Merge tag 'arc-v3.13-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP       1
65
66 struct uprobe {
67         struct rb_node          rb_node;        /* node in the rb tree */
68         atomic_t                ref;
69         struct rw_semaphore     register_rwsem;
70         struct rw_semaphore     consumer_rwsem;
71         struct list_head        pending_list;
72         struct uprobe_consumer  *consumers;
73         struct inode            *inode;         /* Also hold a ref to inode */
74         loff_t                  offset;
75         unsigned long           flags;
76         struct arch_uprobe      arch;
77 };
78
79 struct return_instance {
80         struct uprobe           *uprobe;
81         unsigned long           func;
82         unsigned long           orig_ret_vaddr; /* original return address */
83         bool                    chained;        /* true, if instance is nested */
84
85         struct return_instance  *next;          /* keep as stack */
86 };
87
88 /*
89  * valid_vma: Verify if the specified vma is an executable vma
90  * Relax restrictions while unregistering: vm_flags might have
91  * changed after breakpoint was inserted.
92  *      - is_register: indicates if we are in register context.
93  *      - Return 1 if the specified virtual address is in an
94  *        executable vma.
95  */
96 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97 {
98         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
99
100         if (is_register)
101                 flags |= VM_WRITE;
102
103         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
104 }
105
106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
107 {
108         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
109 }
110
111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112 {
113         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114 }
115
116 /**
117  * __replace_page - replace page in vma by new page.
118  * based on replace_page in mm/ksm.c
119  *
120  * @vma:      vma that holds the pte pointing to page
121  * @addr:     address the old @page is mapped at
122  * @page:     the cowed page we are replacing by kpage
123  * @kpage:    the modified page we replace page by
124  *
125  * Returns 0 on success, -EFAULT on failure.
126  */
127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128                                 struct page *page, struct page *kpage)
129 {
130         struct mm_struct *mm = vma->vm_mm;
131         spinlock_t *ptl;
132         pte_t *ptep;
133         int err;
134         /* For mmu_notifiers */
135         const unsigned long mmun_start = addr;
136         const unsigned long mmun_end   = addr + PAGE_SIZE;
137
138         /* For try_to_free_swap() and munlock_vma_page() below */
139         lock_page(page);
140
141         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
142         err = -EAGAIN;
143         ptep = page_check_address(page, mm, addr, &ptl, 0);
144         if (!ptep)
145                 goto unlock;
146
147         get_page(kpage);
148         page_add_new_anon_rmap(kpage, vma, addr);
149
150         if (!PageAnon(page)) {
151                 dec_mm_counter(mm, MM_FILEPAGES);
152                 inc_mm_counter(mm, MM_ANONPAGES);
153         }
154
155         flush_cache_page(vma, addr, pte_pfn(*ptep));
156         ptep_clear_flush(vma, addr, ptep);
157         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159         page_remove_rmap(page);
160         if (!page_mapped(page))
161                 try_to_free_swap(page);
162         pte_unmap_unlock(ptep, ptl);
163
164         if (vma->vm_flags & VM_LOCKED)
165                 munlock_vma_page(page);
166         put_page(page);
167
168         err = 0;
169  unlock:
170         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
171         unlock_page(page);
172         return err;
173 }
174
175 /**
176  * is_swbp_insn - check if instruction is breakpoint instruction.
177  * @insn: instruction to be checked.
178  * Default implementation of is_swbp_insn
179  * Returns true if @insn is a breakpoint instruction.
180  */
181 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182 {
183         return *insn == UPROBE_SWBP_INSN;
184 }
185
186 /**
187  * is_trap_insn - check if instruction is breakpoint instruction.
188  * @insn: instruction to be checked.
189  * Default implementation of is_trap_insn
190  * Returns true if @insn is a breakpoint instruction.
191  *
192  * This function is needed for the case where an architecture has multiple
193  * trap instructions (like powerpc).
194  */
195 bool __weak is_trap_insn(uprobe_opcode_t *insn)
196 {
197         return is_swbp_insn(insn);
198 }
199
200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
201 {
202         void *kaddr = kmap_atomic(page);
203         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
204         kunmap_atomic(kaddr);
205 }
206
207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208 {
209         void *kaddr = kmap_atomic(page);
210         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211         kunmap_atomic(kaddr);
212 }
213
214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215 {
216         uprobe_opcode_t old_opcode;
217         bool is_swbp;
218
219         /*
220          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221          * We do not check if it is any other 'trap variant' which could
222          * be conditional trap instruction such as the one powerpc supports.
223          *
224          * The logic is that we do not care if the underlying instruction
225          * is a trap variant; uprobes always wins over any other (gdb)
226          * breakpoint.
227          */
228         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
229         is_swbp = is_swbp_insn(&old_opcode);
230
231         if (is_swbp_insn(new_opcode)) {
232                 if (is_swbp)            /* register: already installed? */
233                         return 0;
234         } else {
235                 if (!is_swbp)           /* unregister: was it changed by us? */
236                         return 0;
237         }
238
239         return 1;
240 }
241
242 /*
243  * NOTE:
244  * Expect the breakpoint instruction to be the smallest size instruction for
245  * the architecture. If an arch has variable length instruction and the
246  * breakpoint instruction is not of the smallest length instruction
247  * supported by that architecture then we need to modify is_trap_at_addr and
248  * uprobe_write_opcode accordingly. This would never be a problem for archs
249  * that have fixed length instructions.
250  */
251
252 /*
253  * uprobe_write_opcode - write the opcode at a given virtual address.
254  * @mm: the probed process address space.
255  * @vaddr: the virtual address to store the opcode.
256  * @opcode: opcode to be written at @vaddr.
257  *
258  * Called with mm->mmap_sem held (for read and with a reference to
259  * mm).
260  *
261  * For mm @mm, write the opcode at @vaddr.
262  * Return 0 (success) or a negative errno.
263  */
264 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
265                         uprobe_opcode_t opcode)
266 {
267         struct page *old_page, *new_page;
268         struct vm_area_struct *vma;
269         int ret;
270
271 retry:
272         /* Read the page with vaddr into memory */
273         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
274         if (ret <= 0)
275                 return ret;
276
277         ret = verify_opcode(old_page, vaddr, &opcode);
278         if (ret <= 0)
279                 goto put_old;
280
281         ret = -ENOMEM;
282         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283         if (!new_page)
284                 goto put_old;
285
286         __SetPageUptodate(new_page);
287
288         copy_highpage(new_page, old_page);
289         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
290
291         ret = anon_vma_prepare(vma);
292         if (ret)
293                 goto put_new;
294
295         ret = __replace_page(vma, vaddr, old_page, new_page);
296
297 put_new:
298         page_cache_release(new_page);
299 put_old:
300         put_page(old_page);
301
302         if (unlikely(ret == -EAGAIN))
303                 goto retry;
304         return ret;
305 }
306
307 /**
308  * set_swbp - store breakpoint at a given address.
309  * @auprobe: arch specific probepoint information.
310  * @mm: the probed process address space.
311  * @vaddr: the virtual address to insert the opcode.
312  *
313  * For mm @mm, store the breakpoint instruction at @vaddr.
314  * Return 0 (success) or a negative errno.
315  */
316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317 {
318         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
319 }
320
321 /**
322  * set_orig_insn - Restore the original instruction.
323  * @mm: the probed process address space.
324  * @auprobe: arch specific probepoint information.
325  * @vaddr: the virtual address to insert the opcode.
326  *
327  * For mm @mm, restore the original opcode (opcode) at @vaddr.
328  * Return 0 (success) or a negative errno.
329  */
330 int __weak
331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
332 {
333         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
334 }
335
336 static int match_uprobe(struct uprobe *l, struct uprobe *r)
337 {
338         if (l->inode < r->inode)
339                 return -1;
340
341         if (l->inode > r->inode)
342                 return 1;
343
344         if (l->offset < r->offset)
345                 return -1;
346
347         if (l->offset > r->offset)
348                 return 1;
349
350         return 0;
351 }
352
353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354 {
355         struct uprobe u = { .inode = inode, .offset = offset };
356         struct rb_node *n = uprobes_tree.rb_node;
357         struct uprobe *uprobe;
358         int match;
359
360         while (n) {
361                 uprobe = rb_entry(n, struct uprobe, rb_node);
362                 match = match_uprobe(&u, uprobe);
363                 if (!match) {
364                         atomic_inc(&uprobe->ref);
365                         return uprobe;
366                 }
367
368                 if (match < 0)
369                         n = n->rb_left;
370                 else
371                         n = n->rb_right;
372         }
373         return NULL;
374 }
375
376 /*
377  * Find a uprobe corresponding to a given inode:offset
378  * Acquires uprobes_treelock
379  */
380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381 {
382         struct uprobe *uprobe;
383
384         spin_lock(&uprobes_treelock);
385         uprobe = __find_uprobe(inode, offset);
386         spin_unlock(&uprobes_treelock);
387
388         return uprobe;
389 }
390
391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392 {
393         struct rb_node **p = &uprobes_tree.rb_node;
394         struct rb_node *parent = NULL;
395         struct uprobe *u;
396         int match;
397
398         while (*p) {
399                 parent = *p;
400                 u = rb_entry(parent, struct uprobe, rb_node);
401                 match = match_uprobe(uprobe, u);
402                 if (!match) {
403                         atomic_inc(&u->ref);
404                         return u;
405                 }
406
407                 if (match < 0)
408                         p = &parent->rb_left;
409                 else
410                         p = &parent->rb_right;
411
412         }
413
414         u = NULL;
415         rb_link_node(&uprobe->rb_node, parent, p);
416         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417         /* get access + creation ref */
418         atomic_set(&uprobe->ref, 2);
419
420         return u;
421 }
422
423 /*
424  * Acquire uprobes_treelock.
425  * Matching uprobe already exists in rbtree;
426  *      increment (access refcount) and return the matching uprobe.
427  *
428  * No matching uprobe; insert the uprobe in rb_tree;
429  *      get a double refcount (access + creation) and return NULL.
430  */
431 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432 {
433         struct uprobe *u;
434
435         spin_lock(&uprobes_treelock);
436         u = __insert_uprobe(uprobe);
437         spin_unlock(&uprobes_treelock);
438
439         return u;
440 }
441
442 static void put_uprobe(struct uprobe *uprobe)
443 {
444         if (atomic_dec_and_test(&uprobe->ref))
445                 kfree(uprobe);
446 }
447
448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449 {
450         struct uprobe *uprobe, *cur_uprobe;
451
452         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453         if (!uprobe)
454                 return NULL;
455
456         uprobe->inode = igrab(inode);
457         uprobe->offset = offset;
458         init_rwsem(&uprobe->register_rwsem);
459         init_rwsem(&uprobe->consumer_rwsem);
460         /* For now assume that the instruction need not be single-stepped */
461         __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
462
463         /* add to uprobes_tree, sorted on inode:offset */
464         cur_uprobe = insert_uprobe(uprobe);
465
466         /* a uprobe exists for this inode:offset combination */
467         if (cur_uprobe) {
468                 kfree(uprobe);
469                 uprobe = cur_uprobe;
470                 iput(inode);
471         }
472
473         return uprobe;
474 }
475
476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
477 {
478         down_write(&uprobe->consumer_rwsem);
479         uc->next = uprobe->consumers;
480         uprobe->consumers = uc;
481         up_write(&uprobe->consumer_rwsem);
482 }
483
484 /*
485  * For uprobe @uprobe, delete the consumer @uc.
486  * Return true if the @uc is deleted successfully
487  * or return false.
488  */
489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 {
491         struct uprobe_consumer **con;
492         bool ret = false;
493
494         down_write(&uprobe->consumer_rwsem);
495         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
496                 if (*con == uc) {
497                         *con = uc->next;
498                         ret = true;
499                         break;
500                 }
501         }
502         up_write(&uprobe->consumer_rwsem);
503
504         return ret;
505 }
506
507 static int __copy_insn(struct address_space *mapping, struct file *filp,
508                         void *insn, int nbytes, loff_t offset)
509 {
510         struct page *page;
511
512         if (!mapping->a_ops->readpage)
513                 return -EIO;
514         /*
515          * Ensure that the page that has the original instruction is
516          * populated and in page-cache.
517          */
518         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
519         if (IS_ERR(page))
520                 return PTR_ERR(page);
521
522         copy_from_page(page, offset, insn, nbytes);
523         page_cache_release(page);
524
525         return 0;
526 }
527
528 static int copy_insn(struct uprobe *uprobe, struct file *filp)
529 {
530         struct address_space *mapping = uprobe->inode->i_mapping;
531         loff_t offs = uprobe->offset;
532         void *insn = uprobe->arch.insn;
533         int size = MAX_UINSN_BYTES;
534         int len, err = -EIO;
535
536         /* Copy only available bytes, -EIO if nothing was read */
537         do {
538                 if (offs >= i_size_read(uprobe->inode))
539                         break;
540
541                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
542                 err = __copy_insn(mapping, filp, insn, len, offs);
543                 if (err)
544                         break;
545
546                 insn += len;
547                 offs += len;
548                 size -= len;
549         } while (size);
550
551         return err;
552 }
553
554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
555                                 struct mm_struct *mm, unsigned long vaddr)
556 {
557         int ret = 0;
558
559         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
560                 return ret;
561
562         /* TODO: move this into _register, until then we abuse this sem. */
563         down_write(&uprobe->consumer_rwsem);
564         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
565                 goto out;
566
567         ret = copy_insn(uprobe, file);
568         if (ret)
569                 goto out;
570
571         ret = -ENOTSUPP;
572         if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
573                 goto out;
574
575         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
576         if (ret)
577                 goto out;
578
579         /* uprobe_write_opcode() assumes we don't cross page boundary */
580         BUG_ON((uprobe->offset & ~PAGE_MASK) +
581                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
582
583         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
584         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
585
586  out:
587         up_write(&uprobe->consumer_rwsem);
588
589         return ret;
590 }
591
592 static inline bool consumer_filter(struct uprobe_consumer *uc,
593                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
594 {
595         return !uc->filter || uc->filter(uc, ctx, mm);
596 }
597
598 static bool filter_chain(struct uprobe *uprobe,
599                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
600 {
601         struct uprobe_consumer *uc;
602         bool ret = false;
603
604         down_read(&uprobe->consumer_rwsem);
605         for (uc = uprobe->consumers; uc; uc = uc->next) {
606                 ret = consumer_filter(uc, ctx, mm);
607                 if (ret)
608                         break;
609         }
610         up_read(&uprobe->consumer_rwsem);
611
612         return ret;
613 }
614
615 static int
616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
617                         struct vm_area_struct *vma, unsigned long vaddr)
618 {
619         bool first_uprobe;
620         int ret;
621
622         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
623         if (ret)
624                 return ret;
625
626         /*
627          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
628          * the task can hit this breakpoint right after __replace_page().
629          */
630         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
631         if (first_uprobe)
632                 set_bit(MMF_HAS_UPROBES, &mm->flags);
633
634         ret = set_swbp(&uprobe->arch, mm, vaddr);
635         if (!ret)
636                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
637         else if (first_uprobe)
638                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
639
640         return ret;
641 }
642
643 static int
644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
645 {
646         set_bit(MMF_RECALC_UPROBES, &mm->flags);
647         return set_orig_insn(&uprobe->arch, mm, vaddr);
648 }
649
650 static inline bool uprobe_is_active(struct uprobe *uprobe)
651 {
652         return !RB_EMPTY_NODE(&uprobe->rb_node);
653 }
654 /*
655  * There could be threads that have already hit the breakpoint. They
656  * will recheck the current insn and restart if find_uprobe() fails.
657  * See find_active_uprobe().
658  */
659 static void delete_uprobe(struct uprobe *uprobe)
660 {
661         if (WARN_ON(!uprobe_is_active(uprobe)))
662                 return;
663
664         spin_lock(&uprobes_treelock);
665         rb_erase(&uprobe->rb_node, &uprobes_tree);
666         spin_unlock(&uprobes_treelock);
667         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
668         iput(uprobe->inode);
669         put_uprobe(uprobe);
670 }
671
672 struct map_info {
673         struct map_info *next;
674         struct mm_struct *mm;
675         unsigned long vaddr;
676 };
677
678 static inline struct map_info *free_map_info(struct map_info *info)
679 {
680         struct map_info *next = info->next;
681         kfree(info);
682         return next;
683 }
684
685 static struct map_info *
686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
687 {
688         unsigned long pgoff = offset >> PAGE_SHIFT;
689         struct vm_area_struct *vma;
690         struct map_info *curr = NULL;
691         struct map_info *prev = NULL;
692         struct map_info *info;
693         int more = 0;
694
695  again:
696         mutex_lock(&mapping->i_mmap_mutex);
697         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
698                 if (!valid_vma(vma, is_register))
699                         continue;
700
701                 if (!prev && !more) {
702                         /*
703                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
704                          * reclaim. This is optimistic, no harm done if it fails.
705                          */
706                         prev = kmalloc(sizeof(struct map_info),
707                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
708                         if (prev)
709                                 prev->next = NULL;
710                 }
711                 if (!prev) {
712                         more++;
713                         continue;
714                 }
715
716                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
717                         continue;
718
719                 info = prev;
720                 prev = prev->next;
721                 info->next = curr;
722                 curr = info;
723
724                 info->mm = vma->vm_mm;
725                 info->vaddr = offset_to_vaddr(vma, offset);
726         }
727         mutex_unlock(&mapping->i_mmap_mutex);
728
729         if (!more)
730                 goto out;
731
732         prev = curr;
733         while (curr) {
734                 mmput(curr->mm);
735                 curr = curr->next;
736         }
737
738         do {
739                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
740                 if (!info) {
741                         curr = ERR_PTR(-ENOMEM);
742                         goto out;
743                 }
744                 info->next = prev;
745                 prev = info;
746         } while (--more);
747
748         goto again;
749  out:
750         while (prev)
751                 prev = free_map_info(prev);
752         return curr;
753 }
754
755 static int
756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
757 {
758         bool is_register = !!new;
759         struct map_info *info;
760         int err = 0;
761
762         percpu_down_write(&dup_mmap_sem);
763         info = build_map_info(uprobe->inode->i_mapping,
764                                         uprobe->offset, is_register);
765         if (IS_ERR(info)) {
766                 err = PTR_ERR(info);
767                 goto out;
768         }
769
770         while (info) {
771                 struct mm_struct *mm = info->mm;
772                 struct vm_area_struct *vma;
773
774                 if (err && is_register)
775                         goto free;
776
777                 down_write(&mm->mmap_sem);
778                 vma = find_vma(mm, info->vaddr);
779                 if (!vma || !valid_vma(vma, is_register) ||
780                     file_inode(vma->vm_file) != uprobe->inode)
781                         goto unlock;
782
783                 if (vma->vm_start > info->vaddr ||
784                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
785                         goto unlock;
786
787                 if (is_register) {
788                         /* consult only the "caller", new consumer. */
789                         if (consumer_filter(new,
790                                         UPROBE_FILTER_REGISTER, mm))
791                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
792                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
793                         if (!filter_chain(uprobe,
794                                         UPROBE_FILTER_UNREGISTER, mm))
795                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
796                 }
797
798  unlock:
799                 up_write(&mm->mmap_sem);
800  free:
801                 mmput(mm);
802                 info = free_map_info(info);
803         }
804  out:
805         percpu_up_write(&dup_mmap_sem);
806         return err;
807 }
808
809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
810 {
811         consumer_add(uprobe, uc);
812         return register_for_each_vma(uprobe, uc);
813 }
814
815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
816 {
817         int err;
818
819         if (!consumer_del(uprobe, uc))  /* WARN? */
820                 return;
821
822         err = register_for_each_vma(uprobe, NULL);
823         /* TODO : cant unregister? schedule a worker thread */
824         if (!uprobe->consumers && !err)
825                 delete_uprobe(uprobe);
826 }
827
828 /*
829  * uprobe_register - register a probe
830  * @inode: the file in which the probe has to be placed.
831  * @offset: offset from the start of the file.
832  * @uc: information on howto handle the probe..
833  *
834  * Apart from the access refcount, uprobe_register() takes a creation
835  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
836  * inserted into the rbtree (i.e first consumer for a @inode:@offset
837  * tuple).  Creation refcount stops uprobe_unregister from freeing the
838  * @uprobe even before the register operation is complete. Creation
839  * refcount is released when the last @uc for the @uprobe
840  * unregisters.
841  *
842  * Return errno if it cannot successully install probes
843  * else return 0 (success)
844  */
845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
846 {
847         struct uprobe *uprobe;
848         int ret;
849
850         /* Uprobe must have at least one set consumer */
851         if (!uc->handler && !uc->ret_handler)
852                 return -EINVAL;
853
854         /* Racy, just to catch the obvious mistakes */
855         if (offset > i_size_read(inode))
856                 return -EINVAL;
857
858  retry:
859         uprobe = alloc_uprobe(inode, offset);
860         if (!uprobe)
861                 return -ENOMEM;
862         /*
863          * We can race with uprobe_unregister()->delete_uprobe().
864          * Check uprobe_is_active() and retry if it is false.
865          */
866         down_write(&uprobe->register_rwsem);
867         ret = -EAGAIN;
868         if (likely(uprobe_is_active(uprobe))) {
869                 ret = __uprobe_register(uprobe, uc);
870                 if (ret)
871                         __uprobe_unregister(uprobe, uc);
872         }
873         up_write(&uprobe->register_rwsem);
874         put_uprobe(uprobe);
875
876         if (unlikely(ret == -EAGAIN))
877                 goto retry;
878         return ret;
879 }
880 EXPORT_SYMBOL_GPL(uprobe_register);
881
882 /*
883  * uprobe_apply - unregister a already registered probe.
884  * @inode: the file in which the probe has to be removed.
885  * @offset: offset from the start of the file.
886  * @uc: consumer which wants to add more or remove some breakpoints
887  * @add: add or remove the breakpoints
888  */
889 int uprobe_apply(struct inode *inode, loff_t offset,
890                         struct uprobe_consumer *uc, bool add)
891 {
892         struct uprobe *uprobe;
893         struct uprobe_consumer *con;
894         int ret = -ENOENT;
895
896         uprobe = find_uprobe(inode, offset);
897         if (!uprobe)
898                 return ret;
899
900         down_write(&uprobe->register_rwsem);
901         for (con = uprobe->consumers; con && con != uc ; con = con->next)
902                 ;
903         if (con)
904                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
905         up_write(&uprobe->register_rwsem);
906         put_uprobe(uprobe);
907
908         return ret;
909 }
910
911 /*
912  * uprobe_unregister - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: identify which probe if multiple probes are colocated.
916  */
917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918 {
919         struct uprobe *uprobe;
920
921         uprobe = find_uprobe(inode, offset);
922         if (!uprobe)
923                 return;
924
925         down_write(&uprobe->register_rwsem);
926         __uprobe_unregister(uprobe, uc);
927         up_write(&uprobe->register_rwsem);
928         put_uprobe(uprobe);
929 }
930 EXPORT_SYMBOL_GPL(uprobe_unregister);
931
932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
933 {
934         struct vm_area_struct *vma;
935         int err = 0;
936
937         down_read(&mm->mmap_sem);
938         for (vma = mm->mmap; vma; vma = vma->vm_next) {
939                 unsigned long vaddr;
940                 loff_t offset;
941
942                 if (!valid_vma(vma, false) ||
943                     file_inode(vma->vm_file) != uprobe->inode)
944                         continue;
945
946                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
947                 if (uprobe->offset <  offset ||
948                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
949                         continue;
950
951                 vaddr = offset_to_vaddr(vma, uprobe->offset);
952                 err |= remove_breakpoint(uprobe, mm, vaddr);
953         }
954         up_read(&mm->mmap_sem);
955
956         return err;
957 }
958
959 static struct rb_node *
960 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
961 {
962         struct rb_node *n = uprobes_tree.rb_node;
963
964         while (n) {
965                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
966
967                 if (inode < u->inode) {
968                         n = n->rb_left;
969                 } else if (inode > u->inode) {
970                         n = n->rb_right;
971                 } else {
972                         if (max < u->offset)
973                                 n = n->rb_left;
974                         else if (min > u->offset)
975                                 n = n->rb_right;
976                         else
977                                 break;
978                 }
979         }
980
981         return n;
982 }
983
984 /*
985  * For a given range in vma, build a list of probes that need to be inserted.
986  */
987 static void build_probe_list(struct inode *inode,
988                                 struct vm_area_struct *vma,
989                                 unsigned long start, unsigned long end,
990                                 struct list_head *head)
991 {
992         loff_t min, max;
993         struct rb_node *n, *t;
994         struct uprobe *u;
995
996         INIT_LIST_HEAD(head);
997         min = vaddr_to_offset(vma, start);
998         max = min + (end - start) - 1;
999
1000         spin_lock(&uprobes_treelock);
1001         n = find_node_in_range(inode, min, max);
1002         if (n) {
1003                 for (t = n; t; t = rb_prev(t)) {
1004                         u = rb_entry(t, struct uprobe, rb_node);
1005                         if (u->inode != inode || u->offset < min)
1006                                 break;
1007                         list_add(&u->pending_list, head);
1008                         atomic_inc(&u->ref);
1009                 }
1010                 for (t = n; (t = rb_next(t)); ) {
1011                         u = rb_entry(t, struct uprobe, rb_node);
1012                         if (u->inode != inode || u->offset > max)
1013                                 break;
1014                         list_add(&u->pending_list, head);
1015                         atomic_inc(&u->ref);
1016                 }
1017         }
1018         spin_unlock(&uprobes_treelock);
1019 }
1020
1021 /*
1022  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1023  *
1024  * Currently we ignore all errors and always return 0, the callers
1025  * can't handle the failure anyway.
1026  */
1027 int uprobe_mmap(struct vm_area_struct *vma)
1028 {
1029         struct list_head tmp_list;
1030         struct uprobe *uprobe, *u;
1031         struct inode *inode;
1032
1033         if (no_uprobe_events() || !valid_vma(vma, true))
1034                 return 0;
1035
1036         inode = file_inode(vma->vm_file);
1037         if (!inode)
1038                 return 0;
1039
1040         mutex_lock(uprobes_mmap_hash(inode));
1041         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1042         /*
1043          * We can race with uprobe_unregister(), this uprobe can be already
1044          * removed. But in this case filter_chain() must return false, all
1045          * consumers have gone away.
1046          */
1047         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1048                 if (!fatal_signal_pending(current) &&
1049                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1050                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1051                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1052                 }
1053                 put_uprobe(uprobe);
1054         }
1055         mutex_unlock(uprobes_mmap_hash(inode));
1056
1057         return 0;
1058 }
1059
1060 static bool
1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1062 {
1063         loff_t min, max;
1064         struct inode *inode;
1065         struct rb_node *n;
1066
1067         inode = file_inode(vma->vm_file);
1068
1069         min = vaddr_to_offset(vma, start);
1070         max = min + (end - start) - 1;
1071
1072         spin_lock(&uprobes_treelock);
1073         n = find_node_in_range(inode, min, max);
1074         spin_unlock(&uprobes_treelock);
1075
1076         return !!n;
1077 }
1078
1079 /*
1080  * Called in context of a munmap of a vma.
1081  */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084         if (no_uprobe_events() || !valid_vma(vma, false))
1085                 return;
1086
1087         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1088                 return;
1089
1090         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1091              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1092                 return;
1093
1094         if (vma_has_uprobes(vma, start, end))
1095                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1096 }
1097
1098 /* Slot allocation for XOL */
1099 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1100 {
1101         int ret = -EALREADY;
1102
1103         down_write(&mm->mmap_sem);
1104         if (mm->uprobes_state.xol_area)
1105                 goto fail;
1106
1107         if (!area->vaddr) {
1108                 /* Try to map as high as possible, this is only a hint. */
1109                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1110                                                 PAGE_SIZE, 0, 0);
1111                 if (area->vaddr & ~PAGE_MASK) {
1112                         ret = area->vaddr;
1113                         goto fail;
1114                 }
1115         }
1116
1117         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1118                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1119         if (ret)
1120                 goto fail;
1121
1122         smp_wmb();      /* pairs with get_xol_area() */
1123         mm->uprobes_state.xol_area = area;
1124  fail:
1125         up_write(&mm->mmap_sem);
1126
1127         return ret;
1128 }
1129
1130 static struct xol_area *__create_xol_area(unsigned long vaddr)
1131 {
1132         struct mm_struct *mm = current->mm;
1133         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1134         struct xol_area *area;
1135
1136         area = kmalloc(sizeof(*area), GFP_KERNEL);
1137         if (unlikely(!area))
1138                 goto out;
1139
1140         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1141         if (!area->bitmap)
1142                 goto free_area;
1143
1144         area->page = alloc_page(GFP_HIGHUSER);
1145         if (!area->page)
1146                 goto free_bitmap;
1147
1148         area->vaddr = vaddr;
1149         init_waitqueue_head(&area->wq);
1150         /* Reserve the 1st slot for get_trampoline_vaddr() */
1151         set_bit(0, area->bitmap);
1152         atomic_set(&area->slot_count, 1);
1153         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1154
1155         if (!xol_add_vma(mm, area))
1156                 return area;
1157
1158         __free_page(area->page);
1159  free_bitmap:
1160         kfree(area->bitmap);
1161  free_area:
1162         kfree(area);
1163  out:
1164         return NULL;
1165 }
1166
1167 /*
1168  * get_xol_area - Allocate process's xol_area if necessary.
1169  * This area will be used for storing instructions for execution out of line.
1170  *
1171  * Returns the allocated area or NULL.
1172  */
1173 static struct xol_area *get_xol_area(void)
1174 {
1175         struct mm_struct *mm = current->mm;
1176         struct xol_area *area;
1177
1178         if (!mm->uprobes_state.xol_area)
1179                 __create_xol_area(0);
1180
1181         area = mm->uprobes_state.xol_area;
1182         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1183         return area;
1184 }
1185
1186 /*
1187  * uprobe_clear_state - Free the area allocated for slots.
1188  */
1189 void uprobe_clear_state(struct mm_struct *mm)
1190 {
1191         struct xol_area *area = mm->uprobes_state.xol_area;
1192
1193         if (!area)
1194                 return;
1195
1196         put_page(area->page);
1197         kfree(area->bitmap);
1198         kfree(area);
1199 }
1200
1201 void uprobe_start_dup_mmap(void)
1202 {
1203         percpu_down_read(&dup_mmap_sem);
1204 }
1205
1206 void uprobe_end_dup_mmap(void)
1207 {
1208         percpu_up_read(&dup_mmap_sem);
1209 }
1210
1211 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1212 {
1213         newmm->uprobes_state.xol_area = NULL;
1214
1215         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1216                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1217                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1218                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1219         }
1220 }
1221
1222 /*
1223  *  - search for a free slot.
1224  */
1225 static unsigned long xol_take_insn_slot(struct xol_area *area)
1226 {
1227         unsigned long slot_addr;
1228         int slot_nr;
1229
1230         do {
1231                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1232                 if (slot_nr < UINSNS_PER_PAGE) {
1233                         if (!test_and_set_bit(slot_nr, area->bitmap))
1234                                 break;
1235
1236                         slot_nr = UINSNS_PER_PAGE;
1237                         continue;
1238                 }
1239                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1240         } while (slot_nr >= UINSNS_PER_PAGE);
1241
1242         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1243         atomic_inc(&area->slot_count);
1244
1245         return slot_addr;
1246 }
1247
1248 /*
1249  * xol_get_insn_slot - allocate a slot for xol.
1250  * Returns the allocated slot address or 0.
1251  */
1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1253 {
1254         struct xol_area *area;
1255         unsigned long xol_vaddr;
1256
1257         area = get_xol_area();
1258         if (!area)
1259                 return 0;
1260
1261         xol_vaddr = xol_take_insn_slot(area);
1262         if (unlikely(!xol_vaddr))
1263                 return 0;
1264
1265         /* Initialize the slot */
1266         copy_to_page(area->page, xol_vaddr,
1267                         uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1268         /*
1269          * We probably need flush_icache_user_range() but it needs vma.
1270          * This should work on supported architectures too.
1271          */
1272         flush_dcache_page(area->page);
1273
1274         return xol_vaddr;
1275 }
1276
1277 /*
1278  * xol_free_insn_slot - If slot was earlier allocated by
1279  * @xol_get_insn_slot(), make the slot available for
1280  * subsequent requests.
1281  */
1282 static void xol_free_insn_slot(struct task_struct *tsk)
1283 {
1284         struct xol_area *area;
1285         unsigned long vma_end;
1286         unsigned long slot_addr;
1287
1288         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1289                 return;
1290
1291         slot_addr = tsk->utask->xol_vaddr;
1292         if (unlikely(!slot_addr))
1293                 return;
1294
1295         area = tsk->mm->uprobes_state.xol_area;
1296         vma_end = area->vaddr + PAGE_SIZE;
1297         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1298                 unsigned long offset;
1299                 int slot_nr;
1300
1301                 offset = slot_addr - area->vaddr;
1302                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1303                 if (slot_nr >= UINSNS_PER_PAGE)
1304                         return;
1305
1306                 clear_bit(slot_nr, area->bitmap);
1307                 atomic_dec(&area->slot_count);
1308                 if (waitqueue_active(&area->wq))
1309                         wake_up(&area->wq);
1310
1311                 tsk->utask->xol_vaddr = 0;
1312         }
1313 }
1314
1315 /**
1316  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1317  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1318  * instruction.
1319  * Return the address of the breakpoint instruction.
1320  */
1321 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1322 {
1323         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1324 }
1325
1326 /*
1327  * Called with no locks held.
1328  * Called in context of a exiting or a exec-ing thread.
1329  */
1330 void uprobe_free_utask(struct task_struct *t)
1331 {
1332         struct uprobe_task *utask = t->utask;
1333         struct return_instance *ri, *tmp;
1334
1335         if (!utask)
1336                 return;
1337
1338         if (utask->active_uprobe)
1339                 put_uprobe(utask->active_uprobe);
1340
1341         ri = utask->return_instances;
1342         while (ri) {
1343                 tmp = ri;
1344                 ri = ri->next;
1345
1346                 put_uprobe(tmp->uprobe);
1347                 kfree(tmp);
1348         }
1349
1350         xol_free_insn_slot(t);
1351         kfree(utask);
1352         t->utask = NULL;
1353 }
1354
1355 /*
1356  * Allocate a uprobe_task object for the task if if necessary.
1357  * Called when the thread hits a breakpoint.
1358  *
1359  * Returns:
1360  * - pointer to new uprobe_task on success
1361  * - NULL otherwise
1362  */
1363 static struct uprobe_task *get_utask(void)
1364 {
1365         if (!current->utask)
1366                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1367         return current->utask;
1368 }
1369
1370 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1371 {
1372         struct uprobe_task *n_utask;
1373         struct return_instance **p, *o, *n;
1374
1375         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1376         if (!n_utask)
1377                 return -ENOMEM;
1378         t->utask = n_utask;
1379
1380         p = &n_utask->return_instances;
1381         for (o = o_utask->return_instances; o; o = o->next) {
1382                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1383                 if (!n)
1384                         return -ENOMEM;
1385
1386                 *n = *o;
1387                 atomic_inc(&n->uprobe->ref);
1388                 n->next = NULL;
1389
1390                 *p = n;
1391                 p = &n->next;
1392                 n_utask->depth++;
1393         }
1394
1395         return 0;
1396 }
1397
1398 static void uprobe_warn(struct task_struct *t, const char *msg)
1399 {
1400         pr_warn("uprobe: %s:%d failed to %s\n",
1401                         current->comm, current->pid, msg);
1402 }
1403
1404 static void dup_xol_work(struct callback_head *work)
1405 {
1406         kfree(work);
1407
1408         if (current->flags & PF_EXITING)
1409                 return;
1410
1411         if (!__create_xol_area(current->utask->vaddr))
1412                 uprobe_warn(current, "dup xol area");
1413 }
1414
1415 /*
1416  * Called in context of a new clone/fork from copy_process.
1417  */
1418 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1419 {
1420         struct uprobe_task *utask = current->utask;
1421         struct mm_struct *mm = current->mm;
1422         struct callback_head *work;
1423         struct xol_area *area;
1424
1425         t->utask = NULL;
1426
1427         if (!utask || !utask->return_instances)
1428                 return;
1429
1430         if (mm == t->mm && !(flags & CLONE_VFORK))
1431                 return;
1432
1433         if (dup_utask(t, utask))
1434                 return uprobe_warn(t, "dup ret instances");
1435
1436         /* The task can fork() after dup_xol_work() fails */
1437         area = mm->uprobes_state.xol_area;
1438         if (!area)
1439                 return uprobe_warn(t, "dup xol area");
1440
1441         if (mm == t->mm)
1442                 return;
1443
1444         /* TODO: move it into the union in uprobe_task */
1445         work = kmalloc(sizeof(*work), GFP_KERNEL);
1446         if (!work)
1447                 return uprobe_warn(t, "dup xol area");
1448
1449         t->utask->vaddr = area->vaddr;
1450         init_task_work(work, dup_xol_work);
1451         task_work_add(t, work, true);
1452 }
1453
1454 /*
1455  * Current area->vaddr notion assume the trampoline address is always
1456  * equal area->vaddr.
1457  *
1458  * Returns -1 in case the xol_area is not allocated.
1459  */
1460 static unsigned long get_trampoline_vaddr(void)
1461 {
1462         struct xol_area *area;
1463         unsigned long trampoline_vaddr = -1;
1464
1465         area = current->mm->uprobes_state.xol_area;
1466         smp_read_barrier_depends();
1467         if (area)
1468                 trampoline_vaddr = area->vaddr;
1469
1470         return trampoline_vaddr;
1471 }
1472
1473 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475         struct return_instance *ri;
1476         struct uprobe_task *utask;
1477         unsigned long orig_ret_vaddr, trampoline_vaddr;
1478         bool chained = false;
1479
1480         if (!get_xol_area())
1481                 return;
1482
1483         utask = get_utask();
1484         if (!utask)
1485                 return;
1486
1487         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1488                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1489                                 " nestedness limit pid/tgid=%d/%d\n",
1490                                 current->pid, current->tgid);
1491                 return;
1492         }
1493
1494         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1495         if (!ri)
1496                 goto fail;
1497
1498         trampoline_vaddr = get_trampoline_vaddr();
1499         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1500         if (orig_ret_vaddr == -1)
1501                 goto fail;
1502
1503         /*
1504          * We don't want to keep trampoline address in stack, rather keep the
1505          * original return address of first caller thru all the consequent
1506          * instances. This also makes breakpoint unwrapping easier.
1507          */
1508         if (orig_ret_vaddr == trampoline_vaddr) {
1509                 if (!utask->return_instances) {
1510                         /*
1511                          * This situation is not possible. Likely we have an
1512                          * attack from user-space.
1513                          */
1514                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1515                                                 current->pid, current->tgid);
1516                         goto fail;
1517                 }
1518
1519                 chained = true;
1520                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1521         }
1522
1523         atomic_inc(&uprobe->ref);
1524         ri->uprobe = uprobe;
1525         ri->func = instruction_pointer(regs);
1526         ri->orig_ret_vaddr = orig_ret_vaddr;
1527         ri->chained = chained;
1528
1529         utask->depth++;
1530
1531         /* add instance to the stack */
1532         ri->next = utask->return_instances;
1533         utask->return_instances = ri;
1534
1535         return;
1536
1537  fail:
1538         kfree(ri);
1539 }
1540
1541 /* Prepare to single-step probed instruction out of line. */
1542 static int
1543 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1544 {
1545         struct uprobe_task *utask;
1546         unsigned long xol_vaddr;
1547         int err;
1548
1549         utask = get_utask();
1550         if (!utask)
1551                 return -ENOMEM;
1552
1553         xol_vaddr = xol_get_insn_slot(uprobe);
1554         if (!xol_vaddr)
1555                 return -ENOMEM;
1556
1557         utask->xol_vaddr = xol_vaddr;
1558         utask->vaddr = bp_vaddr;
1559
1560         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1561         if (unlikely(err)) {
1562                 xol_free_insn_slot(current);
1563                 return err;
1564         }
1565
1566         utask->active_uprobe = uprobe;
1567         utask->state = UTASK_SSTEP;
1568         return 0;
1569 }
1570
1571 /*
1572  * If we are singlestepping, then ensure this thread is not connected to
1573  * non-fatal signals until completion of singlestep.  When xol insn itself
1574  * triggers the signal,  restart the original insn even if the task is
1575  * already SIGKILL'ed (since coredump should report the correct ip).  This
1576  * is even more important if the task has a handler for SIGSEGV/etc, The
1577  * _same_ instruction should be repeated again after return from the signal
1578  * handler, and SSTEP can never finish in this case.
1579  */
1580 bool uprobe_deny_signal(void)
1581 {
1582         struct task_struct *t = current;
1583         struct uprobe_task *utask = t->utask;
1584
1585         if (likely(!utask || !utask->active_uprobe))
1586                 return false;
1587
1588         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1589
1590         if (signal_pending(t)) {
1591                 spin_lock_irq(&t->sighand->siglock);
1592                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1593                 spin_unlock_irq(&t->sighand->siglock);
1594
1595                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1596                         utask->state = UTASK_SSTEP_TRAPPED;
1597                         set_tsk_thread_flag(t, TIF_UPROBE);
1598                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1599                 }
1600         }
1601
1602         return true;
1603 }
1604
1605 /*
1606  * Avoid singlestepping the original instruction if the original instruction
1607  * is a NOP or can be emulated.
1608  */
1609 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1610 {
1611         if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1612                 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1613                         return true;
1614                 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1615         }
1616         return false;
1617 }
1618
1619 static void mmf_recalc_uprobes(struct mm_struct *mm)
1620 {
1621         struct vm_area_struct *vma;
1622
1623         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1624                 if (!valid_vma(vma, false))
1625                         continue;
1626                 /*
1627                  * This is not strictly accurate, we can race with
1628                  * uprobe_unregister() and see the already removed
1629                  * uprobe if delete_uprobe() was not yet called.
1630                  * Or this uprobe can be filtered out.
1631                  */
1632                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1633                         return;
1634         }
1635
1636         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1637 }
1638
1639 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1640 {
1641         struct page *page;
1642         uprobe_opcode_t opcode;
1643         int result;
1644
1645         pagefault_disable();
1646         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1647                                                         sizeof(opcode));
1648         pagefault_enable();
1649
1650         if (likely(result == 0))
1651                 goto out;
1652
1653         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1654         if (result < 0)
1655                 return result;
1656
1657         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1658         put_page(page);
1659  out:
1660         /* This needs to return true for any variant of the trap insn */
1661         return is_trap_insn(&opcode);
1662 }
1663
1664 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1665 {
1666         struct mm_struct *mm = current->mm;
1667         struct uprobe *uprobe = NULL;
1668         struct vm_area_struct *vma;
1669
1670         down_read(&mm->mmap_sem);
1671         vma = find_vma(mm, bp_vaddr);
1672         if (vma && vma->vm_start <= bp_vaddr) {
1673                 if (valid_vma(vma, false)) {
1674                         struct inode *inode = file_inode(vma->vm_file);
1675                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1676
1677                         uprobe = find_uprobe(inode, offset);
1678                 }
1679
1680                 if (!uprobe)
1681                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1682         } else {
1683                 *is_swbp = -EFAULT;
1684         }
1685
1686         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1687                 mmf_recalc_uprobes(mm);
1688         up_read(&mm->mmap_sem);
1689
1690         return uprobe;
1691 }
1692
1693 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1694 {
1695         struct uprobe_consumer *uc;
1696         int remove = UPROBE_HANDLER_REMOVE;
1697         bool need_prep = false; /* prepare return uprobe, when needed */
1698
1699         down_read(&uprobe->register_rwsem);
1700         for (uc = uprobe->consumers; uc; uc = uc->next) {
1701                 int rc = 0;
1702
1703                 if (uc->handler) {
1704                         rc = uc->handler(uc, regs);
1705                         WARN(rc & ~UPROBE_HANDLER_MASK,
1706                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1707                 }
1708
1709                 if (uc->ret_handler)
1710                         need_prep = true;
1711
1712                 remove &= rc;
1713         }
1714
1715         if (need_prep && !remove)
1716                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1717
1718         if (remove && uprobe->consumers) {
1719                 WARN_ON(!uprobe_is_active(uprobe));
1720                 unapply_uprobe(uprobe, current->mm);
1721         }
1722         up_read(&uprobe->register_rwsem);
1723 }
1724
1725 static void
1726 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1727 {
1728         struct uprobe *uprobe = ri->uprobe;
1729         struct uprobe_consumer *uc;
1730
1731         down_read(&uprobe->register_rwsem);
1732         for (uc = uprobe->consumers; uc; uc = uc->next) {
1733                 if (uc->ret_handler)
1734                         uc->ret_handler(uc, ri->func, regs);
1735         }
1736         up_read(&uprobe->register_rwsem);
1737 }
1738
1739 static bool handle_trampoline(struct pt_regs *regs)
1740 {
1741         struct uprobe_task *utask;
1742         struct return_instance *ri, *tmp;
1743         bool chained;
1744
1745         utask = current->utask;
1746         if (!utask)
1747                 return false;
1748
1749         ri = utask->return_instances;
1750         if (!ri)
1751                 return false;
1752
1753         /*
1754          * TODO: we should throw out return_instance's invalidated by
1755          * longjmp(), currently we assume that the probed function always
1756          * returns.
1757          */
1758         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1759
1760         for (;;) {
1761                 handle_uretprobe_chain(ri, regs);
1762
1763                 chained = ri->chained;
1764                 put_uprobe(ri->uprobe);
1765
1766                 tmp = ri;
1767                 ri = ri->next;
1768                 kfree(tmp);
1769                 utask->depth--;
1770
1771                 if (!chained)
1772                         break;
1773                 BUG_ON(!ri);
1774         }
1775
1776         utask->return_instances = ri;
1777
1778         return true;
1779 }
1780
1781 /*
1782  * Run handler and ask thread to singlestep.
1783  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1784  */
1785 static void handle_swbp(struct pt_regs *regs)
1786 {
1787         struct uprobe *uprobe;
1788         unsigned long bp_vaddr;
1789         int uninitialized_var(is_swbp);
1790
1791         bp_vaddr = uprobe_get_swbp_addr(regs);
1792         if (bp_vaddr == get_trampoline_vaddr()) {
1793                 if (handle_trampoline(regs))
1794                         return;
1795
1796                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1797                                                 current->pid, current->tgid);
1798         }
1799
1800         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1801         if (!uprobe) {
1802                 if (is_swbp > 0) {
1803                         /* No matching uprobe; signal SIGTRAP. */
1804                         send_sig(SIGTRAP, current, 0);
1805                 } else {
1806                         /*
1807                          * Either we raced with uprobe_unregister() or we can't
1808                          * access this memory. The latter is only possible if
1809                          * another thread plays with our ->mm. In both cases
1810                          * we can simply restart. If this vma was unmapped we
1811                          * can pretend this insn was not executed yet and get
1812                          * the (correct) SIGSEGV after restart.
1813                          */
1814                         instruction_pointer_set(regs, bp_vaddr);
1815                 }
1816                 return;
1817         }
1818
1819         /* change it in advance for ->handler() and restart */
1820         instruction_pointer_set(regs, bp_vaddr);
1821
1822         /*
1823          * TODO: move copy_insn/etc into _register and remove this hack.
1824          * After we hit the bp, _unregister + _register can install the
1825          * new and not-yet-analyzed uprobe at the same address, restart.
1826          */
1827         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1828         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1829                 goto out;
1830
1831         handler_chain(uprobe, regs);
1832         if (can_skip_sstep(uprobe, regs))
1833                 goto out;
1834
1835         if (!pre_ssout(uprobe, regs, bp_vaddr))
1836                 return;
1837
1838         /* can_skip_sstep() succeeded, or restart if can't singlestep */
1839 out:
1840         put_uprobe(uprobe);
1841 }
1842
1843 /*
1844  * Perform required fix-ups and disable singlestep.
1845  * Allow pending signals to take effect.
1846  */
1847 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1848 {
1849         struct uprobe *uprobe;
1850
1851         uprobe = utask->active_uprobe;
1852         if (utask->state == UTASK_SSTEP_ACK)
1853                 arch_uprobe_post_xol(&uprobe->arch, regs);
1854         else if (utask->state == UTASK_SSTEP_TRAPPED)
1855                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1856         else
1857                 WARN_ON_ONCE(1);
1858
1859         put_uprobe(uprobe);
1860         utask->active_uprobe = NULL;
1861         utask->state = UTASK_RUNNING;
1862         xol_free_insn_slot(current);
1863
1864         spin_lock_irq(&current->sighand->siglock);
1865         recalc_sigpending(); /* see uprobe_deny_signal() */
1866         spin_unlock_irq(&current->sighand->siglock);
1867 }
1868
1869 /*
1870  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1871  * allows the thread to return from interrupt. After that handle_swbp()
1872  * sets utask->active_uprobe.
1873  *
1874  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1875  * and allows the thread to return from interrupt.
1876  *
1877  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1878  * uprobe_notify_resume().
1879  */
1880 void uprobe_notify_resume(struct pt_regs *regs)
1881 {
1882         struct uprobe_task *utask;
1883
1884         clear_thread_flag(TIF_UPROBE);
1885
1886         utask = current->utask;
1887         if (utask && utask->active_uprobe)
1888                 handle_singlestep(utask, regs);
1889         else
1890                 handle_swbp(regs);
1891 }
1892
1893 /*
1894  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1895  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1896  */
1897 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1898 {
1899         if (!current->mm)
1900                 return 0;
1901
1902         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1903             (!current->utask || !current->utask->return_instances))
1904                 return 0;
1905
1906         set_thread_flag(TIF_UPROBE);
1907         return 1;
1908 }
1909
1910 /*
1911  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1912  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1913  */
1914 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1915 {
1916         struct uprobe_task *utask = current->utask;
1917
1918         if (!current->mm || !utask || !utask->active_uprobe)
1919                 /* task is currently not uprobed */
1920                 return 0;
1921
1922         utask->state = UTASK_SSTEP_ACK;
1923         set_thread_flag(TIF_UPROBE);
1924         return 1;
1925 }
1926
1927 static struct notifier_block uprobe_exception_nb = {
1928         .notifier_call          = arch_uprobe_exception_notify,
1929         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1930 };
1931
1932 static int __init init_uprobes(void)
1933 {
1934         int i;
1935
1936         for (i = 0; i < UPROBES_HASH_SZ; i++)
1937                 mutex_init(&uprobes_mmap_mutex[i]);
1938
1939         if (percpu_init_rwsem(&dup_mmap_sem))
1940                 return -ENOMEM;
1941
1942         return register_die_notifier(&uprobe_exception_nb);
1943 }
1944 __initcall(init_uprobes);