uprobes/core: Make background page replacement logic account for rss_stat counters
[cascardo/linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct srcu_struct uprobes_srcu;
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /* serialize (un)register */
49 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
50
51 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52
53 /* serialize uprobe->pending_list */
54 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
55 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
56
57 /*
58  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
59  * events active at this time.  Probably a fine grained per inode count is
60  * better?
61  */
62 static atomic_t uprobe_events = ATOMIC_INIT(0);
63
64 /*
65  * Maintain a temporary per vma info that can be used to search if a vma
66  * has already been handled. This structure is introduced since extending
67  * vm_area_struct wasnt recommended.
68  */
69 struct vma_info {
70         struct list_head        probe_list;
71         struct mm_struct        *mm;
72         loff_t                  vaddr;
73 };
74
75 struct uprobe {
76         struct rb_node          rb_node;        /* node in the rb tree */
77         atomic_t                ref;
78         struct rw_semaphore     consumer_rwsem;
79         struct list_head        pending_list;
80         struct uprobe_consumer  *consumers;
81         struct inode            *inode;         /* Also hold a ref to inode */
82         loff_t                  offset;
83         int                     flags;
84         struct arch_uprobe      arch;
85 };
86
87 /*
88  * valid_vma: Verify if the specified vma is an executable vma
89  * Relax restrictions while unregistering: vm_flags might have
90  * changed after breakpoint was inserted.
91  *      - is_register: indicates if we are in register context.
92  *      - Return 1 if the specified virtual address is in an
93  *        executable vma.
94  */
95 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
96 {
97         if (!vma->vm_file)
98                 return false;
99
100         if (!is_register)
101                 return true;
102
103         if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
104                 return true;
105
106         return false;
107 }
108
109 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110 {
111         loff_t vaddr;
112
113         vaddr = vma->vm_start + offset;
114         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
115
116         return vaddr;
117 }
118
119 /**
120  * __replace_page - replace page in vma by new page.
121  * based on replace_page in mm/ksm.c
122  *
123  * @vma:      vma that holds the pte pointing to page
124  * @page:     the cowed page we are replacing by kpage
125  * @kpage:    the modified page we replace page by
126  *
127  * Returns 0 on success, -EFAULT on failure.
128  */
129 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
130 {
131         struct mm_struct *mm = vma->vm_mm;
132         pgd_t *pgd;
133         pud_t *pud;
134         pmd_t *pmd;
135         pte_t *ptep;
136         spinlock_t *ptl;
137         unsigned long addr;
138         int err = -EFAULT;
139
140         addr = page_address_in_vma(page, vma);
141         if (addr == -EFAULT)
142                 goto out;
143
144         pgd = pgd_offset(mm, addr);
145         if (!pgd_present(*pgd))
146                 goto out;
147
148         pud = pud_offset(pgd, addr);
149         if (!pud_present(*pud))
150                 goto out;
151
152         pmd = pmd_offset(pud, addr);
153         if (!pmd_present(*pmd))
154                 goto out;
155
156         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157         if (!ptep)
158                 goto out;
159
160         get_page(kpage);
161         page_add_new_anon_rmap(kpage, vma, addr);
162
163         if (!PageAnon(page)) {
164                 dec_mm_counter(mm, MM_FILEPAGES);
165                 inc_mm_counter(mm, MM_ANONPAGES);
166         }
167
168         flush_cache_page(vma, addr, pte_pfn(*ptep));
169         ptep_clear_flush(vma, addr, ptep);
170         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172         page_remove_rmap(page);
173         if (!page_mapped(page))
174                 try_to_free_swap(page);
175         put_page(page);
176         pte_unmap_unlock(ptep, ptl);
177         err = 0;
178
179 out:
180         return err;
181 }
182
183 /**
184  * is_swbp_insn - check if instruction is breakpoint instruction.
185  * @insn: instruction to be checked.
186  * Default implementation of is_swbp_insn
187  * Returns true if @insn is a breakpoint instruction.
188  */
189 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
190 {
191         return *insn == UPROBE_SWBP_INSN;
192 }
193
194 /*
195  * NOTE:
196  * Expect the breakpoint instruction to be the smallest size instruction for
197  * the architecture. If an arch has variable length instruction and the
198  * breakpoint instruction is not of the smallest length instruction
199  * supported by that architecture then we need to modify read_opcode /
200  * write_opcode accordingly. This would never be a problem for archs that
201  * have fixed length instructions.
202  */
203
204 /*
205  * write_opcode - write the opcode at a given virtual address.
206  * @auprobe: arch breakpointing information.
207  * @mm: the probed process address space.
208  * @vaddr: the virtual address to store the opcode.
209  * @opcode: opcode to be written at @vaddr.
210  *
211  * Called with mm->mmap_sem held (for read and with a reference to
212  * mm).
213  *
214  * For mm @mm, write the opcode at @vaddr.
215  * Return 0 (success) or a negative errno.
216  */
217 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
218                         unsigned long vaddr, uprobe_opcode_t opcode)
219 {
220         struct page *old_page, *new_page;
221         struct address_space *mapping;
222         void *vaddr_old, *vaddr_new;
223         struct vm_area_struct *vma;
224         struct uprobe *uprobe;
225         loff_t addr;
226         int ret;
227
228         /* Read the page with vaddr into memory */
229         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230         if (ret <= 0)
231                 return ret;
232
233         ret = -EINVAL;
234
235         /*
236          * We are interested in text pages only. Our pages of interest
237          * should be mapped for read and execute only. We desist from
238          * adding probes in write mapped pages since the breakpoints
239          * might end up in the file copy.
240          */
241         if (!valid_vma(vma, is_swbp_insn(&opcode)))
242                 goto put_out;
243
244         uprobe = container_of(auprobe, struct uprobe, arch);
245         mapping = uprobe->inode->i_mapping;
246         if (mapping != vma->vm_file->f_mapping)
247                 goto put_out;
248
249         addr = vma_address(vma, uprobe->offset);
250         if (vaddr != (unsigned long)addr)
251                 goto put_out;
252
253         ret = -ENOMEM;
254         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255         if (!new_page)
256                 goto put_out;
257
258         __SetPageUptodate(new_page);
259
260         /*
261          * lock page will serialize against do_wp_page()'s
262          * PageAnon() handling
263          */
264         lock_page(old_page);
265         /* copy the page now that we've got it stable */
266         vaddr_old = kmap_atomic(old_page);
267         vaddr_new = kmap_atomic(new_page);
268
269         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
270
271         /* poke the new insn in, ASSUMES we don't cross page boundary */
272         vaddr &= ~PAGE_MASK;
273         BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274         memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
275
276         kunmap_atomic(vaddr_new);
277         kunmap_atomic(vaddr_old);
278
279         ret = anon_vma_prepare(vma);
280         if (ret)
281                 goto unlock_out;
282
283         lock_page(new_page);
284         ret = __replace_page(vma, old_page, new_page);
285         unlock_page(new_page);
286
287 unlock_out:
288         unlock_page(old_page);
289         page_cache_release(new_page);
290
291 put_out:
292         put_page(old_page);
293
294         return ret;
295 }
296
297 /**
298  * read_opcode - read the opcode at a given virtual address.
299  * @mm: the probed process address space.
300  * @vaddr: the virtual address to read the opcode.
301  * @opcode: location to store the read opcode.
302  *
303  * Called with mm->mmap_sem held (for read and with a reference to
304  * mm.
305  *
306  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307  * Return 0 (success) or a negative errno.
308  */
309 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
310 {
311         struct page *page;
312         void *vaddr_new;
313         int ret;
314
315         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
316         if (ret <= 0)
317                 return ret;
318
319         lock_page(page);
320         vaddr_new = kmap_atomic(page);
321         vaddr &= ~PAGE_MASK;
322         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
323         kunmap_atomic(vaddr_new);
324         unlock_page(page);
325
326         put_page(page);
327
328         return 0;
329 }
330
331 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
332 {
333         uprobe_opcode_t opcode;
334         int result;
335
336         result = read_opcode(mm, vaddr, &opcode);
337         if (result)
338                 return result;
339
340         if (is_swbp_insn(&opcode))
341                 return 1;
342
343         return 0;
344 }
345
346 /**
347  * set_swbp - store breakpoint at a given address.
348  * @auprobe: arch specific probepoint information.
349  * @mm: the probed process address space.
350  * @vaddr: the virtual address to insert the opcode.
351  *
352  * For mm @mm, store the breakpoint instruction at @vaddr.
353  * Return 0 (success) or a negative errno.
354  */
355 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
356 {
357         int result;
358
359         result = is_swbp_at_addr(mm, vaddr);
360         if (result == 1)
361                 return -EEXIST;
362
363         if (result)
364                 return result;
365
366         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
367 }
368
369 /**
370  * set_orig_insn - Restore the original instruction.
371  * @mm: the probed process address space.
372  * @auprobe: arch specific probepoint information.
373  * @vaddr: the virtual address to insert the opcode.
374  * @verify: if true, verify existance of breakpoint instruction.
375  *
376  * For mm @mm, restore the original opcode (opcode) at @vaddr.
377  * Return 0 (success) or a negative errno.
378  */
379 int __weak
380 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
381 {
382         if (verify) {
383                 int result;
384
385                 result = is_swbp_at_addr(mm, vaddr);
386                 if (!result)
387                         return -EINVAL;
388
389                 if (result != 1)
390                         return result;
391         }
392         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
393 }
394
395 static int match_uprobe(struct uprobe *l, struct uprobe *r)
396 {
397         if (l->inode < r->inode)
398                 return -1;
399
400         if (l->inode > r->inode)
401                 return 1;
402
403         if (l->offset < r->offset)
404                 return -1;
405
406         if (l->offset > r->offset)
407                 return 1;
408
409         return 0;
410 }
411
412 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
413 {
414         struct uprobe u = { .inode = inode, .offset = offset };
415         struct rb_node *n = uprobes_tree.rb_node;
416         struct uprobe *uprobe;
417         int match;
418
419         while (n) {
420                 uprobe = rb_entry(n, struct uprobe, rb_node);
421                 match = match_uprobe(&u, uprobe);
422                 if (!match) {
423                         atomic_inc(&uprobe->ref);
424                         return uprobe;
425                 }
426
427                 if (match < 0)
428                         n = n->rb_left;
429                 else
430                         n = n->rb_right;
431         }
432         return NULL;
433 }
434
435 /*
436  * Find a uprobe corresponding to a given inode:offset
437  * Acquires uprobes_treelock
438  */
439 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
440 {
441         struct uprobe *uprobe;
442         unsigned long flags;
443
444         spin_lock_irqsave(&uprobes_treelock, flags);
445         uprobe = __find_uprobe(inode, offset);
446         spin_unlock_irqrestore(&uprobes_treelock, flags);
447
448         return uprobe;
449 }
450
451 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
452 {
453         struct rb_node **p = &uprobes_tree.rb_node;
454         struct rb_node *parent = NULL;
455         struct uprobe *u;
456         int match;
457
458         while (*p) {
459                 parent = *p;
460                 u = rb_entry(parent, struct uprobe, rb_node);
461                 match = match_uprobe(uprobe, u);
462                 if (!match) {
463                         atomic_inc(&u->ref);
464                         return u;
465                 }
466
467                 if (match < 0)
468                         p = &parent->rb_left;
469                 else
470                         p = &parent->rb_right;
471
472         }
473
474         u = NULL;
475         rb_link_node(&uprobe->rb_node, parent, p);
476         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
477         /* get access + creation ref */
478         atomic_set(&uprobe->ref, 2);
479
480         return u;
481 }
482
483 /*
484  * Acquire uprobes_treelock.
485  * Matching uprobe already exists in rbtree;
486  *      increment (access refcount) and return the matching uprobe.
487  *
488  * No matching uprobe; insert the uprobe in rb_tree;
489  *      get a double refcount (access + creation) and return NULL.
490  */
491 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
492 {
493         unsigned long flags;
494         struct uprobe *u;
495
496         spin_lock_irqsave(&uprobes_treelock, flags);
497         u = __insert_uprobe(uprobe);
498         spin_unlock_irqrestore(&uprobes_treelock, flags);
499
500         /* For now assume that the instruction need not be single-stepped */
501         uprobe->flags |= UPROBE_SKIP_SSTEP;
502
503         return u;
504 }
505
506 static void put_uprobe(struct uprobe *uprobe)
507 {
508         if (atomic_dec_and_test(&uprobe->ref))
509                 kfree(uprobe);
510 }
511
512 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
513 {
514         struct uprobe *uprobe, *cur_uprobe;
515
516         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
517         if (!uprobe)
518                 return NULL;
519
520         uprobe->inode = igrab(inode);
521         uprobe->offset = offset;
522         init_rwsem(&uprobe->consumer_rwsem);
523         INIT_LIST_HEAD(&uprobe->pending_list);
524
525         /* add to uprobes_tree, sorted on inode:offset */
526         cur_uprobe = insert_uprobe(uprobe);
527
528         /* a uprobe exists for this inode:offset combination */
529         if (cur_uprobe) {
530                 kfree(uprobe);
531                 uprobe = cur_uprobe;
532                 iput(inode);
533         } else {
534                 atomic_inc(&uprobe_events);
535         }
536
537         return uprobe;
538 }
539
540 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
541 {
542         struct uprobe_consumer *uc;
543
544         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
545                 return;
546
547         down_read(&uprobe->consumer_rwsem);
548         for (uc = uprobe->consumers; uc; uc = uc->next) {
549                 if (!uc->filter || uc->filter(uc, current))
550                         uc->handler(uc, regs);
551         }
552         up_read(&uprobe->consumer_rwsem);
553 }
554
555 /* Returns the previous consumer */
556 static struct uprobe_consumer *
557 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
558 {
559         down_write(&uprobe->consumer_rwsem);
560         uc->next = uprobe->consumers;
561         uprobe->consumers = uc;
562         up_write(&uprobe->consumer_rwsem);
563
564         return uc->next;
565 }
566
567 /*
568  * For uprobe @uprobe, delete the consumer @uc.
569  * Return true if the @uc is deleted successfully
570  * or return false.
571  */
572 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
573 {
574         struct uprobe_consumer **con;
575         bool ret = false;
576
577         down_write(&uprobe->consumer_rwsem);
578         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
579                 if (*con == uc) {
580                         *con = uc->next;
581                         ret = true;
582                         break;
583                 }
584         }
585         up_write(&uprobe->consumer_rwsem);
586
587         return ret;
588 }
589
590 static int
591 __copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
592                         unsigned long nbytes, unsigned long offset)
593 {
594         struct file *filp = vma->vm_file;
595         struct page *page;
596         void *vaddr;
597         unsigned long off1;
598         unsigned long idx;
599
600         if (!filp)
601                 return -EINVAL;
602
603         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
604         off1 = offset &= ~PAGE_MASK;
605
606         /*
607          * Ensure that the page that has the original instruction is
608          * populated and in page-cache.
609          */
610         page = read_mapping_page(mapping, idx, filp);
611         if (IS_ERR(page))
612                 return PTR_ERR(page);
613
614         vaddr = kmap_atomic(page);
615         memcpy(insn, vaddr + off1, nbytes);
616         kunmap_atomic(vaddr);
617         page_cache_release(page);
618
619         return 0;
620 }
621
622 static int
623 copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
624 {
625         struct address_space *mapping;
626         unsigned long nbytes;
627         int bytes;
628
629         addr &= ~PAGE_MASK;
630         nbytes = PAGE_SIZE - addr;
631         mapping = uprobe->inode->i_mapping;
632
633         /* Instruction at end of binary; copy only available bytes */
634         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
635                 bytes = uprobe->inode->i_size - uprobe->offset;
636         else
637                 bytes = MAX_UINSN_BYTES;
638
639         /* Instruction at the page-boundary; copy bytes in second page */
640         if (nbytes < bytes) {
641                 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
642                                 bytes - nbytes, uprobe->offset + nbytes))
643                         return -ENOMEM;
644
645                 bytes = nbytes;
646         }
647         return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
648 }
649
650 /*
651  * How mm->uprobes_state.count gets updated
652  * uprobe_mmap() increments the count if
653  *      - it successfully adds a breakpoint.
654  *      - it cannot add a breakpoint, but sees that there is a underlying
655  *        breakpoint (via a is_swbp_at_addr()).
656  *
657  * uprobe_munmap() decrements the count if
658  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
659  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
660  *        unless a uprobe_mmap kicks in, since the old vma would be
661  *        dropped just after uprobe_munmap.)
662  *
663  * uprobe_register increments the count if:
664  *      - it successfully adds a breakpoint.
665  *
666  * uprobe_unregister decrements the count if:
667  *      - it sees a underlying breakpoint and removes successfully.
668  *        (via is_swbp_at_addr)
669  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
670  *        since there is no underlying breakpoint after the
671  *        breakpoint removal.)
672  */
673 static int
674 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
675                         struct vm_area_struct *vma, loff_t vaddr)
676 {
677         unsigned long addr;
678         int ret;
679
680         /*
681          * If probe is being deleted, unregister thread could be done with
682          * the vma-rmap-walk through. Adding a probe now can be fatal since
683          * nobody will be able to cleanup. Also we could be from fork or
684          * mremap path, where the probe might have already been inserted.
685          * Hence behave as if probe already existed.
686          */
687         if (!uprobe->consumers)
688                 return -EEXIST;
689
690         addr = (unsigned long)vaddr;
691
692         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
693                 ret = copy_insn(uprobe, vma, addr);
694                 if (ret)
695                         return ret;
696
697                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
698                         return -EEXIST;
699
700                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
701                 if (ret)
702                         return ret;
703
704                 uprobe->flags |= UPROBE_COPY_INSN;
705         }
706
707         /*
708          * Ideally, should be updating the probe count after the breakpoint
709          * has been successfully inserted. However a thread could hit the
710          * breakpoint we just inserted even before the probe count is
711          * incremented. If this is the first breakpoint placed, breakpoint
712          * notifier might ignore uprobes and pass the trap to the thread.
713          * Hence increment before and decrement on failure.
714          */
715         atomic_inc(&mm->uprobes_state.count);
716         ret = set_swbp(&uprobe->arch, mm, addr);
717         if (ret)
718                 atomic_dec(&mm->uprobes_state.count);
719
720         return ret;
721 }
722
723 static void
724 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
725 {
726         if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
727                 atomic_dec(&mm->uprobes_state.count);
728 }
729
730 /*
731  * There could be threads that have hit the breakpoint and are entering the
732  * notifier code and trying to acquire the uprobes_treelock. The thread
733  * calling delete_uprobe() that is removing the uprobe from the rb_tree can
734  * race with these threads and might acquire the uprobes_treelock compared
735  * to some of the breakpoint hit threads. In such a case, the breakpoint
736  * hit threads will not find the uprobe. The current unregistering thread
737  * waits till all other threads have hit a breakpoint, to acquire the
738  * uprobes_treelock before the uprobe is removed from the rbtree.
739  */
740 static void delete_uprobe(struct uprobe *uprobe)
741 {
742         unsigned long flags;
743
744         synchronize_srcu(&uprobes_srcu);
745         spin_lock_irqsave(&uprobes_treelock, flags);
746         rb_erase(&uprobe->rb_node, &uprobes_tree);
747         spin_unlock_irqrestore(&uprobes_treelock, flags);
748         iput(uprobe->inode);
749         put_uprobe(uprobe);
750         atomic_dec(&uprobe_events);
751 }
752
753 static struct vma_info *
754 __find_next_vma_info(struct address_space *mapping, struct list_head *head,
755                         struct vma_info *vi, loff_t offset, bool is_register)
756 {
757         struct prio_tree_iter iter;
758         struct vm_area_struct *vma;
759         struct vma_info *tmpvi;
760         unsigned long pgoff;
761         int existing_vma;
762         loff_t vaddr;
763
764         pgoff = offset >> PAGE_SHIFT;
765
766         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767                 if (!valid_vma(vma, is_register))
768                         continue;
769
770                 existing_vma = 0;
771                 vaddr = vma_address(vma, offset);
772
773                 list_for_each_entry(tmpvi, head, probe_list) {
774                         if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
775                                 existing_vma = 1;
776                                 break;
777                         }
778                 }
779
780                 /*
781                  * Another vma needs a probe to be installed. However skip
782                  * installing the probe if the vma is about to be unlinked.
783                  */
784                 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
785                         vi->mm = vma->vm_mm;
786                         vi->vaddr = vaddr;
787                         list_add(&vi->probe_list, head);
788
789                         return vi;
790                 }
791         }
792
793         return NULL;
794 }
795
796 /*
797  * Iterate in the rmap prio tree  and find a vma where a probe has not
798  * yet been inserted.
799  */
800 static struct vma_info *
801 find_next_vma_info(struct address_space *mapping, struct list_head *head,
802                 loff_t offset, bool is_register)
803 {
804         struct vma_info *vi, *retvi;
805
806         vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
807         if (!vi)
808                 return ERR_PTR(-ENOMEM);
809
810         mutex_lock(&mapping->i_mmap_mutex);
811         retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
812         mutex_unlock(&mapping->i_mmap_mutex);
813
814         if (!retvi)
815                 kfree(vi);
816
817         return retvi;
818 }
819
820 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
821 {
822         struct list_head try_list;
823         struct vm_area_struct *vma;
824         struct address_space *mapping;
825         struct vma_info *vi, *tmpvi;
826         struct mm_struct *mm;
827         loff_t vaddr;
828         int ret;
829
830         mapping = uprobe->inode->i_mapping;
831         INIT_LIST_HEAD(&try_list);
832
833         ret = 0;
834
835         for (;;) {
836                 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
837                 if (!vi)
838                         break;
839
840                 if (IS_ERR(vi)) {
841                         ret = PTR_ERR(vi);
842                         break;
843                 }
844
845                 mm = vi->mm;
846                 down_read(&mm->mmap_sem);
847                 vma = find_vma(mm, (unsigned long)vi->vaddr);
848                 if (!vma || !valid_vma(vma, is_register)) {
849                         list_del(&vi->probe_list);
850                         kfree(vi);
851                         up_read(&mm->mmap_sem);
852                         mmput(mm);
853                         continue;
854                 }
855                 vaddr = vma_address(vma, uprobe->offset);
856                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
857                                                 vaddr != vi->vaddr) {
858                         list_del(&vi->probe_list);
859                         kfree(vi);
860                         up_read(&mm->mmap_sem);
861                         mmput(mm);
862                         continue;
863                 }
864
865                 if (is_register)
866                         ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
867                 else
868                         remove_breakpoint(uprobe, mm, vi->vaddr);
869
870                 up_read(&mm->mmap_sem);
871                 mmput(mm);
872                 if (is_register) {
873                         if (ret && ret == -EEXIST)
874                                 ret = 0;
875                         if (ret)
876                                 break;
877                 }
878         }
879
880         list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
881                 list_del(&vi->probe_list);
882                 kfree(vi);
883         }
884
885         return ret;
886 }
887
888 static int __uprobe_register(struct uprobe *uprobe)
889 {
890         return register_for_each_vma(uprobe, true);
891 }
892
893 static void __uprobe_unregister(struct uprobe *uprobe)
894 {
895         if (!register_for_each_vma(uprobe, false))
896                 delete_uprobe(uprobe);
897
898         /* TODO : cant unregister? schedule a worker thread */
899 }
900
901 /*
902  * uprobe_register - register a probe
903  * @inode: the file in which the probe has to be placed.
904  * @offset: offset from the start of the file.
905  * @uc: information on howto handle the probe..
906  *
907  * Apart from the access refcount, uprobe_register() takes a creation
908  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
909  * inserted into the rbtree (i.e first consumer for a @inode:@offset
910  * tuple).  Creation refcount stops uprobe_unregister from freeing the
911  * @uprobe even before the register operation is complete. Creation
912  * refcount is released when the last @uc for the @uprobe
913  * unregisters.
914  *
915  * Return errno if it cannot successully install probes
916  * else return 0 (success)
917  */
918 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
919 {
920         struct uprobe *uprobe;
921         int ret;
922
923         if (!inode || !uc || uc->next)
924                 return -EINVAL;
925
926         if (offset > i_size_read(inode))
927                 return -EINVAL;
928
929         ret = 0;
930         mutex_lock(uprobes_hash(inode));
931         uprobe = alloc_uprobe(inode, offset);
932
933         if (uprobe && !consumer_add(uprobe, uc)) {
934                 ret = __uprobe_register(uprobe);
935                 if (ret) {
936                         uprobe->consumers = NULL;
937                         __uprobe_unregister(uprobe);
938                 } else {
939                         uprobe->flags |= UPROBE_RUN_HANDLER;
940                 }
941         }
942
943         mutex_unlock(uprobes_hash(inode));
944         put_uprobe(uprobe);
945
946         return ret;
947 }
948
949 /*
950  * uprobe_unregister - unregister a already registered probe.
951  * @inode: the file in which the probe has to be removed.
952  * @offset: offset from the start of the file.
953  * @uc: identify which probe if multiple probes are colocated.
954  */
955 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
956 {
957         struct uprobe *uprobe;
958
959         if (!inode || !uc)
960                 return;
961
962         uprobe = find_uprobe(inode, offset);
963         if (!uprobe)
964                 return;
965
966         mutex_lock(uprobes_hash(inode));
967
968         if (consumer_del(uprobe, uc)) {
969                 if (!uprobe->consumers) {
970                         __uprobe_unregister(uprobe);
971                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
972                 }
973         }
974
975         mutex_unlock(uprobes_hash(inode));
976         if (uprobe)
977                 put_uprobe(uprobe);
978 }
979
980 /*
981  * Of all the nodes that correspond to the given inode, return the node
982  * with the least offset.
983  */
984 static struct rb_node *find_least_offset_node(struct inode *inode)
985 {
986         struct uprobe u = { .inode = inode, .offset = 0};
987         struct rb_node *n = uprobes_tree.rb_node;
988         struct rb_node *close_node = NULL;
989         struct uprobe *uprobe;
990         int match;
991
992         while (n) {
993                 uprobe = rb_entry(n, struct uprobe, rb_node);
994                 match = match_uprobe(&u, uprobe);
995
996                 if (uprobe->inode == inode)
997                         close_node = n;
998
999                 if (!match)
1000                         return close_node;
1001
1002                 if (match < 0)
1003                         n = n->rb_left;
1004                 else
1005                         n = n->rb_right;
1006         }
1007
1008         return close_node;
1009 }
1010
1011 /*
1012  * For a given inode, build a list of probes that need to be inserted.
1013  */
1014 static void build_probe_list(struct inode *inode, struct list_head *head)
1015 {
1016         struct uprobe *uprobe;
1017         unsigned long flags;
1018         struct rb_node *n;
1019
1020         spin_lock_irqsave(&uprobes_treelock, flags);
1021
1022         n = find_least_offset_node(inode);
1023
1024         for (; n; n = rb_next(n)) {
1025                 uprobe = rb_entry(n, struct uprobe, rb_node);
1026                 if (uprobe->inode != inode)
1027                         break;
1028
1029                 list_add(&uprobe->pending_list, head);
1030                 atomic_inc(&uprobe->ref);
1031         }
1032
1033         spin_unlock_irqrestore(&uprobes_treelock, flags);
1034 }
1035
1036 /*
1037  * Called from mmap_region.
1038  * called with mm->mmap_sem acquired.
1039  *
1040  * Return -ve no if we fail to insert probes and we cannot
1041  * bail-out.
1042  * Return 0 otherwise. i.e:
1043  *
1044  *      - successful insertion of probes
1045  *      - (or) no possible probes to be inserted.
1046  *      - (or) insertion of probes failed but we can bail-out.
1047  */
1048 int uprobe_mmap(struct vm_area_struct *vma)
1049 {
1050         struct list_head tmp_list;
1051         struct uprobe *uprobe, *u;
1052         struct inode *inode;
1053         int ret, count;
1054
1055         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1056                 return 0;
1057
1058         inode = vma->vm_file->f_mapping->host;
1059         if (!inode)
1060                 return 0;
1061
1062         INIT_LIST_HEAD(&tmp_list);
1063         mutex_lock(uprobes_mmap_hash(inode));
1064         build_probe_list(inode, &tmp_list);
1065
1066         ret = 0;
1067         count = 0;
1068
1069         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1070                 loff_t vaddr;
1071
1072                 list_del(&uprobe->pending_list);
1073                 if (!ret) {
1074                         vaddr = vma_address(vma, uprobe->offset);
1075
1076                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1077                                 put_uprobe(uprobe);
1078                                 continue;
1079                         }
1080
1081                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1082
1083                         /* Ignore double add: */
1084                         if (ret == -EEXIST) {
1085                                 ret = 0;
1086
1087                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1088                                         continue;
1089
1090                                 /*
1091                                  * Unable to insert a breakpoint, but
1092                                  * breakpoint lies underneath. Increment the
1093                                  * probe count.
1094                                  */
1095                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1096                         }
1097
1098                         if (!ret)
1099                                 count++;
1100                 }
1101                 put_uprobe(uprobe);
1102         }
1103
1104         mutex_unlock(uprobes_mmap_hash(inode));
1105
1106         if (ret)
1107                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1108
1109         return ret;
1110 }
1111
1112 /*
1113  * Called in context of a munmap of a vma.
1114  */
1115 void uprobe_munmap(struct vm_area_struct *vma)
1116 {
1117         struct list_head tmp_list;
1118         struct uprobe *uprobe, *u;
1119         struct inode *inode;
1120
1121         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1122                 return;
1123
1124         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1125                 return;
1126
1127         inode = vma->vm_file->f_mapping->host;
1128         if (!inode)
1129                 return;
1130
1131         INIT_LIST_HEAD(&tmp_list);
1132         mutex_lock(uprobes_mmap_hash(inode));
1133         build_probe_list(inode, &tmp_list);
1134
1135         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1136                 loff_t vaddr;
1137
1138                 list_del(&uprobe->pending_list);
1139                 vaddr = vma_address(vma, uprobe->offset);
1140
1141                 if (vaddr >= vma->vm_start && vaddr < vma->vm_end) {
1142                         /*
1143                          * An unregister could have removed the probe before
1144                          * unmap. So check before we decrement the count.
1145                          */
1146                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1147                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1148                 }
1149                 put_uprobe(uprobe);
1150         }
1151         mutex_unlock(uprobes_mmap_hash(inode));
1152 }
1153
1154 /* Slot allocation for XOL */
1155 static int xol_add_vma(struct xol_area *area)
1156 {
1157         struct mm_struct *mm;
1158         int ret;
1159
1160         area->page = alloc_page(GFP_HIGHUSER);
1161         if (!area->page)
1162                 return -ENOMEM;
1163
1164         ret = -EALREADY;
1165         mm = current->mm;
1166
1167         down_write(&mm->mmap_sem);
1168         if (mm->uprobes_state.xol_area)
1169                 goto fail;
1170
1171         ret = -ENOMEM;
1172
1173         /* Try to map as high as possible, this is only a hint. */
1174         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1175         if (area->vaddr & ~PAGE_MASK) {
1176                 ret = area->vaddr;
1177                 goto fail;
1178         }
1179
1180         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1181                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1182         if (ret)
1183                 goto fail;
1184
1185         smp_wmb();      /* pairs with get_xol_area() */
1186         mm->uprobes_state.xol_area = area;
1187         ret = 0;
1188
1189 fail:
1190         up_write(&mm->mmap_sem);
1191         if (ret)
1192                 __free_page(area->page);
1193
1194         return ret;
1195 }
1196
1197 static struct xol_area *get_xol_area(struct mm_struct *mm)
1198 {
1199         struct xol_area *area;
1200
1201         area = mm->uprobes_state.xol_area;
1202         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1203
1204         return area;
1205 }
1206
1207 /*
1208  * xol_alloc_area - Allocate process's xol_area.
1209  * This area will be used for storing instructions for execution out of
1210  * line.
1211  *
1212  * Returns the allocated area or NULL.
1213  */
1214 static struct xol_area *xol_alloc_area(void)
1215 {
1216         struct xol_area *area;
1217
1218         area = kzalloc(sizeof(*area), GFP_KERNEL);
1219         if (unlikely(!area))
1220                 return NULL;
1221
1222         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1223
1224         if (!area->bitmap)
1225                 goto fail;
1226
1227         init_waitqueue_head(&area->wq);
1228         if (!xol_add_vma(area))
1229                 return area;
1230
1231 fail:
1232         kfree(area->bitmap);
1233         kfree(area);
1234
1235         return get_xol_area(current->mm);
1236 }
1237
1238 /*
1239  * uprobe_clear_state - Free the area allocated for slots.
1240  */
1241 void uprobe_clear_state(struct mm_struct *mm)
1242 {
1243         struct xol_area *area = mm->uprobes_state.xol_area;
1244
1245         if (!area)
1246                 return;
1247
1248         put_page(area->page);
1249         kfree(area->bitmap);
1250         kfree(area);
1251 }
1252
1253 /*
1254  * uprobe_reset_state - Free the area allocated for slots.
1255  */
1256 void uprobe_reset_state(struct mm_struct *mm)
1257 {
1258         mm->uprobes_state.xol_area = NULL;
1259         atomic_set(&mm->uprobes_state.count, 0);
1260 }
1261
1262 /*
1263  *  - search for a free slot.
1264  */
1265 static unsigned long xol_take_insn_slot(struct xol_area *area)
1266 {
1267         unsigned long slot_addr;
1268         int slot_nr;
1269
1270         do {
1271                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1272                 if (slot_nr < UINSNS_PER_PAGE) {
1273                         if (!test_and_set_bit(slot_nr, area->bitmap))
1274                                 break;
1275
1276                         slot_nr = UINSNS_PER_PAGE;
1277                         continue;
1278                 }
1279                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1280         } while (slot_nr >= UINSNS_PER_PAGE);
1281
1282         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1283         atomic_inc(&area->slot_count);
1284
1285         return slot_addr;
1286 }
1287
1288 /*
1289  * xol_get_insn_slot - If was not allocated a slot, then
1290  * allocate a slot.
1291  * Returns the allocated slot address or 0.
1292  */
1293 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1294 {
1295         struct xol_area *area;
1296         unsigned long offset;
1297         void *vaddr;
1298
1299         area = get_xol_area(current->mm);
1300         if (!area) {
1301                 area = xol_alloc_area();
1302                 if (!area)
1303                         return 0;
1304         }
1305         current->utask->xol_vaddr = xol_take_insn_slot(area);
1306
1307         /*
1308          * Initialize the slot if xol_vaddr points to valid
1309          * instruction slot.
1310          */
1311         if (unlikely(!current->utask->xol_vaddr))
1312                 return 0;
1313
1314         current->utask->vaddr = slot_addr;
1315         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1316         vaddr = kmap_atomic(area->page);
1317         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1318         kunmap_atomic(vaddr);
1319
1320         return current->utask->xol_vaddr;
1321 }
1322
1323 /*
1324  * xol_free_insn_slot - If slot was earlier allocated by
1325  * @xol_get_insn_slot(), make the slot available for
1326  * subsequent requests.
1327  */
1328 static void xol_free_insn_slot(struct task_struct *tsk)
1329 {
1330         struct xol_area *area;
1331         unsigned long vma_end;
1332         unsigned long slot_addr;
1333
1334         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1335                 return;
1336
1337         slot_addr = tsk->utask->xol_vaddr;
1338
1339         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1340                 return;
1341
1342         area = tsk->mm->uprobes_state.xol_area;
1343         vma_end = area->vaddr + PAGE_SIZE;
1344         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1345                 unsigned long offset;
1346                 int slot_nr;
1347
1348                 offset = slot_addr - area->vaddr;
1349                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1350                 if (slot_nr >= UINSNS_PER_PAGE)
1351                         return;
1352
1353                 clear_bit(slot_nr, area->bitmap);
1354                 atomic_dec(&area->slot_count);
1355                 if (waitqueue_active(&area->wq))
1356                         wake_up(&area->wq);
1357
1358                 tsk->utask->xol_vaddr = 0;
1359         }
1360 }
1361
1362 /**
1363  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1364  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1365  * instruction.
1366  * Return the address of the breakpoint instruction.
1367  */
1368 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1369 {
1370         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1371 }
1372
1373 /*
1374  * Called with no locks held.
1375  * Called in context of a exiting or a exec-ing thread.
1376  */
1377 void uprobe_free_utask(struct task_struct *t)
1378 {
1379         struct uprobe_task *utask = t->utask;
1380
1381         if (t->uprobe_srcu_id != -1)
1382                 srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id);
1383
1384         if (!utask)
1385                 return;
1386
1387         if (utask->active_uprobe)
1388                 put_uprobe(utask->active_uprobe);
1389
1390         xol_free_insn_slot(t);
1391         kfree(utask);
1392         t->utask = NULL;
1393 }
1394
1395 /*
1396  * Called in context of a new clone/fork from copy_process.
1397  */
1398 void uprobe_copy_process(struct task_struct *t)
1399 {
1400         t->utask = NULL;
1401         t->uprobe_srcu_id = -1;
1402 }
1403
1404 /*
1405  * Allocate a uprobe_task object for the task.
1406  * Called when the thread hits a breakpoint for the first time.
1407  *
1408  * Returns:
1409  * - pointer to new uprobe_task on success
1410  * - NULL otherwise
1411  */
1412 static struct uprobe_task *add_utask(void)
1413 {
1414         struct uprobe_task *utask;
1415
1416         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1417         if (unlikely(!utask))
1418                 return NULL;
1419
1420         utask->active_uprobe = NULL;
1421         current->utask = utask;
1422         return utask;
1423 }
1424
1425 /* Prepare to single-step probed instruction out of line. */
1426 static int
1427 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1428 {
1429         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1430                 return 0;
1431
1432         return -EFAULT;
1433 }
1434
1435 /*
1436  * If we are singlestepping, then ensure this thread is not connected to
1437  * non-fatal signals until completion of singlestep.  When xol insn itself
1438  * triggers the signal,  restart the original insn even if the task is
1439  * already SIGKILL'ed (since coredump should report the correct ip).  This
1440  * is even more important if the task has a handler for SIGSEGV/etc, The
1441  * _same_ instruction should be repeated again after return from the signal
1442  * handler, and SSTEP can never finish in this case.
1443  */
1444 bool uprobe_deny_signal(void)
1445 {
1446         struct task_struct *t = current;
1447         struct uprobe_task *utask = t->utask;
1448
1449         if (likely(!utask || !utask->active_uprobe))
1450                 return false;
1451
1452         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1453
1454         if (signal_pending(t)) {
1455                 spin_lock_irq(&t->sighand->siglock);
1456                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1457                 spin_unlock_irq(&t->sighand->siglock);
1458
1459                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1460                         utask->state = UTASK_SSTEP_TRAPPED;
1461                         set_tsk_thread_flag(t, TIF_UPROBE);
1462                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1463                 }
1464         }
1465
1466         return true;
1467 }
1468
1469 /*
1470  * Avoid singlestepping the original instruction if the original instruction
1471  * is a NOP or can be emulated.
1472  */
1473 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1476                 return true;
1477
1478         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1479         return false;
1480 }
1481
1482 /*
1483  * Run handler and ask thread to singlestep.
1484  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1485  */
1486 static void handle_swbp(struct pt_regs *regs)
1487 {
1488         struct vm_area_struct *vma;
1489         struct uprobe_task *utask;
1490         struct uprobe *uprobe;
1491         struct mm_struct *mm;
1492         unsigned long bp_vaddr;
1493
1494         uprobe = NULL;
1495         bp_vaddr = uprobe_get_swbp_addr(regs);
1496         mm = current->mm;
1497         down_read(&mm->mmap_sem);
1498         vma = find_vma(mm, bp_vaddr);
1499
1500         if (vma && vma->vm_start <= bp_vaddr && valid_vma(vma, false)) {
1501                 struct inode *inode;
1502                 loff_t offset;
1503
1504                 inode = vma->vm_file->f_mapping->host;
1505                 offset = bp_vaddr - vma->vm_start;
1506                 offset += (vma->vm_pgoff << PAGE_SHIFT);
1507                 uprobe = find_uprobe(inode, offset);
1508         }
1509
1510         srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id);
1511         current->uprobe_srcu_id = -1;
1512         up_read(&mm->mmap_sem);
1513
1514         if (!uprobe) {
1515                 /* No matching uprobe; signal SIGTRAP. */
1516                 send_sig(SIGTRAP, current, 0);
1517                 return;
1518         }
1519
1520         utask = current->utask;
1521         if (!utask) {
1522                 utask = add_utask();
1523                 /* Cannot allocate; re-execute the instruction. */
1524                 if (!utask)
1525                         goto cleanup_ret;
1526         }
1527         utask->active_uprobe = uprobe;
1528         handler_chain(uprobe, regs);
1529         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1530                 goto cleanup_ret;
1531
1532         utask->state = UTASK_SSTEP;
1533         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1534                 user_enable_single_step(current);
1535                 return;
1536         }
1537
1538 cleanup_ret:
1539         if (utask) {
1540                 utask->active_uprobe = NULL;
1541                 utask->state = UTASK_RUNNING;
1542         }
1543         if (uprobe) {
1544                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1545
1546                         /*
1547                          * cannot singlestep; cannot skip instruction;
1548                          * re-execute the instruction.
1549                          */
1550                         instruction_pointer_set(regs, bp_vaddr);
1551
1552                 put_uprobe(uprobe);
1553         }
1554 }
1555
1556 /*
1557  * Perform required fix-ups and disable singlestep.
1558  * Allow pending signals to take effect.
1559  */
1560 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1561 {
1562         struct uprobe *uprobe;
1563
1564         uprobe = utask->active_uprobe;
1565         if (utask->state == UTASK_SSTEP_ACK)
1566                 arch_uprobe_post_xol(&uprobe->arch, regs);
1567         else if (utask->state == UTASK_SSTEP_TRAPPED)
1568                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1569         else
1570                 WARN_ON_ONCE(1);
1571
1572         put_uprobe(uprobe);
1573         utask->active_uprobe = NULL;
1574         utask->state = UTASK_RUNNING;
1575         user_disable_single_step(current);
1576         xol_free_insn_slot(current);
1577
1578         spin_lock_irq(&current->sighand->siglock);
1579         recalc_sigpending(); /* see uprobe_deny_signal() */
1580         spin_unlock_irq(&current->sighand->siglock);
1581 }
1582
1583 /*
1584  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1585  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1586  * allows the thread to return from interrupt.
1587  *
1588  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1589  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1590  * interrupt.
1591  *
1592  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1593  * uprobe_notify_resume().
1594  */
1595 void uprobe_notify_resume(struct pt_regs *regs)
1596 {
1597         struct uprobe_task *utask;
1598
1599         utask = current->utask;
1600         if (!utask || utask->state == UTASK_BP_HIT)
1601                 handle_swbp(regs);
1602         else
1603                 handle_singlestep(utask, regs);
1604 }
1605
1606 /*
1607  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1608  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1609  */
1610 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1611 {
1612         struct uprobe_task *utask;
1613
1614         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1615                 /* task is currently not uprobed */
1616                 return 0;
1617
1618         utask = current->utask;
1619         if (utask)
1620                 utask->state = UTASK_BP_HIT;
1621
1622         set_thread_flag(TIF_UPROBE);
1623         current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu);
1624
1625         return 1;
1626 }
1627
1628 /*
1629  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1630  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1631  */
1632 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1633 {
1634         struct uprobe_task *utask = current->utask;
1635
1636         if (!current->mm || !utask || !utask->active_uprobe)
1637                 /* task is currently not uprobed */
1638                 return 0;
1639
1640         utask->state = UTASK_SSTEP_ACK;
1641         set_thread_flag(TIF_UPROBE);
1642         return 1;
1643 }
1644
1645 static struct notifier_block uprobe_exception_nb = {
1646         .notifier_call          = arch_uprobe_exception_notify,
1647         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1648 };
1649
1650 static int __init init_uprobes(void)
1651 {
1652         int i;
1653
1654         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1655                 mutex_init(&uprobes_mutex[i]);
1656                 mutex_init(&uprobes_mmap_mutex[i]);
1657         }
1658         init_srcu_struct(&uprobes_srcu);
1659
1660         return register_die_notifier(&uprobe_exception_nb);
1661 }
1662 module_init(init_uprobes);
1663
1664 static void __exit exit_uprobes(void)
1665 {
1666 }
1667 module_exit(exit_uprobes);