(struct pt_regs *regs)
5270 {
5271         unsigned long addr = perf_user_stack_pointer(regs);
5272
5273         if (!addr || addr >= TASK_SIZE)
5274                 return 0;
5275
5276         return TASK_SIZE - addr;
5277 }
5278
5279 static u16
5280 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5281                         struct pt_regs *regs)
5282 {
5283         u64 task_size;
5284
5285         /* No regs, no stack pointer, no dump. */
5286         if (!regs)
5287                 return 0;
5288
5289         /*
5290          * Check if we fit in with the requested stack size into the:
5291          * - TASK_SIZE
5292          *   If we don't, we limit the size to the TASK_SIZE.
5293          *
5294          * - remaining sample size
5295          *   If we don't, we customize the stack size to
5296          *   fit in to the remaining sample size.
5297          */
5298
5299         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5300         stack_size = min(stack_size, (u16) task_size);
5301
5302         /* Current header size plus static size and dynamic size. */
5303         header_size += 2 * sizeof(u64);
5304
5305         /* Do we fit in with the current stack dump size? */
5306         if ((u16) (header_size + stack_size) < header_size) {
5307                 /*
5308                  * If we overflow the maximum size for the sample,
5309                  * we customize the stack dump size to fit in.
5310                  */
5311                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5312                 stack_size = round_up(stack_size, sizeof(u64));
5313         }
5314
5315         return stack_size;
5316 }
5317
5318 static void
5319 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5320                           struct pt_regs *regs)
5321 {
5322         /* Case of a kernel thread, nothing to dump */
5323         if (!regs) {
5324                 u64 size = 0;
5325                 perf_output_put(handle, size);
5326         } else {
5327                 unsigned long sp;
5328                 unsigned int rem;
5329                 u64 dyn_size;
5330
5331                 /*
5332                  * We dump:
5333                  * static size
5334                  *   - the size requested by user or the best one we can fit
5335                  *     in to the sample max size
5336                  * data
5337                  *   - user stack dump data
5338                  * dynamic size
5339                  *   - the actual dumped size
5340                  */
5341
5342                 /* Static size. */
5343                 perf_output_put(handle, dump_size);
5344
5345                 /* Data. */
5346                 sp = perf_user_stack_pointer(regs);
5347                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5348                 dyn_size = dump_size - rem;
5349
5350                 perf_output_skip(handle, rem);
5351
5352                 /* Dynamic size. */
5353                 perf_output_put(handle, dyn_size);
5354         }
5355 }
5356
5357 static void __perf_event_header__init_id(struct perf_event_header *header,
5358                                          struct perf_sample_data *data,
5359                                          struct perf_event *event)
5360 {
5361         u64 sample_type = event->attr.sample_type;
5362
5363         data->type = sample_type;
5364         header->size += event->id_header_size;
5365
5366         if (sample_type & PERF_SAMPLE_TID) {
5367                 /* namespace issues */
5368                 data->tid_entry.pid = perf_event_pid(event, current);
5369                 data->tid_entry.tid = perf_event_tid(event, current);
5370         }
5371
5372         if (sample_type & PERF_SAMPLE_TIME)
5373                 data->time = perf_event_clock(event);
5374
5375         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5376                 data->id = primary_event_id(event);
5377
5378         if (sample_type & PERF_SAMPLE_STREAM_ID)
5379                 data->stream_id = event->id;
5380
5381         if (sample_type & PERF_SAMPLE_CPU) {
5382                 data->cpu_entry.cpu      = raw_smp_processor_id();
5383                 data->cpu_entry.reserved = 0;
5384         }
5385 }
5386
5387 void perf_event_header__init_id(struct perf_event_header *header,
5388                                 struct perf_sample_data *data,
5389                                 struct perf_event *event)
5390 {
5391         if (event->attr.sample_id_all)
5392                 __perf_event_header__init_id(header, data, event);
5393 }
5394
5395 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5396                                            struct perf_sample_data *data)
5397 {
5398         u64 sample_type = data->type;
5399
5400         if (sample_type & PERF_SAMPLE_TID)
5401                 perf_output_put(handle, data->tid_entry);
5402
5403         if (sample_type & PERF_SAMPLE_TIME)
5404                 perf_output_put(handle, data->time);
5405
5406         if (sample_type & PERF_SAMPLE_ID)
5407                 perf_output_put(handle, data->id);
5408
5409         if (sample_type & PERF_SAMPLE_STREAM_ID)
5410                 perf_output_put(handle, data->stream_id);
5411
5412         if (sample_type & PERF_SAMPLE_CPU)
5413                 perf_output_put(handle, data->cpu_entry);
5414
5415         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5416                 perf_output_put(handle, data->id);
5417 }
5418
5419 void perf_event__output_id_sample(struct perf_event *event,
5420                                   struct perf_output_handle *handle,
5421                                   struct perf_sample_data *sample)
5422 {
5423         if (event->attr.sample_id_all)
5424                 __perf_event__output_id_sample(handle, sample);
5425 }
5426
5427 static void perf_output_read_one(struct perf_output_handle *handle,
5428                                  struct perf_event *event,
5429                                  u64 enabled, u64 running)
5430 {
5431         u64 read_format = event->attr.read_format;
5432         u64 values[4];
5433         int n = 0;
5434
5435         values[n++] = perf_event_count(event);
5436         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5437                 values[n++] = enabled +
5438                         atomic64_read(&event->child_total_time_enabled);
5439         }
5440         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5441                 values[n++] = running +
5442                         atomic64_read(&event->child_total_time_running);
5443         }
5444         if (read_format & PERF_FORMAT_ID)
5445                 values[n++] = primary_event_id(event);
5446
5447         __output_copy(handle, values, n * sizeof(u64));
5448 }
5449
5450 /*
5451  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5452  */
5453 static void perf_output_read_group(struct perf_output_handle *handle,
5454                             struct perf_event *event,
5455                             u64 enabled, u64 running)
5456 {
5457         struct perf_event *leader = event->group_leader, *sub;
5458         u64 read_format = event->attr.read_format;
5459         u64 values[5];
5460         int n = 0;
5461
5462         values[n++] = 1 + leader->nr_siblings;
5463
5464         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5465                 values[n++] = enabled;
5466
5467         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5468                 values[n++] = running;
5469
5470         if (leader != event)
5471                 leader->pmu->read(leader);
5472
5473         values[n++] = perf_event_count(leader);
5474         if (read_format & PERF_FORMAT_ID)
5475                 values[n++] = primary_event_id(leader);
5476
5477         __output_copy(handle, values, n * sizeof(u64));
5478
5479         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5480                 n = 0;
5481
5482                 if ((sub != event) &&
5483                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5484                         sub->pmu->read(sub);
5485
5486                 values[n++] = perf_event_count(sub);
5487                 if (read_format & PERF_FORMAT_ID)
5488                         values[n++] = primary_event_id(sub);
5489
5490                 __output_copy(handle, values, n * sizeof(u64));
5491         }
5492 }
5493
5494 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5495                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5496
5497 static void perf_output_read(struct perf_output_handle *handle,
5498                              struct perf_event *event)
5499 {
5500         u64 enabled = 0, running = 0, now;
5501         u64 read_format = event->attr.read_format;
5502
5503         /*
5504          * compute total_time_enabled, total_time_running
5505          * based on snapshot values taken when the event
5506          * was last scheduled in.
5507          *
5508          * we cannot simply called update_context_time()
5509          * because of locking issue as we are called in
5510          * NMI context
5511          */
5512         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5513                 calc_timer_values(event, &now, &enabled, &running);
5514
5515         if (event->attr.read_format & PERF_FORMAT_GROUP)
5516                 perf_output_read_group(handle, event, enabled, running);
5517         else
5518                 perf_output_read_one(handle, event, enabled, running);
5519 }
5520
5521 void perf_output_sample(struct perf_output_handle *handle,
5522                         struct perf_event_header *header,
5523                         struct perf_sample_data *data,
5524                         struct perf_event *event)
5525 {
5526         u64 sample_type = data->type;
5527
5528         perf_output_put(handle, *header);
5529
5530         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5531                 perf_output_put(handle, data->id);
5532
5533         if (sample_type & PERF_SAMPLE_IP)
5534                 perf_output_put(handle, data->ip);
5535
5536         if (sample_type & PERF_SAMPLE_TID)
5537                 perf_output_put(handle, data->tid_entry);
5538
5539         if (sample_type & PERF_SAMPLE_TIME)
5540                 perf_output_put(handle, data->time);
5541
5542         if (sample_type & PERF_SAMPLE_ADDR)
5543                 perf_output_put(handle, data->addr);
5544
5545         if (sample_type & PERF_SAMPLE_ID)
5546                 perf_output_put(handle, data->id);
5547
5548         if (sample_type & PERF_SAMPLE_STREAM_ID)
5549                 perf_output_put(handle, data->stream_id);
5550
5551         if (sample_type & PERF_SAMPLE_CPU)
5552                 perf_output_put(handle, data->cpu_entry);
5553
5554         if (sample_type & PERF_SAMPLE_PERIOD)
5555                 perf_output_put(handle, data->period);
5556
5557         if (sample_type & PERF_SAMPLE_READ)
5558                 perf_output_read(handle, event);
5559
5560         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5561                 if (data->callchain) {
5562                         int size = 1;
5563
5564                         if (data->callchain)
5565                                 size += data->callchain->nr;
5566
5567                         size *= sizeof(u64);
5568
5569                         __output_copy(handle, data->callchain, size);
5570                 } else {
5571                         u64 nr = 0;
5572                         perf_output_put(handle, nr);
5573                 }
5574         }
5575
5576         if (sample_type & PERF_SAMPLE_RAW) {
5577                 if (data->raw) {
5578                         u32 raw_size = data->raw->size;
5579                         u32 real_size = round_up(raw_size + sizeof(u32),
5580                                                  sizeof(u64)) - sizeof(u32);
5581                         u64 zero = 0;
5582
5583                         perf_output_put(handle, real_size);
5584                         __output_copy(handle, data->raw->data, raw_size);
5585                         if (real_size - raw_size)
5586                                 __output_copy(handle, &zero, real_size - raw_size);
5587                 } else {
5588                         struct {
5589                                 u32     size;
5590                                 u32     data;
5591                         } raw = {
5592                                 .size = sizeof(u32),
5593                                 .data = 0,
5594                         };
5595                         perf_output_put(handle, raw);
5596                 }
5597         }
5598
5599         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5600                 if (data->br_stack) {
5601                         size_t size;
5602
5603                         size = data->br_stack->nr
5604                              * sizeof(struct perf_branch_entry);
5605
5606                         perf_output_put(handle, data->br_stack->nr);
5607                         perf_output_copy(handle, data->br_stack->entries, size);
5608                 } else {
5609                         /*
5610                          * we always store at least the value of nr
5611                          */
5612                         u64 nr = 0;
5613                         perf_output_put(handle, nr);
5614                 }
5615         }
5616
5617         if (sample_type & PERF_SAMPLE_REGS_USER) {
5618                 u64 abi = data->regs_user.abi;
5619
5620                 /*
5621                  * If there are no regs to dump, notice it through
5622                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5623                  */
5624                 perf_output_put(handle, abi);
5625
5626                 if (abi) {
5627                         u64 mask = event->attr.sample_regs_user;
5628                         perf_output_sample_regs(handle,
5629                                                 data->regs_user.regs,
5630                                                 mask);
5631                 }
5632         }
5633
5634         if (sample_type & PERF_SAMPLE_STACK_USER) {
5635                 perf_output_sample_ustack(handle,
5636                                           data->stack_user_size,
5637                                           data->regs_user.regs);
5638         }
5639
5640         if (sample_type & PERF_SAMPLE_WEIGHT)
5641                 perf_output_put(handle, data->weight);
5642
5643         if (sample_type & PERF_SAMPLE_DATA_SRC)
5644                 perf_output_put(handle, data->data_src.val);
5645
5646         if (sample_type & PERF_SAMPLE_TRANSACTION)
5647                 perf_output_put(handle, data->txn);
5648
5649         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5650                 u64 abi = data->regs_intr.abi;
5651                 /*
5652                  * If there are no regs to dump, notice it through
5653                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5654                  */
5655                 perf_output_put(handle, abi);
5656
5657                 if (abi) {
5658                         u64 mask = event->attr.sample_regs_intr;
5659
5660                         perf_output_sample_regs(handle,
5661                                                 data->regs_intr.regs,
5662                                                 mask);
5663                 }
5664         }
5665
5666         if (!event->attr.watermark) {
5667                 int wakeup_events = event->attr.wakeup_events;
5668
5669                 if (wakeup_events) {
5670                         struct ring_buffer *rb = handle->rb;
5671                         int events = local_inc_return(&rb->events);
5672
5673                         if (events >= wakeup_events) {
5674                                 local_sub(wakeup_events, &rb->events);
5675                                 local_inc(&rb->wakeup);
5676                         }
5677                 }
5678         }
5679 }
5680
5681 void perf_prepare_sample(struct perf_event_header *header,
5682                          struct perf_sample_data *data,
5683                          struct perf_event *event,
5684                          struct pt_regs *regs)
5685 {
5686         u64 sample_type = event->attr.sample_type;
5687
5688         header->type = PERF_RECORD_SAMPLE;
5689         header->size = sizeof(*header) + event->header_size;
5690
5691         header->misc = 0;
5692         header->misc |= perf_misc_flags(regs);
5693
5694         __perf_event_header__init_id(header, data, event);
5695
5696         if (sample_type & PERF_SAMPLE_IP)
5697                 data->ip = perf_instruction_pointer(regs);
5698
5699         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5700                 int size = 1;
5701
5702                 data->callchain = perf_callchain(event, regs);
5703
5704                 if (data->callchain)
5705                         size += data->callchain->nr;
5706
5707                 header->size += size * sizeof(u64);
5708         }
5709
5710         if (sample_type & PERF_SAMPLE_RAW) {
5711                 int size = sizeof(u32);
5712
5713                 if (data->raw)
5714                         size += data->raw->size;
5715                 else
5716                         size += sizeof(u32);
5717
5718                 header->size += round_up(size, sizeof(u64));
5719         }
5720
5721         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5722                 int size = sizeof(u64); /* nr */
5723                 if (data->br_stack) {
5724                         size += data->br_stack->nr
5725                               * sizeof(struct perf_branch_entry);
5726                 }
5727                 header->size += size;
5728         }
5729
5730         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5731                 perf_sample_regs_user(&data->regs_user, regs,
5732                                       &data->regs_user_copy);
5733
5734         if (sample_type & PERF_SAMPLE_REGS_USER) {
5735                 /* regs dump ABI info */
5736                 int size = sizeof(u64);
5737
5738                 if (data->regs_user.regs) {
5739                         u64 mask = event->attr.sample_regs_user;
5740                         size += hweight64(mask) * sizeof(u64);
5741                 }
5742
5743                 header->size += size;
5744         }
5745
5746         if (sample_type & PERF_SAMPLE_STACK_USER) {
5747                 /*
5748                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5749                  * processed as the last one or have additional check added
5750                  * in case new sample type is added, because we could eat
5751                  * up the rest of the sample size.
5752                  */
5753                 u16 stack_size = event->attr.sample_stack_user;
5754                 u16 size = sizeof(u64);
5755
5756                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5757                                                      data->regs_user.regs);
5758
5759                 /*
5760                  * If there is something to dump, add space for the dump
5761                  * itself and for the field that tells the dynamic size,
5762                  * which is how many have been actually dumped.
5763                  */
5764                 if (stack_size)
5765                         size += sizeof(u64) + stack_size;
5766
5767                 data->stack_user_size = stack_size;
5768                 header->size += size;
5769         }
5770
5771         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5772                 /* regs dump ABI info */
5773                 int size = sizeof(u64);
5774
5775                 perf_sample_regs_intr(&data->regs_intr, regs);
5776
5777                 if (data->regs_intr.regs) {
5778                         u64 mask = event->attr.sample_regs_intr;
5779
5780                         size += hweight64(mask) * sizeof(u64);
5781                 }
5782
5783                 header->size += size;
5784         }
5785 }
5786
5787 static void __always_inline
5788 __perf_event_output(struct perf_event *event,
5789                     struct perf_sample_data *data,
5790                     struct pt_regs *regs,
5791                     int (*output_begin)(struct perf_output_handle *,
5792                                         struct perf_event *,
5793                                         unsigned int))
5794 {
5795         struct perf_output_handle handle;
5796         struct perf_event_header header;
5797
5798         /* protect the callchain buffers */
5799         rcu_read_lock();
5800
5801         perf_prepare_sample(&header, data, event, regs);
5802
5803         if (output_begin(&handle, event, header.size))
5804                 goto exit;
5805
5806         perf_output_sample(&handle, &header, data, event);
5807
5808         perf_output_end(&handle);
5809
5810 exit:
5811         rcu_read_unlock();
5812 }
5813
5814 void
5815 perf_event_output_forward(struct perf_event *event,
5816                          struct perf_sample_data *data,
5817                          struct pt_regs *regs)
5818 {
5819         __perf_event_output(event, data, regs, perf_output_begin_forward);
5820 }
5821
5822 void
5823 perf_event_output_backward(struct perf_event *event,
5824                            struct perf_sample_data *data,
5825                            struct pt_regs *regs)
5826 {
5827         __perf_event_output(event, data, regs, perf_output_begin_backward);
5828 }
5829
5830 void
5831 perf_event_output(struct perf_event *event,
5832                   struct perf_sample_data *data,
5833                   struct pt_regs *regs)
5834 {
5835         __perf_event_output(event, data, regs, perf_output_begin);
5836 }
5837
5838 /*
5839  * read event_id
5840  */
5841
5842 struct perf_read_event {
5843         struct perf_event_header        header;
5844
5845         u32                             pid;
5846         u32                             tid;
5847 };
5848
5849 static void
5850 perf_event_read_event(struct perf_event *event,
5851                         struct task_struct *task)
5852 {
5853         struct perf_output_handle handle;
5854         struct perf_sample_data sample;
5855         struct perf_read_event read_event = {
5856                 .header = {
5857                         .type = PERF_RECORD_READ,
5858                         .misc = 0,
5859                         .size = sizeof(read_event) + event->read_size,
5860                 },
5861                 .pid = perf_event_pid(event, task),
5862                 .tid = perf_event_tid(event, task),
5863         };
5864         int ret;
5865
5866         perf_event_header__init_id(&read_event.header, &sample, event);
5867         ret = perf_output_begin(&handle, event, read_event.header.size);
5868         if (ret)
5869                 return;
5870
5871         perf_output_put(&handle, read_event);
5872         perf_output_read(&handle, event);
5873         perf_event__output_id_sample(event, &handle, &sample);
5874
5875         perf_output_end(&handle);
5876 }
5877
5878 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5879
5880 static void
5881 perf_event_aux_ctx(struct perf_event_context *ctx,
5882                    perf_event_aux_output_cb output,
5883                    void *data, bool all)
5884 {
5885         struct perf_event *event;
5886
5887         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5888                 if (!all) {
5889                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5890                                 continue;
5891                         if (!event_filter_match(event))
5892                                 continue;
5893                 }
5894
5895                 output(event, data);
5896         }
5897 }
5898
5899 static void
5900 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5901                         struct perf_event_context *task_ctx)
5902 {
5903         rcu_read_lock();
5904         preempt_disable();
5905         perf_event_aux_ctx(task_ctx, output, data, false);
5906         preempt_enable();
5907         rcu_read_unlock();
5908 }
5909
5910 static void
5911 perf_event_aux(perf_event_aux_output_cb output, void *data,
5912                struct perf_event_context *task_ctx)
5913 {
5914         struct perf_cpu_context *cpuctx;
5915         struct perf_event_context *ctx;
5916         struct pmu *pmu;
5917         int ctxn;
5918
5919         /*
5920          * If we have task_ctx != NULL we only notify
5921          * the task context itself. The task_ctx is set
5922          * only for EXIT events before releasing task
5923          * context.
5924          */
5925         if (task_ctx) {
5926                 perf_event_aux_task_ctx(output, data, task_ctx);
5927                 return;
5928         }
5929
5930         rcu_read_lock();
5931         list_for_each_entry_rcu(pmu, &pmus, entry) {
5932                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5933                 if (cpuctx->unique_pmu != pmu)
5934                         goto next;
5935                 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5936                 ctxn = pmu->task_ctx_nr;
5937                 if (ctxn < 0)
5938                         goto next;
5939                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5940                 if (ctx)
5941                         perf_event_aux_ctx(ctx, output, data, false);
5942 next:
5943                 put_cpu_ptr(pmu->pmu_cpu_context);
5944         }
5945         rcu_read_unlock();
5946 }
5947
5948 /*
5949  * Clear all file-based filters at exec, they'll have to be
5950  * re-instated when/if these objects are mmapped again.
5951  */
5952 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5953 {
5954         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5955         struct perf_addr_filter *filter;
5956         unsigned int restart = 0, count = 0;
5957         unsigned long flags;
5958
5959         if (!has_addr_filter(event))
5960                 return;
5961
5962         raw_spin_lock_irqsave(&ifh->lock, flags);
5963         list_for_each_entry(filter, &ifh->list, entry) {
5964                 if (filter->inode) {
5965                         event->addr_filters_offs[count] = 0;
5966                         restart++;
5967                 }
5968
5969                 count++;
5970         }
5971
5972         if (restart)
5973                 event->addr_filters_gen++;
5974         raw_spin_unlock_irqrestore(&ifh->lock, flags);
5975
5976         if (restart)
5977                 perf_event_restart(event);
5978 }
5979
5980 void perf_event_exec(void)
5981 {
5982         struct perf_event_context *ctx;
5983         int ctxn;
5984
5985         rcu_read_lock();
5986         for_each_task_context_nr(ctxn) {
5987                 ctx = current->perf_event_ctxp[ctxn];
5988                 if (!ctx)
5989                         continue;
5990
5991                 perf_event_enable_on_exec(ctxn);
5992
5993                 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5994                                    true);
5995         }
5996         rcu_read_unlock();
5997 }
5998
5999 struct remote_output {
6000         struct ring_buffer      *rb;
6001         int                     err;
6002 };
6003
6004 static void __perf_event_output_stop(struct perf_event *event, void *data)
6005 {
6006         struct perf_event *parent = event->parent;
6007         struct remote_output *ro = data;
6008         struct ring_buffer *rb = ro->rb;
6009         struct stop_event_data sd = {
6010                 .event  = event,
6011         };
6012
6013         if (!has_aux(event))
6014                 return;
6015
6016         if (!parent)
6017                 parent = event;
6018
6019         /*
6020          * In case of inheritance, it will be the parent that links to the
6021          * ring-buffer, but it will be the child that's actually using it:
6022          */
6023         if (rcu_dereference(parent->rb) == rb)
6024                 ro->err = __perf_event_stop(&sd);
6025 }
6026
6027 static int __perf_pmu_output_stop(void *info)
6028 {
6029         struct perf_event *event = info;
6030         struct pmu *pmu = event->pmu;
6031         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6032         struct remote_output ro = {
6033                 .rb     = event->rb,
6034         };
6035
6036         rcu_read_lock();
6037         perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6038         if (cpuctx->task_ctx)
6039                 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6040                                    &ro, false);
6041         rcu_read_unlock();
6042
6043         return ro.err;
6044 }
6045
6046 static void perf_pmu_output_stop(struct perf_event *event)
6047 {
6048         struct perf_event *iter;
6049         int err, cpu;
6050
6051 restart:
6052         rcu_read_lock();
6053         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6054                 /*
6055                  * For per-CPU events, we need to make sure that neither they
6056                  * nor their children are running; for cpu==-1 events it's
6057                  * sufficient to stop the event itself if it's active, since
6058                  * it can't have children.
6059                  */
6060                 cpu = iter->cpu;
6061                 if (cpu == -1)
6062                         cpu = READ_ONCE(iter->oncpu);
6063
6064                 if (cpu == -1)
6065                         continue;
6066
6067                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6068                 if (err == -EAGAIN) {
6069                         rcu_read_unlock();
6070                         goto restart;
6071                 }
6072         }
6073         rcu_read_unlock();
6074 }
6075
6076 /*
6077  * task tracking -- fork/exit
6078  *
6079  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6080  */
6081
6082 struct perf_task_event {
6083         struct task_struct              *task;
6084         struct perf_event_context       *task_ctx;
6085
6086         struct {
6087                 struct perf_event_header        header;
6088
6089                 u32                             pid;
6090                 u32                             ppid;
6091                 u32                             tid;
6092                 u32                             ptid;
6093                 u64                             time;
6094         } event_id;
6095 };
6096
6097 static int perf_event_task_match(struct perf_event *event)
6098 {
6099         return event->attr.comm  || event->attr.mmap ||
6100                event->attr.mmap2 || event->attr.mmap_data ||
6101                event->attr.task;
6102 }
6103
6104 static void perf_event_task_output(struct perf_event *event,
6105                                    void *data)
6106 {
6107         struct perf_task_event *task_event = data;
6108         struct perf_output_handle handle;
6109         struct perf_sample_data sample;
6110         struct task_struct *task = task_event->task;
6111         int ret, size = task_event->event_id.header.size;
6112
6113         if (!perf_event_task_match(event))
6114                 return;
6115
6116         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6117
6118         ret = perf_output_begin(&handle, event,
6119                                 task_event->event_id.header.size);
6120         if (ret)
6121                 goto out;
6122
6123         task_event->event_id.pid = perf_event_pid(event, task);
6124         task_event->event_id.ppid = perf_event_pid(event, current);
6125
6126         task_event->event_id.tid = perf_event_tid(event, task);
6127         task_event->event_id.ptid = perf_event_tid(event, current);
6128
6129         task_event->event_id.time = perf_event_clock(event);
6130
6131         perf_output_put(&handle, task_event->event_id);
6132
6133         perf_event__output_id_sample(event, &handle, &sample);
6134
6135         perf_output_end(&handle);
6136 out:
6137         task_event->event_id.header.size = size;
6138 }
6139
6140 static void perf_event_task(struct task_struct *task,
6141                               struct perf_event_context *task_ctx,
6142                               int new)
6143 {
6144         struct perf_task_event task_event;
6145
6146         if (!atomic_read(&nr_comm_events) &&
6147             !atomic_read(&nr_mmap_events) &&
6148             !atomic_read(&nr_task_events))
6149                 return;
6150
6151         task_event = (struct perf_task_event){
6152                 .task     = task,
6153                 .task_ctx = task_ctx,
6154                 .event_id    = {
6155                         .header = {
6156                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6157                                 .misc = 0,
6158                                 .size = sizeof(task_event.event_id),
6159                         },
6160                         /* .pid  */
6161                         /* .ppid */
6162                         /* .tid  */
6163                         /* .ptid */
6164                         /* .time */
6165                 },
6166         };
6167
6168         perf_event_aux(perf_event_task_output,
6169                        &task_event,
6170                        task_ctx);
6171 }
6172
6173 void perf_event_fork(struct task_struct *task)
6174 {
6175         perf_event_task(task, NULL, 1);
6176 }
6177
6178 /*
6179  * comm tracking
6180  */
6181
6182 struct perf_comm_event {
6183         struct task_struct      *task;
6184         char                    *comm;
6185         int                     comm_size;
6186
6187         struct {
6188                 struct perf_event_header        header;
6189
6190                 u32                             pid;
6191                 u32                             tid;
6192         } event_id;
6193 };
6194
6195 static int perf_event_comm_match(struct perf_event *event)
6196 {
6197         return event->attr.comm;
6198 }
6199
6200 static void perf_event_comm_output(struct perf_event *event,
6201                                    void *data)
6202 {
6203         struct perf_comm_event *comm_event = data;
6204         struct perf_output_handle handle;
6205         struct perf_sample_data sample;
6206         int size = comm_event->event_id.header.size;
6207         int ret;
6208
6209         if (!perf_event_comm_match(event))
6210                 return;
6211
6212         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6213         ret = perf_output_begin(&handle, event,
6214                                 comm_event->event_id.header.size);
6215
6216         if (ret)
6217                 goto out;
6218
6219         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6220         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6221
6222         perf_output_put(&handle, comm_event->event_id);
6223         __output_copy(&handle, comm_event->comm,
6224                                    comm_event->comm_size);
6225
6226         perf_event__output_id_sample(event, &handle, &sample);
6227
6228         perf_output_end(&handle);
6229 out:
6230         comm_event->event_id.header.size = size;
6231 }
6232
6233 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6234 {
6235         char comm[TASK_COMM_LEN];
6236         unsigned int size;
6237
6238         memset(comm, 0, sizeof(comm));
6239         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6240         size = ALIGN(strlen(comm)+1, sizeof(u64));
6241
6242         comm_event->comm = comm;
6243         comm_event->comm_size = size;
6244
6245         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6246
6247         perf_event_aux(perf_event_comm_output,
6248                        comm_event,
6249                        NULL);
6250 }
6251
6252 void perf_event_comm(struct task_struct *task, bool exec)
6253 {
6254         struct perf_comm_event comm_event;
6255
6256         if (!atomic_read(&nr_comm_events))
6257                 return;
6258
6259         comm_event = (struct perf_comm_event){
6260                 .task   = task,
6261                 /* .comm      */
6262                 /* .comm_size */
6263                 .event_id  = {
6264                         .header = {
6265                                 .type = PERF_RECORD_COMM,
6266                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6267                                 /* .size */
6268                         },
6269                         /* .pid */
6270                         /* .tid */
6271                 },
6272         };
6273
6274         perf_event_comm_event(&comm_event);
6275 }
6276
6277 /*
6278  * mmap tracking
6279  */
6280
6281 struct perf_mmap_event {
6282         struct vm_area_struct   *vma;
6283
6284         const char              *file_name;
6285         int                     file_size;
6286         int                     maj, min;
6287         u64                     ino;
6288         u64                     ino_generation;
6289         u32                     prot, flags;
6290
6291         struct {
6292                 struct perf_event_header        header;
6293
6294                 u32                             pid;
6295                 u32                             tid;
6296                 u64                             start;
6297                 u64                             len;
6298                 u64                             pgoff;
6299         } event_id;
6300 };
6301
6302 static int perf_event_mmap_match(struct perf_event *event,
6303                                  void *data)
6304 {
6305         struct perf_mmap_event *mmap_event = data;
6306         struct vm_area_struct *vma = mmap_event->vma;
6307         int executable = vma->vm_flags & VM_EXEC;
6308
6309         return (!executable && event->attr.mmap_data) ||
6310                (executable && (event->attr.mmap || event->attr.mmap2));
6311 }
6312
6313 static void perf_event_mmap_output(struct perf_event *event,
6314                                    void *data)
6315 {
6316         struct perf_mmap_event *mmap_event = data;
6317         struct perf_output_handle handle;
6318         struct perf_sample_data sample;
6319         int size = mmap_event->event_id.header.size;
6320         int ret;
6321
6322         if (!perf_event_mmap_match(event, data))
6323                 return;
6324
6325         if (event->attr.mmap2) {
6326                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6327                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6328                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6329                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6330                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6331                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6332                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6333         }
6334
6335         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6336         ret = perf_output_begin(&handle, event,
6337                                 mmap_event->event_id.header.size);
6338         if (ret)
6339                 goto out;
6340
6341         mmap_event->event_id.pid = perf_event_pid(event, current);
6342         mmap_event->event_id.tid = perf_event_tid(event, current);
6343
6344         perf_output_put(&handle, mmap_event->event_id);
6345
6346         if (event->attr.mmap2) {
6347                 perf_output_put(&handle, mmap_event->maj);
6348                 perf_output_put(&handle, mmap_event->min);
6349                 perf_output_put(&handle, mmap_event->ino);
6350                 perf_output_put(&handle, mmap_event->ino_generation);
6351                 perf_output_put(&handle, mmap_event->prot);
6352                 perf_output_put(&handle, mmap_event->flags);
6353         }
6354
6355         __output_copy(&handle, mmap_event->file_name,
6356                                    mmap_event->file_size);
6357
6358         perf_event__output_id_sample(event, &handle, &sample);
6359
6360         perf_output_end(&handle);
6361 out:
6362         mmap_event->event_id.header.size = size;
6363 }
6364
6365 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6366 {
6367         struct vm_area_struct *vma = mmap_event->vma;
6368         struct file *file = vma->vm_file;
6369         int maj = 0, min = 0;
6370         u64 ino = 0, gen = 0;
6371         u32 prot = 0, flags = 0;
6372         unsigned int size;
6373         char tmp[16];
6374         char *buf = NULL;
6375         char *name;
6376
6377         if (file) {
6378                 struct inode *inode;
6379                 dev_t dev;
6380
6381                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6382                 if (!buf) {
6383                         name = "//enomem";
6384                         goto cpy_name;
6385                 }
6386                 /*
6387                  * d_path() works from the end of the rb backwards, so we
6388                  * need to add enough zero bytes after the string to handle
6389                  * the 64bit alignment we do later.
6390                  */
6391                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6392                 if (IS_ERR(name)) {
6393                         name = "//toolong";
6394                         goto cpy_name;
6395                 }
6396                 inode = file_inode(vma->vm_file);
6397                 dev = inode->i_sb->s_dev;
6398                 ino = inode->i_ino;
6399                 gen = inode->i_generation;
6400                 maj = MAJOR(dev);
6401                 min = MINOR(dev);
6402
6403                 if (vma->vm_flags & VM_READ)
6404                         prot |= PROT_READ;
6405                 if (vma->vm_flags & VM_WRITE)
6406                         prot |= PROT_WRITE;
6407                 if (vma->vm_flags & VM_EXEC)
6408                         prot |= PROT_EXEC;
6409
6410                 if (vma->vm_flags & VM_MAYSHARE)
6411                         flags = MAP_SHARED;
6412                 else
6413                         flags = MAP_PRIVATE;
6414
6415                 if (vma->vm_flags & VM_DENYWRITE)
6416                         flags |= MAP_DENYWRITE;
6417                 if (vma->vm_flags & VM_MAYEXEC)
6418                         flags |= MAP_EXECUTABLE;
6419                 if (vma->vm_flags & VM_LOCKED)
6420                         flags |= MAP_LOCKED;
6421                 if (vma->vm_flags & VM_HUGETLB)
6422                         flags |= MAP_HUGETLB;
6423
6424                 goto got_name;
6425         } else {
6426                 if (vma->vm_ops && vma->vm_ops->name) {
6427                         name = (char *) vma->vm_ops->name(vma);
6428                         if (name)
6429                                 goto cpy_name;
6430                 }
6431
6432                 name = (char *)arch_vma_name(vma);
6433                 if (name)
6434                         goto cpy_name;
6435
6436                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6437                                 vma->vm_end >= vma->vm_mm->brk) {
6438                         name = "[heap]";
6439                         goto cpy_name;
6440                 }
6441                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6442                                 vma->vm_end >= vma->vm_mm->start_stack) {
6443                         name = "[stack]";
6444                         goto cpy_name;
6445                 }
6446
6447                 name = "//anon";
6448                 goto cpy_name;
6449         }
6450
6451 cpy_name:
6452         strlcpy(tmp, name, sizeof(tmp));
6453         name = tmp;
6454 got_name:
6455         /*
6456          * Since our buffer works in 8 byte units we need to align our string
6457          * size to a multiple of 8. However, we must guarantee the tail end is
6458          * zero'd out to avoid leaking random bits to userspace.
6459          */
6460         size = strlen(name)+1;
6461         while (!IS_ALIGNED(size, sizeof(u64)))
6462                 name[size++] = '\0';
6463
6464         mmap_event->file_name = name;
6465         mmap_event->file_size = size;
6466         mmap_event->maj = maj;
6467         mmap_event->min = min;
6468         mmap_event->ino = ino;
6469         mmap_event->ino_generation = gen;
6470         mmap_event->prot = prot;
6471         mmap_event->flags = flags;
6472
6473         if (!(vma->vm_flags & VM_EXEC))
6474                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6475
6476         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6477
6478         perf_event_aux(perf_event_mmap_output,
6479                        mmap_event,
6480                        NULL);
6481
6482         kfree(buf);
6483 }
6484
6485 /*
6486  * Whether this @filter depends on a dynamic object which is not loaded
6487  * yet or its load addresses are not known.
6488  */
6489 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6490 {
6491         return filter->filter && filter->inode;
6492 }
6493
6494 /*
6495  * Check whether inode and address range match filter criteria.
6496  */
6497 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6498                                      struct file *file, unsigned long offset,
6499                                      unsigned long size)
6500 {
6501         if (filter->inode != file->f_inode)
6502                 return false;
6503
6504         if (filter->offset > offset + size)
6505                 return false;
6506
6507         if (filter->offset + filter->size < offset)
6508                 return false;
6509
6510         return true;
6511 }
6512
6513 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6514 {
6515         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6516         struct vm_area_struct *vma = data;
6517         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6518         struct file *file = vma->vm_file;
6519         struct perf_addr_filter *filter;
6520         unsigned int restart = 0, count = 0;
6521
6522         if (!has_addr_filter(event))
6523                 return;
6524
6525         if (!file)
6526                 return;
6527
6528         raw_spin_lock_irqsave(&ifh->lock, flags);
6529         list_for_each_entry(filter, &ifh->list, entry) {
6530                 if (perf_addr_filter_match(filter, file, off,
6531                                              vma->vm_end - vma->vm_start)) {
6532                         event->addr_filters_offs[count] = vma->vm_start;
6533                         restart++;
6534                 }
6535
6536                 count++;
6537         }
6538
6539         if (restart)
6540                 event->addr_filters_gen++;
6541         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6542
6543         if (restart)
6544                 perf_event_restart(event);
6545 }
6546
6547 /*
6548  * Adjust all task's events' filters to the new vma
6549  */
6550 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6551 {
6552         struct perf_event_context *ctx;
6553         int ctxn;
6554
6555         rcu_read_lock();
6556         for_each_task_context_nr(ctxn) {
6557                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6558                 if (!ctx)
6559                         continue;
6560
6561                 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6562         }
6563         rcu_read_unlock();
6564 }
6565
6566 void perf_event_mmap(struct vm_area_struct *vma)
6567 {
6568         struct perf_mmap_event mmap_event;
6569
6570         if (!atomic_read(&nr_mmap_events))
6571                 return;
6572
6573         mmap_event = (struct perf_mmap_event){
6574                 .vma    = vma,
6575                 /* .file_name */
6576                 /* .file_size */
6577                 .event_id  = {
6578                         .header = {
6579                                 .type = PERF_RECORD_MMAP,
6580                                 .misc = PERF_RECORD_MISC_USER,
6581                                 /* .size */
6582                         },
6583                         /* .pid */
6584                         /* .tid */
6585                         .start  = vma->vm_start,
6586                         .len    = vma->vm_end - vma->vm_start,
6587                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6588                 },
6589                 /* .maj (attr_mmap2 only) */
6590                 /* .min (attr_mmap2 only) */
6591                 /* .ino (attr_mmap2 only) */
6592                 /* .ino_generation (attr_mmap2 only) */
6593                 /* .prot (attr_mmap2 only) */
6594                 /* .flags (attr_mmap2 only) */
6595         };
6596
6597         perf_addr_filters_adjust(vma);
6598         perf_event_mmap_event(&mmap_event);
6599 }
6600
6601 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6602                           unsigned long size, u64 flags)
6603 {
6604         struct perf_output_handle handle;
6605         struct perf_sample_data sample;
6606         struct perf_aux_event {
6607                 struct perf_event_header        header;
6608                 u64                             offset;
6609                 u64                             size;
6610                 u64                             flags;
6611         } rec = {
6612                 .header = {
6613                         .type = PERF_RECORD_AUX,
6614                         .misc = 0,
6615                         .size = sizeof(rec),
6616                 },
6617                 .offset         = head,
6618                 .size           = size,
6619                 .flags          = flags,
6620         };
6621         int ret;
6622
6623         perf_event_header__init_id(&rec.header, &sample, event);
6624         ret = perf_output_begin(&handle, event, rec.header.size);
6625
6626         if (ret)
6627                 return;
6628
6629         perf_output_put(&handle, rec);
6630         perf_event__output_id_sample(event, &handle, &sample);
6631
6632         perf_output_end(&handle);
6633 }
6634
6635 /*
6636  * Lost/dropped samples logging
6637  */
6638 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6639 {
6640         struct perf_output_handle handle;
6641         struct perf_sample_data sample;
6642         int ret;
6643
6644         struct {
6645                 struct perf_event_header        header;
6646                 u64                             lost;
6647         } lost_samples_event = {
6648                 .header = {
6649                         .type = PERF_RECORD_LOST_SAMPLES,
6650                         .misc = 0,
6651                         .size = sizeof(lost_samples_event),
6652                 },
6653                 .lost           = lost,
6654         };
6655
6656         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6657
6658         ret = perf_output_begin(&handle, event,
6659                                 lost_samples_event.header.size);
6660         if (ret)
6661                 return;
6662
6663         perf_output_put(&handle, lost_samples_event);
6664         perf_event__output_id_sample(event, &handle, &sample);
6665         perf_output_end(&handle);
6666 }
6667
6668 /*
6669  * context_switch tracking
6670  */
6671
6672 struct perf_switch_event {
6673         struct task_struct      *task;
6674         struct task_struct      *next_prev;
6675
6676         struct {
6677                 struct perf_event_header        header;
6678                 u32                             next_prev_pid;
6679                 u32                             next_prev_tid;
6680         } event_id;
6681 };
6682
6683 static int perf_event_switch_match(struct perf_event *event)
6684 {
6685         return event->attr.context_switch;
6686 }
6687
6688 static void perf_event_switch_output(struct perf_event *event, void *data)
6689 {
6690         struct perf_switch_event *se = data;
6691         struct perf_output_handle handle;
6692         struct perf_sample_data sample;
6693         int ret;
6694
6695         if (!perf_event_switch_match(event))
6696                 return;
6697
6698         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6699         if (event->ctx->task) {
6700                 se->event_id.header.type = PERF_RECORD_SWITCH;
6701                 se->event_id.header.size = sizeof(se->event_id.header);
6702         } else {
6703                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6704                 se->event_id.header.size = sizeof(se->event_id);
6705                 se->event_id.next_prev_pid =
6706                                         perf_event_pid(event, se->next_prev);
6707                 se->event_id.next_prev_tid =
6708                                         perf_event_tid(event, se->next_prev);
6709         }
6710
6711         perf_event_header__init_id(&se->event_id.header, &sample, event);
6712
6713         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6714         if (ret)
6715                 return;
6716
6717         if (event->ctx->task)
6718                 perf_output_put(&handle, se->event_id.header);
6719         else
6720                 perf_output_put(&handle, se->event_id);
6721
6722         perf_event__output_id_sample(event, &handle, &sample);
6723
6724         perf_output_end(&handle);
6725 }
6726
6727 static void perf_event_switch(struct task_struct *task,
6728                               struct task_struct *next_prev, bool sched_in)
6729 {
6730         struct perf_switch_event switch_event;
6731
6732         /* N.B. caller checks nr_switch_events != 0 */
6733
6734         switch_event = (struct perf_switch_event){
6735                 .task           = task,
6736                 .next_prev      = next_prev,
6737                 .event_id       = {
6738                         .header = {
6739                                 /* .type */
6740                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6741                                 /* .size */
6742                         },
6743                         /* .next_prev_pid */
6744                         /* .next_prev_tid */
6745                 },
6746         };
6747
6748         perf_event_aux(perf_event_switch_output,
6749                        &switch_event,
6750                        NULL);
6751 }
6752
6753 /*
6754  * IRQ throttle logging
6755  */
6756
6757 static void perf_log_throttle(struct perf_event *event, int enable)
6758 {
6759         struct perf_output_handle handle;
6760         struct perf_sample_data sample;
6761         int ret;
6762
6763         struct {
6764                 struct perf_event_header        header;
6765                 u64                             time;
6766                 u64                             id;
6767                 u64                             stream_id;
6768         } throttle_event = {
6769                 .header = {
6770                         .type = PERF_RECORD_THROTTLE,
6771                         .misc = 0,
6772                         .size = sizeof(throttle_event),
6773                 },
6774                 .time           = perf_event_clock(event),
6775                 .id             = primary_event_id(event),
6776                 .stream_id      = event->id,
6777         };
6778
6779         if (enable)
6780                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6781
6782         perf_event_header__init_id(&throttle_event.header, &sample, event);
6783
6784         ret = perf_output_begin(&handle, event,
6785                                 throttle_event.header.size);
6786         if (ret)
6787                 return;
6788
6789         perf_output_put(&handle, throttle_event);
6790         perf_event__output_id_sample(event, &handle, &sample);
6791         perf_output_end(&handle);
6792 }
6793
6794 static void perf_log_itrace_start(struct perf_event *event)
6795 {
6796         struct perf_output_handle handle;
6797         struct perf_sample_data sample;
6798         struct perf_aux_event {
6799                 struct perf_event_header        header;
6800                 u32                             pid;
6801                 u32                             tid;
6802         } rec;
6803         int ret;
6804
6805         if (event->parent)
6806                 event = event->parent;
6807
6808         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6809             event->hw.itrace_started)
6810                 return;
6811
6812         rec.header.type = PERF_RECORD_ITRACE_START;
6813         rec.header.misc = 0;
6814         rec.header.size = sizeof(rec);
6815         rec.pid = perf_event_pid(event, current);
6816         rec.tid = perf_event_tid(event, current);
6817
6818         perf_event_header__init_id(&rec.header, &sample, event);
6819         ret = perf_output_begin(&handle, event, rec.header.size);
6820
6821         if (ret)
6822                 return;
6823
6824         perf_output_put(&handle, rec);
6825         perf_event__output_id_sample(event, &handle, &sample);
6826
6827         perf_output_end(&handle);
6828 }
6829
6830 /*
6831  * Generic event overflow handling, sampling.
6832  */
6833
6834 static int __perf_event_overflow(struct perf_event *event,
6835                                    int throttle, struct perf_sample_data *data,
6836                                    struct pt_regs *regs)
6837 {
6838         int events = atomic_read(&event->event_limit);
6839         struct hw_perf_event *hwc = &event->hw;
6840         u64 seq;
6841         int ret = 0;
6842
6843         /*
6844          * Non-sampling counters might still use the PMI to fold short
6845          * hardware counters, ignore those.
6846          */
6847         if (unlikely(!is_sampling_event(event)))
6848                 return 0;
6849
6850         seq = __this_cpu_read(perf_throttled_seq);
6851         if (seq != hwc->interrupts_seq) {
6852                 hwc->interrupts_seq = seq;
6853                 hwc->interrupts = 1;
6854         } else {
6855                 hwc->interrupts++;
6856                 if (unlikely(throttle
6857                              && hwc->interrupts >= max_samples_per_tick)) {
6858                         __this_cpu_inc(perf_throttled_count);
6859                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6860                         hwc->interrupts = MAX_INTERRUPTS;
6861                         perf_log_throttle(event, 0);
6862                         ret = 1;
6863                 }
6864         }
6865
6866         if (event->attr.freq) {
6867                 u64 now = perf_clock();
6868                 s64 delta = now - hwc->freq_time_stamp;
6869
6870                 hwc->freq_time_stamp = now;
6871
6872                 if (delta > 0 && delta < 2*TICK_NSEC)
6873                         perf_adjust_period(event, delta, hwc->last_period, true);
6874         }
6875
6876         /*
6877          * XXX event_limit might not quite work as expected on inherited
6878          * events
6879          */
6880
6881         event->pending_kill = POLL_IN;
6882         if (events && atomic_dec_and_test(&event->event_limit)) {
6883                 ret = 1;
6884                 event->pending_kill = POLL_HUP;
6885                 event->pending_disable = 1;
6886                 irq_work_queue(&event->pending);
6887         }
6888
6889         event->overflow_handler(event, data, regs);
6890
6891         if (*perf_event_fasync(event) && event->pending_kill) {
6892                 event->pending_wakeup = 1;
6893                 irq_work_queue(&event->pending);
6894         }
6895
6896         return ret;
6897 }
6898
6899 int perf_event_overflow(struct perf_event *event,
6900                           struct perf_sample_data *data,
6901                           struct pt_regs *regs)
6902 {
6903         return __perf_event_overflow(event, 1, data, regs);
6904 }
6905
6906 /*
6907  * Generic software event infrastructure
6908  */
6909
6910 struct swevent_htable {
6911         struct swevent_hlist            *swevent_hlist;
6912         struct mutex                    hlist_mutex;
6913         int                             hlist_refcount;
6914
6915         /* Recursion avoidance in each contexts */
6916         int                             recursion[PERF_NR_CONTEXTS];
6917 };
6918
6919 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6920
6921 /*
6922  * We directly increment event->count and keep a second value in
6923  * event->hw.period_left to count intervals. This period event
6924  * is kept in the range [-sample_period, 0] so that we can use the
6925  * sign as trigger.
6926  */
6927
6928 u64 perf_swevent_set_period(struct perf_event *event)
6929 {
6930         struct hw_perf_event *hwc = &event->hw;
6931         u64 period = hwc->last_period;
6932         u64 nr, offset;
6933         s64 old, val;
6934
6935         hwc->last_period = hwc->sample_period;
6936
6937 again:
6938         old = val = local64_read(&hwc->period_left);
6939         if (val < 0)
6940                 return 0;
6941
6942         nr = div64_u64(period + val, period);
6943         offset = nr * period;
6944         val -= offset;
6945         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6946                 goto again;
6947
6948         return nr;
6949 }
6950
6951 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6952                                     struct perf_sample_data *data,
6953                                     struct pt_regs *regs)
6954 {
6955         struct hw_perf_event *hwc = &event->hw;
6956         int throttle = 0;
6957
6958         if (!overflow)
6959                 overflow = perf_swevent_set_period(event);
6960
6961         if (hwc->interrupts == MAX_INTERRUPTS)
6962                 return;
6963
6964         for (; overflow; overflow--) {
6965                 if (__perf_event_overflow(event, throttle,
6966                                             data, regs)) {
6967                         /*
6968                          * We inhibit the overflow from happening when
6969                          * hwc->interrupts == MAX_INTERRUPTS.
6970                          */
6971                         break;
6972                 }
6973                 throttle = 1;
6974         }
6975 }
6976
6977 static void perf_swevent_event(struct perf_event *event, u64 nr,
6978                                struct perf_sample_data *data,
6979                                struct pt_regs *regs)
6980 {
6981         struct hw_perf_event *hwc = &event->hw;
6982
6983         local64_add(nr, &event->count);
6984
6985         if (!regs)
6986                 return;
6987
6988         if (!is_sampling_event(event))
6989                 return;
6990
6991         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6992                 data->period = nr;
6993                 return perf_swevent_overflow(event, 1, data, regs);
6994         } else
6995                 data->period = event->hw.last_period;
6996
6997         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6998                 return perf_swevent_overflow(event, 1, data, regs);
6999
7000         if (local64_add_negative(nr, &hwc->period_left))
7001                 return;
7002
7003         perf_swevent_overflow(event, 0, data, regs);
7004 }
7005
7006 static int perf_exclude_event(struct perf_event *event,
7007                               struct pt_regs *regs)
7008 {
7009         if (event->hw.state & PERF_HES_STOPPED)
7010                 return 1;
7011
7012         if (regs) {
7013                 if (event->attr.exclude_user && user_mode(regs))
7014                         return 1;
7015
7016                 if (event->attr.exclude_kernel && !user_mode(regs))
7017                         return 1;
7018         }
7019
7020         return 0;
7021 }
7022
7023 static int perf_swevent_match(struct perf_event *event,
7024                                 enum perf_type_id type,
7025                                 u32 event_id,
7026                                 struct perf_sample_data *data,
7027                                 struct pt_regs *regs)
7028 {
7029         if (event->attr.type != type)
7030                 return 0;
7031
7032         if (event->attr.config != event_id)
7033                 return 0;
7034
7035         if (perf_exclude_event(event, regs))
7036                 return 0;
7037
7038         return 1;
7039 }
7040
7041 static inline u64 swevent_hash(u64 type, u32 event_id)
7042 {
7043         u64 val = event_id | (type << 32);
7044
7045         return hash_64(val, SWEVENT_HLIST_BITS);
7046 }
7047
7048 static inline struct hlist_head *
7049 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7050 {
7051         u64 hash = swevent_hash(type, event_id);
7052
7053         return &hlist->heads[hash];
7054 }
7055
7056 /* For the read side: events when they trigger */
7057 static inline struct hlist_head *
7058 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7059 {
7060         struct swevent_hlist *hlist;
7061
7062         hlist = rcu_dereference(swhash->swevent_hlist);
7063         if (!hlist)
7064                 return NULL;
7065
7066         return __find_swevent_head(hlist, type, event_id);
7067 }
7068
7069 /* For the event head insertion and removal in the hlist */
7070 static inline struct hlist_head *
7071 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7072 {
7073         struct swevent_hlist *hlist;
7074         u32 event_id = event->attr.config;
7075         u64 type = event->attr.type;
7076
7077         /*
7078          * Event scheduling is always serialized against hlist allocation
7079          * and release. Which makes the protected version suitable here.
7080          * The context lock guarantees that.
7081          */
7082         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7083                                           lockdep_is_held(&event->ctx->lock));
7084         if (!hlist)
7085                 return NULL;
7086
7087         return __find_swevent_head(hlist, type, event_id);
7088 }
7089
7090 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7091                                     u64 nr,
7092                                     struct perf_sample_data *data,
7093                                     struct pt_regs *regs)
7094 {
7095         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7096         struct perf_event *event;
7097         struct hlist_head *head;
7098
7099         rcu_read_lock();
7100         head = find_swevent_head_rcu(swhash, type, event_id);
7101         if (!head)
7102                 goto end;
7103
7104         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7105                 if (perf_swevent_match(event, type, event_id, data, regs))
7106                         perf_swevent_event(event, nr, data, regs);
7107         }
7108 end:
7109         rcu_read_unlock();
7110 }
7111
7112 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7113
7114 int perf_swevent_get_recursion_context(void)
7115 {
7116         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7117
7118         return get_recursion_context(swhash->recursion);
7119 }
7120 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7121
7122 void perf_swevent_put_recursion_context(int rctx)
7123 {
7124         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7125
7126         put_recursion_context(swhash->recursion, rctx);
7127 }
7128
7129 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7130 {
7131         struct perf_sample_data data;
7132
7133         if (WARN_ON_ONCE(!regs))
7134                 return;
7135
7136         perf_sample_data_init(&data, addr, 0);
7137         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7138 }
7139
7140 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7141 {
7142         int rctx;
7143
7144         preempt_disable_notrace();
7145         rctx = perf_swevent_get_recursion_context();
7146         if (unlikely(rctx < 0))
7147                 goto fail;
7148
7149         ___perf_sw_event(event_id, nr, regs, addr);
7150
7151         perf_swevent_put_recursion_context(rctx);
7152 fail:
7153         preempt_enable_notrace();
7154 }
7155
7156 static void perf_swevent_read(struct perf_event *event)
7157 {
7158 }
7159
7160 static int perf_swevent_add(struct perf_event *event, int flags)
7161 {
7162         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7163         struct hw_perf_event *hwc = &event->hw;
7164         struct hlist_head *head;
7165
7166         if (is_sampling_event(event)) {
7167                 hwc->last_period = hwc->sample_period;
7168                 perf_swevent_set_period(event);
7169         }
7170
7171         hwc->state = !(flags & PERF_EF_START);
7172
7173         head = find_swevent_head(swhash, event);
7174         if (WARN_ON_ONCE(!head))
7175                 return -EINVAL;
7176
7177         hlist_add_head_rcu(&event->hlist_entry, head);
7178         perf_event_update_userpage(event);
7179
7180         return 0;
7181 }
7182
7183 static void perf_swevent_del(struct perf_event *event, int flags)
7184 {
7185         hlist_del_rcu(&event->hlist_entry);
7186 }
7187
7188 static void perf_swevent_start(struct perf_event *event, int flags)
7189 {
7190         event->hw.state = 0;
7191 }
7192
7193 static void perf_swevent_stop(struct perf_event *event, int flags)
7194 {
7195         event->hw.state = PERF_HES_STOPPED;
7196 }
7197
7198 /* Deref the hlist from the update side */
7199 static inline struct swevent_hlist *
7200 swevent_hlist_deref(struct swevent_htable *swhash)
7201 {
7202         return rcu_dereference_protected(swhash->swevent_hlist,
7203                                          lockdep_is_held(&swhash->hlist_mutex));
7204 }
7205
7206 static void swevent_hlist_release(struct swevent_htable *swhash)
7207 {
7208         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7209
7210         if (!hlist)
7211                 return;
7212
7213         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7214         kfree_rcu(hlist, rcu_head);
7215 }
7216
7217 static void swevent_hlist_put_cpu(int cpu)
7218 {
7219         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7220
7221         mutex_lock(&swhash->hlist_mutex);
7222
7223         if (!--swhash->hlist_refcount)
7224                 swevent_hlist_release(swhash);
7225
7226         mutex_unlock(&swhash->hlist_mutex);
7227 }
7228
7229 static void swevent_hlist_put(void)
7230 {
7231         int cpu;
7232
7233         for_each_possible_cpu(cpu)
7234                 swevent_hlist_put_cpu(cpu);
7235 }
7236
7237 static int swevent_hlist_get_cpu(int cpu)
7238 {
7239         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7240         int err = 0;
7241
7242         mutex_lock(&swhash->hlist_mutex);
7243         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7244                 struct swevent_hlist *hlist;
7245
7246                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7247                 if (!hlist) {
7248                         err = -ENOMEM;
7249                         goto exit;
7250                 }
7251                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7252         }
7253         swhash->hlist_refcount++;
7254 exit:
7255         mutex_unlock(&swhash->hlist_mutex);
7256
7257         return err;
7258 }
7259
7260 static int swevent_hlist_get(void)
7261 {
7262         int err, cpu, failed_cpu;
7263
7264         get_online_cpus();
7265         for_each_possible_cpu(cpu) {
7266                 err = swevent_hlist_get_cpu(cpu);
7267                 if (err) {
7268                         failed_cpu = cpu;
7269                         goto fail;
7270                 }
7271         }
7272         put_online_cpus();
7273
7274         return 0;
7275 fail:
7276         for_each_possible_cpu(cpu) {
7277                 if (cpu == failed_cpu)
7278                         break;
7279                 swevent_hlist_put_cpu(cpu);
7280         }
7281
7282         put_online_cpus();
7283         return err;
7284 }
7285
7286 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7287
7288 static void sw_perf_event_destroy(struct perf_event *event)
7289 {
7290         u64 event_id = event->attr.config;
7291
7292         WARN_ON(event->parent);
7293
7294         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7295         swevent_hlist_put();
7296 }
7297
7298 static int perf_swevent_init(struct perf_event *event)
7299 {
7300         u64 event_id = event->attr.config;
7301
7302         if (event->attr.type != PERF_TYPE_SOFTWARE)
7303                 return -ENOENT;
7304
7305         /*
7306          * no branch sampling for software events
7307          */
7308         if (has_branch_stack(event))
7309                 return -EOPNOTSUPP;
7310
7311         switch (event_id) {
7312         case PERF_COUNT_SW_CPU_CLOCK:
7313         case PERF_COUNT_SW_TASK_CLOCK:
7314                 return -ENOENT;
7315
7316         default:
7317                 break;
7318         }
7319
7320         if (event_id >= PERF_COUNT_SW_MAX)
7321                 return -ENOENT;
7322
7323         if (!event->parent) {
7324                 int err;
7325
7326                 err = swevent_hlist_get();
7327                 if (err)
7328                         return err;
7329
7330                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7331                 event->destroy = sw_perf_event_destroy;
7332         }
7333
7334         return 0;
7335 }
7336
7337 static struct pmu perf_swevent = {
7338         .task_ctx_nr    = perf_sw_context,
7339
7340         .capabilities   = PERF_PMU_CAP_NO_NMI,
7341
7342         .event_init     = perf_swevent_init,
7343         .add            = perf_swevent_add,
7344         .del            = perf_swevent_del,
7345         .start          = perf_swevent_start,
7346         .stop           = perf_swevent_stop,
7347         .read           = perf_swevent_read,
7348 };
7349
7350 #ifdef CONFIG_EVENT_TRACING
7351
7352 static int perf_tp_filter_match(struct perf_event *event,
7353                                 struct perf_sample_data *data)
7354 {
7355         void *record = data->raw->data;
7356
7357         /* only top level events have filters set */
7358         if (event->parent)
7359                 event = event->parent;
7360
7361         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7362                 return 1;
7363         return 0;
7364 }
7365
7366 static int perf_tp_event_match(struct perf_event *event,
7367                                 struct perf_sample_data *data,
7368                                 struct pt_regs *regs)
7369 {
7370         if (event->hw.state & PERF_HES_STOPPED)
7371                 return 0;
7372         /*
7373          * All tracepoints are from kernel-space.
7374          */
7375         if (event->attr.exclude_kernel)
7376                 return 0;
7377
7378         if (!perf_tp_filter_match(event, data))
7379                 return 0;
7380
7381         return 1;
7382 }
7383
7384 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7385                                struct trace_event_call *call, u64 count,
7386                                struct pt_regs *regs, struct hlist_head *head,
7387                                struct task_struct *task)
7388 {
7389         struct bpf_prog *prog = call->prog;
7390
7391         if (prog) {
7392                 *(struct pt_regs **)raw_data = regs;
7393                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7394                         perf_swevent_put_recursion_context(rctx);
7395                         return;
7396                 }
7397         }
7398         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7399                       rctx, task);
7400 }
7401 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7402
7403 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7404                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7405                    struct task_struct *task)
7406 {
7407         struct perf_sample_data data;
7408         struct perf_event *event;
7409
7410         struct perf_raw_record raw = {
7411                 .size = entry_size,
7412                 .data = record,
7413         };
7414
7415         perf_sample_data_init(&data, 0, 0);
7416         data.raw = &raw;
7417
7418         perf_trace_buf_update(record, event_type);
7419
7420         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7421                 if (perf_tp_event_match(event, &data, regs))
7422                         perf_swevent_event(event, count, &data, regs);
7423         }
7424
7425         /*
7426          * If we got specified a target task, also iterate its context and
7427          * deliver this event there too.
7428          */
7429         if (task && task != current) {
7430                 struct perf_event_context *ctx;
7431                 struct trace_entry *entry = record;
7432
7433                 rcu_read_lock();
7434                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7435                 if (!ctx)
7436                         goto unlock;
7437
7438                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7439                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7440                                 continue;
7441                         if (event->attr.config != entry->type)
7442                                 continue;
7443                         if (perf_tp_event_match(event, &data, regs))
7444                                 perf_swevent_event(event, count, &data, regs);
7445                 }
7446 unlock:
7447                 rcu_read_unlock();
7448         }
7449
7450         perf_swevent_put_recursion_context(rctx);
7451 }
7452 EXPORT_SYMBOL_GPL(perf_tp_event);
7453
7454 static void tp_perf_event_destroy(struct perf_event *event)
7455 {
7456         perf_trace_destroy(event);
7457 }
7458
7459 static int perf_tp_event_init(struct perf_event *event)
7460 {
7461         int err;
7462
7463         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7464                 return -ENOENT;
7465
7466         /*
7467          * no branch sampling for tracepoint events
7468          */
7469         if (has_branch_stack(event))
7470                 return -EOPNOTSUPP;
7471
7472         err = perf_trace_init(event);
7473         if (err)
7474                 return err;
7475
7476         event->destroy = tp_perf_event_destroy;
7477
7478         return 0;
7479 }
7480
7481 static struct pmu perf_tracepoint = {
7482         .task_ctx_nr    = perf_sw_context,
7483
7484         .event_init     = perf_tp_event_init,
7485         .add            = perf_trace_add,
7486         .del            = perf_trace_del,
7487         .start          = perf_swevent_start,
7488         .stop           = perf_swevent_stop,
7489         .read           = perf_swevent_read,
7490 };
7491
7492 static inline void perf_tp_register(void)
7493 {
7494         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7495 }
7496
7497 static void perf_event_free_filter(struct perf_event *event)
7498 {
7499         ftrace_profile_free_filter(event);
7500 }
7501
7502 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7503 {
7504         bool is_kprobe, is_tracepoint;
7505         struct bpf_prog *prog;
7506
7507         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7508                 return -EINVAL;
7509
7510         if (event->tp_event->prog)
7511                 return -EEXIST;
7512
7513         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7514         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7515         if (!is_kprobe && !is_tracepoint)
7516                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7517                 return -EINVAL;
7518
7519         prog = bpf_prog_get(prog_fd);
7520         if (IS_ERR(prog))
7521                 return PTR_ERR(prog);
7522
7523         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7524             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7525                 /* valid fd, but invalid bpf program type */
7526                 bpf_prog_put(prog);
7527                 return -EINVAL;
7528         }
7529
7530         if (is_tracepoint) {
7531                 int off = trace_event_get_offsets(event->tp_event);
7532
7533                 if (prog->aux->max_ctx_offset > off) {
7534                         bpf_prog_put(prog);
7535                         return -EACCES;
7536                 }
7537         }
7538         event->tp_event->prog = prog;
7539
7540         return 0;
7541 }
7542
7543 static void perf_event_free_bpf_prog(struct perf_event *event)
7544 {
7545         struct bpf_prog *prog;
7546
7547         if (!event->tp_event)
7548                 return;
7549
7550         prog = event->tp_event->prog;
7551         if (prog) {
7552                 event->tp_event->prog = NULL;
7553                 bpf_prog_put_rcu(prog);
7554         }
7555 }
7556
7557 #else
7558
7559 static inline void perf_tp_register(void)
7560 {
7561 }
7562
7563 static void perf_event_free_filter(struct perf_event *event)
7564 {
7565 }
7566
7567 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7568 {
7569         return -ENOENT;
7570 }
7571
7572 static void perf_event_free_bpf_prog(struct perf_event *event)
7573 {
7574 }
7575 #endif /* CONFIG_EVENT_TRACING */
7576
7577 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7578 void perf_bp_event(struct perf_event *bp, void *data)
7579 {
7580         struct perf_sample_data sample;
7581         struct pt_regs *regs = data;
7582
7583         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7584
7585         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7586                 perf_swevent_event(bp, 1, &sample, regs);
7587 }
7588 #endif
7589
7590 /*
7591  * Allocate a new address filter
7592  */
7593 static struct perf_addr_filter *
7594 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7595 {
7596         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7597         struct perf_addr_filter *filter;
7598
7599         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7600         if (!filter)
7601                 return NULL;
7602
7603         INIT_LIST_HEAD(&filter->entry);
7604         list_add_tail(&filter->entry, filters);
7605
7606         return filter;
7607 }
7608
7609 static void free_filters_list(struct list_head *filters)
7610 {
7611         struct perf_addr_filter *filter, *iter;
7612
7613         list_for_each_entry_safe(filter, iter, filters, entry) {
7614                 if (filter->inode)
7615                         iput(filter->inode);
7616                 list_del(&filter->entry);
7617                 kfree(filter);
7618         }
7619 }
7620
7621 /*
7622  * Free existing address filters and optionally install new ones
7623  */
7624 static void perf_addr_filters_splice(struct perf_event *event,
7625                                      struct list_head *head)
7626 {
7627         unsigned long flags;
7628         LIST_HEAD(list);
7629
7630         if (!has_addr_filter(event))
7631                 return;
7632
7633         /* don't bother with children, they don't have their own filters */
7634         if (event->parent)
7635                 return;
7636
7637         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7638
7639         list_splice_init(&event->addr_filters.list, &list);
7640         if (head)
7641                 list_splice(head, &event->addr_filters.list);
7642
7643         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7644
7645         free_filters_list(&list);
7646 }
7647
7648 /*
7649  * Scan through mm's vmas and see if one of them matches the
7650  * @filter; if so, adjust filter's address range.
7651  * Called with mm::mmap_sem down for reading.
7652  */
7653 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7654                                             struct mm_struct *mm)
7655 {
7656         struct vm_area_struct *vma;
7657
7658         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7659                 struct file *file = vma->vm_file;
7660                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7661                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7662
7663                 if (!file)
7664                         continue;
7665
7666                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7667                         continue;
7668
7669                 return vma->vm_start;
7670         }
7671
7672         return 0;
7673 }
7674
7675 /*
7676  * Update event's address range filters based on the
7677  * task's existing mappings, if any.
7678  */
7679 static void perf_event_addr_filters_apply(struct perf_event *event)
7680 {
7681         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7682         struct task_struct *task = READ_ONCE(event->ctx->task);
7683         struct perf_addr_filter *filter;
7684         struct mm_struct *mm = NULL;
7685         unsigned int count = 0;
7686         unsigned long flags;
7687
7688         /*
7689          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7690          * will stop on the parent's child_mutex that our caller is also holding
7691          */
7692         if (task == TASK_TOMBSTONE)
7693                 return;
7694
7695         mm = get_task_mm(event->ctx->task);
7696         if (!mm)
7697                 goto restart;
7698
7699         down_read(&mm->mmap_sem);
7700
7701         raw_spin_lock_irqsave(&ifh->lock, flags);
7702         list_for_each_entry(filter, &ifh->list, entry) {
7703                 event->addr_filters_offs[count] = 0;
7704
7705                 if (perf_addr_filter_needs_mmap(filter))
7706                         event->addr_filters_offs[count] =
7707                                 perf_addr_filter_apply(filter, mm);
7708
7709                 count++;
7710         }
7711
7712         event->addr_filters_gen++;
7713         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7714
7715         up_read(&mm->mmap_sem);
7716
7717         mmput(mm);
7718
7719 restart:
7720         perf_event_restart(event);
7721 }
7722
7723 /*
7724  * Address range filtering: limiting the data to certain
7725  * instruction address ranges. Filters are ioctl()ed to us from
7726  * userspace as ascii strings.
7727  *
7728  * Filter string format:
7729  *
7730  * ACTION RANGE_SPEC
7731  * where ACTION is one of the
7732  *  * "filter": limit the trace to this region
7733  *  * "start": start tracing from this address
7734  *  * "stop": stop tracing at this address/region;
7735  * RANGE_SPEC is
7736  *  * for kernel addresses: <start address>[/<size>]
7737  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7738  *
7739  * if <size> is not specified, the range is treated as a single address.
7740  */
7741 enum {
7742         IF_ACT_FILTER,
7743         IF_ACT_START,
7744         IF_ACT_STOP,
7745         IF_SRC_FILE,
7746         IF_SRC_KERNEL,
7747         IF_SRC_FILEADDR,
7748         IF_SRC_KERNELADDR,
7749 };
7750
7751 enum {
7752         IF_STATE_ACTION = 0,
7753         IF_STATE_SOURCE,
7754         IF_STATE_END,
7755 };
7756
7757 static const match_table_t if_tokens = {
7758         { IF_ACT_FILTER,        "filter" },
7759         { IF_ACT_START,         "start" },
7760         { IF_ACT_STOP,          "stop" },
7761         { IF_SRC_FILE,          "%u/%u@%s" },
7762         { IF_SRC_KERNEL,        "%u/%u" },
7763         { IF_SRC_FILEADDR,      "%u@%s" },
7764         { IF_SRC_KERNELADDR,    "%u" },
7765 };
7766
7767 /*
7768  * Address filter string parser
7769  */
7770 static int
7771 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7772                              struct list_head *filters)
7773 {
7774         struct perf_addr_filter *filter = NULL;
7775         char *start, *orig, *filename = NULL;
7776         struct path path;
7777         substring_t args[MAX_OPT_ARGS];
7778         int state = IF_STATE_ACTION, token;
7779         unsigned int kernel = 0;
7780         int ret = -EINVAL;
7781
7782         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7783         if (!fstr)
7784                 return -ENOMEM;
7785
7786         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7787                 ret = -EINVAL;
7788
7789                 if (!*start)
7790                         continue;
7791
7792                 /* filter definition begins */
7793                 if (state == IF_STATE_ACTION) {
7794                         filter = perf_addr_filter_new(event, filters);
7795                         if (!filter)
7796                                 goto fail;
7797                 }
7798
7799                 token = match_token(start, if_tokens, args);
7800                 switch (token) {
7801                 case IF_ACT_FILTER:
7802                 case IF_ACT_START:
7803                         filter->filter = 1;
7804
7805                 case IF_ACT_STOP:
7806                         if (state != IF_STATE_ACTION)
7807                                 goto fail;
7808
7809                         state = IF_STATE_SOURCE;
7810                         break;
7811
7812                 case IF_SRC_KERNELADDR:
7813                 case IF_SRC_KERNEL:
7814                         kernel = 1;
7815
7816                 case IF_SRC_FILEADDR:
7817                 case IF_SRC_FILE:
7818                         if (state != IF_STATE_SOURCE)
7819                                 goto fail;
7820
7821                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7822                                 filter->range = 1;
7823
7824                         *args[0].to = 0;
7825                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7826                         if (ret)
7827                                 goto fail;
7828
7829                         if (filter->range) {
7830                                 *args[1].to = 0;
7831                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7832                                 if (ret)
7833                                         goto fail;
7834                         }
7835
7836                         if (token == IF_SRC_FILE) {
7837                                 filename = match_strdup(&args[2]);
7838                                 if (!filename) {
7839                                         ret = -ENOMEM;
7840                                         goto fail;
7841                                 }
7842                         }
7843
7844                         state = IF_STATE_END;
7845                         break;
7846
7847                 default:
7848                         goto fail;
7849                 }
7850
7851                 /*
7852                  * Filter definition is fully parsed, validate and install it.
7853                  * Make sure that it doesn't contradict itself or the event's
7854                  * attribute.
7855                  */
7856                 if (state == IF_STATE_END) {
7857                         if (kernel && event->attr.exclude_kernel)
7858                                 goto fail;
7859
7860                         if (!kernel) {
7861                                 if (!filename)
7862                                         goto fail;
7863
7864                                 /* look up the path and grab its inode */
7865                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7866                                 if (ret)
7867                                         goto fail_free_name;
7868
7869                                 filter->inode = igrab(d_inode(path.dentry));
7870                                 path_put(&path);
7871                                 kfree(filename);
7872                                 filename = NULL;
7873
7874                                 ret = -EINVAL;
7875                                 if (!filter->inode ||
7876                                     !S_ISREG(filter->inode->i_mode))
7877                                         /* free_filters_list() will iput() */
7878                                         goto fail;
7879                         }
7880
7881                         /* ready to consume more filters */
7882                         state = IF_STATE_ACTION;
7883                         filter = NULL;
7884                 }
7885         }
7886
7887         if (state != IF_STATE_ACTION)
7888                 goto fail;
7889
7890         kfree(orig);
7891
7892         return 0;
7893
7894 fail_free_name:
7895         kfree(filename);
7896 fail:
7897         free_filters_list(filters);
7898         kfree(orig);
7899
7900         return ret;
7901 }
7902
7903 static int
7904 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7905 {
7906         LIST_HEAD(filters);
7907         int ret;
7908
7909         /*
7910          * Since this is called in perf_ioctl() path, we're already holding
7911          * ctx::mutex.
7912          */
7913         lockdep_assert_held(&event->ctx->mutex);
7914
7915         if (WARN_ON_ONCE(event->parent))
7916                 return -EINVAL;
7917
7918         /*
7919          * For now, we only support filtering in per-task events; doing so
7920          * for CPU-wide events requires additional context switching trickery,
7921          * since same object code will be mapped at different virtual
7922          * addresses in different processes.
7923          */
7924         if (!event->ctx->task)
7925                 return -EOPNOTSUPP;
7926
7927         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7928         if (ret)
7929                 return ret;
7930
7931         ret = event->pmu->addr_filters_validate(&filters);
7932         if (ret) {
7933                 free_filters_list(&filters);
7934                 return ret;
7935         }
7936
7937         /* remove existing filters, if any */
7938         perf_addr_filters_splice(event, &filters);
7939
7940         /* install new filters */
7941         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7942
7943         return ret;
7944 }
7945
7946 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7947 {
7948         char *filter_str;
7949         int ret = -EINVAL;
7950
7951         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7952             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7953             !has_addr_filter(event))
7954                 return -EINVAL;
7955
7956         filter_str = strndup_user(arg, PAGE_SIZE);
7957         if (IS_ERR(filter_str))
7958                 return PTR_ERR(filter_str);
7959
7960         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7961             event->attr.type == PERF_TYPE_TRACEPOINT)
7962                 ret = ftrace_profile_set_filter(event, event->attr.config,
7963                                                 filter_str);
7964         else if (has_addr_filter(event))
7965                 ret = perf_event_set_addr_filter(event, filter_str);
7966
7967         kfree(filter_str);
7968         return ret;
7969 }
7970
7971 /*
7972  * hrtimer based swevent callback
7973  */
7974
7975 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7976 {
7977         enum hrtimer_restart ret = HRTIMER_RESTART;
7978         struct perf_sample_data data;
7979         struct pt_regs *regs;
7980         struct perf_event *event;
7981         u64 period;
7982
7983         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7984
7985         if (event->state != PERF_EVENT_STATE_ACTIVE)
7986                 return HRTIMER_NORESTART;
7987
7988         event->pmu->read(event);
7989
7990         perf_sample_data_init(&data, 0, event->hw.last_period);
7991         regs = get_irq_regs();
7992
7993         if (regs && !perf_exclude_event(event, regs)) {
7994                 if (!(event->attr.exclude_idle && is_idle_task(current)))
7995                         if (__perf_event_overflow(event, 1, &data, regs))
7996                                 ret = HRTIMER_NORESTART;
7997         }
7998
7999         period = max_t(u64, 10000, event->hw.sample_period);
8000         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8001
8002         return ret;
8003 }
8004
8005 static void perf_swevent_start_hrtimer(struct perf_event *event)
8006 {
8007         struct hw_perf_event *hwc = &event->hw;
8008         s64 period;
8009
8010         if (!is_sampling_event(event))
8011                 return;
8012
8013         period = local64_read(&hwc->period_left);
8014         if (period) {
8015                 if (period < 0)
8016                         period = 10000;
8017
8018                 local64_set(&hwc->period_left, 0);
8019         } else {
8020                 period = max_t(u64, 10000, hwc->sample_period);
8021         }
8022         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8023                       HRTIMER_MODE_REL_PINNED);
8024 }
8025
8026 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8027 {
8028         struct hw_perf_event *hwc = &event->hw;
8029
8030         if (is_sampling_event(event)) {
8031                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8032                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8033
8034                 hrtimer_cancel(&hwc->hrtimer);
8035         }
8036 }
8037
8038 static void perf_swevent_init_hrtimer(struct perf_event *event)
8039 {
8040         struct hw_perf_event *hwc = &event->hw;
8041
8042         if (!is_sampling_event(event))
8043                 return;
8044
8045         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8046         hwc->hrtimer.function = perf_swevent_hrtimer;
8047
8048         /*
8049          * Since hrtimers have a fixed rate, we can do a static freq->period
8050          * mapping and avoid the whole period adjust feedback stuff.
8051          */
8052         if (event->attr.freq) {
8053                 long freq = event->attr.sample_freq;
8054
8055                 event->attr.sample_period = NSEC_PER_SEC / freq;
8056                 hwc->sample_period = event->attr.sample_period;
8057                 local64_set(&hwc->period_left, hwc->sample_period);
8058                 hwc->last_period = hwc->sample_period;
8059                 event->attr.freq = 0;
8060         }
8061 }
8062
8063 /*
8064  * Software event: cpu wall time clock
8065  */
8066
8067 static void cpu_clock_event_update(struct perf_event *event)
8068 {
8069         s64 prev;
8070         u64 now;
8071
8072         now = local_clock();
8073         prev = local64_xchg(&event->hw.prev_count, now);
8074         local64_add(now - prev, &event->count);
8075 }
8076
8077 static void cpu_clock_event_start(struct perf_event *event, int flags)
8078 {
8079         local64_set(&event->hw.prev_count, local_clock());
8080         perf_swevent_start_hrtimer(event);
8081 }
8082
8083 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8084 {
8085         perf_swevent_cancel_hrtimer(event);
8086         cpu_clock_event_update(event);
8087 }
8088
8089 static int cpu_clock_event_add(struct perf_event *event, int flags)
8090 {
8091         if (flags & PERF_EF_START)
8092                 cpu_clock_event_start(event, flags);
8093         perf_event_update_userpage(event);
8094
8095         return 0;
8096 }
8097
8098 static void cpu_clock_event_del(struct perf_event *event, int flags)
8099 {
8100         cpu_clock_event_stop(event, flags);
8101 }
8102
8103 static void cpu_clock_event_read(struct perf_event *event)
8104 {
8105         cpu_clock_event_update(event);
8106 }
8107
8108 static int cpu_clock_event_init(struct perf_event *event)
8109 {
8110         if (event->attr.type != PERF_TYPE_SOFTWARE)
8111                 return -ENOENT;
8112
8113         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8114                 return -ENOENT;
8115
8116         /*
8117          * no branch sampling for software events
8118          */
8119         if (has_branch_stack(event))
8120                 return -EOPNOTSUPP;
8121
8122         perf_swevent_init_hrtimer(event);
8123
8124         return 0;
8125 }
8126
8127 static struct pmu perf_cpu_clock = {
8128         .task_ctx_nr    = perf_sw_context,
8129
8130         .capabilities   = PERF_PMU_CAP_NO_NMI,
8131
8132         .event_init     = cpu_clock_event_init,
8133         .add            = cpu_clock_event_add,
8134         .del            = cpu_clock_event_del,
8135         .start          = cpu_clock_event_start,
8136         .stop           = cpu_clock_event_stop,
8137         .read           = cpu_clock_event_read,
8138 };
8139
8140 /*
8141  * Software event: task time clock
8142  */
8143
8144 static void task_clock_event_update(struct perf_event *event, u64 now)
8145 {
8146         u64 prev;
8147         s64 delta;
8148
8149         prev = local64_xchg(&event->hw.prev_count, now);
8150         delta = now - prev;
8151         local64_add(delta, &event->count);
8152 }
8153
8154 static void task_clock_event_start(struct perf_event *event, int flags)
8155 {
8156         local64_set(&event->hw.prev_count, event->ctx->time);
8157         perf_swevent_start_hrtimer(event);
8158 }
8159
8160 static void task_clock_event_stop(struct perf_event *event, int flags)
8161 {
8162         perf_swevent_cancel_hrtimer(event);
8163         task_clock_event_update(event, event->ctx->time);
8164 }
8165
8166 static int task_clock_event_add(struct perf_event *event, int flags)
8167 {
8168         if (flags & PERF_EF_START)
8169                 task_clock_event_start(event, flags);
8170         perf_event_update_userpage(event);
8171
8172         return 0;
8173 }
8174
8175 static void task_clock_event_del(struct perf_event *event, int flags)
8176 {
8177         task_clock_event_stop(event, PERF_EF_UPDATE);
8178 }
8179
8180 static void task_clock_event_read(struct perf_event *event)
8181 {
8182         u64 now = perf_clock();
8183         u64 delta = now - event->ctx->timestamp;
8184         u64 time = event->ctx->time + delta;
8185
8186         task_clock_event_update(event, time);
8187 }
8188
8189 static int task_clock_event_init(struct perf_event *event)
8190 {
8191         if (event->attr.type != PERF_TYPE_SOFTWARE)
8192                 return -ENOENT;
8193
8194         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8195                 return -ENOENT;
8196
8197         /*
8198          * no branch sampling for software events
8199          */
8200         if (has_branch_stack(event))
8201                 return -EOPNOTSUPP;
8202
8203         perf_swevent_init_hrtimer(event);
8204
8205         return 0;
8206 }
8207
8208 static struct pmu perf_task_clock = {
8209         .task_ctx_nr    = perf_sw_context,
8210
8211         .capabilities   = PERF_PMU_CAP_NO_NMI,
8212
8213         .event_init     = task_clock_event_init,
8214         .add            = task_clock_event_add,
8215         .del            = task_clock_event_del,
8216         .start          = task_clock_event_start,
8217         .stop           = task_clock_event_stop,
8218         .read           = task_clock_event_read,
8219 };
8220
8221 static void perf_pmu_nop_void(struct pmu *pmu)
8222 {
8223 }
8224
8225 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8226 {
8227 }
8228
8229 static int perf_pmu_nop_int(struct pmu *pmu)
8230 {
8231         return 0;
8232 }
8233
8234 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8235
8236 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8237 {
8238         __this_cpu_write(nop_txn_flags, flags);
8239
8240         if (flags & ~PERF_PMU_TXN_ADD)
8241                 return;
8242
8243         perf_pmu_disable(pmu);
8244 }
8245
8246 static int perf_pmu_commit_txn(struct pmu *pmu)
8247 {
8248         unsigned int flags = __this_cpu_read(nop_txn_flags);
8249
8250         __this_cpu_write(nop_txn_flags, 0);
8251
8252         if (flags & ~PERF_PMU_TXN_ADD)
8253                 return 0;
8254
8255         perf_pmu_enable(pmu);
8256         return 0;
8257 }
8258
8259 static void perf_pmu_cancel_txn(struct pmu *pmu)
8260 {
8261         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8262
8263         __this_cpu_write(nop_txn_flags, 0);
8264
8265         if (flags & ~PERF_PMU_TXN_ADD)
8266                 return;
8267
8268         perf_pmu_enable(pmu);
8269 }
8270
8271 static int perf_event_idx_default(struct perf_event *event)
8272 {
8273         return 0;
8274 }
8275
8276 /*
8277  * Ensures all contexts with the same task_ctx_nr have the same
8278  * pmu_cpu_context too.
8279  */
8280 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8281 {
8282         struct pmu *pmu;
8283
8284         if (ctxn < 0)
8285                 return NULL;
8286
8287         list_for_each_entry(pmu, &pmus, entry) {
8288                 if (pmu->task_ctx_nr == ctxn)
8289                         return pmu->pmu_cpu_context;
8290         }
8291
8292         return NULL;
8293 }
8294
8295 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8296 {
8297         int cpu;
8298
8299         for_each_possible_cpu(cpu) {
8300                 struct perf_cpu_context *cpuctx;
8301
8302                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8303
8304                 if (cpuctx->unique_pmu == old_pmu)
8305                         cpuctx->unique_pmu = pmu;
8306         }
8307 }
8308
8309 static void free_pmu_context(struct pmu *pmu)
8310 {
8311         struct pmu *i;
8312
8313         mutex_lock(&pmus_lock);
8314         /*
8315          * Like a real lame refcount.
8316          */
8317         list_for_each_entry(i, &pmus, entry) {
8318                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8319                         update_pmu_context(i, pmu);
8320                         goto out;
8321                 }
8322         }
8323
8324         free_percpu(pmu->pmu_cpu_context);
8325 out:
8326         mutex_unlock(&pmus_lock);
8327 }
8328
8329 /*
8330  * Let userspace know that this PMU supports address range filtering:
8331  */
8332 static ssize_t nr_addr_filters_show(struct device *dev,
8333                                     struct device_attribute *attr,
8334                                     char *page)
8335 {
8336         struct pmu *pmu = dev_get_drvdata(dev);
8337
8338         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8339 }
8340 DEVICE_ATTR_RO(nr_addr_filters);
8341
8342 static struct idr pmu_idr;
8343
8344 static ssize_t
8345 type_show(struct device *dev, struct device_attribute *attr, char *page)
8346 {
8347         struct pmu *pmu = dev_get_drvdata(dev);
8348
8349         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8350 }
8351 static DEVICE_ATTR_RO(type);
8352
8353 static ssize_t
8354 perf_event_mux_interval_ms_show(struct device *dev,
8355                                 struct device_attribute *attr,
8356                                 char *page)
8357 {
8358         struct pmu *pmu = dev_get_drvdata(dev);
8359
8360         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8361 }
8362
8363 static DEFINE_MUTEX(mux_interval_mutex);
8364
8365 static ssize_t
8366 perf_event_mux_interval_ms_store(struct device *dev,
8367                                  struct device_attribute *attr,
8368                                  const char *buf, size_t count)
8369 {
8370         struct pmu *pmu = dev_get_drvdata(dev);
8371         int timer, cpu, ret;
8372
8373         ret = kstrtoint(buf, 0, &timer);
8374         if (ret)
8375                 return ret;
8376
8377         if (timer < 1)
8378                 return -EINVAL;
8379
8380         /* same value, noting to do */
8381         if (timer == pmu->hrtimer_interval_ms)
8382                 return count;
8383
8384         mutex_lock(&mux_interval_mutex);
8385         pmu->hrtimer_interval_ms = timer;
8386
8387         /* update all cpuctx for this PMU */
8388         get_online_cpus();
8389         for_each_online_cpu(cpu) {
8390                 struct perf_cpu_context *cpuctx;
8391                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8392                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8393
8394                 cpu_function_call(cpu,
8395                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8396         }
8397         put_online_cpus();
8398         mutex_unlock(&mux_interval_mutex);
8399
8400         return count;
8401 }
8402 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8403
8404 static struct attribute *pmu_dev_attrs[] = {
8405         &dev_attr_type.attr,
8406         &dev_attr_perf_event_mux_interval_ms.attr,
8407         NULL,
8408 };
8409 ATTRIBUTE_GROUPS(pmu_dev);
8410
8411 static int pmu_bus_running;
8412 static struct bus_type pmu_bus = {
8413         .name           = "event_source",
8414         .dev_groups     = pmu_dev_groups,
8415 };
8416
8417 static void pmu_dev_release(struct device *dev)
8418 {
8419         kfree(dev);
8420 }
8421
8422 static int pmu_dev_alloc(struct pmu *pmu)
8423 {
8424         int ret = -ENOMEM;
8425
8426         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8427         if (!pmu->dev)
8428                 goto out;
8429
8430         pmu->dev->groups = pmu->attr_groups;
8431         device_initialize(pmu->dev);
8432         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8433         if (ret)
8434                 goto free_dev;
8435
8436         dev_set_drvdata(pmu->dev, pmu);
8437         pmu->dev->bus = &pmu_bus;
8438         pmu->dev->release = pmu_dev_release;
8439         ret = device_add(pmu->dev);
8440         if (ret)
8441                 goto free_dev;
8442
8443         /* For PMUs with address filters, throw in an extra attribute: */
8444         if (pmu->nr_addr_filters)
8445                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8446
8447         if (ret)
8448                 goto del_dev;
8449
8450 out:
8451         return ret;
8452
8453 del_dev:
8454         device_del(pmu->dev);
8455
8456 free_dev:
8457         put_device(pmu->dev);
8458         goto out;
8459 }
8460
8461 static struct lock_class_key cpuctx_mutex;
8462 static struct lock_class_key cpuctx_lock;
8463
8464 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8465 {
8466         int cpu, ret;
8467
8468         mutex_lock(&pmus_lock);
8469         ret = -ENOMEM;
8470         pmu->pmu_disable_count = alloc_percpu(int);
8471         if (!pmu->pmu_disable_count)
8472                 goto unlock;
8473
8474         pmu->type = -1;
8475         if (!name)
8476                 goto skip_type;
8477         pmu->name = name;
8478
8479         if (type < 0) {
8480                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8481                 if (type < 0) {
8482                         ret = type;
8483                         goto free_pdc;
8484                 }
8485         }
8486         pmu->type = type;
8487
8488         if (pmu_bus_running) {
8489                 ret = pmu_dev_alloc(pmu);
8490                 if (ret)
8491                         goto free_idr;
8492         }
8493
8494 skip_type:
8495         if (pmu->task_ctx_nr == perf_hw_context) {
8496                 static int hw_context_taken = 0;
8497
8498                 /*
8499                  * Other than systems with heterogeneous CPUs, it never makes
8500                  * sense for two PMUs to share perf_hw_context. PMUs which are
8501                  * uncore must use perf_invalid_context.
8502                  */
8503                 if (WARN_ON_ONCE(hw_context_taken &&
8504                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8505                         pmu->task_ctx_nr = perf_invalid_context;
8506
8507                 hw_context_taken = 1;
8508         }
8509
8510         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8511         if (pmu->pmu_cpu_context)
8512                 goto got_cpu_context;
8513
8514         ret = -ENOMEM;
8515         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8516         if (!pmu->pmu_cpu_context)
8517                 goto free_dev;
8518
8519         for_each_possible_cpu(cpu) {
8520                 struct perf_cpu_context *cpuctx;
8521
8522                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8523                 __perf_event_init_context(&cpuctx->ctx);
8524                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8525                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8526                 cpuctx->ctx.pmu = pmu;
8527
8528                 __perf_mux_hrtimer_init(cpuctx, cpu);
8529
8530                 cpuctx->unique_pmu = pmu;
8531         }
8532
8533 got_cpu_context:
8534         if (!pmu->start_txn) {
8535                 if (pmu->pmu_enable) {
8536                         /*
8537                          * If we have pmu_enable/pmu_disable calls, install
8538                          * transaction stubs that use that to try and batch
8539                          * hardware accesses.
8540                          */
8541                         pmu->start_txn  = perf_pmu_start_txn;
8542                         pmu->commit_txn = perf_pmu_commit_txn;
8543                         pmu->cancel_txn = perf_pmu_cancel_txn;
8544                 } else {
8545                         pmu->start_txn  = perf_pmu_nop_txn;
8546                         pmu->commit_txn = perf_pmu_nop_int;
8547                         pmu->cancel_txn = perf_pmu_nop_void;
8548                 }
8549         }
8550
8551         if (!pmu->pmu_enable) {
8552                 pmu->pmu_enable  = perf_pmu_nop_void;
8553                 pmu->pmu_disable = perf_pmu_nop_void;
8554         }
8555
8556         if (!pmu->event_idx)
8557                 pmu->event_idx = perf_event_idx_default;
8558
8559         list_add_rcu(&pmu->entry, &pmus);
8560         atomic_set(&pmu->exclusive_cnt, 0);
8561         ret = 0;
8562 unlock:
8563         mutex_unlock(&pmus_lock);
8564
8565         return ret;
8566
8567 free_dev:
8568         device_del(pmu->dev);
8569         put_device(pmu->dev);
8570
8571 free_idr:
8572         if (pmu->type >= PERF_TYPE_MAX)
8573                 idr_remove(&pmu_idr, pmu->type);
8574
8575 free_pdc:
8576         free_percpu(pmu->pmu_disable_count);
8577         goto unlock;
8578 }
8579 EXPORT_SYMBOL_GPL(perf_pmu_register);
8580
8581 void perf_pmu_unregister(struct pmu *pmu)
8582 {
8583         mutex_lock(&pmus_lock);
8584         list_del_rcu(&pmu->entry);
8585         mutex_unlock(&pmus_lock);
8586
8587         /*
8588          * We dereference the pmu list under both SRCU and regular RCU, so
8589          * synchronize against both of those.
8590          */
8591         synchronize_srcu(&pmus_srcu);
8592         synchronize_rcu();
8593
8594         free_percpu(pmu->pmu_disable_count);
8595         if (pmu->type >= PERF_TYPE_MAX)
8596                 idr_remove(&pmu_idr, pmu->type);
8597         if (pmu->nr_addr_filters)
8598                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8599         device_del(pmu->dev);
8600         put_device(pmu->dev);
8601         free_pmu_context(pmu);
8602 }
8603 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8604
8605 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8606 {
8607         struct perf_event_context *ctx = NULL;
8608         int ret;
8609
8610         if (!try_module_get(pmu->module))
8611                 return -ENODEV;
8612
8613         if (event->group_leader != event) {
8614                 /*
8615                  * This ctx->mutex can nest when we're called through
8616                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8617                  */
8618                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8619                                                  SINGLE_DEPTH_NESTING);
8620                 BUG_ON(!ctx);
8621         }
8622
8623         event->pmu = pmu;
8624         ret = pmu->event_init(event);
8625
8626         if (ctx)
8627                 perf_event_ctx_unlock(event->group_leader, ctx);
8628
8629         if (ret)
8630                 module_put(pmu->module);
8631
8632         return ret;
8633 }
8634
8635 static struct pmu *perf_init_event(struct perf_event *event)
8636 {
8637         struct pmu *pmu = NULL;
8638         int idx;
8639         int ret;
8640
8641         idx = srcu_read_lock(&pmus_srcu);
8642
8643         rcu_read_lock();
8644         pmu = idr_find(&pmu_idr, event->attr.type);
8645         rcu_read_unlock();
8646         if (pmu) {
8647                 ret = perf_try_init_event(pmu, event);
8648                 if (ret)
8649                         pmu = ERR_PTR(ret);
8650                 goto unlock;
8651         }
8652
8653         list_for_each_entry_rcu(pmu, &pmus, entry) {
8654                 ret = perf_try_init_event(pmu, event);
8655                 if (!ret)
8656                         goto unlock;
8657
8658                 if (ret != -ENOENT) {
8659                         pmu = ERR_PTR(ret);
8660                         goto unlock;
8661                 }
8662         }
8663         pmu = ERR_PTR(-ENOENT);
8664 unlock:
8665         srcu_read_unlock(&pmus_srcu, idx);
8666
8667         return pmu;
8668 }
8669
8670 static void account_event_cpu(struct perf_event *event, int cpu)
8671 {
8672         if (event->parent)
8673                 return;
8674
8675         if (is_cgroup_event(event))
8676                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8677 }
8678
8679 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8680 static void account_freq_event_nohz(void)
8681 {
8682 #ifdef CONFIG_NO_HZ_FULL
8683         /* Lock so we don't race with concurrent unaccount */
8684         spin_lock(&nr_freq_lock);
8685         if (atomic_inc_return(&nr_freq_events) == 1)
8686                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8687         spin_unlock(&nr_freq_lock);
8688 #endif
8689 }
8690
8691 static void account_freq_event(void)
8692 {
8693         if (tick_nohz_full_enabled())
8694                 account_freq_event_nohz();
8695         else
8696                 atomic_inc(&nr_freq_events);
8697 }
8698
8699
8700 static void account_event(struct perf_event *event)
8701 {
8702         bool inc = false;
8703
8704         if (event->parent)
8705                 return;
8706
8707         if (event->attach_state & PERF_ATTACH_TASK)
8708                 inc = true;
8709         if (event->attr.mmap || event->attr.mmap_data)
8710                 atomic_inc(&nr_mmap_events);
8711         if (event->attr.comm)
8712                 atomic_inc(&nr_comm_events);
8713         if (event->attr.task)
8714                 atomic_inc(&nr_task_events);
8715         if (event->attr.freq)
8716                 account_freq_event();
8717         if (event->attr.context_switch) {
8718                 atomic_inc(&nr_switch_events);
8719                 inc = true;
8720         }
8721         if (has_branch_stack(event))
8722                 inc = true;
8723         if (is_cgroup_event(event))
8724                 inc = true;
8725
8726         if (inc) {
8727                 if (atomic_inc_not_zero(&perf_sched_count))
8728                         goto enabled;
8729
8730                 mutex_lock(&perf_sched_mutex);
8731                 if (!atomic_read(&perf_sched_count)) {
8732                         static_branch_enable(&perf_sched_events);
8733                         /*
8734                          * Guarantee that all CPUs observe they key change and
8735                          * call the perf scheduling hooks before proceeding to
8736                          * install events that need them.
8737                          */
8738                         synchronize_sched();
8739                 }
8740                 /*
8741                  * Now that we have waited for the sync_sched(), allow further
8742                  * increments to by-pass the mutex.
8743                  */
8744                 atomic_inc(&perf_sched_count);
8745                 mutex_unlock(&perf_sched_mutex);
8746         }
8747 enabled:
8748
8749         account_event_cpu(event, event->cpu);
8750 }
8751
8752 /*
8753  * Allocate and initialize a event structure
8754  */
8755 static struct perf_event *
8756 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8757                  struct task_struct *task,
8758                  struct perf_event *group_leader,
8759                  struct perf_event *parent_event,
8760                  perf_overflow_handler_t overflow_handler,
8761                  void *context, int cgroup_fd)
8762 {
8763         struct pmu *pmu;
8764         struct perf_event *event;
8765         struct hw_perf_event *hwc;
8766         long err = -EINVAL;
8767
8768         if ((unsigned)cpu >= nr_cpu_ids) {
8769                 if (!task || cpu != -1)
8770                         return ERR_PTR(-EINVAL);
8771         }
8772
8773         event = kzalloc(sizeof(*event), GFP_KERNEL);
8774         if (!event)
8775                 return ERR_PTR(-ENOMEM);
8776
8777         /*
8778          * Single events are their own group leaders, with an
8779          * empty sibling list:
8780          */
8781         if (!group_leader)
8782                 group_leader = event;
8783
8784         mutex_init(&event->child_mutex);
8785         INIT_LIST_HEAD(&event->child_list);
8786
8787         INIT_LIST_HEAD(&event->group_entry);
8788         INIT_LIST_HEAD(&event->event_entry);
8789         INIT_LIST_HEAD(&event->sibling_list);
8790         INIT_LIST_HEAD(&event->rb_entry);
8791         INIT_LIST_HEAD(&event->active_entry);
8792         INIT_LIST_HEAD(&event->addr_filters.list);
8793         INIT_HLIST_NODE(&event->hlist_entry);
8794
8795
8796         init_waitqueue_head(&event->waitq);
8797         init_irq_work(&event->pending, perf_pending_event);
8798
8799         mutex_init(&event->mmap_mutex);
8800         raw_spin_lock_init(&event->addr_filters.lock);
8801
8802         atomic_long_set(&event->refcount, 1);
8803         event->cpu              = cpu;
8804         event->attr             = *attr;
8805         event->group_leader     = group_leader;
8806         event->pmu              = NULL;
8807         event->oncpu            = -1;
8808
8809         event->parent           = parent_event;
8810
8811         event->ns               = get_pid_ns(task_active_pid_ns(current));
8812         event->id               = atomic64_inc_return(&perf_event_id);
8813
8814         event->state            = PERF_EVENT_STATE_INACTIVE;
8815
8816         if (task) {
8817                 event->attach_state = PERF_ATTACH_TASK;
8818                 /*
8819                  * XXX pmu::event_init needs to know what task to account to
8820                  * and we cannot use the ctx information because we need the
8821                  * pmu before we get a ctx.
8822                  */
8823                 event->hw.target = task;
8824         }
8825
8826         event->clock = &local_clock;
8827         if (parent_event)
8828                 event->clock = parent_event->clock;
8829
8830         if (!overflow_handler && parent_event) {
8831                 overflow_handler = parent_event->overflow_handler;
8832                 context = parent_event->overflow_handler_context;
8833         }
8834
8835         if (overflow_handler) {
8836                 event->overflow_handler = overflow_handler;
8837                 event->overflow_handler_context = context;
8838         } else if (is_write_backward(event)){
8839                 event->overflow_handler = perf_event_output_backward;
8840                 event->overflow_handler_context = NULL;
8841         } else {
8842                 event->overflow_handler = perf_event_output_forward;
8843                 event->overflow_handler_context = NULL;
8844         }
8845
8846         perf_event__state_init(event);
8847
8848         pmu = NULL;
8849
8850         hwc = &event->hw;
8851         hwc->sample_period = attr->sample_period;
8852         if (attr->freq && attr->sample_freq)
8853                 hwc->sample_period = 1;
8854         hwc->last_period = hwc->sample_period;
8855
8856         local64_set(&hwc->period_left, hwc->sample_period);
8857
8858         /*
8859          * we currently do not support PERF_FORMAT_GROUP on inherited events
8860          */
8861         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8862                 goto err_ns;
8863
8864         if (!has_branch_stack(event))
8865                 event->attr.branch_sample_type = 0;
8866
8867         if (cgroup_fd != -1) {
8868                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8869                 if (err)
8870                         goto err_ns;
8871         }
8872
8873         pmu = perf_init_event(event);
8874         if (!pmu)
8875                 goto err_ns;
8876         else if (IS_ERR(pmu)) {
8877                 err = PTR_ERR(pmu);
8878                 goto err_ns;
8879         }
8880
8881         err = exclusive_event_init(event);
8882         if (err)
8883                 goto err_pmu;
8884
8885         if (has_addr_filter(event)) {
8886                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8887                                                    sizeof(unsigned long),
8888                                                    GFP_KERNEL);
8889                 if (!event->addr_filters_offs)
8890                         goto err_per_task;
8891
8892                 /* force hw sync on the address filters */
8893                 event->addr_filters_gen = 1;
8894         }
8895
8896         if (!event->parent) {
8897                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8898                         err = get_callchain_buffers();
8899                         if (err)
8900                                 goto err_addr_filters;
8901                 }
8902         }
8903
8904         /* symmetric to unaccount_event() in _free_event() */
8905         account_event(event);
8906
8907         return event;
8908
8909 err_addr_filters:
8910         kfree(event->addr_filters_offs);
8911
8912 err_per_task:
8913         exclusive_event_destroy(event);
8914
8915 err_pmu:
8916         if (event->destroy)
8917                 event->destroy(event);
8918         module_put(pmu->module);
8919 err_ns:
8920         if (is_cgroup_event(event))
8921                 perf_detach_cgroup(event);
8922         if (event->ns)
8923                 put_pid_ns(event->ns);
8924         kfree(event);
8925
8926         return ERR_PTR(err);
8927 }
8928
8929 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8930                           struct perf_event_attr *attr)
8931 {
8932         u32 size;
8933         int ret;
8934
8935         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8936                 return -EFAULT;
8937
8938         /*
8939          * zero the full structure, so that a short copy will be nice.
8940          */
8941         memset(attr, 0, sizeof(*attr));
8942
8943         ret = get_user(size, &uattr->size);
8944         if (ret)
8945                 return ret;
8946
8947         if (size > PAGE_SIZE)   /* silly large */
8948                 goto err_size;
8949
8950         if (!size)              /* abi compat */
8951                 size = PERF_ATTR_SIZE_VER0;
8952
8953         if (size < PERF_ATTR_SIZE_VER0)
8954                 goto err_size;
8955
8956         /*
8957          * If we're handed a bigger struct than we know of,
8958          * ensure all the unknown bits are 0 - i.e. new
8959          * user-space does not rely on any kernel feature
8960          * extensions we dont know about yet.
8961          */
8962         if (size > sizeof(*attr)) {
8963                 unsigned char __user *addr;
8964                 unsigned char __user *end;
8965                 unsigned char val;
8966
8967                 addr = (void __user *)uattr + sizeof(*attr);
8968                 end  = (void __user *)uattr + size;
8969
8970                 for (; addr < end; addr++) {
8971                         ret = get_user(val, addr);
8972                         if (ret)
8973                                 return ret;
8974                         if (val)
8975                                 goto err_size;
8976                 }
8977                 size = sizeof(*attr);
8978         }
8979
8980         ret = copy_from_user(attr, uattr, size);
8981         if (ret)
8982                 return -EFAULT;
8983
8984         if (attr->__reserved_1)
8985                 return -EINVAL;
8986
8987         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8988                 return -EINVAL;
8989
8990         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8991                 return -EINVAL;
8992
8993         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8994                 u64 mask = attr->branch_sample_type;
8995
8996                 /* only using defined bits */
8997                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8998                         return -EINVAL;
8999
9000                 /* at least one branch bit must be set */
9001                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9002                         return -EINVAL;
9003
9004                 /* propagate priv level, when not set for branch */
9005                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9006
9007                         /* exclude_kernel checked on syscall entry */
9008                         if (!attr->exclude_kernel)
9009                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9010
9011                         if (!attr->exclude_user)
9012                                 mask |= PERF_SAMPLE_BRANCH_USER;
9013
9014                         if (!attr->exclude_hv)
9015                                 mask |= PERF_SAMPLE_BRANCH_HV;
9016                         /*
9017                          * adjust user setting (for HW filter setup)
9018                          */
9019                         attr->branch_sample_type = mask;
9020                 }
9021                 /* privileged levels capture (kernel, hv): check permissions */
9022                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9023                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9024                         return -EACCES;
9025         }
9026
9027         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9028                 ret = perf_reg_validate(attr->sample_regs_user);
9029                 if (ret)
9030                         return ret;
9031         }
9032
9033         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9034                 if (!arch_perf_have_user_stack_dump())
9035                         return -ENOSYS;
9036
9037                 /*
9038                  * We have __u32 type for the size, but so far
9039                  * we can only use __u16 as maximum due to the
9040                  * __u16 sample size limit.
9041                  */
9042                 if (attr->sample_stack_user >= USHRT_MAX)
9043                         ret = -EINVAL;
9044                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9045                         ret = -EINVAL;
9046         }
9047
9048         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9049                 ret = perf_reg_validate(attr->sample_regs_intr);
9050 out:
9051         return ret;
9052
9053 err_size:
9054         put_user(sizeof(*attr), &uattr->size);
9055         ret = -E2BIG;
9056         goto out;
9057 }
9058
9059 static int
9060 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9061 {
9062         struct ring_buffer *rb = NULL;
9063         int ret = -EINVAL;
9064
9065         if (!output_event)
9066                 goto set;
9067
9068         /* don't allow circular references */
9069         if (event == output_event)
9070                 goto out;
9071
9072         /*
9073          * Don't allow cross-cpu buffers
9074          */
9075         if (output_event->cpu != event->cpu)
9076                 goto out;
9077
9078         /*
9079          * If its not a per-cpu rb, it must be the same task.
9080          */
9081         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9082                 goto out;
9083
9084         /*
9085          * Mixing clocks in the same buffer is trouble you don't need.
9086          */
9087         if (output_event->clock != event->clock)
9088                 goto out;
9089
9090         /*
9091          * Either writing ring buffer from beginning or from end.
9092          * Mixing is not allowed.
9093          */
9094         if (is_write_backward(output_event) != is_write_backward(event))
9095                 goto out;
9096
9097         /*
9098          * If both events generate aux data, they must be on the same PMU
9099          */
9100         if (has_aux(event) && has_aux(output_event) &&
9101             event->pmu != output_event->pmu)
9102                 goto out;
9103
9104 set:
9105         mutex_lock(&event->mmap_mutex);
9106         /* Can't redirect output if we've got an active mmap() */
9107         if (atomic_read(&event->mmap_count))
9108                 goto unlock;
9109
9110         if (output_event) {
9111                 /* get the rb we want to redirect to */
9112                 rb = ring_buffer_get(output_event);
9113                 if (!rb)
9114                         goto unlock;
9115         }
9116
9117         ring_buffer_attach(event, rb);
9118
9119         ret = 0;
9120 unlock:
9121         mutex_unlock(&event->mmap_mutex);
9122
9123 out:
9124         return ret;
9125 }
9126
9127 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9128 {
9129         if (b < a)
9130                 swap(a, b);
9131
9132         mutex_lock(a);
9133         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9134 }
9135
9136 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9137 {
9138         bool nmi_safe = false;
9139
9140         switch (clk_id) {
9141         case CLOCK_MONOTONIC:
9142                 event->clock = &ktime_get_mono_fast_ns;
9143                 nmi_safe = true;
9144                 break;
9145
9146         case CLOCK_MONOTONIC_RAW:
9147                 event->clock = &ktime_get_raw_fast_ns;
9148                 nmi_safe = true;
9149                 break;
9150
9151         case CLOCK_REALTIME:
9152                 event->clock = &ktime_get_real_ns;
9153                 break;
9154
9155         case CLOCK_BOOTTIME:
9156                 event->clock = &ktime_get_boot_ns;
9157                 break;
9158
9159         case CLOCK_TAI:
9160                 event->clock = &ktime_get_tai_ns;
9161                 break;
9162
9163         default:
9164                 return -EINVAL;
9165         }
9166
9167         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9168                 return -EINVAL;
9169
9170         return 0;
9171 }
9172
9173 /**
9174  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9175  *
9176  * @attr_uptr:  event_id type attributes for monitoring/sampling
9177  * @pid:                target pid
9178  * @cpu:                target cpu
9179  * @group_fd:           group leader event fd
9180  */
9181 SYSCALL_DEFINE5(perf_event_open,
9182                 struct perf_event_attr __user *, attr_uptr,
9183                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9184 {
9185         struct perf_event *group_leader = NULL, *output_event = NULL;
9186         struct perf_event *event, *sibling;
9187         struct perf_event_attr attr;
9188         struct perf_event_context *ctx, *uninitialized_var(gctx);
9189         struct file *event_file = NULL;
9190         struct fd group = {NULL, 0};
9191         struct task_struct *task = NULL;
9192         struct pmu *pmu;
9193         int event_fd;
9194         int move_group = 0;
9195         int err;
9196         int f_flags = O_RDWR;
9197         int cgroup_fd = -1;
9198
9199         /* for future expandability... */
9200         if (flags & ~PERF_FLAG_ALL)
9201                 return -EINVAL;
9202
9203         err = perf_copy_attr(attr_uptr, &attr);
9204         if (err)
9205                 return err;
9206
9207         if (!attr.exclude_kernel) {
9208                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9209                         return -EACCES;
9210         }
9211
9212         if (attr.freq) {
9213                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9214                         return -EINVAL;
9215         } else {
9216                 if (attr.sample_period & (1ULL << 63))
9217                         return -EINVAL;
9218         }
9219
9220         /*
9221          * In cgroup mode, the pid argument is used to pass the fd
9222          * opened to the cgroup directory in cgroupfs. The cpu argument
9223          * designates the cpu on which to monitor threads from that
9224          * cgroup.
9225          */
9226         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9227                 return -EINVAL;
9228
9229         if (flags & PERF_FLAG_FD_CLOEXEC)
9230                 f_flags |= O_CLOEXEC;
9231
9232         event_fd = get_unused_fd_flags(f_flags);
9233         if (event_fd < 0)
9234                 return event_fd;
9235
9236         if (group_fd != -1) {
9237                 err = perf_fget_light(group_fd, &group);
9238                 if (err)
9239                         goto err_fd;
9240                 group_leader = group.file->private_data;
9241                 if (flags & PERF_FLAG_FD_OUTPUT)
9242                         output_event = group_leader;
9243                 if (flags & PERF_FLAG_FD_NO_GROUP)
9244                         group_leader = NULL;
9245         }
9246
9247         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9248                 task = find_lively_task_by_vpid(pid);
9249                 if (IS_ERR(task)) {
9250                         err = PTR_ERR(task);
9251                         goto err_group_fd;
9252                 }
9253         }
9254
9255         if (task && group_leader &&
9256             group_leader->attr.inherit != attr.inherit) {
9257                 err = -EINVAL;
9258                 goto err_task;
9259         }
9260
9261         get_online_cpus();
9262
9263         if (task) {
9264                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9265                 if (err)
9266                         goto err_cpus;
9267
9268                 /*
9269                  * Reuse ptrace permission checks for now.
9270                  *
9271                  * We must hold cred_guard_mutex across this and any potential
9272                  * perf_install_in_context() call for this new event to
9273                  * serialize against exec() altering our credentials (and the
9274                  * perf_event_exit_task() that could imply).
9275                  */
9276                 err = -EACCES;
9277                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9278                         goto err_cred;
9279         }
9280
9281         if (flags & PERF_FLAG_PID_CGROUP)
9282                 cgroup_fd = pid;
9283
9284         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9285                                  NULL, NULL, cgroup_fd);
9286         if (IS_ERR(event)) {
9287                 err = PTR_ERR(event);
9288                 goto err_cred;
9289         }
9290
9291         if (is_sampling_event(event)) {
9292                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9293                         err = -ENOTSUPP;
9294                         goto err_alloc;
9295                 }
9296         }
9297
9298         /*
9299          * Special case software events and allow them to be part of
9300          * any hardware group.
9301          */
9302         pmu = event->pmu;
9303
9304         if (attr.use_clockid) {
9305                 err = perf_event_set_clock(event, attr.clockid);
9306                 if (err)
9307                         goto err_alloc;
9308         }
9309
9310         if (group_leader &&
9311             (is_software_event(event) != is_software_event(group_leader))) {
9312                 if (is_software_event(event)) {
9313                         /*
9314                          * If event and group_leader are not both a software
9315                          * event, and event is, then group leader is not.
9316                          *
9317                          * Allow the addition of software events to !software
9318                          * groups, this is safe because software events never
9319                          * fail to schedule.
9320                          */
9321                         pmu = group_leader->pmu;
9322                 } else if (is_software_event(group_leader) &&
9323                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9324                         /*
9325                          * In case the group is a pure software group, and we
9326                          * try to add a hardware event, move the whole group to
9327                          * the hardware context.
9328                          */
9329                         move_group = 1;
9330                 }
9331         }
9332
9333         /*
9334          * Get the target context (task or percpu):
9335          */
9336         ctx = find_get_context(pmu, task, event);
9337         if (IS_ERR(ctx)) {
9338                 err = PTR_ERR(ctx);
9339                 goto err_alloc;
9340         }
9341
9342         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9343                 err = -EBUSY;
9344                 goto err_context;
9345         }
9346
9347         /*
9348          * Look up the group leader (we will attach this event to it):
9349          */
9350         if (group_leader) {
9351                 err = -EINVAL;
9352
9353                 /*
9354                  * Do not allow a recursive hierarchy (this new sibling
9355                  * becoming part of another group-sibling):
9356                  */
9357                 if (group_leader->group_leader != group_leader)
9358                         goto err_context;
9359
9360                 /* All events in a group should have the same clock */
9361                 if (group_leader->clock != event->clock)
9362                         goto err_context;
9363
9364                 /*
9365                  * Do not allow to attach to a group in a different
9366                  * task or CPU context:
9367                  */
9368                 if (move_group) {
9369                         /*
9370                          * Make sure we're both on the same task, or both
9371                          * per-cpu events.
9372                          */
9373                         if (group_leader->ctx->task != ctx->task)
9374                                 goto err_context;
9375
9376                         /*
9377                          * Make sure we're both events for the same CPU;
9378                          * grouping events for different CPUs is broken; since
9379                          * you can never concurrently schedule them anyhow.
9380                          */
9381                         if (group_leader->cpu != event->cpu)
9382                                 goto err_context;
9383                 } else {
9384                         if (group_leader->ctx != ctx)
9385                                 goto err_context;
9386                 }
9387
9388                 /*
9389                  * Only a group leader can be exclusive or pinned
9390                  */
9391                 if (attr.exclusive || attr.pinned)
9392                         goto err_context;
9393         }
9394
9395         if (output_event) {
9396                 err = perf_event_set_output(event, output_event);
9397                 if (err)
9398                         goto err_context;
9399         }
9400
9401         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9402                                         f_flags);
9403         if (IS_ERR(event_file)) {
9404                 err = PTR_ERR(event_file);
9405                 event_file = NULL;
9406                 goto err_context;
9407         }
9408
9409         if (move_group) {
9410                 gctx = group_leader->ctx;
9411                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9412                 if (gctx->task == TASK_TOMBSTONE) {
9413                         err = -ESRCH;
9414                         goto err_locked;
9415                 }
9416         } else {
9417                 mutex_lock(&ctx->mutex);
9418         }
9419
9420         if (ctx->task == TASK_TOMBSTONE) {
9421                 err = -ESRCH;
9422                 goto err_locked;
9423         }
9424
9425         if (!perf_event_validate_size(event)) {
9426                 err = -E2BIG;
9427                 goto err_locked;
9428         }
9429
9430         /*
9431          * Must be under the same ctx::mutex as perf_install_in_context(),
9432          * because we need to serialize with concurrent event creation.
9433          */
9434         if (!exclusive_event_installable(event, ctx)) {
9435                 /* exclusive and group stuff are assumed mutually exclusive */
9436                 WARN_ON_ONCE(move_group);
9437
9438                 err = -EBUSY;
9439                 goto err_locked;
9440         }
9441
9442         WARN_ON_ONCE(ctx->parent_ctx);
9443
9444         /*
9445          * This is the point on no return; we cannot fail hereafter. This is
9446          * where we start modifying current state.
9447          */
9448
9449         if (move_group) {
9450                 /*
9451                  * See perf_event_ctx_lock() for comments on the details
9452                  * of swizzling perf_event::ctx.
9453                  */
9454                 perf_remove_from_context(group_leader, 0);
9455
9456                 list_for_each_entry(sibling, &group_leader->sibling_list,
9457                                     group_entry) {
9458                         perf_remove_from_context(sibling, 0);
9459                         put_ctx(gctx);
9460                 }
9461
9462                 /*
9463                  * Wait for everybody to stop referencing the events through
9464                  * the old lists, before installing it on new lists.
9465                  */
9466                 synchronize_rcu();
9467
9468                 /*
9469                  * Install the group siblings before the group leader.
9470                  *
9471                  * Because a group leader will try and install the entire group
9472                  * (through the sibling list, which is still in-tact), we can
9473                  * end up with siblings installed in the wrong context.
9474                  *
9475                  * By installing siblings first we NO-OP because they're not
9476                  * reachable through the group lists.
9477                  */
9478                 list_for_each_entry(sibling, &group_leader->sibling_list,
9479                                     group_entry) {
9480                         perf_event__state_init(sibling);
9481                         perf_install_in_context(ctx, sibling, sibling->cpu);
9482                         get_ctx(ctx);
9483                 }
9484
9485                 /*
9486                  * Removing from the context ends up with disabled
9487                  * event. What we want here is event in the initial
9488                  * startup state, ready to be add into new context.
9489                  */
9490                 perf_event__state_init(group_leader);
9491                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9492                 get_ctx(ctx);
9493
9494                 /*
9495                  * Now that all events are installed in @ctx, nothing
9496                  * references @gctx anymore, so drop the last reference we have
9497                  * on it.
9498                  */
9499                 put_ctx(gctx);
9500         }
9501
9502         /*
9503          * Precalculate sample_data sizes; do while holding ctx::mutex such
9504          * that we're serialized against further additions and before
9505          * perf_install_in_context() which is the point the event is active and
9506          * can use these values.
9507          */
9508         perf_event__header_size(event);
9509         perf_event__id_header_size(event);
9510
9511         event->owner = current;
9512
9513         perf_install_in_context(ctx, event, event->cpu);
9514         perf_unpin_context(ctx);
9515
9516         if (move_group)
9517                 mutex_unlock(&gctx->mutex);
9518         mutex_unlock(&ctx->mutex);
9519
9520         if (task) {
9521                 mutex_unlock(&task->signal->cred_guard_mutex);
9522                 put_task_struct(task);
9523         }
9524
9525         put_online_cpus();
9526
9527         mutex_lock(&current->perf_event_mutex);
9528         list_add_tail(&event->owner_entry, &current->perf_event_list);
9529         mutex_unlock(&current->perf_event_mutex);
9530
9531         /*
9532          * Drop the reference on the group_event after placing the
9533          * new event on the sibling_list. This ensures destruction
9534          * of the group leader will find the pointer to itself in
9535          * perf_group_detach().
9536          */
9537         fdput(group);
9538         fd_install(event_fd, event_file);
9539         return event_fd;
9540
9541 err_locked:
9542         if (move_group)
9543                 mutex_unlock(&gctx->mutex);
9544         mutex_unlock(&ctx->mutex);
9545 /* err_file: */
9546         fput(event_file);
9547 err_context:
9548         perf_unpin_context(ctx);
9549         put_ctx(ctx);
9550 err_alloc:
9551         /*
9552          * If event_file is set, the fput() above will have called ->release()
9553          * and that will take care of freeing the event.
9554          */
9555         if (!event_file)
9556                 free_event(event);
9557 err_cred:
9558         if (task)
9559                 mutex_unlock(&task->signal->cred_guard_mutex);
9560 err_cpus:
9561         put_online_cpus();
9562 err_task:
9563         if (task)
9564                 put_task_struct(task);
9565 err_group_fd:
9566         fdput(group);
9567 err_fd:
9568         put_unused_fd(event_fd);
9569         return err;
9570 }
9571
9572 /**
9573  * perf_event_create_kernel_counter
9574  *
9575  * @attr: attributes of the counter to create
9576  * @cpu: cpu in which the counter is bound
9577  * @task: task to profile (NULL for percpu)
9578  */
9579 struct perf_event *
9580 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9581                                  struct task_struct *task,
9582                                  perf_overflow_handler_t overflow_handler,
9583                                  void *context)
9584 {
9585         struct perf_event_context *ctx;
9586         struct perf_event *event;
9587         int err;
9588
9589         /*
9590          * Get the target context (task or percpu):
9591          */
9592
9593         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9594                                  overflow_handler, context, -1);
9595         if (IS_ERR(event)) {
9596                 err = PTR_ERR(event);
9597                 goto err;
9598         }
9599
9600         /* Mark owner so we could distinguish it from user events. */
9601         event->owner = TASK_TOMBSTONE;
9602
9603         ctx = find_get_context(event->pmu, task, event);
9604         if (IS_ERR(ctx)) {
9605                 err = PTR_ERR(ctx);
9606                 goto err_free;
9607         }
9608
9609         WARN_ON_ONCE(ctx->parent_ctx);
9610         mutex_lock(&ctx->mutex);
9611         if (ctx->task == TASK_TOMBSTONE) {
9612                 err = -ESRCH;
9613                 goto err_unlock;
9614         }
9615
9616         if (!exclusive_event_installable(event, ctx)) {
9617                 err = -EBUSY;
9618                 goto err_unlock;
9619         }
9620
9621         perf_install_in_context(ctx, event, cpu);
9622         perf_unpin_context(ctx);
9623         mutex_unlock(&ctx->mutex);
9624
9625         return event;
9626
9627 err_unlock:
9628         mutex_unlock(&ctx->mutex);
9629         perf_unpin_context(ctx);
9630         put_ctx(ctx);
9631 err_free:
9632         free_event(event);
9633 err:
9634         return ERR_PTR(err);
9635 }
9636 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9637
9638 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9639 {
9640         struct perf_event_context *src_ctx;
9641         struct perf_event_context *dst_ctx;
9642         struct perf_event *event, *tmp;
9643         LIST_HEAD(events);
9644
9645         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9646         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9647
9648         /*
9649          * See perf_event_ctx_lock() for comments on the details
9650          * of swizzling perf_event::ctx.
9651          */
9652         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9653         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9654                                  event_entry) {
9655                 perf_remove_from_context(event, 0);
9656                 unaccount_event_cpu(event, src_cpu);
9657                 put_ctx(src_ctx);
9658                 list_add(&event->migrate_entry, &events);
9659         }
9660
9661         /*
9662          * Wait for the events to quiesce before re-instating them.
9663          */
9664         synchronize_rcu();
9665
9666         /*
9667          * Re-instate events in 2 passes.
9668          *
9669          * Skip over group leaders and only install siblings on this first
9670          * pass, siblings will not get enabled without a leader, however a
9671          * leader will enable its siblings, even if those are still on the old
9672          * context.
9673          */
9674         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9675                 if (event->group_leader == event)
9676                         continue;
9677
9678                 list_del(&event->migrate_entry);
9679                 if (event->state >= PERF_EVENT_STATE_OFF)
9680                         event->state = PERF_EVENT_STATE_INACTIVE;
9681                 account_event_cpu(event, dst_cpu);
9682                 perf_install_in_context(dst_ctx, event, dst_cpu);
9683                 get_ctx(dst_ctx);
9684         }
9685
9686         /*
9687          * Once all the siblings are setup properly, install the group leaders
9688          * to make it go.
9689          */
9690         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9691                 list_del(&event->migrate_entry);
9692                 if (event->state >= PERF_EVENT_STATE_OFF)
9693                         event->state = PERF_EVENT_STATE_INACTIVE;
9694                 account_event_cpu(event, dst_cpu);
9695                 perf_install_in_context(dst_ctx, event, dst_cpu);
9696                 get_ctx(dst_ctx);
9697         }
9698         mutex_unlock(&dst_ctx->mutex);
9699         mutex_unlock(&src_ctx->mutex);
9700 }
9701 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9702
9703 static void sync_child_event(struct perf_event *child_event,
9704                                struct task_struct *child)
9705 {
9706         struct perf_event *parent_event = child_event->parent;
9707         u64 child_val;
9708
9709         if (child_event->attr.inherit_stat)
9710                 perf_event_read_event(child_event, child);
9711
9712         child_val = perf_event_count(child_event);
9713
9714         /*
9715          * Add back the child's count to the parent's count:
9716          */
9717         atomic64_add(child_val, &parent_event->child_count);
9718         atomic64_add(child_event->total_time_enabled,
9719                      &parent_event->child_total_time_enabled);
9720         atomic64_add(child_event->total_time_running,
9721                      &parent_event->child_total_time_running);
9722 }
9723
9724 static void
9725 perf_event_exit_event(struct perf_event *child_event,
9726                       struct perf_event_context *child_ctx,
9727                       struct task_struct *child)
9728 {
9729         struct perf_event *parent_event = child_event->parent;
9730
9731         /*
9732          * Do not destroy the 'original' grouping; because of the context
9733          * switch optimization the original events could've ended up in a
9734          * random child task.
9735          *
9736          * If we were to destroy the original group, all group related
9737          * operations would cease to function properly after this random
9738          * child dies.
9739          *
9740          * Do destroy all inherited groups, we don't care about those
9741          * and being thorough is better.
9742          */
9743         raw_spin_lock_irq(&child_ctx->lock);
9744         WARN_ON_ONCE(child_ctx->is_active);
9745
9746         if (parent_event)
9747                 perf_group_detach(child_event);
9748         list_del_event(child_event, child_ctx);
9749         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9750         raw_spin_unlock_irq(&child_ctx->lock);
9751
9752         /*
9753          * Parent events are governed by their filedesc, retain them.
9754          */
9755         if (!parent_event) {
9756                 perf_event_wakeup(child_event);
9757                 return;
9758         }
9759         /*
9760          * Child events can be cleaned up.
9761          */
9762
9763         sync_child_event(child_event, child);
9764
9765         /*
9766          * Remove this event from the parent's list
9767          */
9768         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9769         mutex_lock(&parent_event->child_mutex);
9770         list_del_init(&child_event->child_list);
9771         mutex_unlock(&parent_event->child_mutex);
9772
9773         /*
9774          * Kick perf_poll() for is_event_hup().
9775          */
9776         perf_event_wakeup(parent_event);
9777         free_event(child_event);
9778         put_event(parent_event);
9779 }
9780
9781 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9782 {
9783         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9784         struct perf_event *child_event, *next;
9785
9786         WARN_ON_ONCE(child != current);
9787
9788         child_ctx = perf_pin_task_context(child, ctxn);
9789         if (!child_ctx)
9790                 return;
9791
9792         /*
9793          * In order to reduce the amount of tricky in ctx tear-down, we hold
9794          * ctx::mutex over the entire thing. This serializes against almost
9795          * everything that wants to access the ctx.
9796          *
9797          * The exception is sys_perf_event_open() /
9798          * perf_event_create_kernel_count() which does find_get_context()
9799          * without ctx::mutex (it cannot because of the move_group double mutex
9800          * lock thing). See the comments in perf_install_in_context().
9801          */
9802         mutex_lock(&child_ctx->mutex);
9803
9804         /*
9805          * In a single ctx::lock section, de-schedule the events and detach the
9806          * context from the task such that we cannot ever get it scheduled back
9807          * in.
9808          */
9809         raw_spin_lock_irq(&child_ctx->lock);
9810         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9811
9812         /*
9813          * Now that the context is inactive, destroy the task <-> ctx relation
9814          * and mark the context dead.
9815          */
9816         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9817         put_ctx(child_ctx); /* cannot be last */
9818         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9819         put_task_struct(current); /* cannot be last */
9820
9821         clone_ctx = unclone_ctx(child_ctx);
9822         raw_spin_unlock_irq(&child_ctx->lock);
9823
9824         if (clone_ctx)
9825                 put_ctx(clone_ctx);
9826
9827         /*
9828          * Report the task dead after unscheduling the events so that we
9829          * won't get any samples after PERF_RECORD_EXIT. We can however still
9830          * get a few PERF_RECORD_READ events.
9831          */
9832         perf_event_task(child, child_ctx, 0);
9833
9834         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9835                 perf_event_exit_event(child_event, child_ctx, child);
9836
9837         mutex_unlock(&child_ctx->mutex);
9838
9839         put_ctx(child_ctx);
9840 }
9841
9842 /*
9843  * When a child task exits, feed back event values to parent events.
9844  *
9845  * Can be called with cred_guard_mutex held when called from
9846  * install_exec_creds().
9847  */
9848 void perf_event_exit_task(struct task_struct *child)
9849 {
9850         struct perf_event *event, *tmp;
9851         int ctxn;
9852
9853         mutex_lock(&child->perf_event_mutex);
9854         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9855                                  owner_entry) {
9856                 list_del_init(&event->owner_entry);
9857
9858                 /*
9859                  * Ensure the list deletion is visible before we clear
9860                  * the owner, closes a race against perf_release() where
9861                  * we need to serialize on the owner->perf_event_mutex.
9862                  */
9863                 smp_store_release(&event->owner, NULL);
9864         }
9865         mutex_unlock(&child->perf_event_mutex);
9866
9867         for_each_task_context_nr(ctxn)
9868                 perf_event_exit_task_context(child, ctxn);
9869
9870         /*
9871          * The perf_event_exit_task_context calls perf_event_task
9872          * with child's task_ctx, which generates EXIT events for
9873          * child contexts and sets child->perf_event_ctxp[] to NULL.
9874          * At this point we need to send EXIT events to cpu contexts.
9875          */
9876         perf_event_task(child, NULL, 0);
9877 }
9878
9879 static void perf_free_event(struct perf_event *event,
9880                             struct perf_event_context *ctx)
9881 {
9882         struct perf_event *parent = event->parent;
9883
9884         if (WARN_ON_ONCE(!parent))
9885                 return;
9886
9887         mutex_lock(&parent->child_mutex);
9888         list_del_init(&event->child_list);
9889         mutex_unlock(&parent->child_mutex);
9890
9891         put_event(parent);
9892
9893         raw_spin_lock_irq(&ctx->lock);
9894         perf_group_detach(event);
9895         list_del_event(event, ctx);
9896         raw_spin_unlock_irq(&ctx->lock);
9897         free_event(event);
9898 }
9899
9900 /*
9901  * Free an unexposed, unused context as created by inheritance by
9902  * perf_event_init_task below, used by fork() in case of fail.
9903  *
9904  * Not all locks are strictly required, but take them anyway to be nice and
9905  * help out with the lockdep assertions.
9906  */
9907 void perf_event_free_task(struct task_struct *task)
9908 {
9909         struct perf_event_context *ctx;
9910         struct perf_event *event, *tmp;
9911         int ctxn;
9912
9913         for_each_task_context_nr(ctxn) {
9914                 ctx = task->perf_event_ctxp[ctxn];
9915                 if (!ctx)
9916                         continue;
9917
9918                 mutex_lock(&ctx->mutex);
9919 again:
9920                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9921                                 group_entry)
9922                         perf_free_event(event, ctx);
9923
9924                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9925                                 group_entry)
9926                         perf_free_event(event, ctx);
9927
9928                 if (!list_empty(&ctx->pinned_groups) ||
9929                                 !list_empty(&ctx->flexible_groups))
9930                         goto again;
9931
9932                 mutex_unlock(&ctx->mutex);
9933
9934                 put_ctx(ctx);
9935         }
9936 }
9937
9938 void perf_event_delayed_put(struct task_struct *task)
9939 {
9940         int ctxn;
9941
9942         for_each_task_context_nr(ctxn)
9943                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9944 }
9945
9946 struct file *perf_event_get(unsigned int fd)
9947 {
9948         struct file *file;
9949
9950         file = fget_raw(fd);
9951         if (!file)
9952                 return ERR_PTR(-EBADF);
9953
9954         if (file->f_op != &perf_fops) {
9955                 fput(file);
9956                 return ERR_PTR(-EBADF);
9957         }
9958
9959         return file;
9960 }
9961
9962 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9963 {
9964         if (!event)
9965                 return ERR_PTR(-EINVAL);
9966
9967         return &event->attr;
9968 }
9969
9970 /*
9971  * inherit a event from parent task to child task:
9972  */
9973 static struct perf_event *
9974 inherit_event(struct perf_event *parent_event,
9975               struct task_struct *parent,
9976               struct perf_event_context *parent_ctx,
9977               struct task_struct *child,
9978               struct perf_event *group_leader,
9979               struct perf_event_context *child_ctx)
9980 {
9981         enum perf_event_active_state parent_state = parent_event->state;
9982         struct perf_event *child_event;
9983         unsigned long flags;
9984
9985         /*
9986          * Instead of creating recursive hierarchies of events,
9987          * we link inherited events back to the original parent,
9988          * which has a filp for sure, which we use as the reference
9989          * count:
9990          */
9991         if (parent_event->parent)
9992                 parent_event = parent_event->parent;
9993
9994         child_event = perf_event_alloc(&parent_event->attr,
9995                                            parent_event->cpu,
9996                                            child,
9997                                            group_leader, parent_event,
9998                                            NULL, NULL, -1);
9999         if (IS_ERR(child_event))
10000                 return child_event;
10001
10002         /*
10003          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10004          * must be under the same lock in order to serialize against
10005          * perf_event_release_kernel(), such that either we must observe
10006          * is_orphaned_event() or they will observe us on the child_list.
10007          */
10008         mutex_lock(&parent_event->child_mutex);
10009         if (is_orphaned_event(parent_event) ||
10010             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10011                 mutex_unlock(&parent_event->child_mutex);
10012                 free_event(child_event);
10013                 return NULL;
10014         }
10015
10016         get_ctx(child_ctx);
10017
10018         /*
10019          * Make the child state follow the state of the parent event,
10020          * not its attr.disabled bit.  We hold the parent's mutex,
10021          * so we won't race with perf_event_{en, dis}able_family.
10022          */
10023         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10024                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10025         else
10026                 child_event->state = PERF_EVENT_STATE_OFF;
10027
10028         if (parent_event->attr.freq) {
10029                 u64 sample_period = parent_event->hw.sample_period;
10030                 struct hw_perf_event *hwc = &child_event->hw;
10031
10032                 hwc->sample_period = sample_period;
10033                 hwc->last_period   = sample_period;
10034
10035                 local64_set(&hwc->period_left, sample_period);
10036         }
10037
10038         child_event->ctx = child_ctx;
10039         child_event->overflow_handler = parent_event->overflow_handler;
10040         child_event->overflow_handler_context
10041                 = parent_event->overflow_handler_context;
10042
10043         /*
10044          * Precalculate sample_data sizes
10045          */
10046         perf_event__header_size(child_event);
10047         perf_event__id_header_size(child_event);
10048
10049         /*
10050          * Link it up in the child's context:
10051          */
10052         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10053         add_event_to_ctx(child_event, child_ctx);
10054         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10055
10056         /*
10057          * Link this into the parent event's child list
10058          */
10059         list_add_tail(&child_event->child_list, &parent_event->child_list);
10060         mutex_unlock(&parent_event->child_mutex);
10061
10062         return child_event;
10063 }
10064
10065 static int inherit_group(struct perf_event *parent_event,
10066               struct task_struct *parent,
10067               struct perf_event_context *parent_ctx,
10068               struct task_struct *child,
10069               struct perf_event_context *child_ctx)
10070 {
10071         struct perf_event *leader;
10072         struct perf_event *sub;
10073         struct perf_event *child_ctr;
10074
10075         leader = inherit_event(parent_event, parent, parent_ctx,
10076                                  child, NULL, child_ctx);
10077         if (IS_ERR(leader))
10078                 return PTR_ERR(leader);
10079         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10080                 child_ctr = inherit_event(sub, parent, parent_ctx,
10081                                             child, leader, child_ctx);
10082                 if (IS_ERR(child_ctr))
10083                         return PTR_ERR(child_ctr);
10084         }
10085         return 0;
10086 }
10087
10088 static int
10089 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10090                    struct perf_event_context *parent_ctx,
10091                    struct task_struct *child, int ctxn,
10092                    int *inherited_all)
10093 {
10094         int ret;
10095         struct perf_event_context *child_ctx;
10096
10097         if (!event->attr.inherit) {
10098                 *inherited_all = 0;
10099                 return 0;
10100         }
10101
10102         child_ctx = child->perf_event_ctxp[ctxn];
10103         if (!child_ctx) {
10104                 /*
10105                  * This is executed from the parent task context, so
10106                  * inherit events that have been marked for cloning.
10107                  * First allocate and initialize a context for the
10108                  * child.
10109                  */
10110
10111                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10112                 if (!child_ctx)
10113                         return -ENOMEM;
10114
10115                 child->perf_event_ctxp[ctxn] = child_ctx;
10116         }
10117
10118         ret = inherit_group(event, parent, parent_ctx,
10119                             child, child_ctx);
10120
10121         if (ret)
10122                 *inherited_all = 0;
10123
10124         return ret;
10125 }
10126
10127 /*
10128  * Initialize the perf_event context in task_struct
10129  */
10130 static int perf_event_init_context(struct task_struct *child, int ctxn)
10131 {
10132         struct perf_event_context *child_ctx, *parent_ctx;
10133         struct perf_event_context *cloned_ctx;
10134         struct perf_event *event;
10135         struct task_struct *parent = current;
10136         int inherited_all = 1;
10137         unsigned long flags;
10138         int ret = 0;
10139
10140         if (likely(!parent->perf_event_ctxp[ctxn]))
10141                 return 0;
10142
10143         /*
10144          * If the parent's context is a clone, pin it so it won't get
10145          * swapped under us.
10146          */
10147         parent_ctx = perf_pin_task_context(parent, ctxn);
10148         if (!parent_ctx)
10149                 return 0;
10150
10151         /*
10152          * No need to check if parent_ctx != NULL here; since we saw
10153          * it non-NULL earlier, the only reason for it to become NULL
10154          * is if we exit, and since we're currently in the middle of
10155          * a fork we can't be exiting at the same time.
10156          */
10157
10158         /*
10159          * Lock the parent list. No need to lock the child - not PID
10160          * hashed yet and not running, so nobody can access it.
10161          */
10162         mutex_lock(&parent_ctx->mutex);
10163
10164         /*
10165          * We dont have to disable NMIs - we are only looking at
10166          * the list, not manipulating it:
10167          */
10168         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10169                 ret = inherit_task_group(event, parent, parent_ctx,
10170                                          child, ctxn, &inherited_all);
10171                 if (ret)
10172                         break;
10173         }
10174
10175         /*
10176          * We can't hold ctx->lock when iterating the ->flexible_group list due
10177          * to allocations, but we need to prevent rotation because
10178          * rotate_ctx() will change the list from interrupt context.
10179          */
10180         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10181         parent_ctx->rotate_disable = 1;
10182         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10183
10184         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10185                 ret = inherit_task_group(event, parent, parent_ctx,
10186                                          child, ctxn, &inherited_all);
10187                 if (ret)
10188                         break;
10189         }
10190
10191         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10192         parent_ctx->rotate_disable = 0;
10193
10194         child_ctx = child->perf_event_ctxp[ctxn];
10195
10196         if (child_ctx && inherited_all) {
10197                 /*
10198                  * Mark the child context as a clone of the parent
10199                  * context, or of whatever the parent is a clone of.
10200                  *
10201                  * Note that if the parent is a clone, the holding of
10202                  * parent_ctx->lock avoids it from being uncloned.
10203                  */
10204                 cloned_ctx = parent_ctx->parent_ctx;
10205                 if (cloned_ctx) {
10206                         child_ctx->parent_ctx = cloned_ctx;
10207                         child_ctx->parent_gen = parent_ctx->parent_gen;
10208                 } else {
10209                         child_ctx->parent_ctx = parent_ctx;
10210                         child_ctx->parent_gen = parent_ctx->generation;
10211                 }
10212                 get_ctx(child_ctx->parent_ctx);
10213         }
10214
10215         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10216         mutex_unlock(&parent_ctx->mutex);
10217
10218         perf_unpin_context(parent_ctx);
10219         put_ctx(parent_ctx);
10220
10221         return ret;
10222 }
10223
10224 /*
10225  * Initialize the perf_event context in task_struct
10226  */
10227 int perf_event_init_task(struct task_struct *child)
10228 {
10229         int ctxn, ret;
10230
10231         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10232         mutex_init(&child->perf_event_mutex);
10233         INIT_LIST_HEAD(&child->perf_event_list);
10234
10235         for_each_task_context_nr(ctxn) {
10236                 ret = perf_event_init_context(child, ctxn);
10237                 if (ret) {
10238                         perf_event_free_task(child);
10239                         return ret;
10240                 }
10241         }
10242
10243         return 0;
10244 }
10245
10246 static void __init perf_event_init_all_cpus(void)
10247 {
10248         struct swevent_htable *swhash;
10249         int cpu;
10250
10251         for_each_possible_cpu(cpu) {
10252                 swhash = &per_cpu(swevent_htable, cpu);
10253                 mutex_init(&swhash->hlist_mutex);
10254                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10255         }
10256 }
10257
10258 int perf_event_init_cpu(unsigned int cpu)
10259 {
10260         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10261
10262         mutex_lock(&swhash->hlist_mutex);
10263         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10264                 struct swevent_hlist *hlist;
10265
10266                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10267                 WARN_ON(!hlist);
10268                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10269         }
10270         mutex_unlock(&swhash->hlist_mutex);
10271         return 0;
10272 }
10273
10274 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10275 static void __perf_event_exit_context(void *__info)
10276 {
10277         struct perf_event_context *ctx = __info;
10278         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10279         struct perf_event *event;
10280
10281         raw_spin_lock(&ctx->lock);
10282         list_for_each_entry(event, &ctx->event_list, event_entry)
10283                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10284         raw_spin_unlock(&ctx->lock);
10285 }
10286
10287 static void perf_event_exit_cpu_context(int cpu)
10288 {
10289         struct perf_event_context *ctx;
10290         struct pmu *pmu;
10291         int idx;
10292
10293         idx = srcu_read_lock(&pmus_srcu);
10294         list_for_each_entry_rcu(pmu, &pmus, entry) {
10295                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10296
10297                 mutex_lock(&ctx->mutex);
10298                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10299                 mutex_unlock(&ctx->mutex);
10300         }
10301         srcu_read_unlock(&pmus_srcu, idx);
10302 }
10303 #else
10304
10305 static void perf_event_exit_cpu_context(int cpu) { }
10306
10307 #endif
10308
10309 int perf_event_exit_cpu(unsigned int cpu)
10310 {
10311         perf_event_exit_cpu_context(cpu);
10312         return 0;
10313 }
10314
10315 static int
10316 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10317 {
10318         int cpu;
10319
10320         for_each_online_cpu(cpu)
10321                 perf_event_exit_cpu(cpu);
10322
10323         return NOTIFY_OK;
10324 }
10325
10326 /*
10327  * Run the perf reboot notifier at the very last possible moment so that
10328  * the generic watchdog code runs as long as possible.
10329  */
10330 static struct notifier_block perf_reboot_notifier = {
10331         .notifier_call = perf_reboot,
10332         .priority = INT_MIN,
10333 };
10334
10335 void __init perf_event_init(void)
10336 {
10337         int ret;
10338
10339         idr_init(&pmu_idr);
10340
10341         perf_event_init_all_cpus();
10342         init_srcu_struct(&pmus_srcu);
10343         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10344         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10345         perf_pmu_register(&perf_task_clock, NULL, -1);
10346         perf_tp_register();
10347         perf_event_init_cpu(smp_processor_id());
10348         register_reboot_notifier(&perf_reboot_notifier);
10349
10350         ret = init_hw_breakpoint();
10351         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10352
10353         /*
10354          * Build time assertion that we keep the data_head at the intended
10355          * location.  IOW, validation we got the __reserved[] size right.
10356          */
10357         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10358                      != 1024);
10359 }
10360
10361 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10362                               char *page)
10363 {
10364         struct perf_pmu_events_attr *pmu_attr =
10365                 container_of(attr, struct perf_pmu_events_attr, attr);
10366
10367         if (pmu_attr->event_str)
10368                 return sprintf(page, "%s\n", pmu_attr->event_str);
10369
10370         return 0;
10371 }
10372 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10373
10374 static int __init perf_event_sysfs_init(void)
10375 {
10376         struct pmu *pmu;
10377         int ret;
10378
10379         mutex_lock(&pmus_lock);
10380
10381         ret = bus_register(&pmu_bus);
10382         if (ret)
10383                 goto unlock;
10384
10385         list_for_each_entry(pmu, &pmus, entry) {
10386                 if (!pmu->name || pmu->type < 0)
10387                         continue;
10388
10389                 ret = pmu_dev_alloc(pmu);
10390                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10391         }
10392         pmu_bus_running = 1;
10393         ret = 0;
10394
10395 unlock:
10396         mutex_unlock(&pmus_lock);
10397
10398         return ret;
10399 }
10400 device_initcall(perf_event_sysfs_init);
10401
10402 #ifdef CONFIG_CGROUP_PERF
10403 static struct cgroup_subsys_state *
10404 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10405 {
10406         struct perf_cgroup *jc;
10407
10408         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10409         if (!jc)
10410                 return ERR_PTR(-ENOMEM);
10411
10412         jc->info = alloc_percpu(struct perf_cgroup_info);
10413         if (!jc->info) {
10414                 kfree(jc);
10415                 return ERR_PTR(-ENOMEM);
10416         }
10417
10418         return &jc->css;
10419 }
10420
10421 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10422 {
10423         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10424
10425         free_percpu(jc->info);
10426         kfree(jc);
10427 }
10428
10429 static int __perf_cgroup_move(void *info)
10430 {
10431         struct task_struct *task = info;
10432         rcu_read_lock();
10433         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10434         rcu_read_unlock();
10435         return 0;
10436 }
10437
10438 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10439 {
10440         struct task_struct *task;
10441         struct cgroup_subsys_state *css;
10442
10443         cgroup_taskset_for_each(task, css, tset)
10444                 task_function_call(task, __perf_cgroup_move, task);
10445 }
10446
10447 struct cgroup_subsys perf_event_cgrp_subsys = {
10448         .css_alloc      = perf_cgroup_css_alloc,
10449         .css_free       = perf_cgroup_css_free,
10450         .attach         = perf_cgroup_attach,
10451 };
10452 #endif /* CONFIG_CGROUP_PERF */