Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE         100000
366 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379         u64 tmp = perf_sample_period_ns;
380
381         tmp *= sysctl_perf_cpu_time_max_percent;
382         tmp = div_u64(tmp, 100);
383         if (!tmp)
384                 tmp = 1;
385
386         WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392                 void __user *buffer, size_t *lenp,
393                 loff_t *ppos)
394 {
395         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397         if (ret || !write)
398                 return ret;
399
400         /*
401          * If throttling is disabled don't allow the write:
402          */
403         if (sysctl_perf_cpu_time_max_percent == 100 ||
404             sysctl_perf_cpu_time_max_percent == 0)
405                 return -EINVAL;
406
407         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409         update_perf_cpu_limits();
410
411         return 0;
412 }
413
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417                                 void __user *buffer, size_t *lenp,
418                                 loff_t *ppos)
419 {
420         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422         if (ret || !write)
423                 return ret;
424
425         if (sysctl_perf_cpu_time_max_percent == 100 ||
426             sysctl_perf_cpu_time_max_percent == 0) {
427                 printk(KERN_WARNING
428                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429                 WRITE_ONCE(perf_sample_allowed_ns, 0);
430         } else {
431                 update_perf_cpu_limits();
432         }
433
434         return 0;
435 }
436
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445
446 static u64 __report_avg;
447 static u64 __report_allowed;
448
449 static void perf_duration_warn(struct irq_work *w)
450 {
451         printk_ratelimited(KERN_INFO
452                 "perf: interrupt took too long (%lld > %lld), lowering "
453                 "kernel.perf_event_max_sample_rate to %d\n",
454                 __report_avg, __report_allowed,
455                 sysctl_perf_event_sample_rate);
456 }
457
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463         u64 running_len;
464         u64 avg_len;
465         u32 max;
466
467         if (max_len == 0)
468                 return;
469
470         /* Decay the counter by 1 average sample. */
471         running_len = __this_cpu_read(running_sample_length);
472         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473         running_len += sample_len_ns;
474         __this_cpu_write(running_sample_length, running_len);
475
476         /*
477          * Note: this will be biased artifically low until we have
478          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479          * from having to maintain a count.
480          */
481         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482         if (avg_len <= max_len)
483                 return;
484
485         __report_avg = avg_len;
486         __report_allowed = max_len;
487
488         /*
489          * Compute a throttle threshold 25% below the current duration.
490          */
491         avg_len += avg_len / 4;
492         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493         if (avg_len < max)
494                 max /= (u32)avg_len;
495         else
496                 max = 1;
497
498         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499         WRITE_ONCE(max_samples_per_tick, max);
500
501         sysctl_perf_event_sample_rate = max * HZ;
502         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503
504         if (!irq_work_queue(&perf_duration_work)) {
505                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506                              "kernel.perf_event_max_sample_rate to %d\n",
507                              __report_avg, __report_allowed,
508                              sysctl_perf_event_sample_rate);
509         }
510 }
511
512 static atomic64_t perf_event_id;
513
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515                               enum event_type_t event_type);
516
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518                              enum event_type_t event_type,
519                              struct task_struct *task);
520
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523
524 void __weak perf_event_print_debug(void)        { }
525
526 extern __weak const char *perf_pmu_name(void)
527 {
528         return "pmu";
529 }
530
531 static inline u64 perf_clock(void)
532 {
533         return local_clock();
534 }
535
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538         return event->clock();
539 }
540
541 #ifdef CONFIG_CGROUP_PERF
542
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546         struct perf_event_context *ctx = event->ctx;
547         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
549         /* @event doesn't care about cgroup */
550         if (!event->cgrp)
551                 return true;
552
553         /* wants specific cgroup scope but @cpuctx isn't associated with any */
554         if (!cpuctx->cgrp)
555                 return false;
556
557         /*
558          * Cgroup scoping is recursive.  An event enabled for a cgroup is
559          * also enabled for all its descendant cgroups.  If @cpuctx's
560          * cgroup is a descendant of @event's (the test covers identity
561          * case), it's a match.
562          */
563         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564                                     event->cgrp->css.cgroup);
565 }
566
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569         css_put(&event->cgrp->css);
570         event->cgrp = NULL;
571 }
572
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575         return event->cgrp != NULL;
576 }
577
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580         struct perf_cgroup_info *t;
581
582         t = per_cpu_ptr(event->cgrp->info, event->cpu);
583         return t->time;
584 }
585
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588         struct perf_cgroup_info *info;
589         u64 now;
590
591         now = perf_clock();
592
593         info = this_cpu_ptr(cgrp->info);
594
595         info->time += now - info->timestamp;
596         info->timestamp = now;
597 }
598
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602         if (cgrp_out)
603                 __update_cgrp_time(cgrp_out);
604 }
605
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608         struct perf_cgroup *cgrp;
609
610         /*
611          * ensure we access cgroup data only when needed and
612          * when we know the cgroup is pinned (css_get)
613          */
614         if (!is_cgroup_event(event))
615                 return;
616
617         cgrp = perf_cgroup_from_task(current, event->ctx);
618         /*
619          * Do not update time when cgroup is not active
620          */
621         if (cgrp == event->cgrp)
622                 __update_cgrp_time(event->cgrp);
623 }
624
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627                           struct perf_event_context *ctx)
628 {
629         struct perf_cgroup *cgrp;
630         struct perf_cgroup_info *info;
631
632         /*
633          * ctx->lock held by caller
634          * ensure we do not access cgroup data
635          * unless we have the cgroup pinned (css_get)
636          */
637         if (!task || !ctx->nr_cgroups)
638                 return;
639
640         cgrp = perf_cgroup_from_task(task, ctx);
641         info = this_cpu_ptr(cgrp->info);
642         info->timestamp = ctx->timestamp;
643 }
644
645 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
647
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656         struct perf_cpu_context *cpuctx;
657         struct pmu *pmu;
658         unsigned long flags;
659
660         /*
661          * disable interrupts to avoid geting nr_cgroup
662          * changes via __perf_event_disable(). Also
663          * avoids preemption.
664          */
665         local_irq_save(flags);
666
667         /*
668          * we reschedule only in the presence of cgroup
669          * constrained events.
670          */
671
672         list_for_each_entry_rcu(pmu, &pmus, entry) {
673                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674                 if (cpuctx->unique_pmu != pmu)
675                         continue; /* ensure we process each cpuctx once */
676
677                 /*
678                  * perf_cgroup_events says at least one
679                  * context on this CPU has cgroup events.
680                  *
681                  * ctx->nr_cgroups reports the number of cgroup
682                  * events for a context.
683                  */
684                 if (cpuctx->ctx.nr_cgroups > 0) {
685                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686                         perf_pmu_disable(cpuctx->ctx.pmu);
687
688                         if (mode & PERF_CGROUP_SWOUT) {
689                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690                                 /*
691                                  * must not be done before ctxswout due
692                                  * to event_filter_match() in event_sched_out()
693                                  */
694                                 cpuctx->cgrp = NULL;
695                         }
696
697                         if (mode & PERF_CGROUP_SWIN) {
698                                 WARN_ON_ONCE(cpuctx->cgrp);
699                                 /*
700                                  * set cgrp before ctxsw in to allow
701                                  * event_filter_match() to not have to pass
702                                  * task around
703                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
704                                  * because cgorup events are only per-cpu
705                                  */
706                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708                         }
709                         perf_pmu_enable(cpuctx->ctx.pmu);
710                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711                 }
712         }
713
714         local_irq_restore(flags);
715 }
716
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718                                          struct task_struct *next)
719 {
720         struct perf_cgroup *cgrp1;
721         struct perf_cgroup *cgrp2 = NULL;
722
723         rcu_read_lock();
724         /*
725          * we come here when we know perf_cgroup_events > 0
726          * we do not need to pass the ctx here because we know
727          * we are holding the rcu lock
728          */
729         cgrp1 = perf_cgroup_from_task(task, NULL);
730         cgrp2 = perf_cgroup_from_task(next, NULL);
731
732         /*
733          * only schedule out current cgroup events if we know
734          * that we are switching to a different cgroup. Otherwise,
735          * do no touch the cgroup events.
736          */
737         if (cgrp1 != cgrp2)
738                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739
740         rcu_read_unlock();
741 }
742
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744                                         struct task_struct *task)
745 {
746         struct perf_cgroup *cgrp1;
747         struct perf_cgroup *cgrp2 = NULL;
748
749         rcu_read_lock();
750         /*
751          * we come here when we know perf_cgroup_events > 0
752          * we do not need to pass the ctx here because we know
753          * we are holding the rcu lock
754          */
755         cgrp1 = perf_cgroup_from_task(task, NULL);
756         cgrp2 = perf_cgroup_from_task(prev, NULL);
757
758         /*
759          * only need to schedule in cgroup events if we are changing
760          * cgroup during ctxsw. Cgroup events were not scheduled
761          * out of ctxsw out if that was not the case.
762          */
763         if (cgrp1 != cgrp2)
764                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765
766         rcu_read_unlock();
767 }
768
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770                                       struct perf_event_attr *attr,
771                                       struct perf_event *group_leader)
772 {
773         struct perf_cgroup *cgrp;
774         struct cgroup_subsys_state *css;
775         struct fd f = fdget(fd);
776         int ret = 0;
777
778         if (!f.file)
779                 return -EBADF;
780
781         css = css_tryget_online_from_dir(f.file->f_path.dentry,
782                                          &perf_event_cgrp_subsys);
783         if (IS_ERR(css)) {
784                 ret = PTR_ERR(css);
785                 goto out;
786         }
787
788         cgrp = container_of(css, struct perf_cgroup, css);
789         event->cgrp = cgrp;
790
791         /*
792          * all events in a group must monitor
793          * the same cgroup because a task belongs
794          * to only one perf cgroup at a time
795          */
796         if (group_leader && group_leader->cgrp != cgrp) {
797                 perf_detach_cgroup(event);
798                 ret = -EINVAL;
799         }
800 out:
801         fdput(f);
802         return ret;
803 }
804
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808         struct perf_cgroup_info *t;
809         t = per_cpu_ptr(event->cgrp->info, event->cpu);
810         event->shadow_ctx_time = now - t->timestamp;
811 }
812
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816         /*
817          * when the current task's perf cgroup does not match
818          * the event's, we need to remember to call the
819          * perf_mark_enable() function the first time a task with
820          * a matching perf cgroup is scheduled in.
821          */
822         if (is_cgroup_event(event) && !perf_cgroup_match(event))
823                 event->cgrp_defer_enabled = 1;
824 }
825
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828                          struct perf_event_context *ctx)
829 {
830         struct perf_event *sub;
831         u64 tstamp = perf_event_time(event);
832
833         if (!event->cgrp_defer_enabled)
834                 return;
835
836         event->cgrp_defer_enabled = 0;
837
838         event->tstamp_enabled = tstamp - event->total_time_enabled;
839         list_for_each_entry(sub, &event->sibling_list, group_entry) {
840                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842                         sub->cgrp_defer_enabled = 0;
843                 }
844         }
845 }
846
847 /*
848  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
849  * cleared when last cgroup event is removed.
850  */
851 static inline void
852 list_update_cgroup_event(struct perf_event *event,
853                          struct perf_event_context *ctx, bool add)
854 {
855         struct perf_cpu_context *cpuctx;
856
857         if (!is_cgroup_event(event))
858                 return;
859
860         if (add && ctx->nr_cgroups++)
861                 return;
862         else if (!add && --ctx->nr_cgroups)
863                 return;
864         /*
865          * Because cgroup events are always per-cpu events,
866          * this will always be called from the right CPU.
867          */
868         cpuctx = __get_cpu_context(ctx);
869         cpuctx->cgrp = add ? event->cgrp : NULL;
870 }
871
872 #else /* !CONFIG_CGROUP_PERF */
873
874 static inline bool
875 perf_cgroup_match(struct perf_event *event)
876 {
877         return true;
878 }
879
880 static inline void perf_detach_cgroup(struct perf_event *event)
881 {}
882
883 static inline int is_cgroup_event(struct perf_event *event)
884 {
885         return 0;
886 }
887
888 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
889 {
890         return 0;
891 }
892
893 static inline void update_cgrp_time_from_event(struct perf_event *event)
894 {
895 }
896
897 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
898 {
899 }
900
901 static inline void perf_cgroup_sched_out(struct task_struct *task,
902                                          struct task_struct *next)
903 {
904 }
905
906 static inline void perf_cgroup_sched_in(struct task_struct *prev,
907                                         struct task_struct *task)
908 {
909 }
910
911 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
912                                       struct perf_event_attr *attr,
913                                       struct perf_event *group_leader)
914 {
915         return -EINVAL;
916 }
917
918 static inline void
919 perf_cgroup_set_timestamp(struct task_struct *task,
920                           struct perf_event_context *ctx)
921 {
922 }
923
924 void
925 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
926 {
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 }
933
934 static inline u64 perf_cgroup_event_time(struct perf_event *event)
935 {
936         return 0;
937 }
938
939 static inline void
940 perf_cgroup_defer_enabled(struct perf_event *event)
941 {
942 }
943
944 static inline void
945 perf_cgroup_mark_enabled(struct perf_event *event,
946                          struct perf_event_context *ctx)
947 {
948 }
949
950 static inline void
951 list_update_cgroup_event(struct perf_event *event,
952                          struct perf_event_context *ctx, bool add)
953 {
954 }
955
956 #endif
957
958 /*
959  * set default to be dependent on timer tick just
960  * like original code
961  */
962 #define PERF_CPU_HRTIMER (1000 / HZ)
963 /*
964  * function must be called with interrupts disbled
965  */
966 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
967 {
968         struct perf_cpu_context *cpuctx;
969         int rotations = 0;
970
971         WARN_ON(!irqs_disabled());
972
973         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
974         rotations = perf_rotate_context(cpuctx);
975
976         raw_spin_lock(&cpuctx->hrtimer_lock);
977         if (rotations)
978                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
979         else
980                 cpuctx->hrtimer_active = 0;
981         raw_spin_unlock(&cpuctx->hrtimer_lock);
982
983         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
984 }
985
986 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
987 {
988         struct hrtimer *timer = &cpuctx->hrtimer;
989         struct pmu *pmu = cpuctx->ctx.pmu;
990         u64 interval;
991
992         /* no multiplexing needed for SW PMU */
993         if (pmu->task_ctx_nr == perf_sw_context)
994                 return;
995
996         /*
997          * check default is sane, if not set then force to
998          * default interval (1/tick)
999          */
1000         interval = pmu->hrtimer_interval_ms;
1001         if (interval < 1)
1002                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1003
1004         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1005
1006         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1007         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1008         timer->function = perf_mux_hrtimer_handler;
1009 }
1010
1011 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1012 {
1013         struct hrtimer *timer = &cpuctx->hrtimer;
1014         struct pmu *pmu = cpuctx->ctx.pmu;
1015         unsigned long flags;
1016
1017         /* not for SW PMU */
1018         if (pmu->task_ctx_nr == perf_sw_context)
1019                 return 0;
1020
1021         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1022         if (!cpuctx->hrtimer_active) {
1023                 cpuctx->hrtimer_active = 1;
1024                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1025                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1026         }
1027         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1028
1029         return 0;
1030 }
1031
1032 void perf_pmu_disable(struct pmu *pmu)
1033 {
1034         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1035         if (!(*count)++)
1036                 pmu->pmu_disable(pmu);
1037 }
1038
1039 void perf_pmu_enable(struct pmu *pmu)
1040 {
1041         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1042         if (!--(*count))
1043                 pmu->pmu_enable(pmu);
1044 }
1045
1046 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1047
1048 /*
1049  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1050  * perf_event_task_tick() are fully serialized because they're strictly cpu
1051  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1052  * disabled, while perf_event_task_tick is called from IRQ context.
1053  */
1054 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1055 {
1056         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1057
1058         WARN_ON(!irqs_disabled());
1059
1060         WARN_ON(!list_empty(&ctx->active_ctx_list));
1061
1062         list_add(&ctx->active_ctx_list, head);
1063 }
1064
1065 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1066 {
1067         WARN_ON(!irqs_disabled());
1068
1069         WARN_ON(list_empty(&ctx->active_ctx_list));
1070
1071         list_del_init(&ctx->active_ctx_list);
1072 }
1073
1074 static void get_ctx(struct perf_event_context *ctx)
1075 {
1076         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1077 }
1078
1079 static void free_ctx(struct rcu_head *head)
1080 {
1081         struct perf_event_context *ctx;
1082
1083         ctx = container_of(head, struct perf_event_context, rcu_head);
1084         kfree(ctx->task_ctx_data);
1085         kfree(ctx);
1086 }
1087
1088 static void put_ctx(struct perf_event_context *ctx)
1089 {
1090         if (atomic_dec_and_test(&ctx->refcount)) {
1091                 if (ctx->parent_ctx)
1092                         put_ctx(ctx->parent_ctx);
1093                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1094                         put_task_struct(ctx->task);
1095                 call_rcu(&ctx->rcu_head, free_ctx);
1096         }
1097 }
1098
1099 /*
1100  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1101  * perf_pmu_migrate_context() we need some magic.
1102  *
1103  * Those places that change perf_event::ctx will hold both
1104  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1105  *
1106  * Lock ordering is by mutex address. There are two other sites where
1107  * perf_event_context::mutex nests and those are:
1108  *
1109  *  - perf_event_exit_task_context()    [ child , 0 ]
1110  *      perf_event_exit_event()
1111  *        put_event()                   [ parent, 1 ]
1112  *
1113  *  - perf_event_init_context()         [ parent, 0 ]
1114  *      inherit_task_group()
1115  *        inherit_group()
1116  *          inherit_event()
1117  *            perf_event_alloc()
1118  *              perf_init_event()
1119  *                perf_try_init_event() [ child , 1 ]
1120  *
1121  * While it appears there is an obvious deadlock here -- the parent and child
1122  * nesting levels are inverted between the two. This is in fact safe because
1123  * life-time rules separate them. That is an exiting task cannot fork, and a
1124  * spawning task cannot (yet) exit.
1125  *
1126  * But remember that that these are parent<->child context relations, and
1127  * migration does not affect children, therefore these two orderings should not
1128  * interact.
1129  *
1130  * The change in perf_event::ctx does not affect children (as claimed above)
1131  * because the sys_perf_event_open() case will install a new event and break
1132  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1133  * concerned with cpuctx and that doesn't have children.
1134  *
1135  * The places that change perf_event::ctx will issue:
1136  *
1137  *   perf_remove_from_context();
1138  *   synchronize_rcu();
1139  *   perf_install_in_context();
1140  *
1141  * to affect the change. The remove_from_context() + synchronize_rcu() should
1142  * quiesce the event, after which we can install it in the new location. This
1143  * means that only external vectors (perf_fops, prctl) can perturb the event
1144  * while in transit. Therefore all such accessors should also acquire
1145  * perf_event_context::mutex to serialize against this.
1146  *
1147  * However; because event->ctx can change while we're waiting to acquire
1148  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1149  * function.
1150  *
1151  * Lock order:
1152  *    cred_guard_mutex
1153  *      task_struct::perf_event_mutex
1154  *        perf_event_context::mutex
1155  *          perf_event::child_mutex;
1156  *            perf_event_context::lock
1157  *          perf_event::mmap_mutex
1158  *          mmap_sem
1159  */
1160 static struct perf_event_context *
1161 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1162 {
1163         struct perf_event_context *ctx;
1164
1165 again:
1166         rcu_read_lock();
1167         ctx = ACCESS_ONCE(event->ctx);
1168         if (!atomic_inc_not_zero(&ctx->refcount)) {
1169                 rcu_read_unlock();
1170                 goto again;
1171         }
1172         rcu_read_unlock();
1173
1174         mutex_lock_nested(&ctx->mutex, nesting);
1175         if (event->ctx != ctx) {
1176                 mutex_unlock(&ctx->mutex);
1177                 put_ctx(ctx);
1178                 goto again;
1179         }
1180
1181         return ctx;
1182 }
1183
1184 static inline struct perf_event_context *
1185 perf_event_ctx_lock(struct perf_event *event)
1186 {
1187         return perf_event_ctx_lock_nested(event, 0);
1188 }
1189
1190 static void perf_event_ctx_unlock(struct perf_event *event,
1191                                   struct perf_event_context *ctx)
1192 {
1193         mutex_unlock(&ctx->mutex);
1194         put_ctx(ctx);
1195 }
1196
1197 /*
1198  * This must be done under the ctx->lock, such as to serialize against
1199  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1200  * calling scheduler related locks and ctx->lock nests inside those.
1201  */
1202 static __must_check struct perf_event_context *
1203 unclone_ctx(struct perf_event_context *ctx)
1204 {
1205         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1206
1207         lockdep_assert_held(&ctx->lock);
1208
1209         if (parent_ctx)
1210                 ctx->parent_ctx = NULL;
1211         ctx->generation++;
1212
1213         return parent_ctx;
1214 }
1215
1216 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1217 {
1218         /*
1219          * only top level events have the pid namespace they were created in
1220          */
1221         if (event->parent)
1222                 event = event->parent;
1223
1224         return task_tgid_nr_ns(p, event->ns);
1225 }
1226
1227 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1228 {
1229         /*
1230          * only top level events have the pid namespace they were created in
1231          */
1232         if (event->parent)
1233                 event = event->parent;
1234
1235         return task_pid_nr_ns(p, event->ns);
1236 }
1237
1238 /*
1239  * If we inherit events we want to return the parent event id
1240  * to userspace.
1241  */
1242 static u64 primary_event_id(struct perf_event *event)
1243 {
1244         u64 id = event->id;
1245
1246         if (event->parent)
1247                 id = event->parent->id;
1248
1249         return id;
1250 }
1251
1252 /*
1253  * Get the perf_event_context for a task and lock it.
1254  *
1255  * This has to cope with with the fact that until it is locked,
1256  * the context could get moved to another task.
1257  */
1258 static struct perf_event_context *
1259 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1260 {
1261         struct perf_event_context *ctx;
1262
1263 retry:
1264         /*
1265          * One of the few rules of preemptible RCU is that one cannot do
1266          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1267          * part of the read side critical section was irqs-enabled -- see
1268          * rcu_read_unlock_special().
1269          *
1270          * Since ctx->lock nests under rq->lock we must ensure the entire read
1271          * side critical section has interrupts disabled.
1272          */
1273         local_irq_save(*flags);
1274         rcu_read_lock();
1275         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1276         if (ctx) {
1277                 /*
1278                  * If this context is a clone of another, it might
1279                  * get swapped for another underneath us by
1280                  * perf_event_task_sched_out, though the
1281                  * rcu_read_lock() protects us from any context
1282                  * getting freed.  Lock the context and check if it
1283                  * got swapped before we could get the lock, and retry
1284                  * if so.  If we locked the right context, then it
1285                  * can't get swapped on us any more.
1286                  */
1287                 raw_spin_lock(&ctx->lock);
1288                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1289                         raw_spin_unlock(&ctx->lock);
1290                         rcu_read_unlock();
1291                         local_irq_restore(*flags);
1292                         goto retry;
1293                 }
1294
1295                 if (ctx->task == TASK_TOMBSTONE ||
1296                     !atomic_inc_not_zero(&ctx->refcount)) {
1297                         raw_spin_unlock(&ctx->lock);
1298                         ctx = NULL;
1299                 } else {
1300                         WARN_ON_ONCE(ctx->task != task);
1301                 }
1302         }
1303         rcu_read_unlock();
1304         if (!ctx)
1305                 local_irq_restore(*flags);
1306         return ctx;
1307 }
1308
1309 /*
1310  * Get the context for a task and increment its pin_count so it
1311  * can't get swapped to another task.  This also increments its
1312  * reference count so that the context can't get freed.
1313  */
1314 static struct perf_event_context *
1315 perf_pin_task_context(struct task_struct *task, int ctxn)
1316 {
1317         struct perf_event_context *ctx;
1318         unsigned long flags;
1319
1320         ctx = perf_lock_task_context(task, ctxn, &flags);
1321         if (ctx) {
1322                 ++ctx->pin_count;
1323                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1324         }
1325         return ctx;
1326 }
1327
1328 static void perf_unpin_context(struct perf_event_context *ctx)
1329 {
1330         unsigned long flags;
1331
1332         raw_spin_lock_irqsave(&ctx->lock, flags);
1333         --ctx->pin_count;
1334         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1335 }
1336
1337 /*
1338  * Update the record of the current time in a context.
1339  */
1340 static void update_context_time(struct perf_event_context *ctx)
1341 {
1342         u64 now = perf_clock();
1343
1344         ctx->time += now - ctx->timestamp;
1345         ctx->timestamp = now;
1346 }
1347
1348 static u64 perf_event_time(struct perf_event *event)
1349 {
1350         struct perf_event_context *ctx = event->ctx;
1351
1352         if (is_cgroup_event(event))
1353                 return perf_cgroup_event_time(event);
1354
1355         return ctx ? ctx->time : 0;
1356 }
1357
1358 /*
1359  * Update the total_time_enabled and total_time_running fields for a event.
1360  */
1361 static void update_event_times(struct perf_event *event)
1362 {
1363         struct perf_event_context *ctx = event->ctx;
1364         u64 run_end;
1365
1366         lockdep_assert_held(&ctx->lock);
1367
1368         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1369             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1370                 return;
1371
1372         /*
1373          * in cgroup mode, time_enabled represents
1374          * the time the event was enabled AND active
1375          * tasks were in the monitored cgroup. This is
1376          * independent of the activity of the context as
1377          * there may be a mix of cgroup and non-cgroup events.
1378          *
1379          * That is why we treat cgroup events differently
1380          * here.
1381          */
1382         if (is_cgroup_event(event))
1383                 run_end = perf_cgroup_event_time(event);
1384         else if (ctx->is_active)
1385                 run_end = ctx->time;
1386         else
1387                 run_end = event->tstamp_stopped;
1388
1389         event->total_time_enabled = run_end - event->tstamp_enabled;
1390
1391         if (event->state == PERF_EVENT_STATE_INACTIVE)
1392                 run_end = event->tstamp_stopped;
1393         else
1394                 run_end = perf_event_time(event);
1395
1396         event->total_time_running = run_end - event->tstamp_running;
1397
1398 }
1399
1400 /*
1401  * Update total_time_enabled and total_time_running for all events in a group.
1402  */
1403 static void update_group_times(struct perf_event *leader)
1404 {
1405         struct perf_event *event;
1406
1407         update_event_times(leader);
1408         list_for_each_entry(event, &leader->sibling_list, group_entry)
1409                 update_event_times(event);
1410 }
1411
1412 static struct list_head *
1413 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1414 {
1415         if (event->attr.pinned)
1416                 return &ctx->pinned_groups;
1417         else
1418                 return &ctx->flexible_groups;
1419 }
1420
1421 /*
1422  * Add a event from the lists for its context.
1423  * Must be called with ctx->mutex and ctx->lock held.
1424  */
1425 static void
1426 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1427 {
1428
1429         lockdep_assert_held(&ctx->lock);
1430
1431         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1432         event->attach_state |= PERF_ATTACH_CONTEXT;
1433
1434         /*
1435          * If we're a stand alone event or group leader, we go to the context
1436          * list, group events are kept attached to the group so that
1437          * perf_group_detach can, at all times, locate all siblings.
1438          */
1439         if (event->group_leader == event) {
1440                 struct list_head *list;
1441
1442                 if (is_software_event(event))
1443                         event->group_flags |= PERF_GROUP_SOFTWARE;
1444
1445                 list = ctx_group_list(event, ctx);
1446                 list_add_tail(&event->group_entry, list);
1447         }
1448
1449         list_update_cgroup_event(event, ctx, true);
1450
1451         list_add_rcu(&event->event_entry, &ctx->event_list);
1452         ctx->nr_events++;
1453         if (event->attr.inherit_stat)
1454                 ctx->nr_stat++;
1455
1456         ctx->generation++;
1457 }
1458
1459 /*
1460  * Initialize event state based on the perf_event_attr::disabled.
1461  */
1462 static inline void perf_event__state_init(struct perf_event *event)
1463 {
1464         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1465                                               PERF_EVENT_STATE_INACTIVE;
1466 }
1467
1468 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1469 {
1470         int entry = sizeof(u64); /* value */
1471         int size = 0;
1472         int nr = 1;
1473
1474         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1475                 size += sizeof(u64);
1476
1477         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1478                 size += sizeof(u64);
1479
1480         if (event->attr.read_format & PERF_FORMAT_ID)
1481                 entry += sizeof(u64);
1482
1483         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1484                 nr += nr_siblings;
1485                 size += sizeof(u64);
1486         }
1487
1488         size += entry * nr;
1489         event->read_size = size;
1490 }
1491
1492 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1493 {
1494         struct perf_sample_data *data;
1495         u16 size = 0;
1496
1497         if (sample_type & PERF_SAMPLE_IP)
1498                 size += sizeof(data->ip);
1499
1500         if (sample_type & PERF_SAMPLE_ADDR)
1501                 size += sizeof(data->addr);
1502
1503         if (sample_type & PERF_SAMPLE_PERIOD)
1504                 size += sizeof(data->period);
1505
1506         if (sample_type & PERF_SAMPLE_WEIGHT)
1507                 size += sizeof(data->weight);
1508
1509         if (sample_type & PERF_SAMPLE_READ)
1510                 size += event->read_size;
1511
1512         if (sample_type & PERF_SAMPLE_DATA_SRC)
1513                 size += sizeof(data->data_src.val);
1514
1515         if (sample_type & PERF_SAMPLE_TRANSACTION)
1516                 size += sizeof(data->txn);
1517
1518         event->header_size = size;
1519 }
1520
1521 /*
1522  * Called at perf_event creation and when events are attached/detached from a
1523  * group.
1524  */
1525 static void perf_event__header_size(struct perf_event *event)
1526 {
1527         __perf_event_read_size(event,
1528                                event->group_leader->nr_siblings);
1529         __perf_event_header_size(event, event->attr.sample_type);
1530 }
1531
1532 static void perf_event__id_header_size(struct perf_event *event)
1533 {
1534         struct perf_sample_data *data;
1535         u64 sample_type = event->attr.sample_type;
1536         u16 size = 0;
1537
1538         if (sample_type & PERF_SAMPLE_TID)
1539                 size += sizeof(data->tid_entry);
1540
1541         if (sample_type & PERF_SAMPLE_TIME)
1542                 size += sizeof(data->time);
1543
1544         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1545                 size += sizeof(data->id);
1546
1547         if (sample_type & PERF_SAMPLE_ID)
1548                 size += sizeof(data->id);
1549
1550         if (sample_type & PERF_SAMPLE_STREAM_ID)
1551                 size += sizeof(data->stream_id);
1552
1553         if (sample_type & PERF_SAMPLE_CPU)
1554                 size += sizeof(data->cpu_entry);
1555
1556         event->id_header_size = size;
1557 }
1558
1559 static bool perf_event_validate_size(struct perf_event *event)
1560 {
1561         /*
1562          * The values computed here will be over-written when we actually
1563          * attach the event.
1564          */
1565         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1566         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1567         perf_event__id_header_size(event);
1568
1569         /*
1570          * Sum the lot; should not exceed the 64k limit we have on records.
1571          * Conservative limit to allow for callchains and other variable fields.
1572          */
1573         if (event->read_size + event->header_size +
1574             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1575                 return false;
1576
1577         return true;
1578 }
1579
1580 static void perf_group_attach(struct perf_event *event)
1581 {
1582         struct perf_event *group_leader = event->group_leader, *pos;
1583
1584         /*
1585          * We can have double attach due to group movement in perf_event_open.
1586          */
1587         if (event->attach_state & PERF_ATTACH_GROUP)
1588                 return;
1589
1590         event->attach_state |= PERF_ATTACH_GROUP;
1591
1592         if (group_leader == event)
1593                 return;
1594
1595         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1596
1597         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1598                         !is_software_event(event))
1599                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1600
1601         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1602         group_leader->nr_siblings++;
1603
1604         perf_event__header_size(group_leader);
1605
1606         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1607                 perf_event__header_size(pos);
1608 }
1609
1610 /*
1611  * Remove a event from the lists for its context.
1612  * Must be called with ctx->mutex and ctx->lock held.
1613  */
1614 static void
1615 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1616 {
1617         WARN_ON_ONCE(event->ctx != ctx);
1618         lockdep_assert_held(&ctx->lock);
1619
1620         /*
1621          * We can have double detach due to exit/hot-unplug + close.
1622          */
1623         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1624                 return;
1625
1626         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1627
1628         list_update_cgroup_event(event, ctx, false);
1629
1630         ctx->nr_events--;
1631         if (event->attr.inherit_stat)
1632                 ctx->nr_stat--;
1633
1634         list_del_rcu(&event->event_entry);
1635
1636         if (event->group_leader == event)
1637                 list_del_init(&event->group_entry);
1638
1639         update_group_times(event);
1640
1641         /*
1642          * If event was in error state, then keep it
1643          * that way, otherwise bogus counts will be
1644          * returned on read(). The only way to get out
1645          * of error state is by explicit re-enabling
1646          * of the event
1647          */
1648         if (event->state > PERF_EVENT_STATE_OFF)
1649                 event->state = PERF_EVENT_STATE_OFF;
1650
1651         ctx->generation++;
1652 }
1653
1654 static void perf_group_detach(struct perf_event *event)
1655 {
1656         struct perf_event *sibling, *tmp;
1657         struct list_head *list = NULL;
1658
1659         /*
1660          * We can have double detach due to exit/hot-unplug + close.
1661          */
1662         if (!(event->attach_state & PERF_ATTACH_GROUP))
1663                 return;
1664
1665         event->attach_state &= ~PERF_ATTACH_GROUP;
1666
1667         /*
1668          * If this is a sibling, remove it from its group.
1669          */
1670         if (event->group_leader != event) {
1671                 list_del_init(&event->group_entry);
1672                 event->group_leader->nr_siblings--;
1673                 goto out;
1674         }
1675
1676         if (!list_empty(&event->group_entry))
1677                 list = &event->group_entry;
1678
1679         /*
1680          * If this was a group event with sibling events then
1681          * upgrade the siblings to singleton events by adding them
1682          * to whatever list we are on.
1683          */
1684         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1685                 if (list)
1686                         list_move_tail(&sibling->group_entry, list);
1687                 sibling->group_leader = sibling;
1688
1689                 /* Inherit group flags from the previous leader */
1690                 sibling->group_flags = event->group_flags;
1691
1692                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1693         }
1694
1695 out:
1696         perf_event__header_size(event->group_leader);
1697
1698         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1699                 perf_event__header_size(tmp);
1700 }
1701
1702 static bool is_orphaned_event(struct perf_event *event)
1703 {
1704         return event->state == PERF_EVENT_STATE_DEAD;
1705 }
1706
1707 static inline int __pmu_filter_match(struct perf_event *event)
1708 {
1709         struct pmu *pmu = event->pmu;
1710         return pmu->filter_match ? pmu->filter_match(event) : 1;
1711 }
1712
1713 /*
1714  * Check whether we should attempt to schedule an event group based on
1715  * PMU-specific filtering. An event group can consist of HW and SW events,
1716  * potentially with a SW leader, so we must check all the filters, to
1717  * determine whether a group is schedulable:
1718  */
1719 static inline int pmu_filter_match(struct perf_event *event)
1720 {
1721         struct perf_event *child;
1722
1723         if (!__pmu_filter_match(event))
1724                 return 0;
1725
1726         list_for_each_entry(child, &event->sibling_list, group_entry) {
1727                 if (!__pmu_filter_match(child))
1728                         return 0;
1729         }
1730
1731         return 1;
1732 }
1733
1734 static inline int
1735 event_filter_match(struct perf_event *event)
1736 {
1737         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1738                perf_cgroup_match(event) && pmu_filter_match(event);
1739 }
1740
1741 static void
1742 event_sched_out(struct perf_event *event,
1743                   struct perf_cpu_context *cpuctx,
1744                   struct perf_event_context *ctx)
1745 {
1746         u64 tstamp = perf_event_time(event);
1747         u64 delta;
1748
1749         WARN_ON_ONCE(event->ctx != ctx);
1750         lockdep_assert_held(&ctx->lock);
1751
1752         /*
1753          * An event which could not be activated because of
1754          * filter mismatch still needs to have its timings
1755          * maintained, otherwise bogus information is return
1756          * via read() for time_enabled, time_running:
1757          */
1758         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1759             !event_filter_match(event)) {
1760                 delta = tstamp - event->tstamp_stopped;
1761                 event->tstamp_running += delta;
1762                 event->tstamp_stopped = tstamp;
1763         }
1764
1765         if (event->state != PERF_EVENT_STATE_ACTIVE)
1766                 return;
1767
1768         perf_pmu_disable(event->pmu);
1769
1770         event->tstamp_stopped = tstamp;
1771         event->pmu->del(event, 0);
1772         event->oncpu = -1;
1773         event->state = PERF_EVENT_STATE_INACTIVE;
1774         if (event->pending_disable) {
1775                 event->pending_disable = 0;
1776                 event->state = PERF_EVENT_STATE_OFF;
1777         }
1778
1779         if (!is_software_event(event))
1780                 cpuctx->active_oncpu--;
1781         if (!--ctx->nr_active)
1782                 perf_event_ctx_deactivate(ctx);
1783         if (event->attr.freq && event->attr.sample_freq)
1784                 ctx->nr_freq--;
1785         if (event->attr.exclusive || !cpuctx->active_oncpu)
1786                 cpuctx->exclusive = 0;
1787
1788         perf_pmu_enable(event->pmu);
1789 }
1790
1791 static void
1792 group_sched_out(struct perf_event *group_event,
1793                 struct perf_cpu_context *cpuctx,
1794                 struct perf_event_context *ctx)
1795 {
1796         struct perf_event *event;
1797         int state = group_event->state;
1798
1799         event_sched_out(group_event, cpuctx, ctx);
1800
1801         /*
1802          * Schedule out siblings (if any):
1803          */
1804         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1805                 event_sched_out(event, cpuctx, ctx);
1806
1807         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1808                 cpuctx->exclusive = 0;
1809 }
1810
1811 #define DETACH_GROUP    0x01UL
1812
1813 /*
1814  * Cross CPU call to remove a performance event
1815  *
1816  * We disable the event on the hardware level first. After that we
1817  * remove it from the context list.
1818  */
1819 static void
1820 __perf_remove_from_context(struct perf_event *event,
1821                            struct perf_cpu_context *cpuctx,
1822                            struct perf_event_context *ctx,
1823                            void *info)
1824 {
1825         unsigned long flags = (unsigned long)info;
1826
1827         event_sched_out(event, cpuctx, ctx);
1828         if (flags & DETACH_GROUP)
1829                 perf_group_detach(event);
1830         list_del_event(event, ctx);
1831
1832         if (!ctx->nr_events && ctx->is_active) {
1833                 ctx->is_active = 0;
1834                 if (ctx->task) {
1835                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1836                         cpuctx->task_ctx = NULL;
1837                 }
1838         }
1839 }
1840
1841 /*
1842  * Remove the event from a task's (or a CPU's) list of events.
1843  *
1844  * If event->ctx is a cloned context, callers must make sure that
1845  * every task struct that event->ctx->task could possibly point to
1846  * remains valid.  This is OK when called from perf_release since
1847  * that only calls us on the top-level context, which can't be a clone.
1848  * When called from perf_event_exit_task, it's OK because the
1849  * context has been detached from its task.
1850  */
1851 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1852 {
1853         lockdep_assert_held(&event->ctx->mutex);
1854
1855         event_function_call(event, __perf_remove_from_context, (void *)flags);
1856 }
1857
1858 /*
1859  * Cross CPU call to disable a performance event
1860  */
1861 static void __perf_event_disable(struct perf_event *event,
1862                                  struct perf_cpu_context *cpuctx,
1863                                  struct perf_event_context *ctx,
1864                                  void *info)
1865 {
1866         if (event->state < PERF_EVENT_STATE_INACTIVE)
1867                 return;
1868
1869         update_context_time(ctx);
1870         update_cgrp_time_from_event(event);
1871         update_group_times(event);
1872         if (event == event->group_leader)
1873                 group_sched_out(event, cpuctx, ctx);
1874         else
1875                 event_sched_out(event, cpuctx, ctx);
1876         event->state = PERF_EVENT_STATE_OFF;
1877 }
1878
1879 /*
1880  * Disable a event.
1881  *
1882  * If event->ctx is a cloned context, callers must make sure that
1883  * every task struct that event->ctx->task could possibly point to
1884  * remains valid.  This condition is satisifed when called through
1885  * perf_event_for_each_child or perf_event_for_each because they
1886  * hold the top-level event's child_mutex, so any descendant that
1887  * goes to exit will block in perf_event_exit_event().
1888  *
1889  * When called from perf_pending_event it's OK because event->ctx
1890  * is the current context on this CPU and preemption is disabled,
1891  * hence we can't get into perf_event_task_sched_out for this context.
1892  */
1893 static void _perf_event_disable(struct perf_event *event)
1894 {
1895         struct perf_event_context *ctx = event->ctx;
1896
1897         raw_spin_lock_irq(&ctx->lock);
1898         if (event->state <= PERF_EVENT_STATE_OFF) {
1899                 raw_spin_unlock_irq(&ctx->lock);
1900                 return;
1901         }
1902         raw_spin_unlock_irq(&ctx->lock);
1903
1904         event_function_call(event, __perf_event_disable, NULL);
1905 }
1906
1907 void perf_event_disable_local(struct perf_event *event)
1908 {
1909         event_function_local(event, __perf_event_disable, NULL);
1910 }
1911
1912 /*
1913  * Strictly speaking kernel users cannot create groups and therefore this
1914  * interface does not need the perf_event_ctx_lock() magic.
1915  */
1916 void perf_event_disable(struct perf_event *event)
1917 {
1918         struct perf_event_context *ctx;
1919
1920         ctx = perf_event_ctx_lock(event);
1921         _perf_event_disable(event);
1922         perf_event_ctx_unlock(event, ctx);
1923 }
1924 EXPORT_SYMBOL_GPL(perf_event_disable);
1925
1926 static void perf_set_shadow_time(struct perf_event *event,
1927                                  struct perf_event_context *ctx,
1928                                  u64 tstamp)
1929 {
1930         /*
1931          * use the correct time source for the time snapshot
1932          *
1933          * We could get by without this by leveraging the
1934          * fact that to get to this function, the caller
1935          * has most likely already called update_context_time()
1936          * and update_cgrp_time_xx() and thus both timestamp
1937          * are identical (or very close). Given that tstamp is,
1938          * already adjusted for cgroup, we could say that:
1939          *    tstamp - ctx->timestamp
1940          * is equivalent to
1941          *    tstamp - cgrp->timestamp.
1942          *
1943          * Then, in perf_output_read(), the calculation would
1944          * work with no changes because:
1945          * - event is guaranteed scheduled in
1946          * - no scheduled out in between
1947          * - thus the timestamp would be the same
1948          *
1949          * But this is a bit hairy.
1950          *
1951          * So instead, we have an explicit cgroup call to remain
1952          * within the time time source all along. We believe it
1953          * is cleaner and simpler to understand.
1954          */
1955         if (is_cgroup_event(event))
1956                 perf_cgroup_set_shadow_time(event, tstamp);
1957         else
1958                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1959 }
1960
1961 #define MAX_INTERRUPTS (~0ULL)
1962
1963 static void perf_log_throttle(struct perf_event *event, int enable);
1964 static void perf_log_itrace_start(struct perf_event *event);
1965
1966 static int
1967 event_sched_in(struct perf_event *event,
1968                  struct perf_cpu_context *cpuctx,
1969                  struct perf_event_context *ctx)
1970 {
1971         u64 tstamp = perf_event_time(event);
1972         int ret = 0;
1973
1974         lockdep_assert_held(&ctx->lock);
1975
1976         if (event->state <= PERF_EVENT_STATE_OFF)
1977                 return 0;
1978
1979         WRITE_ONCE(event->oncpu, smp_processor_id());
1980         /*
1981          * Order event::oncpu write to happen before the ACTIVE state
1982          * is visible.
1983          */
1984         smp_wmb();
1985         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1986
1987         /*
1988          * Unthrottle events, since we scheduled we might have missed several
1989          * ticks already, also for a heavily scheduling task there is little
1990          * guarantee it'll get a tick in a timely manner.
1991          */
1992         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1993                 perf_log_throttle(event, 1);
1994                 event->hw.interrupts = 0;
1995         }
1996
1997         /*
1998          * The new state must be visible before we turn it on in the hardware:
1999          */
2000         smp_wmb();
2001
2002         perf_pmu_disable(event->pmu);
2003
2004         perf_set_shadow_time(event, ctx, tstamp);
2005
2006         perf_log_itrace_start(event);
2007
2008         if (event->pmu->add(event, PERF_EF_START)) {
2009                 event->state = PERF_EVENT_STATE_INACTIVE;
2010                 event->oncpu = -1;
2011                 ret = -EAGAIN;
2012                 goto out;
2013         }
2014
2015         event->tstamp_running += tstamp - event->tstamp_stopped;
2016
2017         if (!is_software_event(event))
2018                 cpuctx->active_oncpu++;
2019         if (!ctx->nr_active++)
2020                 perf_event_ctx_activate(ctx);
2021         if (event->attr.freq && event->attr.sample_freq)
2022                 ctx->nr_freq++;
2023
2024         if (event->attr.exclusive)
2025                 cpuctx->exclusive = 1;
2026
2027 out:
2028         perf_pmu_enable(event->pmu);
2029
2030         return ret;
2031 }
2032
2033 static int
2034 group_sched_in(struct perf_event *group_event,
2035                struct perf_cpu_context *cpuctx,
2036                struct perf_event_context *ctx)
2037 {
2038         struct perf_event *event, *partial_group = NULL;
2039         struct pmu *pmu = ctx->pmu;
2040         u64 now = ctx->time;
2041         bool simulate = false;
2042
2043         if (group_event->state == PERF_EVENT_STATE_OFF)
2044                 return 0;
2045
2046         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2047
2048         if (event_sched_in(group_event, cpuctx, ctx)) {
2049                 pmu->cancel_txn(pmu);
2050                 perf_mux_hrtimer_restart(cpuctx);
2051                 return -EAGAIN;
2052         }
2053
2054         /*
2055          * Schedule in siblings as one group (if any):
2056          */
2057         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2058                 if (event_sched_in(event, cpuctx, ctx)) {
2059                         partial_group = event;
2060                         goto group_error;
2061                 }
2062         }
2063
2064         if (!pmu->commit_txn(pmu))
2065                 return 0;
2066
2067 group_error:
2068         /*
2069          * Groups can be scheduled in as one unit only, so undo any
2070          * partial group before returning:
2071          * The events up to the failed event are scheduled out normally,
2072          * tstamp_stopped will be updated.
2073          *
2074          * The failed events and the remaining siblings need to have
2075          * their timings updated as if they had gone thru event_sched_in()
2076          * and event_sched_out(). This is required to get consistent timings
2077          * across the group. This also takes care of the case where the group
2078          * could never be scheduled by ensuring tstamp_stopped is set to mark
2079          * the time the event was actually stopped, such that time delta
2080          * calculation in update_event_times() is correct.
2081          */
2082         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2083                 if (event == partial_group)
2084                         simulate = true;
2085
2086                 if (simulate) {
2087                         event->tstamp_running += now - event->tstamp_stopped;
2088                         event->tstamp_stopped = now;
2089                 } else {
2090                         event_sched_out(event, cpuctx, ctx);
2091                 }
2092         }
2093         event_sched_out(group_event, cpuctx, ctx);
2094
2095         pmu->cancel_txn(pmu);
2096
2097         perf_mux_hrtimer_restart(cpuctx);
2098
2099         return -EAGAIN;
2100 }
2101
2102 /*
2103  * Work out whether we can put this event group on the CPU now.
2104  */
2105 static int group_can_go_on(struct perf_event *event,
2106                            struct perf_cpu_context *cpuctx,
2107                            int can_add_hw)
2108 {
2109         /*
2110          * Groups consisting entirely of software events can always go on.
2111          */
2112         if (event->group_flags & PERF_GROUP_SOFTWARE)
2113                 return 1;
2114         /*
2115          * If an exclusive group is already on, no other hardware
2116          * events can go on.
2117          */
2118         if (cpuctx->exclusive)
2119                 return 0;
2120         /*
2121          * If this group is exclusive and there are already
2122          * events on the CPU, it can't go on.
2123          */
2124         if (event->attr.exclusive && cpuctx->active_oncpu)
2125                 return 0;
2126         /*
2127          * Otherwise, try to add it if all previous groups were able
2128          * to go on.
2129          */
2130         return can_add_hw;
2131 }
2132
2133 static void add_event_to_ctx(struct perf_event *event,
2134                                struct perf_event_context *ctx)
2135 {
2136         u64 tstamp = perf_event_time(event);
2137
2138         list_add_event(event, ctx);
2139         perf_group_attach(event);
2140         event->tstamp_enabled = tstamp;
2141         event->tstamp_running = tstamp;
2142         event->tstamp_stopped = tstamp;
2143 }
2144
2145 static void ctx_sched_out(struct perf_event_context *ctx,
2146                           struct perf_cpu_context *cpuctx,
2147                           enum event_type_t event_type);
2148 static void
2149 ctx_sched_in(struct perf_event_context *ctx,
2150              struct perf_cpu_context *cpuctx,
2151              enum event_type_t event_type,
2152              struct task_struct *task);
2153
2154 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2155                                struct perf_event_context *ctx)
2156 {
2157         if (!cpuctx->task_ctx)
2158                 return;
2159
2160         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2161                 return;
2162
2163         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2164 }
2165
2166 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2167                                 struct perf_event_context *ctx,
2168                                 struct task_struct *task)
2169 {
2170         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2171         if (ctx)
2172                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2173         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2174         if (ctx)
2175                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2176 }
2177
2178 static void ctx_resched(struct perf_cpu_context *cpuctx,
2179                         struct perf_event_context *task_ctx)
2180 {
2181         perf_pmu_disable(cpuctx->ctx.pmu);
2182         if (task_ctx)
2183                 task_ctx_sched_out(cpuctx, task_ctx);
2184         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2185         perf_event_sched_in(cpuctx, task_ctx, current);
2186         perf_pmu_enable(cpuctx->ctx.pmu);
2187 }
2188
2189 /*
2190  * Cross CPU call to install and enable a performance event
2191  *
2192  * Very similar to remote_function() + event_function() but cannot assume that
2193  * things like ctx->is_active and cpuctx->task_ctx are set.
2194  */
2195 static int  __perf_install_in_context(void *info)
2196 {
2197         struct perf_event *event = info;
2198         struct perf_event_context *ctx = event->ctx;
2199         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2200         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2201         bool activate = true;
2202         int ret = 0;
2203
2204         raw_spin_lock(&cpuctx->ctx.lock);
2205         if (ctx->task) {
2206                 raw_spin_lock(&ctx->lock);
2207                 task_ctx = ctx;
2208
2209                 /* If we're on the wrong CPU, try again */
2210                 if (task_cpu(ctx->task) != smp_processor_id()) {
2211                         ret = -ESRCH;
2212                         goto unlock;
2213                 }
2214
2215                 /*
2216                  * If we're on the right CPU, see if the task we target is
2217                  * current, if not we don't have to activate the ctx, a future
2218                  * context switch will do that for us.
2219                  */
2220                 if (ctx->task != current)
2221                         activate = false;
2222                 else
2223                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2224
2225         } else if (task_ctx) {
2226                 raw_spin_lock(&task_ctx->lock);
2227         }
2228
2229         if (activate) {
2230                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2231                 add_event_to_ctx(event, ctx);
2232                 ctx_resched(cpuctx, task_ctx);
2233         } else {
2234                 add_event_to_ctx(event, ctx);
2235         }
2236
2237 unlock:
2238         perf_ctx_unlock(cpuctx, task_ctx);
2239
2240         return ret;
2241 }
2242
2243 /*
2244  * Attach a performance event to a context.
2245  *
2246  * Very similar to event_function_call, see comment there.
2247  */
2248 static void
2249 perf_install_in_context(struct perf_event_context *ctx,
2250                         struct perf_event *event,
2251                         int cpu)
2252 {
2253         struct task_struct *task = READ_ONCE(ctx->task);
2254
2255         lockdep_assert_held(&ctx->mutex);
2256
2257         if (event->cpu != -1)
2258                 event->cpu = cpu;
2259
2260         /*
2261          * Ensures that if we can observe event->ctx, both the event and ctx
2262          * will be 'complete'. See perf_iterate_sb_cpu().
2263          */
2264         smp_store_release(&event->ctx, ctx);
2265
2266         if (!task) {
2267                 cpu_function_call(cpu, __perf_install_in_context, event);
2268                 return;
2269         }
2270
2271         /*
2272          * Should not happen, we validate the ctx is still alive before calling.
2273          */
2274         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2275                 return;
2276
2277         /*
2278          * Installing events is tricky because we cannot rely on ctx->is_active
2279          * to be set in case this is the nr_events 0 -> 1 transition.
2280          */
2281 again:
2282         /*
2283          * Cannot use task_function_call() because we need to run on the task's
2284          * CPU regardless of whether its current or not.
2285          */
2286         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2287                 return;
2288
2289         raw_spin_lock_irq(&ctx->lock);
2290         task = ctx->task;
2291         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2292                 /*
2293                  * Cannot happen because we already checked above (which also
2294                  * cannot happen), and we hold ctx->mutex, which serializes us
2295                  * against perf_event_exit_task_context().
2296                  */
2297                 raw_spin_unlock_irq(&ctx->lock);
2298                 return;
2299         }
2300         raw_spin_unlock_irq(&ctx->lock);
2301         /*
2302          * Since !ctx->is_active doesn't mean anything, we must IPI
2303          * unconditionally.
2304          */
2305         goto again;
2306 }
2307
2308 /*
2309  * Put a event into inactive state and update time fields.
2310  * Enabling the leader of a group effectively enables all
2311  * the group members that aren't explicitly disabled, so we
2312  * have to update their ->tstamp_enabled also.
2313  * Note: this works for group members as well as group leaders
2314  * since the non-leader members' sibling_lists will be empty.
2315  */
2316 static void __perf_event_mark_enabled(struct perf_event *event)
2317 {
2318         struct perf_event *sub;
2319         u64 tstamp = perf_event_time(event);
2320
2321         event->state = PERF_EVENT_STATE_INACTIVE;
2322         event->tstamp_enabled = tstamp - event->total_time_enabled;
2323         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2324                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2325                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2326         }
2327 }
2328
2329 /*
2330  * Cross CPU call to enable a performance event
2331  */
2332 static void __perf_event_enable(struct perf_event *event,
2333                                 struct perf_cpu_context *cpuctx,
2334                                 struct perf_event_context *ctx,
2335                                 void *info)
2336 {
2337         struct perf_event *leader = event->group_leader;
2338         struct perf_event_context *task_ctx;
2339
2340         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2341             event->state <= PERF_EVENT_STATE_ERROR)
2342                 return;
2343
2344         if (ctx->is_active)
2345                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2346
2347         __perf_event_mark_enabled(event);
2348
2349         if (!ctx->is_active)
2350                 return;
2351
2352         if (!event_filter_match(event)) {
2353                 if (is_cgroup_event(event))
2354                         perf_cgroup_defer_enabled(event);
2355                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2356                 return;
2357         }
2358
2359         /*
2360          * If the event is in a group and isn't the group leader,
2361          * then don't put it on unless the group is on.
2362          */
2363         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2364                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2365                 return;
2366         }
2367
2368         task_ctx = cpuctx->task_ctx;
2369         if (ctx->task)
2370                 WARN_ON_ONCE(task_ctx != ctx);
2371
2372         ctx_resched(cpuctx, task_ctx);
2373 }
2374
2375 /*
2376  * Enable a event.
2377  *
2378  * If event->ctx is a cloned context, callers must make sure that
2379  * every task struct that event->ctx->task could possibly point to
2380  * remains valid.  This condition is satisfied when called through
2381  * perf_event_for_each_child or perf_event_for_each as described
2382  * for perf_event_disable.
2383  */
2384 static void _perf_event_enable(struct perf_event *event)
2385 {
2386         struct perf_event_context *ctx = event->ctx;
2387
2388         raw_spin_lock_irq(&ctx->lock);
2389         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2390             event->state <  PERF_EVENT_STATE_ERROR) {
2391                 raw_spin_unlock_irq(&ctx->lock);
2392                 return;
2393         }
2394
2395         /*
2396          * If the event is in error state, clear that first.
2397          *
2398          * That way, if we see the event in error state below, we know that it
2399          * has gone back into error state, as distinct from the task having
2400          * been scheduled away before the cross-call arrived.
2401          */
2402         if (event->state == PERF_EVENT_STATE_ERROR)
2403                 event->state = PERF_EVENT_STATE_OFF;
2404         raw_spin_unlock_irq(&ctx->lock);
2405
2406         event_function_call(event, __perf_event_enable, NULL);
2407 }
2408
2409 /*
2410  * See perf_event_disable();
2411  */
2412 void perf_event_enable(struct perf_event *event)
2413 {
2414         struct perf_event_context *ctx;
2415
2416         ctx = perf_event_ctx_lock(event);
2417         _perf_event_enable(event);
2418         perf_event_ctx_unlock(event, ctx);
2419 }
2420 EXPORT_SYMBOL_GPL(perf_event_enable);
2421
2422 struct stop_event_data {
2423         struct perf_event       *event;
2424         unsigned int            restart;
2425 };
2426
2427 static int __perf_event_stop(void *info)
2428 {
2429         struct stop_event_data *sd = info;
2430         struct perf_event *event = sd->event;
2431
2432         /* if it's already INACTIVE, do nothing */
2433         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2434                 return 0;
2435
2436         /* matches smp_wmb() in event_sched_in() */
2437         smp_rmb();
2438
2439         /*
2440          * There is a window with interrupts enabled before we get here,
2441          * so we need to check again lest we try to stop another CPU's event.
2442          */
2443         if (READ_ONCE(event->oncpu) != smp_processor_id())
2444                 return -EAGAIN;
2445
2446         event->pmu->stop(event, PERF_EF_UPDATE);
2447
2448         /*
2449          * May race with the actual stop (through perf_pmu_output_stop()),
2450          * but it is only used for events with AUX ring buffer, and such
2451          * events will refuse to restart because of rb::aux_mmap_count==0,
2452          * see comments in perf_aux_output_begin().
2453          *
2454          * Since this is happening on a event-local CPU, no trace is lost
2455          * while restarting.
2456          */
2457         if (sd->restart)
2458                 event->pmu->start(event, PERF_EF_START);
2459
2460         return 0;
2461 }
2462
2463 static int perf_event_restart(struct perf_event *event)
2464 {
2465         struct stop_event_data sd = {
2466                 .event          = event,
2467                 .restart        = 1,
2468         };
2469         int ret = 0;
2470
2471         do {
2472                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2473                         return 0;
2474
2475                 /* matches smp_wmb() in event_sched_in() */
2476                 smp_rmb();
2477
2478                 /*
2479                  * We only want to restart ACTIVE events, so if the event goes
2480                  * inactive here (event->oncpu==-1), there's nothing more to do;
2481                  * fall through with ret==-ENXIO.
2482                  */
2483                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2484                                         __perf_event_stop, &sd);
2485         } while (ret == -EAGAIN);
2486
2487         return ret;
2488 }
2489
2490 /*
2491  * In order to contain the amount of racy and tricky in the address filter
2492  * configuration management, it is a two part process:
2493  *
2494  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2495  *      we update the addresses of corresponding vmas in
2496  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2497  * (p2) when an event is scheduled in (pmu::add), it calls
2498  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2499  *      if the generation has changed since the previous call.
2500  *
2501  * If (p1) happens while the event is active, we restart it to force (p2).
2502  *
2503  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2504  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2505  *     ioctl;
2506  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2507  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2508  *     for reading;
2509  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2510  *     of exec.
2511  */
2512 void perf_event_addr_filters_sync(struct perf_event *event)
2513 {
2514         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2515
2516         if (!has_addr_filter(event))
2517                 return;
2518
2519         raw_spin_lock(&ifh->lock);
2520         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2521                 event->pmu->addr_filters_sync(event);
2522                 event->hw.addr_filters_gen = event->addr_filters_gen;
2523         }
2524         raw_spin_unlock(&ifh->lock);
2525 }
2526 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2527
2528 static int _perf_event_refresh(struct perf_event *event, int refresh)
2529 {
2530         /*
2531          * not supported on inherited events
2532          */
2533         if (event->attr.inherit || !is_sampling_event(event))
2534                 return -EINVAL;
2535
2536         atomic_add(refresh, &event->event_limit);
2537         _perf_event_enable(event);
2538
2539         return 0;
2540 }
2541
2542 /*
2543  * See perf_event_disable()
2544  */
2545 int perf_event_refresh(struct perf_event *event, int refresh)
2546 {
2547         struct perf_event_context *ctx;
2548         int ret;
2549
2550         ctx = perf_event_ctx_lock(event);
2551         ret = _perf_event_refresh(event, refresh);
2552         perf_event_ctx_unlock(event, ctx);
2553
2554         return ret;
2555 }
2556 EXPORT_SYMBOL_GPL(perf_event_refresh);
2557
2558 static void ctx_sched_out(struct perf_event_context *ctx,
2559                           struct perf_cpu_context *cpuctx,
2560                           enum event_type_t event_type)
2561 {
2562         int is_active = ctx->is_active;
2563         struct perf_event *event;
2564
2565         lockdep_assert_held(&ctx->lock);
2566
2567         if (likely(!ctx->nr_events)) {
2568                 /*
2569                  * See __perf_remove_from_context().
2570                  */
2571                 WARN_ON_ONCE(ctx->is_active);
2572                 if (ctx->task)
2573                         WARN_ON_ONCE(cpuctx->task_ctx);
2574                 return;
2575         }
2576
2577         ctx->is_active &= ~event_type;
2578         if (!(ctx->is_active & EVENT_ALL))
2579                 ctx->is_active = 0;
2580
2581         if (ctx->task) {
2582                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2583                 if (!ctx->is_active)
2584                         cpuctx->task_ctx = NULL;
2585         }
2586
2587         /*
2588          * Always update time if it was set; not only when it changes.
2589          * Otherwise we can 'forget' to update time for any but the last
2590          * context we sched out. For example:
2591          *
2592          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2593          *   ctx_sched_out(.event_type = EVENT_PINNED)
2594          *
2595          * would only update time for the pinned events.
2596          */
2597         if (is_active & EVENT_TIME) {
2598                 /* update (and stop) ctx time */
2599                 update_context_time(ctx);
2600                 update_cgrp_time_from_cpuctx(cpuctx);
2601         }
2602
2603         is_active ^= ctx->is_active; /* changed bits */
2604
2605         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2606                 return;
2607
2608         perf_pmu_disable(ctx->pmu);
2609         if (is_active & EVENT_PINNED) {
2610                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2611                         group_sched_out(event, cpuctx, ctx);
2612         }
2613
2614         if (is_active & EVENT_FLEXIBLE) {
2615                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2616                         group_sched_out(event, cpuctx, ctx);
2617         }
2618         perf_pmu_enable(ctx->pmu);
2619 }
2620
2621 /*
2622  * Test whether two contexts are equivalent, i.e. whether they have both been
2623  * cloned from the same version of the same context.
2624  *
2625  * Equivalence is measured using a generation number in the context that is
2626  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2627  * and list_del_event().
2628  */
2629 static int context_equiv(struct perf_event_context *ctx1,
2630                          struct perf_event_context *ctx2)
2631 {
2632         lockdep_assert_held(&ctx1->lock);
2633         lockdep_assert_held(&ctx2->lock);
2634
2635         /* Pinning disables the swap optimization */
2636         if (ctx1->pin_count || ctx2->pin_count)
2637                 return 0;
2638
2639         /* If ctx1 is the parent of ctx2 */
2640         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2641                 return 1;
2642
2643         /* If ctx2 is the parent of ctx1 */
2644         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2645                 return 1;
2646
2647         /*
2648          * If ctx1 and ctx2 have the same parent; we flatten the parent
2649          * hierarchy, see perf_event_init_context().
2650          */
2651         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2652                         ctx1->parent_gen == ctx2->parent_gen)
2653                 return 1;
2654
2655         /* Unmatched */
2656         return 0;
2657 }
2658
2659 static void __perf_event_sync_stat(struct perf_event *event,
2660                                      struct perf_event *next_event)
2661 {
2662         u64 value;
2663
2664         if (!event->attr.inherit_stat)
2665                 return;
2666
2667         /*
2668          * Update the event value, we cannot use perf_event_read()
2669          * because we're in the middle of a context switch and have IRQs
2670          * disabled, which upsets smp_call_function_single(), however
2671          * we know the event must be on the current CPU, therefore we
2672          * don't need to use it.
2673          */
2674         switch (event->state) {
2675         case PERF_EVENT_STATE_ACTIVE:
2676                 event->pmu->read(event);
2677                 /* fall-through */
2678
2679         case PERF_EVENT_STATE_INACTIVE:
2680                 update_event_times(event);
2681                 break;
2682
2683         default:
2684                 break;
2685         }
2686
2687         /*
2688          * In order to keep per-task stats reliable we need to flip the event
2689          * values when we flip the contexts.
2690          */
2691         value = local64_read(&next_event->count);
2692         value = local64_xchg(&event->count, value);
2693         local64_set(&next_event->count, value);
2694
2695         swap(event->total_time_enabled, next_event->total_time_enabled);
2696         swap(event->total_time_running, next_event->total_time_running);
2697
2698         /*
2699          * Since we swizzled the values, update the user visible data too.
2700          */
2701         perf_event_update_userpage(event);
2702         perf_event_update_userpage(next_event);
2703 }
2704
2705 static void perf_event_sync_stat(struct perf_event_context *ctx,
2706                                    struct perf_event_context *next_ctx)
2707 {
2708         struct perf_event *event, *next_event;
2709
2710         if (!ctx->nr_stat)
2711                 return;
2712
2713         update_context_time(ctx);
2714
2715         event = list_first_entry(&ctx->event_list,
2716                                    struct perf_event, event_entry);
2717
2718         next_event = list_first_entry(&next_ctx->event_list,
2719                                         struct perf_event, event_entry);
2720
2721         while (&event->event_entry != &ctx->event_list &&
2722                &next_event->event_entry != &next_ctx->event_list) {
2723
2724                 __perf_event_sync_stat(event, next_event);
2725
2726                 event = list_next_entry(event, event_entry);
2727                 next_event = list_next_entry(next_event, event_entry);
2728         }
2729 }
2730
2731 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2732                                          struct task_struct *next)
2733 {
2734         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2735         struct perf_event_context *next_ctx;
2736         struct perf_event_context *parent, *next_parent;
2737         struct perf_cpu_context *cpuctx;
2738         int do_switch = 1;
2739
2740         if (likely(!ctx))
2741                 return;
2742
2743         cpuctx = __get_cpu_context(ctx);
2744         if (!cpuctx->task_ctx)
2745                 return;
2746
2747         rcu_read_lock();
2748         next_ctx = next->perf_event_ctxp[ctxn];
2749         if (!next_ctx)
2750                 goto unlock;
2751
2752         parent = rcu_dereference(ctx->parent_ctx);
2753         next_parent = rcu_dereference(next_ctx->parent_ctx);
2754
2755         /* If neither context have a parent context; they cannot be clones. */
2756         if (!parent && !next_parent)
2757                 goto unlock;
2758
2759         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2760                 /*
2761                  * Looks like the two contexts are clones, so we might be
2762                  * able to optimize the context switch.  We lock both
2763                  * contexts and check that they are clones under the
2764                  * lock (including re-checking that neither has been
2765                  * uncloned in the meantime).  It doesn't matter which
2766                  * order we take the locks because no other cpu could
2767                  * be trying to lock both of these tasks.
2768                  */
2769                 raw_spin_lock(&ctx->lock);
2770                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2771                 if (context_equiv(ctx, next_ctx)) {
2772                         WRITE_ONCE(ctx->task, next);
2773                         WRITE_ONCE(next_ctx->task, task);
2774
2775                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2776
2777                         /*
2778                          * RCU_INIT_POINTER here is safe because we've not
2779                          * modified the ctx and the above modification of
2780                          * ctx->task and ctx->task_ctx_data are immaterial
2781                          * since those values are always verified under
2782                          * ctx->lock which we're now holding.
2783                          */
2784                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2785                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2786
2787                         do_switch = 0;
2788
2789                         perf_event_sync_stat(ctx, next_ctx);
2790                 }
2791                 raw_spin_unlock(&next_ctx->lock);
2792                 raw_spin_unlock(&ctx->lock);
2793         }
2794 unlock:
2795         rcu_read_unlock();
2796
2797         if (do_switch) {
2798                 raw_spin_lock(&ctx->lock);
2799                 task_ctx_sched_out(cpuctx, ctx);
2800                 raw_spin_unlock(&ctx->lock);
2801         }
2802 }
2803
2804 void perf_sched_cb_dec(struct pmu *pmu)
2805 {
2806         this_cpu_dec(perf_sched_cb_usages);
2807 }
2808
2809 void perf_sched_cb_inc(struct pmu *pmu)
2810 {
2811         this_cpu_inc(perf_sched_cb_usages);
2812 }
2813
2814 /*
2815  * This function provides the context switch callback to the lower code
2816  * layer. It is invoked ONLY when the context switch callback is enabled.
2817  */
2818 static void perf_pmu_sched_task(struct task_struct *prev,
2819                                 struct task_struct *next,
2820                                 bool sched_in)
2821 {
2822         struct perf_cpu_context *cpuctx;
2823         struct pmu *pmu;
2824         unsigned long flags;
2825
2826         if (prev == next)
2827                 return;
2828
2829         local_irq_save(flags);
2830
2831         rcu_read_lock();
2832
2833         list_for_each_entry_rcu(pmu, &pmus, entry) {
2834                 if (pmu->sched_task) {
2835                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2836
2837                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2838
2839                         perf_pmu_disable(pmu);
2840
2841                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2842
2843                         perf_pmu_enable(pmu);
2844
2845                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2846                 }
2847         }
2848
2849         rcu_read_unlock();
2850
2851         local_irq_restore(flags);
2852 }
2853
2854 static void perf_event_switch(struct task_struct *task,
2855                               struct task_struct *next_prev, bool sched_in);
2856
2857 #define for_each_task_context_nr(ctxn)                                  \
2858         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2859
2860 /*
2861  * Called from scheduler to remove the events of the current task,
2862  * with interrupts disabled.
2863  *
2864  * We stop each event and update the event value in event->count.
2865  *
2866  * This does not protect us against NMI, but disable()
2867  * sets the disabled bit in the control field of event _before_
2868  * accessing the event control register. If a NMI hits, then it will
2869  * not restart the event.
2870  */
2871 void __perf_event_task_sched_out(struct task_struct *task,
2872                                  struct task_struct *next)
2873 {
2874         int ctxn;
2875
2876         if (__this_cpu_read(perf_sched_cb_usages))
2877                 perf_pmu_sched_task(task, next, false);
2878
2879         if (atomic_read(&nr_switch_events))
2880                 perf_event_switch(task, next, false);
2881
2882         for_each_task_context_nr(ctxn)
2883                 perf_event_context_sched_out(task, ctxn, next);
2884
2885         /*
2886          * if cgroup events exist on this CPU, then we need
2887          * to check if we have to switch out PMU state.
2888          * cgroup event are system-wide mode only
2889          */
2890         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2891                 perf_cgroup_sched_out(task, next);
2892 }
2893
2894 /*
2895  * Called with IRQs disabled
2896  */
2897 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2898                               enum event_type_t event_type)
2899 {
2900         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2901 }
2902
2903 static void
2904 ctx_pinned_sched_in(struct perf_event_context *ctx,
2905                     struct perf_cpu_context *cpuctx)
2906 {
2907         struct perf_event *event;
2908
2909         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2910                 if (event->state <= PERF_EVENT_STATE_OFF)
2911                         continue;
2912                 if (!event_filter_match(event))
2913                         continue;
2914
2915                 /* may need to reset tstamp_enabled */
2916                 if (is_cgroup_event(event))
2917                         perf_cgroup_mark_enabled(event, ctx);
2918
2919                 if (group_can_go_on(event, cpuctx, 1))
2920                         group_sched_in(event, cpuctx, ctx);
2921
2922                 /*
2923                  * If this pinned group hasn't been scheduled,
2924                  * put it in error state.
2925                  */
2926                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2927                         update_group_times(event);
2928                         event->state = PERF_EVENT_STATE_ERROR;
2929                 }
2930         }
2931 }
2932
2933 static void
2934 ctx_flexible_sched_in(struct perf_event_context *ctx,
2935                       struct perf_cpu_context *cpuctx)
2936 {
2937         struct perf_event *event;
2938         int can_add_hw = 1;
2939
2940         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2941                 /* Ignore events in OFF or ERROR state */
2942                 if (event->state <= PERF_EVENT_STATE_OFF)
2943                         continue;
2944                 /*
2945                  * Listen to the 'cpu' scheduling filter constraint
2946                  * of events:
2947                  */
2948                 if (!event_filter_match(event))
2949                         continue;
2950
2951                 /* may need to reset tstamp_enabled */
2952                 if (is_cgroup_event(event))
2953                         perf_cgroup_mark_enabled(event, ctx);
2954
2955                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2956                         if (group_sched_in(event, cpuctx, ctx))
2957                                 can_add_hw = 0;
2958                 }
2959         }
2960 }
2961
2962 static void
2963 ctx_sched_in(struct perf_event_context *ctx,
2964              struct perf_cpu_context *cpuctx,
2965              enum event_type_t event_type,
2966              struct task_struct *task)
2967 {
2968         int is_active = ctx->is_active;
2969         u64 now;
2970
2971         lockdep_assert_held(&ctx->lock);
2972
2973         if (likely(!ctx->nr_events))
2974                 return;
2975
2976         ctx->is_active |= (event_type | EVENT_TIME);
2977         if (ctx->task) {
2978                 if (!is_active)
2979                         cpuctx->task_ctx = ctx;
2980                 else
2981                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2982         }
2983
2984         is_active ^= ctx->is_active; /* changed bits */
2985
2986         if (is_active & EVENT_TIME) {
2987                 /* start ctx time */
2988                 now = perf_clock();
2989                 ctx->timestamp = now;
2990                 perf_cgroup_set_timestamp(task, ctx);
2991         }
2992
2993         /*
2994          * First go through the list and put on any pinned groups
2995          * in order to give them the best chance of going on.
2996          */
2997         if (is_active & EVENT_PINNED)
2998                 ctx_pinned_sched_in(ctx, cpuctx);
2999
3000         /* Then walk through the lower prio flexible groups */
3001         if (is_active & EVENT_FLEXIBLE)
3002                 ctx_flexible_sched_in(ctx, cpuctx);
3003 }
3004
3005 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3006                              enum event_type_t event_type,
3007                              struct task_struct *task)
3008 {
3009         struct perf_event_context *ctx = &cpuctx->ctx;
3010
3011         ctx_sched_in(ctx, cpuctx, event_type, task);
3012 }
3013
3014 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3015                                         struct task_struct *task)
3016 {
3017         struct perf_cpu_context *cpuctx;
3018
3019         cpuctx = __get_cpu_context(ctx);
3020         if (cpuctx->task_ctx == ctx)
3021                 return;
3022
3023         perf_ctx_lock(cpuctx, ctx);
3024         perf_pmu_disable(ctx->pmu);
3025         /*
3026          * We want to keep the following priority order:
3027          * cpu pinned (that don't need to move), task pinned,
3028          * cpu flexible, task flexible.
3029          */
3030         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3031         perf_event_sched_in(cpuctx, ctx, task);
3032         perf_pmu_enable(ctx->pmu);
3033         perf_ctx_unlock(cpuctx, ctx);
3034 }
3035
3036 /*
3037  * Called from scheduler to add the events of the current task
3038  * with interrupts disabled.
3039  *
3040  * We restore the event value and then enable it.
3041  *
3042  * This does not protect us against NMI, but enable()
3043  * sets the enabled bit in the control field of event _before_
3044  * accessing the event control register. If a NMI hits, then it will
3045  * keep the event running.
3046  */
3047 void __perf_event_task_sched_in(struct task_struct *prev,
3048                                 struct task_struct *task)
3049 {
3050         struct perf_event_context *ctx;
3051         int ctxn;
3052
3053         /*
3054          * If cgroup events exist on this CPU, then we need to check if we have
3055          * to switch in PMU state; cgroup event are system-wide mode only.
3056          *
3057          * Since cgroup events are CPU events, we must schedule these in before
3058          * we schedule in the task events.
3059          */
3060         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3061                 perf_cgroup_sched_in(prev, task);
3062
3063         for_each_task_context_nr(ctxn) {
3064                 ctx = task->perf_event_ctxp[ctxn];
3065                 if (likely(!ctx))
3066                         continue;
3067
3068                 perf_event_context_sched_in(ctx, task);
3069         }
3070
3071         if (atomic_read(&nr_switch_events))
3072                 perf_event_switch(task, prev, true);
3073
3074         if (__this_cpu_read(perf_sched_cb_usages))
3075                 perf_pmu_sched_task(prev, task, true);
3076 }
3077
3078 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3079 {
3080         u64 frequency = event->attr.sample_freq;
3081         u64 sec = NSEC_PER_SEC;
3082         u64 divisor, dividend;
3083
3084         int count_fls, nsec_fls, frequency_fls, sec_fls;
3085
3086         count_fls = fls64(count);
3087         nsec_fls = fls64(nsec);
3088         frequency_fls = fls64(frequency);
3089         sec_fls = 30;
3090
3091         /*
3092          * We got @count in @nsec, with a target of sample_freq HZ
3093          * the target period becomes:
3094          *
3095          *             @count * 10^9
3096          * period = -------------------
3097          *          @nsec * sample_freq
3098          *
3099          */
3100
3101         /*
3102          * Reduce accuracy by one bit such that @a and @b converge
3103          * to a similar magnitude.
3104          */
3105 #define REDUCE_FLS(a, b)                \
3106 do {                                    \
3107         if (a##_fls > b##_fls) {        \
3108                 a >>= 1;                \
3109                 a##_fls--;              \
3110         } else {                        \
3111                 b >>= 1;                \
3112                 b##_fls--;              \
3113         }                               \
3114 } while (0)
3115
3116         /*
3117          * Reduce accuracy until either term fits in a u64, then proceed with
3118          * the other, so that finally we can do a u64/u64 division.
3119          */
3120         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3121                 REDUCE_FLS(nsec, frequency);
3122                 REDUCE_FLS(sec, count);
3123         }
3124
3125         if (count_fls + sec_fls > 64) {
3126                 divisor = nsec * frequency;
3127
3128                 while (count_fls + sec_fls > 64) {
3129                         REDUCE_FLS(count, sec);
3130                         divisor >>= 1;
3131                 }
3132
3133                 dividend = count * sec;
3134         } else {
3135                 dividend = count * sec;
3136
3137                 while (nsec_fls + frequency_fls > 64) {
3138                         REDUCE_FLS(nsec, frequency);
3139                         dividend >>= 1;
3140                 }
3141
3142                 divisor = nsec * frequency;
3143         }
3144
3145         if (!divisor)
3146                 return dividend;
3147
3148         return div64_u64(dividend, divisor);
3149 }
3150
3151 static DEFINE_PER_CPU(int, perf_throttled_count);
3152 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3153
3154 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3155 {
3156         struct hw_perf_event *hwc = &event->hw;
3157         s64 period, sample_period;
3158         s64 delta;
3159
3160         period = perf_calculate_period(event, nsec, count);
3161
3162         delta = (s64)(period - hwc->sample_period);
3163         delta = (delta + 7) / 8; /* low pass filter */
3164
3165         sample_period = hwc->sample_period + delta;
3166
3167         if (!sample_period)
3168                 sample_period = 1;
3169
3170         hwc->sample_period = sample_period;
3171
3172         if (local64_read(&hwc->period_left) > 8*sample_period) {
3173                 if (disable)
3174                         event->pmu->stop(event, PERF_EF_UPDATE);
3175
3176                 local64_set(&hwc->period_left, 0);
3177
3178                 if (disable)
3179                         event->pmu->start(event, PERF_EF_RELOAD);
3180         }
3181 }
3182
3183 /*
3184  * combine freq adjustment with unthrottling to avoid two passes over the
3185  * events. At the same time, make sure, having freq events does not change
3186  * the rate of unthrottling as that would introduce bias.
3187  */
3188 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3189                                            int needs_unthr)
3190 {
3191         struct perf_event *event;
3192         struct hw_perf_event *hwc;
3193         u64 now, period = TICK_NSEC;
3194         s64 delta;
3195
3196         /*
3197          * only need to iterate over all events iff:
3198          * - context have events in frequency mode (needs freq adjust)
3199          * - there are events to unthrottle on this cpu
3200          */
3201         if (!(ctx->nr_freq || needs_unthr))
3202                 return;
3203
3204         raw_spin_lock(&ctx->lock);
3205         perf_pmu_disable(ctx->pmu);
3206
3207         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3208                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3209                         continue;
3210
3211                 if (!event_filter_match(event))
3212                         continue;
3213
3214                 perf_pmu_disable(event->pmu);
3215
3216                 hwc = &event->hw;
3217
3218                 if (hwc->interrupts == MAX_INTERRUPTS) {
3219                         hwc->interrupts = 0;
3220                         perf_log_throttle(event, 1);
3221                         event->pmu->start(event, 0);
3222                 }
3223
3224                 if (!event->attr.freq || !event->attr.sample_freq)
3225                         goto next;
3226
3227                 /*
3228                  * stop the event and update event->count
3229                  */
3230                 event->pmu->stop(event, PERF_EF_UPDATE);
3231
3232                 now = local64_read(&event->count);
3233                 delta = now - hwc->freq_count_stamp;
3234                 hwc->freq_count_stamp = now;
3235
3236                 /*
3237                  * restart the event
3238                  * reload only if value has changed
3239                  * we have stopped the event so tell that
3240                  * to perf_adjust_period() to avoid stopping it
3241                  * twice.
3242                  */
3243                 if (delta > 0)
3244                         perf_adjust_period(event, period, delta, false);
3245
3246                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3247         next:
3248                 perf_pmu_enable(event->pmu);
3249         }
3250
3251         perf_pmu_enable(ctx->pmu);
3252         raw_spin_unlock(&ctx->lock);
3253 }
3254
3255 /*
3256  * Round-robin a context's events:
3257  */
3258 static void rotate_ctx(struct perf_event_context *ctx)
3259 {
3260         /*
3261          * Rotate the first entry last of non-pinned groups. Rotation might be
3262          * disabled by the inheritance code.
3263          */
3264         if (!ctx->rotate_disable)
3265                 list_rotate_left(&ctx->flexible_groups);
3266 }
3267
3268 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3269 {
3270         struct perf_event_context *ctx = NULL;
3271         int rotate = 0;
3272
3273         if (cpuctx->ctx.nr_events) {
3274                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3275                         rotate = 1;
3276         }
3277
3278         ctx = cpuctx->task_ctx;
3279         if (ctx && ctx->nr_events) {
3280                 if (ctx->nr_events != ctx->nr_active)
3281                         rotate = 1;
3282         }
3283
3284         if (!rotate)
3285                 goto done;
3286
3287         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3288         perf_pmu_disable(cpuctx->ctx.pmu);
3289
3290         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3291         if (ctx)
3292                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3293
3294         rotate_ctx(&cpuctx->ctx);
3295         if (ctx)
3296                 rotate_ctx(ctx);
3297
3298         perf_event_sched_in(cpuctx, ctx, current);
3299
3300         perf_pmu_enable(cpuctx->ctx.pmu);
3301         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3302 done:
3303
3304         return rotate;
3305 }
3306
3307 void perf_event_task_tick(void)
3308 {
3309         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3310         struct perf_event_context *ctx, *tmp;
3311         int throttled;
3312
3313         WARN_ON(!irqs_disabled());
3314
3315         __this_cpu_inc(perf_throttled_seq);
3316         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3317         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3318
3319         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3320                 perf_adjust_freq_unthr_context(ctx, throttled);
3321 }
3322
3323 static int event_enable_on_exec(struct perf_event *event,
3324                                 struct perf_event_context *ctx)
3325 {
3326         if (!event->attr.enable_on_exec)
3327                 return 0;
3328
3329         event->attr.enable_on_exec = 0;
3330         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3331                 return 0;
3332
3333         __perf_event_mark_enabled(event);
3334
3335         return 1;
3336 }
3337
3338 /*
3339  * Enable all of a task's events that have been marked enable-on-exec.
3340  * This expects task == current.
3341  */
3342 static void perf_event_enable_on_exec(int ctxn)
3343 {
3344         struct perf_event_context *ctx, *clone_ctx = NULL;
3345         struct perf_cpu_context *cpuctx;
3346         struct perf_event *event;
3347         unsigned long flags;
3348         int enabled = 0;
3349
3350         local_irq_save(flags);
3351         ctx = current->perf_event_ctxp[ctxn];
3352         if (!ctx || !ctx->nr_events)
3353                 goto out;
3354
3355         cpuctx = __get_cpu_context(ctx);
3356         perf_ctx_lock(cpuctx, ctx);
3357         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3358         list_for_each_entry(event, &ctx->event_list, event_entry)
3359                 enabled |= event_enable_on_exec(event, ctx);
3360
3361         /*
3362          * Unclone and reschedule this context if we enabled any event.
3363          */
3364         if (enabled) {
3365                 clone_ctx = unclone_ctx(ctx);
3366                 ctx_resched(cpuctx, ctx);
3367         }
3368         perf_ctx_unlock(cpuctx, ctx);
3369
3370 out:
3371         local_irq_restore(flags);
3372
3373         if (clone_ctx)
3374                 put_ctx(clone_ctx);
3375 }
3376
3377 struct perf_read_data {
3378         struct perf_event *event;
3379         bool group;
3380         int ret;
3381 };
3382
3383 /*
3384  * Cross CPU call to read the hardware event
3385  */
3386 static void __perf_event_read(void *info)
3387 {
3388         struct perf_read_data *data = info;
3389         struct perf_event *sub, *event = data->event;
3390         struct perf_event_context *ctx = event->ctx;
3391         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3392         struct pmu *pmu = event->pmu;
3393
3394         /*
3395          * If this is a task context, we need to check whether it is
3396          * the current task context of this cpu.  If not it has been
3397          * scheduled out before the smp call arrived.  In that case
3398          * event->count would have been updated to a recent sample
3399          * when the event was scheduled out.
3400          */
3401         if (ctx->task && cpuctx->task_ctx != ctx)
3402                 return;
3403
3404         raw_spin_lock(&ctx->lock);
3405         if (ctx->is_active) {
3406                 update_context_time(ctx);
3407                 update_cgrp_time_from_event(event);
3408         }
3409
3410         update_event_times(event);
3411         if (event->state != PERF_EVENT_STATE_ACTIVE)
3412                 goto unlock;
3413
3414         if (!data->group) {
3415                 pmu->read(event);
3416                 data->ret = 0;
3417                 goto unlock;
3418         }
3419
3420         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3421
3422         pmu->read(event);
3423
3424         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3425                 update_event_times(sub);
3426                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3427                         /*
3428                          * Use sibling's PMU rather than @event's since
3429                          * sibling could be on different (eg: software) PMU.
3430                          */
3431                         sub->pmu->read(sub);
3432                 }
3433         }
3434
3435         data->ret = pmu->commit_txn(pmu);
3436
3437 unlock:
3438         raw_spin_unlock(&ctx->lock);
3439 }
3440
3441 static inline u64 perf_event_count(struct perf_event *event)
3442 {
3443         if (event->pmu->count)
3444                 return event->pmu->count(event);
3445
3446         return __perf_event_count(event);
3447 }
3448
3449 /*
3450  * NMI-safe method to read a local event, that is an event that
3451  * is:
3452  *   - either for the current task, or for this CPU
3453  *   - does not have inherit set, for inherited task events
3454  *     will not be local and we cannot read them atomically
3455  *   - must not have a pmu::count method
3456  */
3457 u64 perf_event_read_local(struct perf_event *event)
3458 {
3459         unsigned long flags;
3460         u64 val;
3461
3462         /*
3463          * Disabling interrupts avoids all counter scheduling (context
3464          * switches, timer based rotation and IPIs).
3465          */
3466         local_irq_save(flags);
3467
3468         /* If this is a per-task event, it must be for current */
3469         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3470                      event->hw.target != current);
3471
3472         /* If this is a per-CPU event, it must be for this CPU */
3473         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3474                      event->cpu != smp_processor_id());
3475
3476         /*
3477          * It must not be an event with inherit set, we cannot read
3478          * all child counters from atomic context.
3479          */
3480         WARN_ON_ONCE(event->attr.inherit);
3481
3482         /*
3483          * It must not have a pmu::count method, those are not
3484          * NMI safe.
3485          */
3486         WARN_ON_ONCE(event->pmu->count);
3487
3488         /*
3489          * If the event is currently on this CPU, its either a per-task event,
3490          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3491          * oncpu == -1).
3492          */
3493         if (event->oncpu == smp_processor_id())
3494                 event->pmu->read(event);
3495
3496         val = local64_read(&event->count);
3497         local_irq_restore(flags);
3498
3499         return val;
3500 }
3501
3502 static int perf_event_read(struct perf_event *event, bool group)
3503 {
3504         int ret = 0;
3505
3506         /*
3507          * If event is enabled and currently active on a CPU, update the
3508          * value in the event structure:
3509          */
3510         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3511                 struct perf_read_data data = {
3512                         .event = event,
3513                         .group = group,
3514                         .ret = 0,
3515                 };
3516                 smp_call_function_single(event->oncpu,
3517                                          __perf_event_read, &data, 1);
3518                 ret = data.ret;
3519         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3520                 struct perf_event_context *ctx = event->ctx;
3521                 unsigned long flags;
3522
3523                 raw_spin_lock_irqsave(&ctx->lock, flags);
3524                 /*
3525                  * may read while context is not active
3526                  * (e.g., thread is blocked), in that case
3527                  * we cannot update context time
3528                  */
3529                 if (ctx->is_active) {
3530                         update_context_time(ctx);
3531                         update_cgrp_time_from_event(event);
3532                 }
3533                 if (group)
3534                         update_group_times(event);
3535                 else
3536                         update_event_times(event);
3537                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3538         }
3539
3540         return ret;
3541 }
3542
3543 /*
3544  * Initialize the perf_event context in a task_struct:
3545  */
3546 static void __perf_event_init_context(struct perf_event_context *ctx)
3547 {
3548         raw_spin_lock_init(&ctx->lock);
3549         mutex_init(&ctx->mutex);
3550         INIT_LIST_HEAD(&ctx->active_ctx_list);
3551         INIT_LIST_HEAD(&ctx->pinned_groups);
3552         INIT_LIST_HEAD(&ctx->flexible_groups);
3553         INIT_LIST_HEAD(&ctx->event_list);
3554         atomic_set(&ctx->refcount, 1);
3555 }
3556
3557 static struct perf_event_context *
3558 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3559 {
3560         struct perf_event_context *ctx;
3561
3562         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3563         if (!ctx)
3564                 return NULL;
3565
3566         __perf_event_init_context(ctx);
3567         if (task) {
3568                 ctx->task = task;
3569                 get_task_struct(task);
3570         }
3571         ctx->pmu = pmu;
3572
3573         return ctx;
3574 }
3575
3576 static struct task_struct *
3577 find_lively_task_by_vpid(pid_t vpid)
3578 {
3579         struct task_struct *task;
3580
3581         rcu_read_lock();
3582         if (!vpid)
3583                 task = current;
3584         else
3585                 task = find_task_by_vpid(vpid);
3586         if (task)
3587                 get_task_struct(task);
3588         rcu_read_unlock();
3589
3590         if (!task)
3591                 return ERR_PTR(-ESRCH);
3592
3593         return task;
3594 }
3595
3596 /*
3597  * Returns a matching context with refcount and pincount.
3598  */
3599 static struct perf_event_context *
3600 find_get_context(struct pmu *pmu, struct task_struct *task,
3601                 struct perf_event *event)
3602 {
3603         struct perf_event_context *ctx, *clone_ctx = NULL;
3604         struct perf_cpu_context *cpuctx;
3605         void *task_ctx_data = NULL;
3606         unsigned long flags;
3607         int ctxn, err;
3608         int cpu = event->cpu;
3609
3610         if (!task) {
3611                 /* Must be root to operate on a CPU event: */
3612                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3613                         return ERR_PTR(-EACCES);
3614
3615                 /*
3616                  * We could be clever and allow to attach a event to an
3617                  * offline CPU and activate it when the CPU comes up, but
3618                  * that's for later.
3619                  */
3620                 if (!cpu_online(cpu))
3621                         return ERR_PTR(-ENODEV);
3622
3623                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3624                 ctx = &cpuctx->ctx;
3625                 get_ctx(ctx);
3626                 ++ctx->pin_count;
3627
3628                 return ctx;
3629         }
3630
3631         err = -EINVAL;
3632         ctxn = pmu->task_ctx_nr;
3633         if (ctxn < 0)
3634                 goto errout;
3635
3636         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3637                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3638                 if (!task_ctx_data) {
3639                         err = -ENOMEM;
3640                         goto errout;
3641                 }
3642         }
3643
3644 retry:
3645         ctx = perf_lock_task_context(task, ctxn, &flags);
3646         if (ctx) {
3647                 clone_ctx = unclone_ctx(ctx);
3648                 ++ctx->pin_count;
3649
3650                 if (task_ctx_data && !ctx->task_ctx_data) {
3651                         ctx->task_ctx_data = task_ctx_data;
3652                         task_ctx_data = NULL;
3653                 }
3654                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3655
3656                 if (clone_ctx)
3657                         put_ctx(clone_ctx);
3658         } else {
3659                 ctx = alloc_perf_context(pmu, task);
3660                 err = -ENOMEM;
3661                 if (!ctx)
3662                         goto errout;
3663
3664                 if (task_ctx_data) {
3665                         ctx->task_ctx_data = task_ctx_data;
3666                         task_ctx_data = NULL;
3667                 }
3668
3669                 err = 0;
3670                 mutex_lock(&task->perf_event_mutex);
3671                 /*
3672                  * If it has already passed perf_event_exit_task().
3673                  * we must see PF_EXITING, it takes this mutex too.
3674                  */
3675                 if (task->flags & PF_EXITING)
3676                         err = -ESRCH;
3677                 else if (task->perf_event_ctxp[ctxn])
3678                         err = -EAGAIN;
3679                 else {
3680                         get_ctx(ctx);
3681                         ++ctx->pin_count;
3682                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3683                 }
3684                 mutex_unlock(&task->perf_event_mutex);
3685
3686                 if (unlikely(err)) {
3687                         put_ctx(ctx);
3688
3689                         if (err == -EAGAIN)
3690                                 goto retry;
3691                         goto errout;
3692                 }
3693         }
3694
3695         kfree(task_ctx_data);
3696         return ctx;
3697
3698 errout:
3699         kfree(task_ctx_data);
3700         return ERR_PTR(err);
3701 }
3702
3703 static void perf_event_free_filter(struct perf_event *event);
3704 static void perf_event_free_bpf_prog(struct perf_event *event);
3705
3706 static void free_event_rcu(struct rcu_head *head)
3707 {
3708         struct perf_event *event;
3709
3710         event = container_of(head, struct perf_event, rcu_head);
3711         if (event->ns)
3712                 put_pid_ns(event->ns);
3713         perf_event_free_filter(event);
3714         kfree(event);
3715 }
3716
3717 static void ring_buffer_attach(struct perf_event *event,
3718                                struct ring_buffer *rb);
3719
3720 static void detach_sb_event(struct perf_event *event)
3721 {
3722         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3723
3724         raw_spin_lock(&pel->lock);
3725         list_del_rcu(&event->sb_list);
3726         raw_spin_unlock(&pel->lock);
3727 }
3728
3729 static bool is_sb_event(struct perf_event *event)
3730 {
3731         struct perf_event_attr *attr = &event->attr;
3732
3733         if (event->parent)
3734                 return false;
3735
3736         if (event->attach_state & PERF_ATTACH_TASK)
3737                 return false;
3738
3739         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3740             attr->comm || attr->comm_exec ||
3741             attr->task ||
3742             attr->context_switch)
3743                 return true;
3744         return false;
3745 }
3746
3747 static void unaccount_pmu_sb_event(struct perf_event *event)
3748 {
3749         if (is_sb_event(event))
3750                 detach_sb_event(event);
3751 }
3752
3753 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3754 {
3755         if (event->parent)
3756                 return;
3757
3758         if (is_cgroup_event(event))
3759                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3760 }
3761
3762 #ifdef CONFIG_NO_HZ_FULL
3763 static DEFINE_SPINLOCK(nr_freq_lock);
3764 #endif
3765
3766 static void unaccount_freq_event_nohz(void)
3767 {
3768 #ifdef CONFIG_NO_HZ_FULL
3769         spin_lock(&nr_freq_lock);
3770         if (atomic_dec_and_test(&nr_freq_events))
3771                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3772         spin_unlock(&nr_freq_lock);
3773 #endif
3774 }
3775
3776 static void unaccount_freq_event(void)
3777 {
3778         if (tick_nohz_full_enabled())
3779                 unaccount_freq_event_nohz();
3780         else
3781                 atomic_dec(&nr_freq_events);
3782 }
3783
3784 static void unaccount_event(struct perf_event *event)
3785 {
3786         bool dec = false;
3787
3788         if (event->parent)
3789                 return;
3790
3791         if (event->attach_state & PERF_ATTACH_TASK)
3792                 dec = true;
3793         if (event->attr.mmap || event->attr.mmap_data)
3794                 atomic_dec(&nr_mmap_events);
3795         if (event->attr.comm)
3796                 atomic_dec(&nr_comm_events);
3797         if (event->attr.task)
3798                 atomic_dec(&nr_task_events);
3799         if (event->attr.freq)
3800                 unaccount_freq_event();
3801         if (event->attr.context_switch) {
3802                 dec = true;
3803                 atomic_dec(&nr_switch_events);
3804         }
3805         if (is_cgroup_event(event))
3806                 dec = true;
3807         if (has_branch_stack(event))
3808                 dec = true;
3809
3810         if (dec) {
3811                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3812                         schedule_delayed_work(&perf_sched_work, HZ);
3813         }
3814
3815         unaccount_event_cpu(event, event->cpu);
3816
3817         unaccount_pmu_sb_event(event);
3818 }
3819
3820 static void perf_sched_delayed(struct work_struct *work)
3821 {
3822         mutex_lock(&perf_sched_mutex);
3823         if (atomic_dec_and_test(&perf_sched_count))
3824                 static_branch_disable(&perf_sched_events);
3825         mutex_unlock(&perf_sched_mutex);
3826 }
3827
3828 /*
3829  * The following implement mutual exclusion of events on "exclusive" pmus
3830  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3831  * at a time, so we disallow creating events that might conflict, namely:
3832  *
3833  *  1) cpu-wide events in the presence of per-task events,
3834  *  2) per-task events in the presence of cpu-wide events,
3835  *  3) two matching events on the same context.
3836  *
3837  * The former two cases are handled in the allocation path (perf_event_alloc(),
3838  * _free_event()), the latter -- before the first perf_install_in_context().
3839  */
3840 static int exclusive_event_init(struct perf_event *event)
3841 {
3842         struct pmu *pmu = event->pmu;
3843
3844         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3845                 return 0;
3846
3847         /*
3848          * Prevent co-existence of per-task and cpu-wide events on the
3849          * same exclusive pmu.
3850          *
3851          * Negative pmu::exclusive_cnt means there are cpu-wide
3852          * events on this "exclusive" pmu, positive means there are
3853          * per-task events.
3854          *
3855          * Since this is called in perf_event_alloc() path, event::ctx
3856          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3857          * to mean "per-task event", because unlike other attach states it
3858          * never gets cleared.
3859          */
3860         if (event->attach_state & PERF_ATTACH_TASK) {
3861                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3862                         return -EBUSY;
3863         } else {
3864                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3865                         return -EBUSY;
3866         }
3867
3868         return 0;
3869 }
3870
3871 static void exclusive_event_destroy(struct perf_event *event)
3872 {
3873         struct pmu *pmu = event->pmu;
3874
3875         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3876                 return;
3877
3878         /* see comment in exclusive_event_init() */
3879         if (event->attach_state & PERF_ATTACH_TASK)
3880                 atomic_dec(&pmu->exclusive_cnt);
3881         else
3882                 atomic_inc(&pmu->exclusive_cnt);
3883 }
3884
3885 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3886 {
3887         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3888             (e1->cpu == e2->cpu ||
3889              e1->cpu == -1 ||
3890              e2->cpu == -1))
3891                 return true;
3892         return false;
3893 }
3894
3895 /* Called under the same ctx::mutex as perf_install_in_context() */
3896 static bool exclusive_event_installable(struct perf_event *event,
3897                                         struct perf_event_context *ctx)
3898 {
3899         struct perf_event *iter_event;
3900         struct pmu *pmu = event->pmu;
3901
3902         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3903                 return true;
3904
3905         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3906                 if (exclusive_event_match(iter_event, event))
3907                         return false;
3908         }
3909
3910         return true;
3911 }
3912
3913 static void perf_addr_filters_splice(struct perf_event *event,
3914                                        struct list_head *head);
3915
3916 static void _free_event(struct perf_event *event)
3917 {
3918         irq_work_sync(&event->pending);
3919
3920         unaccount_event(event);
3921
3922         if (event->rb) {
3923                 /*
3924                  * Can happen when we close an event with re-directed output.
3925                  *
3926                  * Since we have a 0 refcount, perf_mmap_close() will skip
3927                  * over us; possibly making our ring_buffer_put() the last.
3928                  */
3929                 mutex_lock(&event->mmap_mutex);
3930                 ring_buffer_attach(event, NULL);
3931                 mutex_unlock(&event->mmap_mutex);
3932         }
3933
3934         if (is_cgroup_event(event))
3935                 perf_detach_cgroup(event);
3936
3937         if (!event->parent) {
3938                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3939                         put_callchain_buffers();
3940         }
3941
3942         perf_event_free_bpf_prog(event);
3943         perf_addr_filters_splice(event, NULL);
3944         kfree(event->addr_filters_offs);
3945
3946         if (event->destroy)
3947                 event->destroy(event);
3948
3949         if (event->ctx)
3950                 put_ctx(event->ctx);
3951
3952         exclusive_event_destroy(event);
3953         module_put(event->pmu->module);
3954
3955         call_rcu(&event->rcu_head, free_event_rcu);
3956 }
3957
3958 /*
3959  * Used to free events which have a known refcount of 1, such as in error paths
3960  * where the event isn't exposed yet and inherited events.
3961  */
3962 static void free_event(struct perf_event *event)
3963 {
3964         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3965                                 "unexpected event refcount: %ld; ptr=%p\n",
3966                                 atomic_long_read(&event->refcount), event)) {
3967                 /* leak to avoid use-after-free */
3968                 return;
3969         }
3970
3971         _free_event(event);
3972 }
3973
3974 /*
3975  * Remove user event from the owner task.
3976  */
3977 static void perf_remove_from_owner(struct perf_event *event)
3978 {
3979         struct task_struct *owner;
3980
3981         rcu_read_lock();
3982         /*
3983          * Matches the smp_store_release() in perf_event_exit_task(). If we
3984          * observe !owner it means the list deletion is complete and we can
3985          * indeed free this event, otherwise we need to serialize on
3986          * owner->perf_event_mutex.
3987          */
3988         owner = lockless_dereference(event->owner);
3989         if (owner) {
3990                 /*
3991                  * Since delayed_put_task_struct() also drops the last
3992                  * task reference we can safely take a new reference
3993                  * while holding the rcu_read_lock().
3994                  */
3995                 get_task_struct(owner);
3996         }
3997         rcu_read_unlock();
3998
3999         if (owner) {
4000                 /*
4001                  * If we're here through perf_event_exit_task() we're already
4002                  * holding ctx->mutex which would be an inversion wrt. the
4003                  * normal lock order.
4004                  *
4005                  * However we can safely take this lock because its the child
4006                  * ctx->mutex.
4007                  */
4008                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4009
4010                 /*
4011                  * We have to re-check the event->owner field, if it is cleared
4012                  * we raced with perf_event_exit_task(), acquiring the mutex
4013                  * ensured they're done, and we can proceed with freeing the
4014                  * event.
4015                  */
4016                 if (event->owner) {
4017                         list_del_init(&event->owner_entry);
4018                         smp_store_release(&event->owner, NULL);
4019                 }
4020                 mutex_unlock(&owner->perf_event_mutex);
4021                 put_task_struct(owner);
4022         }
4023 }
4024
4025 static void put_event(struct perf_event *event)
4026 {
4027         if (!atomic_long_dec_and_test(&event->refcount))
4028                 return;
4029
4030         _free_event(event);
4031 }
4032
4033 /*
4034  * Kill an event dead; while event:refcount will preserve the event
4035  * object, it will not preserve its functionality. Once the last 'user'
4036  * gives up the object, we'll destroy the thing.
4037  */
4038 int perf_event_release_kernel(struct perf_event *event)
4039 {
4040         struct perf_event_context *ctx = event->ctx;
4041         struct perf_event *child, *tmp;
4042
4043         /*
4044          * If we got here through err_file: fput(event_file); we will not have
4045          * attached to a context yet.
4046          */
4047         if (!ctx) {
4048                 WARN_ON_ONCE(event->attach_state &
4049                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4050                 goto no_ctx;
4051         }
4052
4053         if (!is_kernel_event(event))
4054                 perf_remove_from_owner(event);
4055
4056         ctx = perf_event_ctx_lock(event);
4057         WARN_ON_ONCE(ctx->parent_ctx);
4058         perf_remove_from_context(event, DETACH_GROUP);
4059
4060         raw_spin_lock_irq(&ctx->lock);
4061         /*
4062          * Mark this even as STATE_DEAD, there is no external reference to it
4063          * anymore.
4064          *
4065          * Anybody acquiring event->child_mutex after the below loop _must_
4066          * also see this, most importantly inherit_event() which will avoid
4067          * placing more children on the list.
4068          *
4069          * Thus this guarantees that we will in fact observe and kill _ALL_
4070          * child events.
4071          */
4072         event->state = PERF_EVENT_STATE_DEAD;
4073         raw_spin_unlock_irq(&ctx->lock);
4074
4075         perf_event_ctx_unlock(event, ctx);
4076
4077 again:
4078         mutex_lock(&event->child_mutex);
4079         list_for_each_entry(child, &event->child_list, child_list) {
4080
4081                 /*
4082                  * Cannot change, child events are not migrated, see the
4083                  * comment with perf_event_ctx_lock_nested().
4084                  */
4085                 ctx = lockless_dereference(child->ctx);
4086                 /*
4087                  * Since child_mutex nests inside ctx::mutex, we must jump
4088                  * through hoops. We start by grabbing a reference on the ctx.
4089                  *
4090                  * Since the event cannot get freed while we hold the
4091                  * child_mutex, the context must also exist and have a !0
4092                  * reference count.
4093                  */
4094                 get_ctx(ctx);
4095
4096                 /*
4097                  * Now that we have a ctx ref, we can drop child_mutex, and
4098                  * acquire ctx::mutex without fear of it going away. Then we
4099                  * can re-acquire child_mutex.
4100                  */
4101                 mutex_unlock(&event->child_mutex);
4102                 mutex_lock(&ctx->mutex);
4103                 mutex_lock(&event->child_mutex);
4104
4105                 /*
4106                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4107                  * state, if child is still the first entry, it didn't get freed
4108                  * and we can continue doing so.
4109                  */
4110                 tmp = list_first_entry_or_null(&event->child_list,
4111                                                struct perf_event, child_list);
4112                 if (tmp == child) {
4113                         perf_remove_from_context(child, DETACH_GROUP);
4114                         list_del(&child->child_list);
4115                         free_event(child);
4116                         /*
4117                          * This matches the refcount bump in inherit_event();
4118                          * this can't be the last reference.
4119                          */
4120                         put_event(event);
4121                 }
4122
4123                 mutex_unlock(&event->child_mutex);
4124                 mutex_unlock(&ctx->mutex);
4125                 put_ctx(ctx);
4126                 goto again;
4127         }
4128         mutex_unlock(&event->child_mutex);
4129
4130 no_ctx:
4131         put_event(event); /* Must be the 'last' reference */
4132         return 0;
4133 }
4134 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4135
4136 /*
4137  * Called when the last reference to the file is gone.
4138  */
4139 static int perf_release(struct inode *inode, struct file *file)
4140 {
4141         perf_event_release_kernel(file->private_data);
4142         return 0;
4143 }
4144
4145 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4146 {
4147         struct perf_event *child;
4148         u64 total = 0;
4149
4150         *enabled = 0;
4151         *running = 0;
4152
4153         mutex_lock(&event->child_mutex);
4154
4155         (void)perf_event_read(event, false);
4156         total += perf_event_count(event);
4157
4158         *enabled += event->total_time_enabled +
4159                         atomic64_read(&event->child_total_time_enabled);
4160         *running += event->total_time_running +
4161                         atomic64_read(&event->child_total_time_running);
4162
4163         list_for_each_entry(child, &event->child_list, child_list) {
4164                 (void)perf_event_read(child, false);
4165                 total += perf_event_count(child);
4166                 *enabled += child->total_time_enabled;
4167                 *running += child->total_time_running;
4168         }
4169         mutex_unlock(&event->child_mutex);
4170
4171         return total;
4172 }
4173 EXPORT_SYMBOL_GPL(perf_event_read_value);
4174
4175 static int __perf_read_group_add(struct perf_event *leader,
4176                                         u64 read_format, u64 *values)
4177 {
4178         struct perf_event *sub;
4179         int n = 1; /* skip @nr */
4180         int ret;
4181
4182         ret = perf_event_read(leader, true);
4183         if (ret)
4184                 return ret;
4185
4186         /*
4187          * Since we co-schedule groups, {enabled,running} times of siblings
4188          * will be identical to those of the leader, so we only publish one
4189          * set.
4190          */
4191         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4192                 values[n++] += leader->total_time_enabled +
4193                         atomic64_read(&leader->child_total_time_enabled);
4194         }
4195
4196         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4197                 values[n++] += leader->total_time_running +
4198                         atomic64_read(&leader->child_total_time_running);
4199         }
4200
4201         /*
4202          * Write {count,id} tuples for every sibling.
4203          */
4204         values[n++] += perf_event_count(leader);
4205         if (read_format & PERF_FORMAT_ID)
4206                 values[n++] = primary_event_id(leader);
4207
4208         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4209                 values[n++] += perf_event_count(sub);
4210                 if (read_format & PERF_FORMAT_ID)
4211                         values[n++] = primary_event_id(sub);
4212         }
4213
4214         return 0;
4215 }
4216
4217 static int perf_read_group(struct perf_event *event,
4218                                    u64 read_format, char __user *buf)
4219 {
4220         struct perf_event *leader = event->group_leader, *child;
4221         struct perf_event_context *ctx = leader->ctx;
4222         int ret;
4223         u64 *values;
4224
4225         lockdep_assert_held(&ctx->mutex);
4226
4227         values = kzalloc(event->read_size, GFP_KERNEL);
4228         if (!values)
4229                 return -ENOMEM;
4230
4231         values[0] = 1 + leader->nr_siblings;
4232
4233         /*
4234          * By locking the child_mutex of the leader we effectively
4235          * lock the child list of all siblings.. XXX explain how.
4236          */
4237         mutex_lock(&leader->child_mutex);
4238
4239         ret = __perf_read_group_add(leader, read_format, values);
4240         if (ret)
4241                 goto unlock;
4242
4243         list_for_each_entry(child, &leader->child_list, child_list) {
4244                 ret = __perf_read_group_add(child, read_format, values);
4245                 if (ret)
4246                         goto unlock;
4247         }
4248
4249         mutex_unlock(&leader->child_mutex);
4250
4251         ret = event->read_size;
4252         if (copy_to_user(buf, values, event->read_size))
4253                 ret = -EFAULT;
4254         goto out;
4255
4256 unlock:
4257         mutex_unlock(&leader->child_mutex);
4258 out:
4259         kfree(values);
4260         return ret;
4261 }
4262
4263 static int perf_read_one(struct perf_event *event,
4264                                  u64 read_format, char __user *buf)
4265 {
4266         u64 enabled, running;
4267         u64 values[4];
4268         int n = 0;
4269
4270         values[n++] = perf_event_read_value(event, &enabled, &running);
4271         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4272                 values[n++] = enabled;
4273         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4274                 values[n++] = running;
4275         if (read_format & PERF_FORMAT_ID)
4276                 values[n++] = primary_event_id(event);
4277
4278         if (copy_to_user(buf, values, n * sizeof(u64)))
4279                 return -EFAULT;
4280
4281         return n * sizeof(u64);
4282 }
4283
4284 static bool is_event_hup(struct perf_event *event)
4285 {
4286         bool no_children;
4287
4288         if (event->state > PERF_EVENT_STATE_EXIT)
4289                 return false;
4290
4291         mutex_lock(&event->child_mutex);
4292         no_children = list_empty(&event->child_list);
4293         mutex_unlock(&event->child_mutex);
4294         return no_children;
4295 }
4296
4297 /*
4298  * Read the performance event - simple non blocking version for now
4299  */
4300 static ssize_t
4301 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4302 {
4303         u64 read_format = event->attr.read_format;
4304         int ret;
4305
4306         /*
4307          * Return end-of-file for a read on a event that is in
4308          * error state (i.e. because it was pinned but it couldn't be
4309          * scheduled on to the CPU at some point).
4310          */
4311         if (event->state == PERF_EVENT_STATE_ERROR)
4312                 return 0;
4313
4314         if (count < event->read_size)
4315                 return -ENOSPC;
4316
4317         WARN_ON_ONCE(event->ctx->parent_ctx);
4318         if (read_format & PERF_FORMAT_GROUP)
4319                 ret = perf_read_group(event, read_format, buf);
4320         else
4321                 ret = perf_read_one(event, read_format, buf);
4322
4323         return ret;
4324 }
4325
4326 static ssize_t
4327 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4328 {
4329         struct perf_event *event = file->private_data;
4330         struct perf_event_context *ctx;
4331         int ret;
4332
4333         ctx = perf_event_ctx_lock(event);
4334         ret = __perf_read(event, buf, count);
4335         perf_event_ctx_unlock(event, ctx);
4336
4337         return ret;
4338 }
4339
4340 static unsigned int perf_poll(struct file *file, poll_table *wait)
4341 {
4342         struct perf_event *event = file->private_data;
4343         struct ring_buffer *rb;
4344         unsigned int events = POLLHUP;
4345
4346         poll_wait(file, &event->waitq, wait);
4347
4348         if (is_event_hup(event))
4349                 return events;
4350
4351         /*
4352          * Pin the event->rb by taking event->mmap_mutex; otherwise
4353          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4354          */
4355         mutex_lock(&event->mmap_mutex);
4356         rb = event->rb;
4357         if (rb)
4358                 events = atomic_xchg(&rb->poll, 0);
4359         mutex_unlock(&event->mmap_mutex);
4360         return events;
4361 }
4362
4363 static void _perf_event_reset(struct perf_event *event)
4364 {
4365         (void)perf_event_read(event, false);
4366         local64_set(&event->count, 0);
4367         perf_event_update_userpage(event);
4368 }
4369
4370 /*
4371  * Holding the top-level event's child_mutex means that any
4372  * descendant process that has inherited this event will block
4373  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4374  * task existence requirements of perf_event_enable/disable.
4375  */
4376 static void perf_event_for_each_child(struct perf_event *event,
4377                                         void (*func)(struct perf_event *))
4378 {
4379         struct perf_event *child;
4380
4381         WARN_ON_ONCE(event->ctx->parent_ctx);
4382
4383         mutex_lock(&event->child_mutex);
4384         func(event);
4385         list_for_each_entry(child, &event->child_list, child_list)
4386                 func(child);
4387         mutex_unlock(&event->child_mutex);
4388 }
4389
4390 static void perf_event_for_each(struct perf_event *event,
4391                                   void (*func)(struct perf_event *))
4392 {
4393         struct perf_event_context *ctx = event->ctx;
4394         struct perf_event *sibling;
4395
4396         lockdep_assert_held(&ctx->mutex);
4397
4398         event = event->group_leader;
4399
4400         perf_event_for_each_child(event, func);
4401         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4402                 perf_event_for_each_child(sibling, func);
4403 }
4404
4405 static void __perf_event_period(struct perf_event *event,
4406                                 struct perf_cpu_context *cpuctx,
4407                                 struct perf_event_context *ctx,
4408                                 void *info)
4409 {
4410         u64 value = *((u64 *)info);
4411         bool active;
4412
4413         if (event->attr.freq) {
4414                 event->attr.sample_freq = value;
4415         } else {
4416                 event->attr.sample_period = value;
4417                 event->hw.sample_period = value;
4418         }
4419
4420         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4421         if (active) {
4422                 perf_pmu_disable(ctx->pmu);
4423                 /*
4424                  * We could be throttled; unthrottle now to avoid the tick
4425                  * trying to unthrottle while we already re-started the event.
4426                  */
4427                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4428                         event->hw.interrupts = 0;
4429                         perf_log_throttle(event, 1);
4430                 }
4431                 event->pmu->stop(event, PERF_EF_UPDATE);
4432         }
4433
4434         local64_set(&event->hw.period_left, 0);
4435
4436         if (active) {
4437                 event->pmu->start(event, PERF_EF_RELOAD);
4438                 perf_pmu_enable(ctx->pmu);
4439         }
4440 }
4441
4442 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4443 {
4444         u64 value;
4445
4446         if (!is_sampling_event(event))
4447                 return -EINVAL;
4448
4449         if (copy_from_user(&value, arg, sizeof(value)))
4450                 return -EFAULT;
4451
4452         if (!value)
4453                 return -EINVAL;
4454
4455         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4456                 return -EINVAL;
4457
4458         event_function_call(event, __perf_event_period, &value);
4459
4460         return 0;
4461 }
4462
4463 static const struct file_operations perf_fops;
4464
4465 static inline int perf_fget_light(int fd, struct fd *p)
4466 {
4467         struct fd f = fdget(fd);
4468         if (!f.file)
4469                 return -EBADF;
4470
4471         if (f.file->f_op != &perf_fops) {
4472                 fdput(f);
4473                 return -EBADF;
4474         }
4475         *p = f;
4476         return 0;
4477 }
4478
4479 static int perf_event_set_output(struct perf_event *event,
4480                                  struct perf_event *output_event);
4481 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4482 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4483
4484 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4485 {
4486         void (*func)(struct perf_event *);
4487         u32 flags = arg;
4488
4489         switch (cmd) {
4490         case PERF_EVENT_IOC_ENABLE:
4491                 func = _perf_event_enable;
4492                 break;
4493         case PERF_EVENT_IOC_DISABLE:
4494                 func = _perf_event_disable;
4495                 break;
4496         case PERF_EVENT_IOC_RESET:
4497                 func = _perf_event_reset;
4498                 break;
4499
4500         case PERF_EVENT_IOC_REFRESH:
4501                 return _perf_event_refresh(event, arg);
4502
4503         case PERF_EVENT_IOC_PERIOD:
4504                 return perf_event_period(event, (u64 __user *)arg);
4505
4506         case PERF_EVENT_IOC_ID:
4507         {
4508                 u64 id = primary_event_id(event);
4509
4510                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4511                         return -EFAULT;
4512                 return 0;
4513         }
4514
4515         case PERF_EVENT_IOC_SET_OUTPUT:
4516         {
4517                 int ret;
4518                 if (arg != -1) {
4519                         struct perf_event *output_event;
4520                         struct fd output;
4521                         ret = perf_fget_light(arg, &output);
4522                         if (ret)
4523                                 return ret;
4524                         output_event = output.file->private_data;
4525                         ret = perf_event_set_output(event, output_event);
4526                         fdput(output);
4527                 } else {
4528                         ret = perf_event_set_output(event, NULL);
4529                 }
4530                 return ret;
4531         }
4532
4533         case PERF_EVENT_IOC_SET_FILTER:
4534                 return perf_event_set_filter(event, (void __user *)arg);
4535
4536         case PERF_EVENT_IOC_SET_BPF:
4537                 return perf_event_set_bpf_prog(event, arg);
4538
4539         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4540                 struct ring_buffer *rb;
4541
4542                 rcu_read_lock();
4543                 rb = rcu_dereference(event->rb);
4544                 if (!rb || !rb->nr_pages) {
4545                         rcu_read_unlock();
4546                         return -EINVAL;
4547                 }
4548                 rb_toggle_paused(rb, !!arg);
4549                 rcu_read_unlock();
4550                 return 0;
4551         }
4552         default:
4553                 return -ENOTTY;
4554         }
4555
4556         if (flags & PERF_IOC_FLAG_GROUP)
4557                 perf_event_for_each(event, func);
4558         else
4559                 perf_event_for_each_child(event, func);
4560
4561         return 0;
4562 }
4563
4564 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4565 {
4566         struct perf_event *event = file->private_data;
4567         struct perf_event_context *ctx;
4568         long ret;
4569
4570         ctx = perf_event_ctx_lock(event);
4571         ret = _perf_ioctl(event, cmd, arg);
4572         perf_event_ctx_unlock(event, ctx);
4573
4574         return ret;
4575 }
4576
4577 #ifdef CONFIG_COMPAT
4578 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4579                                 unsigned long arg)
4580 {
4581         switch (_IOC_NR(cmd)) {
4582         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4583         case _IOC_NR(PERF_EVENT_IOC_ID):
4584                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4585                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4586                         cmd &= ~IOCSIZE_MASK;
4587                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4588                 }
4589                 break;
4590         }
4591         return perf_ioctl(file, cmd, arg);
4592 }
4593 #else
4594 # define perf_compat_ioctl NULL
4595 #endif
4596
4597 int perf_event_task_enable(void)
4598 {
4599         struct perf_event_context *ctx;
4600         struct perf_event *event;
4601
4602         mutex_lock(&current->perf_event_mutex);
4603         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4604                 ctx = perf_event_ctx_lock(event);
4605                 perf_event_for_each_child(event, _perf_event_enable);
4606                 perf_event_ctx_unlock(event, ctx);
4607         }
4608         mutex_unlock(&current->perf_event_mutex);
4609
4610         return 0;
4611 }
4612
4613 int perf_event_task_disable(void)
4614 {
4615         struct perf_event_context *ctx;
4616         struct perf_event *event;
4617
4618         mutex_lock(&current->perf_event_mutex);
4619         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4620                 ctx = perf_event_ctx_lock(event);
4621                 perf_event_for_each_child(event, _perf_event_disable);
4622                 perf_event_ctx_unlock(event, ctx);
4623         }
4624         mutex_unlock(&current->perf_event_mutex);
4625
4626         return 0;
4627 }
4628
4629 static int perf_event_index(struct perf_event *event)
4630 {
4631         if (event->hw.state & PERF_HES_STOPPED)
4632                 return 0;
4633
4634         if (event->state != PERF_EVENT_STATE_ACTIVE)
4635                 return 0;
4636
4637         return event->pmu->event_idx(event);
4638 }
4639
4640 static void calc_timer_values(struct perf_event *event,
4641                                 u64 *now,
4642                                 u64 *enabled,
4643                                 u64 *running)
4644 {
4645         u64 ctx_time;
4646
4647         *now = perf_clock();
4648         ctx_time = event->shadow_ctx_time + *now;
4649         *enabled = ctx_time - event->tstamp_enabled;
4650         *running = ctx_time - event->tstamp_running;
4651 }
4652
4653 static void perf_event_init_userpage(struct perf_event *event)
4654 {
4655         struct perf_event_mmap_page *userpg;
4656         struct ring_buffer *rb;
4657
4658         rcu_read_lock();
4659         rb = rcu_dereference(event->rb);
4660         if (!rb)
4661                 goto unlock;
4662
4663         userpg = rb->user_page;
4664
4665         /* Allow new userspace to detect that bit 0 is deprecated */
4666         userpg->cap_bit0_is_deprecated = 1;
4667         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4668         userpg->data_offset = PAGE_SIZE;
4669         userpg->data_size = perf_data_size(rb);
4670
4671 unlock:
4672         rcu_read_unlock();
4673 }
4674
4675 void __weak arch_perf_update_userpage(
4676         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4677 {
4678 }
4679
4680 /*
4681  * Callers need to ensure there can be no nesting of this function, otherwise
4682  * the seqlock logic goes bad. We can not serialize this because the arch
4683  * code calls this from NMI context.
4684  */
4685 void perf_event_update_userpage(struct perf_event *event)
4686 {
4687         struct perf_event_mmap_page *userpg;
4688         struct ring_buffer *rb;
4689         u64 enabled, running, now;
4690
4691         rcu_read_lock();
4692         rb = rcu_dereference(event->rb);
4693         if (!rb)
4694                 goto unlock;
4695
4696         /*
4697          * compute total_time_enabled, total_time_running
4698          * based on snapshot values taken when the event
4699          * was last scheduled in.
4700          *
4701          * we cannot simply called update_context_time()
4702          * because of locking issue as we can be called in
4703          * NMI context
4704          */
4705         calc_timer_values(event, &now, &enabled, &running);
4706
4707         userpg = rb->user_page;
4708         /*
4709          * Disable preemption so as to not let the corresponding user-space
4710          * spin too long if we get preempted.
4711          */
4712         preempt_disable();
4713         ++userpg->lock;
4714         barrier();
4715         userpg->index = perf_event_index(event);
4716         userpg->offset = perf_event_count(event);
4717         if (userpg->index)
4718                 userpg->offset -= local64_read(&event->hw.prev_count);
4719
4720         userpg->time_enabled = enabled +
4721                         atomic64_read(&event->child_total_time_enabled);
4722
4723         userpg->time_running = running +
4724                         atomic64_read(&event->child_total_time_running);
4725
4726         arch_perf_update_userpage(event, userpg, now);
4727
4728         barrier();
4729         ++userpg->lock;
4730         preempt_enable();
4731 unlock:
4732         rcu_read_unlock();
4733 }
4734
4735 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4736 {
4737         struct perf_event *event = vma->vm_file->private_data;
4738         struct ring_buffer *rb;
4739         int ret = VM_FAULT_SIGBUS;
4740
4741         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4742                 if (vmf->pgoff == 0)
4743                         ret = 0;
4744                 return ret;
4745         }
4746
4747         rcu_read_lock();
4748         rb = rcu_dereference(event->rb);
4749         if (!rb)
4750                 goto unlock;
4751
4752         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4753                 goto unlock;
4754
4755         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4756         if (!vmf->page)
4757                 goto unlock;
4758
4759         get_page(vmf->page);
4760         vmf->page->mapping = vma->vm_file->f_mapping;
4761         vmf->page->index   = vmf->pgoff;
4762
4763         ret = 0;
4764 unlock:
4765         rcu_read_unlock();
4766
4767         return ret;
4768 }
4769
4770 static void ring_buffer_attach(struct perf_event *event,
4771                                struct ring_buffer *rb)
4772 {
4773         struct ring_buffer *old_rb = NULL;
4774         unsigned long flags;
4775
4776         if (event->rb) {
4777                 /*
4778                  * Should be impossible, we set this when removing
4779                  * event->rb_entry and wait/clear when adding event->rb_entry.
4780                  */
4781                 WARN_ON_ONCE(event->rcu_pending);
4782
4783                 old_rb = event->rb;
4784                 spin_lock_irqsave(&old_rb->event_lock, flags);
4785                 list_del_rcu(&event->rb_entry);
4786                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4787
4788                 event->rcu_batches = get_state_synchronize_rcu();
4789                 event->rcu_pending = 1;
4790         }
4791
4792         if (rb) {
4793                 if (event->rcu_pending) {
4794                         cond_synchronize_rcu(event->rcu_batches);
4795                         event->rcu_pending = 0;
4796                 }
4797
4798                 spin_lock_irqsave(&rb->event_lock, flags);
4799                 list_add_rcu(&event->rb_entry, &rb->event_list);
4800                 spin_unlock_irqrestore(&rb->event_lock, flags);
4801         }
4802
4803         rcu_assign_pointer(event->rb, rb);
4804
4805         if (old_rb) {
4806                 ring_buffer_put(old_rb);
4807                 /*
4808                  * Since we detached before setting the new rb, so that we
4809                  * could attach the new rb, we could have missed a wakeup.
4810                  * Provide it now.
4811                  */
4812                 wake_up_all(&event->waitq);
4813         }
4814 }
4815
4816 static void ring_buffer_wakeup(struct perf_event *event)
4817 {
4818         struct ring_buffer *rb;
4819
4820         rcu_read_lock();
4821         rb = rcu_dereference(event->rb);
4822         if (rb) {
4823                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4824                         wake_up_all(&event->waitq);
4825         }
4826         rcu_read_unlock();
4827 }
4828
4829 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4830 {
4831         struct ring_buffer *rb;
4832
4833         rcu_read_lock();
4834         rb = rcu_dereference(event->rb);
4835         if (rb) {
4836                 if (!atomic_inc_not_zero(&rb->refcount))
4837                         rb = NULL;
4838         }
4839         rcu_read_unlock();
4840
4841         return rb;
4842 }
4843
4844 void ring_buffer_put(struct ring_buffer *rb)
4845 {
4846         if (!atomic_dec_and_test(&rb->refcount))
4847                 return;
4848
4849         WARN_ON_ONCE(!list_empty(&rb->event_list));
4850
4851         call_rcu(&rb->rcu_head, rb_free_rcu);
4852 }
4853
4854 static void perf_mmap_open(struct vm_area_struct *vma)
4855 {
4856         struct perf_event *event = vma->vm_file->private_data;
4857
4858         atomic_inc(&event->mmap_count);
4859         atomic_inc(&event->rb->mmap_count);
4860
4861         if (vma->vm_pgoff)
4862                 atomic_inc(&event->rb->aux_mmap_count);
4863
4864         if (event->pmu->event_mapped)
4865                 event->pmu->event_mapped(event);
4866 }
4867
4868 static void perf_pmu_output_stop(struct perf_event *event);
4869
4870 /*
4871  * A buffer can be mmap()ed multiple times; either directly through the same
4872  * event, or through other events by use of perf_event_set_output().
4873  *
4874  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4875  * the buffer here, where we still have a VM context. This means we need
4876  * to detach all events redirecting to us.
4877  */
4878 static void perf_mmap_close(struct vm_area_struct *vma)
4879 {
4880         struct perf_event *event = vma->vm_file->private_data;
4881
4882         struct ring_buffer *rb = ring_buffer_get(event);
4883         struct user_struct *mmap_user = rb->mmap_user;
4884         int mmap_locked = rb->mmap_locked;
4885         unsigned long size = perf_data_size(rb);
4886
4887         if (event->pmu->event_unmapped)
4888                 event->pmu->event_unmapped(event);
4889
4890         /*
4891          * rb->aux_mmap_count will always drop before rb->mmap_count and
4892          * event->mmap_count, so it is ok to use event->mmap_mutex to
4893          * serialize with perf_mmap here.
4894          */
4895         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4896             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4897                 /*
4898                  * Stop all AUX events that are writing to this buffer,
4899                  * so that we can free its AUX pages and corresponding PMU
4900                  * data. Note that after rb::aux_mmap_count dropped to zero,
4901                  * they won't start any more (see perf_aux_output_begin()).
4902                  */
4903                 perf_pmu_output_stop(event);
4904
4905                 /* now it's safe to free the pages */
4906                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4907                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4908
4909                 /* this has to be the last one */
4910                 rb_free_aux(rb);
4911                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4912
4913                 mutex_unlock(&event->mmap_mutex);
4914         }
4915
4916         atomic_dec(&rb->mmap_count);
4917
4918         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4919                 goto out_put;
4920
4921         ring_buffer_attach(event, NULL);
4922         mutex_unlock(&event->mmap_mutex);
4923
4924         /* If there's still other mmap()s of this buffer, we're done. */
4925         if (atomic_read(&rb->mmap_count))
4926                 goto out_put;
4927
4928         /*
4929          * No other mmap()s, detach from all other events that might redirect
4930          * into the now unreachable buffer. Somewhat complicated by the
4931          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4932          */
4933 again:
4934         rcu_read_lock();
4935         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4936                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4937                         /*
4938                          * This event is en-route to free_event() which will
4939                          * detach it and remove it from the list.
4940                          */
4941                         continue;
4942                 }
4943                 rcu_read_unlock();
4944
4945                 mutex_lock(&event->mmap_mutex);
4946                 /*
4947                  * Check we didn't race with perf_event_set_output() which can
4948                  * swizzle the rb from under us while we were waiting to
4949                  * acquire mmap_mutex.
4950                  *
4951                  * If we find a different rb; ignore this event, a next
4952                  * iteration will no longer find it on the list. We have to
4953                  * still restart the iteration to make sure we're not now
4954                  * iterating the wrong list.
4955                  */
4956                 if (event->rb == rb)
4957                         ring_buffer_attach(event, NULL);
4958
4959                 mutex_unlock(&event->mmap_mutex);
4960                 put_event(event);
4961
4962                 /*
4963                  * Restart the iteration; either we're on the wrong list or
4964                  * destroyed its integrity by doing a deletion.
4965                  */
4966                 goto again;
4967         }
4968         rcu_read_unlock();
4969
4970         /*
4971          * It could be there's still a few 0-ref events on the list; they'll
4972          * get cleaned up by free_event() -- they'll also still have their
4973          * ref on the rb and will free it whenever they are done with it.
4974          *
4975          * Aside from that, this buffer is 'fully' detached and unmapped,
4976          * undo the VM accounting.
4977          */
4978
4979         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4980         vma->vm_mm->pinned_vm -= mmap_locked;
4981         free_uid(mmap_user);
4982
4983 out_put:
4984         ring_buffer_put(rb); /* could be last */
4985 }
4986
4987 static const struct vm_operations_struct perf_mmap_vmops = {
4988         .open           = perf_mmap_open,
4989         .close          = perf_mmap_close, /* non mergable */
4990         .fault          = perf_mmap_fault,
4991         .page_mkwrite   = perf_mmap_fault,
4992 };
4993
4994 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4995 {
4996         struct perf_event *event = file->private_data;
4997         unsigned long user_locked, user_lock_limit;
4998         struct user_struct *user = current_user();
4999         unsigned long locked, lock_limit;
5000         struct ring_buffer *rb = NULL;
5001         unsigned long vma_size;
5002         unsigned long nr_pages;
5003         long user_extra = 0, extra = 0;
5004         int ret = 0, flags = 0;
5005
5006         /*
5007          * Don't allow mmap() of inherited per-task counters. This would
5008          * create a performance issue due to all children writing to the
5009          * same rb.
5010          */
5011         if (event->cpu == -1 && event->attr.inherit)
5012                 return -EINVAL;
5013
5014         if (!(vma->vm_flags & VM_SHARED))
5015                 return -EINVAL;
5016
5017         vma_size = vma->vm_end - vma->vm_start;
5018
5019         if (vma->vm_pgoff == 0) {
5020                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5021         } else {
5022                 /*
5023                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5024                  * mapped, all subsequent mappings should have the same size
5025                  * and offset. Must be above the normal perf buffer.
5026                  */
5027                 u64 aux_offset, aux_size;
5028
5029                 if (!event->rb)
5030                         return -EINVAL;
5031
5032                 nr_pages = vma_size / PAGE_SIZE;
5033
5034                 mutex_lock(&event->mmap_mutex);
5035                 ret = -EINVAL;
5036
5037                 rb = event->rb;
5038                 if (!rb)
5039                         goto aux_unlock;
5040
5041                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5042                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5043
5044                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5045                         goto aux_unlock;
5046
5047                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5048                         goto aux_unlock;
5049
5050                 /* already mapped with a different offset */
5051                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5052                         goto aux_unlock;
5053
5054                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5055                         goto aux_unlock;
5056
5057                 /* already mapped with a different size */
5058                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5059                         goto aux_unlock;
5060
5061                 if (!is_power_of_2(nr_pages))
5062                         goto aux_unlock;
5063
5064                 if (!atomic_inc_not_zero(&rb->mmap_count))
5065                         goto aux_unlock;
5066
5067                 if (rb_has_aux(rb)) {
5068                         atomic_inc(&rb->aux_mmap_count);
5069                         ret = 0;
5070                         goto unlock;
5071                 }
5072
5073                 atomic_set(&rb->aux_mmap_count, 1);
5074                 user_extra = nr_pages;
5075
5076                 goto accounting;
5077         }
5078
5079         /*
5080          * If we have rb pages ensure they're a power-of-two number, so we
5081          * can do bitmasks instead of modulo.
5082          */
5083         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5084                 return -EINVAL;
5085
5086         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5087                 return -EINVAL;
5088
5089         WARN_ON_ONCE(event->ctx->parent_ctx);
5090 again:
5091         mutex_lock(&event->mmap_mutex);
5092         if (event->rb) {
5093                 if (event->rb->nr_pages != nr_pages) {
5094                         ret = -EINVAL;
5095                         goto unlock;
5096                 }
5097
5098                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5099                         /*
5100                          * Raced against perf_mmap_close() through
5101                          * perf_event_set_output(). Try again, hope for better
5102                          * luck.
5103                          */
5104                         mutex_unlock(&event->mmap_mutex);
5105                         goto again;
5106                 }
5107
5108                 goto unlock;
5109         }
5110
5111         user_extra = nr_pages + 1;
5112
5113 accounting:
5114         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5115
5116         /*
5117          * Increase the limit linearly with more CPUs:
5118          */
5119         user_lock_limit *= num_online_cpus();
5120
5121         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5122
5123         if (user_locked > user_lock_limit)
5124                 extra = user_locked - user_lock_limit;
5125
5126         lock_limit = rlimit(RLIMIT_MEMLOCK);
5127         lock_limit >>= PAGE_SHIFT;
5128         locked = vma->vm_mm->pinned_vm + extra;
5129
5130         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5131                 !capable(CAP_IPC_LOCK)) {
5132                 ret = -EPERM;
5133                 goto unlock;
5134         }
5135
5136         WARN_ON(!rb && event->rb);
5137
5138         if (vma->vm_flags & VM_WRITE)
5139                 flags |= RING_BUFFER_WRITABLE;
5140
5141         if (!rb) {
5142                 rb = rb_alloc(nr_pages,
5143                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5144                               event->cpu, flags);
5145
5146                 if (!rb) {
5147                         ret = -ENOMEM;
5148                         goto unlock;
5149                 }
5150
5151                 atomic_set(&rb->mmap_count, 1);
5152                 rb->mmap_user = get_current_user();
5153                 rb->mmap_locked = extra;
5154
5155                 ring_buffer_attach(event, rb);
5156
5157                 perf_event_init_userpage(event);
5158                 perf_event_update_userpage(event);
5159         } else {
5160                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5161                                    event->attr.aux_watermark, flags);
5162                 if (!ret)
5163                         rb->aux_mmap_locked = extra;
5164         }
5165
5166 unlock:
5167         if (!ret) {
5168                 atomic_long_add(user_extra, &user->locked_vm);
5169                 vma->vm_mm->pinned_vm += extra;
5170
5171                 atomic_inc(&event->mmap_count);
5172         } else if (rb) {
5173                 atomic_dec(&rb->mmap_count);
5174         }
5175 aux_unlock:
5176         mutex_unlock(&event->mmap_mutex);
5177
5178         /*
5179          * Since pinned accounting is per vm we cannot allow fork() to copy our
5180          * vma.
5181          */
5182         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5183         vma->vm_ops = &perf_mmap_vmops;
5184
5185         if (event->pmu->event_mapped)
5186                 event->pmu->event_mapped(event);
5187
5188         return ret;
5189 }
5190
5191 static int perf_fasync(int fd, struct file *filp, int on)
5192 {
5193         struct inode *inode = file_inode(filp);
5194         struct perf_event *event = filp->private_data;
5195         int retval;
5196
5197         inode_lock(inode);
5198         retval = fasync_helper(fd, filp, on, &event->fasync);
5199         inode_unlock(inode);
5200
5201         if (retval < 0)
5202                 return retval;
5203
5204         return 0;
5205 }
5206
5207 static const struct file_operations perf_fops = {
5208         .llseek                 = no_llseek,
5209         .release                = perf_release,
5210         .read                   = perf_read,
5211         .poll                   = perf_poll,
5212         .unlocked_ioctl         = perf_ioctl,
5213         .compat_ioctl           = perf_compat_ioctl,
5214         .mmap                   = perf_mmap,
5215         .fasync                 = perf_fasync,
5216 };
5217
5218 /*
5219  * Perf event wakeup
5220  *
5221  * If there's data, ensure we set the poll() state and publish everything
5222  * to user-space before waking everybody up.
5223  */
5224
5225 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5226 {
5227         /* only the parent has fasync state */
5228         if (event->parent)
5229                 event = event->parent;
5230         return &event->fasync;
5231 }
5232
5233 void perf_event_wakeup(struct perf_event *event)
5234 {
5235         ring_buffer_wakeup(event);
5236
5237         if (event->pending_kill) {
5238                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5239                 event->pending_kill = 0;
5240         }
5241 }
5242
5243 static void perf_pending_event(struct irq_work *entry)
5244 {
5245         struct perf_event *event = container_of(entry,
5246                         struct perf_event, pending);
5247         int rctx;
5248
5249         rctx = perf_swevent_get_recursion_context();
5250         /*
5251          * If we 'fail' here, that's OK, it means recursion is already disabled
5252          * and we won't recurse 'further'.
5253          */
5254
5255         if (event->pending_disable) {
5256                 event->pending_disable = 0;
5257                 perf_event_disable_local(event);
5258         }
5259
5260         if (event->pending_wakeup) {
5261                 event->pending_wakeup = 0;
5262                 perf_event_wakeup(event);
5263         }
5264
5265         if (rctx >= 0)
5266                 perf_swevent_put_recursion_context(rctx);
5267 }
5268
5269 /*
5270  * We assume there is only KVM supporting the callbacks.
5271  * Later on, we might change it to a list if there is
5272  * another virtualization implementation supporting the callbacks.
5273  */
5274 struct perf_guest_info_callbacks *perf_guest_cbs;
5275
5276 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5277 {
5278         perf_guest_cbs = cbs;
5279         return 0;
5280 }
5281 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5282
5283 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5284 {
5285         perf_guest_cbs = NULL;
5286         return 0;
5287 }
5288 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5289
5290 static void
5291 perf_output_sample_regs(struct perf_output_handle *handle,
5292                         struct pt_regs *regs, u64 mask)
5293 {
5294         int bit;
5295
5296         for_each_set_bit(bit, (const unsigned long *) &mask,
5297                          sizeof(mask) * BITS_PER_BYTE) {
5298                 u64 val;
5299
5300                 val = perf_reg_value(regs, bit);
5301                 perf_output_put(handle, val);
5302         }
5303 }
5304
5305 static void perf_sample_regs_user(struct perf_regs *regs_user,
5306                                   struct pt_regs *regs,
5307                                   struct pt_regs *regs_user_copy)
5308 {
5309         if (user_mode(regs)) {
5310                 regs_user->abi = perf_reg_abi(current);
5311                 regs_user->regs = regs;
5312         } else if (current->mm) {
5313                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5314         } else {
5315                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5316                 regs_user->regs = NULL;
5317         }
5318 }
5319
5320 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5321                                   struct pt_regs *regs)
5322 {
5323         regs_intr->regs = regs;
5324         regs_intr->abi  = perf_reg_abi(current);
5325 }
5326
5327
5328 /*
5329  * Get remaining task size from user stack pointer.
5330  *
5331  * It'd be better to take stack vma map and limit this more
5332  * precisly, but there's no way to get it safely under interrupt,
5333  * so using TASK_SIZE as limit.
5334  */
5335 static u64 perf_ustack_task_size(struct pt_regs *regs)
5336 {
5337         unsigned long addr = perf_user_stack_pointer(regs);
5338
5339         if (!addr || addr >= TASK_SIZE)
5340                 return 0;
5341
5342         return TASK_SIZE - addr;
5343 }
5344
5345 static u16
5346 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5347                         struct pt_regs *regs)
5348 {
5349         u64 task_size;
5350
5351         /* No regs, no stack pointer, no dump. */
5352         if (!regs)
5353                 return 0;
5354
5355         /*
5356          * Check if we fit in with the requested stack size into the:
5357          * - TASK_SIZE
5358          *   If we don't, we limit the size to the TASK_SIZE.
5359          *
5360          * - remaining sample size
5361          *   If we don't, we customize the stack size to
5362          *   fit in to the remaining sample size.
5363          */
5364
5365         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5366         stack_size = min(stack_size, (u16) task_size);
5367
5368         /* Current header size plus static size and dynamic size. */
5369         header_size += 2 * sizeof(u64);
5370
5371         /* Do we fit in with the current stack dump size? */
5372         if ((u16) (header_size + stack_size) < header_size) {
5373                 /*
5374                  * If we overflow the maximum size for the sample,
5375                  * we customize the stack dump size to fit in.
5376                  */
5377                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5378                 stack_size = round_up(stack_size, sizeof(u64));
5379         }
5380
5381         return stack_size;
5382 }
5383
5384 static void
5385 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5386                           struct pt_regs *regs)
5387 {
5388         /* Case of a kernel thread, nothing to dump */
5389         if (!regs) {
5390                 u64 size = 0;
5391                 perf_output_put(handle, size);
5392         } else {
5393                 unsigned long sp;
5394                 unsigned int rem;
5395                 u64 dyn_size;
5396
5397                 /*
5398                  * We dump:
5399                  * static size
5400                  *   - the size requested by user or the best one we can fit
5401                  *     in to the sample max size
5402                  * data
5403                  *   - user stack dump data
5404                  * dynamic size
5405                  *   - the actual dumped size
5406                  */
5407
5408                 /* Static size. */
5409                 perf_output_put(handle, dump_size);
5410
5411                 /* Data. */
5412                 sp = perf_user_stack_pointer(regs);
5413                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5414                 dyn_size = dump_size - rem;
5415
5416                 perf_output_skip(handle, rem);
5417
5418                 /* Dynamic size. */
5419                 perf_output_put(handle, dyn_size);
5420         }
5421 }
5422
5423 static void __perf_event_header__init_id(struct perf_event_header *header,
5424                                          struct perf_sample_data *data,
5425                                          struct perf_event *event)
5426 {
5427         u64 sample_type = event->attr.sample_type;
5428
5429         data->type = sample_type;
5430         header->size += event->id_header_size;
5431
5432         if (sample_type & PERF_SAMPLE_TID) {
5433                 /* namespace issues */
5434                 data->tid_entry.pid = perf_event_pid(event, current);
5435                 data->tid_entry.tid = perf_event_tid(event, current);
5436         }
5437
5438         if (sample_type & PERF_SAMPLE_TIME)
5439                 data->time = perf_event_clock(event);
5440
5441         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5442                 data->id = primary_event_id(event);
5443
5444         if (sample_type & PERF_SAMPLE_STREAM_ID)
5445                 data->stream_id = event->id;
5446
5447         if (sample_type & PERF_SAMPLE_CPU) {
5448                 data->cpu_entry.cpu      = raw_smp_processor_id();
5449                 data->cpu_entry.reserved = 0;
5450         }
5451 }
5452
5453 void perf_event_header__init_id(struct perf_event_header *header,
5454                                 struct perf_sample_data *data,
5455                                 struct perf_event *event)
5456 {
5457         if (event->attr.sample_id_all)
5458                 __perf_event_header__init_id(header, data, event);
5459 }
5460
5461 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5462                                            struct perf_sample_data *data)
5463 {
5464         u64 sample_type = data->type;
5465
5466         if (sample_type & PERF_SAMPLE_TID)
5467                 perf_output_put(handle, data->tid_entry);
5468
5469         if (sample_type & PERF_SAMPLE_TIME)
5470                 perf_output_put(handle, data->time);
5471
5472         if (sample_type & PERF_SAMPLE_ID)
5473                 perf_output_put(handle, data->id);
5474
5475         if (sample_type & PERF_SAMPLE_STREAM_ID)
5476                 perf_output_put(handle, data->stream_id);
5477
5478         if (sample_type & PERF_SAMPLE_CPU)
5479                 perf_output_put(handle, data->cpu_entry);
5480
5481         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5482                 perf_output_put(handle, data->id);
5483 }
5484
5485 void perf_event__output_id_sample(struct perf_event *event,
5486                                   struct perf_output_handle *handle,
5487                                   struct perf_sample_data *sample)
5488 {
5489         if (event->attr.sample_id_all)
5490                 __perf_event__output_id_sample(handle, sample);
5491 }
5492
5493 static void perf_output_read_one(struct perf_output_handle *handle,
5494                                  struct perf_event *event,
5495                                  u64 enabled, u64 running)
5496 {
5497         u64 read_format = event->attr.read_format;
5498         u64 values[4];
5499         int n = 0;
5500
5501         values[n++] = perf_event_count(event);
5502         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5503                 values[n++] = enabled +
5504                         atomic64_read(&event->child_total_time_enabled);
5505         }
5506         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5507                 values[n++] = running +
5508                         atomic64_read(&event->child_total_time_running);
5509         }
5510         if (read_format & PERF_FORMAT_ID)
5511                 values[n++] = primary_event_id(event);
5512
5513         __output_copy(handle, values, n * sizeof(u64));
5514 }
5515
5516 /*
5517  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5518  */
5519 static void perf_output_read_group(struct perf_output_handle *handle,
5520                             struct perf_event *event,
5521                             u64 enabled, u64 running)
5522 {
5523         struct perf_event *leader = event->group_leader, *sub;
5524         u64 read_format = event->attr.read_format;
5525         u64 values[5];
5526         int n = 0;
5527
5528         values[n++] = 1 + leader->nr_siblings;
5529
5530         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5531                 values[n++] = enabled;
5532
5533         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5534                 values[n++] = running;
5535
5536         if (leader != event)
5537                 leader->pmu->read(leader);
5538
5539         values[n++] = perf_event_count(leader);
5540         if (read_format & PERF_FORMAT_ID)
5541                 values[n++] = primary_event_id(leader);
5542
5543         __output_copy(handle, values, n * sizeof(u64));
5544
5545         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5546                 n = 0;
5547
5548                 if ((sub != event) &&
5549                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5550                         sub->pmu->read(sub);
5551
5552                 values[n++] = perf_event_count(sub);
5553                 if (read_format & PERF_FORMAT_ID)
5554                         values[n++] = primary_event_id(sub);
5555
5556                 __output_copy(handle, values, n * sizeof(u64));
5557         }
5558 }
5559
5560 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5561                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5562
5563 static void perf_output_read(struct perf_output_handle *handle,
5564                              struct perf_event *event)
5565 {
5566         u64 enabled = 0, running = 0, now;
5567         u64 read_format = event->attr.read_format;
5568
5569         /*
5570          * compute total_time_enabled, total_time_running
5571          * based on snapshot values taken when the event
5572          * was last scheduled in.
5573          *
5574          * we cannot simply called update_context_time()
5575          * because of locking issue as we are called in
5576          * NMI context
5577          */
5578         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5579                 calc_timer_values(event, &now, &enabled, &running);
5580
5581         if (event->attr.read_format & PERF_FORMAT_GROUP)
5582                 perf_output_read_group(handle, event, enabled, running);
5583         else
5584                 perf_output_read_one(handle, event, enabled, running);
5585 }
5586
5587 void perf_output_sample(struct perf_output_handle *handle,
5588                         struct perf_event_header *header,
5589                         struct perf_sample_data *data,
5590                         struct perf_event *event)
5591 {
5592         u64 sample_type = data->type;
5593
5594         perf_output_put(handle, *header);
5595
5596         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5597                 perf_output_put(handle, data->id);
5598
5599         if (sample_type & PERF_SAMPLE_IP)
5600                 perf_output_put(handle, data->ip);
5601
5602         if (sample_type & PERF_SAMPLE_TID)
5603                 perf_output_put(handle, data->tid_entry);
5604
5605         if (sample_type & PERF_SAMPLE_TIME)
5606                 perf_output_put(handle, data->time);
5607
5608         if (sample_type & PERF_SAMPLE_ADDR)
5609                 perf_output_put(handle, data->addr);
5610
5611         if (sample_type & PERF_SAMPLE_ID)
5612                 perf_output_put(handle, data->id);
5613
5614         if (sample_type & PERF_SAMPLE_STREAM_ID)
5615                 perf_output_put(handle, data->stream_id);
5616
5617         if (sample_type & PERF_SAMPLE_CPU)
5618                 perf_output_put(handle, data->cpu_entry);
5619
5620         if (sample_type & PERF_SAMPLE_PERIOD)
5621                 perf_output_put(handle, data->period);
5622
5623         if (sample_type & PERF_SAMPLE_READ)
5624                 perf_output_read(handle, event);
5625
5626         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5627                 if (data->callchain) {
5628                         int size = 1;
5629
5630                         if (data->callchain)
5631                                 size += data->callchain->nr;
5632
5633                         size *= sizeof(u64);
5634
5635                         __output_copy(handle, data->callchain, size);
5636                 } else {
5637                         u64 nr = 0;
5638                         perf_output_put(handle, nr);
5639                 }
5640         }
5641
5642         if (sample_type & PERF_SAMPLE_RAW) {
5643                 struct perf_raw_record *raw = data->raw;
5644
5645                 if (raw) {
5646                         struct perf_raw_frag *frag = &raw->frag;
5647
5648                         perf_output_put(handle, raw->size);
5649                         do {
5650                                 if (frag->copy) {
5651                                         __output_custom(handle, frag->copy,
5652                                                         frag->data, frag->size);
5653                                 } else {
5654                                         __output_copy(handle, frag->data,
5655                                                       frag->size);
5656                                 }
5657                                 if (perf_raw_frag_last(frag))
5658                                         break;
5659                                 frag = frag->next;
5660                         } while (1);
5661                         if (frag->pad)
5662                                 __output_skip(handle, NULL, frag->pad);
5663                 } else {
5664                         struct {
5665                                 u32     size;
5666                                 u32     data;
5667                         } raw = {
5668                                 .size = sizeof(u32),
5669                                 .data = 0,
5670                         };
5671                         perf_output_put(handle, raw);
5672                 }
5673         }
5674
5675         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5676                 if (data->br_stack) {
5677                         size_t size;
5678
5679                         size = data->br_stack->nr
5680                              * sizeof(struct perf_branch_entry);
5681
5682                         perf_output_put(handle, data->br_stack->nr);
5683                         perf_output_copy(handle, data->br_stack->entries, size);
5684                 } else {
5685                         /*
5686                          * we always store at least the value of nr
5687                          */
5688                         u64 nr = 0;
5689                         perf_output_put(handle, nr);
5690                 }
5691         }
5692
5693         if (sample_type & PERF_SAMPLE_REGS_USER) {
5694                 u64 abi = data->regs_user.abi;
5695
5696                 /*
5697                  * If there are no regs to dump, notice it through
5698                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5699                  */
5700                 perf_output_put(handle, abi);
5701
5702                 if (abi) {
5703                         u64 mask = event->attr.sample_regs_user;
5704                         perf_output_sample_regs(handle,
5705                                                 data->regs_user.regs,
5706                                                 mask);
5707                 }
5708         }
5709
5710         if (sample_type & PERF_SAMPLE_STACK_USER) {
5711                 perf_output_sample_ustack(handle,
5712                                           data->stack_user_size,
5713                                           data->regs_user.regs);
5714         }
5715
5716         if (sample_type & PERF_SAMPLE_WEIGHT)
5717                 perf_output_put(handle, data->weight);
5718
5719         if (sample_type & PERF_SAMPLE_DATA_SRC)
5720                 perf_output_put(handle, data->data_src.val);
5721
5722         if (sample_type & PERF_SAMPLE_TRANSACTION)
5723                 perf_output_put(handle, data->txn);
5724
5725         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5726                 u64 abi = data->regs_intr.abi;
5727                 /*
5728                  * If there are no regs to dump, notice it through
5729                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5730                  */
5731                 perf_output_put(handle, abi);
5732
5733                 if (abi) {
5734                         u64 mask = event->attr.sample_regs_intr;
5735
5736                         perf_output_sample_regs(handle,
5737                                                 data->regs_intr.regs,
5738                                                 mask);
5739                 }
5740         }
5741
5742         if (!event->attr.watermark) {
5743                 int wakeup_events = event->attr.wakeup_events;
5744
5745                 if (wakeup_events) {
5746                         struct ring_buffer *rb = handle->rb;
5747                         int events = local_inc_return(&rb->events);
5748
5749                         if (events >= wakeup_events) {
5750                                 local_sub(wakeup_events, &rb->events);
5751                                 local_inc(&rb->wakeup);
5752                         }
5753                 }
5754         }
5755 }
5756
5757 void perf_prepare_sample(struct perf_event_header *header,
5758                          struct perf_sample_data *data,
5759                          struct perf_event *event,
5760                          struct pt_regs *regs)
5761 {
5762         u64 sample_type = event->attr.sample_type;
5763
5764         header->type = PERF_RECORD_SAMPLE;
5765         header->size = sizeof(*header) + event->header_size;
5766
5767         header->misc = 0;
5768         header->misc |= perf_misc_flags(regs);
5769
5770         __perf_event_header__init_id(header, data, event);
5771
5772         if (sample_type & PERF_SAMPLE_IP)
5773                 data->ip = perf_instruction_pointer(regs);
5774
5775         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5776                 int size = 1;
5777
5778                 data->callchain = perf_callchain(event, regs);
5779
5780                 if (data->callchain)
5781                         size += data->callchain->nr;
5782
5783                 header->size += size * sizeof(u64);
5784         }
5785
5786         if (sample_type & PERF_SAMPLE_RAW) {
5787                 struct perf_raw_record *raw = data->raw;
5788                 int size;
5789
5790                 if (raw) {
5791                         struct perf_raw_frag *frag = &raw->frag;
5792                         u32 sum = 0;
5793
5794                         do {
5795                                 sum += frag->size;
5796                                 if (perf_raw_frag_last(frag))
5797                                         break;
5798                                 frag = frag->next;
5799                         } while (1);
5800
5801                         size = round_up(sum + sizeof(u32), sizeof(u64));
5802                         raw->size = size - sizeof(u32);
5803                         frag->pad = raw->size - sum;
5804                 } else {
5805                         size = sizeof(u64);
5806                 }
5807
5808                 header->size += size;
5809         }
5810
5811         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5812                 int size = sizeof(u64); /* nr */
5813                 if (data->br_stack) {
5814                         size += data->br_stack->nr
5815                               * sizeof(struct perf_branch_entry);
5816                 }
5817                 header->size += size;
5818         }
5819
5820         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5821                 perf_sample_regs_user(&data->regs_user, regs,
5822                                       &data->regs_user_copy);
5823
5824         if (sample_type & PERF_SAMPLE_REGS_USER) {
5825                 /* regs dump ABI info */
5826                 int size = sizeof(u64);
5827
5828                 if (data->regs_user.regs) {
5829                         u64 mask = event->attr.sample_regs_user;
5830                         size += hweight64(mask) * sizeof(u64);
5831                 }
5832
5833                 header->size += size;
5834         }
5835
5836         if (sample_type & PERF_SAMPLE_STACK_USER) {
5837                 /*
5838                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5839                  * processed as the last one or have additional check added
5840                  * in case new sample type is added, because we could eat
5841                  * up the rest of the sample size.
5842                  */
5843                 u16 stack_size = event->attr.sample_stack_user;
5844                 u16 size = sizeof(u64);
5845
5846                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5847                                                      data->regs_user.regs);
5848
5849                 /*
5850                  * If there is something to dump, add space for the dump
5851                  * itself and for the field that tells the dynamic size,
5852                  * which is how many have been actually dumped.
5853                  */
5854                 if (stack_size)
5855                         size += sizeof(u64) + stack_size;
5856
5857                 data->stack_user_size = stack_size;
5858                 header->size += size;
5859         }
5860
5861         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5862                 /* regs dump ABI info */
5863                 int size = sizeof(u64);
5864
5865                 perf_sample_regs_intr(&data->regs_intr, regs);
5866
5867                 if (data->regs_intr.regs) {
5868                         u64 mask = event->attr.sample_regs_intr;
5869
5870                         size += hweight64(mask) * sizeof(u64);
5871                 }
5872
5873                 header->size += size;
5874         }
5875 }
5876
5877 static void __always_inline
5878 __perf_event_output(struct perf_event *event,
5879                     struct perf_sample_data *data,
5880                     struct pt_regs *regs,
5881                     int (*output_begin)(struct perf_output_handle *,
5882                                         struct perf_event *,
5883                                         unsigned int))
5884 {
5885         struct perf_output_handle handle;
5886         struct perf_event_header header;
5887
5888         /* protect the callchain buffers */
5889         rcu_read_lock();
5890
5891         perf_prepare_sample(&header, data, event, regs);
5892
5893         if (output_begin(&handle, event, header.size))
5894                 goto exit;
5895
5896         perf_output_sample(&handle, &header, data, event);
5897
5898         perf_output_end(&handle);
5899
5900 exit:
5901         rcu_read_unlock();
5902 }
5903
5904 void
5905 perf_event_output_forward(struct perf_event *event,
5906                          struct perf_sample_data *data,
5907                          struct pt_regs *regs)
5908 {
5909         __perf_event_output(event, data, regs, perf_output_begin_forward);
5910 }
5911
5912 void
5913 perf_event_output_backward(struct perf_event *event,
5914                            struct perf_sample_data *data,
5915                            struct pt_regs *regs)
5916 {
5917         __perf_event_output(event, data, regs, perf_output_begin_backward);
5918 }
5919
5920 void
5921 perf_event_output(struct perf_event *event,
5922                   struct perf_sample_data *data,
5923                   struct pt_regs *regs)
5924 {
5925         __perf_event_output(event, data, regs, perf_output_begin);
5926 }
5927
5928 /*
5929  * read event_id
5930  */
5931
5932 struct perf_read_event {
5933         struct perf_event_header        header;
5934
5935         u32                             pid;
5936         u32                             tid;
5937 };
5938
5939 static void
5940 perf_event_read_event(struct perf_event *event,
5941                         struct task_struct *task)
5942 {
5943         struct perf_output_handle handle;
5944         struct perf_sample_data sample;
5945         struct perf_read_event read_event = {
5946                 .header = {
5947                         .type = PERF_RECORD_READ,
5948                         .misc = 0,
5949                         .size = sizeof(read_event) + event->read_size,
5950                 },
5951                 .pid = perf_event_pid(event, task),
5952                 .tid = perf_event_tid(event, task),
5953         };
5954         int ret;
5955
5956         perf_event_header__init_id(&read_event.header, &sample, event);
5957         ret = perf_output_begin(&handle, event, read_event.header.size);
5958         if (ret)
5959                 return;
5960
5961         perf_output_put(&handle, read_event);
5962         perf_output_read(&handle, event);
5963         perf_event__output_id_sample(event, &handle, &sample);
5964
5965         perf_output_end(&handle);
5966 }
5967
5968 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5969
5970 static void
5971 perf_iterate_ctx(struct perf_event_context *ctx,
5972                    perf_iterate_f output,
5973                    void *data, bool all)
5974 {
5975         struct perf_event *event;
5976
5977         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5978                 if (!all) {
5979                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5980                                 continue;
5981                         if (!event_filter_match(event))
5982                                 continue;
5983                 }
5984
5985                 output(event, data);
5986         }
5987 }
5988
5989 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5990 {
5991         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5992         struct perf_event *event;
5993
5994         list_for_each_entry_rcu(event, &pel->list, sb_list) {
5995                 /*
5996                  * Skip events that are not fully formed yet; ensure that
5997                  * if we observe event->ctx, both event and ctx will be
5998                  * complete enough. See perf_install_in_context().
5999                  */
6000                 if (!smp_load_acquire(&event->ctx))
6001                         continue;
6002
6003                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6004                         continue;
6005                 if (!event_filter_match(event))
6006                         continue;
6007                 output(event, data);
6008         }
6009 }
6010
6011 /*
6012  * Iterate all events that need to receive side-band events.
6013  *
6014  * For new callers; ensure that account_pmu_sb_event() includes
6015  * your event, otherwise it might not get delivered.
6016  */
6017 static void
6018 perf_iterate_sb(perf_iterate_f output, void *data,
6019                struct perf_event_context *task_ctx)
6020 {
6021         struct perf_event_context *ctx;
6022         int ctxn;
6023
6024         rcu_read_lock();
6025         preempt_disable();
6026
6027         /*
6028          * If we have task_ctx != NULL we only notify the task context itself.
6029          * The task_ctx is set only for EXIT events before releasing task
6030          * context.
6031          */
6032         if (task_ctx) {
6033                 perf_iterate_ctx(task_ctx, output, data, false);
6034                 goto done;
6035         }
6036
6037         perf_iterate_sb_cpu(output, data);
6038
6039         for_each_task_context_nr(ctxn) {
6040                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6041                 if (ctx)
6042                         perf_iterate_ctx(ctx, output, data, false);
6043         }
6044 done:
6045         preempt_enable();
6046         rcu_read_unlock();
6047 }
6048
6049 /*
6050  * Clear all file-based filters at exec, they'll have to be
6051  * re-instated when/if these objects are mmapped again.
6052  */
6053 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6054 {
6055         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6056         struct perf_addr_filter *filter;
6057         unsigned int restart = 0, count = 0;
6058         unsigned long flags;
6059
6060         if (!has_addr_filter(event))
6061                 return;
6062
6063         raw_spin_lock_irqsave(&ifh->lock, flags);
6064         list_for_each_entry(filter, &ifh->list, entry) {
6065                 if (filter->inode) {
6066                         event->addr_filters_offs[count] = 0;
6067                         restart++;
6068                 }
6069
6070                 count++;
6071         }
6072
6073         if (restart)
6074                 event->addr_filters_gen++;
6075         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6076
6077         if (restart)
6078                 perf_event_restart(event);
6079 }
6080
6081 void perf_event_exec(void)
6082 {
6083         struct perf_event_context *ctx;
6084         int ctxn;
6085
6086         rcu_read_lock();
6087         for_each_task_context_nr(ctxn) {
6088                 ctx = current->perf_event_ctxp[ctxn];
6089                 if (!ctx)
6090                         continue;
6091
6092                 perf_event_enable_on_exec(ctxn);
6093
6094                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6095                                    true);
6096         }
6097         rcu_read_unlock();
6098 }
6099
6100 struct remote_output {
6101         struct ring_buffer      *rb;
6102         int                     err;
6103 };
6104
6105 static void __perf_event_output_stop(struct perf_event *event, void *data)
6106 {
6107         struct perf_event *parent = event->parent;
6108         struct remote_output *ro = data;
6109         struct ring_buffer *rb = ro->rb;
6110         struct stop_event_data sd = {
6111                 .event  = event,
6112         };
6113
6114         if (!has_aux(event))
6115                 return;
6116
6117         if (!parent)
6118                 parent = event;
6119
6120         /*
6121          * In case of inheritance, it will be the parent that links to the
6122          * ring-buffer, but it will be the child that's actually using it:
6123          */
6124         if (rcu_dereference(parent->rb) == rb)
6125                 ro->err = __perf_event_stop(&sd);
6126 }
6127
6128 static int __perf_pmu_output_stop(void *info)
6129 {
6130         struct perf_event *event = info;
6131         struct pmu *pmu = event->pmu;
6132         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6133         struct remote_output ro = {
6134                 .rb     = event->rb,
6135         };
6136
6137         rcu_read_lock();
6138         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6139         if (cpuctx->task_ctx)
6140                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6141                                    &ro, false);
6142         rcu_read_unlock();
6143
6144         return ro.err;
6145 }
6146
6147 static void perf_pmu_output_stop(struct perf_event *event)
6148 {
6149         struct perf_event *iter;
6150         int err, cpu;
6151
6152 restart:
6153         rcu_read_lock();
6154         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6155                 /*
6156                  * For per-CPU events, we need to make sure that neither they
6157                  * nor their children are running; for cpu==-1 events it's
6158                  * sufficient to stop the event itself if it's active, since
6159                  * it can't have children.
6160                  */
6161                 cpu = iter->cpu;
6162                 if (cpu == -1)
6163                         cpu = READ_ONCE(iter->oncpu);
6164
6165                 if (cpu == -1)
6166                         continue;
6167
6168                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6169                 if (err == -EAGAIN) {
6170                         rcu_read_unlock();
6171                         goto restart;
6172                 }
6173         }
6174         rcu_read_unlock();
6175 }
6176
6177 /*
6178  * task tracking -- fork/exit
6179  *
6180  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6181  */
6182
6183 struct perf_task_event {
6184         struct task_struct              *task;
6185         struct perf_event_context       *task_ctx;
6186
6187         struct {
6188                 struct perf_event_header        header;
6189
6190                 u32                             pid;
6191                 u32                             ppid;
6192                 u32                             tid;
6193                 u32                             ptid;
6194                 u64                             time;
6195         } event_id;
6196 };
6197
6198 static int perf_event_task_match(struct perf_event *event)
6199 {
6200         return event->attr.comm  || event->attr.mmap ||
6201                event->attr.mmap2 || event->attr.mmap_data ||
6202                event->attr.task;
6203 }
6204
6205 static void perf_event_task_output(struct perf_event *event,
6206                                    void *data)
6207 {
6208         struct perf_task_event *task_event = data;
6209         struct perf_output_handle handle;
6210         struct perf_sample_data sample;
6211         struct task_struct *task = task_event->task;
6212         int ret, size = task_event->event_id.header.size;
6213
6214         if (!perf_event_task_match(event))
6215                 return;
6216
6217         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6218
6219         ret = perf_output_begin(&handle, event,
6220                                 task_event->event_id.header.size);
6221         if (ret)
6222                 goto out;
6223
6224         task_event->event_id.pid = perf_event_pid(event, task);
6225         task_event->event_id.ppid = perf_event_pid(event, current);
6226
6227         task_event->event_id.tid = perf_event_tid(event, task);
6228         task_event->event_id.ptid = perf_event_tid(event, current);
6229
6230         task_event->event_id.time = perf_event_clock(event);
6231
6232         perf_output_put(&handle, task_event->event_id);
6233
6234         perf_event__output_id_sample(event, &handle, &sample);
6235
6236         perf_output_end(&handle);
6237 out:
6238         task_event->event_id.header.size = size;
6239 }
6240
6241 static void perf_event_task(struct task_struct *task,
6242                               struct perf_event_context *task_ctx,
6243                               int new)
6244 {
6245         struct perf_task_event task_event;
6246
6247         if (!atomic_read(&nr_comm_events) &&
6248             !atomic_read(&nr_mmap_events) &&
6249             !atomic_read(&nr_task_events))
6250                 return;
6251
6252         task_event = (struct perf_task_event){
6253                 .task     = task,
6254                 .task_ctx = task_ctx,
6255                 .event_id    = {
6256                         .header = {
6257                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6258                                 .misc = 0,
6259                                 .size = sizeof(task_event.event_id),
6260                         },
6261                         /* .pid  */
6262                         /* .ppid */
6263                         /* .tid  */
6264                         /* .ptid */
6265                         /* .time */
6266                 },
6267         };
6268
6269         perf_iterate_sb(perf_event_task_output,
6270                        &task_event,
6271                        task_ctx);
6272 }
6273
6274 void perf_event_fork(struct task_struct *task)
6275 {
6276         perf_event_task(task, NULL, 1);
6277 }
6278
6279 /*
6280  * comm tracking
6281  */
6282
6283 struct perf_comm_event {
6284         struct task_struct      *task;
6285         char                    *comm;
6286         int                     comm_size;
6287
6288         struct {
6289                 struct perf_event_header        header;
6290
6291                 u32                             pid;
6292                 u32                             tid;
6293         } event_id;
6294 };
6295
6296 static int perf_event_comm_match(struct perf_event *event)
6297 {
6298         return event->attr.comm;
6299 }
6300
6301 static void perf_event_comm_output(struct perf_event *event,
6302                                    void *data)
6303 {
6304         struct perf_comm_event *comm_event = data;
6305         struct perf_output_handle handle;
6306         struct perf_sample_data sample;
6307         int size = comm_event->event_id.header.size;
6308         int ret;
6309
6310         if (!perf_event_comm_match(event))
6311                 return;
6312
6313         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6314         ret = perf_output_begin(&handle, event,
6315                                 comm_event->event_id.header.size);
6316
6317         if (ret)
6318                 goto out;
6319
6320         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6321         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6322
6323         perf_output_put(&handle, comm_event->event_id);
6324         __output_copy(&handle, comm_event->comm,
6325                                    comm_event->comm_size);
6326
6327         perf_event__output_id_sample(event, &handle, &sample);
6328
6329         perf_output_end(&handle);
6330 out:
6331         comm_event->event_id.header.size = size;
6332 }
6333
6334 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6335 {
6336         char comm[TASK_COMM_LEN];
6337         unsigned int size;
6338
6339         memset(comm, 0, sizeof(comm));
6340         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6341         size = ALIGN(strlen(comm)+1, sizeof(u64));
6342
6343         comm_event->comm = comm;
6344         comm_event->comm_size = size;
6345
6346         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6347
6348         perf_iterate_sb(perf_event_comm_output,
6349                        comm_event,
6350                        NULL);
6351 }
6352
6353 void perf_event_comm(struct task_struct *task, bool exec)
6354 {
6355         struct perf_comm_event comm_event;
6356
6357         if (!atomic_read(&nr_comm_events))
6358                 return;
6359
6360         comm_event = (struct perf_comm_event){
6361                 .task   = task,
6362                 /* .comm      */
6363                 /* .comm_size */
6364                 .event_id  = {
6365                         .header = {
6366                                 .type = PERF_RECORD_COMM,
6367                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6368                                 /* .size */
6369                         },
6370                         /* .pid */
6371                         /* .tid */
6372                 },
6373         };
6374
6375         perf_event_comm_event(&comm_event);
6376 }
6377
6378 /*
6379  * mmap tracking
6380  */
6381
6382 struct perf_mmap_event {
6383         struct vm_area_struct   *vma;
6384
6385         const char              *file_name;
6386         int                     file_size;
6387         int                     maj, min;
6388         u64                     ino;
6389         u64                     ino_generation;
6390         u32                     prot, flags;
6391
6392         struct {
6393                 struct perf_event_header        header;
6394
6395                 u32                             pid;
6396                 u32                             tid;
6397                 u64                             start;
6398                 u64                             len;
6399                 u64                             pgoff;
6400         } event_id;
6401 };
6402
6403 static int perf_event_mmap_match(struct perf_event *event,
6404                                  void *data)
6405 {
6406         struct perf_mmap_event *mmap_event = data;
6407         struct vm_area_struct *vma = mmap_event->vma;
6408         int executable = vma->vm_flags & VM_EXEC;
6409
6410         return (!executable && event->attr.mmap_data) ||
6411                (executable && (event->attr.mmap || event->attr.mmap2));
6412 }
6413
6414 static void perf_event_mmap_output(struct perf_event *event,
6415                                    void *data)
6416 {
6417         struct perf_mmap_event *mmap_event = data;
6418         struct perf_output_handle handle;
6419         struct perf_sample_data sample;
6420         int size = mmap_event->event_id.header.size;
6421         int ret;
6422
6423         if (!perf_event_mmap_match(event, data))
6424                 return;
6425
6426         if (event->attr.mmap2) {
6427                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6428                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6429                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6430                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6431                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6432                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6433                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6434         }
6435
6436         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6437         ret = perf_output_begin(&handle, event,
6438                                 mmap_event->event_id.header.size);
6439         if (ret)
6440                 goto out;
6441
6442         mmap_event->event_id.pid = perf_event_pid(event, current);
6443         mmap_event->event_id.tid = perf_event_tid(event, current);
6444
6445         perf_output_put(&handle, mmap_event->event_id);
6446
6447         if (event->attr.mmap2) {
6448                 perf_output_put(&handle, mmap_event->maj);
6449                 perf_output_put(&handle, mmap_event->min);
6450                 perf_output_put(&handle, mmap_event->ino);
6451                 perf_output_put(&handle, mmap_event->ino_generation);
6452                 perf_output_put(&handle, mmap_event->prot);
6453                 perf_output_put(&handle, mmap_event->flags);
6454         }
6455
6456         __output_copy(&handle, mmap_event->file_name,
6457                                    mmap_event->file_size);
6458
6459         perf_event__output_id_sample(event, &handle, &sample);
6460
6461         perf_output_end(&handle);
6462 out:
6463         mmap_event->event_id.header.size = size;
6464 }
6465
6466 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6467 {
6468         struct vm_area_struct *vma = mmap_event->vma;
6469         struct file *file = vma->vm_file;
6470         int maj = 0, min = 0;
6471         u64 ino = 0, gen = 0;
6472         u32 prot = 0, flags = 0;
6473         unsigned int size;
6474         char tmp[16];
6475         char *buf = NULL;
6476         char *name;
6477
6478         if (file) {
6479                 struct inode *inode;
6480                 dev_t dev;
6481
6482                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6483                 if (!buf) {
6484                         name = "//enomem";
6485                         goto cpy_name;
6486                 }
6487                 /*
6488                  * d_path() works from the end of the rb backwards, so we
6489                  * need to add enough zero bytes after the string to handle
6490                  * the 64bit alignment we do later.
6491                  */
6492                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6493                 if (IS_ERR(name)) {
6494                         name = "//toolong";
6495                         goto cpy_name;
6496                 }
6497                 inode = file_inode(vma->vm_file);
6498                 dev = inode->i_sb->s_dev;
6499                 ino = inode->i_ino;
6500                 gen = inode->i_generation;
6501                 maj = MAJOR(dev);
6502                 min = MINOR(dev);
6503
6504                 if (vma->vm_flags & VM_READ)
6505                         prot |= PROT_READ;
6506                 if (vma->vm_flags & VM_WRITE)
6507                         prot |= PROT_WRITE;
6508                 if (vma->vm_flags & VM_EXEC)
6509                         prot |= PROT_EXEC;
6510
6511                 if (vma->vm_flags & VM_MAYSHARE)
6512                         flags = MAP_SHARED;
6513                 else
6514                         flags = MAP_PRIVATE;
6515
6516                 if (vma->vm_flags & VM_DENYWRITE)
6517                         flags |= MAP_DENYWRITE;
6518                 if (vma->vm_flags & VM_MAYEXEC)
6519                         flags |= MAP_EXECUTABLE;
6520                 if (vma->vm_flags & VM_LOCKED)
6521                         flags |= MAP_LOCKED;
6522                 if (vma->vm_flags & VM_HUGETLB)
6523                         flags |= MAP_HUGETLB;
6524
6525                 goto got_name;
6526         } else {
6527                 if (vma->vm_ops && vma->vm_ops->name) {
6528                         name = (char *) vma->vm_ops->name(vma);
6529                         if (name)
6530                                 goto cpy_name;
6531                 }
6532
6533                 name = (char *)arch_vma_name(vma);
6534                 if (name)
6535                         goto cpy_name;
6536
6537                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6538                                 vma->vm_end >= vma->vm_mm->brk) {
6539                         name = "[heap]";
6540                         goto cpy_name;
6541                 }
6542                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6543                                 vma->vm_end >= vma->vm_mm->start_stack) {
6544                         name = "[stack]";
6545                         goto cpy_name;
6546                 }
6547
6548                 name = "//anon";
6549                 goto cpy_name;
6550         }
6551
6552 cpy_name:
6553         strlcpy(tmp, name, sizeof(tmp));
6554         name = tmp;
6555 got_name:
6556         /*
6557          * Since our buffer works in 8 byte units we need to align our string
6558          * size to a multiple of 8. However, we must guarantee the tail end is
6559          * zero'd out to avoid leaking random bits to userspace.
6560          */
6561         size = strlen(name)+1;
6562         while (!IS_ALIGNED(size, sizeof(u64)))
6563                 name[size++] = '\0';
6564
6565         mmap_event->file_name = name;
6566         mmap_event->file_size = size;
6567         mmap_event->maj = maj;
6568         mmap_event->min = min;
6569         mmap_event->ino = ino;
6570         mmap_event->ino_generation = gen;
6571         mmap_event->prot = prot;
6572         mmap_event->flags = flags;
6573
6574         if (!(vma->vm_flags & VM_EXEC))
6575                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6576
6577         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6578
6579         perf_iterate_sb(perf_event_mmap_output,
6580                        mmap_event,
6581                        NULL);
6582
6583         kfree(buf);
6584 }
6585
6586 /*
6587  * Whether this @filter depends on a dynamic object which is not loaded
6588  * yet or its load addresses are not known.
6589  */
6590 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6591 {
6592         return filter->filter && filter->inode;
6593 }
6594
6595 /*
6596  * Check whether inode and address range match filter criteria.
6597  */
6598 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6599                                      struct file *file, unsigned long offset,
6600                                      unsigned long size)
6601 {
6602         if (filter->inode != file->f_inode)
6603                 return false;
6604
6605         if (filter->offset > offset + size)
6606                 return false;
6607
6608         if (filter->offset + filter->size < offset)
6609                 return false;
6610
6611         return true;
6612 }
6613
6614 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6615 {
6616         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6617         struct vm_area_struct *vma = data;
6618         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6619         struct file *file = vma->vm_file;
6620         struct perf_addr_filter *filter;
6621         unsigned int restart = 0, count = 0;
6622
6623         if (!has_addr_filter(event))
6624                 return;
6625
6626         if (!file)
6627                 return;
6628
6629         raw_spin_lock_irqsave(&ifh->lock, flags);
6630         list_for_each_entry(filter, &ifh->list, entry) {
6631                 if (perf_addr_filter_match(filter, file, off,
6632                                              vma->vm_end - vma->vm_start)) {
6633                         event->addr_filters_offs[count] = vma->vm_start;
6634                         restart++;
6635                 }
6636
6637                 count++;
6638         }
6639
6640         if (restart)
6641                 event->addr_filters_gen++;
6642         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6643
6644         if (restart)
6645                 perf_event_restart(event);
6646 }
6647
6648 /*
6649  * Adjust all task's events' filters to the new vma
6650  */
6651 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6652 {
6653         struct perf_event_context *ctx;
6654         int ctxn;
6655
6656         rcu_read_lock();
6657         for_each_task_context_nr(ctxn) {
6658                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6659                 if (!ctx)
6660                         continue;
6661
6662                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6663         }
6664         rcu_read_unlock();
6665 }
6666
6667 void perf_event_mmap(struct vm_area_struct *vma)
6668 {
6669         struct perf_mmap_event mmap_event;
6670
6671         if (!atomic_read(&nr_mmap_events))
6672                 return;
6673
6674         mmap_event = (struct perf_mmap_event){
6675                 .vma    = vma,
6676                 /* .file_name */
6677                 /* .file_size */
6678                 .event_id  = {
6679                         .header = {
6680                                 .type = PERF_RECORD_MMAP,
6681                                 .misc = PERF_RECORD_MISC_USER,
6682                                 /* .size */
6683                         },
6684                         /* .pid */
6685                         /* .tid */
6686                         .start  = vma->vm_start,
6687                         .len    = vma->vm_end - vma->vm_start,
6688                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6689                 },
6690                 /* .maj (attr_mmap2 only) */
6691                 /* .min (attr_mmap2 only) */
6692                 /* .ino (attr_mmap2 only) */
6693                 /* .ino_generation (attr_mmap2 only) */
6694                 /* .prot (attr_mmap2 only) */
6695                 /* .flags (attr_mmap2 only) */
6696         };
6697
6698         perf_addr_filters_adjust(vma);
6699         perf_event_mmap_event(&mmap_event);
6700 }
6701
6702 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6703                           unsigned long size, u64 flags)
6704 {
6705         struct perf_output_handle handle;
6706         struct perf_sample_data sample;
6707         struct perf_aux_event {
6708                 struct perf_event_header        header;
6709                 u64                             offset;
6710                 u64                             size;
6711                 u64                             flags;
6712         } rec = {
6713                 .header = {
6714                         .type = PERF_RECORD_AUX,
6715                         .misc = 0,
6716                         .size = sizeof(rec),
6717                 },
6718                 .offset         = head,
6719                 .size           = size,
6720                 .flags          = flags,
6721         };
6722         int ret;
6723
6724         perf_event_header__init_id(&rec.header, &sample, event);
6725         ret = perf_output_begin(&handle, event, rec.header.size);
6726
6727         if (ret)
6728                 return;
6729
6730         perf_output_put(&handle, rec);
6731         perf_event__output_id_sample(event, &handle, &sample);
6732
6733         perf_output_end(&handle);
6734 }
6735
6736 /*
6737  * Lost/dropped samples logging
6738  */
6739 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6740 {
6741         struct perf_output_handle handle;
6742         struct perf_sample_data sample;
6743         int ret;
6744
6745         struct {
6746                 struct perf_event_header        header;
6747                 u64                             lost;
6748         } lost_samples_event = {
6749                 .header = {
6750                         .type = PERF_RECORD_LOST_SAMPLES,
6751                         .misc = 0,
6752                         .size = sizeof(lost_samples_event),
6753                 },
6754                 .lost           = lost,
6755         };
6756
6757         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6758
6759         ret = perf_output_begin(&handle, event,
6760                                 lost_samples_event.header.size);
6761         if (ret)
6762                 return;
6763
6764         perf_output_put(&handle, lost_samples_event);
6765         perf_event__output_id_sample(event, &handle, &sample);
6766         perf_output_end(&handle);
6767 }
6768
6769 /*
6770  * context_switch tracking
6771  */
6772
6773 struct perf_switch_event {
6774         struct task_struct      *task;
6775         struct task_struct      *next_prev;
6776
6777         struct {
6778                 struct perf_event_header        header;
6779                 u32                             next_prev_pid;
6780                 u32                             next_prev_tid;
6781         } event_id;
6782 };
6783
6784 static int perf_event_switch_match(struct perf_event *event)
6785 {
6786         return event->attr.context_switch;
6787 }
6788
6789 static void perf_event_switch_output(struct perf_event *event, void *data)
6790 {
6791         struct perf_switch_event *se = data;
6792         struct perf_output_handle handle;
6793         struct perf_sample_data sample;
6794         int ret;
6795
6796         if (!perf_event_switch_match(event))
6797                 return;
6798
6799         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6800         if (event->ctx->task) {
6801                 se->event_id.header.type = PERF_RECORD_SWITCH;
6802                 se->event_id.header.size = sizeof(se->event_id.header);
6803         } else {
6804                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6805                 se->event_id.header.size = sizeof(se->event_id);
6806                 se->event_id.next_prev_pid =
6807                                         perf_event_pid(event, se->next_prev);
6808                 se->event_id.next_prev_tid =
6809                                         perf_event_tid(event, se->next_prev);
6810         }
6811
6812         perf_event_header__init_id(&se->event_id.header, &sample, event);
6813
6814         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6815         if (ret)
6816                 return;
6817
6818         if (event->ctx->task)
6819                 perf_output_put(&handle, se->event_id.header);
6820         else
6821                 perf_output_put(&handle, se->event_id);
6822
6823         perf_event__output_id_sample(event, &handle, &sample);
6824
6825         perf_output_end(&handle);
6826 }
6827
6828 static void perf_event_switch(struct task_struct *task,
6829                               struct task_struct *next_prev, bool sched_in)
6830 {
6831         struct perf_switch_event switch_event;
6832
6833         /* N.B. caller checks nr_switch_events != 0 */
6834
6835         switch_event = (struct perf_switch_event){
6836                 .task           = task,
6837                 .next_prev      = next_prev,
6838                 .event_id       = {
6839                         .header = {
6840                                 /* .type */
6841                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6842                                 /* .size */
6843                         },
6844                         /* .next_prev_pid */
6845                         /* .next_prev_tid */
6846                 },
6847         };
6848
6849         perf_iterate_sb(perf_event_switch_output,
6850                        &switch_event,
6851                        NULL);
6852 }
6853
6854 /*
6855  * IRQ throttle logging
6856  */
6857
6858 static void perf_log_throttle(struct perf_event *event, int enable)
6859 {
6860         struct perf_output_handle handle;
6861         struct perf_sample_data sample;
6862         int ret;
6863
6864         struct {
6865                 struct perf_event_header        header;
6866                 u64                             time;
6867                 u64                             id;
6868                 u64                             stream_id;
6869         } throttle_event = {
6870                 .header = {
6871                         .type = PERF_RECORD_THROTTLE,
6872                         .misc = 0,
6873                         .size = sizeof(throttle_event),
6874                 },
6875                 .time           = perf_event_clock(event),
6876                 .id             = primary_event_id(event),
6877                 .stream_id      = event->id,
6878         };
6879
6880         if (enable)
6881                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6882
6883         perf_event_header__init_id(&throttle_event.header, &sample, event);
6884
6885         ret = perf_output_begin(&handle, event,
6886                                 throttle_event.header.size);
6887         if (ret)
6888                 return;
6889
6890         perf_output_put(&handle, throttle_event);
6891         perf_event__output_id_sample(event, &handle, &sample);
6892         perf_output_end(&handle);
6893 }
6894
6895 static void perf_log_itrace_start(struct perf_event *event)
6896 {
6897         struct perf_output_handle handle;
6898         struct perf_sample_data sample;
6899         struct perf_aux_event {
6900                 struct perf_event_header        header;
6901                 u32                             pid;
6902                 u32                             tid;
6903         } rec;
6904         int ret;
6905
6906         if (event->parent)
6907                 event = event->parent;
6908
6909         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6910             event->hw.itrace_started)
6911                 return;
6912
6913         rec.header.type = PERF_RECORD_ITRACE_START;
6914         rec.header.misc = 0;
6915         rec.header.size = sizeof(rec);
6916         rec.pid = perf_event_pid(event, current);
6917         rec.tid = perf_event_tid(event, current);
6918
6919         perf_event_header__init_id(&rec.header, &sample, event);
6920         ret = perf_output_begin(&handle, event, rec.header.size);
6921
6922         if (ret)
6923                 return;
6924
6925         perf_output_put(&handle, rec);
6926         perf_event__output_id_sample(event, &handle, &sample);
6927
6928         perf_output_end(&handle);
6929 }
6930
6931 /*
6932  * Generic event overflow handling, sampling.
6933  */
6934
6935 static int __perf_event_overflow(struct perf_event *event,
6936                                    int throttle, struct perf_sample_data *data,
6937                                    struct pt_regs *regs)
6938 {
6939         int events = atomic_read(&event->event_limit);
6940         struct hw_perf_event *hwc = &event->hw;
6941         u64 seq;
6942         int ret = 0;
6943
6944         /*
6945          * Non-sampling counters might still use the PMI to fold short
6946          * hardware counters, ignore those.
6947          */
6948         if (unlikely(!is_sampling_event(event)))
6949                 return 0;
6950
6951         seq = __this_cpu_read(perf_throttled_seq);
6952         if (seq != hwc->interrupts_seq) {
6953                 hwc->interrupts_seq = seq;
6954                 hwc->interrupts = 1;
6955         } else {
6956                 hwc->interrupts++;
6957                 if (unlikely(throttle
6958                              && hwc->interrupts >= max_samples_per_tick)) {
6959                         __this_cpu_inc(perf_throttled_count);
6960                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6961                         hwc->interrupts = MAX_INTERRUPTS;
6962                         perf_log_throttle(event, 0);
6963                         ret = 1;
6964                 }
6965         }
6966
6967         if (event->attr.freq) {
6968                 u64 now = perf_clock();
6969                 s64 delta = now - hwc->freq_time_stamp;
6970
6971                 hwc->freq_time_stamp = now;
6972
6973                 if (delta > 0 && delta < 2*TICK_NSEC)
6974                         perf_adjust_period(event, delta, hwc->last_period, true);
6975         }
6976
6977         /*
6978          * XXX event_limit might not quite work as expected on inherited
6979          * events
6980          */
6981
6982         event->pending_kill = POLL_IN;
6983         if (events && atomic_dec_and_test(&event->event_limit)) {
6984                 ret = 1;
6985                 event->pending_kill = POLL_HUP;
6986                 event->pending_disable = 1;
6987                 irq_work_queue(&event->pending);
6988         }
6989
6990         event->overflow_handler(event, data, regs);
6991
6992         if (*perf_event_fasync(event) && event->pending_kill) {
6993                 event->pending_wakeup = 1;
6994                 irq_work_queue(&event->pending);
6995         }
6996
6997         return ret;
6998 }
6999
7000 int perf_event_overflow(struct perf_event *event,
7001                           struct perf_sample_data *data,
7002                           struct pt_regs *regs)
7003 {
7004         return __perf_event_overflow(event, 1, data, regs);
7005 }
7006
7007 /*
7008  * Generic software event infrastructure
7009  */
7010
7011 struct swevent_htable {
7012         struct swevent_hlist            *swevent_hlist;
7013         struct mutex                    hlist_mutex;
7014         int                             hlist_refcount;
7015
7016         /* Recursion avoidance in each contexts */
7017         int                             recursion[PERF_NR_CONTEXTS];
7018 };
7019
7020 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7021
7022 /*
7023  * We directly increment event->count and keep a second value in
7024  * event->hw.period_left to count intervals. This period event
7025  * is kept in the range [-sample_period, 0] so that we can use the
7026  * sign as trigger.
7027  */
7028
7029 u64 perf_swevent_set_period(struct perf_event *event)
7030 {
7031         struct hw_perf_event *hwc = &event->hw;
7032         u64 period = hwc->last_period;
7033         u64 nr, offset;
7034         s64 old, val;
7035
7036         hwc->last_period = hwc->sample_period;
7037
7038 again:
7039         old = val = local64_read(&hwc->period_left);
7040         if (val < 0)
7041                 return 0;
7042
7043         nr = div64_u64(period + val, period);
7044         offset = nr * period;
7045         val -= offset;
7046         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7047                 goto again;
7048
7049         return nr;
7050 }
7051
7052 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7053                                     struct perf_sample_data *data,
7054                                     struct pt_regs *regs)
7055 {
7056         struct hw_perf_event *hwc = &event->hw;
7057         int throttle = 0;
7058
7059         if (!overflow)
7060                 overflow = perf_swevent_set_period(event);
7061
7062         if (hwc->interrupts == MAX_INTERRUPTS)
7063                 return;
7064
7065         for (; overflow; overflow--) {
7066                 if (__perf_event_overflow(event, throttle,
7067                                             data, regs)) {
7068                         /*
7069                          * We inhibit the overflow from happening when
7070                          * hwc->interrupts == MAX_INTERRUPTS.
7071                          */
7072                         break;
7073                 }
7074                 throttle = 1;
7075         }
7076 }
7077
7078 static void perf_swevent_event(struct perf_event *event, u64 nr,
7079                                struct perf_sample_data *data,
7080                                struct pt_regs *regs)
7081 {
7082         struct hw_perf_event *hwc = &event->hw;
7083
7084         local64_add(nr, &event->count);
7085
7086         if (!regs)
7087                 return;
7088
7089         if (!is_sampling_event(event))
7090                 return;
7091
7092         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7093                 data->period = nr;
7094                 return perf_swevent_overflow(event, 1, data, regs);
7095         } else
7096                 data->period = event->hw.last_period;
7097
7098         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7099                 return perf_swevent_overflow(event, 1, data, regs);
7100
7101         if (local64_add_negative(nr, &hwc->period_left))
7102                 return;
7103
7104         perf_swevent_overflow(event, 0, data, regs);
7105 }
7106
7107 static int perf_exclude_event(struct perf_event *event,
7108                               struct pt_regs *regs)
7109 {
7110         if (event->hw.state & PERF_HES_STOPPED)
7111                 return 1;
7112
7113         if (regs) {
7114                 if (event->attr.exclude_user && user_mode(regs))
7115                         return 1;
7116
7117                 if (event->attr.exclude_kernel && !user_mode(regs))
7118                         return 1;
7119         }
7120
7121         return 0;
7122 }
7123
7124 static int perf_swevent_match(struct perf_event *event,
7125                                 enum perf_type_id type,
7126                                 u32 event_id,
7127                                 struct perf_sample_data *data,
7128                                 struct pt_regs *regs)
7129 {
7130         if (event->attr.type != type)
7131                 return 0;
7132
7133         if (event->attr.config != event_id)
7134                 return 0;
7135
7136         if (perf_exclude_event(event, regs))
7137                 return 0;
7138
7139         return 1;
7140 }
7141
7142 static inline u64 swevent_hash(u64 type, u32 event_id)
7143 {
7144         u64 val = event_id | (type << 32);
7145
7146         return hash_64(val, SWEVENT_HLIST_BITS);
7147 }
7148
7149 static inline struct hlist_head *
7150 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7151 {
7152         u64 hash = swevent_hash(type, event_id);
7153
7154         return &hlist->heads[hash];
7155 }
7156
7157 /* For the read side: events when they trigger */
7158 static inline struct hlist_head *
7159 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7160 {
7161         struct swevent_hlist *hlist;
7162
7163         hlist = rcu_dereference(swhash->swevent_hlist);
7164         if (!hlist)
7165                 return NULL;
7166
7167         return __find_swevent_head(hlist, type, event_id);
7168 }
7169
7170 /* For the event head insertion and removal in the hlist */
7171 static inline struct hlist_head *
7172 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7173 {
7174         struct swevent_hlist *hlist;
7175         u32 event_id = event->attr.config;
7176         u64 type = event->attr.type;
7177
7178         /*
7179          * Event scheduling is always serialized against hlist allocation
7180          * and release. Which makes the protected version suitable here.
7181          * The context lock guarantees that.
7182          */
7183         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7184                                           lockdep_is_held(&event->ctx->lock));
7185         if (!hlist)
7186                 return NULL;
7187
7188         return __find_swevent_head(hlist, type, event_id);
7189 }
7190
7191 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7192                                     u64 nr,
7193                                     struct perf_sample_data *data,
7194                                     struct pt_regs *regs)
7195 {
7196         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7197         struct perf_event *event;
7198         struct hlist_head *head;
7199
7200         rcu_read_lock();
7201         head = find_swevent_head_rcu(swhash, type, event_id);
7202         if (!head)
7203                 goto end;
7204
7205         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7206                 if (perf_swevent_match(event, type, event_id, data, regs))
7207                         perf_swevent_event(event, nr, data, regs);
7208         }
7209 end:
7210         rcu_read_unlock();
7211 }
7212
7213 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7214
7215 int perf_swevent_get_recursion_context(void)
7216 {
7217         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7218
7219         return get_recursion_context(swhash->recursion);
7220 }
7221 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7222
7223 void perf_swevent_put_recursion_context(int rctx)
7224 {
7225         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7226
7227         put_recursion_context(swhash->recursion, rctx);
7228 }
7229
7230 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7231 {
7232         struct perf_sample_data data;
7233
7234         if (WARN_ON_ONCE(!regs))
7235                 return;
7236
7237         perf_sample_data_init(&data, addr, 0);
7238         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7239 }
7240
7241 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7242 {
7243         int rctx;
7244
7245         preempt_disable_notrace();
7246         rctx = perf_swevent_get_recursion_context();
7247         if (unlikely(rctx < 0))
7248                 goto fail;
7249
7250         ___perf_sw_event(event_id, nr, regs, addr);
7251
7252         perf_swevent_put_recursion_context(rctx);
7253 fail:
7254         preempt_enable_notrace();
7255 }
7256
7257 static void perf_swevent_read(struct perf_event *event)
7258 {
7259 }
7260
7261 static int perf_swevent_add(struct perf_event *event, int flags)
7262 {
7263         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7264         struct hw_perf_event *hwc = &event->hw;
7265         struct hlist_head *head;
7266
7267         if (is_sampling_event(event)) {
7268                 hwc->last_period = hwc->sample_period;
7269                 perf_swevent_set_period(event);
7270         }
7271
7272         hwc->state = !(flags & PERF_EF_START);
7273
7274         head = find_swevent_head(swhash, event);
7275         if (WARN_ON_ONCE(!head))
7276                 return -EINVAL;
7277
7278         hlist_add_head_rcu(&event->hlist_entry, head);
7279         perf_event_update_userpage(event);
7280
7281         return 0;
7282 }
7283
7284 static void perf_swevent_del(struct perf_event *event, int flags)
7285 {
7286         hlist_del_rcu(&event->hlist_entry);
7287 }
7288
7289 static void perf_swevent_start(struct perf_event *event, int flags)
7290 {
7291         event->hw.state = 0;
7292 }
7293
7294 static void perf_swevent_stop(struct perf_event *event, int flags)
7295 {
7296         event->hw.state = PERF_HES_STOPPED;
7297 }
7298
7299 /* Deref the hlist from the update side */
7300 static inline struct swevent_hlist *
7301 swevent_hlist_deref(struct swevent_htable *swhash)
7302 {
7303         return rcu_dereference_protected(swhash->swevent_hlist,
7304                                          lockdep_is_held(&swhash->hlist_mutex));
7305 }
7306
7307 static void swevent_hlist_release(struct swevent_htable *swhash)
7308 {
7309         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7310
7311         if (!hlist)
7312                 return;
7313
7314         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7315         kfree_rcu(hlist, rcu_head);
7316 }
7317
7318 static void swevent_hlist_put_cpu(int cpu)
7319 {
7320         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7321
7322         mutex_lock(&swhash->hlist_mutex);
7323
7324         if (!--swhash->hlist_refcount)
7325                 swevent_hlist_release(swhash);
7326
7327         mutex_unlock(&swhash->hlist_mutex);
7328 }
7329
7330 static void swevent_hlist_put(void)
7331 {
7332         int cpu;
7333
7334         for_each_possible_cpu(cpu)
7335                 swevent_hlist_put_cpu(cpu);
7336 }
7337
7338 static int swevent_hlist_get_cpu(int cpu)
7339 {
7340         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7341         int err = 0;
7342
7343         mutex_lock(&swhash->hlist_mutex);
7344         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7345                 struct swevent_hlist *hlist;
7346
7347                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7348                 if (!hlist) {
7349                         err = -ENOMEM;
7350                         goto exit;
7351                 }
7352                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7353         }
7354         swhash->hlist_refcount++;
7355 exit:
7356         mutex_unlock(&swhash->hlist_mutex);
7357
7358         return err;
7359 }
7360
7361 static int swevent_hlist_get(void)
7362 {
7363         int err, cpu, failed_cpu;
7364
7365         get_online_cpus();
7366         for_each_possible_cpu(cpu) {
7367                 err = swevent_hlist_get_cpu(cpu);
7368                 if (err) {
7369                         failed_cpu = cpu;
7370                         goto fail;
7371                 }
7372         }
7373         put_online_cpus();
7374
7375         return 0;
7376 fail:
7377         for_each_possible_cpu(cpu) {
7378                 if (cpu == failed_cpu)
7379                         break;
7380                 swevent_hlist_put_cpu(cpu);
7381         }
7382
7383         put_online_cpus();
7384         return err;
7385 }
7386
7387 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7388
7389 static void sw_perf_event_destroy(struct perf_event *event)
7390 {
7391         u64 event_id = event->attr.config;
7392
7393         WARN_ON(event->parent);
7394
7395         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7396         swevent_hlist_put();
7397 }
7398
7399 static int perf_swevent_init(struct perf_event *event)
7400 {
7401         u64 event_id = event->attr.config;
7402
7403         if (event->attr.type != PERF_TYPE_SOFTWARE)
7404                 return -ENOENT;
7405
7406         /*
7407          * no branch sampling for software events
7408          */
7409         if (has_branch_stack(event))
7410                 return -EOPNOTSUPP;
7411
7412         switch (event_id) {
7413         case PERF_COUNT_SW_CPU_CLOCK:
7414         case PERF_COUNT_SW_TASK_CLOCK:
7415                 return -ENOENT;
7416
7417         default:
7418                 break;
7419         }
7420
7421         if (event_id >= PERF_COUNT_SW_MAX)
7422                 return -ENOENT;
7423
7424         if (!event->parent) {
7425                 int err;
7426
7427                 err = swevent_hlist_get();
7428                 if (err)
7429                         return err;
7430
7431                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7432                 event->destroy = sw_perf_event_destroy;
7433         }
7434
7435         return 0;
7436 }
7437
7438 static struct pmu perf_swevent = {
7439         .task_ctx_nr    = perf_sw_context,
7440
7441         .capabilities   = PERF_PMU_CAP_NO_NMI,
7442
7443         .event_init     = perf_swevent_init,
7444         .add            = perf_swevent_add,
7445         .del            = perf_swevent_del,
7446         .start          = perf_swevent_start,
7447         .stop           = perf_swevent_stop,
7448         .read           = perf_swevent_read,
7449 };
7450
7451 #ifdef CONFIG_EVENT_TRACING
7452
7453 static int perf_tp_filter_match(struct perf_event *event,
7454                                 struct perf_sample_data *data)
7455 {
7456         void *record = data->raw->frag.data;
7457
7458         /* only top level events have filters set */
7459         if (event->parent)
7460                 event = event->parent;
7461
7462         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7463                 return 1;
7464         return 0;
7465 }
7466
7467 static int perf_tp_event_match(struct perf_event *event,
7468                                 struct perf_sample_data *data,
7469                                 struct pt_regs *regs)
7470 {
7471         if (event->hw.state & PERF_HES_STOPPED)
7472                 return 0;
7473         /*
7474          * All tracepoints are from kernel-space.
7475          */
7476         if (event->attr.exclude_kernel)
7477                 return 0;
7478
7479         if (!perf_tp_filter_match(event, data))
7480                 return 0;
7481
7482         return 1;
7483 }
7484
7485 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7486                                struct trace_event_call *call, u64 count,
7487                                struct pt_regs *regs, struct hlist_head *head,
7488                                struct task_struct *task)
7489 {
7490         struct bpf_prog *prog = call->prog;
7491
7492         if (prog) {
7493                 *(struct pt_regs **)raw_data = regs;
7494                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7495                         perf_swevent_put_recursion_context(rctx);
7496                         return;
7497                 }
7498         }
7499         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7500                       rctx, task);
7501 }
7502 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7503
7504 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7505                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7506                    struct task_struct *task)
7507 {
7508         struct perf_sample_data data;
7509         struct perf_event *event;
7510
7511         struct perf_raw_record raw = {
7512                 .frag = {
7513                         .size = entry_size,
7514                         .data = record,
7515                 },
7516         };
7517
7518         perf_sample_data_init(&data, 0, 0);
7519         data.raw = &raw;
7520
7521         perf_trace_buf_update(record, event_type);
7522
7523         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7524                 if (perf_tp_event_match(event, &data, regs))
7525                         perf_swevent_event(event, count, &data, regs);
7526         }
7527
7528         /*
7529          * If we got specified a target task, also iterate its context and
7530          * deliver this event there too.
7531          */
7532         if (task && task != current) {
7533                 struct perf_event_context *ctx;
7534                 struct trace_entry *entry = record;
7535
7536                 rcu_read_lock();
7537                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7538                 if (!ctx)
7539                         goto unlock;
7540
7541                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7542                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7543                                 continue;
7544                         if (event->attr.config != entry->type)
7545                                 continue;
7546                         if (perf_tp_event_match(event, &data, regs))
7547                                 perf_swevent_event(event, count, &data, regs);
7548                 }
7549 unlock:
7550                 rcu_read_unlock();
7551         }
7552
7553         perf_swevent_put_recursion_context(rctx);
7554 }
7555 EXPORT_SYMBOL_GPL(perf_tp_event);
7556
7557 static void tp_perf_event_destroy(struct perf_event *event)
7558 {
7559         perf_trace_destroy(event);
7560 }
7561
7562 static int perf_tp_event_init(struct perf_event *event)
7563 {
7564         int err;
7565
7566         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7567                 return -ENOENT;
7568
7569         /*
7570          * no branch sampling for tracepoint events
7571          */
7572         if (has_branch_stack(event))
7573                 return -EOPNOTSUPP;
7574
7575         err = perf_trace_init(event);
7576         if (err)
7577                 return err;
7578
7579         event->destroy = tp_perf_event_destroy;
7580
7581         return 0;
7582 }
7583
7584 static struct pmu perf_tracepoint = {
7585         .task_ctx_nr    = perf_sw_context,
7586
7587         .event_init     = perf_tp_event_init,
7588         .add            = perf_trace_add,
7589         .del            = perf_trace_del,
7590         .start          = perf_swevent_start,
7591         .stop           = perf_swevent_stop,
7592         .read           = perf_swevent_read,
7593 };
7594
7595 static inline void perf_tp_register(void)
7596 {
7597         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7598 }
7599
7600 static void perf_event_free_filter(struct perf_event *event)
7601 {
7602         ftrace_profile_free_filter(event);
7603 }
7604
7605 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7606 {
7607         bool is_kprobe, is_tracepoint;
7608         struct bpf_prog *prog;
7609
7610         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7611                 return -EINVAL;
7612
7613         if (event->tp_event->prog)
7614                 return -EEXIST;
7615
7616         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7617         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7618         if (!is_kprobe && !is_tracepoint)
7619                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7620                 return -EINVAL;
7621
7622         prog = bpf_prog_get(prog_fd);
7623         if (IS_ERR(prog))
7624                 return PTR_ERR(prog);
7625
7626         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7627             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7628                 /* valid fd, but invalid bpf program type */
7629                 bpf_prog_put(prog);
7630                 return -EINVAL;
7631         }
7632
7633         if (is_tracepoint) {
7634                 int off = trace_event_get_offsets(event->tp_event);
7635
7636                 if (prog->aux->max_ctx_offset > off) {
7637                         bpf_prog_put(prog);
7638                         return -EACCES;
7639                 }
7640         }
7641         event->tp_event->prog = prog;
7642
7643         return 0;
7644 }
7645
7646 static void perf_event_free_bpf_prog(struct perf_event *event)
7647 {
7648         struct bpf_prog *prog;
7649
7650         if (!event->tp_event)
7651                 return;
7652
7653         prog = event->tp_event->prog;
7654         if (prog) {
7655                 event->tp_event->prog = NULL;
7656                 bpf_prog_put(prog);
7657         }
7658 }
7659
7660 #else
7661
7662 static inline void perf_tp_register(void)
7663 {
7664 }
7665
7666 static void perf_event_free_filter(struct perf_event *event)
7667 {
7668 }
7669
7670 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7671 {
7672         return -ENOENT;
7673 }
7674
7675 static void perf_event_free_bpf_prog(struct perf_event *event)
7676 {
7677 }
7678 #endif /* CONFIG_EVENT_TRACING */
7679
7680 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7681 void perf_bp_event(struct perf_event *bp, void *data)
7682 {
7683         struct perf_sample_data sample;
7684         struct pt_regs *regs = data;
7685
7686         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7687
7688         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7689                 perf_swevent_event(bp, 1, &sample, regs);
7690 }
7691 #endif
7692
7693 /*
7694  * Allocate a new address filter
7695  */
7696 static struct perf_addr_filter *
7697 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7698 {
7699         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7700         struct perf_addr_filter *filter;
7701
7702         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7703         if (!filter)
7704                 return NULL;
7705
7706         INIT_LIST_HEAD(&filter->entry);
7707         list_add_tail(&filter->entry, filters);
7708
7709         return filter;
7710 }
7711
7712 static void free_filters_list(struct list_head *filters)
7713 {
7714         struct perf_addr_filter *filter, *iter;
7715
7716         list_for_each_entry_safe(filter, iter, filters, entry) {
7717                 if (filter->inode)
7718                         iput(filter->inode);
7719                 list_del(&filter->entry);
7720                 kfree(filter);
7721         }
7722 }
7723
7724 /*
7725  * Free existing address filters and optionally install new ones
7726  */
7727 static void perf_addr_filters_splice(struct perf_event *event,
7728                                      struct list_head *head)
7729 {
7730         unsigned long flags;
7731         LIST_HEAD(list);
7732
7733         if (!has_addr_filter(event))
7734                 return;
7735
7736         /* don't bother with children, they don't have their own filters */
7737         if (event->parent)
7738                 return;
7739
7740         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7741
7742         list_splice_init(&event->addr_filters.list, &list);
7743         if (head)
7744                 list_splice(head, &event->addr_filters.list);
7745
7746         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7747
7748         free_filters_list(&list);
7749 }
7750
7751 /*
7752  * Scan through mm's vmas and see if one of them matches the
7753  * @filter; if so, adjust filter's address range.
7754  * Called with mm::mmap_sem down for reading.
7755  */
7756 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7757                                             struct mm_struct *mm)
7758 {
7759         struct vm_area_struct *vma;
7760
7761         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7762                 struct file *file = vma->vm_file;
7763                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7764                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7765
7766                 if (!file)
7767                         continue;
7768
7769                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7770                         continue;
7771
7772                 return vma->vm_start;
7773         }
7774
7775         return 0;
7776 }
7777
7778 /*
7779  * Update event's address range filters based on the
7780  * task's existing mappings, if any.
7781  */
7782 static void perf_event_addr_filters_apply(struct perf_event *event)
7783 {
7784         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7785         struct task_struct *task = READ_ONCE(event->ctx->task);
7786         struct perf_addr_filter *filter;
7787         struct mm_struct *mm = NULL;
7788         unsigned int count = 0;
7789         unsigned long flags;
7790
7791         /*
7792          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7793          * will stop on the parent's child_mutex that our caller is also holding
7794          */
7795         if (task == TASK_TOMBSTONE)
7796                 return;
7797
7798         mm = get_task_mm(event->ctx->task);
7799         if (!mm)
7800                 goto restart;
7801
7802         down_read(&mm->mmap_sem);
7803
7804         raw_spin_lock_irqsave(&ifh->lock, flags);
7805         list_for_each_entry(filter, &ifh->list, entry) {
7806                 event->addr_filters_offs[count] = 0;
7807
7808                 if (perf_addr_filter_needs_mmap(filter))
7809                         event->addr_filters_offs[count] =
7810                                 perf_addr_filter_apply(filter, mm);
7811
7812                 count++;
7813         }
7814
7815         event->addr_filters_gen++;
7816         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7817
7818         up_read(&mm->mmap_sem);
7819
7820         mmput(mm);
7821
7822 restart:
7823         perf_event_restart(event);
7824 }
7825
7826 /*
7827  * Address range filtering: limiting the data to certain
7828  * instruction address ranges. Filters are ioctl()ed to us from
7829  * userspace as ascii strings.
7830  *
7831  * Filter string format:
7832  *
7833  * ACTION RANGE_SPEC
7834  * where ACTION is one of the
7835  *  * "filter": limit the trace to this region
7836  *  * "start": start tracing from this address
7837  *  * "stop": stop tracing at this address/region;
7838  * RANGE_SPEC is
7839  *  * for kernel addresses: <start address>[/<size>]
7840  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7841  *
7842  * if <size> is not specified, the range is treated as a single address.
7843  */
7844 enum {
7845         IF_ACT_FILTER,
7846         IF_ACT_START,
7847         IF_ACT_STOP,
7848         IF_SRC_FILE,
7849         IF_SRC_KERNEL,
7850         IF_SRC_FILEADDR,
7851         IF_SRC_KERNELADDR,
7852 };
7853
7854 enum {
7855         IF_STATE_ACTION = 0,
7856         IF_STATE_SOURCE,
7857         IF_STATE_END,
7858 };
7859
7860 static const match_table_t if_tokens = {
7861         { IF_ACT_FILTER,        "filter" },
7862         { IF_ACT_START,         "start" },
7863         { IF_ACT_STOP,          "stop" },
7864         { IF_SRC_FILE,          "%u/%u@%s" },
7865         { IF_SRC_KERNEL,        "%u/%u" },
7866         { IF_SRC_FILEADDR,      "%u@%s" },
7867         { IF_SRC_KERNELADDR,    "%u" },
7868 };
7869
7870 /*
7871  * Address filter string parser
7872  */
7873 static int
7874 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7875                              struct list_head *filters)
7876 {
7877         struct perf_addr_filter *filter = NULL;
7878         char *start, *orig, *filename = NULL;
7879         struct path path;
7880         substring_t args[MAX_OPT_ARGS];
7881         int state = IF_STATE_ACTION, token;
7882         unsigned int kernel = 0;
7883         int ret = -EINVAL;
7884
7885         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7886         if (!fstr)
7887                 return -ENOMEM;
7888
7889         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7890                 ret = -EINVAL;
7891
7892                 if (!*start)
7893                         continue;
7894
7895                 /* filter definition begins */
7896                 if (state == IF_STATE_ACTION) {
7897                         filter = perf_addr_filter_new(event, filters);
7898                         if (!filter)
7899                                 goto fail;
7900                 }
7901
7902                 token = match_token(start, if_tokens, args);
7903                 switch (token) {
7904                 case IF_ACT_FILTER:
7905                 case IF_ACT_START:
7906                         filter->filter = 1;
7907
7908                 case IF_ACT_STOP:
7909                         if (state != IF_STATE_ACTION)
7910                                 goto fail;
7911
7912                         state = IF_STATE_SOURCE;
7913                         break;
7914
7915                 case IF_SRC_KERNELADDR:
7916                 case IF_SRC_KERNEL:
7917                         kernel = 1;
7918
7919                 case IF_SRC_FILEADDR:
7920                 case IF_SRC_FILE:
7921                         if (state != IF_STATE_SOURCE)
7922                                 goto fail;
7923
7924                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7925                                 filter->range = 1;
7926
7927                         *args[0].to = 0;
7928                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7929                         if (ret)
7930                                 goto fail;
7931
7932                         if (filter->range) {
7933                                 *args[1].to = 0;
7934                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7935                                 if (ret)
7936                                         goto fail;
7937                         }
7938
7939                         if (token == IF_SRC_FILE) {
7940                                 filename = match_strdup(&args[2]);
7941                                 if (!filename) {
7942                                         ret = -ENOMEM;
7943                                         goto fail;
7944                                 }
7945                         }
7946
7947                         state = IF_STATE_END;
7948                         break;
7949
7950                 default:
7951                         goto fail;
7952                 }
7953
7954                 /*
7955                  * Filter definition is fully parsed, validate and install it.
7956                  * Make sure that it doesn't contradict itself or the event's
7957                  * attribute.
7958                  */
7959                 if (state == IF_STATE_END) {
7960                         if (kernel && event->attr.exclude_kernel)
7961                                 goto fail;
7962
7963                         if (!kernel) {
7964                                 if (!filename)
7965                                         goto fail;
7966
7967                                 /* look up the path and grab its inode */
7968                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7969                                 if (ret)
7970                                         goto fail_free_name;
7971
7972                                 filter->inode = igrab(d_inode(path.dentry));
7973                                 path_put(&path);
7974                                 kfree(filename);
7975                                 filename = NULL;
7976
7977                                 ret = -EINVAL;
7978                                 if (!filter->inode ||
7979                                     !S_ISREG(filter->inode->i_mode))
7980                                         /* free_filters_list() will iput() */
7981                                         goto fail;
7982                         }
7983
7984                         /* ready to consume more filters */
7985                         state = IF_STATE_ACTION;
7986                         filter = NULL;
7987                 }
7988         }
7989
7990         if (state != IF_STATE_ACTION)
7991                 goto fail;
7992
7993         kfree(orig);
7994
7995         return 0;
7996
7997 fail_free_name:
7998         kfree(filename);
7999 fail:
8000         free_filters_list(filters);
8001         kfree(orig);
8002
8003         return ret;
8004 }
8005
8006 static int
8007 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8008 {
8009         LIST_HEAD(filters);
8010         int ret;
8011
8012         /*
8013          * Since this is called in perf_ioctl() path, we're already holding
8014          * ctx::mutex.
8015          */
8016         lockdep_assert_held(&event->ctx->mutex);
8017
8018         if (WARN_ON_ONCE(event->parent))
8019                 return -EINVAL;
8020
8021         /*
8022          * For now, we only support filtering in per-task events; doing so
8023          * for CPU-wide events requires additional context switching trickery,
8024          * since same object code will be mapped at different virtual
8025          * addresses in different processes.
8026          */
8027         if (!event->ctx->task)
8028                 return -EOPNOTSUPP;
8029
8030         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8031         if (ret)
8032                 return ret;
8033
8034         ret = event->pmu->addr_filters_validate(&filters);
8035         if (ret) {
8036                 free_filters_list(&filters);
8037                 return ret;
8038         }
8039
8040         /* remove existing filters, if any */
8041         perf_addr_filters_splice(event, &filters);
8042
8043         /* install new filters */
8044         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8045
8046         return ret;
8047 }
8048
8049 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8050 {
8051         char *filter_str;
8052         int ret = -EINVAL;
8053
8054         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8055             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8056             !has_addr_filter(event))
8057                 return -EINVAL;
8058
8059         filter_str = strndup_user(arg, PAGE_SIZE);
8060         if (IS_ERR(filter_str))
8061                 return PTR_ERR(filter_str);
8062
8063         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8064             event->attr.type == PERF_TYPE_TRACEPOINT)
8065                 ret = ftrace_profile_set_filter(event, event->attr.config,
8066                                                 filter_str);
8067         else if (has_addr_filter(event))
8068                 ret = perf_event_set_addr_filter(event, filter_str);
8069
8070         kfree(filter_str);
8071         return ret;
8072 }
8073
8074 /*
8075  * hrtimer based swevent callback
8076  */
8077
8078 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8079 {
8080         enum hrtimer_restart ret = HRTIMER_RESTART;
8081         struct perf_sample_data data;
8082         struct pt_regs *regs;
8083         struct perf_event *event;
8084         u64 period;
8085
8086         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8087
8088         if (event->state != PERF_EVENT_STATE_ACTIVE)
8089                 return HRTIMER_NORESTART;
8090
8091         event->pmu->read(event);
8092
8093         perf_sample_data_init(&data, 0, event->hw.last_period);
8094         regs = get_irq_regs();
8095
8096         if (regs && !perf_exclude_event(event, regs)) {
8097                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8098                         if (__perf_event_overflow(event, 1, &data, regs))
8099                                 ret = HRTIMER_NORESTART;
8100         }
8101
8102         period = max_t(u64, 10000, event->hw.sample_period);
8103         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8104
8105         return ret;
8106 }
8107
8108 static void perf_swevent_start_hrtimer(struct perf_event *event)
8109 {
8110         struct hw_perf_event *hwc = &event->hw;
8111         s64 period;
8112
8113         if (!is_sampling_event(event))
8114                 return;
8115
8116         period = local64_read(&hwc->period_left);
8117         if (period) {
8118                 if (period < 0)
8119                         period = 10000;
8120
8121                 local64_set(&hwc->period_left, 0);
8122         } else {
8123                 period = max_t(u64, 10000, hwc->sample_period);
8124         }
8125         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8126                       HRTIMER_MODE_REL_PINNED);
8127 }
8128
8129 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8130 {
8131         struct hw_perf_event *hwc = &event->hw;
8132
8133         if (is_sampling_event(event)) {
8134                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8135                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8136
8137                 hrtimer_cancel(&hwc->hrtimer);
8138         }
8139 }
8140
8141 static void perf_swevent_init_hrtimer(struct perf_event *event)
8142 {
8143         struct hw_perf_event *hwc = &event->hw;
8144
8145         if (!is_sampling_event(event))
8146                 return;
8147
8148         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8149         hwc->hrtimer.function = perf_swevent_hrtimer;
8150
8151         /*
8152          * Since hrtimers have a fixed rate, we can do a static freq->period
8153          * mapping and avoid the whole period adjust feedback stuff.
8154          */
8155         if (event->attr.freq) {
8156                 long freq = event->attr.sample_freq;
8157
8158                 event->attr.sample_period = NSEC_PER_SEC / freq;
8159                 hwc->sample_period = event->attr.sample_period;
8160                 local64_set(&hwc->period_left, hwc->sample_period);
8161                 hwc->last_period = hwc->sample_period;
8162                 event->attr.freq = 0;
8163         }
8164 }
8165
8166 /*
8167  * Software event: cpu wall time clock
8168  */
8169
8170 static void cpu_clock_event_update(struct perf_event *event)
8171 {
8172         s64 prev;
8173         u64 now;
8174
8175         now = local_clock();
8176         prev = local64_xchg(&event->hw.prev_count, now);
8177         local64_add(now - prev, &event->count);
8178 }
8179
8180 static void cpu_clock_event_start(struct perf_event *event, int flags)
8181 {
8182         local64_set(&event->hw.prev_count, local_clock());
8183         perf_swevent_start_hrtimer(event);
8184 }
8185
8186 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8187 {
8188         perf_swevent_cancel_hrtimer(event);
8189         cpu_clock_event_update(event);
8190 }
8191
8192 static int cpu_clock_event_add(struct perf_event *event, int flags)
8193 {
8194         if (flags & PERF_EF_START)
8195                 cpu_clock_event_start(event, flags);
8196         perf_event_update_userpage(event);
8197
8198         return 0;
8199 }
8200
8201 static void cpu_clock_event_del(struct perf_event *event, int flags)
8202 {
8203         cpu_clock_event_stop(event, flags);
8204 }
8205
8206 static void cpu_clock_event_read(struct perf_event *event)
8207 {
8208         cpu_clock_event_update(event);
8209 }
8210
8211 static int cpu_clock_event_init(struct perf_event *event)
8212 {
8213         if (event->attr.type != PERF_TYPE_SOFTWARE)
8214                 return -ENOENT;
8215
8216         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8217                 return -ENOENT;
8218
8219         /*
8220          * no branch sampling for software events
8221          */
8222         if (has_branch_stack(event))
8223                 return -EOPNOTSUPP;
8224
8225         perf_swevent_init_hrtimer(event);
8226
8227         return 0;
8228 }
8229
8230 static struct pmu perf_cpu_clock = {
8231         .task_ctx_nr    = perf_sw_context,
8232
8233         .capabilities   = PERF_PMU_CAP_NO_NMI,
8234
8235         .event_init     = cpu_clock_event_init,
8236         .add            = cpu_clock_event_add,
8237         .del            = cpu_clock_event_del,
8238         .start          = cpu_clock_event_start,
8239         .stop           = cpu_clock_event_stop,
8240         .read           = cpu_clock_event_read,
8241 };
8242
8243 /*
8244  * Software event: task time clock
8245  */
8246
8247 static void task_clock_event_update(struct perf_event *event, u64 now)
8248 {
8249         u64 prev;
8250         s64 delta;
8251
8252         prev = local64_xchg(&event->hw.prev_count, now);
8253         delta = now - prev;
8254         local64_add(delta, &event->count);
8255 }
8256
8257 static void task_clock_event_start(struct perf_event *event, int flags)
8258 {
8259         local64_set(&event->hw.prev_count, event->ctx->time);
8260         perf_swevent_start_hrtimer(event);
8261 }
8262
8263 static void task_clock_event_stop(struct perf_event *event, int flags)
8264 {
8265         perf_swevent_cancel_hrtimer(event);
8266         task_clock_event_update(event, event->ctx->time);
8267 }
8268
8269 static int task_clock_event_add(struct perf_event *event, int flags)
8270 {
8271         if (flags & PERF_EF_START)
8272                 task_clock_event_start(event, flags);
8273         perf_event_update_userpage(event);
8274
8275         return 0;
8276 }
8277
8278 static void task_clock_event_del(struct perf_event *event, int flags)
8279 {
8280         task_clock_event_stop(event, PERF_EF_UPDATE);
8281 }
8282
8283 static void task_clock_event_read(struct perf_event *event)
8284 {
8285         u64 now = perf_clock();
8286         u64 delta = now - event->ctx->timestamp;
8287         u64 time = event->ctx->time + delta;
8288
8289         task_clock_event_update(event, time);
8290 }
8291
8292 static int task_clock_event_init(struct perf_event *event)
8293 {
8294         if (event->attr.type != PERF_TYPE_SOFTWARE)
8295                 return -ENOENT;
8296
8297         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8298                 return -ENOENT;
8299
8300         /*
8301          * no branch sampling for software events
8302          */
8303         if (has_branch_stack(event))
8304                 return -EOPNOTSUPP;
8305
8306         perf_swevent_init_hrtimer(event);
8307
8308         return 0;
8309 }
8310
8311 static struct pmu perf_task_clock = {
8312         .task_ctx_nr    = perf_sw_context,
8313
8314         .capabilities   = PERF_PMU_CAP_NO_NMI,
8315
8316         .event_init     = task_clock_event_init,
8317         .add            = task_clock_event_add,
8318         .del            = task_clock_event_del,
8319         .start          = task_clock_event_start,
8320         .stop           = task_clock_event_stop,
8321         .read           = task_clock_event_read,
8322 };
8323
8324 static void perf_pmu_nop_void(struct pmu *pmu)
8325 {
8326 }
8327
8328 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8329 {
8330 }
8331
8332 static int perf_pmu_nop_int(struct pmu *pmu)
8333 {
8334         return 0;
8335 }
8336
8337 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8338
8339 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8340 {
8341         __this_cpu_write(nop_txn_flags, flags);
8342
8343         if (flags & ~PERF_PMU_TXN_ADD)
8344                 return;
8345
8346         perf_pmu_disable(pmu);
8347 }
8348
8349 static int perf_pmu_commit_txn(struct pmu *pmu)
8350 {
8351         unsigned int flags = __this_cpu_read(nop_txn_flags);
8352
8353         __this_cpu_write(nop_txn_flags, 0);
8354
8355         if (flags & ~PERF_PMU_TXN_ADD)
8356                 return 0;
8357
8358         perf_pmu_enable(pmu);
8359         return 0;
8360 }
8361
8362 static void perf_pmu_cancel_txn(struct pmu *pmu)
8363 {
8364         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8365
8366         __this_cpu_write(nop_txn_flags, 0);
8367
8368         if (flags & ~PERF_PMU_TXN_ADD)
8369                 return;
8370
8371         perf_pmu_enable(pmu);
8372 }
8373
8374 static int perf_event_idx_default(struct perf_event *event)
8375 {
8376         return 0;
8377 }
8378
8379 /*
8380  * Ensures all contexts with the same task_ctx_nr have the same
8381  * pmu_cpu_context too.
8382  */
8383 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8384 {
8385         struct pmu *pmu;
8386
8387         if (ctxn < 0)
8388                 return NULL;
8389
8390         list_for_each_entry(pmu, &pmus, entry) {
8391                 if (pmu->task_ctx_nr == ctxn)
8392                         return pmu->pmu_cpu_context;
8393         }
8394
8395         return NULL;
8396 }
8397
8398 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8399 {
8400         int cpu;
8401
8402         for_each_possible_cpu(cpu) {
8403                 struct perf_cpu_context *cpuctx;
8404
8405                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8406
8407                 if (cpuctx->unique_pmu == old_pmu)
8408                         cpuctx->unique_pmu = pmu;
8409         }
8410 }
8411
8412 static void free_pmu_context(struct pmu *pmu)
8413 {
8414         struct pmu *i;
8415
8416         mutex_lock(&pmus_lock);
8417         /*
8418          * Like a real lame refcount.
8419          */
8420         list_for_each_entry(i, &pmus, entry) {
8421                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8422                         update_pmu_context(i, pmu);
8423                         goto out;
8424                 }
8425         }
8426
8427         free_percpu(pmu->pmu_cpu_context);
8428 out:
8429         mutex_unlock(&pmus_lock);
8430 }
8431
8432 /*
8433  * Let userspace know that this PMU supports address range filtering:
8434  */
8435 static ssize_t nr_addr_filters_show(struct device *dev,
8436                                     struct device_attribute *attr,
8437                                     char *page)
8438 {
8439         struct pmu *pmu = dev_get_drvdata(dev);
8440
8441         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8442 }
8443 DEVICE_ATTR_RO(nr_addr_filters);
8444
8445 static struct idr pmu_idr;
8446
8447 static ssize_t
8448 type_show(struct device *dev, struct device_attribute *attr, char *page)
8449 {
8450         struct pmu *pmu = dev_get_drvdata(dev);
8451
8452         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8453 }
8454 static DEVICE_ATTR_RO(type);
8455
8456 static ssize_t
8457 perf_event_mux_interval_ms_show(struct device *dev,
8458                                 struct device_attribute *attr,
8459                                 char *page)
8460 {
8461         struct pmu *pmu = dev_get_drvdata(dev);
8462
8463         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8464 }
8465
8466 static DEFINE_MUTEX(mux_interval_mutex);
8467
8468 static ssize_t
8469 perf_event_mux_interval_ms_store(struct device *dev,
8470                                  struct device_attribute *attr,
8471                                  const char *buf, size_t count)
8472 {
8473         struct pmu *pmu = dev_get_drvdata(dev);
8474         int timer, cpu, ret;
8475
8476         ret = kstrtoint(buf, 0, &timer);
8477         if (ret)
8478                 return ret;
8479
8480         if (timer < 1)
8481                 return -EINVAL;
8482
8483         /* same value, noting to do */
8484         if (timer == pmu->hrtimer_interval_ms)
8485                 return count;
8486
8487         mutex_lock(&mux_interval_mutex);
8488         pmu->hrtimer_interval_ms = timer;
8489
8490         /* update all cpuctx for this PMU */
8491         get_online_cpus();
8492         for_each_online_cpu(cpu) {
8493                 struct perf_cpu_context *cpuctx;
8494                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8495                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8496
8497                 cpu_function_call(cpu,
8498                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8499         }
8500         put_online_cpus();
8501         mutex_unlock(&mux_interval_mutex);
8502
8503         return count;
8504 }
8505 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8506
8507 static struct attribute *pmu_dev_attrs[] = {
8508         &dev_attr_type.attr,
8509         &dev_attr_perf_event_mux_interval_ms.attr,
8510         NULL,
8511 };
8512 ATTRIBUTE_GROUPS(pmu_dev);
8513
8514 static int pmu_bus_running;
8515 static struct bus_type pmu_bus = {
8516         .name           = "event_source",
8517         .dev_groups     = pmu_dev_groups,
8518 };
8519
8520 static void pmu_dev_release(struct device *dev)
8521 {
8522         kfree(dev);
8523 }
8524
8525 static int pmu_dev_alloc(struct pmu *pmu)
8526 {
8527         int ret = -ENOMEM;
8528
8529         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8530         if (!pmu->dev)
8531                 goto out;
8532
8533         pmu->dev->groups = pmu->attr_groups;
8534         device_initialize(pmu->dev);
8535         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8536         if (ret)
8537                 goto free_dev;
8538
8539         dev_set_drvdata(pmu->dev, pmu);
8540         pmu->dev->bus = &pmu_bus;
8541         pmu->dev->release = pmu_dev_release;
8542         ret = device_add(pmu->dev);
8543         if (ret)
8544                 goto free_dev;
8545
8546         /* For PMUs with address filters, throw in an extra attribute: */
8547         if (pmu->nr_addr_filters)
8548                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8549
8550         if (ret)
8551                 goto del_dev;
8552
8553 out:
8554         return ret;
8555
8556 del_dev:
8557         device_del(pmu->dev);
8558
8559 free_dev:
8560         put_device(pmu->dev);
8561         goto out;
8562 }
8563
8564 static struct lock_class_key cpuctx_mutex;
8565 static struct lock_class_key cpuctx_lock;
8566
8567 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8568 {
8569         int cpu, ret;
8570
8571         mutex_lock(&pmus_lock);
8572         ret = -ENOMEM;
8573         pmu->pmu_disable_count = alloc_percpu(int);
8574         if (!pmu->pmu_disable_count)
8575                 goto unlock;
8576
8577         pmu->type = -1;
8578         if (!name)
8579                 goto skip_type;
8580         pmu->name = name;
8581
8582         if (type < 0) {
8583                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8584                 if (type < 0) {
8585                         ret = type;
8586                         goto free_pdc;
8587                 }
8588         }
8589         pmu->type = type;
8590
8591         if (pmu_bus_running) {
8592                 ret = pmu_dev_alloc(pmu);
8593                 if (ret)
8594                         goto free_idr;
8595         }
8596
8597 skip_type:
8598         if (pmu->task_ctx_nr == perf_hw_context) {
8599                 static int hw_context_taken = 0;
8600
8601                 /*
8602                  * Other than systems with heterogeneous CPUs, it never makes
8603                  * sense for two PMUs to share perf_hw_context. PMUs which are
8604                  * uncore must use perf_invalid_context.
8605                  */
8606                 if (WARN_ON_ONCE(hw_context_taken &&
8607                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8608                         pmu->task_ctx_nr = perf_invalid_context;
8609
8610                 hw_context_taken = 1;
8611         }
8612
8613         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8614         if (pmu->pmu_cpu_context)
8615                 goto got_cpu_context;
8616
8617         ret = -ENOMEM;
8618         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8619         if (!pmu->pmu_cpu_context)
8620                 goto free_dev;
8621
8622         for_each_possible_cpu(cpu) {
8623                 struct perf_cpu_context *cpuctx;
8624
8625                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8626                 __perf_event_init_context(&cpuctx->ctx);
8627                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8628                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8629                 cpuctx->ctx.pmu = pmu;
8630
8631                 __perf_mux_hrtimer_init(cpuctx, cpu);
8632
8633                 cpuctx->unique_pmu = pmu;
8634         }
8635
8636 got_cpu_context:
8637         if (!pmu->start_txn) {
8638                 if (pmu->pmu_enable) {
8639                         /*
8640                          * If we have pmu_enable/pmu_disable calls, install
8641                          * transaction stubs that use that to try and batch
8642                          * hardware accesses.
8643                          */
8644                         pmu->start_txn  = perf_pmu_start_txn;
8645                         pmu->commit_txn = perf_pmu_commit_txn;
8646                         pmu->cancel_txn = perf_pmu_cancel_txn;
8647                 } else {
8648                         pmu->start_txn  = perf_pmu_nop_txn;
8649                         pmu->commit_txn = perf_pmu_nop_int;
8650                         pmu->cancel_txn = perf_pmu_nop_void;
8651                 }
8652         }
8653
8654         if (!pmu->pmu_enable) {
8655                 pmu->pmu_enable  = perf_pmu_nop_void;
8656                 pmu->pmu_disable = perf_pmu_nop_void;
8657         }
8658
8659         if (!pmu->event_idx)
8660                 pmu->event_idx = perf_event_idx_default;
8661
8662         list_add_rcu(&pmu->entry, &pmus);
8663         atomic_set(&pmu->exclusive_cnt, 0);
8664         ret = 0;
8665 unlock:
8666         mutex_unlock(&pmus_lock);
8667
8668         return ret;
8669
8670 free_dev:
8671         device_del(pmu->dev);
8672         put_device(pmu->dev);
8673
8674 free_idr:
8675         if (pmu->type >= PERF_TYPE_MAX)
8676                 idr_remove(&pmu_idr, pmu->type);
8677
8678 free_pdc:
8679         free_percpu(pmu->pmu_disable_count);
8680         goto unlock;
8681 }
8682 EXPORT_SYMBOL_GPL(perf_pmu_register);
8683
8684 void perf_pmu_unregister(struct pmu *pmu)
8685 {
8686         mutex_lock(&pmus_lock);
8687         list_del_rcu(&pmu->entry);
8688         mutex_unlock(&pmus_lock);
8689
8690         /*
8691          * We dereference the pmu list under both SRCU and regular RCU, so
8692          * synchronize against both of those.
8693          */
8694         synchronize_srcu(&pmus_srcu);
8695         synchronize_rcu();
8696
8697         free_percpu(pmu->pmu_disable_count);
8698         if (pmu->type >= PERF_TYPE_MAX)
8699                 idr_remove(&pmu_idr, pmu->type);
8700         if (pmu->nr_addr_filters)
8701                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8702         device_del(pmu->dev);
8703         put_device(pmu->dev);
8704         free_pmu_context(pmu);
8705 }
8706 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8707
8708 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8709 {
8710         struct perf_event_context *ctx = NULL;
8711         int ret;
8712
8713         if (!try_module_get(pmu->module))
8714                 return -ENODEV;
8715
8716         if (event->group_leader != event) {
8717                 /*
8718                  * This ctx->mutex can nest when we're called through
8719                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8720                  */
8721                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8722                                                  SINGLE_DEPTH_NESTING);
8723                 BUG_ON(!ctx);
8724         }
8725
8726         event->pmu = pmu;
8727         ret = pmu->event_init(event);
8728
8729         if (ctx)
8730                 perf_event_ctx_unlock(event->group_leader, ctx);
8731
8732         if (ret)
8733                 module_put(pmu->module);
8734
8735         return ret;
8736 }
8737
8738 static struct pmu *perf_init_event(struct perf_event *event)
8739 {
8740         struct pmu *pmu = NULL;
8741         int idx;
8742         int ret;
8743
8744         idx = srcu_read_lock(&pmus_srcu);
8745
8746         rcu_read_lock();
8747         pmu = idr_find(&pmu_idr, event->attr.type);
8748         rcu_read_unlock();
8749         if (pmu) {
8750                 ret = perf_try_init_event(pmu, event);
8751                 if (ret)
8752                         pmu = ERR_PTR(ret);
8753                 goto unlock;
8754         }
8755
8756         list_for_each_entry_rcu(pmu, &pmus, entry) {
8757                 ret = perf_try_init_event(pmu, event);
8758                 if (!ret)
8759                         goto unlock;
8760
8761                 if (ret != -ENOENT) {
8762                         pmu = ERR_PTR(ret);
8763                         goto unlock;
8764                 }
8765         }
8766         pmu = ERR_PTR(-ENOENT);
8767 unlock:
8768         srcu_read_unlock(&pmus_srcu, idx);
8769
8770         return pmu;
8771 }
8772
8773 static void attach_sb_event(struct perf_event *event)
8774 {
8775         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8776
8777         raw_spin_lock(&pel->lock);
8778         list_add_rcu(&event->sb_list, &pel->list);
8779         raw_spin_unlock(&pel->lock);
8780 }
8781
8782 /*
8783  * We keep a list of all !task (and therefore per-cpu) events
8784  * that need to receive side-band records.
8785  *
8786  * This avoids having to scan all the various PMU per-cpu contexts
8787  * looking for them.
8788  */
8789 static void account_pmu_sb_event(struct perf_event *event)
8790 {
8791         if (is_sb_event(event))
8792                 attach_sb_event(event);
8793 }
8794
8795 static void account_event_cpu(struct perf_event *event, int cpu)
8796 {
8797         if (event->parent)
8798                 return;
8799
8800         if (is_cgroup_event(event))
8801                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8802 }
8803
8804 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8805 static void account_freq_event_nohz(void)
8806 {
8807 #ifdef CONFIG_NO_HZ_FULL
8808         /* Lock so we don't race with concurrent unaccount */
8809         spin_lock(&nr_freq_lock);
8810         if (atomic_inc_return(&nr_freq_events) == 1)
8811                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8812         spin_unlock(&nr_freq_lock);
8813 #endif
8814 }
8815
8816 static void account_freq_event(void)
8817 {
8818         if (tick_nohz_full_enabled())
8819                 account_freq_event_nohz();
8820         else
8821                 atomic_inc(&nr_freq_events);
8822 }
8823
8824
8825 static void account_event(struct perf_event *event)
8826 {
8827         bool inc = false;
8828
8829         if (event->parent)
8830                 return;
8831
8832         if (event->attach_state & PERF_ATTACH_TASK)
8833                 inc = true;
8834         if (event->attr.mmap || event->attr.mmap_data)
8835                 atomic_inc(&nr_mmap_events);
8836         if (event->attr.comm)
8837                 atomic_inc(&nr_comm_events);
8838         if (event->attr.task)
8839                 atomic_inc(&nr_task_events);
8840         if (event->attr.freq)
8841                 account_freq_event();
8842         if (event->attr.context_switch) {
8843                 atomic_inc(&nr_switch_events);
8844                 inc = true;
8845         }
8846         if (has_branch_stack(event))
8847                 inc = true;
8848         if (is_cgroup_event(event))
8849                 inc = true;
8850
8851         if (inc) {
8852                 if (atomic_inc_not_zero(&perf_sched_count))
8853                         goto enabled;
8854
8855                 mutex_lock(&perf_sched_mutex);
8856                 if (!atomic_read(&perf_sched_count)) {
8857                         static_branch_enable(&perf_sched_events);
8858                         /*
8859                          * Guarantee that all CPUs observe they key change and
8860                          * call the perf scheduling hooks before proceeding to
8861                          * install events that need them.
8862                          */
8863                         synchronize_sched();
8864                 }
8865                 /*
8866                  * Now that we have waited for the sync_sched(), allow further
8867                  * increments to by-pass the mutex.
8868                  */
8869                 atomic_inc(&perf_sched_count);
8870                 mutex_unlock(&perf_sched_mutex);
8871         }
8872 enabled:
8873
8874         account_event_cpu(event, event->cpu);
8875
8876         account_pmu_sb_event(event);
8877 }
8878
8879 /*
8880  * Allocate and initialize a event structure
8881  */
8882 static struct perf_event *
8883 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8884                  struct task_struct *task,
8885                  struct perf_event *group_leader,
8886                  struct perf_event *parent_event,
8887                  perf_overflow_handler_t overflow_handler,
8888                  void *context, int cgroup_fd)
8889 {
8890         struct pmu *pmu;
8891         struct perf_event *event;
8892         struct hw_perf_event *hwc;
8893         long err = -EINVAL;
8894
8895         if ((unsigned)cpu >= nr_cpu_ids) {
8896                 if (!task || cpu != -1)
8897                         return ERR_PTR(-EINVAL);
8898         }
8899
8900         event = kzalloc(sizeof(*event), GFP_KERNEL);
8901         if (!event)
8902                 return ERR_PTR(-ENOMEM);
8903
8904         /*
8905          * Single events are their own group leaders, with an
8906          * empty sibling list:
8907          */
8908         if (!group_leader)
8909                 group_leader = event;
8910
8911         mutex_init(&event->child_mutex);
8912         INIT_LIST_HEAD(&event->child_list);
8913
8914         INIT_LIST_HEAD(&event->group_entry);
8915         INIT_LIST_HEAD(&event->event_entry);
8916         INIT_LIST_HEAD(&event->sibling_list);
8917         INIT_LIST_HEAD(&event->rb_entry);
8918         INIT_LIST_HEAD(&event->active_entry);
8919         INIT_LIST_HEAD(&event->addr_filters.list);
8920         INIT_HLIST_NODE(&event->hlist_entry);
8921
8922
8923         init_waitqueue_head(&event->waitq);
8924         init_irq_work(&event->pending, perf_pending_event);
8925
8926         mutex_init(&event->mmap_mutex);
8927         raw_spin_lock_init(&event->addr_filters.lock);
8928
8929         atomic_long_set(&event->refcount, 1);
8930         event->cpu              = cpu;
8931         event->attr             = *attr;
8932         event->group_leader     = group_leader;
8933         event->pmu              = NULL;
8934         event->oncpu            = -1;
8935
8936         event->parent           = parent_event;
8937
8938         event->ns               = get_pid_ns(task_active_pid_ns(current));
8939         event->id               = atomic64_inc_return(&perf_event_id);
8940
8941         event->state            = PERF_EVENT_STATE_INACTIVE;
8942
8943         if (task) {
8944                 event->attach_state = PERF_ATTACH_TASK;
8945                 /*
8946                  * XXX pmu::event_init needs to know what task to account to
8947                  * and we cannot use the ctx information because we need the
8948                  * pmu before we get a ctx.
8949                  */
8950                 event->hw.target = task;
8951         }
8952
8953         event->clock = &local_clock;
8954         if (parent_event)
8955                 event->clock = parent_event->clock;
8956
8957         if (!overflow_handler && parent_event) {
8958                 overflow_handler = parent_event->overflow_handler;
8959                 context = parent_event->overflow_handler_context;
8960         }
8961
8962         if (overflow_handler) {
8963                 event->overflow_handler = overflow_handler;
8964                 event->overflow_handler_context = context;
8965         } else if (is_write_backward(event)){
8966                 event->overflow_handler = perf_event_output_backward;
8967                 event->overflow_handler_context = NULL;
8968         } else {
8969                 event->overflow_handler = perf_event_output_forward;
8970                 event->overflow_handler_context = NULL;
8971         }
8972
8973         perf_event__state_init(event);
8974
8975         pmu = NULL;
8976
8977         hwc = &event->hw;
8978         hwc->sample_period = attr->sample_period;
8979         if (attr->freq && attr->sample_freq)
8980                 hwc->sample_period = 1;
8981         hwc->last_period = hwc->sample_period;
8982
8983         local64_set(&hwc->period_left, hwc->sample_period);
8984
8985         /*
8986          * we currently do not support PERF_FORMAT_GROUP on inherited events
8987          */
8988         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8989                 goto err_ns;
8990
8991         if (!has_branch_stack(event))
8992                 event->attr.branch_sample_type = 0;
8993
8994         if (cgroup_fd != -1) {
8995                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8996                 if (err)
8997                         goto err_ns;
8998         }
8999
9000         pmu = perf_init_event(event);
9001         if (!pmu)
9002                 goto err_ns;
9003         else if (IS_ERR(pmu)) {
9004                 err = PTR_ERR(pmu);
9005                 goto err_ns;
9006         }
9007
9008         err = exclusive_event_init(event);
9009         if (err)
9010                 goto err_pmu;
9011
9012         if (has_addr_filter(event)) {
9013                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9014                                                    sizeof(unsigned long),
9015                                                    GFP_KERNEL);
9016                 if (!event->addr_filters_offs)
9017                         goto err_per_task;
9018
9019                 /* force hw sync on the address filters */
9020                 event->addr_filters_gen = 1;
9021         }
9022
9023         if (!event->parent) {
9024                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9025                         err = get_callchain_buffers(attr->sample_max_stack);
9026                         if (err)
9027                                 goto err_addr_filters;
9028                 }
9029         }
9030
9031         /* symmetric to unaccount_event() in _free_event() */
9032         account_event(event);
9033
9034         return event;
9035
9036 err_addr_filters:
9037         kfree(event->addr_filters_offs);
9038
9039 err_per_task:
9040         exclusive_event_destroy(event);
9041
9042 err_pmu:
9043         if (event->destroy)
9044                 event->destroy(event);
9045         module_put(pmu->module);
9046 err_ns:
9047         if (is_cgroup_event(event))
9048                 perf_detach_cgroup(event);
9049         if (event->ns)
9050                 put_pid_ns(event->ns);
9051         kfree(event);
9052
9053         return ERR_PTR(err);
9054 }
9055
9056 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9057                           struct perf_event_attr *attr)
9058 {
9059         u32 size;
9060         int ret;
9061
9062         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9063                 return -EFAULT;
9064
9065         /*
9066          * zero the full structure, so that a short copy will be nice.
9067          */
9068         memset(attr, 0, sizeof(*attr));
9069
9070         ret = get_user(size, &uattr->size);
9071         if (ret)
9072                 return ret;
9073
9074         if (size > PAGE_SIZE)   /* silly large */
9075                 goto err_size;
9076
9077         if (!size)              /* abi compat */
9078                 size = PERF_ATTR_SIZE_VER0;
9079
9080         if (size < PERF_ATTR_SIZE_VER0)
9081                 goto err_size;
9082
9083         /*
9084          * If we're handed a bigger struct than we know of,
9085          * ensure all the unknown bits are 0 - i.e. new
9086          * user-space does not rely on any kernel feature
9087          * extensions we dont know about yet.
9088          */
9089         if (size > sizeof(*attr)) {
9090                 unsigned char __user *addr;
9091                 unsigned char __user *end;
9092                 unsigned char val;
9093
9094                 addr = (void __user *)uattr + sizeof(*attr);
9095                 end  = (void __user *)uattr + size;
9096
9097                 for (; addr < end; addr++) {
9098                         ret = get_user(val, addr);
9099                         if (ret)
9100                                 return ret;
9101                         if (val)
9102                                 goto err_size;
9103                 }
9104                 size = sizeof(*attr);
9105         }
9106
9107         ret = copy_from_user(attr, uattr, size);
9108         if (ret)
9109                 return -EFAULT;
9110
9111         if (attr->__reserved_1)
9112                 return -EINVAL;
9113
9114         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9115                 return -EINVAL;
9116
9117         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9118                 return -EINVAL;
9119
9120         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9121                 u64 mask = attr->branch_sample_type;
9122
9123                 /* only using defined bits */
9124                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9125                         return -EINVAL;
9126
9127                 /* at least one branch bit must be set */
9128                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9129                         return -EINVAL;
9130
9131                 /* propagate priv level, when not set for branch */
9132                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9133
9134                         /* exclude_kernel checked on syscall entry */
9135                         if (!attr->exclude_kernel)
9136                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9137
9138                         if (!attr->exclude_user)
9139                                 mask |= PERF_SAMPLE_BRANCH_USER;
9140
9141                         if (!attr->exclude_hv)
9142                                 mask |= PERF_SAMPLE_BRANCH_HV;
9143                         /*
9144                          * adjust user setting (for HW filter setup)
9145                          */
9146                         attr->branch_sample_type = mask;
9147                 }
9148                 /* privileged levels capture (kernel, hv): check permissions */
9149                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9150                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9151                         return -EACCES;
9152         }
9153
9154         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9155                 ret = perf_reg_validate(attr->sample_regs_user);
9156                 if (ret)
9157                         return ret;
9158         }
9159
9160         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9161                 if (!arch_perf_have_user_stack_dump())
9162                         return -ENOSYS;
9163
9164                 /*
9165                  * We have __u32 type for the size, but so far
9166                  * we can only use __u16 as maximum due to the
9167                  * __u16 sample size limit.
9168                  */
9169                 if (attr->sample_stack_user >= USHRT_MAX)
9170                         ret = -EINVAL;
9171                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9172                         ret = -EINVAL;
9173         }
9174
9175         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9176                 ret = perf_reg_validate(attr->sample_regs_intr);
9177 out:
9178         return ret;
9179
9180 err_size:
9181         put_user(sizeof(*attr), &uattr->size);
9182         ret = -E2BIG;
9183         goto out;
9184 }
9185
9186 static int
9187 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9188 {
9189         struct ring_buffer *rb = NULL;
9190         int ret = -EINVAL;
9191
9192         if (!output_event)
9193                 goto set;
9194
9195         /* don't allow circular references */
9196         if (event == output_event)
9197                 goto out;
9198
9199         /*
9200          * Don't allow cross-cpu buffers
9201          */
9202         if (output_event->cpu != event->cpu)
9203                 goto out;
9204
9205         /*
9206          * If its not a per-cpu rb, it must be the same task.
9207          */
9208         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9209                 goto out;
9210
9211         /*
9212          * Mixing clocks in the same buffer is trouble you don't need.
9213          */
9214         if (output_event->clock != event->clock)
9215                 goto out;
9216
9217         /*
9218          * Either writing ring buffer from beginning or from end.
9219          * Mixing is not allowed.
9220          */
9221         if (is_write_backward(output_event) != is_write_backward(event))
9222                 goto out;
9223
9224         /*
9225          * If both events generate aux data, they must be on the same PMU
9226          */
9227         if (has_aux(event) && has_aux(output_event) &&
9228             event->pmu != output_event->pmu)
9229                 goto out;
9230
9231 set:
9232         mutex_lock(&event->mmap_mutex);
9233         /* Can't redirect output if we've got an active mmap() */
9234         if (atomic_read(&event->mmap_count))
9235                 goto unlock;
9236
9237         if (output_event) {
9238                 /* get the rb we want to redirect to */
9239                 rb = ring_buffer_get(output_event);
9240                 if (!rb)
9241                         goto unlock;
9242         }
9243
9244         ring_buffer_attach(event, rb);
9245
9246         ret = 0;
9247 unlock:
9248         mutex_unlock(&event->mmap_mutex);
9249
9250 out:
9251         return ret;
9252 }
9253
9254 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9255 {
9256         if (b < a)
9257                 swap(a, b);
9258
9259         mutex_lock(a);
9260         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9261 }
9262
9263 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9264 {
9265         bool nmi_safe = false;
9266
9267         switch (clk_id) {
9268         case CLOCK_MONOTONIC:
9269                 event->clock = &ktime_get_mono_fast_ns;
9270                 nmi_safe = true;
9271                 break;
9272
9273         case CLOCK_MONOTONIC_RAW:
9274                 event->clock = &ktime_get_raw_fast_ns;
9275                 nmi_safe = true;
9276                 break;
9277
9278         case CLOCK_REALTIME:
9279                 event->clock = &ktime_get_real_ns;
9280                 break;
9281
9282         case CLOCK_BOOTTIME:
9283                 event->clock = &ktime_get_boot_ns;
9284                 break;
9285
9286         case CLOCK_TAI:
9287                 event->clock = &ktime_get_tai_ns;
9288                 break;
9289
9290         default:
9291                 return -EINVAL;
9292         }
9293
9294         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9295                 return -EINVAL;
9296
9297         return 0;
9298 }
9299
9300 /**
9301  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9302  *
9303  * @attr_uptr:  event_id type attributes for monitoring/sampling
9304  * @pid:                target pid
9305  * @cpu:                target cpu
9306  * @group_fd:           group leader event fd
9307  */
9308 SYSCALL_DEFINE5(perf_event_open,
9309                 struct perf_event_attr __user *, attr_uptr,
9310                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9311 {
9312         struct perf_event *group_leader = NULL, *output_event = NULL;
9313         struct perf_event *event, *sibling;
9314         struct perf_event_attr attr;
9315         struct perf_event_context *ctx, *uninitialized_var(gctx);
9316         struct file *event_file = NULL;
9317         struct fd group = {NULL, 0};
9318         struct task_struct *task = NULL;
9319         struct pmu *pmu;
9320         int event_fd;
9321         int move_group = 0;
9322         int err;
9323         int f_flags = O_RDWR;
9324         int cgroup_fd = -1;
9325
9326         /* for future expandability... */
9327         if (flags & ~PERF_FLAG_ALL)
9328                 return -EINVAL;
9329
9330         err = perf_copy_attr(attr_uptr, &attr);
9331         if (err)
9332                 return err;
9333
9334         if (!attr.exclude_kernel) {
9335                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9336                         return -EACCES;
9337         }
9338
9339         if (attr.freq) {
9340                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9341                         return -EINVAL;
9342         } else {
9343                 if (attr.sample_period & (1ULL << 63))
9344                         return -EINVAL;
9345         }
9346
9347         if (!attr.sample_max_stack)
9348                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9349
9350         /*
9351          * In cgroup mode, the pid argument is used to pass the fd
9352          * opened to the cgroup directory in cgroupfs. The cpu argument
9353          * designates the cpu on which to monitor threads from that
9354          * cgroup.
9355          */
9356         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9357                 return -EINVAL;
9358
9359         if (flags & PERF_FLAG_FD_CLOEXEC)
9360                 f_flags |= O_CLOEXEC;
9361
9362         event_fd = get_unused_fd_flags(f_flags);
9363         if (event_fd < 0)
9364                 return event_fd;
9365
9366         if (group_fd != -1) {
9367                 err = perf_fget_light(group_fd, &group);
9368                 if (err)
9369                         goto err_fd;
9370                 group_leader = group.file->private_data;
9371                 if (flags & PERF_FLAG_FD_OUTPUT)
9372                         output_event = group_leader;
9373                 if (flags & PERF_FLAG_FD_NO_GROUP)
9374                         group_leader = NULL;
9375         }
9376
9377         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9378                 task = find_lively_task_by_vpid(pid);
9379                 if (IS_ERR(task)) {
9380                         err = PTR_ERR(task);
9381                         goto err_group_fd;
9382                 }
9383         }
9384
9385         if (task && group_leader &&
9386             group_leader->attr.inherit != attr.inherit) {
9387                 err = -EINVAL;
9388                 goto err_task;
9389         }
9390
9391         get_online_cpus();
9392
9393         if (task) {
9394                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9395                 if (err)
9396                         goto err_cpus;
9397
9398                 /*
9399                  * Reuse ptrace permission checks for now.
9400                  *
9401                  * We must hold cred_guard_mutex across this and any potential
9402                  * perf_install_in_context() call for this new event to
9403                  * serialize against exec() altering our credentials (and the
9404                  * perf_event_exit_task() that could imply).
9405                  */
9406                 err = -EACCES;
9407                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9408                         goto err_cred;
9409         }
9410
9411         if (flags & PERF_FLAG_PID_CGROUP)
9412                 cgroup_fd = pid;
9413
9414         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9415                                  NULL, NULL, cgroup_fd);
9416         if (IS_ERR(event)) {
9417                 err = PTR_ERR(event);
9418                 goto err_cred;
9419         }
9420
9421         if (is_sampling_event(event)) {
9422                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9423                         err = -EOPNOTSUPP;
9424                         goto err_alloc;
9425                 }
9426         }
9427
9428         /*
9429          * Special case software events and allow them to be part of
9430          * any hardware group.
9431          */
9432         pmu = event->pmu;
9433
9434         if (attr.use_clockid) {
9435                 err = perf_event_set_clock(event, attr.clockid);
9436                 if (err)
9437                         goto err_alloc;
9438         }
9439
9440         if (group_leader &&
9441             (is_software_event(event) != is_software_event(group_leader))) {
9442                 if (is_software_event(event)) {
9443                         /*
9444                          * If event and group_leader are not both a software
9445                          * event, and event is, then group leader is not.
9446                          *
9447                          * Allow the addition of software events to !software
9448                          * groups, this is safe because software events never
9449                          * fail to schedule.
9450                          */
9451                         pmu = group_leader->pmu;
9452                 } else if (is_software_event(group_leader) &&
9453                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9454                         /*
9455                          * In case the group is a pure software group, and we
9456                          * try to add a hardware event, move the whole group to
9457                          * the hardware context.
9458                          */
9459                         move_group = 1;
9460                 }
9461         }
9462
9463         /*
9464          * Get the target context (task or percpu):
9465          */
9466         ctx = find_get_context(pmu, task, event);
9467         if (IS_ERR(ctx)) {
9468                 err = PTR_ERR(ctx);
9469                 goto err_alloc;
9470         }
9471
9472         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9473                 err = -EBUSY;
9474                 goto err_context;
9475         }
9476
9477         /*
9478          * Look up the group leader (we will attach this event to it):
9479          */
9480         if (group_leader) {
9481                 err = -EINVAL;
9482
9483                 /*
9484                  * Do not allow a recursive hierarchy (this new sibling
9485                  * becoming part of another group-sibling):
9486                  */
9487                 if (group_leader->group_leader != group_leader)
9488                         goto err_context;
9489
9490                 /* All events in a group should have the same clock */
9491                 if (group_leader->clock != event->clock)
9492                         goto err_context;
9493
9494                 /*
9495                  * Do not allow to attach to a group in a different
9496                  * task or CPU context:
9497                  */
9498                 if (move_group) {
9499                         /*
9500                          * Make sure we're both on the same task, or both
9501                          * per-cpu events.
9502                          */
9503                         if (group_leader->ctx->task != ctx->task)
9504                                 goto err_context;
9505
9506                         /*
9507                          * Make sure we're both events for the same CPU;
9508                          * grouping events for different CPUs is broken; since
9509                          * you can never concurrently schedule them anyhow.
9510                          */
9511                         if (group_leader->cpu != event->cpu)
9512                                 goto err_context;
9513                 } else {
9514                         if (group_leader->ctx != ctx)
9515                                 goto err_context;
9516                 }
9517
9518                 /*
9519                  * Only a group leader can be exclusive or pinned
9520                  */
9521                 if (attr.exclusive || attr.pinned)
9522                         goto err_context;
9523         }
9524
9525         if (output_event) {
9526                 err = perf_event_set_output(event, output_event);
9527                 if (err)
9528                         goto err_context;
9529         }
9530
9531         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9532                                         f_flags);
9533         if (IS_ERR(event_file)) {
9534                 err = PTR_ERR(event_file);
9535                 event_file = NULL;
9536                 goto err_context;
9537         }
9538
9539         if (move_group) {
9540                 gctx = group_leader->ctx;
9541                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9542                 if (gctx->task == TASK_TOMBSTONE) {
9543                         err = -ESRCH;
9544                         goto err_locked;
9545                 }
9546         } else {
9547                 mutex_lock(&ctx->mutex);
9548         }
9549
9550         if (ctx->task == TASK_TOMBSTONE) {
9551                 err = -ESRCH;
9552                 goto err_locked;
9553         }
9554
9555         if (!perf_event_validate_size(event)) {
9556                 err = -E2BIG;
9557                 goto err_locked;
9558         }
9559
9560         /*
9561          * Must be under the same ctx::mutex as perf_install_in_context(),
9562          * because we need to serialize with concurrent event creation.
9563          */
9564         if (!exclusive_event_installable(event, ctx)) {
9565                 /* exclusive and group stuff are assumed mutually exclusive */
9566                 WARN_ON_ONCE(move_group);
9567
9568                 err = -EBUSY;
9569                 goto err_locked;
9570         }
9571
9572         WARN_ON_ONCE(ctx->parent_ctx);
9573
9574         /*
9575          * This is the point on no return; we cannot fail hereafter. This is
9576          * where we start modifying current state.
9577          */
9578
9579         if (move_group) {
9580                 /*
9581                  * See perf_event_ctx_lock() for comments on the details
9582                  * of swizzling perf_event::ctx.
9583                  */
9584                 perf_remove_from_context(group_leader, 0);
9585
9586                 list_for_each_entry(sibling, &group_leader->sibling_list,
9587                                     group_entry) {
9588                         perf_remove_from_context(sibling, 0);
9589                         put_ctx(gctx);
9590                 }
9591
9592                 /*
9593                  * Wait for everybody to stop referencing the events through
9594                  * the old lists, before installing it on new lists.
9595                  */
9596                 synchronize_rcu();
9597
9598                 /*
9599                  * Install the group siblings before the group leader.
9600                  *
9601                  * Because a group leader will try and install the entire group
9602                  * (through the sibling list, which is still in-tact), we can
9603                  * end up with siblings installed in the wrong context.
9604                  *
9605                  * By installing siblings first we NO-OP because they're not
9606                  * reachable through the group lists.
9607                  */
9608                 list_for_each_entry(sibling, &group_leader->sibling_list,
9609                                     group_entry) {
9610                         perf_event__state_init(sibling);
9611                         perf_install_in_context(ctx, sibling, sibling->cpu);
9612                         get_ctx(ctx);
9613                 }
9614
9615                 /*
9616                  * Removing from the context ends up with disabled
9617                  * event. What we want here is event in the initial
9618                  * startup state, ready to be add into new context.
9619                  */
9620                 perf_event__state_init(group_leader);
9621                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9622                 get_ctx(ctx);
9623
9624                 /*
9625                  * Now that all events are installed in @ctx, nothing
9626                  * references @gctx anymore, so drop the last reference we have
9627                  * on it.
9628                  */
9629                 put_ctx(gctx);
9630         }
9631
9632         /*
9633          * Precalculate sample_data sizes; do while holding ctx::mutex such
9634          * that we're serialized against further additions and before
9635          * perf_install_in_context() which is the point the event is active and
9636          * can use these values.
9637          */
9638         perf_event__header_size(event);
9639         perf_event__id_header_size(event);
9640
9641         event->owner = current;
9642
9643         perf_install_in_context(ctx, event, event->cpu);
9644         perf_unpin_context(ctx);
9645
9646         if (move_group)
9647                 mutex_unlock(&gctx->mutex);
9648         mutex_unlock(&ctx->mutex);
9649
9650         if (task) {
9651                 mutex_unlock(&task->signal->cred_guard_mutex);
9652                 put_task_struct(task);
9653         }
9654
9655         put_online_cpus();
9656
9657         mutex_lock(&current->perf_event_mutex);
9658         list_add_tail(&event->owner_entry, &current->perf_event_list);
9659         mutex_unlock(&current->perf_event_mutex);
9660
9661         /*
9662          * Drop the reference on the group_event after placing the
9663          * new event on the sibling_list. This ensures destruction
9664          * of the group leader will find the pointer to itself in
9665          * perf_group_detach().
9666          */
9667         fdput(group);
9668         fd_install(event_fd, event_file);
9669         return event_fd;
9670
9671 err_locked:
9672         if (move_group)
9673                 mutex_unlock(&gctx->mutex);
9674         mutex_unlock(&ctx->mutex);
9675 /* err_file: */
9676         fput(event_file);
9677 err_context:
9678         perf_unpin_context(ctx);
9679         put_ctx(ctx);
9680 err_alloc:
9681         /*
9682          * If event_file is set, the fput() above will have called ->release()
9683          * and that will take care of freeing the event.
9684          */
9685         if (!event_file)
9686                 free_event(event);
9687 err_cred:
9688         if (task)
9689                 mutex_unlock(&task->signal->cred_guard_mutex);
9690 err_cpus:
9691         put_online_cpus();
9692 err_task:
9693         if (task)
9694                 put_task_struct(task);
9695 err_group_fd:
9696         fdput(group);
9697 err_fd:
9698         put_unused_fd(event_fd);
9699         return err;
9700 }
9701
9702 /**
9703  * perf_event_create_kernel_counter
9704  *
9705  * @attr: attributes of the counter to create
9706  * @cpu: cpu in which the counter is bound
9707  * @task: task to profile (NULL for percpu)
9708  */
9709 struct perf_event *
9710 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9711                                  struct task_struct *task,
9712                                  perf_overflow_handler_t overflow_handler,
9713                                  void *context)
9714 {
9715         struct perf_event_context *ctx;
9716         struct perf_event *event;
9717         int err;
9718
9719         /*
9720          * Get the target context (task or percpu):
9721          */
9722
9723         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9724                                  overflow_handler, context, -1);
9725         if (IS_ERR(event)) {
9726                 err = PTR_ERR(event);
9727                 goto err;
9728         }
9729
9730         /* Mark owner so we could distinguish it from user events. */
9731         event->owner = TASK_TOMBSTONE;
9732
9733         ctx = find_get_context(event->pmu, task, event);
9734         if (IS_ERR(ctx)) {
9735                 err = PTR_ERR(ctx);
9736                 goto err_free;
9737         }
9738
9739         WARN_ON_ONCE(ctx->parent_ctx);
9740         mutex_lock(&ctx->mutex);
9741         if (ctx->task == TASK_TOMBSTONE) {
9742                 err = -ESRCH;
9743                 goto err_unlock;
9744         }
9745
9746         if (!exclusive_event_installable(event, ctx)) {
9747                 err = -EBUSY;
9748                 goto err_unlock;
9749         }
9750
9751         perf_install_in_context(ctx, event, cpu);
9752         perf_unpin_context(ctx);
9753         mutex_unlock(&ctx->mutex);
9754
9755         return event;
9756
9757 err_unlock:
9758         mutex_unlock(&ctx->mutex);
9759         perf_unpin_context(ctx);
9760         put_ctx(ctx);
9761 err_free:
9762         free_event(event);
9763 err:
9764         return ERR_PTR(err);
9765 }
9766 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9767
9768 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9769 {
9770         struct perf_event_context *src_ctx;
9771         struct perf_event_context *dst_ctx;
9772         struct perf_event *event, *tmp;
9773         LIST_HEAD(events);
9774
9775         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9776         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9777
9778         /*
9779          * See perf_event_ctx_lock() for comments on the details
9780          * of swizzling perf_event::ctx.
9781          */
9782         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9783         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9784                                  event_entry) {
9785                 perf_remove_from_context(event, 0);
9786                 unaccount_event_cpu(event, src_cpu);
9787                 put_ctx(src_ctx);
9788                 list_add(&event->migrate_entry, &events);
9789         }
9790
9791         /*
9792          * Wait for the events to quiesce before re-instating them.
9793          */
9794         synchronize_rcu();
9795
9796         /*
9797          * Re-instate events in 2 passes.
9798          *
9799          * Skip over group leaders and only install siblings on this first
9800          * pass, siblings will not get enabled without a leader, however a
9801          * leader will enable its siblings, even if those are still on the old
9802          * context.
9803          */
9804         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9805                 if (event->group_leader == event)
9806                         continue;
9807
9808                 list_del(&event->migrate_entry);
9809                 if (event->state >= PERF_EVENT_STATE_OFF)
9810                         event->state = PERF_EVENT_STATE_INACTIVE;
9811                 account_event_cpu(event, dst_cpu);
9812                 perf_install_in_context(dst_ctx, event, dst_cpu);
9813                 get_ctx(dst_ctx);
9814         }
9815
9816         /*
9817          * Once all the siblings are setup properly, install the group leaders
9818          * to make it go.
9819          */
9820         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9821                 list_del(&event->migrate_entry);
9822                 if (event->state >= PERF_EVENT_STATE_OFF)
9823                         event->state = PERF_EVENT_STATE_INACTIVE;
9824                 account_event_cpu(event, dst_cpu);
9825                 perf_install_in_context(dst_ctx, event, dst_cpu);
9826                 get_ctx(dst_ctx);
9827         }
9828         mutex_unlock(&dst_ctx->mutex);
9829         mutex_unlock(&src_ctx->mutex);
9830 }
9831 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9832
9833 static void sync_child_event(struct perf_event *child_event,
9834                                struct task_struct *child)
9835 {
9836         struct perf_event *parent_event = child_event->parent;
9837         u64 child_val;
9838
9839         if (child_event->attr.inherit_stat)
9840                 perf_event_read_event(child_event, child);
9841
9842         child_val = perf_event_count(child_event);
9843
9844         /*
9845          * Add back the child's count to the parent's count:
9846          */
9847         atomic64_add(child_val, &parent_event->child_count);
9848         atomic64_add(child_event->total_time_enabled,
9849                      &parent_event->child_total_time_enabled);
9850         atomic64_add(child_event->total_time_running,
9851                      &parent_event->child_total_time_running);
9852 }
9853
9854 static void
9855 perf_event_exit_event(struct perf_event *child_event,
9856                       struct perf_event_context *child_ctx,
9857                       struct task_struct *child)
9858 {
9859         struct perf_event *parent_event = child_event->parent;
9860
9861         /*
9862          * Do not destroy the 'original' grouping; because of the context
9863          * switch optimization the original events could've ended up in a
9864          * random child task.
9865          *
9866          * If we were to destroy the original group, all group related
9867          * operations would cease to function properly after this random
9868          * child dies.
9869          *
9870          * Do destroy all inherited groups, we don't care about those
9871          * and being thorough is better.
9872          */
9873         raw_spin_lock_irq(&child_ctx->lock);
9874         WARN_ON_ONCE(child_ctx->is_active);
9875
9876         if (parent_event)
9877                 perf_group_detach(child_event);
9878         list_del_event(child_event, child_ctx);
9879         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9880         raw_spin_unlock_irq(&child_ctx->lock);
9881
9882         /*
9883          * Parent events are governed by their filedesc, retain them.
9884          */
9885         if (!parent_event) {
9886                 perf_event_wakeup(child_event);
9887                 return;
9888         }
9889         /*
9890          * Child events can be cleaned up.
9891          */
9892
9893         sync_child_event(child_event, child);
9894
9895         /*
9896          * Remove this event from the parent's list
9897          */
9898         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9899         mutex_lock(&parent_event->child_mutex);
9900         list_del_init(&child_event->child_list);
9901         mutex_unlock(&parent_event->child_mutex);
9902
9903         /*
9904          * Kick perf_poll() for is_event_hup().
9905          */
9906         perf_event_wakeup(parent_event);
9907         free_event(child_event);
9908         put_event(parent_event);
9909 }
9910
9911 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9912 {
9913         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9914         struct perf_event *child_event, *next;
9915
9916         WARN_ON_ONCE(child != current);
9917
9918         child_ctx = perf_pin_task_context(child, ctxn);
9919         if (!child_ctx)
9920                 return;
9921
9922         /*
9923          * In order to reduce the amount of tricky in ctx tear-down, we hold
9924          * ctx::mutex over the entire thing. This serializes against almost
9925          * everything that wants to access the ctx.
9926          *
9927          * The exception is sys_perf_event_open() /
9928          * perf_event_create_kernel_count() which does find_get_context()
9929          * without ctx::mutex (it cannot because of the move_group double mutex
9930          * lock thing). See the comments in perf_install_in_context().
9931          */
9932         mutex_lock(&child_ctx->mutex);
9933
9934         /*
9935          * In a single ctx::lock section, de-schedule the events and detach the
9936          * context from the task such that we cannot ever get it scheduled back
9937          * in.
9938          */
9939         raw_spin_lock_irq(&child_ctx->lock);
9940         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9941
9942         /*
9943          * Now that the context is inactive, destroy the task <-> ctx relation
9944          * and mark the context dead.
9945          */
9946         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9947         put_ctx(child_ctx); /* cannot be last */
9948         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9949         put_task_struct(current); /* cannot be last */
9950
9951         clone_ctx = unclone_ctx(child_ctx);
9952         raw_spin_unlock_irq(&child_ctx->lock);
9953
9954         if (clone_ctx)
9955                 put_ctx(clone_ctx);
9956
9957         /*
9958          * Report the task dead after unscheduling the events so that we
9959          * won't get any samples after PERF_RECORD_EXIT. We can however still
9960          * get a few PERF_RECORD_READ events.
9961          */
9962         perf_event_task(child, child_ctx, 0);
9963
9964         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9965                 perf_event_exit_event(child_event, child_ctx, child);
9966
9967         mutex_unlock(&child_ctx->mutex);
9968
9969         put_ctx(child_ctx);
9970 }
9971
9972 /*
9973  * When a child task exits, feed back event values to parent events.
9974  *
9975  * Can be called with cred_guard_mutex held when called from
9976  * install_exec_creds().
9977  */
9978 void perf_event_exit_task(struct task_struct *child)
9979 {
9980         struct perf_event *event, *tmp;
9981         int ctxn;
9982
9983         mutex_lock(&child->perf_event_mutex);
9984         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9985                                  owner_entry) {
9986                 list_del_init(&event->owner_entry);
9987
9988                 /*
9989                  * Ensure the list deletion is visible before we clear
9990                  * the owner, closes a race against perf_release() where
9991                  * we need to serialize on the owner->perf_event_mutex.
9992                  */
9993                 smp_store_release(&event->owner, NULL);
9994         }
9995         mutex_unlock(&child->perf_event_mutex);
9996
9997         for_each_task_context_nr(ctxn)
9998                 perf_event_exit_task_context(child, ctxn);
9999
10000         /*
10001          * The perf_event_exit_task_context calls perf_event_task
10002          * with child's task_ctx, which generates EXIT events for
10003          * child contexts and sets child->perf_event_ctxp[] to NULL.
10004          * At this point we need to send EXIT events to cpu contexts.
10005          */
10006         perf_event_task(child, NULL, 0);
10007 }
10008
10009 static void perf_free_event(struct perf_event *event,
10010                             struct perf_event_context *ctx)
10011 {
10012         struct perf_event *parent = event->parent;
10013
10014         if (WARN_ON_ONCE(!parent))
10015                 return;
10016
10017         mutex_lock(&parent->child_mutex);
10018         list_del_init(&event->child_list);
10019         mutex_unlock(&parent->child_mutex);
10020
10021         put_event(parent);
10022
10023         raw_spin_lock_irq(&ctx->lock);
10024         perf_group_detach(event);
10025         list_del_event(event, ctx);
10026         raw_spin_unlock_irq(&ctx->lock);
10027         free_event(event);
10028 }
10029
10030 /*
10031  * Free an unexposed, unused context as created by inheritance by
10032  * perf_event_init_task below, used by fork() in case of fail.
10033  *
10034  * Not all locks are strictly required, but take them anyway to be nice and
10035  * help out with the lockdep assertions.
10036  */
10037 void perf_event_free_task(struct task_struct *task)
10038 {
10039         struct perf_event_context *ctx;
10040         struct perf_event *event, *tmp;
10041         int ctxn;
10042
10043         for_each_task_context_nr(ctxn) {
10044                 ctx = task->perf_event_ctxp[ctxn];
10045                 if (!ctx)
10046                         continue;
10047
10048                 mutex_lock(&ctx->mutex);
10049 again:
10050                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10051                                 group_entry)
10052                         perf_free_event(event, ctx);
10053
10054                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10055                                 group_entry)
10056                         perf_free_event(event, ctx);
10057
10058                 if (!list_empty(&ctx->pinned_groups) ||
10059                                 !list_empty(&ctx->flexible_groups))
10060                         goto again;
10061
10062                 mutex_unlock(&ctx->mutex);
10063
10064                 put_ctx(ctx);
10065         }
10066 }
10067
10068 void perf_event_delayed_put(struct task_struct *task)
10069 {
10070         int ctxn;
10071
10072         for_each_task_context_nr(ctxn)
10073                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10074 }
10075
10076 struct file *perf_event_get(unsigned int fd)
10077 {
10078         struct file *file;
10079
10080         file = fget_raw(fd);
10081         if (!file)
10082                 return ERR_PTR(-EBADF);
10083
10084         if (file->f_op != &perf_fops) {
10085                 fput(file);
10086                 return ERR_PTR(-EBADF);
10087         }
10088
10089         return file;
10090 }
10091
10092 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10093 {
10094         if (!event)
10095                 return ERR_PTR(-EINVAL);
10096
10097         return &event->attr;
10098 }
10099
10100 /*
10101  * inherit a event from parent task to child task:
10102  */
10103 static struct perf_event *
10104 inherit_event(struct perf_event *parent_event,
10105               struct task_struct *parent,
10106               struct perf_event_context *parent_ctx,
10107               struct task_struct *child,
10108               struct perf_event *group_leader,
10109               struct perf_event_context *child_ctx)
10110 {
10111         enum perf_event_active_state parent_state = parent_event->state;
10112         struct perf_event *child_event;
10113         unsigned long flags;
10114
10115         /*
10116          * Instead of creating recursive hierarchies of events,
10117          * we link inherited events back to the original parent,
10118          * which has a filp for sure, which we use as the reference
10119          * count:
10120          */
10121         if (parent_event->parent)
10122                 parent_event = parent_event->parent;
10123
10124         child_event = perf_event_alloc(&parent_event->attr,
10125                                            parent_event->cpu,
10126                                            child,
10127                                            group_leader, parent_event,
10128                                            NULL, NULL, -1);
10129         if (IS_ERR(child_event))
10130                 return child_event;
10131
10132         /*
10133          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10134          * must be under the same lock in order to serialize against
10135          * perf_event_release_kernel(), such that either we must observe
10136          * is_orphaned_event() or they will observe us on the child_list.
10137          */
10138         mutex_lock(&parent_event->child_mutex);
10139         if (is_orphaned_event(parent_event) ||
10140             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10141                 mutex_unlock(&parent_event->child_mutex);
10142                 free_event(child_event);
10143                 return NULL;
10144         }
10145
10146         get_ctx(child_ctx);
10147
10148         /*
10149          * Make the child state follow the state of the parent event,
10150          * not its attr.disabled bit.  We hold the parent's mutex,
10151          * so we won't race with perf_event_{en, dis}able_family.
10152          */
10153         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10154                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10155         else
10156                 child_event->state = PERF_EVENT_STATE_OFF;
10157
10158         if (parent_event->attr.freq) {
10159                 u64 sample_period = parent_event->hw.sample_period;
10160                 struct hw_perf_event *hwc = &child_event->hw;
10161
10162                 hwc->sample_period = sample_period;
10163                 hwc->last_period   = sample_period;
10164
10165                 local64_set(&hwc->period_left, sample_period);
10166         }
10167
10168         child_event->ctx = child_ctx;
10169         child_event->overflow_handler = parent_event->overflow_handler;
10170         child_event->overflow_handler_context
10171                 = parent_event->overflow_handler_context;
10172
10173         /*
10174          * Precalculate sample_data sizes
10175          */
10176         perf_event__header_size(child_event);
10177         perf_event__id_header_size(child_event);
10178
10179         /*
10180          * Link it up in the child's context:
10181          */
10182         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10183         add_event_to_ctx(child_event, child_ctx);
10184         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10185
10186         /*
10187          * Link this into the parent event's child list
10188          */
10189         list_add_tail(&child_event->child_list, &parent_event->child_list);
10190         mutex_unlock(&parent_event->child_mutex);
10191
10192         return child_event;
10193 }
10194
10195 static int inherit_group(struct perf_event *parent_event,
10196               struct task_struct *parent,
10197               struct perf_event_context *parent_ctx,
10198               struct task_struct *child,
10199               struct perf_event_context *child_ctx)
10200 {
10201         struct perf_event *leader;
10202         struct perf_event *sub;
10203         struct perf_event *child_ctr;
10204
10205         leader = inherit_event(parent_event, parent, parent_ctx,
10206                                  child, NULL, child_ctx);
10207         if (IS_ERR(leader))
10208                 return PTR_ERR(leader);
10209         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10210                 child_ctr = inherit_event(sub, parent, parent_ctx,
10211                                             child, leader, child_ctx);
10212                 if (IS_ERR(child_ctr))
10213                         return PTR_ERR(child_ctr);
10214         }
10215         return 0;
10216 }
10217
10218 static int
10219 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10220                    struct perf_event_context *parent_ctx,
10221                    struct task_struct *child, int ctxn,
10222                    int *inherited_all)
10223 {
10224         int ret;
10225         struct perf_event_context *child_ctx;
10226
10227         if (!event->attr.inherit) {
10228                 *inherited_all = 0;
10229                 return 0;
10230         }
10231
10232         child_ctx = child->perf_event_ctxp[ctxn];
10233         if (!child_ctx) {
10234                 /*
10235                  * This is executed from the parent task context, so
10236                  * inherit events that have been marked for cloning.
10237                  * First allocate and initialize a context for the
10238                  * child.
10239                  */
10240
10241                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10242                 if (!child_ctx)
10243                         return -ENOMEM;
10244
10245                 child->perf_event_ctxp[ctxn] = child_ctx;
10246         }
10247
10248         ret = inherit_group(event, parent, parent_ctx,
10249                             child, child_ctx);
10250
10251         if (ret)
10252                 *inherited_all = 0;
10253
10254         return ret;
10255 }
10256
10257 /*
10258  * Initialize the perf_event context in task_struct
10259  */
10260 static int perf_event_init_context(struct task_struct *child, int ctxn)
10261 {
10262         struct perf_event_context *child_ctx, *parent_ctx;
10263         struct perf_event_context *cloned_ctx;
10264         struct perf_event *event;
10265         struct task_struct *parent = current;
10266         int inherited_all = 1;
10267         unsigned long flags;
10268         int ret = 0;
10269
10270         if (likely(!parent->perf_event_ctxp[ctxn]))
10271                 return 0;
10272
10273         /*
10274          * If the parent's context is a clone, pin it so it won't get
10275          * swapped under us.
10276          */
10277         parent_ctx = perf_pin_task_context(parent, ctxn);
10278         if (!parent_ctx)
10279                 return 0;
10280
10281         /*
10282          * No need to check if parent_ctx != NULL here; since we saw
10283          * it non-NULL earlier, the only reason for it to become NULL
10284          * is if we exit, and since we're currently in the middle of
10285          * a fork we can't be exiting at the same time.
10286          */
10287
10288         /*
10289          * Lock the parent list. No need to lock the child - not PID
10290          * hashed yet and not running, so nobody can access it.
10291          */
10292         mutex_lock(&parent_ctx->mutex);
10293
10294         /*
10295          * We dont have to disable NMIs - we are only looking at
10296          * the list, not manipulating it:
10297          */
10298         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10299                 ret = inherit_task_group(event, parent, parent_ctx,
10300                                          child, ctxn, &inherited_all);
10301                 if (ret)
10302                         break;
10303         }
10304
10305         /*
10306          * We can't hold ctx->lock when iterating the ->flexible_group list due
10307          * to allocations, but we need to prevent rotation because
10308          * rotate_ctx() will change the list from interrupt context.
10309          */
10310         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10311         parent_ctx->rotate_disable = 1;
10312         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10313
10314         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10315                 ret = inherit_task_group(event, parent, parent_ctx,
10316                                          child, ctxn, &inherited_all);
10317                 if (ret)
10318                         break;
10319         }
10320
10321         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10322         parent_ctx->rotate_disable = 0;
10323
10324         child_ctx = child->perf_event_ctxp[ctxn];
10325
10326         if (child_ctx && inherited_all) {
10327                 /*
10328                  * Mark the child context as a clone of the parent
10329                  * context, or of whatever the parent is a clone of.
10330                  *
10331                  * Note that if the parent is a clone, the holding of
10332                  * parent_ctx->lock avoids it from being uncloned.
10333                  */
10334                 cloned_ctx = parent_ctx->parent_ctx;
10335                 if (cloned_ctx) {
10336                         child_ctx->parent_ctx = cloned_ctx;
10337                         child_ctx->parent_gen = parent_ctx->parent_gen;
10338                 } else {
10339                         child_ctx->parent_ctx = parent_ctx;
10340                         child_ctx->parent_gen = parent_ctx->generation;
10341                 }
10342                 get_ctx(child_ctx->parent_ctx);
10343         }
10344
10345         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10346         mutex_unlock(&parent_ctx->mutex);
10347
10348         perf_unpin_context(parent_ctx);
10349         put_ctx(parent_ctx);
10350
10351         return ret;
10352 }
10353
10354 /*
10355  * Initialize the perf_event context in task_struct
10356  */
10357 int perf_event_init_task(struct task_struct *child)
10358 {
10359         int ctxn, ret;
10360
10361         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10362         mutex_init(&child->perf_event_mutex);
10363         INIT_LIST_HEAD(&child->perf_event_list);
10364
10365         for_each_task_context_nr(ctxn) {
10366                 ret = perf_event_init_context(child, ctxn);
10367                 if (ret) {
10368                         perf_event_free_task(child);
10369                         return ret;
10370                 }
10371         }
10372
10373         return 0;
10374 }
10375
10376 static void __init perf_event_init_all_cpus(void)
10377 {
10378         struct swevent_htable *swhash;
10379         int cpu;
10380
10381         for_each_possible_cpu(cpu) {
10382                 swhash = &per_cpu(swevent_htable, cpu);
10383                 mutex_init(&swhash->hlist_mutex);
10384                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10385
10386                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10387                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10388         }
10389 }
10390
10391 int perf_event_init_cpu(unsigned int cpu)
10392 {
10393         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10394
10395         mutex_lock(&swhash->hlist_mutex);
10396         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10397                 struct swevent_hlist *hlist;
10398
10399                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10400                 WARN_ON(!hlist);
10401                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10402         }
10403         mutex_unlock(&swhash->hlist_mutex);
10404         return 0;
10405 }
10406
10407 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10408 static void __perf_event_exit_context(void *__info)
10409 {
10410         struct perf_event_context *ctx = __info;
10411         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10412         struct perf_event *event;
10413
10414         raw_spin_lock(&ctx->lock);
10415         list_for_each_entry(event, &ctx->event_list, event_entry)
10416                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10417         raw_spin_unlock(&ctx->lock);
10418 }
10419
10420 static void perf_event_exit_cpu_context(int cpu)
10421 {
10422         struct perf_event_context *ctx;
10423         struct pmu *pmu;
10424         int idx;
10425
10426         idx = srcu_read_lock(&pmus_srcu);
10427         list_for_each_entry_rcu(pmu, &pmus, entry) {
10428                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10429
10430                 mutex_lock(&ctx->mutex);
10431                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10432                 mutex_unlock(&ctx->mutex);
10433         }
10434         srcu_read_unlock(&pmus_srcu, idx);
10435 }
10436 #else
10437
10438 static void perf_event_exit_cpu_context(int cpu) { }
10439
10440 #endif
10441
10442 int perf_event_exit_cpu(unsigned int cpu)
10443 {
10444         perf_event_exit_cpu_context(cpu);
10445         return 0;
10446 }
10447
10448 static int
10449 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10450 {
10451         int cpu;
10452
10453         for_each_online_cpu(cpu)
10454                 perf_event_exit_cpu(cpu);
10455
10456         return NOTIFY_OK;
10457 }
10458
10459 /*
10460  * Run the perf reboot notifier at the very last possible moment so that
10461  * the generic watchdog code runs as long as possible.
10462  */
10463 static struct notifier_block perf_reboot_notifier = {
10464         .notifier_call = perf_reboot,
10465         .priority = INT_MIN,
10466 };
10467
10468 void __init perf_event_init(void)
10469 {
10470         int ret;
10471
10472         idr_init(&pmu_idr);
10473
10474         perf_event_init_all_cpus();
10475         init_srcu_struct(&pmus_srcu);
10476         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10477         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10478         perf_pmu_register(&perf_task_clock, NULL, -1);
10479         perf_tp_register();
10480         perf_event_init_cpu(smp_processor_id());
10481         register_reboot_notifier(&perf_reboot_notifier);
10482
10483         ret = init_hw_breakpoint();
10484         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10485
10486         /*
10487          * Build time assertion that we keep the data_head at the intended
10488          * location.  IOW, validation we got the __reserved[] size right.
10489          */
10490         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10491                      != 1024);
10492 }
10493
10494 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10495                               char *page)
10496 {
10497         struct perf_pmu_events_attr *pmu_attr =
10498                 container_of(attr, struct perf_pmu_events_attr, attr);
10499
10500         if (pmu_attr->event_str)
10501                 return sprintf(page, "%s\n", pmu_attr->event_str);
10502
10503         return 0;
10504 }
10505 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10506
10507 static int __init perf_event_sysfs_init(void)
10508 {
10509         struct pmu *pmu;
10510         int ret;
10511
10512         mutex_lock(&pmus_lock);
10513
10514         ret = bus_register(&pmu_bus);
10515         if (ret)
10516                 goto unlock;
10517
10518         list_for_each_entry(pmu, &pmus, entry) {
10519                 if (!pmu->name || pmu->type < 0)
10520                         continue;
10521
10522                 ret = pmu_dev_alloc(pmu);
10523                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10524         }
10525         pmu_bus_running = 1;
10526         ret = 0;
10527
10528 unlock:
10529         mutex_unlock(&pmus_lock);
10530
10531         return ret;
10532 }
10533 device_initcall(perf_event_sysfs_init);
10534
10535 #ifdef CONFIG_CGROUP_PERF
10536 static struct cgroup_subsys_state *
10537 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10538 {
10539         struct perf_cgroup *jc;
10540
10541         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10542         if (!jc)
10543                 return ERR_PTR(-ENOMEM);
10544
10545         jc->info = alloc_percpu(struct perf_cgroup_info);
10546         if (!jc->info) {
10547                 kfree(jc);
10548                 return ERR_PTR(-ENOMEM);
10549         }
10550
10551         return &jc->css;
10552 }
10553
10554 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10555 {
10556         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10557
10558         free_percpu(jc->info);
10559         kfree(jc);
10560 }
10561
10562 static int __perf_cgroup_move(void *info)
10563 {
10564         struct task_struct *task = info;
10565         rcu_read_lock();
10566         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10567         rcu_read_unlock();
10568         return 0;
10569 }
10570
10571 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10572 {
10573         struct task_struct *task;
10574         struct cgroup_subsys_state *css;
10575
10576         cgroup_taskset_for_each(task, css, tset)
10577                 task_function_call(task, __perf_cgroup_move, task);
10578 }
10579
10580 struct cgroup_subsys perf_event_cgrp_subsys = {
10581         .css_alloc      = perf_cgroup_css_alloc,
10582         .css_free       = perf_cgroup_css_free,
10583         .attach         = perf_cgroup_attach,
10584 };
10585 #endif /* CONFIG_CGROUP_PERF */