Merge tag 'wireless-drivers-for-davem-2016-09-08' of git://git.kernel.org/pub/scm...
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905         cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913         return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921         return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disbled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451         if (event->attr.pinned)
1452                 return &ctx->pinned_groups;
1453         else
1454                 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458  * Add a event from the lists for its context.
1459  * Must be called with ctx->mutex and ctx->lock held.
1460  */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465         lockdep_assert_held(&ctx->lock);
1466
1467         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468         event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470         /*
1471          * If we're a stand alone event or group leader, we go to the context
1472          * list, group events are kept attached to the group so that
1473          * perf_group_detach can, at all times, locate all siblings.
1474          */
1475         if (event->group_leader == event) {
1476                 struct list_head *list;
1477
1478                 if (is_software_event(event))
1479                         event->group_flags |= PERF_GROUP_SOFTWARE;
1480
1481                 list = ctx_group_list(event, ctx);
1482                 list_add_tail(&event->group_entry, list);
1483         }
1484
1485         list_update_cgroup_event(event, ctx, true);
1486
1487         list_add_rcu(&event->event_entry, &ctx->event_list);
1488         ctx->nr_events++;
1489         if (event->attr.inherit_stat)
1490                 ctx->nr_stat++;
1491
1492         ctx->generation++;
1493 }
1494
1495 /*
1496  * Initialize event state based on the perf_event_attr::disabled.
1497  */
1498 static inline void perf_event__state_init(struct perf_event *event)
1499 {
1500         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501                                               PERF_EVENT_STATE_INACTIVE;
1502 }
1503
1504 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1505 {
1506         int entry = sizeof(u64); /* value */
1507         int size = 0;
1508         int nr = 1;
1509
1510         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511                 size += sizeof(u64);
1512
1513         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514                 size += sizeof(u64);
1515
1516         if (event->attr.read_format & PERF_FORMAT_ID)
1517                 entry += sizeof(u64);
1518
1519         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1520                 nr += nr_siblings;
1521                 size += sizeof(u64);
1522         }
1523
1524         size += entry * nr;
1525         event->read_size = size;
1526 }
1527
1528 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1529 {
1530         struct perf_sample_data *data;
1531         u16 size = 0;
1532
1533         if (sample_type & PERF_SAMPLE_IP)
1534                 size += sizeof(data->ip);
1535
1536         if (sample_type & PERF_SAMPLE_ADDR)
1537                 size += sizeof(data->addr);
1538
1539         if (sample_type & PERF_SAMPLE_PERIOD)
1540                 size += sizeof(data->period);
1541
1542         if (sample_type & PERF_SAMPLE_WEIGHT)
1543                 size += sizeof(data->weight);
1544
1545         if (sample_type & PERF_SAMPLE_READ)
1546                 size += event->read_size;
1547
1548         if (sample_type & PERF_SAMPLE_DATA_SRC)
1549                 size += sizeof(data->data_src.val);
1550
1551         if (sample_type & PERF_SAMPLE_TRANSACTION)
1552                 size += sizeof(data->txn);
1553
1554         event->header_size = size;
1555 }
1556
1557 /*
1558  * Called at perf_event creation and when events are attached/detached from a
1559  * group.
1560  */
1561 static void perf_event__header_size(struct perf_event *event)
1562 {
1563         __perf_event_read_size(event,
1564                                event->group_leader->nr_siblings);
1565         __perf_event_header_size(event, event->attr.sample_type);
1566 }
1567
1568 static void perf_event__id_header_size(struct perf_event *event)
1569 {
1570         struct perf_sample_data *data;
1571         u64 sample_type = event->attr.sample_type;
1572         u16 size = 0;
1573
1574         if (sample_type & PERF_SAMPLE_TID)
1575                 size += sizeof(data->tid_entry);
1576
1577         if (sample_type & PERF_SAMPLE_TIME)
1578                 size += sizeof(data->time);
1579
1580         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581                 size += sizeof(data->id);
1582
1583         if (sample_type & PERF_SAMPLE_ID)
1584                 size += sizeof(data->id);
1585
1586         if (sample_type & PERF_SAMPLE_STREAM_ID)
1587                 size += sizeof(data->stream_id);
1588
1589         if (sample_type & PERF_SAMPLE_CPU)
1590                 size += sizeof(data->cpu_entry);
1591
1592         event->id_header_size = size;
1593 }
1594
1595 static bool perf_event_validate_size(struct perf_event *event)
1596 {
1597         /*
1598          * The values computed here will be over-written when we actually
1599          * attach the event.
1600          */
1601         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603         perf_event__id_header_size(event);
1604
1605         /*
1606          * Sum the lot; should not exceed the 64k limit we have on records.
1607          * Conservative limit to allow for callchains and other variable fields.
1608          */
1609         if (event->read_size + event->header_size +
1610             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611                 return false;
1612
1613         return true;
1614 }
1615
1616 static void perf_group_attach(struct perf_event *event)
1617 {
1618         struct perf_event *group_leader = event->group_leader, *pos;
1619
1620         /*
1621          * We can have double attach due to group movement in perf_event_open.
1622          */
1623         if (event->attach_state & PERF_ATTACH_GROUP)
1624                 return;
1625
1626         event->attach_state |= PERF_ATTACH_GROUP;
1627
1628         if (group_leader == event)
1629                 return;
1630
1631         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
1633         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634                         !is_software_event(event))
1635                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638         group_leader->nr_siblings++;
1639
1640         perf_event__header_size(group_leader);
1641
1642         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643                 perf_event__header_size(pos);
1644 }
1645
1646 /*
1647  * Remove a event from the lists for its context.
1648  * Must be called with ctx->mutex and ctx->lock held.
1649  */
1650 static void
1651 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1652 {
1653         WARN_ON_ONCE(event->ctx != ctx);
1654         lockdep_assert_held(&ctx->lock);
1655
1656         /*
1657          * We can have double detach due to exit/hot-unplug + close.
1658          */
1659         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1660                 return;
1661
1662         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
1664         list_update_cgroup_event(event, ctx, false);
1665
1666         ctx->nr_events--;
1667         if (event->attr.inherit_stat)
1668                 ctx->nr_stat--;
1669
1670         list_del_rcu(&event->event_entry);
1671
1672         if (event->group_leader == event)
1673                 list_del_init(&event->group_entry);
1674
1675         update_group_times(event);
1676
1677         /*
1678          * If event was in error state, then keep it
1679          * that way, otherwise bogus counts will be
1680          * returned on read(). The only way to get out
1681          * of error state is by explicit re-enabling
1682          * of the event
1683          */
1684         if (event->state > PERF_EVENT_STATE_OFF)
1685                 event->state = PERF_EVENT_STATE_OFF;
1686
1687         ctx->generation++;
1688 }
1689
1690 static void perf_group_detach(struct perf_event *event)
1691 {
1692         struct perf_event *sibling, *tmp;
1693         struct list_head *list = NULL;
1694
1695         /*
1696          * We can have double detach due to exit/hot-unplug + close.
1697          */
1698         if (!(event->attach_state & PERF_ATTACH_GROUP))
1699                 return;
1700
1701         event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703         /*
1704          * If this is a sibling, remove it from its group.
1705          */
1706         if (event->group_leader != event) {
1707                 list_del_init(&event->group_entry);
1708                 event->group_leader->nr_siblings--;
1709                 goto out;
1710         }
1711
1712         if (!list_empty(&event->group_entry))
1713                 list = &event->group_entry;
1714
1715         /*
1716          * If this was a group event with sibling events then
1717          * upgrade the siblings to singleton events by adding them
1718          * to whatever list we are on.
1719          */
1720         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1721                 if (list)
1722                         list_move_tail(&sibling->group_entry, list);
1723                 sibling->group_leader = sibling;
1724
1725                 /* Inherit group flags from the previous leader */
1726                 sibling->group_flags = event->group_flags;
1727
1728                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1729         }
1730
1731 out:
1732         perf_event__header_size(event->group_leader);
1733
1734         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735                 perf_event__header_size(tmp);
1736 }
1737
1738 static bool is_orphaned_event(struct perf_event *event)
1739 {
1740         return event->state == PERF_EVENT_STATE_DEAD;
1741 }
1742
1743 static inline int __pmu_filter_match(struct perf_event *event)
1744 {
1745         struct pmu *pmu = event->pmu;
1746         return pmu->filter_match ? pmu->filter_match(event) : 1;
1747 }
1748
1749 /*
1750  * Check whether we should attempt to schedule an event group based on
1751  * PMU-specific filtering. An event group can consist of HW and SW events,
1752  * potentially with a SW leader, so we must check all the filters, to
1753  * determine whether a group is schedulable:
1754  */
1755 static inline int pmu_filter_match(struct perf_event *event)
1756 {
1757         struct perf_event *child;
1758
1759         if (!__pmu_filter_match(event))
1760                 return 0;
1761
1762         list_for_each_entry(child, &event->sibling_list, group_entry) {
1763                 if (!__pmu_filter_match(child))
1764                         return 0;
1765         }
1766
1767         return 1;
1768 }
1769
1770 static inline int
1771 event_filter_match(struct perf_event *event)
1772 {
1773         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774                perf_cgroup_match(event) && pmu_filter_match(event);
1775 }
1776
1777 static void
1778 event_sched_out(struct perf_event *event,
1779                   struct perf_cpu_context *cpuctx,
1780                   struct perf_event_context *ctx)
1781 {
1782         u64 tstamp = perf_event_time(event);
1783         u64 delta;
1784
1785         WARN_ON_ONCE(event->ctx != ctx);
1786         lockdep_assert_held(&ctx->lock);
1787
1788         /*
1789          * An event which could not be activated because of
1790          * filter mismatch still needs to have its timings
1791          * maintained, otherwise bogus information is return
1792          * via read() for time_enabled, time_running:
1793          */
1794         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795             !event_filter_match(event)) {
1796                 delta = tstamp - event->tstamp_stopped;
1797                 event->tstamp_running += delta;
1798                 event->tstamp_stopped = tstamp;
1799         }
1800
1801         if (event->state != PERF_EVENT_STATE_ACTIVE)
1802                 return;
1803
1804         perf_pmu_disable(event->pmu);
1805
1806         event->tstamp_stopped = tstamp;
1807         event->pmu->del(event, 0);
1808         event->oncpu = -1;
1809         event->state = PERF_EVENT_STATE_INACTIVE;
1810         if (event->pending_disable) {
1811                 event->pending_disable = 0;
1812                 event->state = PERF_EVENT_STATE_OFF;
1813         }
1814
1815         if (!is_software_event(event))
1816                 cpuctx->active_oncpu--;
1817         if (!--ctx->nr_active)
1818                 perf_event_ctx_deactivate(ctx);
1819         if (event->attr.freq && event->attr.sample_freq)
1820                 ctx->nr_freq--;
1821         if (event->attr.exclusive || !cpuctx->active_oncpu)
1822                 cpuctx->exclusive = 0;
1823
1824         perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829                 struct perf_cpu_context *cpuctx,
1830                 struct perf_event_context *ctx)
1831 {
1832         struct perf_event *event;
1833         int state = group_event->state;
1834
1835         event_sched_out(group_event, cpuctx, ctx);
1836
1837         /*
1838          * Schedule out siblings (if any):
1839          */
1840         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841                 event_sched_out(event, cpuctx, ctx);
1842
1843         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1844                 cpuctx->exclusive = 0;
1845 }
1846
1847 #define DETACH_GROUP    0x01UL
1848
1849 /*
1850  * Cross CPU call to remove a performance event
1851  *
1852  * We disable the event on the hardware level first. After that we
1853  * remove it from the context list.
1854  */
1855 static void
1856 __perf_remove_from_context(struct perf_event *event,
1857                            struct perf_cpu_context *cpuctx,
1858                            struct perf_event_context *ctx,
1859                            void *info)
1860 {
1861         unsigned long flags = (unsigned long)info;
1862
1863         event_sched_out(event, cpuctx, ctx);
1864         if (flags & DETACH_GROUP)
1865                 perf_group_detach(event);
1866         list_del_event(event, ctx);
1867
1868         if (!ctx->nr_events && ctx->is_active) {
1869                 ctx->is_active = 0;
1870                 if (ctx->task) {
1871                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872                         cpuctx->task_ctx = NULL;
1873                 }
1874         }
1875 }
1876
1877 /*
1878  * Remove the event from a task's (or a CPU's) list of events.
1879  *
1880  * If event->ctx is a cloned context, callers must make sure that
1881  * every task struct that event->ctx->task could possibly point to
1882  * remains valid.  This is OK when called from perf_release since
1883  * that only calls us on the top-level context, which can't be a clone.
1884  * When called from perf_event_exit_task, it's OK because the
1885  * context has been detached from its task.
1886  */
1887 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1888 {
1889         lockdep_assert_held(&event->ctx->mutex);
1890
1891         event_function_call(event, __perf_remove_from_context, (void *)flags);
1892 }
1893
1894 /*
1895  * Cross CPU call to disable a performance event
1896  */
1897 static void __perf_event_disable(struct perf_event *event,
1898                                  struct perf_cpu_context *cpuctx,
1899                                  struct perf_event_context *ctx,
1900                                  void *info)
1901 {
1902         if (event->state < PERF_EVENT_STATE_INACTIVE)
1903                 return;
1904
1905         update_context_time(ctx);
1906         update_cgrp_time_from_event(event);
1907         update_group_times(event);
1908         if (event == event->group_leader)
1909                 group_sched_out(event, cpuctx, ctx);
1910         else
1911                 event_sched_out(event, cpuctx, ctx);
1912         event->state = PERF_EVENT_STATE_OFF;
1913 }
1914
1915 /*
1916  * Disable a event.
1917  *
1918  * If event->ctx is a cloned context, callers must make sure that
1919  * every task struct that event->ctx->task could possibly point to
1920  * remains valid.  This condition is satisifed when called through
1921  * perf_event_for_each_child or perf_event_for_each because they
1922  * hold the top-level event's child_mutex, so any descendant that
1923  * goes to exit will block in perf_event_exit_event().
1924  *
1925  * When called from perf_pending_event it's OK because event->ctx
1926  * is the current context on this CPU and preemption is disabled,
1927  * hence we can't get into perf_event_task_sched_out for this context.
1928  */
1929 static void _perf_event_disable(struct perf_event *event)
1930 {
1931         struct perf_event_context *ctx = event->ctx;
1932
1933         raw_spin_lock_irq(&ctx->lock);
1934         if (event->state <= PERF_EVENT_STATE_OFF) {
1935                 raw_spin_unlock_irq(&ctx->lock);
1936                 return;
1937         }
1938         raw_spin_unlock_irq(&ctx->lock);
1939
1940         event_function_call(event, __perf_event_disable, NULL);
1941 }
1942
1943 void perf_event_disable_local(struct perf_event *event)
1944 {
1945         event_function_local(event, __perf_event_disable, NULL);
1946 }
1947
1948 /*
1949  * Strictly speaking kernel users cannot create groups and therefore this
1950  * interface does not need the perf_event_ctx_lock() magic.
1951  */
1952 void perf_event_disable(struct perf_event *event)
1953 {
1954         struct perf_event_context *ctx;
1955
1956         ctx = perf_event_ctx_lock(event);
1957         _perf_event_disable(event);
1958         perf_event_ctx_unlock(event, ctx);
1959 }
1960 EXPORT_SYMBOL_GPL(perf_event_disable);
1961
1962 static void perf_set_shadow_time(struct perf_event *event,
1963                                  struct perf_event_context *ctx,
1964                                  u64 tstamp)
1965 {
1966         /*
1967          * use the correct time source for the time snapshot
1968          *
1969          * We could get by without this by leveraging the
1970          * fact that to get to this function, the caller
1971          * has most likely already called update_context_time()
1972          * and update_cgrp_time_xx() and thus both timestamp
1973          * are identical (or very close). Given that tstamp is,
1974          * already adjusted for cgroup, we could say that:
1975          *    tstamp - ctx->timestamp
1976          * is equivalent to
1977          *    tstamp - cgrp->timestamp.
1978          *
1979          * Then, in perf_output_read(), the calculation would
1980          * work with no changes because:
1981          * - event is guaranteed scheduled in
1982          * - no scheduled out in between
1983          * - thus the timestamp would be the same
1984          *
1985          * But this is a bit hairy.
1986          *
1987          * So instead, we have an explicit cgroup call to remain
1988          * within the time time source all along. We believe it
1989          * is cleaner and simpler to understand.
1990          */
1991         if (is_cgroup_event(event))
1992                 perf_cgroup_set_shadow_time(event, tstamp);
1993         else
1994                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1995 }
1996
1997 #define MAX_INTERRUPTS (~0ULL)
1998
1999 static void perf_log_throttle(struct perf_event *event, int enable);
2000 static void perf_log_itrace_start(struct perf_event *event);
2001
2002 static int
2003 event_sched_in(struct perf_event *event,
2004                  struct perf_cpu_context *cpuctx,
2005                  struct perf_event_context *ctx)
2006 {
2007         u64 tstamp = perf_event_time(event);
2008         int ret = 0;
2009
2010         lockdep_assert_held(&ctx->lock);
2011
2012         if (event->state <= PERF_EVENT_STATE_OFF)
2013                 return 0;
2014
2015         WRITE_ONCE(event->oncpu, smp_processor_id());
2016         /*
2017          * Order event::oncpu write to happen before the ACTIVE state
2018          * is visible.
2019          */
2020         smp_wmb();
2021         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2022
2023         /*
2024          * Unthrottle events, since we scheduled we might have missed several
2025          * ticks already, also for a heavily scheduling task there is little
2026          * guarantee it'll get a tick in a timely manner.
2027          */
2028         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029                 perf_log_throttle(event, 1);
2030                 event->hw.interrupts = 0;
2031         }
2032
2033         /*
2034          * The new state must be visible before we turn it on in the hardware:
2035          */
2036         smp_wmb();
2037
2038         perf_pmu_disable(event->pmu);
2039
2040         perf_set_shadow_time(event, ctx, tstamp);
2041
2042         perf_log_itrace_start(event);
2043
2044         if (event->pmu->add(event, PERF_EF_START)) {
2045                 event->state = PERF_EVENT_STATE_INACTIVE;
2046                 event->oncpu = -1;
2047                 ret = -EAGAIN;
2048                 goto out;
2049         }
2050
2051         event->tstamp_running += tstamp - event->tstamp_stopped;
2052
2053         if (!is_software_event(event))
2054                 cpuctx->active_oncpu++;
2055         if (!ctx->nr_active++)
2056                 perf_event_ctx_activate(ctx);
2057         if (event->attr.freq && event->attr.sample_freq)
2058                 ctx->nr_freq++;
2059
2060         if (event->attr.exclusive)
2061                 cpuctx->exclusive = 1;
2062
2063 out:
2064         perf_pmu_enable(event->pmu);
2065
2066         return ret;
2067 }
2068
2069 static int
2070 group_sched_in(struct perf_event *group_event,
2071                struct perf_cpu_context *cpuctx,
2072                struct perf_event_context *ctx)
2073 {
2074         struct perf_event *event, *partial_group = NULL;
2075         struct pmu *pmu = ctx->pmu;
2076         u64 now = ctx->time;
2077         bool simulate = false;
2078
2079         if (group_event->state == PERF_EVENT_STATE_OFF)
2080                 return 0;
2081
2082         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2083
2084         if (event_sched_in(group_event, cpuctx, ctx)) {
2085                 pmu->cancel_txn(pmu);
2086                 perf_mux_hrtimer_restart(cpuctx);
2087                 return -EAGAIN;
2088         }
2089
2090         /*
2091          * Schedule in siblings as one group (if any):
2092          */
2093         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2094                 if (event_sched_in(event, cpuctx, ctx)) {
2095                         partial_group = event;
2096                         goto group_error;
2097                 }
2098         }
2099
2100         if (!pmu->commit_txn(pmu))
2101                 return 0;
2102
2103 group_error:
2104         /*
2105          * Groups can be scheduled in as one unit only, so undo any
2106          * partial group before returning:
2107          * The events up to the failed event are scheduled out normally,
2108          * tstamp_stopped will be updated.
2109          *
2110          * The failed events and the remaining siblings need to have
2111          * their timings updated as if they had gone thru event_sched_in()
2112          * and event_sched_out(). This is required to get consistent timings
2113          * across the group. This also takes care of the case where the group
2114          * could never be scheduled by ensuring tstamp_stopped is set to mark
2115          * the time the event was actually stopped, such that time delta
2116          * calculation in update_event_times() is correct.
2117          */
2118         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119                 if (event == partial_group)
2120                         simulate = true;
2121
2122                 if (simulate) {
2123                         event->tstamp_running += now - event->tstamp_stopped;
2124                         event->tstamp_stopped = now;
2125                 } else {
2126                         event_sched_out(event, cpuctx, ctx);
2127                 }
2128         }
2129         event_sched_out(group_event, cpuctx, ctx);
2130
2131         pmu->cancel_txn(pmu);
2132
2133         perf_mux_hrtimer_restart(cpuctx);
2134
2135         return -EAGAIN;
2136 }
2137
2138 /*
2139  * Work out whether we can put this event group on the CPU now.
2140  */
2141 static int group_can_go_on(struct perf_event *event,
2142                            struct perf_cpu_context *cpuctx,
2143                            int can_add_hw)
2144 {
2145         /*
2146          * Groups consisting entirely of software events can always go on.
2147          */
2148         if (event->group_flags & PERF_GROUP_SOFTWARE)
2149                 return 1;
2150         /*
2151          * If an exclusive group is already on, no other hardware
2152          * events can go on.
2153          */
2154         if (cpuctx->exclusive)
2155                 return 0;
2156         /*
2157          * If this group is exclusive and there are already
2158          * events on the CPU, it can't go on.
2159          */
2160         if (event->attr.exclusive && cpuctx->active_oncpu)
2161                 return 0;
2162         /*
2163          * Otherwise, try to add it if all previous groups were able
2164          * to go on.
2165          */
2166         return can_add_hw;
2167 }
2168
2169 static void add_event_to_ctx(struct perf_event *event,
2170                                struct perf_event_context *ctx)
2171 {
2172         u64 tstamp = perf_event_time(event);
2173
2174         list_add_event(event, ctx);
2175         perf_group_attach(event);
2176         event->tstamp_enabled = tstamp;
2177         event->tstamp_running = tstamp;
2178         event->tstamp_stopped = tstamp;
2179 }
2180
2181 static void ctx_sched_out(struct perf_event_context *ctx,
2182                           struct perf_cpu_context *cpuctx,
2183                           enum event_type_t event_type);
2184 static void
2185 ctx_sched_in(struct perf_event_context *ctx,
2186              struct perf_cpu_context *cpuctx,
2187              enum event_type_t event_type,
2188              struct task_struct *task);
2189
2190 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191                                struct perf_event_context *ctx)
2192 {
2193         if (!cpuctx->task_ctx)
2194                 return;
2195
2196         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197                 return;
2198
2199         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200 }
2201
2202 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203                                 struct perf_event_context *ctx,
2204                                 struct task_struct *task)
2205 {
2206         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207         if (ctx)
2208                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210         if (ctx)
2211                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212 }
2213
2214 static void ctx_resched(struct perf_cpu_context *cpuctx,
2215                         struct perf_event_context *task_ctx)
2216 {
2217         perf_pmu_disable(cpuctx->ctx.pmu);
2218         if (task_ctx)
2219                 task_ctx_sched_out(cpuctx, task_ctx);
2220         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221         perf_event_sched_in(cpuctx, task_ctx, current);
2222         perf_pmu_enable(cpuctx->ctx.pmu);
2223 }
2224
2225 /*
2226  * Cross CPU call to install and enable a performance event
2227  *
2228  * Very similar to remote_function() + event_function() but cannot assume that
2229  * things like ctx->is_active and cpuctx->task_ctx are set.
2230  */
2231 static int  __perf_install_in_context(void *info)
2232 {
2233         struct perf_event *event = info;
2234         struct perf_event_context *ctx = event->ctx;
2235         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2236         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2237         bool activate = true;
2238         int ret = 0;
2239
2240         raw_spin_lock(&cpuctx->ctx.lock);
2241         if (ctx->task) {
2242                 raw_spin_lock(&ctx->lock);
2243                 task_ctx = ctx;
2244
2245                 /* If we're on the wrong CPU, try again */
2246                 if (task_cpu(ctx->task) != smp_processor_id()) {
2247                         ret = -ESRCH;
2248                         goto unlock;
2249                 }
2250
2251                 /*
2252                  * If we're on the right CPU, see if the task we target is
2253                  * current, if not we don't have to activate the ctx, a future
2254                  * context switch will do that for us.
2255                  */
2256                 if (ctx->task != current)
2257                         activate = false;
2258                 else
2259                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260
2261         } else if (task_ctx) {
2262                 raw_spin_lock(&task_ctx->lock);
2263         }
2264
2265         if (activate) {
2266                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267                 add_event_to_ctx(event, ctx);
2268                 ctx_resched(cpuctx, task_ctx);
2269         } else {
2270                 add_event_to_ctx(event, ctx);
2271         }
2272
2273 unlock:
2274         perf_ctx_unlock(cpuctx, task_ctx);
2275
2276         return ret;
2277 }
2278
2279 /*
2280  * Attach a performance event to a context.
2281  *
2282  * Very similar to event_function_call, see comment there.
2283  */
2284 static void
2285 perf_install_in_context(struct perf_event_context *ctx,
2286                         struct perf_event *event,
2287                         int cpu)
2288 {
2289         struct task_struct *task = READ_ONCE(ctx->task);
2290
2291         lockdep_assert_held(&ctx->mutex);
2292
2293         if (event->cpu != -1)
2294                 event->cpu = cpu;
2295
2296         /*
2297          * Ensures that if we can observe event->ctx, both the event and ctx
2298          * will be 'complete'. See perf_iterate_sb_cpu().
2299          */
2300         smp_store_release(&event->ctx, ctx);
2301
2302         if (!task) {
2303                 cpu_function_call(cpu, __perf_install_in_context, event);
2304                 return;
2305         }
2306
2307         /*
2308          * Should not happen, we validate the ctx is still alive before calling.
2309          */
2310         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311                 return;
2312
2313         /*
2314          * Installing events is tricky because we cannot rely on ctx->is_active
2315          * to be set in case this is the nr_events 0 -> 1 transition.
2316          */
2317 again:
2318         /*
2319          * Cannot use task_function_call() because we need to run on the task's
2320          * CPU regardless of whether its current or not.
2321          */
2322         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323                 return;
2324
2325         raw_spin_lock_irq(&ctx->lock);
2326         task = ctx->task;
2327         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2328                 /*
2329                  * Cannot happen because we already checked above (which also
2330                  * cannot happen), and we hold ctx->mutex, which serializes us
2331                  * against perf_event_exit_task_context().
2332                  */
2333                 raw_spin_unlock_irq(&ctx->lock);
2334                 return;
2335         }
2336         raw_spin_unlock_irq(&ctx->lock);
2337         /*
2338          * Since !ctx->is_active doesn't mean anything, we must IPI
2339          * unconditionally.
2340          */
2341         goto again;
2342 }
2343
2344 /*
2345  * Put a event into inactive state and update time fields.
2346  * Enabling the leader of a group effectively enables all
2347  * the group members that aren't explicitly disabled, so we
2348  * have to update their ->tstamp_enabled also.
2349  * Note: this works for group members as well as group leaders
2350  * since the non-leader members' sibling_lists will be empty.
2351  */
2352 static void __perf_event_mark_enabled(struct perf_event *event)
2353 {
2354         struct perf_event *sub;
2355         u64 tstamp = perf_event_time(event);
2356
2357         event->state = PERF_EVENT_STATE_INACTIVE;
2358         event->tstamp_enabled = tstamp - event->total_time_enabled;
2359         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2360                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2362         }
2363 }
2364
2365 /*
2366  * Cross CPU call to enable a performance event
2367  */
2368 static void __perf_event_enable(struct perf_event *event,
2369                                 struct perf_cpu_context *cpuctx,
2370                                 struct perf_event_context *ctx,
2371                                 void *info)
2372 {
2373         struct perf_event *leader = event->group_leader;
2374         struct perf_event_context *task_ctx;
2375
2376         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377             event->state <= PERF_EVENT_STATE_ERROR)
2378                 return;
2379
2380         if (ctx->is_active)
2381                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382
2383         __perf_event_mark_enabled(event);
2384
2385         if (!ctx->is_active)
2386                 return;
2387
2388         if (!event_filter_match(event)) {
2389                 if (is_cgroup_event(event))
2390                         perf_cgroup_defer_enabled(event);
2391                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2392                 return;
2393         }
2394
2395         /*
2396          * If the event is in a group and isn't the group leader,
2397          * then don't put it on unless the group is on.
2398          */
2399         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2401                 return;
2402         }
2403
2404         task_ctx = cpuctx->task_ctx;
2405         if (ctx->task)
2406                 WARN_ON_ONCE(task_ctx != ctx);
2407
2408         ctx_resched(cpuctx, task_ctx);
2409 }
2410
2411 /*
2412  * Enable a event.
2413  *
2414  * If event->ctx is a cloned context, callers must make sure that
2415  * every task struct that event->ctx->task could possibly point to
2416  * remains valid.  This condition is satisfied when called through
2417  * perf_event_for_each_child or perf_event_for_each as described
2418  * for perf_event_disable.
2419  */
2420 static void _perf_event_enable(struct perf_event *event)
2421 {
2422         struct perf_event_context *ctx = event->ctx;
2423
2424         raw_spin_lock_irq(&ctx->lock);
2425         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426             event->state <  PERF_EVENT_STATE_ERROR) {
2427                 raw_spin_unlock_irq(&ctx->lock);
2428                 return;
2429         }
2430
2431         /*
2432          * If the event is in error state, clear that first.
2433          *
2434          * That way, if we see the event in error state below, we know that it
2435          * has gone back into error state, as distinct from the task having
2436          * been scheduled away before the cross-call arrived.
2437          */
2438         if (event->state == PERF_EVENT_STATE_ERROR)
2439                 event->state = PERF_EVENT_STATE_OFF;
2440         raw_spin_unlock_irq(&ctx->lock);
2441
2442         event_function_call(event, __perf_event_enable, NULL);
2443 }
2444
2445 /*
2446  * See perf_event_disable();
2447  */
2448 void perf_event_enable(struct perf_event *event)
2449 {
2450         struct perf_event_context *ctx;
2451
2452         ctx = perf_event_ctx_lock(event);
2453         _perf_event_enable(event);
2454         perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_enable);
2457
2458 struct stop_event_data {
2459         struct perf_event       *event;
2460         unsigned int            restart;
2461 };
2462
2463 static int __perf_event_stop(void *info)
2464 {
2465         struct stop_event_data *sd = info;
2466         struct perf_event *event = sd->event;
2467
2468         /* if it's already INACTIVE, do nothing */
2469         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470                 return 0;
2471
2472         /* matches smp_wmb() in event_sched_in() */
2473         smp_rmb();
2474
2475         /*
2476          * There is a window with interrupts enabled before we get here,
2477          * so we need to check again lest we try to stop another CPU's event.
2478          */
2479         if (READ_ONCE(event->oncpu) != smp_processor_id())
2480                 return -EAGAIN;
2481
2482         event->pmu->stop(event, PERF_EF_UPDATE);
2483
2484         /*
2485          * May race with the actual stop (through perf_pmu_output_stop()),
2486          * but it is only used for events with AUX ring buffer, and such
2487          * events will refuse to restart because of rb::aux_mmap_count==0,
2488          * see comments in perf_aux_output_begin().
2489          *
2490          * Since this is happening on a event-local CPU, no trace is lost
2491          * while restarting.
2492          */
2493         if (sd->restart)
2494                 event->pmu->start(event, PERF_EF_START);
2495
2496         return 0;
2497 }
2498
2499 static int perf_event_restart(struct perf_event *event)
2500 {
2501         struct stop_event_data sd = {
2502                 .event          = event,
2503                 .restart        = 1,
2504         };
2505         int ret = 0;
2506
2507         do {
2508                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509                         return 0;
2510
2511                 /* matches smp_wmb() in event_sched_in() */
2512                 smp_rmb();
2513
2514                 /*
2515                  * We only want to restart ACTIVE events, so if the event goes
2516                  * inactive here (event->oncpu==-1), there's nothing more to do;
2517                  * fall through with ret==-ENXIO.
2518                  */
2519                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2520                                         __perf_event_stop, &sd);
2521         } while (ret == -EAGAIN);
2522
2523         return ret;
2524 }
2525
2526 /*
2527  * In order to contain the amount of racy and tricky in the address filter
2528  * configuration management, it is a two part process:
2529  *
2530  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531  *      we update the addresses of corresponding vmas in
2532  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2533  * (p2) when an event is scheduled in (pmu::add), it calls
2534  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535  *      if the generation has changed since the previous call.
2536  *
2537  * If (p1) happens while the event is active, we restart it to force (p2).
2538  *
2539  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2541  *     ioctl;
2542  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2544  *     for reading;
2545  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546  *     of exec.
2547  */
2548 void perf_event_addr_filters_sync(struct perf_event *event)
2549 {
2550         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551
2552         if (!has_addr_filter(event))
2553                 return;
2554
2555         raw_spin_lock(&ifh->lock);
2556         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557                 event->pmu->addr_filters_sync(event);
2558                 event->hw.addr_filters_gen = event->addr_filters_gen;
2559         }
2560         raw_spin_unlock(&ifh->lock);
2561 }
2562 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563
2564 static int _perf_event_refresh(struct perf_event *event, int refresh)
2565 {
2566         /*
2567          * not supported on inherited events
2568          */
2569         if (event->attr.inherit || !is_sampling_event(event))
2570                 return -EINVAL;
2571
2572         atomic_add(refresh, &event->event_limit);
2573         _perf_event_enable(event);
2574
2575         return 0;
2576 }
2577
2578 /*
2579  * See perf_event_disable()
2580  */
2581 int perf_event_refresh(struct perf_event *event, int refresh)
2582 {
2583         struct perf_event_context *ctx;
2584         int ret;
2585
2586         ctx = perf_event_ctx_lock(event);
2587         ret = _perf_event_refresh(event, refresh);
2588         perf_event_ctx_unlock(event, ctx);
2589
2590         return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(perf_event_refresh);
2593
2594 static void ctx_sched_out(struct perf_event_context *ctx,
2595                           struct perf_cpu_context *cpuctx,
2596                           enum event_type_t event_type)
2597 {
2598         int is_active = ctx->is_active;
2599         struct perf_event *event;
2600
2601         lockdep_assert_held(&ctx->lock);
2602
2603         if (likely(!ctx->nr_events)) {
2604                 /*
2605                  * See __perf_remove_from_context().
2606                  */
2607                 WARN_ON_ONCE(ctx->is_active);
2608                 if (ctx->task)
2609                         WARN_ON_ONCE(cpuctx->task_ctx);
2610                 return;
2611         }
2612
2613         ctx->is_active &= ~event_type;
2614         if (!(ctx->is_active & EVENT_ALL))
2615                 ctx->is_active = 0;
2616
2617         if (ctx->task) {
2618                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619                 if (!ctx->is_active)
2620                         cpuctx->task_ctx = NULL;
2621         }
2622
2623         /*
2624          * Always update time if it was set; not only when it changes.
2625          * Otherwise we can 'forget' to update time for any but the last
2626          * context we sched out. For example:
2627          *
2628          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629          *   ctx_sched_out(.event_type = EVENT_PINNED)
2630          *
2631          * would only update time for the pinned events.
2632          */
2633         if (is_active & EVENT_TIME) {
2634                 /* update (and stop) ctx time */
2635                 update_context_time(ctx);
2636                 update_cgrp_time_from_cpuctx(cpuctx);
2637         }
2638
2639         is_active ^= ctx->is_active; /* changed bits */
2640
2641         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2642                 return;
2643
2644         perf_pmu_disable(ctx->pmu);
2645         if (is_active & EVENT_PINNED) {
2646                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647                         group_sched_out(event, cpuctx, ctx);
2648         }
2649
2650         if (is_active & EVENT_FLEXIBLE) {
2651                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2652                         group_sched_out(event, cpuctx, ctx);
2653         }
2654         perf_pmu_enable(ctx->pmu);
2655 }
2656
2657 /*
2658  * Test whether two contexts are equivalent, i.e. whether they have both been
2659  * cloned from the same version of the same context.
2660  *
2661  * Equivalence is measured using a generation number in the context that is
2662  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663  * and list_del_event().
2664  */
2665 static int context_equiv(struct perf_event_context *ctx1,
2666                          struct perf_event_context *ctx2)
2667 {
2668         lockdep_assert_held(&ctx1->lock);
2669         lockdep_assert_held(&ctx2->lock);
2670
2671         /* Pinning disables the swap optimization */
2672         if (ctx1->pin_count || ctx2->pin_count)
2673                 return 0;
2674
2675         /* If ctx1 is the parent of ctx2 */
2676         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677                 return 1;
2678
2679         /* If ctx2 is the parent of ctx1 */
2680         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681                 return 1;
2682
2683         /*
2684          * If ctx1 and ctx2 have the same parent; we flatten the parent
2685          * hierarchy, see perf_event_init_context().
2686          */
2687         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688                         ctx1->parent_gen == ctx2->parent_gen)
2689                 return 1;
2690
2691         /* Unmatched */
2692         return 0;
2693 }
2694
2695 static void __perf_event_sync_stat(struct perf_event *event,
2696                                      struct perf_event *next_event)
2697 {
2698         u64 value;
2699
2700         if (!event->attr.inherit_stat)
2701                 return;
2702
2703         /*
2704          * Update the event value, we cannot use perf_event_read()
2705          * because we're in the middle of a context switch and have IRQs
2706          * disabled, which upsets smp_call_function_single(), however
2707          * we know the event must be on the current CPU, therefore we
2708          * don't need to use it.
2709          */
2710         switch (event->state) {
2711         case PERF_EVENT_STATE_ACTIVE:
2712                 event->pmu->read(event);
2713                 /* fall-through */
2714
2715         case PERF_EVENT_STATE_INACTIVE:
2716                 update_event_times(event);
2717                 break;
2718
2719         default:
2720                 break;
2721         }
2722
2723         /*
2724          * In order to keep per-task stats reliable we need to flip the event
2725          * values when we flip the contexts.
2726          */
2727         value = local64_read(&next_event->count);
2728         value = local64_xchg(&event->count, value);
2729         local64_set(&next_event->count, value);
2730
2731         swap(event->total_time_enabled, next_event->total_time_enabled);
2732         swap(event->total_time_running, next_event->total_time_running);
2733
2734         /*
2735          * Since we swizzled the values, update the user visible data too.
2736          */
2737         perf_event_update_userpage(event);
2738         perf_event_update_userpage(next_event);
2739 }
2740
2741 static void perf_event_sync_stat(struct perf_event_context *ctx,
2742                                    struct perf_event_context *next_ctx)
2743 {
2744         struct perf_event *event, *next_event;
2745
2746         if (!ctx->nr_stat)
2747                 return;
2748
2749         update_context_time(ctx);
2750
2751         event = list_first_entry(&ctx->event_list,
2752                                    struct perf_event, event_entry);
2753
2754         next_event = list_first_entry(&next_ctx->event_list,
2755                                         struct perf_event, event_entry);
2756
2757         while (&event->event_entry != &ctx->event_list &&
2758                &next_event->event_entry != &next_ctx->event_list) {
2759
2760                 __perf_event_sync_stat(event, next_event);
2761
2762                 event = list_next_entry(event, event_entry);
2763                 next_event = list_next_entry(next_event, event_entry);
2764         }
2765 }
2766
2767 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768                                          struct task_struct *next)
2769 {
2770         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2771         struct perf_event_context *next_ctx;
2772         struct perf_event_context *parent, *next_parent;
2773         struct perf_cpu_context *cpuctx;
2774         int do_switch = 1;
2775
2776         if (likely(!ctx))
2777                 return;
2778
2779         cpuctx = __get_cpu_context(ctx);
2780         if (!cpuctx->task_ctx)
2781                 return;
2782
2783         rcu_read_lock();
2784         next_ctx = next->perf_event_ctxp[ctxn];
2785         if (!next_ctx)
2786                 goto unlock;
2787
2788         parent = rcu_dereference(ctx->parent_ctx);
2789         next_parent = rcu_dereference(next_ctx->parent_ctx);
2790
2791         /* If neither context have a parent context; they cannot be clones. */
2792         if (!parent && !next_parent)
2793                 goto unlock;
2794
2795         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2796                 /*
2797                  * Looks like the two contexts are clones, so we might be
2798                  * able to optimize the context switch.  We lock both
2799                  * contexts and check that they are clones under the
2800                  * lock (including re-checking that neither has been
2801                  * uncloned in the meantime).  It doesn't matter which
2802                  * order we take the locks because no other cpu could
2803                  * be trying to lock both of these tasks.
2804                  */
2805                 raw_spin_lock(&ctx->lock);
2806                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2807                 if (context_equiv(ctx, next_ctx)) {
2808                         WRITE_ONCE(ctx->task, next);
2809                         WRITE_ONCE(next_ctx->task, task);
2810
2811                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812
2813                         /*
2814                          * RCU_INIT_POINTER here is safe because we've not
2815                          * modified the ctx and the above modification of
2816                          * ctx->task and ctx->task_ctx_data are immaterial
2817                          * since those values are always verified under
2818                          * ctx->lock which we're now holding.
2819                          */
2820                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822
2823                         do_switch = 0;
2824
2825                         perf_event_sync_stat(ctx, next_ctx);
2826                 }
2827                 raw_spin_unlock(&next_ctx->lock);
2828                 raw_spin_unlock(&ctx->lock);
2829         }
2830 unlock:
2831         rcu_read_unlock();
2832
2833         if (do_switch) {
2834                 raw_spin_lock(&ctx->lock);
2835                 task_ctx_sched_out(cpuctx, ctx);
2836                 raw_spin_unlock(&ctx->lock);
2837         }
2838 }
2839
2840 void perf_sched_cb_dec(struct pmu *pmu)
2841 {
2842         this_cpu_dec(perf_sched_cb_usages);
2843 }
2844
2845 void perf_sched_cb_inc(struct pmu *pmu)
2846 {
2847         this_cpu_inc(perf_sched_cb_usages);
2848 }
2849
2850 /*
2851  * This function provides the context switch callback to the lower code
2852  * layer. It is invoked ONLY when the context switch callback is enabled.
2853  */
2854 static void perf_pmu_sched_task(struct task_struct *prev,
2855                                 struct task_struct *next,
2856                                 bool sched_in)
2857 {
2858         struct perf_cpu_context *cpuctx;
2859         struct pmu *pmu;
2860         unsigned long flags;
2861
2862         if (prev == next)
2863                 return;
2864
2865         local_irq_save(flags);
2866
2867         rcu_read_lock();
2868
2869         list_for_each_entry_rcu(pmu, &pmus, entry) {
2870                 if (pmu->sched_task) {
2871                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872
2873                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874
2875                         perf_pmu_disable(pmu);
2876
2877                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2878
2879                         perf_pmu_enable(pmu);
2880
2881                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882                 }
2883         }
2884
2885         rcu_read_unlock();
2886
2887         local_irq_restore(flags);
2888 }
2889
2890 static void perf_event_switch(struct task_struct *task,
2891                               struct task_struct *next_prev, bool sched_in);
2892
2893 #define for_each_task_context_nr(ctxn)                                  \
2894         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895
2896 /*
2897  * Called from scheduler to remove the events of the current task,
2898  * with interrupts disabled.
2899  *
2900  * We stop each event and update the event value in event->count.
2901  *
2902  * This does not protect us against NMI, but disable()
2903  * sets the disabled bit in the control field of event _before_
2904  * accessing the event control register. If a NMI hits, then it will
2905  * not restart the event.
2906  */
2907 void __perf_event_task_sched_out(struct task_struct *task,
2908                                  struct task_struct *next)
2909 {
2910         int ctxn;
2911
2912         if (__this_cpu_read(perf_sched_cb_usages))
2913                 perf_pmu_sched_task(task, next, false);
2914
2915         if (atomic_read(&nr_switch_events))
2916                 perf_event_switch(task, next, false);
2917
2918         for_each_task_context_nr(ctxn)
2919                 perf_event_context_sched_out(task, ctxn, next);
2920
2921         /*
2922          * if cgroup events exist on this CPU, then we need
2923          * to check if we have to switch out PMU state.
2924          * cgroup event are system-wide mode only
2925          */
2926         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2927                 perf_cgroup_sched_out(task, next);
2928 }
2929
2930 /*
2931  * Called with IRQs disabled
2932  */
2933 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934                               enum event_type_t event_type)
2935 {
2936         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2937 }
2938
2939 static void
2940 ctx_pinned_sched_in(struct perf_event_context *ctx,
2941                     struct perf_cpu_context *cpuctx)
2942 {
2943         struct perf_event *event;
2944
2945         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946                 if (event->state <= PERF_EVENT_STATE_OFF)
2947                         continue;
2948                 if (!event_filter_match(event))
2949                         continue;
2950
2951                 /* may need to reset tstamp_enabled */
2952                 if (is_cgroup_event(event))
2953                         perf_cgroup_mark_enabled(event, ctx);
2954
2955                 if (group_can_go_on(event, cpuctx, 1))
2956                         group_sched_in(event, cpuctx, ctx);
2957
2958                 /*
2959                  * If this pinned group hasn't been scheduled,
2960                  * put it in error state.
2961                  */
2962                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963                         update_group_times(event);
2964                         event->state = PERF_EVENT_STATE_ERROR;
2965                 }
2966         }
2967 }
2968
2969 static void
2970 ctx_flexible_sched_in(struct perf_event_context *ctx,
2971                       struct perf_cpu_context *cpuctx)
2972 {
2973         struct perf_event *event;
2974         int can_add_hw = 1;
2975
2976         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977                 /* Ignore events in OFF or ERROR state */
2978                 if (event->state <= PERF_EVENT_STATE_OFF)
2979                         continue;
2980                 /*
2981                  * Listen to the 'cpu' scheduling filter constraint
2982                  * of events:
2983                  */
2984                 if (!event_filter_match(event))
2985                         continue;
2986
2987                 /* may need to reset tstamp_enabled */
2988                 if (is_cgroup_event(event))
2989                         perf_cgroup_mark_enabled(event, ctx);
2990
2991                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2992                         if (group_sched_in(event, cpuctx, ctx))
2993                                 can_add_hw = 0;
2994                 }
2995         }
2996 }
2997
2998 static void
2999 ctx_sched_in(struct perf_event_context *ctx,
3000              struct perf_cpu_context *cpuctx,
3001              enum event_type_t event_type,
3002              struct task_struct *task)
3003 {
3004         int is_active = ctx->is_active;
3005         u64 now;
3006
3007         lockdep_assert_held(&ctx->lock);
3008
3009         if (likely(!ctx->nr_events))
3010                 return;
3011
3012         ctx->is_active |= (event_type | EVENT_TIME);
3013         if (ctx->task) {
3014                 if (!is_active)
3015                         cpuctx->task_ctx = ctx;
3016                 else
3017                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018         }
3019
3020         is_active ^= ctx->is_active; /* changed bits */
3021
3022         if (is_active & EVENT_TIME) {
3023                 /* start ctx time */
3024                 now = perf_clock();
3025                 ctx->timestamp = now;
3026                 perf_cgroup_set_timestamp(task, ctx);
3027         }
3028
3029         /*
3030          * First go through the list and put on any pinned groups
3031          * in order to give them the best chance of going on.
3032          */
3033         if (is_active & EVENT_PINNED)
3034                 ctx_pinned_sched_in(ctx, cpuctx);
3035
3036         /* Then walk through the lower prio flexible groups */
3037         if (is_active & EVENT_FLEXIBLE)
3038                 ctx_flexible_sched_in(ctx, cpuctx);
3039 }
3040
3041 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3042                              enum event_type_t event_type,
3043                              struct task_struct *task)
3044 {
3045         struct perf_event_context *ctx = &cpuctx->ctx;
3046
3047         ctx_sched_in(ctx, cpuctx, event_type, task);
3048 }
3049
3050 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051                                         struct task_struct *task)
3052 {
3053         struct perf_cpu_context *cpuctx;
3054
3055         cpuctx = __get_cpu_context(ctx);
3056         if (cpuctx->task_ctx == ctx)
3057                 return;
3058
3059         perf_ctx_lock(cpuctx, ctx);
3060         perf_pmu_disable(ctx->pmu);
3061         /*
3062          * We want to keep the following priority order:
3063          * cpu pinned (that don't need to move), task pinned,
3064          * cpu flexible, task flexible.
3065          */
3066         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3067         perf_event_sched_in(cpuctx, ctx, task);
3068         perf_pmu_enable(ctx->pmu);
3069         perf_ctx_unlock(cpuctx, ctx);
3070 }
3071
3072 /*
3073  * Called from scheduler to add the events of the current task
3074  * with interrupts disabled.
3075  *
3076  * We restore the event value and then enable it.
3077  *
3078  * This does not protect us against NMI, but enable()
3079  * sets the enabled bit in the control field of event _before_
3080  * accessing the event control register. If a NMI hits, then it will
3081  * keep the event running.
3082  */
3083 void __perf_event_task_sched_in(struct task_struct *prev,
3084                                 struct task_struct *task)
3085 {
3086         struct perf_event_context *ctx;
3087         int ctxn;
3088
3089         /*
3090          * If cgroup events exist on this CPU, then we need to check if we have
3091          * to switch in PMU state; cgroup event are system-wide mode only.
3092          *
3093          * Since cgroup events are CPU events, we must schedule these in before
3094          * we schedule in the task events.
3095          */
3096         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097                 perf_cgroup_sched_in(prev, task);
3098
3099         for_each_task_context_nr(ctxn) {
3100                 ctx = task->perf_event_ctxp[ctxn];
3101                 if (likely(!ctx))
3102                         continue;
3103
3104                 perf_event_context_sched_in(ctx, task);
3105         }
3106
3107         if (atomic_read(&nr_switch_events))
3108                 perf_event_switch(task, prev, true);
3109
3110         if (__this_cpu_read(perf_sched_cb_usages))
3111                 perf_pmu_sched_task(prev, task, true);
3112 }
3113
3114 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115 {
3116         u64 frequency = event->attr.sample_freq;
3117         u64 sec = NSEC_PER_SEC;
3118         u64 divisor, dividend;
3119
3120         int count_fls, nsec_fls, frequency_fls, sec_fls;
3121
3122         count_fls = fls64(count);
3123         nsec_fls = fls64(nsec);
3124         frequency_fls = fls64(frequency);
3125         sec_fls = 30;
3126
3127         /*
3128          * We got @count in @nsec, with a target of sample_freq HZ
3129          * the target period becomes:
3130          *
3131          *             @count * 10^9
3132          * period = -------------------
3133          *          @nsec * sample_freq
3134          *
3135          */
3136
3137         /*
3138          * Reduce accuracy by one bit such that @a and @b converge
3139          * to a similar magnitude.
3140          */
3141 #define REDUCE_FLS(a, b)                \
3142 do {                                    \
3143         if (a##_fls > b##_fls) {        \
3144                 a >>= 1;                \
3145                 a##_fls--;              \
3146         } else {                        \
3147                 b >>= 1;                \
3148                 b##_fls--;              \
3149         }                               \
3150 } while (0)
3151
3152         /*
3153          * Reduce accuracy until either term fits in a u64, then proceed with
3154          * the other, so that finally we can do a u64/u64 division.
3155          */
3156         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157                 REDUCE_FLS(nsec, frequency);
3158                 REDUCE_FLS(sec, count);
3159         }
3160
3161         if (count_fls + sec_fls > 64) {
3162                 divisor = nsec * frequency;
3163
3164                 while (count_fls + sec_fls > 64) {
3165                         REDUCE_FLS(count, sec);
3166                         divisor >>= 1;
3167                 }
3168
3169                 dividend = count * sec;
3170         } else {
3171                 dividend = count * sec;
3172
3173                 while (nsec_fls + frequency_fls > 64) {
3174                         REDUCE_FLS(nsec, frequency);
3175                         dividend >>= 1;
3176                 }
3177
3178                 divisor = nsec * frequency;
3179         }
3180
3181         if (!divisor)
3182                 return dividend;
3183
3184         return div64_u64(dividend, divisor);
3185 }
3186
3187 static DEFINE_PER_CPU(int, perf_throttled_count);
3188 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189
3190 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3191 {
3192         struct hw_perf_event *hwc = &event->hw;
3193         s64 period, sample_period;
3194         s64 delta;
3195
3196         period = perf_calculate_period(event, nsec, count);
3197
3198         delta = (s64)(period - hwc->sample_period);
3199         delta = (delta + 7) / 8; /* low pass filter */
3200
3201         sample_period = hwc->sample_period + delta;
3202
3203         if (!sample_period)
3204                 sample_period = 1;
3205
3206         hwc->sample_period = sample_period;
3207
3208         if (local64_read(&hwc->period_left) > 8*sample_period) {
3209                 if (disable)
3210                         event->pmu->stop(event, PERF_EF_UPDATE);
3211
3212                 local64_set(&hwc->period_left, 0);
3213
3214                 if (disable)
3215                         event->pmu->start(event, PERF_EF_RELOAD);
3216         }
3217 }
3218
3219 /*
3220  * combine freq adjustment with unthrottling to avoid two passes over the
3221  * events. At the same time, make sure, having freq events does not change
3222  * the rate of unthrottling as that would introduce bias.
3223  */
3224 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225                                            int needs_unthr)
3226 {
3227         struct perf_event *event;
3228         struct hw_perf_event *hwc;
3229         u64 now, period = TICK_NSEC;
3230         s64 delta;
3231
3232         /*
3233          * only need to iterate over all events iff:
3234          * - context have events in frequency mode (needs freq adjust)
3235          * - there are events to unthrottle on this cpu
3236          */
3237         if (!(ctx->nr_freq || needs_unthr))
3238                 return;
3239
3240         raw_spin_lock(&ctx->lock);
3241         perf_pmu_disable(ctx->pmu);
3242
3243         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3245                         continue;
3246
3247                 if (!event_filter_match(event))
3248                         continue;
3249
3250                 perf_pmu_disable(event->pmu);
3251
3252                 hwc = &event->hw;
3253
3254                 if (hwc->interrupts == MAX_INTERRUPTS) {
3255                         hwc->interrupts = 0;
3256                         perf_log_throttle(event, 1);
3257                         event->pmu->start(event, 0);
3258                 }
3259
3260                 if (!event->attr.freq || !event->attr.sample_freq)
3261                         goto next;
3262
3263                 /*
3264                  * stop the event and update event->count
3265                  */
3266                 event->pmu->stop(event, PERF_EF_UPDATE);
3267
3268                 now = local64_read(&event->count);
3269                 delta = now - hwc->freq_count_stamp;
3270                 hwc->freq_count_stamp = now;
3271
3272                 /*
3273                  * restart the event
3274                  * reload only if value has changed
3275                  * we have stopped the event so tell that
3276                  * to perf_adjust_period() to avoid stopping it
3277                  * twice.
3278                  */
3279                 if (delta > 0)
3280                         perf_adjust_period(event, period, delta, false);
3281
3282                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3283         next:
3284                 perf_pmu_enable(event->pmu);
3285         }
3286
3287         perf_pmu_enable(ctx->pmu);
3288         raw_spin_unlock(&ctx->lock);
3289 }
3290
3291 /*
3292  * Round-robin a context's events:
3293  */
3294 static void rotate_ctx(struct perf_event_context *ctx)
3295 {
3296         /*
3297          * Rotate the first entry last of non-pinned groups. Rotation might be
3298          * disabled by the inheritance code.
3299          */
3300         if (!ctx->rotate_disable)
3301                 list_rotate_left(&ctx->flexible_groups);
3302 }
3303
3304 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3305 {
3306         struct perf_event_context *ctx = NULL;
3307         int rotate = 0;
3308
3309         if (cpuctx->ctx.nr_events) {
3310                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311                         rotate = 1;
3312         }
3313
3314         ctx = cpuctx->task_ctx;
3315         if (ctx && ctx->nr_events) {
3316                 if (ctx->nr_events != ctx->nr_active)
3317                         rotate = 1;
3318         }
3319
3320         if (!rotate)
3321                 goto done;
3322
3323         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3324         perf_pmu_disable(cpuctx->ctx.pmu);
3325
3326         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327         if (ctx)
3328                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3329
3330         rotate_ctx(&cpuctx->ctx);
3331         if (ctx)
3332                 rotate_ctx(ctx);
3333
3334         perf_event_sched_in(cpuctx, ctx, current);
3335
3336         perf_pmu_enable(cpuctx->ctx.pmu);
3337         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338 done:
3339
3340         return rotate;
3341 }
3342
3343 void perf_event_task_tick(void)
3344 {
3345         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346         struct perf_event_context *ctx, *tmp;
3347         int throttled;
3348
3349         WARN_ON(!irqs_disabled());
3350
3351         __this_cpu_inc(perf_throttled_seq);
3352         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3353         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3354
3355         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3356                 perf_adjust_freq_unthr_context(ctx, throttled);
3357 }
3358
3359 static int event_enable_on_exec(struct perf_event *event,
3360                                 struct perf_event_context *ctx)
3361 {
3362         if (!event->attr.enable_on_exec)
3363                 return 0;
3364
3365         event->attr.enable_on_exec = 0;
3366         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367                 return 0;
3368
3369         __perf_event_mark_enabled(event);
3370
3371         return 1;
3372 }
3373
3374 /*
3375  * Enable all of a task's events that have been marked enable-on-exec.
3376  * This expects task == current.
3377  */
3378 static void perf_event_enable_on_exec(int ctxn)
3379 {
3380         struct perf_event_context *ctx, *clone_ctx = NULL;
3381         struct perf_cpu_context *cpuctx;
3382         struct perf_event *event;
3383         unsigned long flags;
3384         int enabled = 0;
3385
3386         local_irq_save(flags);
3387         ctx = current->perf_event_ctxp[ctxn];
3388         if (!ctx || !ctx->nr_events)
3389                 goto out;
3390
3391         cpuctx = __get_cpu_context(ctx);
3392         perf_ctx_lock(cpuctx, ctx);
3393         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3394         list_for_each_entry(event, &ctx->event_list, event_entry)
3395                 enabled |= event_enable_on_exec(event, ctx);
3396
3397         /*
3398          * Unclone and reschedule this context if we enabled any event.
3399          */
3400         if (enabled) {
3401                 clone_ctx = unclone_ctx(ctx);
3402                 ctx_resched(cpuctx, ctx);
3403         }
3404         perf_ctx_unlock(cpuctx, ctx);
3405
3406 out:
3407         local_irq_restore(flags);
3408
3409         if (clone_ctx)
3410                 put_ctx(clone_ctx);
3411 }
3412
3413 struct perf_read_data {
3414         struct perf_event *event;
3415         bool group;
3416         int ret;
3417 };
3418
3419 /*
3420  * Cross CPU call to read the hardware event
3421  */
3422 static void __perf_event_read(void *info)
3423 {
3424         struct perf_read_data *data = info;
3425         struct perf_event *sub, *event = data->event;
3426         struct perf_event_context *ctx = event->ctx;
3427         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3428         struct pmu *pmu = event->pmu;
3429
3430         /*
3431          * If this is a task context, we need to check whether it is
3432          * the current task context of this cpu.  If not it has been
3433          * scheduled out before the smp call arrived.  In that case
3434          * event->count would have been updated to a recent sample
3435          * when the event was scheduled out.
3436          */
3437         if (ctx->task && cpuctx->task_ctx != ctx)
3438                 return;
3439
3440         raw_spin_lock(&ctx->lock);
3441         if (ctx->is_active) {
3442                 update_context_time(ctx);
3443                 update_cgrp_time_from_event(event);
3444         }
3445
3446         update_event_times(event);
3447         if (event->state != PERF_EVENT_STATE_ACTIVE)
3448                 goto unlock;
3449
3450         if (!data->group) {
3451                 pmu->read(event);
3452                 data->ret = 0;
3453                 goto unlock;
3454         }
3455
3456         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457
3458         pmu->read(event);
3459
3460         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461                 update_event_times(sub);
3462                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463                         /*
3464                          * Use sibling's PMU rather than @event's since
3465                          * sibling could be on different (eg: software) PMU.
3466                          */
3467                         sub->pmu->read(sub);
3468                 }
3469         }
3470
3471         data->ret = pmu->commit_txn(pmu);
3472
3473 unlock:
3474         raw_spin_unlock(&ctx->lock);
3475 }
3476
3477 static inline u64 perf_event_count(struct perf_event *event)
3478 {
3479         if (event->pmu->count)
3480                 return event->pmu->count(event);
3481
3482         return __perf_event_count(event);
3483 }
3484
3485 /*
3486  * NMI-safe method to read a local event, that is an event that
3487  * is:
3488  *   - either for the current task, or for this CPU
3489  *   - does not have inherit set, for inherited task events
3490  *     will not be local and we cannot read them atomically
3491  *   - must not have a pmu::count method
3492  */
3493 u64 perf_event_read_local(struct perf_event *event)
3494 {
3495         unsigned long flags;
3496         u64 val;
3497
3498         /*
3499          * Disabling interrupts avoids all counter scheduling (context
3500          * switches, timer based rotation and IPIs).
3501          */
3502         local_irq_save(flags);
3503
3504         /* If this is a per-task event, it must be for current */
3505         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506                      event->hw.target != current);
3507
3508         /* If this is a per-CPU event, it must be for this CPU */
3509         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510                      event->cpu != smp_processor_id());
3511
3512         /*
3513          * It must not be an event with inherit set, we cannot read
3514          * all child counters from atomic context.
3515          */
3516         WARN_ON_ONCE(event->attr.inherit);
3517
3518         /*
3519          * It must not have a pmu::count method, those are not
3520          * NMI safe.
3521          */
3522         WARN_ON_ONCE(event->pmu->count);
3523
3524         /*
3525          * If the event is currently on this CPU, its either a per-task event,
3526          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527          * oncpu == -1).
3528          */
3529         if (event->oncpu == smp_processor_id())
3530                 event->pmu->read(event);
3531
3532         val = local64_read(&event->count);
3533         local_irq_restore(flags);
3534
3535         return val;
3536 }
3537
3538 static int perf_event_read(struct perf_event *event, bool group)
3539 {
3540         int ret = 0;
3541
3542         /*
3543          * If event is enabled and currently active on a CPU, update the
3544          * value in the event structure:
3545          */
3546         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3547                 struct perf_read_data data = {
3548                         .event = event,
3549                         .group = group,
3550                         .ret = 0,
3551                 };
3552                 ret = smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3553                 /* The event must have been read from an online CPU: */
3554                 WARN_ON_ONCE(ret);
3555                 ret = ret ? : data.ret;
3556         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3557                 struct perf_event_context *ctx = event->ctx;
3558                 unsigned long flags;
3559
3560                 raw_spin_lock_irqsave(&ctx->lock, flags);
3561                 /*
3562                  * may read while context is not active
3563                  * (e.g., thread is blocked), in that case
3564                  * we cannot update context time
3565                  */
3566                 if (ctx->is_active) {
3567                         update_context_time(ctx);
3568                         update_cgrp_time_from_event(event);
3569                 }
3570                 if (group)
3571                         update_group_times(event);
3572                 else
3573                         update_event_times(event);
3574                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3575         }
3576
3577         return ret;
3578 }
3579
3580 /*
3581  * Initialize the perf_event context in a task_struct:
3582  */
3583 static void __perf_event_init_context(struct perf_event_context *ctx)
3584 {
3585         raw_spin_lock_init(&ctx->lock);
3586         mutex_init(&ctx->mutex);
3587         INIT_LIST_HEAD(&ctx->active_ctx_list);
3588         INIT_LIST_HEAD(&ctx->pinned_groups);
3589         INIT_LIST_HEAD(&ctx->flexible_groups);
3590         INIT_LIST_HEAD(&ctx->event_list);
3591         atomic_set(&ctx->refcount, 1);
3592 }
3593
3594 static struct perf_event_context *
3595 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3596 {
3597         struct perf_event_context *ctx;
3598
3599         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3600         if (!ctx)
3601                 return NULL;
3602
3603         __perf_event_init_context(ctx);
3604         if (task) {
3605                 ctx->task = task;
3606                 get_task_struct(task);
3607         }
3608         ctx->pmu = pmu;
3609
3610         return ctx;
3611 }
3612
3613 static struct task_struct *
3614 find_lively_task_by_vpid(pid_t vpid)
3615 {
3616         struct task_struct *task;
3617
3618         rcu_read_lock();
3619         if (!vpid)
3620                 task = current;
3621         else
3622                 task = find_task_by_vpid(vpid);
3623         if (task)
3624                 get_task_struct(task);
3625         rcu_read_unlock();
3626
3627         if (!task)
3628                 return ERR_PTR(-ESRCH);
3629
3630         return task;
3631 }
3632
3633 /*
3634  * Returns a matching context with refcount and pincount.
3635  */
3636 static struct perf_event_context *
3637 find_get_context(struct pmu *pmu, struct task_struct *task,
3638                 struct perf_event *event)
3639 {
3640         struct perf_event_context *ctx, *clone_ctx = NULL;
3641         struct perf_cpu_context *cpuctx;
3642         void *task_ctx_data = NULL;
3643         unsigned long flags;
3644         int ctxn, err;
3645         int cpu = event->cpu;
3646
3647         if (!task) {
3648                 /* Must be root to operate on a CPU event: */
3649                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3650                         return ERR_PTR(-EACCES);
3651
3652                 /*
3653                  * We could be clever and allow to attach a event to an
3654                  * offline CPU and activate it when the CPU comes up, but
3655                  * that's for later.
3656                  */
3657                 if (!cpu_online(cpu))
3658                         return ERR_PTR(-ENODEV);
3659
3660                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3661                 ctx = &cpuctx->ctx;
3662                 get_ctx(ctx);
3663                 ++ctx->pin_count;
3664
3665                 return ctx;
3666         }
3667
3668         err = -EINVAL;
3669         ctxn = pmu->task_ctx_nr;
3670         if (ctxn < 0)
3671                 goto errout;
3672
3673         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3674                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3675                 if (!task_ctx_data) {
3676                         err = -ENOMEM;
3677                         goto errout;
3678                 }
3679         }
3680
3681 retry:
3682         ctx = perf_lock_task_context(task, ctxn, &flags);
3683         if (ctx) {
3684                 clone_ctx = unclone_ctx(ctx);
3685                 ++ctx->pin_count;
3686
3687                 if (task_ctx_data && !ctx->task_ctx_data) {
3688                         ctx->task_ctx_data = task_ctx_data;
3689                         task_ctx_data = NULL;
3690                 }
3691                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3692
3693                 if (clone_ctx)
3694                         put_ctx(clone_ctx);
3695         } else {
3696                 ctx = alloc_perf_context(pmu, task);
3697                 err = -ENOMEM;
3698                 if (!ctx)
3699                         goto errout;
3700
3701                 if (task_ctx_data) {
3702                         ctx->task_ctx_data = task_ctx_data;
3703                         task_ctx_data = NULL;
3704                 }
3705
3706                 err = 0;
3707                 mutex_lock(&task->perf_event_mutex);
3708                 /*
3709                  * If it has already passed perf_event_exit_task().
3710                  * we must see PF_EXITING, it takes this mutex too.
3711                  */
3712                 if (task->flags & PF_EXITING)
3713                         err = -ESRCH;
3714                 else if (task->perf_event_ctxp[ctxn])
3715                         err = -EAGAIN;
3716                 else {
3717                         get_ctx(ctx);
3718                         ++ctx->pin_count;
3719                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3720                 }
3721                 mutex_unlock(&task->perf_event_mutex);
3722
3723                 if (unlikely(err)) {
3724                         put_ctx(ctx);
3725
3726                         if (err == -EAGAIN)
3727                                 goto retry;
3728                         goto errout;
3729                 }
3730         }
3731
3732         kfree(task_ctx_data);
3733         return ctx;
3734
3735 errout:
3736         kfree(task_ctx_data);
3737         return ERR_PTR(err);
3738 }
3739
3740 static void perf_event_free_filter(struct perf_event *event);
3741 static void perf_event_free_bpf_prog(struct perf_event *event);
3742
3743 static void free_event_rcu(struct rcu_head *head)
3744 {
3745         struct perf_event *event;
3746
3747         event = container_of(head, struct perf_event, rcu_head);
3748         if (event->ns)
3749                 put_pid_ns(event->ns);
3750         perf_event_free_filter(event);
3751         kfree(event);
3752 }
3753
3754 static void ring_buffer_attach(struct perf_event *event,
3755                                struct ring_buffer *rb);
3756
3757 static void detach_sb_event(struct perf_event *event)
3758 {
3759         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3760
3761         raw_spin_lock(&pel->lock);
3762         list_del_rcu(&event->sb_list);
3763         raw_spin_unlock(&pel->lock);
3764 }
3765
3766 static bool is_sb_event(struct perf_event *event)
3767 {
3768         struct perf_event_attr *attr = &event->attr;
3769
3770         if (event->parent)
3771                 return false;
3772
3773         if (event->attach_state & PERF_ATTACH_TASK)
3774                 return false;
3775
3776         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3777             attr->comm || attr->comm_exec ||
3778             attr->task ||
3779             attr->context_switch)
3780                 return true;
3781         return false;
3782 }
3783
3784 static void unaccount_pmu_sb_event(struct perf_event *event)
3785 {
3786         if (is_sb_event(event))
3787                 detach_sb_event(event);
3788 }
3789
3790 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3791 {
3792         if (event->parent)
3793                 return;
3794
3795         if (is_cgroup_event(event))
3796                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3797 }
3798
3799 #ifdef CONFIG_NO_HZ_FULL
3800 static DEFINE_SPINLOCK(nr_freq_lock);
3801 #endif
3802
3803 static void unaccount_freq_event_nohz(void)
3804 {
3805 #ifdef CONFIG_NO_HZ_FULL
3806         spin_lock(&nr_freq_lock);
3807         if (atomic_dec_and_test(&nr_freq_events))
3808                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3809         spin_unlock(&nr_freq_lock);
3810 #endif
3811 }
3812
3813 static void unaccount_freq_event(void)
3814 {
3815         if (tick_nohz_full_enabled())
3816                 unaccount_freq_event_nohz();
3817         else
3818                 atomic_dec(&nr_freq_events);
3819 }
3820
3821 static void unaccount_event(struct perf_event *event)
3822 {
3823         bool dec = false;
3824
3825         if (event->parent)
3826                 return;
3827
3828         if (event->attach_state & PERF_ATTACH_TASK)
3829                 dec = true;
3830         if (event->attr.mmap || event->attr.mmap_data)
3831                 atomic_dec(&nr_mmap_events);
3832         if (event->attr.comm)
3833                 atomic_dec(&nr_comm_events);
3834         if (event->attr.task)
3835                 atomic_dec(&nr_task_events);
3836         if (event->attr.freq)
3837                 unaccount_freq_event();
3838         if (event->attr.context_switch) {
3839                 dec = true;
3840                 atomic_dec(&nr_switch_events);
3841         }
3842         if (is_cgroup_event(event))
3843                 dec = true;
3844         if (has_branch_stack(event))
3845                 dec = true;
3846
3847         if (dec) {
3848                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3849                         schedule_delayed_work(&perf_sched_work, HZ);
3850         }
3851
3852         unaccount_event_cpu(event, event->cpu);
3853
3854         unaccount_pmu_sb_event(event);
3855 }
3856
3857 static void perf_sched_delayed(struct work_struct *work)
3858 {
3859         mutex_lock(&perf_sched_mutex);
3860         if (atomic_dec_and_test(&perf_sched_count))
3861                 static_branch_disable(&perf_sched_events);
3862         mutex_unlock(&perf_sched_mutex);
3863 }
3864
3865 /*
3866  * The following implement mutual exclusion of events on "exclusive" pmus
3867  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3868  * at a time, so we disallow creating events that might conflict, namely:
3869  *
3870  *  1) cpu-wide events in the presence of per-task events,
3871  *  2) per-task events in the presence of cpu-wide events,
3872  *  3) two matching events on the same context.
3873  *
3874  * The former two cases are handled in the allocation path (perf_event_alloc(),
3875  * _free_event()), the latter -- before the first perf_install_in_context().
3876  */
3877 static int exclusive_event_init(struct perf_event *event)
3878 {
3879         struct pmu *pmu = event->pmu;
3880
3881         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3882                 return 0;
3883
3884         /*
3885          * Prevent co-existence of per-task and cpu-wide events on the
3886          * same exclusive pmu.
3887          *
3888          * Negative pmu::exclusive_cnt means there are cpu-wide
3889          * events on this "exclusive" pmu, positive means there are
3890          * per-task events.
3891          *
3892          * Since this is called in perf_event_alloc() path, event::ctx
3893          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3894          * to mean "per-task event", because unlike other attach states it
3895          * never gets cleared.
3896          */
3897         if (event->attach_state & PERF_ATTACH_TASK) {
3898                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3899                         return -EBUSY;
3900         } else {
3901                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3902                         return -EBUSY;
3903         }
3904
3905         return 0;
3906 }
3907
3908 static void exclusive_event_destroy(struct perf_event *event)
3909 {
3910         struct pmu *pmu = event->pmu;
3911
3912         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3913                 return;
3914
3915         /* see comment in exclusive_event_init() */
3916         if (event->attach_state & PERF_ATTACH_TASK)
3917                 atomic_dec(&pmu->exclusive_cnt);
3918         else
3919                 atomic_inc(&pmu->exclusive_cnt);
3920 }
3921
3922 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3923 {
3924         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3925             (e1->cpu == e2->cpu ||
3926              e1->cpu == -1 ||
3927              e2->cpu == -1))
3928                 return true;
3929         return false;
3930 }
3931
3932 /* Called under the same ctx::mutex as perf_install_in_context() */
3933 static bool exclusive_event_installable(struct perf_event *event,
3934                                         struct perf_event_context *ctx)
3935 {
3936         struct perf_event *iter_event;
3937         struct pmu *pmu = event->pmu;
3938
3939         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3940                 return true;
3941
3942         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3943                 if (exclusive_event_match(iter_event, event))
3944                         return false;
3945         }
3946
3947         return true;
3948 }
3949
3950 static void perf_addr_filters_splice(struct perf_event *event,
3951                                        struct list_head *head);
3952
3953 static void _free_event(struct perf_event *event)
3954 {
3955         irq_work_sync(&event->pending);
3956
3957         unaccount_event(event);
3958
3959         if (event->rb) {
3960                 /*
3961                  * Can happen when we close an event with re-directed output.
3962                  *
3963                  * Since we have a 0 refcount, perf_mmap_close() will skip
3964                  * over us; possibly making our ring_buffer_put() the last.
3965                  */
3966                 mutex_lock(&event->mmap_mutex);
3967                 ring_buffer_attach(event, NULL);
3968                 mutex_unlock(&event->mmap_mutex);
3969         }
3970
3971         if (is_cgroup_event(event))
3972                 perf_detach_cgroup(event);
3973
3974         if (!event->parent) {
3975                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3976                         put_callchain_buffers();
3977         }
3978
3979         perf_event_free_bpf_prog(event);
3980         perf_addr_filters_splice(event, NULL);
3981         kfree(event->addr_filters_offs);
3982
3983         if (event->destroy)
3984                 event->destroy(event);
3985
3986         if (event->ctx)
3987                 put_ctx(event->ctx);
3988
3989         exclusive_event_destroy(event);
3990         module_put(event->pmu->module);
3991
3992         call_rcu(&event->rcu_head, free_event_rcu);
3993 }
3994
3995 /*
3996  * Used to free events which have a known refcount of 1, such as in error paths
3997  * where the event isn't exposed yet and inherited events.
3998  */
3999 static void free_event(struct perf_event *event)
4000 {
4001         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4002                                 "unexpected event refcount: %ld; ptr=%p\n",
4003                                 atomic_long_read(&event->refcount), event)) {
4004                 /* leak to avoid use-after-free */
4005                 return;
4006         }
4007
4008         _free_event(event);
4009 }
4010
4011 /*
4012  * Remove user event from the owner task.
4013  */
4014 static void perf_remove_from_owner(struct perf_event *event)
4015 {
4016         struct task_struct *owner;
4017
4018         rcu_read_lock();
4019         /*
4020          * Matches the smp_store_release() in perf_event_exit_task(). If we
4021          * observe !owner it means the list deletion is complete and we can
4022          * indeed free this event, otherwise we need to serialize on
4023          * owner->perf_event_mutex.
4024          */
4025         owner = lockless_dereference(event->owner);
4026         if (owner) {
4027                 /*
4028                  * Since delayed_put_task_struct() also drops the last
4029                  * task reference we can safely take a new reference
4030                  * while holding the rcu_read_lock().
4031                  */
4032                 get_task_struct(owner);
4033         }
4034         rcu_read_unlock();
4035
4036         if (owner) {
4037                 /*
4038                  * If we're here through perf_event_exit_task() we're already
4039                  * holding ctx->mutex which would be an inversion wrt. the
4040                  * normal lock order.
4041                  *
4042                  * However we can safely take this lock because its the child
4043                  * ctx->mutex.
4044                  */
4045                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4046
4047                 /*
4048                  * We have to re-check the event->owner field, if it is cleared
4049                  * we raced with perf_event_exit_task(), acquiring the mutex
4050                  * ensured they're done, and we can proceed with freeing the
4051                  * event.
4052                  */
4053                 if (event->owner) {
4054                         list_del_init(&event->owner_entry);
4055                         smp_store_release(&event->owner, NULL);
4056                 }
4057                 mutex_unlock(&owner->perf_event_mutex);
4058                 put_task_struct(owner);
4059         }
4060 }
4061
4062 static void put_event(struct perf_event *event)
4063 {
4064         if (!atomic_long_dec_and_test(&event->refcount))
4065                 return;
4066
4067         _free_event(event);
4068 }
4069
4070 /*
4071  * Kill an event dead; while event:refcount will preserve the event
4072  * object, it will not preserve its functionality. Once the last 'user'
4073  * gives up the object, we'll destroy the thing.
4074  */
4075 int perf_event_release_kernel(struct perf_event *event)
4076 {
4077         struct perf_event_context *ctx = event->ctx;
4078         struct perf_event *child, *tmp;
4079
4080         /*
4081          * If we got here through err_file: fput(event_file); we will not have
4082          * attached to a context yet.
4083          */
4084         if (!ctx) {
4085                 WARN_ON_ONCE(event->attach_state &
4086                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4087                 goto no_ctx;
4088         }
4089
4090         if (!is_kernel_event(event))
4091                 perf_remove_from_owner(event);
4092
4093         ctx = perf_event_ctx_lock(event);
4094         WARN_ON_ONCE(ctx->parent_ctx);
4095         perf_remove_from_context(event, DETACH_GROUP);
4096
4097         raw_spin_lock_irq(&ctx->lock);
4098         /*
4099          * Mark this even as STATE_DEAD, there is no external reference to it
4100          * anymore.
4101          *
4102          * Anybody acquiring event->child_mutex after the below loop _must_
4103          * also see this, most importantly inherit_event() which will avoid
4104          * placing more children on the list.
4105          *
4106          * Thus this guarantees that we will in fact observe and kill _ALL_
4107          * child events.
4108          */
4109         event->state = PERF_EVENT_STATE_DEAD;
4110         raw_spin_unlock_irq(&ctx->lock);
4111
4112         perf_event_ctx_unlock(event, ctx);
4113
4114 again:
4115         mutex_lock(&event->child_mutex);
4116         list_for_each_entry(child, &event->child_list, child_list) {
4117
4118                 /*
4119                  * Cannot change, child events are not migrated, see the
4120                  * comment with perf_event_ctx_lock_nested().
4121                  */
4122                 ctx = lockless_dereference(child->ctx);
4123                 /*
4124                  * Since child_mutex nests inside ctx::mutex, we must jump
4125                  * through hoops. We start by grabbing a reference on the ctx.
4126                  *
4127                  * Since the event cannot get freed while we hold the
4128                  * child_mutex, the context must also exist and have a !0
4129                  * reference count.
4130                  */
4131                 get_ctx(ctx);
4132
4133                 /*
4134                  * Now that we have a ctx ref, we can drop child_mutex, and
4135                  * acquire ctx::mutex without fear of it going away. Then we
4136                  * can re-acquire child_mutex.
4137                  */
4138                 mutex_unlock(&event->child_mutex);
4139                 mutex_lock(&ctx->mutex);
4140                 mutex_lock(&event->child_mutex);
4141
4142                 /*
4143                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4144                  * state, if child is still the first entry, it didn't get freed
4145                  * and we can continue doing so.
4146                  */
4147                 tmp = list_first_entry_or_null(&event->child_list,
4148                                                struct perf_event, child_list);
4149                 if (tmp == child) {
4150                         perf_remove_from_context(child, DETACH_GROUP);
4151                         list_del(&child->child_list);
4152                         free_event(child);
4153                         /*
4154                          * This matches the refcount bump in inherit_event();
4155                          * this can't be the last reference.
4156                          */
4157                         put_event(event);
4158                 }
4159
4160                 mutex_unlock(&event->child_mutex);
4161                 mutex_unlock(&ctx->mutex);
4162                 put_ctx(ctx);
4163                 goto again;
4164         }
4165         mutex_unlock(&event->child_mutex);
4166
4167 no_ctx:
4168         put_event(event); /* Must be the 'last' reference */
4169         return 0;
4170 }
4171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4172
4173 /*
4174  * Called when the last reference to the file is gone.
4175  */
4176 static int perf_release(struct inode *inode, struct file *file)
4177 {
4178         perf_event_release_kernel(file->private_data);
4179         return 0;
4180 }
4181
4182 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4183 {
4184         struct perf_event *child;
4185         u64 total = 0;
4186
4187         *enabled = 0;
4188         *running = 0;
4189
4190         mutex_lock(&event->child_mutex);
4191
4192         (void)perf_event_read(event, false);
4193         total += perf_event_count(event);
4194
4195         *enabled += event->total_time_enabled +
4196                         atomic64_read(&event->child_total_time_enabled);
4197         *running += event->total_time_running +
4198                         atomic64_read(&event->child_total_time_running);
4199
4200         list_for_each_entry(child, &event->child_list, child_list) {
4201                 (void)perf_event_read(child, false);
4202                 total += perf_event_count(child);
4203                 *enabled += child->total_time_enabled;
4204                 *running += child->total_time_running;
4205         }
4206         mutex_unlock(&event->child_mutex);
4207
4208         return total;
4209 }
4210 EXPORT_SYMBOL_GPL(perf_event_read_value);
4211
4212 static int __perf_read_group_add(struct perf_event *leader,
4213                                         u64 read_format, u64 *values)
4214 {
4215         struct perf_event *sub;
4216         int n = 1; /* skip @nr */
4217         int ret;
4218
4219         ret = perf_event_read(leader, true);
4220         if (ret)
4221                 return ret;
4222
4223         /*
4224          * Since we co-schedule groups, {enabled,running} times of siblings
4225          * will be identical to those of the leader, so we only publish one
4226          * set.
4227          */
4228         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4229                 values[n++] += leader->total_time_enabled +
4230                         atomic64_read(&leader->child_total_time_enabled);
4231         }
4232
4233         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4234                 values[n++] += leader->total_time_running +
4235                         atomic64_read(&leader->child_total_time_running);
4236         }
4237
4238         /*
4239          * Write {count,id} tuples for every sibling.
4240          */
4241         values[n++] += perf_event_count(leader);
4242         if (read_format & PERF_FORMAT_ID)
4243                 values[n++] = primary_event_id(leader);
4244
4245         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4246                 values[n++] += perf_event_count(sub);
4247                 if (read_format & PERF_FORMAT_ID)
4248                         values[n++] = primary_event_id(sub);
4249         }
4250
4251         return 0;
4252 }
4253
4254 static int perf_read_group(struct perf_event *event,
4255                                    u64 read_format, char __user *buf)
4256 {
4257         struct perf_event *leader = event->group_leader, *child;
4258         struct perf_event_context *ctx = leader->ctx;
4259         int ret;
4260         u64 *values;
4261
4262         lockdep_assert_held(&ctx->mutex);
4263
4264         values = kzalloc(event->read_size, GFP_KERNEL);
4265         if (!values)
4266                 return -ENOMEM;
4267
4268         values[0] = 1 + leader->nr_siblings;
4269
4270         /*
4271          * By locking the child_mutex of the leader we effectively
4272          * lock the child list of all siblings.. XXX explain how.
4273          */
4274         mutex_lock(&leader->child_mutex);
4275
4276         ret = __perf_read_group_add(leader, read_format, values);
4277         if (ret)
4278                 goto unlock;
4279
4280         list_for_each_entry(child, &leader->child_list, child_list) {
4281                 ret = __perf_read_group_add(child, read_format, values);
4282                 if (ret)
4283                         goto unlock;
4284         }
4285
4286         mutex_unlock(&leader->child_mutex);
4287
4288         ret = event->read_size;
4289         if (copy_to_user(buf, values, event->read_size))
4290                 ret = -EFAULT;
4291         goto out;
4292
4293 unlock:
4294         mutex_unlock(&leader->child_mutex);
4295 out:
4296         kfree(values);
4297         return ret;
4298 }
4299
4300 static int perf_read_one(struct perf_event *event,
4301                                  u64 read_format, char __user *buf)
4302 {
4303         u64 enabled, running;
4304         u64 values[4];
4305         int n = 0;
4306
4307         values[n++] = perf_event_read_value(event, &enabled, &running);
4308         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4309                 values[n++] = enabled;
4310         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4311                 values[n++] = running;
4312         if (read_format & PERF_FORMAT_ID)
4313                 values[n++] = primary_event_id(event);
4314
4315         if (copy_to_user(buf, values, n * sizeof(u64)))
4316                 return -EFAULT;
4317
4318         return n * sizeof(u64);
4319 }
4320
4321 static bool is_event_hup(struct perf_event *event)
4322 {
4323         bool no_children;
4324
4325         if (event->state > PERF_EVENT_STATE_EXIT)
4326                 return false;
4327
4328         mutex_lock(&event->child_mutex);
4329         no_children = list_empty(&event->child_list);
4330         mutex_unlock(&event->child_mutex);
4331         return no_children;
4332 }
4333
4334 /*
4335  * Read the performance event - simple non blocking version for now
4336  */
4337 static ssize_t
4338 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4339 {
4340         u64 read_format = event->attr.read_format;
4341         int ret;
4342
4343         /*
4344          * Return end-of-file for a read on a event that is in
4345          * error state (i.e. because it was pinned but it couldn't be
4346          * scheduled on to the CPU at some point).
4347          */
4348         if (event->state == PERF_EVENT_STATE_ERROR)
4349                 return 0;
4350
4351         if (count < event->read_size)
4352                 return -ENOSPC;
4353
4354         WARN_ON_ONCE(event->ctx->parent_ctx);
4355         if (read_format & PERF_FORMAT_GROUP)
4356                 ret = perf_read_group(event, read_format, buf);
4357         else
4358                 ret = perf_read_one(event, read_format, buf);
4359
4360         return ret;
4361 }
4362
4363 static ssize_t
4364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4365 {
4366         struct perf_event *event = file->private_data;
4367         struct perf_event_context *ctx;
4368         int ret;
4369
4370         ctx = perf_event_ctx_lock(event);
4371         ret = __perf_read(event, buf, count);
4372         perf_event_ctx_unlock(event, ctx);
4373
4374         return ret;
4375 }
4376
4377 static unsigned int perf_poll(struct file *file, poll_table *wait)
4378 {
4379         struct perf_event *event = file->private_data;
4380         struct ring_buffer *rb;
4381         unsigned int events = POLLHUP;
4382
4383         poll_wait(file, &event->waitq, wait);
4384
4385         if (is_event_hup(event))
4386                 return events;
4387
4388         /*
4389          * Pin the event->rb by taking event->mmap_mutex; otherwise
4390          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4391          */
4392         mutex_lock(&event->mmap_mutex);
4393         rb = event->rb;
4394         if (rb)
4395                 events = atomic_xchg(&rb->poll, 0);
4396         mutex_unlock(&event->mmap_mutex);
4397         return events;
4398 }
4399
4400 static void _perf_event_reset(struct perf_event *event)
4401 {
4402         (void)perf_event_read(event, false);
4403         local64_set(&event->count, 0);
4404         perf_event_update_userpage(event);
4405 }
4406
4407 /*
4408  * Holding the top-level event's child_mutex means that any
4409  * descendant process that has inherited this event will block
4410  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4411  * task existence requirements of perf_event_enable/disable.
4412  */
4413 static void perf_event_for_each_child(struct perf_event *event,
4414                                         void (*func)(struct perf_event *))
4415 {
4416         struct perf_event *child;
4417
4418         WARN_ON_ONCE(event->ctx->parent_ctx);
4419
4420         mutex_lock(&event->child_mutex);
4421         func(event);
4422         list_for_each_entry(child, &event->child_list, child_list)
4423                 func(child);
4424         mutex_unlock(&event->child_mutex);
4425 }
4426
4427 static void perf_event_for_each(struct perf_event *event,
4428                                   void (*func)(struct perf_event *))
4429 {
4430         struct perf_event_context *ctx = event->ctx;
4431         struct perf_event *sibling;
4432
4433         lockdep_assert_held(&ctx->mutex);
4434
4435         event = event->group_leader;
4436
4437         perf_event_for_each_child(event, func);
4438         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4439                 perf_event_for_each_child(sibling, func);
4440 }
4441
4442 static void __perf_event_period(struct perf_event *event,
4443                                 struct perf_cpu_context *cpuctx,
4444                                 struct perf_event_context *ctx,
4445                                 void *info)
4446 {
4447         u64 value = *((u64 *)info);
4448         bool active;
4449
4450         if (event->attr.freq) {
4451                 event->attr.sample_freq = value;
4452         } else {
4453                 event->attr.sample_period = value;
4454                 event->hw.sample_period = value;
4455         }
4456
4457         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4458         if (active) {
4459                 perf_pmu_disable(ctx->pmu);
4460                 /*
4461                  * We could be throttled; unthrottle now to avoid the tick
4462                  * trying to unthrottle while we already re-started the event.
4463                  */
4464                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4465                         event->hw.interrupts = 0;
4466                         perf_log_throttle(event, 1);
4467                 }
4468                 event->pmu->stop(event, PERF_EF_UPDATE);
4469         }
4470
4471         local64_set(&event->hw.period_left, 0);
4472
4473         if (active) {
4474                 event->pmu->start(event, PERF_EF_RELOAD);
4475                 perf_pmu_enable(ctx->pmu);
4476         }
4477 }
4478
4479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4480 {
4481         u64 value;
4482
4483         if (!is_sampling_event(event))
4484                 return -EINVAL;
4485
4486         if (copy_from_user(&value, arg, sizeof(value)))
4487                 return -EFAULT;
4488
4489         if (!value)
4490                 return -EINVAL;
4491
4492         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4493                 return -EINVAL;
4494
4495         event_function_call(event, __perf_event_period, &value);
4496
4497         return 0;
4498 }
4499
4500 static const struct file_operations perf_fops;
4501
4502 static inline int perf_fget_light(int fd, struct fd *p)
4503 {
4504         struct fd f = fdget(fd);
4505         if (!f.file)
4506                 return -EBADF;
4507
4508         if (f.file->f_op != &perf_fops) {
4509                 fdput(f);
4510                 return -EBADF;
4511         }
4512         *p = f;
4513         return 0;
4514 }
4515
4516 static int perf_event_set_output(struct perf_event *event,
4517                                  struct perf_event *output_event);
4518 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4519 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4520
4521 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4522 {
4523         void (*func)(struct perf_event *);
4524         u32 flags = arg;
4525
4526         switch (cmd) {
4527         case PERF_EVENT_IOC_ENABLE:
4528                 func = _perf_event_enable;
4529                 break;
4530         case PERF_EVENT_IOC_DISABLE:
4531                 func = _perf_event_disable;
4532                 break;
4533         case PERF_EVENT_IOC_RESET:
4534                 func = _perf_event_reset;
4535                 break;
4536
4537         case PERF_EVENT_IOC_REFRESH:
4538                 return _perf_event_refresh(event, arg);
4539
4540         case PERF_EVENT_IOC_PERIOD:
4541                 return perf_event_period(event, (u64 __user *)arg);
4542
4543         case PERF_EVENT_IOC_ID:
4544         {
4545                 u64 id = primary_event_id(event);
4546
4547                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4548                         return -EFAULT;
4549                 return 0;
4550         }
4551
4552         case PERF_EVENT_IOC_SET_OUTPUT:
4553         {
4554                 int ret;
4555                 if (arg != -1) {
4556                         struct perf_event *output_event;
4557                         struct fd output;
4558                         ret = perf_fget_light(arg, &output);
4559                         if (ret)
4560                                 return ret;
4561                         output_event = output.file->private_data;
4562                         ret = perf_event_set_output(event, output_event);
4563                         fdput(output);
4564                 } else {
4565                         ret = perf_event_set_output(event, NULL);
4566                 }
4567                 return ret;
4568         }
4569
4570         case PERF_EVENT_IOC_SET_FILTER:
4571                 return perf_event_set_filter(event, (void __user *)arg);
4572
4573         case PERF_EVENT_IOC_SET_BPF:
4574                 return perf_event_set_bpf_prog(event, arg);
4575
4576         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4577                 struct ring_buffer *rb;
4578
4579                 rcu_read_lock();
4580                 rb = rcu_dereference(event->rb);
4581                 if (!rb || !rb->nr_pages) {
4582                         rcu_read_unlock();
4583                         return -EINVAL;
4584                 }
4585                 rb_toggle_paused(rb, !!arg);
4586                 rcu_read_unlock();
4587                 return 0;
4588         }
4589         default:
4590                 return -ENOTTY;
4591         }
4592
4593         if (flags & PERF_IOC_FLAG_GROUP)
4594                 perf_event_for_each(event, func);
4595         else
4596                 perf_event_for_each_child(event, func);
4597
4598         return 0;
4599 }
4600
4601 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4602 {
4603         struct perf_event *event = file->private_data;
4604         struct perf_event_context *ctx;
4605         long ret;
4606
4607         ctx = perf_event_ctx_lock(event);
4608         ret = _perf_ioctl(event, cmd, arg);
4609         perf_event_ctx_unlock(event, ctx);
4610
4611         return ret;
4612 }
4613
4614 #ifdef CONFIG_COMPAT
4615 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4616                                 unsigned long arg)
4617 {
4618         switch (_IOC_NR(cmd)) {
4619         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4620         case _IOC_NR(PERF_EVENT_IOC_ID):
4621                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4622                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4623                         cmd &= ~IOCSIZE_MASK;
4624                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4625                 }
4626                 break;
4627         }
4628         return perf_ioctl(file, cmd, arg);
4629 }
4630 #else
4631 # define perf_compat_ioctl NULL
4632 #endif
4633
4634 int perf_event_task_enable(void)
4635 {
4636         struct perf_event_context *ctx;
4637         struct perf_event *event;
4638
4639         mutex_lock(&current->perf_event_mutex);
4640         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4641                 ctx = perf_event_ctx_lock(event);
4642                 perf_event_for_each_child(event, _perf_event_enable);
4643                 perf_event_ctx_unlock(event, ctx);
4644         }
4645         mutex_unlock(&current->perf_event_mutex);
4646
4647         return 0;
4648 }
4649
4650 int perf_event_task_disable(void)
4651 {
4652         struct perf_event_context *ctx;
4653         struct perf_event *event;
4654
4655         mutex_lock(&current->perf_event_mutex);
4656         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4657                 ctx = perf_event_ctx_lock(event);
4658                 perf_event_for_each_child(event, _perf_event_disable);
4659                 perf_event_ctx_unlock(event, ctx);
4660         }
4661         mutex_unlock(&current->perf_event_mutex);
4662
4663         return 0;
4664 }
4665
4666 static int perf_event_index(struct perf_event *event)
4667 {
4668         if (event->hw.state & PERF_HES_STOPPED)
4669                 return 0;
4670
4671         if (event->state != PERF_EVENT_STATE_ACTIVE)
4672                 return 0;
4673
4674         return event->pmu->event_idx(event);
4675 }
4676
4677 static void calc_timer_values(struct perf_event *event,
4678                                 u64 *now,
4679                                 u64 *enabled,
4680                                 u64 *running)
4681 {
4682         u64 ctx_time;
4683
4684         *now = perf_clock();
4685         ctx_time = event->shadow_ctx_time + *now;
4686         *enabled = ctx_time - event->tstamp_enabled;
4687         *running = ctx_time - event->tstamp_running;
4688 }
4689
4690 static void perf_event_init_userpage(struct perf_event *event)
4691 {
4692         struct perf_event_mmap_page *userpg;
4693         struct ring_buffer *rb;
4694
4695         rcu_read_lock();
4696         rb = rcu_dereference(event->rb);
4697         if (!rb)
4698                 goto unlock;
4699
4700         userpg = rb->user_page;
4701
4702         /* Allow new userspace to detect that bit 0 is deprecated */
4703         userpg->cap_bit0_is_deprecated = 1;
4704         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4705         userpg->data_offset = PAGE_SIZE;
4706         userpg->data_size = perf_data_size(rb);
4707
4708 unlock:
4709         rcu_read_unlock();
4710 }
4711
4712 void __weak arch_perf_update_userpage(
4713         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4714 {
4715 }
4716
4717 /*
4718  * Callers need to ensure there can be no nesting of this function, otherwise
4719  * the seqlock logic goes bad. We can not serialize this because the arch
4720  * code calls this from NMI context.
4721  */
4722 void perf_event_update_userpage(struct perf_event *event)
4723 {
4724         struct perf_event_mmap_page *userpg;
4725         struct ring_buffer *rb;
4726         u64 enabled, running, now;
4727
4728         rcu_read_lock();
4729         rb = rcu_dereference(event->rb);
4730         if (!rb)
4731                 goto unlock;
4732
4733         /*
4734          * compute total_time_enabled, total_time_running
4735          * based on snapshot values taken when the event
4736          * was last scheduled in.
4737          *
4738          * we cannot simply called update_context_time()
4739          * because of locking issue as we can be called in
4740          * NMI context
4741          */
4742         calc_timer_values(event, &now, &enabled, &running);
4743
4744         userpg = rb->user_page;
4745         /*
4746          * Disable preemption so as to not let the corresponding user-space
4747          * spin too long if we get preempted.
4748          */
4749         preempt_disable();
4750         ++userpg->lock;
4751         barrier();
4752         userpg->index = perf_event_index(event);
4753         userpg->offset = perf_event_count(event);
4754         if (userpg->index)
4755                 userpg->offset -= local64_read(&event->hw.prev_count);
4756
4757         userpg->time_enabled = enabled +
4758                         atomic64_read(&event->child_total_time_enabled);
4759
4760         userpg->time_running = running +
4761                         atomic64_read(&event->child_total_time_running);
4762
4763         arch_perf_update_userpage(event, userpg, now);
4764
4765         barrier();
4766         ++userpg->lock;
4767         preempt_enable();
4768 unlock:
4769         rcu_read_unlock();
4770 }
4771
4772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4773 {
4774         struct perf_event *event = vma->vm_file->private_data;
4775         struct ring_buffer *rb;
4776         int ret = VM_FAULT_SIGBUS;
4777
4778         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4779                 if (vmf->pgoff == 0)
4780                         ret = 0;
4781                 return ret;
4782         }
4783
4784         rcu_read_lock();
4785         rb = rcu_dereference(event->rb);
4786         if (!rb)
4787                 goto unlock;
4788
4789         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4790                 goto unlock;
4791
4792         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4793         if (!vmf->page)
4794                 goto unlock;
4795
4796         get_page(vmf->page);
4797         vmf->page->mapping = vma->vm_file->f_mapping;
4798         vmf->page->index   = vmf->pgoff;
4799
4800         ret = 0;
4801 unlock:
4802         rcu_read_unlock();
4803
4804         return ret;
4805 }
4806
4807 static void ring_buffer_attach(struct perf_event *event,
4808                                struct ring_buffer *rb)
4809 {
4810         struct ring_buffer *old_rb = NULL;
4811         unsigned long flags;
4812
4813         if (event->rb) {
4814                 /*
4815                  * Should be impossible, we set this when removing
4816                  * event->rb_entry and wait/clear when adding event->rb_entry.
4817                  */
4818                 WARN_ON_ONCE(event->rcu_pending);
4819
4820                 old_rb = event->rb;
4821                 spin_lock_irqsave(&old_rb->event_lock, flags);
4822                 list_del_rcu(&event->rb_entry);
4823                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4824
4825                 event->rcu_batches = get_state_synchronize_rcu();
4826                 event->rcu_pending = 1;
4827         }
4828
4829         if (rb) {
4830                 if (event->rcu_pending) {
4831                         cond_synchronize_rcu(event->rcu_batches);
4832                         event->rcu_pending = 0;
4833                 }
4834
4835                 spin_lock_irqsave(&rb->event_lock, flags);
4836                 list_add_rcu(&event->rb_entry, &rb->event_list);
4837                 spin_unlock_irqrestore(&rb->event_lock, flags);
4838         }
4839
4840         rcu_assign_pointer(event->rb, rb);
4841
4842         if (old_rb) {
4843                 ring_buffer_put(old_rb);
4844                 /*
4845                  * Since we detached before setting the new rb, so that we
4846                  * could attach the new rb, we could have missed a wakeup.
4847                  * Provide it now.
4848                  */
4849                 wake_up_all(&event->waitq);
4850         }
4851 }
4852
4853 static void ring_buffer_wakeup(struct perf_event *event)
4854 {
4855         struct ring_buffer *rb;
4856
4857         rcu_read_lock();
4858         rb = rcu_dereference(event->rb);
4859         if (rb) {
4860                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4861                         wake_up_all(&event->waitq);
4862         }
4863         rcu_read_unlock();
4864 }
4865
4866 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4867 {
4868         struct ring_buffer *rb;
4869
4870         rcu_read_lock();
4871         rb = rcu_dereference(event->rb);
4872         if (rb) {
4873                 if (!atomic_inc_not_zero(&rb->refcount))
4874                         rb = NULL;
4875         }
4876         rcu_read_unlock();
4877
4878         return rb;
4879 }
4880
4881 void ring_buffer_put(struct ring_buffer *rb)
4882 {
4883         if (!atomic_dec_and_test(&rb->refcount))
4884                 return;
4885
4886         WARN_ON_ONCE(!list_empty(&rb->event_list));
4887
4888         call_rcu(&rb->rcu_head, rb_free_rcu);
4889 }
4890
4891 static void perf_mmap_open(struct vm_area_struct *vma)
4892 {
4893         struct perf_event *event = vma->vm_file->private_data;
4894
4895         atomic_inc(&event->mmap_count);
4896         atomic_inc(&event->rb->mmap_count);
4897
4898         if (vma->vm_pgoff)
4899                 atomic_inc(&event->rb->aux_mmap_count);
4900
4901         if (event->pmu->event_mapped)
4902                 event->pmu->event_mapped(event);
4903 }
4904
4905 static void perf_pmu_output_stop(struct perf_event *event);
4906
4907 /*
4908  * A buffer can be mmap()ed multiple times; either directly through the same
4909  * event, or through other events by use of perf_event_set_output().
4910  *
4911  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4912  * the buffer here, where we still have a VM context. This means we need
4913  * to detach all events redirecting to us.
4914  */
4915 static void perf_mmap_close(struct vm_area_struct *vma)
4916 {
4917         struct perf_event *event = vma->vm_file->private_data;
4918
4919         struct ring_buffer *rb = ring_buffer_get(event);
4920         struct user_struct *mmap_user = rb->mmap_user;
4921         int mmap_locked = rb->mmap_locked;
4922         unsigned long size = perf_data_size(rb);
4923
4924         if (event->pmu->event_unmapped)
4925                 event->pmu->event_unmapped(event);
4926
4927         /*
4928          * rb->aux_mmap_count will always drop before rb->mmap_count and
4929          * event->mmap_count, so it is ok to use event->mmap_mutex to
4930          * serialize with perf_mmap here.
4931          */
4932         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4933             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4934                 /*
4935                  * Stop all AUX events that are writing to this buffer,
4936                  * so that we can free its AUX pages and corresponding PMU
4937                  * data. Note that after rb::aux_mmap_count dropped to zero,
4938                  * they won't start any more (see perf_aux_output_begin()).
4939                  */
4940                 perf_pmu_output_stop(event);
4941
4942                 /* now it's safe to free the pages */
4943                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4944                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4945
4946                 /* this has to be the last one */
4947                 rb_free_aux(rb);
4948                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4949
4950                 mutex_unlock(&event->mmap_mutex);
4951         }
4952
4953         atomic_dec(&rb->mmap_count);
4954
4955         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4956                 goto out_put;
4957
4958         ring_buffer_attach(event, NULL);
4959         mutex_unlock(&event->mmap_mutex);
4960
4961         /* If there's still other mmap()s of this buffer, we're done. */
4962         if (atomic_read(&rb->mmap_count))
4963                 goto out_put;
4964
4965         /*
4966          * No other mmap()s, detach from all other events that might redirect
4967          * into the now unreachable buffer. Somewhat complicated by the
4968          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4969          */
4970 again:
4971         rcu_read_lock();
4972         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4973                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4974                         /*
4975                          * This event is en-route to free_event() which will
4976                          * detach it and remove it from the list.
4977                          */
4978                         continue;
4979                 }
4980                 rcu_read_unlock();
4981
4982                 mutex_lock(&event->mmap_mutex);
4983                 /*
4984                  * Check we didn't race with perf_event_set_output() which can
4985                  * swizzle the rb from under us while we were waiting to
4986                  * acquire mmap_mutex.
4987                  *
4988                  * If we find a different rb; ignore this event, a next
4989                  * iteration will no longer find it on the list. We have to
4990                  * still restart the iteration to make sure we're not now
4991                  * iterating the wrong list.
4992                  */
4993                 if (event->rb == rb)
4994                         ring_buffer_attach(event, NULL);
4995
4996                 mutex_unlock(&event->mmap_mutex);
4997                 put_event(event);
4998
4999                 /*
5000                  * Restart the iteration; either we're on the wrong list or
5001                  * destroyed its integrity by doing a deletion.
5002                  */
5003                 goto again;
5004         }
5005         rcu_read_unlock();
5006
5007         /*
5008          * It could be there's still a few 0-ref events on the list; they'll
5009          * get cleaned up by free_event() -- they'll also still have their
5010          * ref on the rb and will free it whenever they are done with it.
5011          *
5012          * Aside from that, this buffer is 'fully' detached and unmapped,
5013          * undo the VM accounting.
5014          */
5015
5016         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5017         vma->vm_mm->pinned_vm -= mmap_locked;
5018         free_uid(mmap_user);
5019
5020 out_put:
5021         ring_buffer_put(rb); /* could be last */
5022 }
5023
5024 static const struct vm_operations_struct perf_mmap_vmops = {
5025         .open           = perf_mmap_open,
5026         .close          = perf_mmap_close, /* non mergable */
5027         .fault          = perf_mmap_fault,
5028         .page_mkwrite   = perf_mmap_fault,
5029 };
5030
5031 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5032 {
5033         struct perf_event *event = file->private_data;
5034         unsigned long user_locked, user_lock_limit;
5035         struct user_struct *user = current_user();
5036         unsigned long locked, lock_limit;
5037         struct ring_buffer *rb = NULL;
5038         unsigned long vma_size;
5039         unsigned long nr_pages;
5040         long user_extra = 0, extra = 0;
5041         int ret = 0, flags = 0;
5042
5043         /*
5044          * Don't allow mmap() of inherited per-task counters. This would
5045          * create a performance issue due to all children writing to the
5046          * same rb.
5047          */
5048         if (event->cpu == -1 && event->attr.inherit)
5049                 return -EINVAL;
5050
5051         if (!(vma->vm_flags & VM_SHARED))
5052                 return -EINVAL;
5053
5054         vma_size = vma->vm_end - vma->vm_start;
5055
5056         if (vma->vm_pgoff == 0) {
5057                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5058         } else {
5059                 /*
5060                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5061                  * mapped, all subsequent mappings should have the same size
5062                  * and offset. Must be above the normal perf buffer.
5063                  */
5064                 u64 aux_offset, aux_size;
5065
5066                 if (!event->rb)
5067                         return -EINVAL;
5068
5069                 nr_pages = vma_size / PAGE_SIZE;
5070
5071                 mutex_lock(&event->mmap_mutex);
5072                 ret = -EINVAL;
5073
5074                 rb = event->rb;
5075                 if (!rb)
5076                         goto aux_unlock;
5077
5078                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5079                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5080
5081                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5082                         goto aux_unlock;
5083
5084                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5085                         goto aux_unlock;
5086
5087                 /* already mapped with a different offset */
5088                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5089                         goto aux_unlock;
5090
5091                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5092                         goto aux_unlock;
5093
5094                 /* already mapped with a different size */
5095                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5096                         goto aux_unlock;
5097
5098                 if (!is_power_of_2(nr_pages))
5099                         goto aux_unlock;
5100
5101                 if (!atomic_inc_not_zero(&rb->mmap_count))
5102                         goto aux_unlock;
5103
5104                 if (rb_has_aux(rb)) {
5105                         atomic_inc(&rb->aux_mmap_count);
5106                         ret = 0;
5107                         goto unlock;
5108                 }
5109
5110                 atomic_set(&rb->aux_mmap_count, 1);
5111                 user_extra = nr_pages;
5112
5113                 goto accounting;
5114         }
5115
5116         /*
5117          * If we have rb pages ensure they're a power-of-two number, so we
5118          * can do bitmasks instead of modulo.
5119          */
5120         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5121                 return -EINVAL;
5122
5123         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5124                 return -EINVAL;
5125
5126         WARN_ON_ONCE(event->ctx->parent_ctx);
5127 again:
5128         mutex_lock(&event->mmap_mutex);
5129         if (event->rb) {
5130                 if (event->rb->nr_pages != nr_pages) {
5131                         ret = -EINVAL;
5132                         goto unlock;
5133                 }
5134
5135                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5136                         /*
5137                          * Raced against perf_mmap_close() through
5138                          * perf_event_set_output(). Try again, hope for better
5139                          * luck.
5140                          */
5141                         mutex_unlock(&event->mmap_mutex);
5142                         goto again;
5143                 }
5144
5145                 goto unlock;
5146         }
5147
5148         user_extra = nr_pages + 1;
5149
5150 accounting:
5151         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5152
5153         /*
5154          * Increase the limit linearly with more CPUs:
5155          */
5156         user_lock_limit *= num_online_cpus();
5157
5158         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5159
5160         if (user_locked > user_lock_limit)
5161                 extra = user_locked - user_lock_limit;
5162
5163         lock_limit = rlimit(RLIMIT_MEMLOCK);
5164         lock_limit >>= PAGE_SHIFT;
5165         locked = vma->vm_mm->pinned_vm + extra;
5166
5167         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5168                 !capable(CAP_IPC_LOCK)) {
5169                 ret = -EPERM;
5170                 goto unlock;
5171         }
5172
5173         WARN_ON(!rb && event->rb);
5174
5175         if (vma->vm_flags & VM_WRITE)
5176                 flags |= RING_BUFFER_WRITABLE;
5177
5178         if (!rb) {
5179                 rb = rb_alloc(nr_pages,
5180                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5181                               event->cpu, flags);
5182
5183                 if (!rb) {
5184                         ret = -ENOMEM;
5185                         goto unlock;
5186                 }
5187
5188                 atomic_set(&rb->mmap_count, 1);
5189                 rb->mmap_user = get_current_user();
5190                 rb->mmap_locked = extra;
5191
5192                 ring_buffer_attach(event, rb);
5193
5194                 perf_event_init_userpage(event);
5195                 perf_event_update_userpage(event);
5196         } else {
5197                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5198                                    event->attr.aux_watermark, flags);
5199                 if (!ret)
5200                         rb->aux_mmap_locked = extra;
5201         }
5202
5203 unlock:
5204         if (!ret) {
5205                 atomic_long_add(user_extra, &user->locked_vm);
5206                 vma->vm_mm->pinned_vm += extra;
5207
5208                 atomic_inc(&event->mmap_count);
5209         } else if (rb) {
5210                 atomic_dec(&rb->mmap_count);
5211         }
5212 aux_unlock:
5213         mutex_unlock(&event->mmap_mutex);
5214
5215         /*
5216          * Since pinned accounting is per vm we cannot allow fork() to copy our
5217          * vma.
5218          */
5219         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5220         vma->vm_ops = &perf_mmap_vmops;
5221
5222         if (event->pmu->event_mapped)
5223                 event->pmu->event_mapped(event);
5224
5225         return ret;
5226 }
5227
5228 static int perf_fasync(int fd, struct file *filp, int on)
5229 {
5230         struct inode *inode = file_inode(filp);
5231         struct perf_event *event = filp->private_data;
5232         int retval;
5233
5234         inode_lock(inode);
5235         retval = fasync_helper(fd, filp, on, &event->fasync);
5236         inode_unlock(inode);
5237
5238         if (retval < 0)
5239                 return retval;
5240
5241         return 0;
5242 }
5243
5244 static const struct file_operations perf_fops = {
5245         .llseek                 = no_llseek,
5246         .release                = perf_release,
5247         .read                   = perf_read,
5248         .poll                   = perf_poll,
5249         .unlocked_ioctl         = perf_ioctl,
5250         .compat_ioctl           = perf_compat_ioctl,
5251         .mmap                   = perf_mmap,
5252         .fasync                 = perf_fasync,
5253 };
5254
5255 /*
5256  * Perf event wakeup
5257  *
5258  * If there's data, ensure we set the poll() state and publish everything
5259  * to user-space before waking everybody up.
5260  */
5261
5262 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5263 {
5264         /* only the parent has fasync state */
5265         if (event->parent)
5266                 event = event->parent;
5267         return &event->fasync;
5268 }
5269
5270 void perf_event_wakeup(struct perf_event *event)
5271 {
5272         ring_buffer_wakeup(event);
5273
5274         if (event->pending_kill) {
5275                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5276                 event->pending_kill = 0;
5277         }
5278 }
5279
5280 static void perf_pending_event(struct irq_work *entry)
5281 {
5282         struct perf_event *event = container_of(entry,
5283                         struct perf_event, pending);
5284         int rctx;
5285
5286         rctx = perf_swevent_get_recursion_context();
5287         /*
5288          * If we 'fail' here, that's OK, it means recursion is already disabled
5289          * and we won't recurse 'further'.
5290          */
5291
5292         if (event->pending_disable) {
5293                 event->pending_disable = 0;
5294                 perf_event_disable_local(event);
5295         }
5296
5297         if (event->pending_wakeup) {
5298                 event->pending_wakeup = 0;
5299                 perf_event_wakeup(event);
5300         }
5301
5302         if (rctx >= 0)
5303                 perf_swevent_put_recursion_context(rctx);
5304 }
5305
5306 /*
5307  * We assume there is only KVM supporting the callbacks.
5308  * Later on, we might change it to a list if there is
5309  * another virtualization implementation supporting the callbacks.
5310  */
5311 struct perf_guest_info_callbacks *perf_guest_cbs;
5312
5313 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5314 {
5315         perf_guest_cbs = cbs;
5316         return 0;
5317 }
5318 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5319
5320 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5321 {
5322         perf_guest_cbs = NULL;
5323         return 0;
5324 }
5325 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5326
5327 static void
5328 perf_output_sample_regs(struct perf_output_handle *handle,
5329                         struct pt_regs *regs, u64 mask)
5330 {
5331         int bit;
5332
5333         for_each_set_bit(bit, (const unsigned long *) &mask,
5334                          sizeof(mask) * BITS_PER_BYTE) {
5335                 u64 val;
5336
5337                 val = perf_reg_value(regs, bit);
5338                 perf_output_put(handle, val);
5339         }
5340 }
5341
5342 static void perf_sample_regs_user(struct perf_regs *regs_user,
5343                                   struct pt_regs *regs,
5344                                   struct pt_regs *regs_user_copy)
5345 {
5346         if (user_mode(regs)) {
5347                 regs_user->abi = perf_reg_abi(current);
5348                 regs_user->regs = regs;
5349         } else if (current->mm) {
5350                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5351         } else {
5352                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5353                 regs_user->regs = NULL;
5354         }
5355 }
5356
5357 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5358                                   struct pt_regs *regs)
5359 {
5360         regs_intr->regs = regs;
5361         regs_intr->abi  = perf_reg_abi(current);
5362 }
5363
5364
5365 /*
5366  * Get remaining task size from user stack pointer.
5367  *
5368  * It'd be better to take stack vma map and limit this more
5369  * precisly, but there's no way to get it safely under interrupt,
5370  * so using TASK_SIZE as limit.
5371  */
5372 static u64 perf_ustack_task_size(struct pt_regs *regs)
5373 {
5374         unsigned long addr = perf_user_stack_pointer(regs);
5375
5376         if (!addr || addr >= TASK_SIZE)
5377                 return 0;
5378
5379         return TASK_SIZE - addr;
5380 }
5381
5382 static u16
5383 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5384                         struct pt_regs *regs)
5385 {
5386         u64 task_size;
5387
5388         /* No regs, no stack pointer, no dump. */
5389         if (!regs)
5390                 return 0;
5391
5392         /*
5393          * Check if we fit in with the requested stack size into the:
5394          * - TASK_SIZE
5395          *   If we don't, we limit the size to the TASK_SIZE.
5396          *
5397          * - remaining sample size
5398          *   If we don't, we customize the stack size to
5399          *   fit in to the remaining sample size.
5400          */
5401
5402         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5403         stack_size = min(stack_size, (u16) task_size);
5404
5405         /* Current header size plus static size and dynamic size. */
5406         header_size += 2 * sizeof(u64);
5407
5408         /* Do we fit in with the current stack dump size? */
5409         if ((u16) (header_size + stack_size) < header_size) {
5410                 /*
5411                  * If we overflow the maximum size for the sample,
5412                  * we customize the stack dump size to fit in.
5413                  */
5414                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5415                 stack_size = round_up(stack_size, sizeof(u64));
5416         }
5417
5418         return stack_size;
5419 }
5420
5421 static void
5422 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5423                           struct pt_regs *regs)
5424 {
5425         /* Case of a kernel thread, nothing to dump */
5426         if (!regs) {
5427                 u64 size = 0;
5428                 perf_output_put(handle, size);
5429         } else {
5430                 unsigned long sp;
5431                 unsigned int rem;
5432                 u64 dyn_size;
5433
5434                 /*
5435                  * We dump:
5436                  * static size
5437                  *   - the size requested by user or the best one we can fit
5438                  *     in to the sample max size
5439                  * data
5440                  *   - user stack dump data
5441                  * dynamic size
5442                  *   - the actual dumped size
5443                  */
5444
5445                 /* Static size. */
5446                 perf_output_put(handle, dump_size);
5447
5448                 /* Data. */
5449                 sp = perf_user_stack_pointer(regs);
5450                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5451                 dyn_size = dump_size - rem;
5452
5453                 perf_output_skip(handle, rem);
5454
5455                 /* Dynamic size. */
5456                 perf_output_put(handle, dyn_size);
5457         }
5458 }
5459
5460 static void __perf_event_header__init_id(struct perf_event_header *header,
5461                                          struct perf_sample_data *data,
5462                                          struct perf_event *event)
5463 {
5464         u64 sample_type = event->attr.sample_type;
5465
5466         data->type = sample_type;
5467         header->size += event->id_header_size;
5468
5469         if (sample_type & PERF_SAMPLE_TID) {
5470                 /* namespace issues */
5471                 data->tid_entry.pid = perf_event_pid(event, current);
5472                 data->tid_entry.tid = perf_event_tid(event, current);
5473         }
5474
5475         if (sample_type & PERF_SAMPLE_TIME)
5476                 data->time = perf_event_clock(event);
5477
5478         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5479                 data->id = primary_event_id(event);
5480
5481         if (sample_type & PERF_SAMPLE_STREAM_ID)
5482                 data->stream_id = event->id;
5483
5484         if (sample_type & PERF_SAMPLE_CPU) {
5485                 data->cpu_entry.cpu      = raw_smp_processor_id();
5486                 data->cpu_entry.reserved = 0;
5487         }
5488 }
5489
5490 void perf_event_header__init_id(struct perf_event_header *header,
5491                                 struct perf_sample_data *data,
5492                                 struct perf_event *event)
5493 {
5494         if (event->attr.sample_id_all)
5495                 __perf_event_header__init_id(header, data, event);
5496 }
5497
5498 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5499                                            struct perf_sample_data *data)
5500 {
5501         u64 sample_type = data->type;
5502
5503         if (sample_type & PERF_SAMPLE_TID)
5504                 perf_output_put(handle, data->tid_entry);
5505
5506         if (sample_type & PERF_SAMPLE_TIME)
5507                 perf_output_put(handle, data->time);
5508
5509         if (sample_type & PERF_SAMPLE_ID)
5510                 perf_output_put(handle, data->id);
5511
5512         if (sample_type & PERF_SAMPLE_STREAM_ID)
5513                 perf_output_put(handle, data->stream_id);
5514
5515         if (sample_type & PERF_SAMPLE_CPU)
5516                 perf_output_put(handle, data->cpu_entry);
5517
5518         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5519                 perf_output_put(handle, data->id);
5520 }
5521
5522 void perf_event__output_id_sample(struct perf_event *event,
5523                                   struct perf_output_handle *handle,
5524                                   struct perf_sample_data *sample)
5525 {
5526         if (event->attr.sample_id_all)
5527                 __perf_event__output_id_sample(handle, sample);
5528 }
5529
5530 static void perf_output_read_one(struct perf_output_handle *handle,
5531                                  struct perf_event *event,
5532                                  u64 enabled, u64 running)
5533 {
5534         u64 read_format = event->attr.read_format;
5535         u64 values[4];
5536         int n = 0;
5537
5538         values[n++] = perf_event_count(event);
5539         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5540                 values[n++] = enabled +
5541                         atomic64_read(&event->child_total_time_enabled);
5542         }
5543         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5544                 values[n++] = running +
5545                         atomic64_read(&event->child_total_time_running);
5546         }
5547         if (read_format & PERF_FORMAT_ID)
5548                 values[n++] = primary_event_id(event);
5549
5550         __output_copy(handle, values, n * sizeof(u64));
5551 }
5552
5553 /*
5554  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5555  */
5556 static void perf_output_read_group(struct perf_output_handle *handle,
5557                             struct perf_event *event,
5558                             u64 enabled, u64 running)
5559 {
5560         struct perf_event *leader = event->group_leader, *sub;
5561         u64 read_format = event->attr.read_format;
5562         u64 values[5];
5563         int n = 0;
5564
5565         values[n++] = 1 + leader->nr_siblings;
5566
5567         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5568                 values[n++] = enabled;
5569
5570         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5571                 values[n++] = running;
5572
5573         if (leader != event)
5574                 leader->pmu->read(leader);
5575
5576         values[n++] = perf_event_count(leader);
5577         if (read_format & PERF_FORMAT_ID)
5578                 values[n++] = primary_event_id(leader);
5579
5580         __output_copy(handle, values, n * sizeof(u64));
5581
5582         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5583                 n = 0;
5584
5585                 if ((sub != event) &&
5586                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5587                         sub->pmu->read(sub);
5588
5589                 values[n++] = perf_event_count(sub);
5590                 if (read_format & PERF_FORMAT_ID)
5591                         values[n++] = primary_event_id(sub);
5592
5593                 __output_copy(handle, values, n * sizeof(u64));
5594         }
5595 }
5596
5597 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5598                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5599
5600 static void perf_output_read(struct perf_output_handle *handle,
5601                              struct perf_event *event)
5602 {
5603         u64 enabled = 0, running = 0, now;
5604         u64 read_format = event->attr.read_format;
5605
5606         /*
5607          * compute total_time_enabled, total_time_running
5608          * based on snapshot values taken when the event
5609          * was last scheduled in.
5610          *
5611          * we cannot simply called update_context_time()
5612          * because of locking issue as we are called in
5613          * NMI context
5614          */
5615         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5616                 calc_timer_values(event, &now, &enabled, &running);
5617
5618         if (event->attr.read_format & PERF_FORMAT_GROUP)
5619                 perf_output_read_group(handle, event, enabled, running);
5620         else
5621                 perf_output_read_one(handle, event, enabled, running);
5622 }
5623
5624 void perf_output_sample(struct perf_output_handle *handle,
5625                         struct perf_event_header *header,
5626                         struct perf_sample_data *data,
5627                         struct perf_event *event)
5628 {
5629         u64 sample_type = data->type;
5630
5631         perf_output_put(handle, *header);
5632
5633         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5634                 perf_output_put(handle, data->id);
5635
5636         if (sample_type & PERF_SAMPLE_IP)
5637                 perf_output_put(handle, data->ip);
5638
5639         if (sample_type & PERF_SAMPLE_TID)
5640                 perf_output_put(handle, data->tid_entry);
5641
5642         if (sample_type & PERF_SAMPLE_TIME)
5643                 perf_output_put(handle, data->time);
5644
5645         if (sample_type & PERF_SAMPLE_ADDR)
5646                 perf_output_put(handle, data->addr);
5647
5648         if (sample_type & PERF_SAMPLE_ID)
5649                 perf_output_put(handle, data->id);
5650
5651         if (sample_type & PERF_SAMPLE_STREAM_ID)
5652                 perf_output_put(handle, data->stream_id);
5653
5654         if (sample_type & PERF_SAMPLE_CPU)
5655                 perf_output_put(handle, data->cpu_entry);
5656
5657         if (sample_type & PERF_SAMPLE_PERIOD)
5658                 perf_output_put(handle, data->period);
5659
5660         if (sample_type & PERF_SAMPLE_READ)
5661                 perf_output_read(handle, event);
5662
5663         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5664                 if (data->callchain) {
5665                         int size = 1;
5666
5667                         if (data->callchain)
5668                                 size += data->callchain->nr;
5669
5670                         size *= sizeof(u64);
5671
5672                         __output_copy(handle, data->callchain, size);
5673                 } else {
5674                         u64 nr = 0;
5675                         perf_output_put(handle, nr);
5676                 }
5677         }
5678
5679         if (sample_type & PERF_SAMPLE_RAW) {
5680                 struct perf_raw_record *raw = data->raw;
5681
5682                 if (raw) {
5683                         struct perf_raw_frag *frag = &raw->frag;
5684
5685                         perf_output_put(handle, raw->size);
5686                         do {
5687                                 if (frag->copy) {
5688                                         __output_custom(handle, frag->copy,
5689                                                         frag->data, frag->size);
5690                                 } else {
5691                                         __output_copy(handle, frag->data,
5692                                                       frag->size);
5693                                 }
5694                                 if (perf_raw_frag_last(frag))
5695                                         break;
5696                                 frag = frag->next;
5697                         } while (1);
5698                         if (frag->pad)
5699                                 __output_skip(handle, NULL, frag->pad);
5700                 } else {
5701                         struct {
5702                                 u32     size;
5703                                 u32     data;
5704                         } raw = {
5705                                 .size = sizeof(u32),
5706                                 .data = 0,
5707                         };
5708                         perf_output_put(handle, raw);
5709                 }
5710         }
5711
5712         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5713                 if (data->br_stack) {
5714                         size_t size;
5715
5716                         size = data->br_stack->nr
5717                              * sizeof(struct perf_branch_entry);
5718
5719                         perf_output_put(handle, data->br_stack->nr);
5720                         perf_output_copy(handle, data->br_stack->entries, size);
5721                 } else {
5722                         /*
5723                          * we always store at least the value of nr
5724                          */
5725                         u64 nr = 0;
5726                         perf_output_put(handle, nr);
5727                 }
5728         }
5729
5730         if (sample_type & PERF_SAMPLE_REGS_USER) {
5731                 u64 abi = data->regs_user.abi;
5732
5733                 /*
5734                  * If there are no regs to dump, notice it through
5735                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5736                  */
5737                 perf_output_put(handle, abi);
5738
5739                 if (abi) {
5740                         u64 mask = event->attr.sample_regs_user;
5741                         perf_output_sample_regs(handle,
5742                                                 data->regs_user.regs,
5743                                                 mask);
5744                 }
5745         }
5746
5747         if (sample_type & PERF_SAMPLE_STACK_USER) {
5748                 perf_output_sample_ustack(handle,
5749                                           data->stack_user_size,
5750                                           data->regs_user.regs);
5751         }
5752
5753         if (sample_type & PERF_SAMPLE_WEIGHT)
5754                 perf_output_put(handle, data->weight);
5755
5756         if (sample_type & PERF_SAMPLE_DATA_SRC)
5757                 perf_output_put(handle, data->data_src.val);
5758
5759         if (sample_type & PERF_SAMPLE_TRANSACTION)
5760                 perf_output_put(handle, data->txn);
5761
5762         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5763                 u64 abi = data->regs_intr.abi;
5764                 /*
5765                  * If there are no regs to dump, notice it through
5766                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5767                  */
5768                 perf_output_put(handle, abi);
5769
5770                 if (abi) {
5771                         u64 mask = event->attr.sample_regs_intr;
5772
5773                         perf_output_sample_regs(handle,
5774                                                 data->regs_intr.regs,
5775                                                 mask);
5776                 }
5777         }
5778
5779         if (!event->attr.watermark) {
5780                 int wakeup_events = event->attr.wakeup_events;
5781
5782                 if (wakeup_events) {
5783                         struct ring_buffer *rb = handle->rb;
5784                         int events = local_inc_return(&rb->events);
5785
5786                         if (events >= wakeup_events) {
5787                                 local_sub(wakeup_events, &rb->events);
5788                                 local_inc(&rb->wakeup);
5789                         }
5790                 }
5791         }
5792 }
5793
5794 void perf_prepare_sample(struct perf_event_header *header,
5795                          struct perf_sample_data *data,
5796                          struct perf_event *event,
5797                          struct pt_regs *regs)
5798 {
5799         u64 sample_type = event->attr.sample_type;
5800
5801         header->type = PERF_RECORD_SAMPLE;
5802         header->size = sizeof(*header) + event->header_size;
5803
5804         header->misc = 0;
5805         header->misc |= perf_misc_flags(regs);
5806
5807         __perf_event_header__init_id(header, data, event);
5808
5809         if (sample_type & PERF_SAMPLE_IP)
5810                 data->ip = perf_instruction_pointer(regs);
5811
5812         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5813                 int size = 1;
5814
5815                 data->callchain = perf_callchain(event, regs);
5816
5817                 if (data->callchain)
5818                         size += data->callchain->nr;
5819
5820                 header->size += size * sizeof(u64);
5821         }
5822
5823         if (sample_type & PERF_SAMPLE_RAW) {
5824                 struct perf_raw_record *raw = data->raw;
5825                 int size;
5826
5827                 if (raw) {
5828                         struct perf_raw_frag *frag = &raw->frag;
5829                         u32 sum = 0;
5830
5831                         do {
5832                                 sum += frag->size;
5833                                 if (perf_raw_frag_last(frag))
5834                                         break;
5835                                 frag = frag->next;
5836                         } while (1);
5837
5838                         size = round_up(sum + sizeof(u32), sizeof(u64));
5839                         raw->size = size - sizeof(u32);
5840                         frag->pad = raw->size - sum;
5841                 } else {
5842                         size = sizeof(u64);
5843                 }
5844
5845                 header->size += size;
5846         }
5847
5848         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5849                 int size = sizeof(u64); /* nr */
5850                 if (data->br_stack) {
5851                         size += data->br_stack->nr
5852                               * sizeof(struct perf_branch_entry);
5853                 }
5854                 header->size += size;
5855         }
5856
5857         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5858                 perf_sample_regs_user(&data->regs_user, regs,
5859                                       &data->regs_user_copy);
5860
5861         if (sample_type & PERF_SAMPLE_REGS_USER) {
5862                 /* regs dump ABI info */
5863                 int size = sizeof(u64);
5864
5865                 if (data->regs_user.regs) {
5866                         u64 mask = event->attr.sample_regs_user;
5867                         size += hweight64(mask) * sizeof(u64);
5868                 }
5869
5870                 header->size += size;
5871         }
5872
5873         if (sample_type & PERF_SAMPLE_STACK_USER) {
5874                 /*
5875                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5876                  * processed as the last one or have additional check added
5877                  * in case new sample type is added, because we could eat
5878                  * up the rest of the sample size.
5879                  */
5880                 u16 stack_size = event->attr.sample_stack_user;
5881                 u16 size = sizeof(u64);
5882
5883                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5884                                                      data->regs_user.regs);
5885
5886                 /*
5887                  * If there is something to dump, add space for the dump
5888                  * itself and for the field that tells the dynamic size,
5889                  * which is how many have been actually dumped.
5890                  */
5891                 if (stack_size)
5892                         size += sizeof(u64) + stack_size;
5893
5894                 data->stack_user_size = stack_size;
5895                 header->size += size;
5896         }
5897
5898         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5899                 /* regs dump ABI info */
5900                 int size = sizeof(u64);
5901
5902                 perf_sample_regs_intr(&data->regs_intr, regs);
5903
5904                 if (data->regs_intr.regs) {
5905                         u64 mask = event->attr.sample_regs_intr;
5906
5907                         size += hweight64(mask) * sizeof(u64);
5908                 }
5909
5910                 header->size += size;
5911         }
5912 }
5913
5914 static void __always_inline
5915 __perf_event_output(struct perf_event *event,
5916                     struct perf_sample_data *data,
5917                     struct pt_regs *regs,
5918                     int (*output_begin)(struct perf_output_handle *,
5919                                         struct perf_event *,
5920                                         unsigned int))
5921 {
5922         struct perf_output_handle handle;
5923         struct perf_event_header header;
5924
5925         /* protect the callchain buffers */
5926         rcu_read_lock();
5927
5928         perf_prepare_sample(&header, data, event, regs);
5929
5930         if (output_begin(&handle, event, header.size))
5931                 goto exit;
5932
5933         perf_output_sample(&handle, &header, data, event);
5934
5935         perf_output_end(&handle);
5936
5937 exit:
5938         rcu_read_unlock();
5939 }
5940
5941 void
5942 perf_event_output_forward(struct perf_event *event,
5943                          struct perf_sample_data *data,
5944                          struct pt_regs *regs)
5945 {
5946         __perf_event_output(event, data, regs, perf_output_begin_forward);
5947 }
5948
5949 void
5950 perf_event_output_backward(struct perf_event *event,
5951                            struct perf_sample_data *data,
5952                            struct pt_regs *regs)
5953 {
5954         __perf_event_output(event, data, regs, perf_output_begin_backward);
5955 }
5956
5957 void
5958 perf_event_output(struct perf_event *event,
5959                   struct perf_sample_data *data,
5960                   struct pt_regs *regs)
5961 {
5962         __perf_event_output(event, data, regs, perf_output_begin);
5963 }
5964
5965 /*
5966  * read event_id
5967  */
5968
5969 struct perf_read_event {
5970         struct perf_event_header        header;
5971
5972         u32                             pid;
5973         u32                             tid;
5974 };
5975
5976 static void
5977 perf_event_read_event(struct perf_event *event,
5978                         struct task_struct *task)
5979 {
5980         struct perf_output_handle handle;
5981         struct perf_sample_data sample;
5982         struct perf_read_event read_event = {
5983                 .header = {
5984                         .type = PERF_RECORD_READ,
5985                         .misc = 0,
5986                         .size = sizeof(read_event) + event->read_size,
5987                 },
5988                 .pid = perf_event_pid(event, task),
5989                 .tid = perf_event_tid(event, task),
5990         };
5991         int ret;
5992
5993         perf_event_header__init_id(&read_event.header, &sample, event);
5994         ret = perf_output_begin(&handle, event, read_event.header.size);
5995         if (ret)
5996                 return;
5997
5998         perf_output_put(&handle, read_event);
5999         perf_output_read(&handle, event);
6000         perf_event__output_id_sample(event, &handle, &sample);
6001
6002         perf_output_end(&handle);
6003 }
6004
6005 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6006
6007 static void
6008 perf_iterate_ctx(struct perf_event_context *ctx,
6009                    perf_iterate_f output,
6010                    void *data, bool all)
6011 {
6012         struct perf_event *event;
6013
6014         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6015                 if (!all) {
6016                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6017                                 continue;
6018                         if (!event_filter_match(event))
6019                                 continue;
6020                 }
6021
6022                 output(event, data);
6023         }
6024 }
6025
6026 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6027 {
6028         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6029         struct perf_event *event;
6030
6031         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6032                 /*
6033                  * Skip events that are not fully formed yet; ensure that
6034                  * if we observe event->ctx, both event and ctx will be
6035                  * complete enough. See perf_install_in_context().
6036                  */
6037                 if (!smp_load_acquire(&event->ctx))
6038                         continue;
6039
6040                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6041                         continue;
6042                 if (!event_filter_match(event))
6043                         continue;
6044                 output(event, data);
6045         }
6046 }
6047
6048 /*
6049  * Iterate all events that need to receive side-band events.
6050  *
6051  * For new callers; ensure that account_pmu_sb_event() includes
6052  * your event, otherwise it might not get delivered.
6053  */
6054 static void
6055 perf_iterate_sb(perf_iterate_f output, void *data,
6056                struct perf_event_context *task_ctx)
6057 {
6058         struct perf_event_context *ctx;
6059         int ctxn;
6060
6061         rcu_read_lock();
6062         preempt_disable();
6063
6064         /*
6065          * If we have task_ctx != NULL we only notify the task context itself.
6066          * The task_ctx is set only for EXIT events before releasing task
6067          * context.
6068          */
6069         if (task_ctx) {
6070                 perf_iterate_ctx(task_ctx, output, data, false);
6071                 goto done;
6072         }
6073
6074         perf_iterate_sb_cpu(output, data);
6075
6076         for_each_task_context_nr(ctxn) {
6077                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6078                 if (ctx)
6079                         perf_iterate_ctx(ctx, output, data, false);
6080         }
6081 done:
6082         preempt_enable();
6083         rcu_read_unlock();
6084 }
6085
6086 /*
6087  * Clear all file-based filters at exec, they'll have to be
6088  * re-instated when/if these objects are mmapped again.
6089  */
6090 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6091 {
6092         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6093         struct perf_addr_filter *filter;
6094         unsigned int restart = 0, count = 0;
6095         unsigned long flags;
6096
6097         if (!has_addr_filter(event))
6098                 return;
6099
6100         raw_spin_lock_irqsave(&ifh->lock, flags);
6101         list_for_each_entry(filter, &ifh->list, entry) {
6102                 if (filter->inode) {
6103                         event->addr_filters_offs[count] = 0;
6104                         restart++;
6105                 }
6106
6107                 count++;
6108         }
6109
6110         if (restart)
6111                 event->addr_filters_gen++;
6112         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6113
6114         if (restart)
6115                 perf_event_restart(event);
6116 }
6117
6118 void perf_event_exec(void)
6119 {
6120         struct perf_event_context *ctx;
6121         int ctxn;
6122
6123         rcu_read_lock();
6124         for_each_task_context_nr(ctxn) {
6125                 ctx = current->perf_event_ctxp[ctxn];
6126                 if (!ctx)
6127                         continue;
6128
6129                 perf_event_enable_on_exec(ctxn);
6130
6131                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6132                                    true);
6133         }
6134         rcu_read_unlock();
6135 }
6136
6137 struct remote_output {
6138         struct ring_buffer      *rb;
6139         int                     err;
6140 };
6141
6142 static void __perf_event_output_stop(struct perf_event *event, void *data)
6143 {
6144         struct perf_event *parent = event->parent;
6145         struct remote_output *ro = data;
6146         struct ring_buffer *rb = ro->rb;
6147         struct stop_event_data sd = {
6148                 .event  = event,
6149         };
6150
6151         if (!has_aux(event))
6152                 return;
6153
6154         if (!parent)
6155                 parent = event;
6156
6157         /*
6158          * In case of inheritance, it will be the parent that links to the
6159          * ring-buffer, but it will be the child that's actually using it:
6160          */
6161         if (rcu_dereference(parent->rb) == rb)
6162                 ro->err = __perf_event_stop(&sd);
6163 }
6164
6165 static int __perf_pmu_output_stop(void *info)
6166 {
6167         struct perf_event *event = info;
6168         struct pmu *pmu = event->pmu;
6169         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6170         struct remote_output ro = {
6171                 .rb     = event->rb,
6172         };
6173
6174         rcu_read_lock();
6175         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6176         if (cpuctx->task_ctx)
6177                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6178                                    &ro, false);
6179         rcu_read_unlock();
6180
6181         return ro.err;
6182 }
6183
6184 static void perf_pmu_output_stop(struct perf_event *event)
6185 {
6186         struct perf_event *iter;
6187         int err, cpu;
6188
6189 restart:
6190         rcu_read_lock();
6191         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6192                 /*
6193                  * For per-CPU events, we need to make sure that neither they
6194                  * nor their children are running; for cpu==-1 events it's
6195                  * sufficient to stop the event itself if it's active, since
6196                  * it can't have children.
6197                  */
6198                 cpu = iter->cpu;
6199                 if (cpu == -1)
6200                         cpu = READ_ONCE(iter->oncpu);
6201
6202                 if (cpu == -1)
6203                         continue;
6204
6205                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6206                 if (err == -EAGAIN) {
6207                         rcu_read_unlock();
6208                         goto restart;
6209                 }
6210         }
6211         rcu_read_unlock();
6212 }
6213
6214 /*
6215  * task tracking -- fork/exit
6216  *
6217  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6218  */
6219
6220 struct perf_task_event {
6221         struct task_struct              *task;
6222         struct perf_event_context       *task_ctx;
6223
6224         struct {
6225                 struct perf_event_header        header;
6226
6227                 u32                             pid;
6228                 u32                             ppid;
6229                 u32                             tid;
6230                 u32                             ptid;
6231                 u64                             time;
6232         } event_id;
6233 };
6234
6235 static int perf_event_task_match(struct perf_event *event)
6236 {
6237         return event->attr.comm  || event->attr.mmap ||
6238                event->attr.mmap2 || event->attr.mmap_data ||
6239                event->attr.task;
6240 }
6241
6242 static void perf_event_task_output(struct perf_event *event,
6243                                    void *data)
6244 {
6245         struct perf_task_event *task_event = data;
6246         struct perf_output_handle handle;
6247         struct perf_sample_data sample;
6248         struct task_struct *task = task_event->task;
6249         int ret, size = task_event->event_id.header.size;
6250
6251         if (!perf_event_task_match(event))
6252                 return;
6253
6254         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6255
6256         ret = perf_output_begin(&handle, event,
6257                                 task_event->event_id.header.size);
6258         if (ret)
6259                 goto out;
6260
6261         task_event->event_id.pid = perf_event_pid(event, task);
6262         task_event->event_id.ppid = perf_event_pid(event, current);
6263
6264         task_event->event_id.tid = perf_event_tid(event, task);
6265         task_event->event_id.ptid = perf_event_tid(event, current);
6266
6267         task_event->event_id.time = perf_event_clock(event);
6268
6269         perf_output_put(&handle, task_event->event_id);
6270
6271         perf_event__output_id_sample(event, &handle, &sample);
6272
6273         perf_output_end(&handle);
6274 out:
6275         task_event->event_id.header.size = size;
6276 }
6277
6278 static void perf_event_task(struct task_struct *task,
6279                               struct perf_event_context *task_ctx,
6280                               int new)
6281 {
6282         struct perf_task_event task_event;
6283
6284         if (!atomic_read(&nr_comm_events) &&
6285             !atomic_read(&nr_mmap_events) &&
6286             !atomic_read(&nr_task_events))
6287                 return;
6288
6289         task_event = (struct perf_task_event){
6290                 .task     = task,
6291                 .task_ctx = task_ctx,
6292                 .event_id    = {
6293                         .header = {
6294                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6295                                 .misc = 0,
6296                                 .size = sizeof(task_event.event_id),
6297                         },
6298                         /* .pid  */
6299                         /* .ppid */
6300                         /* .tid  */
6301                         /* .ptid */
6302                         /* .time */
6303                 },
6304         };
6305
6306         perf_iterate_sb(perf_event_task_output,
6307                        &task_event,
6308                        task_ctx);
6309 }
6310
6311 void perf_event_fork(struct task_struct *task)
6312 {
6313         perf_event_task(task, NULL, 1);
6314 }
6315
6316 /*
6317  * comm tracking
6318  */
6319
6320 struct perf_comm_event {
6321         struct task_struct      *task;
6322         char                    *comm;
6323         int                     comm_size;
6324
6325         struct {
6326                 struct perf_event_header        header;
6327
6328                 u32                             pid;
6329                 u32                             tid;
6330         } event_id;
6331 };
6332
6333 static int perf_event_comm_match(struct perf_event *event)
6334 {
6335         return event->attr.comm;
6336 }
6337
6338 static void perf_event_comm_output(struct perf_event *event,
6339                                    void *data)
6340 {
6341         struct perf_comm_event *comm_event = data;
6342         struct perf_output_handle handle;
6343         struct perf_sample_data sample;
6344         int size = comm_event->event_id.header.size;
6345         int ret;
6346
6347         if (!perf_event_comm_match(event))
6348                 return;
6349
6350         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6351         ret = perf_output_begin(&handle, event,
6352                                 comm_event->event_id.header.size);
6353
6354         if (ret)
6355                 goto out;
6356
6357         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6358         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6359
6360         perf_output_put(&handle, comm_event->event_id);
6361         __output_copy(&handle, comm_event->comm,
6362                                    comm_event->comm_size);
6363
6364         perf_event__output_id_sample(event, &handle, &sample);
6365
6366         perf_output_end(&handle);
6367 out:
6368         comm_event->event_id.header.size = size;
6369 }
6370
6371 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6372 {
6373         char comm[TASK_COMM_LEN];
6374         unsigned int size;
6375
6376         memset(comm, 0, sizeof(comm));
6377         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6378         size = ALIGN(strlen(comm)+1, sizeof(u64));
6379
6380         comm_event->comm = comm;
6381         comm_event->comm_size = size;
6382
6383         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6384
6385         perf_iterate_sb(perf_event_comm_output,
6386                        comm_event,
6387                        NULL);
6388 }
6389
6390 void perf_event_comm(struct task_struct *task, bool exec)
6391 {
6392         struct perf_comm_event comm_event;
6393
6394         if (!atomic_read(&nr_comm_events))
6395                 return;
6396
6397         comm_event = (struct perf_comm_event){
6398                 .task   = task,
6399                 /* .comm      */
6400                 /* .comm_size */
6401                 .event_id  = {
6402                         .header = {
6403                                 .type = PERF_RECORD_COMM,
6404                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6405                                 /* .size */
6406                         },
6407                         /* .pid */
6408                         /* .tid */
6409                 },
6410         };
6411
6412         perf_event_comm_event(&comm_event);
6413 }
6414
6415 /*
6416  * mmap tracking
6417  */
6418
6419 struct perf_mmap_event {
6420         struct vm_area_struct   *vma;
6421
6422         const char              *file_name;
6423         int                     file_size;
6424         int                     maj, min;
6425         u64                     ino;
6426         u64                     ino_generation;
6427         u32                     prot, flags;
6428
6429         struct {
6430                 struct perf_event_header        header;
6431
6432                 u32                             pid;
6433                 u32                             tid;
6434                 u64                             start;
6435                 u64                             len;
6436                 u64                             pgoff;
6437         } event_id;
6438 };
6439
6440 static int perf_event_mmap_match(struct perf_event *event,
6441                                  void *data)
6442 {
6443         struct perf_mmap_event *mmap_event = data;
6444         struct vm_area_struct *vma = mmap_event->vma;
6445         int executable = vma->vm_flags & VM_EXEC;
6446
6447         return (!executable && event->attr.mmap_data) ||
6448                (executable && (event->attr.mmap || event->attr.mmap2));
6449 }
6450
6451 static void perf_event_mmap_output(struct perf_event *event,
6452                                    void *data)
6453 {
6454         struct perf_mmap_event *mmap_event = data;
6455         struct perf_output_handle handle;
6456         struct perf_sample_data sample;
6457         int size = mmap_event->event_id.header.size;
6458         int ret;
6459
6460         if (!perf_event_mmap_match(event, data))
6461                 return;
6462
6463         if (event->attr.mmap2) {
6464                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6465                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6466                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6467                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6468                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6469                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6470                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6471         }
6472
6473         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6474         ret = perf_output_begin(&handle, event,
6475                                 mmap_event->event_id.header.size);
6476         if (ret)
6477                 goto out;
6478
6479         mmap_event->event_id.pid = perf_event_pid(event, current);
6480         mmap_event->event_id.tid = perf_event_tid(event, current);
6481
6482         perf_output_put(&handle, mmap_event->event_id);
6483
6484         if (event->attr.mmap2) {
6485                 perf_output_put(&handle, mmap_event->maj);
6486                 perf_output_put(&handle, mmap_event->min);
6487                 perf_output_put(&handle, mmap_event->ino);
6488                 perf_output_put(&handle, mmap_event->ino_generation);
6489                 perf_output_put(&handle, mmap_event->prot);
6490                 perf_output_put(&handle, mmap_event->flags);
6491         }
6492
6493         __output_copy(&handle, mmap_event->file_name,
6494                                    mmap_event->file_size);
6495
6496         perf_event__output_id_sample(event, &handle, &sample);
6497
6498         perf_output_end(&handle);
6499 out:
6500         mmap_event->event_id.header.size = size;
6501 }
6502
6503 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6504 {
6505         struct vm_area_struct *vma = mmap_event->vma;
6506         struct file *file = vma->vm_file;
6507         int maj = 0, min = 0;
6508         u64 ino = 0, gen = 0;
6509         u32 prot = 0, flags = 0;
6510         unsigned int size;
6511         char tmp[16];
6512         char *buf = NULL;
6513         char *name;
6514
6515         if (file) {
6516                 struct inode *inode;
6517                 dev_t dev;
6518
6519                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6520                 if (!buf) {
6521                         name = "//enomem";
6522                         goto cpy_name;
6523                 }
6524                 /*
6525                  * d_path() works from the end of the rb backwards, so we
6526                  * need to add enough zero bytes after the string to handle
6527                  * the 64bit alignment we do later.
6528                  */
6529                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6530                 if (IS_ERR(name)) {
6531                         name = "//toolong";
6532                         goto cpy_name;
6533                 }
6534                 inode = file_inode(vma->vm_file);
6535                 dev = inode->i_sb->s_dev;
6536                 ino = inode->i_ino;
6537                 gen = inode->i_generation;
6538                 maj = MAJOR(dev);
6539                 min = MINOR(dev);
6540
6541                 if (vma->vm_flags & VM_READ)
6542                         prot |= PROT_READ;
6543                 if (vma->vm_flags & VM_WRITE)
6544                         prot |= PROT_WRITE;
6545                 if (vma->vm_flags & VM_EXEC)
6546                         prot |= PROT_EXEC;
6547
6548                 if (vma->vm_flags & VM_MAYSHARE)
6549                         flags = MAP_SHARED;
6550                 else
6551                         flags = MAP_PRIVATE;
6552
6553                 if (vma->vm_flags & VM_DENYWRITE)
6554                         flags |= MAP_DENYWRITE;
6555                 if (vma->vm_flags & VM_MAYEXEC)
6556                         flags |= MAP_EXECUTABLE;
6557                 if (vma->vm_flags & VM_LOCKED)
6558                         flags |= MAP_LOCKED;
6559                 if (vma->vm_flags & VM_HUGETLB)
6560                         flags |= MAP_HUGETLB;
6561
6562                 goto got_name;
6563         } else {
6564                 if (vma->vm_ops && vma->vm_ops->name) {
6565                         name = (char *) vma->vm_ops->name(vma);
6566                         if (name)
6567                                 goto cpy_name;
6568                 }
6569
6570                 name = (char *)arch_vma_name(vma);
6571                 if (name)
6572                         goto cpy_name;
6573
6574                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6575                                 vma->vm_end >= vma->vm_mm->brk) {
6576                         name = "[heap]";
6577                         goto cpy_name;
6578                 }
6579                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6580                                 vma->vm_end >= vma->vm_mm->start_stack) {
6581                         name = "[stack]";
6582                         goto cpy_name;
6583                 }
6584
6585                 name = "//anon";
6586                 goto cpy_name;
6587         }
6588
6589 cpy_name:
6590         strlcpy(tmp, name, sizeof(tmp));
6591         name = tmp;
6592 got_name:
6593         /*
6594          * Since our buffer works in 8 byte units we need to align our string
6595          * size to a multiple of 8. However, we must guarantee the tail end is
6596          * zero'd out to avoid leaking random bits to userspace.
6597          */
6598         size = strlen(name)+1;
6599         while (!IS_ALIGNED(size, sizeof(u64)))
6600                 name[size++] = '\0';
6601
6602         mmap_event->file_name = name;
6603         mmap_event->file_size = size;
6604         mmap_event->maj = maj;
6605         mmap_event->min = min;
6606         mmap_event->ino = ino;
6607         mmap_event->ino_generation = gen;
6608         mmap_event->prot = prot;
6609         mmap_event->flags = flags;
6610
6611         if (!(vma->vm_flags & VM_EXEC))
6612                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6613
6614         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6615
6616         perf_iterate_sb(perf_event_mmap_output,
6617                        mmap_event,
6618                        NULL);
6619
6620         kfree(buf);
6621 }
6622
6623 /*
6624  * Check whether inode and address range match filter criteria.
6625  */
6626 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6627                                      struct file *file, unsigned long offset,
6628                                      unsigned long size)
6629 {
6630         if (filter->inode != file->f_inode)
6631                 return false;
6632
6633         if (filter->offset > offset + size)
6634                 return false;
6635
6636         if (filter->offset + filter->size < offset)
6637                 return false;
6638
6639         return true;
6640 }
6641
6642 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6643 {
6644         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6645         struct vm_area_struct *vma = data;
6646         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6647         struct file *file = vma->vm_file;
6648         struct perf_addr_filter *filter;
6649         unsigned int restart = 0, count = 0;
6650
6651         if (!has_addr_filter(event))
6652                 return;
6653
6654         if (!file)
6655                 return;
6656
6657         raw_spin_lock_irqsave(&ifh->lock, flags);
6658         list_for_each_entry(filter, &ifh->list, entry) {
6659                 if (perf_addr_filter_match(filter, file, off,
6660                                              vma->vm_end - vma->vm_start)) {
6661                         event->addr_filters_offs[count] = vma->vm_start;
6662                         restart++;
6663                 }
6664
6665                 count++;
6666         }
6667
6668         if (restart)
6669                 event->addr_filters_gen++;
6670         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6671
6672         if (restart)
6673                 perf_event_restart(event);
6674 }
6675
6676 /*
6677  * Adjust all task's events' filters to the new vma
6678  */
6679 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6680 {
6681         struct perf_event_context *ctx;
6682         int ctxn;
6683
6684         /*
6685          * Data tracing isn't supported yet and as such there is no need
6686          * to keep track of anything that isn't related to executable code:
6687          */
6688         if (!(vma->vm_flags & VM_EXEC))
6689                 return;
6690
6691         rcu_read_lock();
6692         for_each_task_context_nr(ctxn) {
6693                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6694                 if (!ctx)
6695                         continue;
6696
6697                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6698         }
6699         rcu_read_unlock();
6700 }
6701
6702 void perf_event_mmap(struct vm_area_struct *vma)
6703 {
6704         struct perf_mmap_event mmap_event;
6705
6706         if (!atomic_read(&nr_mmap_events))
6707                 return;
6708
6709         mmap_event = (struct perf_mmap_event){
6710                 .vma    = vma,
6711                 /* .file_name */
6712                 /* .file_size */
6713                 .event_id  = {
6714                         .header = {
6715                                 .type = PERF_RECORD_MMAP,
6716                                 .misc = PERF_RECORD_MISC_USER,
6717                                 /* .size */
6718                         },
6719                         /* .pid */
6720                         /* .tid */
6721                         .start  = vma->vm_start,
6722                         .len    = vma->vm_end - vma->vm_start,
6723                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6724                 },
6725                 /* .maj (attr_mmap2 only) */
6726                 /* .min (attr_mmap2 only) */
6727                 /* .ino (attr_mmap2 only) */
6728                 /* .ino_generation (attr_mmap2 only) */
6729                 /* .prot (attr_mmap2 only) */
6730                 /* .flags (attr_mmap2 only) */
6731         };
6732
6733         perf_addr_filters_adjust(vma);
6734         perf_event_mmap_event(&mmap_event);
6735 }
6736
6737 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6738                           unsigned long size, u64 flags)
6739 {
6740         struct perf_output_handle handle;
6741         struct perf_sample_data sample;
6742         struct perf_aux_event {
6743                 struct perf_event_header        header;
6744                 u64                             offset;
6745                 u64                             size;
6746                 u64                             flags;
6747         } rec = {
6748                 .header = {
6749                         .type = PERF_RECORD_AUX,
6750                         .misc = 0,
6751                         .size = sizeof(rec),
6752                 },
6753                 .offset         = head,
6754                 .size           = size,
6755                 .flags          = flags,
6756         };
6757         int ret;
6758
6759         perf_event_header__init_id(&rec.header, &sample, event);
6760         ret = perf_output_begin(&handle, event, rec.header.size);
6761
6762         if (ret)
6763                 return;
6764
6765         perf_output_put(&handle, rec);
6766         perf_event__output_id_sample(event, &handle, &sample);
6767
6768         perf_output_end(&handle);
6769 }
6770
6771 /*
6772  * Lost/dropped samples logging
6773  */
6774 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6775 {
6776         struct perf_output_handle handle;
6777         struct perf_sample_data sample;
6778         int ret;
6779
6780         struct {
6781                 struct perf_event_header        header;
6782                 u64                             lost;
6783         } lost_samples_event = {
6784                 .header = {
6785                         .type = PERF_RECORD_LOST_SAMPLES,
6786                         .misc = 0,
6787                         .size = sizeof(lost_samples_event),
6788                 },
6789                 .lost           = lost,
6790         };
6791
6792         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6793
6794         ret = perf_output_begin(&handle, event,
6795                                 lost_samples_event.header.size);
6796         if (ret)
6797                 return;
6798
6799         perf_output_put(&handle, lost_samples_event);
6800         perf_event__output_id_sample(event, &handle, &sample);
6801         perf_output_end(&handle);
6802 }
6803
6804 /*
6805  * context_switch tracking
6806  */
6807
6808 struct perf_switch_event {
6809         struct task_struct      *task;
6810         struct task_struct      *next_prev;
6811
6812         struct {
6813                 struct perf_event_header        header;
6814                 u32                             next_prev_pid;
6815                 u32                             next_prev_tid;
6816         } event_id;
6817 };
6818
6819 static int perf_event_switch_match(struct perf_event *event)
6820 {
6821         return event->attr.context_switch;
6822 }
6823
6824 static void perf_event_switch_output(struct perf_event *event, void *data)
6825 {
6826         struct perf_switch_event *se = data;
6827         struct perf_output_handle handle;
6828         struct perf_sample_data sample;
6829         int ret;
6830
6831         if (!perf_event_switch_match(event))
6832                 return;
6833
6834         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6835         if (event->ctx->task) {
6836                 se->event_id.header.type = PERF_RECORD_SWITCH;
6837                 se->event_id.header.size = sizeof(se->event_id.header);
6838         } else {
6839                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6840                 se->event_id.header.size = sizeof(se->event_id);
6841                 se->event_id.next_prev_pid =
6842                                         perf_event_pid(event, se->next_prev);
6843                 se->event_id.next_prev_tid =
6844                                         perf_event_tid(event, se->next_prev);
6845         }
6846
6847         perf_event_header__init_id(&se->event_id.header, &sample, event);
6848
6849         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6850         if (ret)
6851                 return;
6852
6853         if (event->ctx->task)
6854                 perf_output_put(&handle, se->event_id.header);
6855         else
6856                 perf_output_put(&handle, se->event_id);
6857
6858         perf_event__output_id_sample(event, &handle, &sample);
6859
6860         perf_output_end(&handle);
6861 }
6862
6863 static void perf_event_switch(struct task_struct *task,
6864                               struct task_struct *next_prev, bool sched_in)
6865 {
6866         struct perf_switch_event switch_event;
6867
6868         /* N.B. caller checks nr_switch_events != 0 */
6869
6870         switch_event = (struct perf_switch_event){
6871                 .task           = task,
6872                 .next_prev      = next_prev,
6873                 .event_id       = {
6874                         .header = {
6875                                 /* .type */
6876                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6877                                 /* .size */
6878                         },
6879                         /* .next_prev_pid */
6880                         /* .next_prev_tid */
6881                 },
6882         };
6883
6884         perf_iterate_sb(perf_event_switch_output,
6885                        &switch_event,
6886                        NULL);
6887 }
6888
6889 /*
6890  * IRQ throttle logging
6891  */
6892
6893 static void perf_log_throttle(struct perf_event *event, int enable)
6894 {
6895         struct perf_output_handle handle;
6896         struct perf_sample_data sample;
6897         int ret;
6898
6899         struct {
6900                 struct perf_event_header        header;
6901                 u64                             time;
6902                 u64                             id;
6903                 u64                             stream_id;
6904         } throttle_event = {
6905                 .header = {
6906                         .type = PERF_RECORD_THROTTLE,
6907                         .misc = 0,
6908                         .size = sizeof(throttle_event),
6909                 },
6910                 .time           = perf_event_clock(event),
6911                 .id             = primary_event_id(event),
6912                 .stream_id      = event->id,
6913         };
6914
6915         if (enable)
6916                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6917
6918         perf_event_header__init_id(&throttle_event.header, &sample, event);
6919
6920         ret = perf_output_begin(&handle, event,
6921                                 throttle_event.header.size);
6922         if (ret)
6923                 return;
6924
6925         perf_output_put(&handle, throttle_event);
6926         perf_event__output_id_sample(event, &handle, &sample);
6927         perf_output_end(&handle);
6928 }
6929
6930 static void perf_log_itrace_start(struct perf_event *event)
6931 {
6932         struct perf_output_handle handle;
6933         struct perf_sample_data sample;
6934         struct perf_aux_event {
6935                 struct perf_event_header        header;
6936                 u32                             pid;
6937                 u32                             tid;
6938         } rec;
6939         int ret;
6940
6941         if (event->parent)
6942                 event = event->parent;
6943
6944         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6945             event->hw.itrace_started)
6946                 return;
6947
6948         rec.header.type = PERF_RECORD_ITRACE_START;
6949         rec.header.misc = 0;
6950         rec.header.size = sizeof(rec);
6951         rec.pid = perf_event_pid(event, current);
6952         rec.tid = perf_event_tid(event, current);
6953
6954         perf_event_header__init_id(&rec.header, &sample, event);
6955         ret = perf_output_begin(&handle, event, rec.header.size);
6956
6957         if (ret)
6958                 return;
6959
6960         perf_output_put(&handle, rec);
6961         perf_event__output_id_sample(event, &handle, &sample);
6962
6963         perf_output_end(&handle);
6964 }
6965
6966 /*
6967  * Generic event overflow handling, sampling.
6968  */
6969
6970 static int __perf_event_overflow(struct perf_event *event,
6971                                    int throttle, struct perf_sample_data *data,
6972                                    struct pt_regs *regs)
6973 {
6974         int events = atomic_read(&event->event_limit);
6975         struct hw_perf_event *hwc = &event->hw;
6976         u64 seq;
6977         int ret = 0;
6978
6979         /*
6980          * Non-sampling counters might still use the PMI to fold short
6981          * hardware counters, ignore those.
6982          */
6983         if (unlikely(!is_sampling_event(event)))
6984                 return 0;
6985
6986         seq = __this_cpu_read(perf_throttled_seq);
6987         if (seq != hwc->interrupts_seq) {
6988                 hwc->interrupts_seq = seq;
6989                 hwc->interrupts = 1;
6990         } else {
6991                 hwc->interrupts++;
6992                 if (unlikely(throttle
6993                              && hwc->interrupts >= max_samples_per_tick)) {
6994                         __this_cpu_inc(perf_throttled_count);
6995                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6996                         hwc->interrupts = MAX_INTERRUPTS;
6997                         perf_log_throttle(event, 0);
6998                         ret = 1;
6999                 }
7000         }
7001
7002         if (event->attr.freq) {
7003                 u64 now = perf_clock();
7004                 s64 delta = now - hwc->freq_time_stamp;
7005
7006                 hwc->freq_time_stamp = now;
7007
7008                 if (delta > 0 && delta < 2*TICK_NSEC)
7009                         perf_adjust_period(event, delta, hwc->last_period, true);
7010         }
7011
7012         /*
7013          * XXX event_limit might not quite work as expected on inherited
7014          * events
7015          */
7016
7017         event->pending_kill = POLL_IN;
7018         if (events && atomic_dec_and_test(&event->event_limit)) {
7019                 ret = 1;
7020                 event->pending_kill = POLL_HUP;
7021                 event->pending_disable = 1;
7022                 irq_work_queue(&event->pending);
7023         }
7024
7025         event->overflow_handler(event, data, regs);
7026
7027         if (*perf_event_fasync(event) && event->pending_kill) {
7028                 event->pending_wakeup = 1;
7029                 irq_work_queue(&event->pending);
7030         }
7031
7032         return ret;
7033 }
7034
7035 int perf_event_overflow(struct perf_event *event,
7036                           struct perf_sample_data *data,
7037                           struct pt_regs *regs)
7038 {
7039         return __perf_event_overflow(event, 1, data, regs);
7040 }
7041
7042 /*
7043  * Generic software event infrastructure
7044  */
7045
7046 struct swevent_htable {
7047         struct swevent_hlist            *swevent_hlist;
7048         struct mutex                    hlist_mutex;
7049         int                             hlist_refcount;
7050
7051         /* Recursion avoidance in each contexts */
7052         int                             recursion[PERF_NR_CONTEXTS];
7053 };
7054
7055 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7056
7057 /*
7058  * We directly increment event->count and keep a second value in
7059  * event->hw.period_left to count intervals. This period event
7060  * is kept in the range [-sample_period, 0] so that we can use the
7061  * sign as trigger.
7062  */
7063
7064 u64 perf_swevent_set_period(struct perf_event *event)
7065 {
7066         struct hw_perf_event *hwc = &event->hw;
7067         u64 period = hwc->last_period;
7068         u64 nr, offset;
7069         s64 old, val;
7070
7071         hwc->last_period = hwc->sample_period;
7072
7073 again:
7074         old = val = local64_read(&hwc->period_left);
7075         if (val < 0)
7076                 return 0;
7077
7078         nr = div64_u64(period + val, period);
7079         offset = nr * period;
7080         val -= offset;
7081         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7082                 goto again;
7083
7084         return nr;
7085 }
7086
7087 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7088                                     struct perf_sample_data *data,
7089                                     struct pt_regs *regs)
7090 {
7091         struct hw_perf_event *hwc = &event->hw;
7092         int throttle = 0;
7093
7094         if (!overflow)
7095                 overflow = perf_swevent_set_period(event);
7096
7097         if (hwc->interrupts == MAX_INTERRUPTS)
7098                 return;
7099
7100         for (; overflow; overflow--) {
7101                 if (__perf_event_overflow(event, throttle,
7102                                             data, regs)) {
7103                         /*
7104                          * We inhibit the overflow from happening when
7105                          * hwc->interrupts == MAX_INTERRUPTS.
7106                          */
7107                         break;
7108                 }
7109                 throttle = 1;
7110         }
7111 }
7112
7113 static void perf_swevent_event(struct perf_event *event, u64 nr,
7114                                struct perf_sample_data *data,
7115                                struct pt_regs *regs)
7116 {
7117         struct hw_perf_event *hwc = &event->hw;
7118
7119         local64_add(nr, &event->count);
7120
7121         if (!regs)
7122                 return;
7123
7124         if (!is_sampling_event(event))
7125                 return;
7126
7127         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7128                 data->period = nr;
7129                 return perf_swevent_overflow(event, 1, data, regs);
7130         } else
7131                 data->period = event->hw.last_period;
7132
7133         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7134                 return perf_swevent_overflow(event, 1, data, regs);
7135
7136         if (local64_add_negative(nr, &hwc->period_left))
7137                 return;
7138
7139         perf_swevent_overflow(event, 0, data, regs);
7140 }
7141
7142 static int perf_exclude_event(struct perf_event *event,
7143                               struct pt_regs *regs)
7144 {
7145         if (event->hw.state & PERF_HES_STOPPED)
7146                 return 1;
7147
7148         if (regs) {
7149                 if (event->attr.exclude_user && user_mode(regs))
7150                         return 1;
7151
7152                 if (event->attr.exclude_kernel && !user_mode(regs))
7153                         return 1;
7154         }
7155
7156         return 0;
7157 }
7158
7159 static int perf_swevent_match(struct perf_event *event,
7160                                 enum perf_type_id type,
7161                                 u32 event_id,
7162                                 struct perf_sample_data *data,
7163                                 struct pt_regs *regs)
7164 {
7165         if (event->attr.type != type)
7166                 return 0;
7167
7168         if (event->attr.config != event_id)
7169                 return 0;
7170
7171         if (perf_exclude_event(event, regs))
7172                 return 0;
7173
7174         return 1;
7175 }
7176
7177 static inline u64 swevent_hash(u64 type, u32 event_id)
7178 {
7179         u64 val = event_id | (type << 32);
7180
7181         return hash_64(val, SWEVENT_HLIST_BITS);
7182 }
7183
7184 static inline struct hlist_head *
7185 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7186 {
7187         u64 hash = swevent_hash(type, event_id);
7188
7189         return &hlist->heads[hash];
7190 }
7191
7192 /* For the read side: events when they trigger */
7193 static inline struct hlist_head *
7194 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7195 {
7196         struct swevent_hlist *hlist;
7197
7198         hlist = rcu_dereference(swhash->swevent_hlist);
7199         if (!hlist)
7200                 return NULL;
7201
7202         return __find_swevent_head(hlist, type, event_id);
7203 }
7204
7205 /* For the event head insertion and removal in the hlist */
7206 static inline struct hlist_head *
7207 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7208 {
7209         struct swevent_hlist *hlist;
7210         u32 event_id = event->attr.config;
7211         u64 type = event->attr.type;
7212
7213         /*
7214          * Event scheduling is always serialized against hlist allocation
7215          * and release. Which makes the protected version suitable here.
7216          * The context lock guarantees that.
7217          */
7218         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7219                                           lockdep_is_held(&event->ctx->lock));
7220         if (!hlist)
7221                 return NULL;
7222
7223         return __find_swevent_head(hlist, type, event_id);
7224 }
7225
7226 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7227                                     u64 nr,
7228                                     struct perf_sample_data *data,
7229                                     struct pt_regs *regs)
7230 {
7231         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7232         struct perf_event *event;
7233         struct hlist_head *head;
7234
7235         rcu_read_lock();
7236         head = find_swevent_head_rcu(swhash, type, event_id);
7237         if (!head)
7238                 goto end;
7239
7240         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7241                 if (perf_swevent_match(event, type, event_id, data, regs))
7242                         perf_swevent_event(event, nr, data, regs);
7243         }
7244 end:
7245         rcu_read_unlock();
7246 }
7247
7248 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7249
7250 int perf_swevent_get_recursion_context(void)
7251 {
7252         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7253
7254         return get_recursion_context(swhash->recursion);
7255 }
7256 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7257
7258 void perf_swevent_put_recursion_context(int rctx)
7259 {
7260         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7261
7262         put_recursion_context(swhash->recursion, rctx);
7263 }
7264
7265 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7266 {
7267         struct perf_sample_data data;
7268
7269         if (WARN_ON_ONCE(!regs))
7270                 return;
7271
7272         perf_sample_data_init(&data, addr, 0);
7273         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7274 }
7275
7276 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7277 {
7278         int rctx;
7279
7280         preempt_disable_notrace();
7281         rctx = perf_swevent_get_recursion_context();
7282         if (unlikely(rctx < 0))
7283                 goto fail;
7284
7285         ___perf_sw_event(event_id, nr, regs, addr);
7286
7287         perf_swevent_put_recursion_context(rctx);
7288 fail:
7289         preempt_enable_notrace();
7290 }
7291
7292 static void perf_swevent_read(struct perf_event *event)
7293 {
7294 }
7295
7296 static int perf_swevent_add(struct perf_event *event, int flags)
7297 {
7298         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7299         struct hw_perf_event *hwc = &event->hw;
7300         struct hlist_head *head;
7301
7302         if (is_sampling_event(event)) {
7303                 hwc->last_period = hwc->sample_period;
7304                 perf_swevent_set_period(event);
7305         }
7306
7307         hwc->state = !(flags & PERF_EF_START);
7308
7309         head = find_swevent_head(swhash, event);
7310         if (WARN_ON_ONCE(!head))
7311                 return -EINVAL;
7312
7313         hlist_add_head_rcu(&event->hlist_entry, head);
7314         perf_event_update_userpage(event);
7315
7316         return 0;
7317 }
7318
7319 static void perf_swevent_del(struct perf_event *event, int flags)
7320 {
7321         hlist_del_rcu(&event->hlist_entry);
7322 }
7323
7324 static void perf_swevent_start(struct perf_event *event, int flags)
7325 {
7326         event->hw.state = 0;
7327 }
7328
7329 static void perf_swevent_stop(struct perf_event *event, int flags)
7330 {
7331         event->hw.state = PERF_HES_STOPPED;
7332 }
7333
7334 /* Deref the hlist from the update side */
7335 static inline struct swevent_hlist *
7336 swevent_hlist_deref(struct swevent_htable *swhash)
7337 {
7338         return rcu_dereference_protected(swhash->swevent_hlist,
7339                                          lockdep_is_held(&swhash->hlist_mutex));
7340 }
7341
7342 static void swevent_hlist_release(struct swevent_htable *swhash)
7343 {
7344         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7345
7346         if (!hlist)
7347                 return;
7348
7349         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7350         kfree_rcu(hlist, rcu_head);
7351 }
7352
7353 static void swevent_hlist_put_cpu(int cpu)
7354 {
7355         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7356
7357         mutex_lock(&swhash->hlist_mutex);
7358
7359         if (!--swhash->hlist_refcount)
7360                 swevent_hlist_release(swhash);
7361
7362         mutex_unlock(&swhash->hlist_mutex);
7363 }
7364
7365 static void swevent_hlist_put(void)
7366 {
7367         int cpu;
7368
7369         for_each_possible_cpu(cpu)
7370                 swevent_hlist_put_cpu(cpu);
7371 }
7372
7373 static int swevent_hlist_get_cpu(int cpu)
7374 {
7375         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7376         int err = 0;
7377
7378         mutex_lock(&swhash->hlist_mutex);
7379         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7380                 struct swevent_hlist *hlist;
7381
7382                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7383                 if (!hlist) {
7384                         err = -ENOMEM;
7385                         goto exit;
7386                 }
7387                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7388         }
7389         swhash->hlist_refcount++;
7390 exit:
7391         mutex_unlock(&swhash->hlist_mutex);
7392
7393         return err;
7394 }
7395
7396 static int swevent_hlist_get(void)
7397 {
7398         int err, cpu, failed_cpu;
7399
7400         get_online_cpus();
7401         for_each_possible_cpu(cpu) {
7402                 err = swevent_hlist_get_cpu(cpu);
7403                 if (err) {
7404                         failed_cpu = cpu;
7405                         goto fail;
7406                 }
7407         }
7408         put_online_cpus();
7409
7410         return 0;
7411 fail:
7412         for_each_possible_cpu(cpu) {
7413                 if (cpu == failed_cpu)
7414                         break;
7415                 swevent_hlist_put_cpu(cpu);
7416         }
7417
7418         put_online_cpus();
7419         return err;
7420 }
7421
7422 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7423
7424 static void sw_perf_event_destroy(struct perf_event *event)
7425 {
7426         u64 event_id = event->attr.config;
7427
7428         WARN_ON(event->parent);
7429
7430         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7431         swevent_hlist_put();
7432 }
7433
7434 static int perf_swevent_init(struct perf_event *event)
7435 {
7436         u64 event_id = event->attr.config;
7437
7438         if (event->attr.type != PERF_TYPE_SOFTWARE)
7439                 return -ENOENT;
7440
7441         /*
7442          * no branch sampling for software events
7443          */
7444         if (has_branch_stack(event))
7445                 return -EOPNOTSUPP;
7446
7447         switch (event_id) {
7448         case PERF_COUNT_SW_CPU_CLOCK:
7449         case PERF_COUNT_SW_TASK_CLOCK:
7450                 return -ENOENT;
7451
7452         default:
7453                 break;
7454         }
7455
7456         if (event_id >= PERF_COUNT_SW_MAX)
7457                 return -ENOENT;
7458
7459         if (!event->parent) {
7460                 int err;
7461
7462                 err = swevent_hlist_get();
7463                 if (err)
7464                         return err;
7465
7466                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7467                 event->destroy = sw_perf_event_destroy;
7468         }
7469
7470         return 0;
7471 }
7472
7473 static struct pmu perf_swevent = {
7474         .task_ctx_nr    = perf_sw_context,
7475
7476         .capabilities   = PERF_PMU_CAP_NO_NMI,
7477
7478         .event_init     = perf_swevent_init,
7479         .add            = perf_swevent_add,
7480         .del            = perf_swevent_del,
7481         .start          = perf_swevent_start,
7482         .stop           = perf_swevent_stop,
7483         .read           = perf_swevent_read,
7484 };
7485
7486 #ifdef CONFIG_EVENT_TRACING
7487
7488 static int perf_tp_filter_match(struct perf_event *event,
7489                                 struct perf_sample_data *data)
7490 {
7491         void *record = data->raw->frag.data;
7492
7493         /* only top level events have filters set */
7494         if (event->parent)
7495                 event = event->parent;
7496
7497         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7498                 return 1;
7499         return 0;
7500 }
7501
7502 static int perf_tp_event_match(struct perf_event *event,
7503                                 struct perf_sample_data *data,
7504                                 struct pt_regs *regs)
7505 {
7506         if (event->hw.state & PERF_HES_STOPPED)
7507                 return 0;
7508         /*
7509          * All tracepoints are from kernel-space.
7510          */
7511         if (event->attr.exclude_kernel)
7512                 return 0;
7513
7514         if (!perf_tp_filter_match(event, data))
7515                 return 0;
7516
7517         return 1;
7518 }
7519
7520 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7521                                struct trace_event_call *call, u64 count,
7522                                struct pt_regs *regs, struct hlist_head *head,
7523                                struct task_struct *task)
7524 {
7525         struct bpf_prog *prog = call->prog;
7526
7527         if (prog) {
7528                 *(struct pt_regs **)raw_data = regs;
7529                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7530                         perf_swevent_put_recursion_context(rctx);
7531                         return;
7532                 }
7533         }
7534         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7535                       rctx, task);
7536 }
7537 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7538
7539 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7540                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7541                    struct task_struct *task)
7542 {
7543         struct perf_sample_data data;
7544         struct perf_event *event;
7545
7546         struct perf_raw_record raw = {
7547                 .frag = {
7548                         .size = entry_size,
7549                         .data = record,
7550                 },
7551         };
7552
7553         perf_sample_data_init(&data, 0, 0);
7554         data.raw = &raw;
7555
7556         perf_trace_buf_update(record, event_type);
7557
7558         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7559                 if (perf_tp_event_match(event, &data, regs))
7560                         perf_swevent_event(event, count, &data, regs);
7561         }
7562
7563         /*
7564          * If we got specified a target task, also iterate its context and
7565          * deliver this event there too.
7566          */
7567         if (task && task != current) {
7568                 struct perf_event_context *ctx;
7569                 struct trace_entry *entry = record;
7570
7571                 rcu_read_lock();
7572                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7573                 if (!ctx)
7574                         goto unlock;
7575
7576                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7577                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7578                                 continue;
7579                         if (event->attr.config != entry->type)
7580                                 continue;
7581                         if (perf_tp_event_match(event, &data, regs))
7582                                 perf_swevent_event(event, count, &data, regs);
7583                 }
7584 unlock:
7585                 rcu_read_unlock();
7586         }
7587
7588         perf_swevent_put_recursion_context(rctx);
7589 }
7590 EXPORT_SYMBOL_GPL(perf_tp_event);
7591
7592 static void tp_perf_event_destroy(struct perf_event *event)
7593 {
7594         perf_trace_destroy(event);
7595 }
7596
7597 static int perf_tp_event_init(struct perf_event *event)
7598 {
7599         int err;
7600
7601         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7602                 return -ENOENT;
7603
7604         /*
7605          * no branch sampling for tracepoint events
7606          */
7607         if (has_branch_stack(event))
7608                 return -EOPNOTSUPP;
7609
7610         err = perf_trace_init(event);
7611         if (err)
7612                 return err;
7613
7614         event->destroy = tp_perf_event_destroy;
7615
7616         return 0;
7617 }
7618
7619 static struct pmu perf_tracepoint = {
7620         .task_ctx_nr    = perf_sw_context,
7621
7622         .event_init     = perf_tp_event_init,
7623         .add            = perf_trace_add,
7624         .del            = perf_trace_del,
7625         .start          = perf_swevent_start,
7626         .stop           = perf_swevent_stop,
7627         .read           = perf_swevent_read,
7628 };
7629
7630 static inline void perf_tp_register(void)
7631 {
7632         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7633 }
7634
7635 static void perf_event_free_filter(struct perf_event *event)
7636 {
7637         ftrace_profile_free_filter(event);
7638 }
7639
7640 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7641 {
7642         bool is_kprobe, is_tracepoint;
7643         struct bpf_prog *prog;
7644
7645         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7646                 return -EINVAL;
7647
7648         if (event->tp_event->prog)
7649                 return -EEXIST;
7650
7651         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7652         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7653         if (!is_kprobe && !is_tracepoint)
7654                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7655                 return -EINVAL;
7656
7657         prog = bpf_prog_get(prog_fd);
7658         if (IS_ERR(prog))
7659                 return PTR_ERR(prog);
7660
7661         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7662             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7663                 /* valid fd, but invalid bpf program type */
7664                 bpf_prog_put(prog);
7665                 return -EINVAL;
7666         }
7667
7668         if (is_tracepoint) {
7669                 int off = trace_event_get_offsets(event->tp_event);
7670
7671                 if (prog->aux->max_ctx_offset > off) {
7672                         bpf_prog_put(prog);
7673                         return -EACCES;
7674                 }
7675         }
7676         event->tp_event->prog = prog;
7677
7678         return 0;
7679 }
7680
7681 static void perf_event_free_bpf_prog(struct perf_event *event)
7682 {
7683         struct bpf_prog *prog;
7684
7685         if (!event->tp_event)
7686                 return;
7687
7688         prog = event->tp_event->prog;
7689         if (prog) {
7690                 event->tp_event->prog = NULL;
7691                 bpf_prog_put(prog);
7692         }
7693 }
7694
7695 #else
7696
7697 static inline void perf_tp_register(void)
7698 {
7699 }
7700
7701 static void perf_event_free_filter(struct perf_event *event)
7702 {
7703 }
7704
7705 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7706 {
7707         return -ENOENT;
7708 }
7709
7710 static void perf_event_free_bpf_prog(struct perf_event *event)
7711 {
7712 }
7713 #endif /* CONFIG_EVENT_TRACING */
7714
7715 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7716 void perf_bp_event(struct perf_event *bp, void *data)
7717 {
7718         struct perf_sample_data sample;
7719         struct pt_regs *regs = data;
7720
7721         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7722
7723         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7724                 perf_swevent_event(bp, 1, &sample, regs);
7725 }
7726 #endif
7727
7728 /*
7729  * Allocate a new address filter
7730  */
7731 static struct perf_addr_filter *
7732 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7733 {
7734         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7735         struct perf_addr_filter *filter;
7736
7737         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7738         if (!filter)
7739                 return NULL;
7740
7741         INIT_LIST_HEAD(&filter->entry);
7742         list_add_tail(&filter->entry, filters);
7743
7744         return filter;
7745 }
7746
7747 static void free_filters_list(struct list_head *filters)
7748 {
7749         struct perf_addr_filter *filter, *iter;
7750
7751         list_for_each_entry_safe(filter, iter, filters, entry) {
7752                 if (filter->inode)
7753                         iput(filter->inode);
7754                 list_del(&filter->entry);
7755                 kfree(filter);
7756         }
7757 }
7758
7759 /*
7760  * Free existing address filters and optionally install new ones
7761  */
7762 static void perf_addr_filters_splice(struct perf_event *event,
7763                                      struct list_head *head)
7764 {
7765         unsigned long flags;
7766         LIST_HEAD(list);
7767
7768         if (!has_addr_filter(event))
7769                 return;
7770
7771         /* don't bother with children, they don't have their own filters */
7772         if (event->parent)
7773                 return;
7774
7775         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7776
7777         list_splice_init(&event->addr_filters.list, &list);
7778         if (head)
7779                 list_splice(head, &event->addr_filters.list);
7780
7781         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7782
7783         free_filters_list(&list);
7784 }
7785
7786 /*
7787  * Scan through mm's vmas and see if one of them matches the
7788  * @filter; if so, adjust filter's address range.
7789  * Called with mm::mmap_sem down for reading.
7790  */
7791 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7792                                             struct mm_struct *mm)
7793 {
7794         struct vm_area_struct *vma;
7795
7796         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7797                 struct file *file = vma->vm_file;
7798                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7799                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7800
7801                 if (!file)
7802                         continue;
7803
7804                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7805                         continue;
7806
7807                 return vma->vm_start;
7808         }
7809
7810         return 0;
7811 }
7812
7813 /*
7814  * Update event's address range filters based on the
7815  * task's existing mappings, if any.
7816  */
7817 static void perf_event_addr_filters_apply(struct perf_event *event)
7818 {
7819         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7820         struct task_struct *task = READ_ONCE(event->ctx->task);
7821         struct perf_addr_filter *filter;
7822         struct mm_struct *mm = NULL;
7823         unsigned int count = 0;
7824         unsigned long flags;
7825
7826         /*
7827          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7828          * will stop on the parent's child_mutex that our caller is also holding
7829          */
7830         if (task == TASK_TOMBSTONE)
7831                 return;
7832
7833         mm = get_task_mm(event->ctx->task);
7834         if (!mm)
7835                 goto restart;
7836
7837         down_read(&mm->mmap_sem);
7838
7839         raw_spin_lock_irqsave(&ifh->lock, flags);
7840         list_for_each_entry(filter, &ifh->list, entry) {
7841                 event->addr_filters_offs[count] = 0;
7842
7843                 /*
7844                  * Adjust base offset if the filter is associated to a binary
7845                  * that needs to be mapped:
7846                  */
7847                 if (filter->inode)
7848                         event->addr_filters_offs[count] =
7849                                 perf_addr_filter_apply(filter, mm);
7850
7851                 count++;
7852         }
7853
7854         event->addr_filters_gen++;
7855         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7856
7857         up_read(&mm->mmap_sem);
7858
7859         mmput(mm);
7860
7861 restart:
7862         perf_event_restart(event);
7863 }
7864
7865 /*
7866  * Address range filtering: limiting the data to certain
7867  * instruction address ranges. Filters are ioctl()ed to us from
7868  * userspace as ascii strings.
7869  *
7870  * Filter string format:
7871  *
7872  * ACTION RANGE_SPEC
7873  * where ACTION is one of the
7874  *  * "filter": limit the trace to this region
7875  *  * "start": start tracing from this address
7876  *  * "stop": stop tracing at this address/region;
7877  * RANGE_SPEC is
7878  *  * for kernel addresses: <start address>[/<size>]
7879  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7880  *
7881  * if <size> is not specified, the range is treated as a single address.
7882  */
7883 enum {
7884         IF_ACT_FILTER,
7885         IF_ACT_START,
7886         IF_ACT_STOP,
7887         IF_SRC_FILE,
7888         IF_SRC_KERNEL,
7889         IF_SRC_FILEADDR,
7890         IF_SRC_KERNELADDR,
7891 };
7892
7893 enum {
7894         IF_STATE_ACTION = 0,
7895         IF_STATE_SOURCE,
7896         IF_STATE_END,
7897 };
7898
7899 static const match_table_t if_tokens = {
7900         { IF_ACT_FILTER,        "filter" },
7901         { IF_ACT_START,         "start" },
7902         { IF_ACT_STOP,          "stop" },
7903         { IF_SRC_FILE,          "%u/%u@%s" },
7904         { IF_SRC_KERNEL,        "%u/%u" },
7905         { IF_SRC_FILEADDR,      "%u@%s" },
7906         { IF_SRC_KERNELADDR,    "%u" },
7907 };
7908
7909 /*
7910  * Address filter string parser
7911  */
7912 static int
7913 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7914                              struct list_head *filters)
7915 {
7916         struct perf_addr_filter *filter = NULL;
7917         char *start, *orig, *filename = NULL;
7918         struct path path;
7919         substring_t args[MAX_OPT_ARGS];
7920         int state = IF_STATE_ACTION, token;
7921         unsigned int kernel = 0;
7922         int ret = -EINVAL;
7923
7924         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7925         if (!fstr)
7926                 return -ENOMEM;
7927
7928         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7929                 ret = -EINVAL;
7930
7931                 if (!*start)
7932                         continue;
7933
7934                 /* filter definition begins */
7935                 if (state == IF_STATE_ACTION) {
7936                         filter = perf_addr_filter_new(event, filters);
7937                         if (!filter)
7938                                 goto fail;
7939                 }
7940
7941                 token = match_token(start, if_tokens, args);
7942                 switch (token) {
7943                 case IF_ACT_FILTER:
7944                 case IF_ACT_START:
7945                         filter->filter = 1;
7946
7947                 case IF_ACT_STOP:
7948                         if (state != IF_STATE_ACTION)
7949                                 goto fail;
7950
7951                         state = IF_STATE_SOURCE;
7952                         break;
7953
7954                 case IF_SRC_KERNELADDR:
7955                 case IF_SRC_KERNEL:
7956                         kernel = 1;
7957
7958                 case IF_SRC_FILEADDR:
7959                 case IF_SRC_FILE:
7960                         if (state != IF_STATE_SOURCE)
7961                                 goto fail;
7962
7963                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7964                                 filter->range = 1;
7965
7966                         *args[0].to = 0;
7967                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7968                         if (ret)
7969                                 goto fail;
7970
7971                         if (filter->range) {
7972                                 *args[1].to = 0;
7973                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7974                                 if (ret)
7975                                         goto fail;
7976                         }
7977
7978                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
7979                                 int fpos = filter->range ? 2 : 1;
7980
7981                                 filename = match_strdup(&args[fpos]);
7982                                 if (!filename) {
7983                                         ret = -ENOMEM;
7984                                         goto fail;
7985                                 }
7986                         }
7987
7988                         state = IF_STATE_END;
7989                         break;
7990
7991                 default:
7992                         goto fail;
7993                 }
7994
7995                 /*
7996                  * Filter definition is fully parsed, validate and install it.
7997                  * Make sure that it doesn't contradict itself or the event's
7998                  * attribute.
7999                  */
8000                 if (state == IF_STATE_END) {
8001                         if (kernel && event->attr.exclude_kernel)
8002                                 goto fail;
8003
8004                         if (!kernel) {
8005                                 if (!filename)
8006                                         goto fail;
8007
8008                                 /* look up the path and grab its inode */
8009                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8010                                 if (ret)
8011                                         goto fail_free_name;
8012
8013                                 filter->inode = igrab(d_inode(path.dentry));
8014                                 path_put(&path);
8015                                 kfree(filename);
8016                                 filename = NULL;
8017
8018                                 ret = -EINVAL;
8019                                 if (!filter->inode ||
8020                                     !S_ISREG(filter->inode->i_mode))
8021                                         /* free_filters_list() will iput() */
8022                                         goto fail;
8023                         }
8024
8025                         /* ready to consume more filters */
8026                         state = IF_STATE_ACTION;
8027                         filter = NULL;
8028                 }
8029         }
8030
8031         if (state != IF_STATE_ACTION)
8032                 goto fail;
8033
8034         kfree(orig);
8035
8036         return 0;
8037
8038 fail_free_name:
8039         kfree(filename);
8040 fail:
8041         free_filters_list(filters);
8042         kfree(orig);
8043
8044         return ret;
8045 }
8046
8047 static int
8048 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8049 {
8050         LIST_HEAD(filters);
8051         int ret;
8052
8053         /*
8054          * Since this is called in perf_ioctl() path, we're already holding
8055          * ctx::mutex.
8056          */
8057         lockdep_assert_held(&event->ctx->mutex);
8058
8059         if (WARN_ON_ONCE(event->parent))
8060                 return -EINVAL;
8061
8062         /*
8063          * For now, we only support filtering in per-task events; doing so
8064          * for CPU-wide events requires additional context switching trickery,
8065          * since same object code will be mapped at different virtual
8066          * addresses in different processes.
8067          */
8068         if (!event->ctx->task)
8069                 return -EOPNOTSUPP;
8070
8071         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8072         if (ret)
8073                 return ret;
8074
8075         ret = event->pmu->addr_filters_validate(&filters);
8076         if (ret) {
8077                 free_filters_list(&filters);
8078                 return ret;
8079         }
8080
8081         /* remove existing filters, if any */
8082         perf_addr_filters_splice(event, &filters);
8083
8084         /* install new filters */
8085         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8086
8087         return ret;
8088 }
8089
8090 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8091 {
8092         char *filter_str;
8093         int ret = -EINVAL;
8094
8095         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8096             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8097             !has_addr_filter(event))
8098                 return -EINVAL;
8099
8100         filter_str = strndup_user(arg, PAGE_SIZE);
8101         if (IS_ERR(filter_str))
8102                 return PTR_ERR(filter_str);
8103
8104         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8105             event->attr.type == PERF_TYPE_TRACEPOINT)
8106                 ret = ftrace_profile_set_filter(event, event->attr.config,
8107                                                 filter_str);
8108         else if (has_addr_filter(event))
8109                 ret = perf_event_set_addr_filter(event, filter_str);
8110
8111         kfree(filter_str);
8112         return ret;
8113 }
8114
8115 /*
8116  * hrtimer based swevent callback
8117  */
8118
8119 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8120 {
8121         enum hrtimer_restart ret = HRTIMER_RESTART;
8122         struct perf_sample_data data;
8123         struct pt_regs *regs;
8124         struct perf_event *event;
8125         u64 period;
8126
8127         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8128
8129         if (event->state != PERF_EVENT_STATE_ACTIVE)
8130                 return HRTIMER_NORESTART;
8131
8132         event->pmu->read(event);
8133
8134         perf_sample_data_init(&data, 0, event->hw.last_period);
8135         regs = get_irq_regs();
8136
8137         if (regs && !perf_exclude_event(event, regs)) {
8138                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8139                         if (__perf_event_overflow(event, 1, &data, regs))
8140                                 ret = HRTIMER_NORESTART;
8141         }
8142
8143         period = max_t(u64, 10000, event->hw.sample_period);
8144         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8145
8146         return ret;
8147 }
8148
8149 static void perf_swevent_start_hrtimer(struct perf_event *event)
8150 {
8151         struct hw_perf_event *hwc = &event->hw;
8152         s64 period;
8153
8154         if (!is_sampling_event(event))
8155                 return;
8156
8157         period = local64_read(&hwc->period_left);
8158         if (period) {
8159                 if (period < 0)
8160                         period = 10000;
8161
8162                 local64_set(&hwc->period_left, 0);
8163         } else {
8164                 period = max_t(u64, 10000, hwc->sample_period);
8165         }
8166         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8167                       HRTIMER_MODE_REL_PINNED);
8168 }
8169
8170 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8171 {
8172         struct hw_perf_event *hwc = &event->hw;
8173
8174         if (is_sampling_event(event)) {
8175                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8176                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8177
8178                 hrtimer_cancel(&hwc->hrtimer);
8179         }
8180 }
8181
8182 static void perf_swevent_init_hrtimer(struct perf_event *event)
8183 {
8184         struct hw_perf_event *hwc = &event->hw;
8185
8186         if (!is_sampling_event(event))
8187                 return;
8188
8189         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8190         hwc->hrtimer.function = perf_swevent_hrtimer;
8191
8192         /*
8193          * Since hrtimers have a fixed rate, we can do a static freq->period
8194          * mapping and avoid the whole period adjust feedback stuff.
8195          */
8196         if (event->attr.freq) {
8197                 long freq = event->attr.sample_freq;
8198
8199                 event->attr.sample_period = NSEC_PER_SEC / freq;
8200                 hwc->sample_period = event->attr.sample_period;
8201                 local64_set(&hwc->period_left, hwc->sample_period);
8202                 hwc->last_period = hwc->sample_period;
8203                 event->attr.freq = 0;
8204         }
8205 }
8206
8207 /*
8208  * Software event: cpu wall time clock
8209  */
8210
8211 static void cpu_clock_event_update(struct perf_event *event)
8212 {
8213         s64 prev;
8214         u64 now;
8215
8216         now = local_clock();
8217         prev = local64_xchg(&event->hw.prev_count, now);
8218         local64_add(now - prev, &event->count);
8219 }
8220
8221 static void cpu_clock_event_start(struct perf_event *event, int flags)
8222 {
8223         local64_set(&event->hw.prev_count, local_clock());
8224         perf_swevent_start_hrtimer(event);
8225 }
8226
8227 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8228 {
8229         perf_swevent_cancel_hrtimer(event);
8230         cpu_clock_event_update(event);
8231 }
8232
8233 static int cpu_clock_event_add(struct perf_event *event, int flags)
8234 {
8235         if (flags & PERF_EF_START)
8236                 cpu_clock_event_start(event, flags);
8237         perf_event_update_userpage(event);
8238
8239         return 0;
8240 }
8241
8242 static void cpu_clock_event_del(struct perf_event *event, int flags)
8243 {
8244         cpu_clock_event_stop(event, flags);
8245 }
8246
8247 static void cpu_clock_event_read(struct perf_event *event)
8248 {
8249         cpu_clock_event_update(event);
8250 }
8251
8252 static int cpu_clock_event_init(struct perf_event *event)
8253 {
8254         if (event->attr.type != PERF_TYPE_SOFTWARE)
8255                 return -ENOENT;
8256
8257         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8258                 return -ENOENT;
8259
8260         /*
8261          * no branch sampling for software events
8262          */
8263         if (has_branch_stack(event))
8264                 return -EOPNOTSUPP;
8265
8266         perf_swevent_init_hrtimer(event);
8267
8268         return 0;
8269 }
8270
8271 static struct pmu perf_cpu_clock = {
8272         .task_ctx_nr    = perf_sw_context,
8273
8274         .capabilities   = PERF_PMU_CAP_NO_NMI,
8275
8276         .event_init     = cpu_clock_event_init,
8277         .add            = cpu_clock_event_add,
8278         .del            = cpu_clock_event_del,
8279         .start          = cpu_clock_event_start,
8280         .stop           = cpu_clock_event_stop,
8281         .read           = cpu_clock_event_read,
8282 };
8283
8284 /*
8285  * Software event: task time clock
8286  */
8287
8288 static void task_clock_event_update(struct perf_event *event, u64 now)
8289 {
8290         u64 prev;
8291         s64 delta;
8292
8293         prev = local64_xchg(&event->hw.prev_count, now);
8294         delta = now - prev;
8295         local64_add(delta, &event->count);
8296 }
8297
8298 static void task_clock_event_start(struct perf_event *event, int flags)
8299 {
8300         local64_set(&event->hw.prev_count, event->ctx->time);
8301         perf_swevent_start_hrtimer(event);
8302 }
8303
8304 static void task_clock_event_stop(struct perf_event *event, int flags)
8305 {
8306         perf_swevent_cancel_hrtimer(event);
8307         task_clock_event_update(event, event->ctx->time);
8308 }
8309
8310 static int task_clock_event_add(struct perf_event *event, int flags)
8311 {
8312         if (flags & PERF_EF_START)
8313                 task_clock_event_start(event, flags);
8314         perf_event_update_userpage(event);
8315
8316         return 0;
8317 }
8318
8319 static void task_clock_event_del(struct perf_event *event, int flags)
8320 {
8321         task_clock_event_stop(event, PERF_EF_UPDATE);
8322 }
8323
8324 static void task_clock_event_read(struct perf_event *event)
8325 {
8326         u64 now = perf_clock();
8327         u64 delta = now - event->ctx->timestamp;
8328         u64 time = event->ctx->time + delta;
8329
8330         task_clock_event_update(event, time);
8331 }
8332
8333 static int task_clock_event_init(struct perf_event *event)
8334 {
8335         if (event->attr.type != PERF_TYPE_SOFTWARE)
8336                 return -ENOENT;
8337
8338         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8339                 return -ENOENT;
8340
8341         /*
8342          * no branch sampling for software events
8343          */
8344         if (has_branch_stack(event))
8345                 return -EOPNOTSUPP;
8346
8347         perf_swevent_init_hrtimer(event);
8348
8349         return 0;
8350 }
8351
8352 static struct pmu perf_task_clock = {
8353         .task_ctx_nr    = perf_sw_context,
8354
8355         .capabilities   = PERF_PMU_CAP_NO_NMI,
8356
8357         .event_init     = task_clock_event_init,
8358         .add            = task_clock_event_add,
8359         .del            = task_clock_event_del,
8360         .start          = task_clock_event_start,
8361         .stop           = task_clock_event_stop,
8362         .read           = task_clock_event_read,
8363 };
8364
8365 static void perf_pmu_nop_void(struct pmu *pmu)
8366 {
8367 }
8368
8369 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8370 {
8371 }
8372
8373 static int perf_pmu_nop_int(struct pmu *pmu)
8374 {
8375         return 0;
8376 }
8377
8378 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8379
8380 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8381 {
8382         __this_cpu_write(nop_txn_flags, flags);
8383
8384         if (flags & ~PERF_PMU_TXN_ADD)
8385                 return;
8386
8387         perf_pmu_disable(pmu);
8388 }
8389
8390 static int perf_pmu_commit_txn(struct pmu *pmu)
8391 {
8392         unsigned int flags = __this_cpu_read(nop_txn_flags);
8393
8394         __this_cpu_write(nop_txn_flags, 0);
8395
8396         if (flags & ~PERF_PMU_TXN_ADD)
8397                 return 0;
8398
8399         perf_pmu_enable(pmu);
8400         return 0;
8401 }
8402
8403 static void perf_pmu_cancel_txn(struct pmu *pmu)
8404 {
8405         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8406
8407         __this_cpu_write(nop_txn_flags, 0);
8408
8409         if (flags & ~PERF_PMU_TXN_ADD)
8410                 return;
8411
8412         perf_pmu_enable(pmu);
8413 }
8414
8415 static int perf_event_idx_default(struct perf_event *event)
8416 {
8417         return 0;
8418 }
8419
8420 /*
8421  * Ensures all contexts with the same task_ctx_nr have the same
8422  * pmu_cpu_context too.
8423  */
8424 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8425 {
8426         struct pmu *pmu;
8427
8428         if (ctxn < 0)
8429                 return NULL;
8430
8431         list_for_each_entry(pmu, &pmus, entry) {
8432                 if (pmu->task_ctx_nr == ctxn)
8433                         return pmu->pmu_cpu_context;
8434         }
8435
8436         return NULL;
8437 }
8438
8439 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8440 {
8441         int cpu;
8442
8443         for_each_possible_cpu(cpu) {
8444                 struct perf_cpu_context *cpuctx;
8445
8446                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8447
8448                 if (cpuctx->unique_pmu == old_pmu)
8449                         cpuctx->unique_pmu = pmu;
8450         }
8451 }
8452
8453 static void free_pmu_context(struct pmu *pmu)
8454 {
8455         struct pmu *i;
8456
8457         mutex_lock(&pmus_lock);
8458         /*
8459          * Like a real lame refcount.
8460          */
8461         list_for_each_entry(i, &pmus, entry) {
8462                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8463                         update_pmu_context(i, pmu);
8464                         goto out;
8465                 }
8466         }
8467
8468         free_percpu(pmu->pmu_cpu_context);
8469 out:
8470         mutex_unlock(&pmus_lock);
8471 }
8472
8473 /*
8474  * Let userspace know that this PMU supports address range filtering:
8475  */
8476 static ssize_t nr_addr_filters_show(struct device *dev,
8477                                     struct device_attribute *attr,
8478                                     char *page)
8479 {
8480         struct pmu *pmu = dev_get_drvdata(dev);
8481
8482         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8483 }
8484 DEVICE_ATTR_RO(nr_addr_filters);
8485
8486 static struct idr pmu_idr;
8487
8488 static ssize_t
8489 type_show(struct device *dev, struct device_attribute *attr, char *page)
8490 {
8491         struct pmu *pmu = dev_get_drvdata(dev);
8492
8493         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8494 }
8495 static DEVICE_ATTR_RO(type);
8496
8497 static ssize_t
8498 perf_event_mux_interval_ms_show(struct device *dev,
8499                                 struct device_attribute *attr,
8500                                 char *page)
8501 {
8502         struct pmu *pmu = dev_get_drvdata(dev);
8503
8504         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8505 }
8506
8507 static DEFINE_MUTEX(mux_interval_mutex);
8508
8509 static ssize_t
8510 perf_event_mux_interval_ms_store(struct device *dev,
8511                                  struct device_attribute *attr,
8512                                  const char *buf, size_t count)
8513 {
8514         struct pmu *pmu = dev_get_drvdata(dev);
8515         int timer, cpu, ret;
8516
8517         ret = kstrtoint(buf, 0, &timer);
8518         if (ret)
8519                 return ret;
8520
8521         if (timer < 1)
8522                 return -EINVAL;
8523
8524         /* same value, noting to do */
8525         if (timer == pmu->hrtimer_interval_ms)
8526                 return count;
8527
8528         mutex_lock(&mux_interval_mutex);
8529         pmu->hrtimer_interval_ms = timer;
8530
8531         /* update all cpuctx for this PMU */
8532         get_online_cpus();
8533         for_each_online_cpu(cpu) {
8534                 struct perf_cpu_context *cpuctx;
8535                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8536                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8537
8538                 cpu_function_call(cpu,
8539                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8540         }
8541         put_online_cpus();
8542         mutex_unlock(&mux_interval_mutex);
8543
8544         return count;
8545 }
8546 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8547
8548 static struct attribute *pmu_dev_attrs[] = {
8549         &dev_attr_type.attr,
8550         &dev_attr_perf_event_mux_interval_ms.attr,
8551         NULL,
8552 };
8553 ATTRIBUTE_GROUPS(pmu_dev);
8554
8555 static int pmu_bus_running;
8556 static struct bus_type pmu_bus = {
8557         .name           = "event_source",
8558         .dev_groups     = pmu_dev_groups,
8559 };
8560
8561 static void pmu_dev_release(struct device *dev)
8562 {
8563         kfree(dev);
8564 }
8565
8566 static int pmu_dev_alloc(struct pmu *pmu)
8567 {
8568         int ret = -ENOMEM;
8569
8570         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8571         if (!pmu->dev)
8572                 goto out;
8573
8574         pmu->dev->groups = pmu->attr_groups;
8575         device_initialize(pmu->dev);
8576         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8577         if (ret)
8578                 goto free_dev;
8579
8580         dev_set_drvdata(pmu->dev, pmu);
8581         pmu->dev->bus = &pmu_bus;
8582         pmu->dev->release = pmu_dev_release;
8583         ret = device_add(pmu->dev);
8584         if (ret)
8585                 goto free_dev;
8586
8587         /* For PMUs with address filters, throw in an extra attribute: */
8588         if (pmu->nr_addr_filters)
8589                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8590
8591         if (ret)
8592                 goto del_dev;
8593
8594 out:
8595         return ret;
8596
8597 del_dev:
8598         device_del(pmu->dev);
8599
8600 free_dev:
8601         put_device(pmu->dev);
8602         goto out;
8603 }
8604
8605 static struct lock_class_key cpuctx_mutex;
8606 static struct lock_class_key cpuctx_lock;
8607
8608 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8609 {
8610         int cpu, ret;
8611
8612         mutex_lock(&pmus_lock);
8613         ret = -ENOMEM;
8614         pmu->pmu_disable_count = alloc_percpu(int);
8615         if (!pmu->pmu_disable_count)
8616                 goto unlock;
8617
8618         pmu->type = -1;
8619         if (!name)
8620                 goto skip_type;
8621         pmu->name = name;
8622
8623         if (type < 0) {
8624                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8625                 if (type < 0) {
8626                         ret = type;
8627                         goto free_pdc;
8628                 }
8629         }
8630         pmu->type = type;
8631
8632         if (pmu_bus_running) {
8633                 ret = pmu_dev_alloc(pmu);
8634                 if (ret)
8635                         goto free_idr;
8636         }
8637
8638 skip_type:
8639         if (pmu->task_ctx_nr == perf_hw_context) {
8640                 static int hw_context_taken = 0;
8641
8642                 /*
8643                  * Other than systems with heterogeneous CPUs, it never makes
8644                  * sense for two PMUs to share perf_hw_context. PMUs which are
8645                  * uncore must use perf_invalid_context.
8646                  */
8647                 if (WARN_ON_ONCE(hw_context_taken &&
8648                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8649                         pmu->task_ctx_nr = perf_invalid_context;
8650
8651                 hw_context_taken = 1;
8652         }
8653
8654         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8655         if (pmu->pmu_cpu_context)
8656                 goto got_cpu_context;
8657
8658         ret = -ENOMEM;
8659         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8660         if (!pmu->pmu_cpu_context)
8661                 goto free_dev;
8662
8663         for_each_possible_cpu(cpu) {
8664                 struct perf_cpu_context *cpuctx;
8665
8666                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8667                 __perf_event_init_context(&cpuctx->ctx);
8668                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8669                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8670                 cpuctx->ctx.pmu = pmu;
8671
8672                 __perf_mux_hrtimer_init(cpuctx, cpu);
8673
8674                 cpuctx->unique_pmu = pmu;
8675         }
8676
8677 got_cpu_context:
8678         if (!pmu->start_txn) {
8679                 if (pmu->pmu_enable) {
8680                         /*
8681                          * If we have pmu_enable/pmu_disable calls, install
8682                          * transaction stubs that use that to try and batch
8683                          * hardware accesses.
8684                          */
8685                         pmu->start_txn  = perf_pmu_start_txn;
8686                         pmu->commit_txn = perf_pmu_commit_txn;
8687                         pmu->cancel_txn = perf_pmu_cancel_txn;
8688                 } else {
8689                         pmu->start_txn  = perf_pmu_nop_txn;
8690                         pmu->commit_txn = perf_pmu_nop_int;
8691                         pmu->cancel_txn = perf_pmu_nop_void;
8692                 }
8693         }
8694
8695         if (!pmu->pmu_enable) {
8696                 pmu->pmu_enable  = perf_pmu_nop_void;
8697                 pmu->pmu_disable = perf_pmu_nop_void;
8698         }
8699
8700         if (!pmu->event_idx)
8701                 pmu->event_idx = perf_event_idx_default;
8702
8703         list_add_rcu(&pmu->entry, &pmus);
8704         atomic_set(&pmu->exclusive_cnt, 0);
8705         ret = 0;
8706 unlock:
8707         mutex_unlock(&pmus_lock);
8708
8709         return ret;
8710
8711 free_dev:
8712         device_del(pmu->dev);
8713         put_device(pmu->dev);
8714
8715 free_idr:
8716         if (pmu->type >= PERF_TYPE_MAX)
8717                 idr_remove(&pmu_idr, pmu->type);
8718
8719 free_pdc:
8720         free_percpu(pmu->pmu_disable_count);
8721         goto unlock;
8722 }
8723 EXPORT_SYMBOL_GPL(perf_pmu_register);
8724
8725 void perf_pmu_unregister(struct pmu *pmu)
8726 {
8727         mutex_lock(&pmus_lock);
8728         list_del_rcu(&pmu->entry);
8729         mutex_unlock(&pmus_lock);
8730
8731         /*
8732          * We dereference the pmu list under both SRCU and regular RCU, so
8733          * synchronize against both of those.
8734          */
8735         synchronize_srcu(&pmus_srcu);
8736         synchronize_rcu();
8737
8738         free_percpu(pmu->pmu_disable_count);
8739         if (pmu->type >= PERF_TYPE_MAX)
8740                 idr_remove(&pmu_idr, pmu->type);
8741         if (pmu->nr_addr_filters)
8742                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8743         device_del(pmu->dev);
8744         put_device(pmu->dev);
8745         free_pmu_context(pmu);
8746 }
8747 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8748
8749 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8750 {
8751         struct perf_event_context *ctx = NULL;
8752         int ret;
8753
8754         if (!try_module_get(pmu->module))
8755                 return -ENODEV;
8756
8757         if (event->group_leader != event) {
8758                 /*
8759                  * This ctx->mutex can nest when we're called through
8760                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8761                  */
8762                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8763                                                  SINGLE_DEPTH_NESTING);
8764                 BUG_ON(!ctx);
8765         }
8766
8767         event->pmu = pmu;
8768         ret = pmu->event_init(event);
8769
8770         if (ctx)
8771                 perf_event_ctx_unlock(event->group_leader, ctx);
8772
8773         if (ret)
8774                 module_put(pmu->module);
8775
8776         return ret;
8777 }
8778
8779 static struct pmu *perf_init_event(struct perf_event *event)
8780 {
8781         struct pmu *pmu = NULL;
8782         int idx;
8783         int ret;
8784
8785         idx = srcu_read_lock(&pmus_srcu);
8786
8787         rcu_read_lock();
8788         pmu = idr_find(&pmu_idr, event->attr.type);
8789         rcu_read_unlock();
8790         if (pmu) {
8791                 ret = perf_try_init_event(pmu, event);
8792                 if (ret)
8793                         pmu = ERR_PTR(ret);
8794                 goto unlock;
8795         }
8796
8797         list_for_each_entry_rcu(pmu, &pmus, entry) {
8798                 ret = perf_try_init_event(pmu, event);
8799                 if (!ret)
8800                         goto unlock;
8801
8802                 if (ret != -ENOENT) {
8803                         pmu = ERR_PTR(ret);
8804                         goto unlock;
8805                 }
8806         }
8807         pmu = ERR_PTR(-ENOENT);
8808 unlock:
8809         srcu_read_unlock(&pmus_srcu, idx);
8810
8811         return pmu;
8812 }
8813
8814 static void attach_sb_event(struct perf_event *event)
8815 {
8816         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8817
8818         raw_spin_lock(&pel->lock);
8819         list_add_rcu(&event->sb_list, &pel->list);
8820         raw_spin_unlock(&pel->lock);
8821 }
8822
8823 /*
8824  * We keep a list of all !task (and therefore per-cpu) events
8825  * that need to receive side-band records.
8826  *
8827  * This avoids having to scan all the various PMU per-cpu contexts
8828  * looking for them.
8829  */
8830 static void account_pmu_sb_event(struct perf_event *event)
8831 {
8832         if (is_sb_event(event))
8833                 attach_sb_event(event);
8834 }
8835
8836 static void account_event_cpu(struct perf_event *event, int cpu)
8837 {
8838         if (event->parent)
8839                 return;
8840
8841         if (is_cgroup_event(event))
8842                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8843 }
8844
8845 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8846 static void account_freq_event_nohz(void)
8847 {
8848 #ifdef CONFIG_NO_HZ_FULL
8849         /* Lock so we don't race with concurrent unaccount */
8850         spin_lock(&nr_freq_lock);
8851         if (atomic_inc_return(&nr_freq_events) == 1)
8852                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8853         spin_unlock(&nr_freq_lock);
8854 #endif
8855 }
8856
8857 static void account_freq_event(void)
8858 {
8859         if (tick_nohz_full_enabled())
8860                 account_freq_event_nohz();
8861         else
8862                 atomic_inc(&nr_freq_events);
8863 }
8864
8865
8866 static void account_event(struct perf_event *event)
8867 {
8868         bool inc = false;
8869
8870         if (event->parent)
8871                 return;
8872
8873         if (event->attach_state & PERF_ATTACH_TASK)
8874                 inc = true;
8875         if (event->attr.mmap || event->attr.mmap_data)
8876                 atomic_inc(&nr_mmap_events);
8877         if (event->attr.comm)
8878                 atomic_inc(&nr_comm_events);
8879         if (event->attr.task)
8880                 atomic_inc(&nr_task_events);
8881         if (event->attr.freq)
8882                 account_freq_event();
8883         if (event->attr.context_switch) {
8884                 atomic_inc(&nr_switch_events);
8885                 inc = true;
8886         }
8887         if (has_branch_stack(event))
8888                 inc = true;
8889         if (is_cgroup_event(event))
8890                 inc = true;
8891
8892         if (inc) {
8893                 if (atomic_inc_not_zero(&perf_sched_count))
8894                         goto enabled;
8895
8896                 mutex_lock(&perf_sched_mutex);
8897                 if (!atomic_read(&perf_sched_count)) {
8898                         static_branch_enable(&perf_sched_events);
8899                         /*
8900                          * Guarantee that all CPUs observe they key change and
8901                          * call the perf scheduling hooks before proceeding to
8902                          * install events that need them.
8903                          */
8904                         synchronize_sched();
8905                 }
8906                 /*
8907                  * Now that we have waited for the sync_sched(), allow further
8908                  * increments to by-pass the mutex.
8909                  */
8910                 atomic_inc(&perf_sched_count);
8911                 mutex_unlock(&perf_sched_mutex);
8912         }
8913 enabled:
8914
8915         account_event_cpu(event, event->cpu);
8916
8917         account_pmu_sb_event(event);
8918 }
8919
8920 /*
8921  * Allocate and initialize a event structure
8922  */
8923 static struct perf_event *
8924 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8925                  struct task_struct *task,
8926                  struct perf_event *group_leader,
8927                  struct perf_event *parent_event,
8928                  perf_overflow_handler_t overflow_handler,
8929                  void *context, int cgroup_fd)
8930 {
8931         struct pmu *pmu;
8932         struct perf_event *event;
8933         struct hw_perf_event *hwc;
8934         long err = -EINVAL;
8935
8936         if ((unsigned)cpu >= nr_cpu_ids) {
8937                 if (!task || cpu != -1)
8938                         return ERR_PTR(-EINVAL);
8939         }
8940
8941         event = kzalloc(sizeof(*event), GFP_KERNEL);
8942         if (!event)
8943                 return ERR_PTR(-ENOMEM);
8944
8945         /*
8946          * Single events are their own group leaders, with an
8947          * empty sibling list:
8948          */
8949         if (!group_leader)
8950                 group_leader = event;
8951
8952         mutex_init(&event->child_mutex);
8953         INIT_LIST_HEAD(&event->child_list);
8954
8955         INIT_LIST_HEAD(&event->group_entry);
8956         INIT_LIST_HEAD(&event->event_entry);
8957         INIT_LIST_HEAD(&event->sibling_list);
8958         INIT_LIST_HEAD(&event->rb_entry);
8959         INIT_LIST_HEAD(&event->active_entry);
8960         INIT_LIST_HEAD(&event->addr_filters.list);
8961         INIT_HLIST_NODE(&event->hlist_entry);
8962
8963
8964         init_waitqueue_head(&event->waitq);
8965         init_irq_work(&event->pending, perf_pending_event);
8966
8967         mutex_init(&event->mmap_mutex);
8968         raw_spin_lock_init(&event->addr_filters.lock);
8969
8970         atomic_long_set(&event->refcount, 1);
8971         event->cpu              = cpu;
8972         event->attr             = *attr;
8973         event->group_leader     = group_leader;
8974         event->pmu              = NULL;
8975         event->oncpu            = -1;
8976
8977         event->parent           = parent_event;
8978
8979         event->ns               = get_pid_ns(task_active_pid_ns(current));
8980         event->id               = atomic64_inc_return(&perf_event_id);
8981
8982         event->state            = PERF_EVENT_STATE_INACTIVE;
8983
8984         if (task) {
8985                 event->attach_state = PERF_ATTACH_TASK;
8986                 /*
8987                  * XXX pmu::event_init needs to know what task to account to
8988                  * and we cannot use the ctx information because we need the
8989                  * pmu before we get a ctx.
8990                  */
8991                 event->hw.target = task;
8992         }
8993
8994         event->clock = &local_clock;
8995         if (parent_event)
8996                 event->clock = parent_event->clock;
8997
8998         if (!overflow_handler && parent_event) {
8999                 overflow_handler = parent_event->overflow_handler;
9000                 context = parent_event->overflow_handler_context;
9001         }
9002
9003         if (overflow_handler) {
9004                 event->overflow_handler = overflow_handler;
9005                 event->overflow_handler_context = context;
9006         } else if (is_write_backward(event)){
9007                 event->overflow_handler = perf_event_output_backward;
9008                 event->overflow_handler_context = NULL;
9009         } else {
9010                 event->overflow_handler = perf_event_output_forward;
9011                 event->overflow_handler_context = NULL;
9012         }
9013
9014         perf_event__state_init(event);
9015
9016         pmu = NULL;
9017
9018         hwc = &event->hw;
9019         hwc->sample_period = attr->sample_period;
9020         if (attr->freq && attr->sample_freq)
9021                 hwc->sample_period = 1;
9022         hwc->last_period = hwc->sample_period;
9023
9024         local64_set(&hwc->period_left, hwc->sample_period);
9025
9026         /*
9027          * we currently do not support PERF_FORMAT_GROUP on inherited events
9028          */
9029         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9030                 goto err_ns;
9031
9032         if (!has_branch_stack(event))
9033                 event->attr.branch_sample_type = 0;
9034
9035         if (cgroup_fd != -1) {
9036                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9037                 if (err)
9038                         goto err_ns;
9039         }
9040
9041         pmu = perf_init_event(event);
9042         if (!pmu)
9043                 goto err_ns;
9044         else if (IS_ERR(pmu)) {
9045                 err = PTR_ERR(pmu);
9046                 goto err_ns;
9047         }
9048
9049         err = exclusive_event_init(event);
9050         if (err)
9051                 goto err_pmu;
9052
9053         if (has_addr_filter(event)) {
9054                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9055                                                    sizeof(unsigned long),
9056                                                    GFP_KERNEL);
9057                 if (!event->addr_filters_offs)
9058                         goto err_per_task;
9059
9060                 /* force hw sync on the address filters */
9061                 event->addr_filters_gen = 1;
9062         }
9063
9064         if (!event->parent) {
9065                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9066                         err = get_callchain_buffers(attr->sample_max_stack);
9067                         if (err)
9068                                 goto err_addr_filters;
9069                 }
9070         }
9071
9072         /* symmetric to unaccount_event() in _free_event() */
9073         account_event(event);
9074
9075         return event;
9076
9077 err_addr_filters:
9078         kfree(event->addr_filters_offs);
9079
9080 err_per_task:
9081         exclusive_event_destroy(event);
9082
9083 err_pmu:
9084         if (event->destroy)
9085                 event->destroy(event);
9086         module_put(pmu->module);
9087 err_ns:
9088         if (is_cgroup_event(event))
9089                 perf_detach_cgroup(event);
9090         if (event->ns)
9091                 put_pid_ns(event->ns);
9092         kfree(event);
9093
9094         return ERR_PTR(err);
9095 }
9096
9097 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9098                           struct perf_event_attr *attr)
9099 {
9100         u32 size;
9101         int ret;
9102
9103         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9104                 return -EFAULT;
9105
9106         /*
9107          * zero the full structure, so that a short copy will be nice.
9108          */
9109         memset(attr, 0, sizeof(*attr));
9110
9111         ret = get_user(size, &uattr->size);
9112         if (ret)
9113                 return ret;
9114
9115         if (size > PAGE_SIZE)   /* silly large */
9116                 goto err_size;
9117
9118         if (!size)              /* abi compat */
9119                 size = PERF_ATTR_SIZE_VER0;
9120
9121         if (size < PERF_ATTR_SIZE_VER0)
9122                 goto err_size;
9123
9124         /*
9125          * If we're handed a bigger struct than we know of,
9126          * ensure all the unknown bits are 0 - i.e. new
9127          * user-space does not rely on any kernel feature
9128          * extensions we dont know about yet.
9129          */
9130         if (size > sizeof(*attr)) {
9131                 unsigned char __user *addr;
9132                 unsigned char __user *end;
9133                 unsigned char val;
9134
9135                 addr = (void __user *)uattr + sizeof(*attr);
9136                 end  = (void __user *)uattr + size;
9137
9138                 for (; addr < end; addr++) {
9139                         ret = get_user(val, addr);
9140                         if (ret)
9141                                 return ret;
9142                         if (val)
9143                                 goto err_size;
9144                 }
9145                 size = sizeof(*attr);
9146         }
9147
9148         ret = copy_from_user(attr, uattr, size);
9149         if (ret)
9150                 return -EFAULT;
9151
9152         if (attr->__reserved_1)
9153                 return -EINVAL;
9154
9155         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9156                 return -EINVAL;
9157
9158         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9159                 return -EINVAL;
9160
9161         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9162                 u64 mask = attr->branch_sample_type;
9163
9164                 /* only using defined bits */
9165                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9166                         return -EINVAL;
9167
9168                 /* at least one branch bit must be set */
9169                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9170                         return -EINVAL;
9171
9172                 /* propagate priv level, when not set for branch */
9173                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9174
9175                         /* exclude_kernel checked on syscall entry */
9176                         if (!attr->exclude_kernel)
9177                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9178
9179                         if (!attr->exclude_user)
9180                                 mask |= PERF_SAMPLE_BRANCH_USER;
9181
9182                         if (!attr->exclude_hv)
9183                                 mask |= PERF_SAMPLE_BRANCH_HV;
9184                         /*
9185                          * adjust user setting (for HW filter setup)
9186                          */
9187                         attr->branch_sample_type = mask;
9188                 }
9189                 /* privileged levels capture (kernel, hv): check permissions */
9190                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9191                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9192                         return -EACCES;
9193         }
9194
9195         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9196                 ret = perf_reg_validate(attr->sample_regs_user);
9197                 if (ret)
9198                         return ret;
9199         }
9200
9201         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9202                 if (!arch_perf_have_user_stack_dump())
9203                         return -ENOSYS;
9204
9205                 /*
9206                  * We have __u32 type for the size, but so far
9207                  * we can only use __u16 as maximum due to the
9208                  * __u16 sample size limit.
9209                  */
9210                 if (attr->sample_stack_user >= USHRT_MAX)
9211                         ret = -EINVAL;
9212                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9213                         ret = -EINVAL;
9214         }
9215
9216         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9217                 ret = perf_reg_validate(attr->sample_regs_intr);
9218 out:
9219         return ret;
9220
9221 err_size:
9222         put_user(sizeof(*attr), &uattr->size);
9223         ret = -E2BIG;
9224         goto out;
9225 }
9226
9227 static int
9228 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9229 {
9230         struct ring_buffer *rb = NULL;
9231         int ret = -EINVAL;
9232
9233         if (!output_event)
9234                 goto set;
9235
9236         /* don't allow circular references */
9237         if (event == output_event)
9238                 goto out;
9239
9240         /*
9241          * Don't allow cross-cpu buffers
9242          */
9243         if (output_event->cpu != event->cpu)
9244                 goto out;
9245
9246         /*
9247          * If its not a per-cpu rb, it must be the same task.
9248          */
9249         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9250                 goto out;
9251
9252         /*
9253          * Mixing clocks in the same buffer is trouble you don't need.
9254          */
9255         if (output_event->clock != event->clock)
9256                 goto out;
9257
9258         /*
9259          * Either writing ring buffer from beginning or from end.
9260          * Mixing is not allowed.
9261          */
9262         if (is_write_backward(output_event) != is_write_backward(event))
9263                 goto out;
9264
9265         /*
9266          * If both events generate aux data, they must be on the same PMU
9267          */
9268         if (has_aux(event) && has_aux(output_event) &&
9269             event->pmu != output_event->pmu)
9270                 goto out;
9271
9272 set:
9273         mutex_lock(&event->mmap_mutex);
9274         /* Can't redirect output if we've got an active mmap() */
9275         if (atomic_read(&event->mmap_count))
9276                 goto unlock;
9277
9278         if (output_event) {
9279                 /* get the rb we want to redirect to */
9280                 rb = ring_buffer_get(output_event);
9281                 if (!rb)
9282                         goto unlock;
9283         }
9284
9285         ring_buffer_attach(event, rb);
9286
9287         ret = 0;
9288 unlock:
9289         mutex_unlock(&event->mmap_mutex);
9290
9291 out:
9292         return ret;
9293 }
9294
9295 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9296 {
9297         if (b < a)
9298                 swap(a, b);
9299
9300         mutex_lock(a);
9301         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9302 }
9303
9304 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9305 {
9306         bool nmi_safe = false;
9307
9308         switch (clk_id) {
9309         case CLOCK_MONOTONIC:
9310                 event->clock = &ktime_get_mono_fast_ns;
9311                 nmi_safe = true;
9312                 break;
9313
9314         case CLOCK_MONOTONIC_RAW:
9315                 event->clock = &ktime_get_raw_fast_ns;
9316                 nmi_safe = true;
9317                 break;
9318
9319         case CLOCK_REALTIME:
9320                 event->clock = &ktime_get_real_ns;
9321                 break;
9322
9323         case CLOCK_BOOTTIME:
9324                 event->clock = &ktime_get_boot_ns;
9325                 break;
9326
9327         case CLOCK_TAI:
9328                 event->clock = &ktime_get_tai_ns;
9329                 break;
9330
9331         default:
9332                 return -EINVAL;
9333         }
9334
9335         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9336                 return -EINVAL;
9337
9338         return 0;
9339 }
9340
9341 /**
9342  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9343  *
9344  * @attr_uptr:  event_id type attributes for monitoring/sampling
9345  * @pid:                target pid
9346  * @cpu:                target cpu
9347  * @group_fd:           group leader event fd
9348  */
9349 SYSCALL_DEFINE5(perf_event_open,
9350                 struct perf_event_attr __user *, attr_uptr,
9351                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9352 {
9353         struct perf_event *group_leader = NULL, *output_event = NULL;
9354         struct perf_event *event, *sibling;
9355         struct perf_event_attr attr;
9356         struct perf_event_context *ctx, *uninitialized_var(gctx);
9357         struct file *event_file = NULL;
9358         struct fd group = {NULL, 0};
9359         struct task_struct *task = NULL;
9360         struct pmu *pmu;
9361         int event_fd;
9362         int move_group = 0;
9363         int err;
9364         int f_flags = O_RDWR;
9365         int cgroup_fd = -1;
9366
9367         /* for future expandability... */
9368         if (flags & ~PERF_FLAG_ALL)
9369                 return -EINVAL;
9370
9371         err = perf_copy_attr(attr_uptr, &attr);
9372         if (err)
9373                 return err;
9374
9375         if (!attr.exclude_kernel) {
9376                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9377                         return -EACCES;
9378         }
9379
9380         if (attr.freq) {
9381                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9382                         return -EINVAL;
9383         } else {
9384                 if (attr.sample_period & (1ULL << 63))
9385                         return -EINVAL;
9386         }
9387
9388         if (!attr.sample_max_stack)
9389                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9390
9391         /*
9392          * In cgroup mode, the pid argument is used to pass the fd
9393          * opened to the cgroup directory in cgroupfs. The cpu argument
9394          * designates the cpu on which to monitor threads from that
9395          * cgroup.
9396          */
9397         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9398                 return -EINVAL;
9399
9400         if (flags & PERF_FLAG_FD_CLOEXEC)
9401                 f_flags |= O_CLOEXEC;
9402
9403         event_fd = get_unused_fd_flags(f_flags);
9404         if (event_fd < 0)
9405                 return event_fd;
9406
9407         if (group_fd != -1) {
9408                 err = perf_fget_light(group_fd, &group);
9409                 if (err)
9410                         goto err_fd;
9411                 group_leader = group.file->private_data;
9412                 if (flags & PERF_FLAG_FD_OUTPUT)
9413                         output_event = group_leader;
9414                 if (flags & PERF_FLAG_FD_NO_GROUP)
9415                         group_leader = NULL;
9416         }
9417
9418         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9419                 task = find_lively_task_by_vpid(pid);
9420                 if (IS_ERR(task)) {
9421                         err = PTR_ERR(task);
9422                         goto err_group_fd;
9423                 }
9424         }
9425
9426         if (task && group_leader &&
9427             group_leader->attr.inherit != attr.inherit) {
9428                 err = -EINVAL;
9429                 goto err_task;
9430         }
9431
9432         get_online_cpus();
9433
9434         if (task) {
9435                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9436                 if (err)
9437                         goto err_cpus;
9438
9439                 /*
9440                  * Reuse ptrace permission checks for now.
9441                  *
9442                  * We must hold cred_guard_mutex across this and any potential
9443                  * perf_install_in_context() call for this new event to
9444                  * serialize against exec() altering our credentials (and the
9445                  * perf_event_exit_task() that could imply).
9446                  */
9447                 err = -EACCES;
9448                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9449                         goto err_cred;
9450         }
9451
9452         if (flags & PERF_FLAG_PID_CGROUP)
9453                 cgroup_fd = pid;
9454
9455         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9456                                  NULL, NULL, cgroup_fd);
9457         if (IS_ERR(event)) {
9458                 err = PTR_ERR(event);
9459                 goto err_cred;
9460         }
9461
9462         if (is_sampling_event(event)) {
9463                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9464                         err = -EOPNOTSUPP;
9465                         goto err_alloc;
9466                 }
9467         }
9468
9469         /*
9470          * Special case software events and allow them to be part of
9471          * any hardware group.
9472          */
9473         pmu = event->pmu;
9474
9475         if (attr.use_clockid) {
9476                 err = perf_event_set_clock(event, attr.clockid);
9477                 if (err)
9478                         goto err_alloc;
9479         }
9480
9481         if (group_leader &&
9482             (is_software_event(event) != is_software_event(group_leader))) {
9483                 if (is_software_event(event)) {
9484                         /*
9485                          * If event and group_leader are not both a software
9486                          * event, and event is, then group leader is not.
9487                          *
9488                          * Allow the addition of software events to !software
9489                          * groups, this is safe because software events never
9490                          * fail to schedule.
9491                          */
9492                         pmu = group_leader->pmu;
9493                 } else if (is_software_event(group_leader) &&
9494                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9495                         /*
9496                          * In case the group is a pure software group, and we
9497                          * try to add a hardware event, move the whole group to
9498                          * the hardware context.
9499                          */
9500                         move_group = 1;
9501                 }
9502         }
9503
9504         /*
9505          * Get the target context (task or percpu):
9506          */
9507         ctx = find_get_context(pmu, task, event);
9508         if (IS_ERR(ctx)) {
9509                 err = PTR_ERR(ctx);
9510                 goto err_alloc;
9511         }
9512
9513         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9514                 err = -EBUSY;
9515                 goto err_context;
9516         }
9517
9518         /*
9519          * Look up the group leader (we will attach this event to it):
9520          */
9521         if (group_leader) {
9522                 err = -EINVAL;
9523
9524                 /*
9525                  * Do not allow a recursive hierarchy (this new sibling
9526                  * becoming part of another group-sibling):
9527                  */
9528                 if (group_leader->group_leader != group_leader)
9529                         goto err_context;
9530
9531                 /* All events in a group should have the same clock */
9532                 if (group_leader->clock != event->clock)
9533                         goto err_context;
9534
9535                 /*
9536                  * Do not allow to attach to a group in a different
9537                  * task or CPU context:
9538                  */
9539                 if (move_group) {
9540                         /*
9541                          * Make sure we're both on the same task, or both
9542                          * per-cpu events.
9543                          */
9544                         if (group_leader->ctx->task != ctx->task)
9545                                 goto err_context;
9546
9547                         /*
9548                          * Make sure we're both events for the same CPU;
9549                          * grouping events for different CPUs is broken; since
9550                          * you can never concurrently schedule them anyhow.
9551                          */
9552                         if (group_leader->cpu != event->cpu)
9553                                 goto err_context;
9554                 } else {
9555                         if (group_leader->ctx != ctx)
9556                                 goto err_context;
9557                 }
9558
9559                 /*
9560                  * Only a group leader can be exclusive or pinned
9561                  */
9562                 if (attr.exclusive || attr.pinned)
9563                         goto err_context;
9564         }
9565
9566         if (output_event) {
9567                 err = perf_event_set_output(event, output_event);
9568                 if (err)
9569                         goto err_context;
9570         }
9571
9572         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9573                                         f_flags);
9574         if (IS_ERR(event_file)) {
9575                 err = PTR_ERR(event_file);
9576                 event_file = NULL;
9577                 goto err_context;
9578         }
9579
9580         if (move_group) {
9581                 gctx = group_leader->ctx;
9582                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9583                 if (gctx->task == TASK_TOMBSTONE) {
9584                         err = -ESRCH;
9585                         goto err_locked;
9586                 }
9587         } else {
9588                 mutex_lock(&ctx->mutex);
9589         }
9590
9591         if (ctx->task == TASK_TOMBSTONE) {
9592                 err = -ESRCH;
9593                 goto err_locked;
9594         }
9595
9596         if (!perf_event_validate_size(event)) {
9597                 err = -E2BIG;
9598                 goto err_locked;
9599         }
9600
9601         /*
9602          * Must be under the same ctx::mutex as perf_install_in_context(),
9603          * because we need to serialize with concurrent event creation.
9604          */
9605         if (!exclusive_event_installable(event, ctx)) {
9606                 /* exclusive and group stuff are assumed mutually exclusive */
9607                 WARN_ON_ONCE(move_group);
9608
9609                 err = -EBUSY;
9610                 goto err_locked;
9611         }
9612
9613         WARN_ON_ONCE(ctx->parent_ctx);
9614
9615         /*
9616          * This is the point on no return; we cannot fail hereafter. This is
9617          * where we start modifying current state.
9618          */
9619
9620         if (move_group) {
9621                 /*
9622                  * See perf_event_ctx_lock() for comments on the details
9623                  * of swizzling perf_event::ctx.
9624                  */
9625                 perf_remove_from_context(group_leader, 0);
9626
9627                 list_for_each_entry(sibling, &group_leader->sibling_list,
9628                                     group_entry) {
9629                         perf_remove_from_context(sibling, 0);
9630                         put_ctx(gctx);
9631                 }
9632
9633                 /*
9634                  * Wait for everybody to stop referencing the events through
9635                  * the old lists, before installing it on new lists.
9636                  */
9637                 synchronize_rcu();
9638
9639                 /*
9640                  * Install the group siblings before the group leader.
9641                  *
9642                  * Because a group leader will try and install the entire group
9643                  * (through the sibling list, which is still in-tact), we can
9644                  * end up with siblings installed in the wrong context.
9645                  *
9646                  * By installing siblings first we NO-OP because they're not
9647                  * reachable through the group lists.
9648                  */
9649                 list_for_each_entry(sibling, &group_leader->sibling_list,
9650                                     group_entry) {
9651                         perf_event__state_init(sibling);
9652                         perf_install_in_context(ctx, sibling, sibling->cpu);
9653                         get_ctx(ctx);
9654                 }
9655
9656                 /*
9657                  * Removing from the context ends up with disabled
9658                  * event. What we want here is event in the initial
9659                  * startup state, ready to be add into new context.
9660                  */
9661                 perf_event__state_init(group_leader);
9662                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9663                 get_ctx(ctx);
9664
9665                 /*
9666                  * Now that all events are installed in @ctx, nothing
9667                  * references @gctx anymore, so drop the last reference we have
9668                  * on it.
9669                  */
9670                 put_ctx(gctx);
9671         }
9672
9673         /*
9674          * Precalculate sample_data sizes; do while holding ctx::mutex such
9675          * that we're serialized against further additions and before
9676          * perf_install_in_context() which is the point the event is active and
9677          * can use these values.
9678          */
9679         perf_event__header_size(event);
9680         perf_event__id_header_size(event);
9681
9682         event->owner = current;
9683
9684         perf_install_in_context(ctx, event, event->cpu);
9685         perf_unpin_context(ctx);
9686
9687         if (move_group)
9688                 mutex_unlock(&gctx->mutex);
9689         mutex_unlock(&ctx->mutex);
9690
9691         if (task) {
9692                 mutex_unlock(&task->signal->cred_guard_mutex);
9693                 put_task_struct(task);
9694         }
9695
9696         put_online_cpus();
9697
9698         mutex_lock(&current->perf_event_mutex);
9699         list_add_tail(&event->owner_entry, &current->perf_event_list);
9700         mutex_unlock(&current->perf_event_mutex);
9701
9702         /*
9703          * Drop the reference on the group_event after placing the
9704          * new event on the sibling_list. This ensures destruction
9705          * of the group leader will find the pointer to itself in
9706          * perf_group_detach().
9707          */
9708         fdput(group);
9709         fd_install(event_fd, event_file);
9710         return event_fd;
9711
9712 err_locked:
9713         if (move_group)
9714                 mutex_unlock(&gctx->mutex);
9715         mutex_unlock(&ctx->mutex);
9716 /* err_file: */
9717         fput(event_file);
9718 err_context:
9719         perf_unpin_context(ctx);
9720         put_ctx(ctx);
9721 err_alloc:
9722         /*
9723          * If event_file is set, the fput() above will have called ->release()
9724          * and that will take care of freeing the event.
9725          */
9726         if (!event_file)
9727                 free_event(event);
9728 err_cred:
9729         if (task)
9730                 mutex_unlock(&task->signal->cred_guard_mutex);
9731 err_cpus:
9732         put_online_cpus();
9733 err_task:
9734         if (task)
9735                 put_task_struct(task);
9736 err_group_fd:
9737         fdput(group);
9738 err_fd:
9739         put_unused_fd(event_fd);
9740         return err;
9741 }
9742
9743 /**
9744  * perf_event_create_kernel_counter
9745  *
9746  * @attr: attributes of the counter to create
9747  * @cpu: cpu in which the counter is bound
9748  * @task: task to profile (NULL for percpu)
9749  */
9750 struct perf_event *
9751 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9752                                  struct task_struct *task,
9753                                  perf_overflow_handler_t overflow_handler,
9754                                  void *context)
9755 {
9756         struct perf_event_context *ctx;
9757         struct perf_event *event;
9758         int err;
9759
9760         /*
9761          * Get the target context (task or percpu):
9762          */
9763
9764         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9765                                  overflow_handler, context, -1);
9766         if (IS_ERR(event)) {
9767                 err = PTR_ERR(event);
9768                 goto err;
9769         }
9770
9771         /* Mark owner so we could distinguish it from user events. */
9772         event->owner = TASK_TOMBSTONE;
9773
9774         ctx = find_get_context(event->pmu, task, event);
9775         if (IS_ERR(ctx)) {
9776                 err = PTR_ERR(ctx);
9777                 goto err_free;
9778         }
9779
9780         WARN_ON_ONCE(ctx->parent_ctx);
9781         mutex_lock(&ctx->mutex);
9782         if (ctx->task == TASK_TOMBSTONE) {
9783                 err = -ESRCH;
9784                 goto err_unlock;
9785         }
9786
9787         if (!exclusive_event_installable(event, ctx)) {
9788                 err = -EBUSY;
9789                 goto err_unlock;
9790         }
9791
9792         perf_install_in_context(ctx, event, cpu);
9793         perf_unpin_context(ctx);
9794         mutex_unlock(&ctx->mutex);
9795
9796         return event;
9797
9798 err_unlock:
9799         mutex_unlock(&ctx->mutex);
9800         perf_unpin_context(ctx);
9801         put_ctx(ctx);
9802 err_free:
9803         free_event(event);
9804 err:
9805         return ERR_PTR(err);
9806 }
9807 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9808
9809 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9810 {
9811         struct perf_event_context *src_ctx;
9812         struct perf_event_context *dst_ctx;
9813         struct perf_event *event, *tmp;
9814         LIST_HEAD(events);
9815
9816         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9817         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9818
9819         /*
9820          * See perf_event_ctx_lock() for comments on the details
9821          * of swizzling perf_event::ctx.
9822          */
9823         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9824         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9825                                  event_entry) {
9826                 perf_remove_from_context(event, 0);
9827                 unaccount_event_cpu(event, src_cpu);
9828                 put_ctx(src_ctx);
9829                 list_add(&event->migrate_entry, &events);
9830         }
9831
9832         /*
9833          * Wait for the events to quiesce before re-instating them.
9834          */
9835         synchronize_rcu();
9836
9837         /*
9838          * Re-instate events in 2 passes.
9839          *
9840          * Skip over group leaders and only install siblings on this first
9841          * pass, siblings will not get enabled without a leader, however a
9842          * leader will enable its siblings, even if those are still on the old
9843          * context.
9844          */
9845         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9846                 if (event->group_leader == event)
9847                         continue;
9848
9849                 list_del(&event->migrate_entry);
9850                 if (event->state >= PERF_EVENT_STATE_OFF)
9851                         event->state = PERF_EVENT_STATE_INACTIVE;
9852                 account_event_cpu(event, dst_cpu);
9853                 perf_install_in_context(dst_ctx, event, dst_cpu);
9854                 get_ctx(dst_ctx);
9855         }
9856
9857         /*
9858          * Once all the siblings are setup properly, install the group leaders
9859          * to make it go.
9860          */
9861         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9862                 list_del(&event->migrate_entry);
9863                 if (event->state >= PERF_EVENT_STATE_OFF)
9864                         event->state = PERF_EVENT_STATE_INACTIVE;
9865                 account_event_cpu(event, dst_cpu);
9866                 perf_install_in_context(dst_ctx, event, dst_cpu);
9867                 get_ctx(dst_ctx);
9868         }
9869         mutex_unlock(&dst_ctx->mutex);
9870         mutex_unlock(&src_ctx->mutex);
9871 }
9872 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9873
9874 static void sync_child_event(struct perf_event *child_event,
9875                                struct task_struct *child)
9876 {
9877         struct perf_event *parent_event = child_event->parent;
9878         u64 child_val;
9879
9880         if (child_event->attr.inherit_stat)
9881                 perf_event_read_event(child_event, child);
9882
9883         child_val = perf_event_count(child_event);
9884
9885         /*
9886          * Add back the child's count to the parent's count:
9887          */
9888         atomic64_add(child_val, &parent_event->child_count);
9889         atomic64_add(child_event->total_time_enabled,
9890                      &parent_event->child_total_time_enabled);
9891         atomic64_add(child_event->total_time_running,
9892                      &parent_event->child_total_time_running);
9893 }
9894
9895 static void
9896 perf_event_exit_event(struct perf_event *child_event,
9897                       struct perf_event_context *child_ctx,
9898                       struct task_struct *child)
9899 {
9900         struct perf_event *parent_event = child_event->parent;
9901
9902         /*
9903          * Do not destroy the 'original' grouping; because of the context
9904          * switch optimization the original events could've ended up in a
9905          * random child task.
9906          *
9907          * If we were to destroy the original group, all group related
9908          * operations would cease to function properly after this random
9909          * child dies.
9910          *
9911          * Do destroy all inherited groups, we don't care about those
9912          * and being thorough is better.
9913          */
9914         raw_spin_lock_irq(&child_ctx->lock);
9915         WARN_ON_ONCE(child_ctx->is_active);
9916
9917         if (parent_event)
9918                 perf_group_detach(child_event);
9919         list_del_event(child_event, child_ctx);
9920         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9921         raw_spin_unlock_irq(&child_ctx->lock);
9922
9923         /*
9924          * Parent events are governed by their filedesc, retain them.
9925          */
9926         if (!parent_event) {
9927                 perf_event_wakeup(child_event);
9928                 return;
9929         }
9930         /*
9931          * Child events can be cleaned up.
9932          */
9933
9934         sync_child_event(child_event, child);
9935
9936         /*
9937          * Remove this event from the parent's list
9938          */
9939         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9940         mutex_lock(&parent_event->child_mutex);
9941         list_del_init(&child_event->child_list);
9942         mutex_unlock(&parent_event->child_mutex);
9943
9944         /*
9945          * Kick perf_poll() for is_event_hup().
9946          */
9947         perf_event_wakeup(parent_event);
9948         free_event(child_event);
9949         put_event(parent_event);
9950 }
9951
9952 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9953 {
9954         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9955         struct perf_event *child_event, *next;
9956
9957         WARN_ON_ONCE(child != current);
9958
9959         child_ctx = perf_pin_task_context(child, ctxn);
9960         if (!child_ctx)
9961                 return;
9962
9963         /*
9964          * In order to reduce the amount of tricky in ctx tear-down, we hold
9965          * ctx::mutex over the entire thing. This serializes against almost
9966          * everything that wants to access the ctx.
9967          *
9968          * The exception is sys_perf_event_open() /
9969          * perf_event_create_kernel_count() which does find_get_context()
9970          * without ctx::mutex (it cannot because of the move_group double mutex
9971          * lock thing). See the comments in perf_install_in_context().
9972          */
9973         mutex_lock(&child_ctx->mutex);
9974
9975         /*
9976          * In a single ctx::lock section, de-schedule the events and detach the
9977          * context from the task such that we cannot ever get it scheduled back
9978          * in.
9979          */
9980         raw_spin_lock_irq(&child_ctx->lock);
9981         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9982
9983         /*
9984          * Now that the context is inactive, destroy the task <-> ctx relation
9985          * and mark the context dead.
9986          */
9987         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9988         put_ctx(child_ctx); /* cannot be last */
9989         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9990         put_task_struct(current); /* cannot be last */
9991
9992         clone_ctx = unclone_ctx(child_ctx);
9993         raw_spin_unlock_irq(&child_ctx->lock);
9994
9995         if (clone_ctx)
9996                 put_ctx(clone_ctx);
9997
9998         /*
9999          * Report the task dead after unscheduling the events so that we
10000          * won't get any samples after PERF_RECORD_EXIT. We can however still
10001          * get a few PERF_RECORD_READ events.
10002          */
10003         perf_event_task(child, child_ctx, 0);
10004
10005         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10006                 perf_event_exit_event(child_event, child_ctx, child);
10007
10008         mutex_unlock(&child_ctx->mutex);
10009
10010         put_ctx(child_ctx);
10011 }
10012
10013 /*
10014  * When a child task exits, feed back event values to parent events.
10015  *
10016  * Can be called with cred_guard_mutex held when called from
10017  * install_exec_creds().
10018  */
10019 void perf_event_exit_task(struct task_struct *child)
10020 {
10021         struct perf_event *event, *tmp;
10022         int ctxn;
10023
10024         mutex_lock(&child->perf_event_mutex);
10025         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10026                                  owner_entry) {
10027                 list_del_init(&event->owner_entry);
10028
10029                 /*
10030                  * Ensure the list deletion is visible before we clear
10031                  * the owner, closes a race against perf_release() where
10032                  * we need to serialize on the owner->perf_event_mutex.
10033                  */
10034                 smp_store_release(&event->owner, NULL);
10035         }
10036         mutex_unlock(&child->perf_event_mutex);
10037
10038         for_each_task_context_nr(ctxn)
10039                 perf_event_exit_task_context(child, ctxn);
10040
10041         /*
10042          * The perf_event_exit_task_context calls perf_event_task
10043          * with child's task_ctx, which generates EXIT events for
10044          * child contexts and sets child->perf_event_ctxp[] to NULL.
10045          * At this point we need to send EXIT events to cpu contexts.
10046          */
10047         perf_event_task(child, NULL, 0);
10048 }
10049
10050 static void perf_free_event(struct perf_event *event,
10051                             struct perf_event_context *ctx)
10052 {
10053         struct perf_event *parent = event->parent;
10054
10055         if (WARN_ON_ONCE(!parent))
10056                 return;
10057
10058         mutex_lock(&parent->child_mutex);
10059         list_del_init(&event->child_list);
10060         mutex_unlock(&parent->child_mutex);
10061
10062         put_event(parent);
10063
10064         raw_spin_lock_irq(&ctx->lock);
10065         perf_group_detach(event);
10066         list_del_event(event, ctx);
10067         raw_spin_unlock_irq(&ctx->lock);
10068         free_event(event);
10069 }
10070
10071 /*
10072  * Free an unexposed, unused context as created by inheritance by
10073  * perf_event_init_task below, used by fork() in case of fail.
10074  *
10075  * Not all locks are strictly required, but take them anyway to be nice and
10076  * help out with the lockdep assertions.
10077  */
10078 void perf_event_free_task(struct task_struct *task)
10079 {
10080         struct perf_event_context *ctx;
10081         struct perf_event *event, *tmp;
10082         int ctxn;
10083
10084         for_each_task_context_nr(ctxn) {
10085                 ctx = task->perf_event_ctxp[ctxn];
10086                 if (!ctx)
10087                         continue;
10088
10089                 mutex_lock(&ctx->mutex);
10090 again:
10091                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10092                                 group_entry)
10093                         perf_free_event(event, ctx);
10094
10095                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10096                                 group_entry)
10097                         perf_free_event(event, ctx);
10098
10099                 if (!list_empty(&ctx->pinned_groups) ||
10100                                 !list_empty(&ctx->flexible_groups))
10101                         goto again;
10102
10103                 mutex_unlock(&ctx->mutex);
10104
10105                 put_ctx(ctx);
10106         }
10107 }
10108
10109 void perf_event_delayed_put(struct task_struct *task)
10110 {
10111         int ctxn;
10112
10113         for_each_task_context_nr(ctxn)
10114                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10115 }
10116
10117 struct file *perf_event_get(unsigned int fd)
10118 {
10119         struct file *file;
10120
10121         file = fget_raw(fd);
10122         if (!file)
10123                 return ERR_PTR(-EBADF);
10124
10125         if (file->f_op != &perf_fops) {
10126                 fput(file);
10127                 return ERR_PTR(-EBADF);
10128         }
10129
10130         return file;
10131 }
10132
10133 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10134 {
10135         if (!event)
10136                 return ERR_PTR(-EINVAL);
10137
10138         return &event->attr;
10139 }
10140
10141 /*
10142  * inherit a event from parent task to child task:
10143  */
10144 static struct perf_event *
10145 inherit_event(struct perf_event *parent_event,
10146               struct task_struct *parent,
10147               struct perf_event_context *parent_ctx,
10148               struct task_struct *child,
10149               struct perf_event *group_leader,
10150               struct perf_event_context *child_ctx)
10151 {
10152         enum perf_event_active_state parent_state = parent_event->state;
10153         struct perf_event *child_event;
10154         unsigned long flags;
10155
10156         /*
10157          * Instead of creating recursive hierarchies of events,
10158          * we link inherited events back to the original parent,
10159          * which has a filp for sure, which we use as the reference
10160          * count:
10161          */
10162         if (parent_event->parent)
10163                 parent_event = parent_event->parent;
10164
10165         child_event = perf_event_alloc(&parent_event->attr,
10166                                            parent_event->cpu,
10167                                            child,
10168                                            group_leader, parent_event,
10169                                            NULL, NULL, -1);
10170         if (IS_ERR(child_event))
10171                 return child_event;
10172
10173         /*
10174          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10175          * must be under the same lock in order to serialize against
10176          * perf_event_release_kernel(), such that either we must observe
10177          * is_orphaned_event() or they will observe us on the child_list.
10178          */
10179         mutex_lock(&parent_event->child_mutex);
10180         if (is_orphaned_event(parent_event) ||
10181             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10182                 mutex_unlock(&parent_event->child_mutex);
10183                 free_event(child_event);
10184                 return NULL;
10185         }
10186
10187         get_ctx(child_ctx);
10188
10189         /*
10190          * Make the child state follow the state of the parent event,
10191          * not its attr.disabled bit.  We hold the parent's mutex,
10192          * so we won't race with perf_event_{en, dis}able_family.
10193          */
10194         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10195                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10196         else
10197                 child_event->state = PERF_EVENT_STATE_OFF;
10198
10199         if (parent_event->attr.freq) {
10200                 u64 sample_period = parent_event->hw.sample_period;
10201                 struct hw_perf_event *hwc = &child_event->hw;
10202
10203                 hwc->sample_period = sample_period;
10204                 hwc->last_period   = sample_period;
10205
10206                 local64_set(&hwc->period_left, sample_period);
10207         }
10208
10209         child_event->ctx = child_ctx;
10210         child_event->overflow_handler = parent_event->overflow_handler;
10211         child_event->overflow_handler_context
10212                 = parent_event->overflow_handler_context;
10213
10214         /*
10215          * Precalculate sample_data sizes
10216          */
10217         perf_event__header_size(child_event);
10218         perf_event__id_header_size(child_event);
10219
10220         /*
10221          * Link it up in the child's context:
10222          */
10223         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10224         add_event_to_ctx(child_event, child_ctx);
10225         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10226
10227         /*
10228          * Link this into the parent event's child list
10229          */
10230         list_add_tail(&child_event->child_list, &parent_event->child_list);
10231         mutex_unlock(&parent_event->child_mutex);
10232
10233         return child_event;
10234 }
10235
10236 static int inherit_group(struct perf_event *parent_event,
10237               struct task_struct *parent,
10238               struct perf_event_context *parent_ctx,
10239               struct task_struct *child,
10240               struct perf_event_context *child_ctx)
10241 {
10242         struct perf_event *leader;
10243         struct perf_event *sub;
10244         struct perf_event *child_ctr;
10245
10246         leader = inherit_event(parent_event, parent, parent_ctx,
10247                                  child, NULL, child_ctx);
10248         if (IS_ERR(leader))
10249                 return PTR_ERR(leader);
10250         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10251                 child_ctr = inherit_event(sub, parent, parent_ctx,
10252                                             child, leader, child_ctx);
10253                 if (IS_ERR(child_ctr))
10254                         return PTR_ERR(child_ctr);
10255         }
10256         return 0;
10257 }
10258
10259 static int
10260 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10261                    struct perf_event_context *parent_ctx,
10262                    struct task_struct *child, int ctxn,
10263                    int *inherited_all)
10264 {
10265         int ret;
10266         struct perf_event_context *child_ctx;
10267
10268         if (!event->attr.inherit) {
10269                 *inherited_all = 0;
10270                 return 0;
10271         }
10272
10273         child_ctx = child->perf_event_ctxp[ctxn];
10274         if (!child_ctx) {
10275                 /*
10276                  * This is executed from the parent task context, so
10277                  * inherit events that have been marked for cloning.
10278                  * First allocate and initialize a context for the
10279                  * child.
10280                  */
10281
10282                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10283                 if (!child_ctx)
10284                         return -ENOMEM;
10285
10286                 child->perf_event_ctxp[ctxn] = child_ctx;
10287         }
10288
10289         ret = inherit_group(event, parent, parent_ctx,
10290                             child, child_ctx);
10291
10292         if (ret)
10293                 *inherited_all = 0;
10294
10295         return ret;
10296 }
10297
10298 /*
10299  * Initialize the perf_event context in task_struct
10300  */
10301 static int perf_event_init_context(struct task_struct *child, int ctxn)
10302 {
10303         struct perf_event_context *child_ctx, *parent_ctx;
10304         struct perf_event_context *cloned_ctx;
10305         struct perf_event *event;
10306         struct task_struct *parent = current;
10307         int inherited_all = 1;
10308         unsigned long flags;
10309         int ret = 0;
10310
10311         if (likely(!parent->perf_event_ctxp[ctxn]))
10312                 return 0;
10313
10314         /*
10315          * If the parent's context is a clone, pin it so it won't get
10316          * swapped under us.
10317          */
10318         parent_ctx = perf_pin_task_context(parent, ctxn);
10319         if (!parent_ctx)
10320                 return 0;
10321
10322         /*
10323          * No need to check if parent_ctx != NULL here; since we saw
10324          * it non-NULL earlier, the only reason for it to become NULL
10325          * is if we exit, and since we're currently in the middle of
10326          * a fork we can't be exiting at the same time.
10327          */
10328
10329         /*
10330          * Lock the parent list. No need to lock the child - not PID
10331          * hashed yet and not running, so nobody can access it.
10332          */
10333         mutex_lock(&parent_ctx->mutex);
10334
10335         /*
10336          * We dont have to disable NMIs - we are only looking at
10337          * the list, not manipulating it:
10338          */
10339         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10340                 ret = inherit_task_group(event, parent, parent_ctx,
10341                                          child, ctxn, &inherited_all);
10342                 if (ret)
10343                         break;
10344         }
10345
10346         /*
10347          * We can't hold ctx->lock when iterating the ->flexible_group list due
10348          * to allocations, but we need to prevent rotation because
10349          * rotate_ctx() will change the list from interrupt context.
10350          */
10351         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10352         parent_ctx->rotate_disable = 1;
10353         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10354
10355         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10356                 ret = inherit_task_group(event, parent, parent_ctx,
10357                                          child, ctxn, &inherited_all);
10358                 if (ret)
10359                         break;
10360         }
10361
10362         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10363         parent_ctx->rotate_disable = 0;
10364
10365         child_ctx = child->perf_event_ctxp[ctxn];
10366
10367         if (child_ctx && inherited_all) {
10368                 /*
10369                  * Mark the child context as a clone of the parent
10370                  * context, or of whatever the parent is a clone of.
10371                  *
10372                  * Note that if the parent is a clone, the holding of
10373                  * parent_ctx->lock avoids it from being uncloned.
10374                  */
10375                 cloned_ctx = parent_ctx->parent_ctx;
10376                 if (cloned_ctx) {
10377                         child_ctx->parent_ctx = cloned_ctx;
10378                         child_ctx->parent_gen = parent_ctx->parent_gen;
10379                 } else {
10380                         child_ctx->parent_ctx = parent_ctx;
10381                         child_ctx->parent_gen = parent_ctx->generation;
10382                 }
10383                 get_ctx(child_ctx->parent_ctx);
10384         }
10385
10386         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10387         mutex_unlock(&parent_ctx->mutex);
10388
10389         perf_unpin_context(parent_ctx);
10390         put_ctx(parent_ctx);
10391
10392         return ret;
10393 }
10394
10395 /*
10396  * Initialize the perf_event context in task_struct
10397  */
10398 int perf_event_init_task(struct task_struct *child)
10399 {
10400         int ctxn, ret;
10401
10402         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10403         mutex_init(&child->perf_event_mutex);
10404         INIT_LIST_HEAD(&child->perf_event_list);
10405
10406         for_each_task_context_nr(ctxn) {
10407                 ret = perf_event_init_context(child, ctxn);
10408                 if (ret) {
10409                         perf_event_free_task(child);
10410                         return ret;
10411                 }
10412         }
10413
10414         return 0;
10415 }
10416
10417 static void __init perf_event_init_all_cpus(void)
10418 {
10419         struct swevent_htable *swhash;
10420         int cpu;
10421
10422         for_each_possible_cpu(cpu) {
10423                 swhash = &per_cpu(swevent_htable, cpu);
10424                 mutex_init(&swhash->hlist_mutex);
10425                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10426
10427                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10428                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10429         }
10430 }
10431
10432 int perf_event_init_cpu(unsigned int cpu)
10433 {
10434         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10435
10436         mutex_lock(&swhash->hlist_mutex);
10437         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10438                 struct swevent_hlist *hlist;
10439
10440                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10441                 WARN_ON(!hlist);
10442                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10443         }
10444         mutex_unlock(&swhash->hlist_mutex);
10445         return 0;
10446 }
10447
10448 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10449 static void __perf_event_exit_context(void *__info)
10450 {
10451         struct perf_event_context *ctx = __info;
10452         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10453         struct perf_event *event;
10454
10455         raw_spin_lock(&ctx->lock);
10456         list_for_each_entry(event, &ctx->event_list, event_entry)
10457                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10458         raw_spin_unlock(&ctx->lock);
10459 }
10460
10461 static void perf_event_exit_cpu_context(int cpu)
10462 {
10463         struct perf_event_context *ctx;
10464         struct pmu *pmu;
10465         int idx;
10466
10467         idx = srcu_read_lock(&pmus_srcu);
10468         list_for_each_entry_rcu(pmu, &pmus, entry) {
10469                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10470
10471                 mutex_lock(&ctx->mutex);
10472                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10473                 mutex_unlock(&ctx->mutex);
10474         }
10475         srcu_read_unlock(&pmus_srcu, idx);
10476 }
10477 #else
10478
10479 static void perf_event_exit_cpu_context(int cpu) { }
10480
10481 #endif
10482
10483 int perf_event_exit_cpu(unsigned int cpu)
10484 {
10485         perf_event_exit_cpu_context(cpu);
10486         return 0;
10487 }
10488
10489 static int
10490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10491 {
10492         int cpu;
10493
10494         for_each_online_cpu(cpu)
10495                 perf_event_exit_cpu(cpu);
10496
10497         return NOTIFY_OK;
10498 }
10499
10500 /*
10501  * Run the perf reboot notifier at the very last possible moment so that
10502  * the generic watchdog code runs as long as possible.
10503  */
10504 static struct notifier_block perf_reboot_notifier = {
10505         .notifier_call = perf_reboot,
10506         .priority = INT_MIN,
10507 };
10508
10509 void __init perf_event_init(void)
10510 {
10511         int ret;
10512
10513         idr_init(&pmu_idr);
10514
10515         perf_event_init_all_cpus();
10516         init_srcu_struct(&pmus_srcu);
10517         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10518         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10519         perf_pmu_register(&perf_task_clock, NULL, -1);
10520         perf_tp_register();
10521         perf_event_init_cpu(smp_processor_id());
10522         register_reboot_notifier(&perf_reboot_notifier);
10523
10524         ret = init_hw_breakpoint();
10525         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10526
10527         /*
10528          * Build time assertion that we keep the data_head at the intended
10529          * location.  IOW, validation we got the __reserved[] size right.
10530          */
10531         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10532                      != 1024);
10533 }
10534
10535 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10536                               char *page)
10537 {
10538         struct perf_pmu_events_attr *pmu_attr =
10539                 container_of(attr, struct perf_pmu_events_attr, attr);
10540
10541         if (pmu_attr->event_str)
10542                 return sprintf(page, "%s\n", pmu_attr->event_str);
10543
10544         return 0;
10545 }
10546 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10547
10548 static int __init perf_event_sysfs_init(void)
10549 {
10550         struct pmu *pmu;
10551         int ret;
10552
10553         mutex_lock(&pmus_lock);
10554
10555         ret = bus_register(&pmu_bus);
10556         if (ret)
10557                 goto unlock;
10558
10559         list_for_each_entry(pmu, &pmus, entry) {
10560                 if (!pmu->name || pmu->type < 0)
10561                         continue;
10562
10563                 ret = pmu_dev_alloc(pmu);
10564                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10565         }
10566         pmu_bus_running = 1;
10567         ret = 0;
10568
10569 unlock:
10570         mutex_unlock(&pmus_lock);
10571
10572         return ret;
10573 }
10574 device_initcall(perf_event_sysfs_init);
10575
10576 #ifdef CONFIG_CGROUP_PERF
10577 static struct cgroup_subsys_state *
10578 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10579 {
10580         struct perf_cgroup *jc;
10581
10582         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10583         if (!jc)
10584                 return ERR_PTR(-ENOMEM);
10585
10586         jc->info = alloc_percpu(struct perf_cgroup_info);
10587         if (!jc->info) {
10588                 kfree(jc);
10589                 return ERR_PTR(-ENOMEM);
10590         }
10591
10592         return &jc->css;
10593 }
10594
10595 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10596 {
10597         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10598
10599         free_percpu(jc->info);
10600         kfree(jc);
10601 }
10602
10603 static int __perf_cgroup_move(void *info)
10604 {
10605         struct task_struct *task = info;
10606         rcu_read_lock();
10607         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10608         rcu_read_unlock();
10609         return 0;
10610 }
10611
10612 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10613 {
10614         struct task_struct *task;
10615         struct cgroup_subsys_state *css;
10616
10617         cgroup_taskset_for_each(task, css, tset)
10618                 task_function_call(task, __perf_cgroup_move, task);
10619 }
10620
10621 struct cgroup_subsys perf_event_cgrp_subsys = {
10622         .css_alloc      = perf_cgroup_css_alloc,
10623         .css_free       = perf_cgroup_css_free,
10624         .attach         = perf_cgroup_attach,
10625 };
10626 #endif /* CONFIG_CGROUP_PERF */