x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153                                 struct page *old_page, struct page *new_page)
154 {
155         struct mm_struct *mm = vma->vm_mm;
156         spinlock_t *ptl;
157         pte_t *ptep;
158         int err;
159         /* For mmu_notifiers */
160         const unsigned long mmun_start = addr;
161         const unsigned long mmun_end   = addr + PAGE_SIZE;
162         struct mem_cgroup *memcg;
163
164         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
165                         false);
166         if (err)
167                 return err;
168
169         /* For try_to_free_swap() and munlock_vma_page() below */
170         lock_page(old_page);
171
172         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173         err = -EAGAIN;
174         ptep = page_check_address(old_page, mm, addr, &ptl, 0);
175         if (!ptep) {
176                 mem_cgroup_cancel_charge(new_page, memcg, false);
177                 goto unlock;
178         }
179
180         get_page(new_page);
181         page_add_new_anon_rmap(new_page, vma, addr, false);
182         mem_cgroup_commit_charge(new_page, memcg, false, false);
183         lru_cache_add_active_or_unevictable(new_page, vma);
184
185         if (!PageAnon(old_page)) {
186                 dec_mm_counter(mm, mm_counter_file(old_page));
187                 inc_mm_counter(mm, MM_ANONPAGES);
188         }
189
190         flush_cache_page(vma, addr, pte_pfn(*ptep));
191         ptep_clear_flush_notify(vma, addr, ptep);
192         set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
193
194         page_remove_rmap(old_page, false);
195         if (!page_mapped(old_page))
196                 try_to_free_swap(old_page);
197         pte_unmap_unlock(ptep, ptl);
198
199         if (vma->vm_flags & VM_LOCKED)
200                 munlock_vma_page(old_page);
201         put_page(old_page);
202
203         err = 0;
204  unlock:
205         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206         unlock_page(old_page);
207         return err;
208 }
209
210 /**
211  * is_swbp_insn - check if instruction is breakpoint instruction.
212  * @insn: instruction to be checked.
213  * Default implementation of is_swbp_insn
214  * Returns true if @insn is a breakpoint instruction.
215  */
216 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 {
218         return *insn == UPROBE_SWBP_INSN;
219 }
220
221 /**
222  * is_trap_insn - check if instruction is breakpoint instruction.
223  * @insn: instruction to be checked.
224  * Default implementation of is_trap_insn
225  * Returns true if @insn is a breakpoint instruction.
226  *
227  * This function is needed for the case where an architecture has multiple
228  * trap instructions (like powerpc).
229  */
230 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 {
232         return is_swbp_insn(insn);
233 }
234
235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 {
237         void *kaddr = kmap_atomic(page);
238         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239         kunmap_atomic(kaddr);
240 }
241
242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 {
244         void *kaddr = kmap_atomic(page);
245         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246         kunmap_atomic(kaddr);
247 }
248
249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 {
251         uprobe_opcode_t old_opcode;
252         bool is_swbp;
253
254         /*
255          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256          * We do not check if it is any other 'trap variant' which could
257          * be conditional trap instruction such as the one powerpc supports.
258          *
259          * The logic is that we do not care if the underlying instruction
260          * is a trap variant; uprobes always wins over any other (gdb)
261          * breakpoint.
262          */
263         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264         is_swbp = is_swbp_insn(&old_opcode);
265
266         if (is_swbp_insn(new_opcode)) {
267                 if (is_swbp)            /* register: already installed? */
268                         return 0;
269         } else {
270                 if (!is_swbp)           /* unregister: was it changed by us? */
271                         return 0;
272         }
273
274         return 1;
275 }
276
277 /*
278  * NOTE:
279  * Expect the breakpoint instruction to be the smallest size instruction for
280  * the architecture. If an arch has variable length instruction and the
281  * breakpoint instruction is not of the smallest length instruction
282  * supported by that architecture then we need to modify is_trap_at_addr and
283  * uprobe_write_opcode accordingly. This would never be a problem for archs
284  * that have fixed length instructions.
285  *
286  * uprobe_write_opcode - write the opcode at a given virtual address.
287  * @mm: the probed process address space.
288  * @vaddr: the virtual address to store the opcode.
289  * @opcode: opcode to be written at @vaddr.
290  *
291  * Called with mm->mmap_sem held for write.
292  * Return 0 (success) or a negative errno.
293  */
294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295                         uprobe_opcode_t opcode)
296 {
297         struct page *old_page, *new_page;
298         struct vm_area_struct *vma;
299         int ret;
300
301 retry:
302         /* Read the page with vaddr into memory */
303         ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
304                         &vma);
305         if (ret <= 0)
306                 return ret;
307
308         ret = verify_opcode(old_page, vaddr, &opcode);
309         if (ret <= 0)
310                 goto put_old;
311
312         ret = anon_vma_prepare(vma);
313         if (ret)
314                 goto put_old;
315
316         ret = -ENOMEM;
317         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
318         if (!new_page)
319                 goto put_old;
320
321         __SetPageUptodate(new_page);
322         copy_highpage(new_page, old_page);
323         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325         ret = __replace_page(vma, vaddr, old_page, new_page);
326         put_page(new_page);
327 put_old:
328         put_page(old_page);
329
330         if (unlikely(ret == -EAGAIN))
331                 goto retry;
332         return ret;
333 }
334
335 /**
336  * set_swbp - store breakpoint at a given address.
337  * @auprobe: arch specific probepoint information.
338  * @mm: the probed process address space.
339  * @vaddr: the virtual address to insert the opcode.
340  *
341  * For mm @mm, store the breakpoint instruction at @vaddr.
342  * Return 0 (success) or a negative errno.
343  */
344 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
345 {
346         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
347 }
348
349 /**
350  * set_orig_insn - Restore the original instruction.
351  * @mm: the probed process address space.
352  * @auprobe: arch specific probepoint information.
353  * @vaddr: the virtual address to insert the opcode.
354  *
355  * For mm @mm, restore the original opcode (opcode) at @vaddr.
356  * Return 0 (success) or a negative errno.
357  */
358 int __weak
359 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
360 {
361         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
362 }
363
364 static struct uprobe *get_uprobe(struct uprobe *uprobe)
365 {
366         atomic_inc(&uprobe->ref);
367         return uprobe;
368 }
369
370 static void put_uprobe(struct uprobe *uprobe)
371 {
372         if (atomic_dec_and_test(&uprobe->ref))
373                 kfree(uprobe);
374 }
375
376 static int match_uprobe(struct uprobe *l, struct uprobe *r)
377 {
378         if (l->inode < r->inode)
379                 return -1;
380
381         if (l->inode > r->inode)
382                 return 1;
383
384         if (l->offset < r->offset)
385                 return -1;
386
387         if (l->offset > r->offset)
388                 return 1;
389
390         return 0;
391 }
392
393 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
394 {
395         struct uprobe u = { .inode = inode, .offset = offset };
396         struct rb_node *n = uprobes_tree.rb_node;
397         struct uprobe *uprobe;
398         int match;
399
400         while (n) {
401                 uprobe = rb_entry(n, struct uprobe, rb_node);
402                 match = match_uprobe(&u, uprobe);
403                 if (!match)
404                         return get_uprobe(uprobe);
405
406                 if (match < 0)
407                         n = n->rb_left;
408                 else
409                         n = n->rb_right;
410         }
411         return NULL;
412 }
413
414 /*
415  * Find a uprobe corresponding to a given inode:offset
416  * Acquires uprobes_treelock
417  */
418 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
419 {
420         struct uprobe *uprobe;
421
422         spin_lock(&uprobes_treelock);
423         uprobe = __find_uprobe(inode, offset);
424         spin_unlock(&uprobes_treelock);
425
426         return uprobe;
427 }
428
429 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
430 {
431         struct rb_node **p = &uprobes_tree.rb_node;
432         struct rb_node *parent = NULL;
433         struct uprobe *u;
434         int match;
435
436         while (*p) {
437                 parent = *p;
438                 u = rb_entry(parent, struct uprobe, rb_node);
439                 match = match_uprobe(uprobe, u);
440                 if (!match)
441                         return get_uprobe(u);
442
443                 if (match < 0)
444                         p = &parent->rb_left;
445                 else
446                         p = &parent->rb_right;
447
448         }
449
450         u = NULL;
451         rb_link_node(&uprobe->rb_node, parent, p);
452         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453         /* get access + creation ref */
454         atomic_set(&uprobe->ref, 2);
455
456         return u;
457 }
458
459 /*
460  * Acquire uprobes_treelock.
461  * Matching uprobe already exists in rbtree;
462  *      increment (access refcount) and return the matching uprobe.
463  *
464  * No matching uprobe; insert the uprobe in rb_tree;
465  *      get a double refcount (access + creation) and return NULL.
466  */
467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469         struct uprobe *u;
470
471         spin_lock(&uprobes_treelock);
472         u = __insert_uprobe(uprobe);
473         spin_unlock(&uprobes_treelock);
474
475         return u;
476 }
477
478 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
479 {
480         struct uprobe *uprobe, *cur_uprobe;
481
482         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
483         if (!uprobe)
484                 return NULL;
485
486         uprobe->inode = igrab(inode);
487         uprobe->offset = offset;
488         init_rwsem(&uprobe->register_rwsem);
489         init_rwsem(&uprobe->consumer_rwsem);
490
491         /* add to uprobes_tree, sorted on inode:offset */
492         cur_uprobe = insert_uprobe(uprobe);
493         /* a uprobe exists for this inode:offset combination */
494         if (cur_uprobe) {
495                 kfree(uprobe);
496                 uprobe = cur_uprobe;
497                 iput(inode);
498         }
499
500         return uprobe;
501 }
502
503 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
504 {
505         down_write(&uprobe->consumer_rwsem);
506         uc->next = uprobe->consumers;
507         uprobe->consumers = uc;
508         up_write(&uprobe->consumer_rwsem);
509 }
510
511 /*
512  * For uprobe @uprobe, delete the consumer @uc.
513  * Return true if the @uc is deleted successfully
514  * or return false.
515  */
516 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
517 {
518         struct uprobe_consumer **con;
519         bool ret = false;
520
521         down_write(&uprobe->consumer_rwsem);
522         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
523                 if (*con == uc) {
524                         *con = uc->next;
525                         ret = true;
526                         break;
527                 }
528         }
529         up_write(&uprobe->consumer_rwsem);
530
531         return ret;
532 }
533
534 static int __copy_insn(struct address_space *mapping, struct file *filp,
535                         void *insn, int nbytes, loff_t offset)
536 {
537         struct page *page;
538         /*
539          * Ensure that the page that has the original instruction is populated
540          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
541          * see uprobe_register().
542          */
543         if (mapping->a_ops->readpage)
544                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
545         else
546                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
547         if (IS_ERR(page))
548                 return PTR_ERR(page);
549
550         copy_from_page(page, offset, insn, nbytes);
551         put_page(page);
552
553         return 0;
554 }
555
556 static int copy_insn(struct uprobe *uprobe, struct file *filp)
557 {
558         struct address_space *mapping = uprobe->inode->i_mapping;
559         loff_t offs = uprobe->offset;
560         void *insn = &uprobe->arch.insn;
561         int size = sizeof(uprobe->arch.insn);
562         int len, err = -EIO;
563
564         /* Copy only available bytes, -EIO if nothing was read */
565         do {
566                 if (offs >= i_size_read(uprobe->inode))
567                         break;
568
569                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
570                 err = __copy_insn(mapping, filp, insn, len, offs);
571                 if (err)
572                         break;
573
574                 insn += len;
575                 offs += len;
576                 size -= len;
577         } while (size);
578
579         return err;
580 }
581
582 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
583                                 struct mm_struct *mm, unsigned long vaddr)
584 {
585         int ret = 0;
586
587         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588                 return ret;
589
590         /* TODO: move this into _register, until then we abuse this sem. */
591         down_write(&uprobe->consumer_rwsem);
592         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593                 goto out;
594
595         ret = copy_insn(uprobe, file);
596         if (ret)
597                 goto out;
598
599         ret = -ENOTSUPP;
600         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
601                 goto out;
602
603         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604         if (ret)
605                 goto out;
606
607         /* uprobe_write_opcode() assumes we don't cross page boundary */
608         BUG_ON((uprobe->offset & ~PAGE_MASK) +
609                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
613
614  out:
615         up_write(&uprobe->consumer_rwsem);
616
617         return ret;
618 }
619
620 static inline bool consumer_filter(struct uprobe_consumer *uc,
621                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622 {
623         return !uc->filter || uc->filter(uc, ctx, mm);
624 }
625
626 static bool filter_chain(struct uprobe *uprobe,
627                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629         struct uprobe_consumer *uc;
630         bool ret = false;
631
632         down_read(&uprobe->consumer_rwsem);
633         for (uc = uprobe->consumers; uc; uc = uc->next) {
634                 ret = consumer_filter(uc, ctx, mm);
635                 if (ret)
636                         break;
637         }
638         up_read(&uprobe->consumer_rwsem);
639
640         return ret;
641 }
642
643 static int
644 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
645                         struct vm_area_struct *vma, unsigned long vaddr)
646 {
647         bool first_uprobe;
648         int ret;
649
650         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
651         if (ret)
652                 return ret;
653
654         /*
655          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656          * the task can hit this breakpoint right after __replace_page().
657          */
658         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
659         if (first_uprobe)
660                 set_bit(MMF_HAS_UPROBES, &mm->flags);
661
662         ret = set_swbp(&uprobe->arch, mm, vaddr);
663         if (!ret)
664                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
665         else if (first_uprobe)
666                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
667
668         return ret;
669 }
670
671 static int
672 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
673 {
674         set_bit(MMF_RECALC_UPROBES, &mm->flags);
675         return set_orig_insn(&uprobe->arch, mm, vaddr);
676 }
677
678 static inline bool uprobe_is_active(struct uprobe *uprobe)
679 {
680         return !RB_EMPTY_NODE(&uprobe->rb_node);
681 }
682 /*
683  * There could be threads that have already hit the breakpoint. They
684  * will recheck the current insn and restart if find_uprobe() fails.
685  * See find_active_uprobe().
686  */
687 static void delete_uprobe(struct uprobe *uprobe)
688 {
689         if (WARN_ON(!uprobe_is_active(uprobe)))
690                 return;
691
692         spin_lock(&uprobes_treelock);
693         rb_erase(&uprobe->rb_node, &uprobes_tree);
694         spin_unlock(&uprobes_treelock);
695         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
696         iput(uprobe->inode);
697         put_uprobe(uprobe);
698 }
699
700 struct map_info {
701         struct map_info *next;
702         struct mm_struct *mm;
703         unsigned long vaddr;
704 };
705
706 static inline struct map_info *free_map_info(struct map_info *info)
707 {
708         struct map_info *next = info->next;
709         kfree(info);
710         return next;
711 }
712
713 static struct map_info *
714 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
715 {
716         unsigned long pgoff = offset >> PAGE_SHIFT;
717         struct vm_area_struct *vma;
718         struct map_info *curr = NULL;
719         struct map_info *prev = NULL;
720         struct map_info *info;
721         int more = 0;
722
723  again:
724         i_mmap_lock_read(mapping);
725         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
726                 if (!valid_vma(vma, is_register))
727                         continue;
728
729                 if (!prev && !more) {
730                         /*
731                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
732                          * reclaim. This is optimistic, no harm done if it fails.
733                          */
734                         prev = kmalloc(sizeof(struct map_info),
735                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
736                         if (prev)
737                                 prev->next = NULL;
738                 }
739                 if (!prev) {
740                         more++;
741                         continue;
742                 }
743
744                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
745                         continue;
746
747                 info = prev;
748                 prev = prev->next;
749                 info->next = curr;
750                 curr = info;
751
752                 info->mm = vma->vm_mm;
753                 info->vaddr = offset_to_vaddr(vma, offset);
754         }
755         i_mmap_unlock_read(mapping);
756
757         if (!more)
758                 goto out;
759
760         prev = curr;
761         while (curr) {
762                 mmput(curr->mm);
763                 curr = curr->next;
764         }
765
766         do {
767                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
768                 if (!info) {
769                         curr = ERR_PTR(-ENOMEM);
770                         goto out;
771                 }
772                 info->next = prev;
773                 prev = info;
774         } while (--more);
775
776         goto again;
777  out:
778         while (prev)
779                 prev = free_map_info(prev);
780         return curr;
781 }
782
783 static int
784 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
785 {
786         bool is_register = !!new;
787         struct map_info *info;
788         int err = 0;
789
790         percpu_down_write(&dup_mmap_sem);
791         info = build_map_info(uprobe->inode->i_mapping,
792                                         uprobe->offset, is_register);
793         if (IS_ERR(info)) {
794                 err = PTR_ERR(info);
795                 goto out;
796         }
797
798         while (info) {
799                 struct mm_struct *mm = info->mm;
800                 struct vm_area_struct *vma;
801
802                 if (err && is_register)
803                         goto free;
804
805                 down_write(&mm->mmap_sem);
806                 vma = find_vma(mm, info->vaddr);
807                 if (!vma || !valid_vma(vma, is_register) ||
808                     file_inode(vma->vm_file) != uprobe->inode)
809                         goto unlock;
810
811                 if (vma->vm_start > info->vaddr ||
812                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
813                         goto unlock;
814
815                 if (is_register) {
816                         /* consult only the "caller", new consumer. */
817                         if (consumer_filter(new,
818                                         UPROBE_FILTER_REGISTER, mm))
819                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
820                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
821                         if (!filter_chain(uprobe,
822                                         UPROBE_FILTER_UNREGISTER, mm))
823                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
824                 }
825
826  unlock:
827                 up_write(&mm->mmap_sem);
828  free:
829                 mmput(mm);
830                 info = free_map_info(info);
831         }
832  out:
833         percpu_up_write(&dup_mmap_sem);
834         return err;
835 }
836
837 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839         consumer_add(uprobe, uc);
840         return register_for_each_vma(uprobe, uc);
841 }
842
843 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845         int err;
846
847         if (WARN_ON(!consumer_del(uprobe, uc)))
848                 return;
849
850         err = register_for_each_vma(uprobe, NULL);
851         /* TODO : cant unregister? schedule a worker thread */
852         if (!uprobe->consumers && !err)
853                 delete_uprobe(uprobe);
854 }
855
856 /*
857  * uprobe_register - register a probe
858  * @inode: the file in which the probe has to be placed.
859  * @offset: offset from the start of the file.
860  * @uc: information on howto handle the probe..
861  *
862  * Apart from the access refcount, uprobe_register() takes a creation
863  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864  * inserted into the rbtree (i.e first consumer for a @inode:@offset
865  * tuple).  Creation refcount stops uprobe_unregister from freeing the
866  * @uprobe even before the register operation is complete. Creation
867  * refcount is released when the last @uc for the @uprobe
868  * unregisters.
869  *
870  * Return errno if it cannot successully install probes
871  * else return 0 (success)
872  */
873 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
874 {
875         struct uprobe *uprobe;
876         int ret;
877
878         /* Uprobe must have at least one set consumer */
879         if (!uc->handler && !uc->ret_handler)
880                 return -EINVAL;
881
882         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
883         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
884                 return -EIO;
885         /* Racy, just to catch the obvious mistakes */
886         if (offset > i_size_read(inode))
887                 return -EINVAL;
888
889  retry:
890         uprobe = alloc_uprobe(inode, offset);
891         if (!uprobe)
892                 return -ENOMEM;
893         /*
894          * We can race with uprobe_unregister()->delete_uprobe().
895          * Check uprobe_is_active() and retry if it is false.
896          */
897         down_write(&uprobe->register_rwsem);
898         ret = -EAGAIN;
899         if (likely(uprobe_is_active(uprobe))) {
900                 ret = __uprobe_register(uprobe, uc);
901                 if (ret)
902                         __uprobe_unregister(uprobe, uc);
903         }
904         up_write(&uprobe->register_rwsem);
905         put_uprobe(uprobe);
906
907         if (unlikely(ret == -EAGAIN))
908                 goto retry;
909         return ret;
910 }
911 EXPORT_SYMBOL_GPL(uprobe_register);
912
913 /*
914  * uprobe_apply - unregister a already registered probe.
915  * @inode: the file in which the probe has to be removed.
916  * @offset: offset from the start of the file.
917  * @uc: consumer which wants to add more or remove some breakpoints
918  * @add: add or remove the breakpoints
919  */
920 int uprobe_apply(struct inode *inode, loff_t offset,
921                         struct uprobe_consumer *uc, bool add)
922 {
923         struct uprobe *uprobe;
924         struct uprobe_consumer *con;
925         int ret = -ENOENT;
926
927         uprobe = find_uprobe(inode, offset);
928         if (WARN_ON(!uprobe))
929                 return ret;
930
931         down_write(&uprobe->register_rwsem);
932         for (con = uprobe->consumers; con && con != uc ; con = con->next)
933                 ;
934         if (con)
935                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
936         up_write(&uprobe->register_rwsem);
937         put_uprobe(uprobe);
938
939         return ret;
940 }
941
942 /*
943  * uprobe_unregister - unregister a already registered probe.
944  * @inode: the file in which the probe has to be removed.
945  * @offset: offset from the start of the file.
946  * @uc: identify which probe if multiple probes are colocated.
947  */
948 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
949 {
950         struct uprobe *uprobe;
951
952         uprobe = find_uprobe(inode, offset);
953         if (WARN_ON(!uprobe))
954                 return;
955
956         down_write(&uprobe->register_rwsem);
957         __uprobe_unregister(uprobe, uc);
958         up_write(&uprobe->register_rwsem);
959         put_uprobe(uprobe);
960 }
961 EXPORT_SYMBOL_GPL(uprobe_unregister);
962
963 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
964 {
965         struct vm_area_struct *vma;
966         int err = 0;
967
968         down_read(&mm->mmap_sem);
969         for (vma = mm->mmap; vma; vma = vma->vm_next) {
970                 unsigned long vaddr;
971                 loff_t offset;
972
973                 if (!valid_vma(vma, false) ||
974                     file_inode(vma->vm_file) != uprobe->inode)
975                         continue;
976
977                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
978                 if (uprobe->offset <  offset ||
979                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
980                         continue;
981
982                 vaddr = offset_to_vaddr(vma, uprobe->offset);
983                 err |= remove_breakpoint(uprobe, mm, vaddr);
984         }
985         up_read(&mm->mmap_sem);
986
987         return err;
988 }
989
990 static struct rb_node *
991 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
992 {
993         struct rb_node *n = uprobes_tree.rb_node;
994
995         while (n) {
996                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
997
998                 if (inode < u->inode) {
999                         n = n->rb_left;
1000                 } else if (inode > u->inode) {
1001                         n = n->rb_right;
1002                 } else {
1003                         if (max < u->offset)
1004                                 n = n->rb_left;
1005                         else if (min > u->offset)
1006                                 n = n->rb_right;
1007                         else
1008                                 break;
1009                 }
1010         }
1011
1012         return n;
1013 }
1014
1015 /*
1016  * For a given range in vma, build a list of probes that need to be inserted.
1017  */
1018 static void build_probe_list(struct inode *inode,
1019                                 struct vm_area_struct *vma,
1020                                 unsigned long start, unsigned long end,
1021                                 struct list_head *head)
1022 {
1023         loff_t min, max;
1024         struct rb_node *n, *t;
1025         struct uprobe *u;
1026
1027         INIT_LIST_HEAD(head);
1028         min = vaddr_to_offset(vma, start);
1029         max = min + (end - start) - 1;
1030
1031         spin_lock(&uprobes_treelock);
1032         n = find_node_in_range(inode, min, max);
1033         if (n) {
1034                 for (t = n; t; t = rb_prev(t)) {
1035                         u = rb_entry(t, struct uprobe, rb_node);
1036                         if (u->inode != inode || u->offset < min)
1037                                 break;
1038                         list_add(&u->pending_list, head);
1039                         get_uprobe(u);
1040                 }
1041                 for (t = n; (t = rb_next(t)); ) {
1042                         u = rb_entry(t, struct uprobe, rb_node);
1043                         if (u->inode != inode || u->offset > max)
1044                                 break;
1045                         list_add(&u->pending_list, head);
1046                         get_uprobe(u);
1047                 }
1048         }
1049         spin_unlock(&uprobes_treelock);
1050 }
1051
1052 /*
1053  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054  *
1055  * Currently we ignore all errors and always return 0, the callers
1056  * can't handle the failure anyway.
1057  */
1058 int uprobe_mmap(struct vm_area_struct *vma)
1059 {
1060         struct list_head tmp_list;
1061         struct uprobe *uprobe, *u;
1062         struct inode *inode;
1063
1064         if (no_uprobe_events() || !valid_vma(vma, true))
1065                 return 0;
1066
1067         inode = file_inode(vma->vm_file);
1068         if (!inode)
1069                 return 0;
1070
1071         mutex_lock(uprobes_mmap_hash(inode));
1072         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1073         /*
1074          * We can race with uprobe_unregister(), this uprobe can be already
1075          * removed. But in this case filter_chain() must return false, all
1076          * consumers have gone away.
1077          */
1078         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1079                 if (!fatal_signal_pending(current) &&
1080                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1081                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1082                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1083                 }
1084                 put_uprobe(uprobe);
1085         }
1086         mutex_unlock(uprobes_mmap_hash(inode));
1087
1088         return 0;
1089 }
1090
1091 static bool
1092 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1093 {
1094         loff_t min, max;
1095         struct inode *inode;
1096         struct rb_node *n;
1097
1098         inode = file_inode(vma->vm_file);
1099
1100         min = vaddr_to_offset(vma, start);
1101         max = min + (end - start) - 1;
1102
1103         spin_lock(&uprobes_treelock);
1104         n = find_node_in_range(inode, min, max);
1105         spin_unlock(&uprobes_treelock);
1106
1107         return !!n;
1108 }
1109
1110 /*
1111  * Called in context of a munmap of a vma.
1112  */
1113 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114 {
1115         if (no_uprobe_events() || !valid_vma(vma, false))
1116                 return;
1117
1118         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1119                 return;
1120
1121         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1122              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1123                 return;
1124
1125         if (vma_has_uprobes(vma, start, end))
1126                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1127 }
1128
1129 /* Slot allocation for XOL */
1130 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1131 {
1132         struct vm_area_struct *vma;
1133         int ret;
1134
1135         if (down_write_killable(&mm->mmap_sem))
1136                 return -EINTR;
1137
1138         if (mm->uprobes_state.xol_area) {
1139                 ret = -EALREADY;
1140                 goto fail;
1141         }
1142
1143         if (!area->vaddr) {
1144                 /* Try to map as high as possible, this is only a hint. */
1145                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146                                                 PAGE_SIZE, 0, 0);
1147                 if (area->vaddr & ~PAGE_MASK) {
1148                         ret = area->vaddr;
1149                         goto fail;
1150                 }
1151         }
1152
1153         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1155                                 &area->xol_mapping);
1156         if (IS_ERR(vma)) {
1157                 ret = PTR_ERR(vma);
1158                 goto fail;
1159         }
1160
1161         ret = 0;
1162         smp_wmb();      /* pairs with get_xol_area() */
1163         mm->uprobes_state.xol_area = area;
1164  fail:
1165         up_write(&mm->mmap_sem);
1166
1167         return ret;
1168 }
1169
1170 static struct xol_area *__create_xol_area(unsigned long vaddr)
1171 {
1172         struct mm_struct *mm = current->mm;
1173         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1174         struct xol_area *area;
1175
1176         area = kmalloc(sizeof(*area), GFP_KERNEL);
1177         if (unlikely(!area))
1178                 goto out;
1179
1180         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1181         if (!area->bitmap)
1182                 goto free_area;
1183
1184         area->xol_mapping.name = "[uprobes]";
1185         area->xol_mapping.fault = NULL;
1186         area->xol_mapping.pages = area->pages;
1187         area->pages[0] = alloc_page(GFP_HIGHUSER);
1188         if (!area->pages[0])
1189                 goto free_bitmap;
1190         area->pages[1] = NULL;
1191
1192         area->vaddr = vaddr;
1193         init_waitqueue_head(&area->wq);
1194         /* Reserve the 1st slot for get_trampoline_vaddr() */
1195         set_bit(0, area->bitmap);
1196         atomic_set(&area->slot_count, 1);
1197         copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1198
1199         if (!xol_add_vma(mm, area))
1200                 return area;
1201
1202         __free_page(area->pages[0]);
1203  free_bitmap:
1204         kfree(area->bitmap);
1205  free_area:
1206         kfree(area);
1207  out:
1208         return NULL;
1209 }
1210
1211 /*
1212  * get_xol_area - Allocate process's xol_area if necessary.
1213  * This area will be used for storing instructions for execution out of line.
1214  *
1215  * Returns the allocated area or NULL.
1216  */
1217 static struct xol_area *get_xol_area(void)
1218 {
1219         struct mm_struct *mm = current->mm;
1220         struct xol_area *area;
1221
1222         if (!mm->uprobes_state.xol_area)
1223                 __create_xol_area(0);
1224
1225         area = mm->uprobes_state.xol_area;
1226         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1227         return area;
1228 }
1229
1230 /*
1231  * uprobe_clear_state - Free the area allocated for slots.
1232  */
1233 void uprobe_clear_state(struct mm_struct *mm)
1234 {
1235         struct xol_area *area = mm->uprobes_state.xol_area;
1236
1237         if (!area)
1238                 return;
1239
1240         put_page(area->pages[0]);
1241         kfree(area->bitmap);
1242         kfree(area);
1243 }
1244
1245 void uprobe_start_dup_mmap(void)
1246 {
1247         percpu_down_read(&dup_mmap_sem);
1248 }
1249
1250 void uprobe_end_dup_mmap(void)
1251 {
1252         percpu_up_read(&dup_mmap_sem);
1253 }
1254
1255 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1256 {
1257         newmm->uprobes_state.xol_area = NULL;
1258
1259         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1260                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1261                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1262                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1263         }
1264 }
1265
1266 /*
1267  *  - search for a free slot.
1268  */
1269 static unsigned long xol_take_insn_slot(struct xol_area *area)
1270 {
1271         unsigned long slot_addr;
1272         int slot_nr;
1273
1274         do {
1275                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1276                 if (slot_nr < UINSNS_PER_PAGE) {
1277                         if (!test_and_set_bit(slot_nr, area->bitmap))
1278                                 break;
1279
1280                         slot_nr = UINSNS_PER_PAGE;
1281                         continue;
1282                 }
1283                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1284         } while (slot_nr >= UINSNS_PER_PAGE);
1285
1286         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1287         atomic_inc(&area->slot_count);
1288
1289         return slot_addr;
1290 }
1291
1292 /*
1293  * xol_get_insn_slot - allocate a slot for xol.
1294  * Returns the allocated slot address or 0.
1295  */
1296 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1297 {
1298         struct xol_area *area;
1299         unsigned long xol_vaddr;
1300
1301         area = get_xol_area();
1302         if (!area)
1303                 return 0;
1304
1305         xol_vaddr = xol_take_insn_slot(area);
1306         if (unlikely(!xol_vaddr))
1307                 return 0;
1308
1309         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1310                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1311
1312         return xol_vaddr;
1313 }
1314
1315 /*
1316  * xol_free_insn_slot - If slot was earlier allocated by
1317  * @xol_get_insn_slot(), make the slot available for
1318  * subsequent requests.
1319  */
1320 static void xol_free_insn_slot(struct task_struct *tsk)
1321 {
1322         struct xol_area *area;
1323         unsigned long vma_end;
1324         unsigned long slot_addr;
1325
1326         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1327                 return;
1328
1329         slot_addr = tsk->utask->xol_vaddr;
1330         if (unlikely(!slot_addr))
1331                 return;
1332
1333         area = tsk->mm->uprobes_state.xol_area;
1334         vma_end = area->vaddr + PAGE_SIZE;
1335         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1336                 unsigned long offset;
1337                 int slot_nr;
1338
1339                 offset = slot_addr - area->vaddr;
1340                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1341                 if (slot_nr >= UINSNS_PER_PAGE)
1342                         return;
1343
1344                 clear_bit(slot_nr, area->bitmap);
1345                 atomic_dec(&area->slot_count);
1346                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1347                 if (waitqueue_active(&area->wq))
1348                         wake_up(&area->wq);
1349
1350                 tsk->utask->xol_vaddr = 0;
1351         }
1352 }
1353
1354 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1355                                   void *src, unsigned long len)
1356 {
1357         /* Initialize the slot */
1358         copy_to_page(page, vaddr, src, len);
1359
1360         /*
1361          * We probably need flush_icache_user_range() but it needs vma.
1362          * This should work on most of architectures by default. If
1363          * architecture needs to do something different it can define
1364          * its own version of the function.
1365          */
1366         flush_dcache_page(page);
1367 }
1368
1369 /**
1370  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1371  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372  * instruction.
1373  * Return the address of the breakpoint instruction.
1374  */
1375 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1376 {
1377         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1378 }
1379
1380 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1381 {
1382         struct uprobe_task *utask = current->utask;
1383
1384         if (unlikely(utask && utask->active_uprobe))
1385                 return utask->vaddr;
1386
1387         return instruction_pointer(regs);
1388 }
1389
1390 static struct return_instance *free_ret_instance(struct return_instance *ri)
1391 {
1392         struct return_instance *next = ri->next;
1393         put_uprobe(ri->uprobe);
1394         kfree(ri);
1395         return next;
1396 }
1397
1398 /*
1399  * Called with no locks held.
1400  * Called in context of a exiting or a exec-ing thread.
1401  */
1402 void uprobe_free_utask(struct task_struct *t)
1403 {
1404         struct uprobe_task *utask = t->utask;
1405         struct return_instance *ri;
1406
1407         if (!utask)
1408                 return;
1409
1410         if (utask->active_uprobe)
1411                 put_uprobe(utask->active_uprobe);
1412
1413         ri = utask->return_instances;
1414         while (ri)
1415                 ri = free_ret_instance(ri);
1416
1417         xol_free_insn_slot(t);
1418         kfree(utask);
1419         t->utask = NULL;
1420 }
1421
1422 /*
1423  * Allocate a uprobe_task object for the task if if necessary.
1424  * Called when the thread hits a breakpoint.
1425  *
1426  * Returns:
1427  * - pointer to new uprobe_task on success
1428  * - NULL otherwise
1429  */
1430 static struct uprobe_task *get_utask(void)
1431 {
1432         if (!current->utask)
1433                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1434         return current->utask;
1435 }
1436
1437 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1438 {
1439         struct uprobe_task *n_utask;
1440         struct return_instance **p, *o, *n;
1441
1442         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1443         if (!n_utask)
1444                 return -ENOMEM;
1445         t->utask = n_utask;
1446
1447         p = &n_utask->return_instances;
1448         for (o = o_utask->return_instances; o; o = o->next) {
1449                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1450                 if (!n)
1451                         return -ENOMEM;
1452
1453                 *n = *o;
1454                 get_uprobe(n->uprobe);
1455                 n->next = NULL;
1456
1457                 *p = n;
1458                 p = &n->next;
1459                 n_utask->depth++;
1460         }
1461
1462         return 0;
1463 }
1464
1465 static void uprobe_warn(struct task_struct *t, const char *msg)
1466 {
1467         pr_warn("uprobe: %s:%d failed to %s\n",
1468                         current->comm, current->pid, msg);
1469 }
1470
1471 static void dup_xol_work(struct callback_head *work)
1472 {
1473         if (current->flags & PF_EXITING)
1474                 return;
1475
1476         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1477                         !fatal_signal_pending(current))
1478                 uprobe_warn(current, "dup xol area");
1479 }
1480
1481 /*
1482  * Called in context of a new clone/fork from copy_process.
1483  */
1484 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1485 {
1486         struct uprobe_task *utask = current->utask;
1487         struct mm_struct *mm = current->mm;
1488         struct xol_area *area;
1489
1490         t->utask = NULL;
1491
1492         if (!utask || !utask->return_instances)
1493                 return;
1494
1495         if (mm == t->mm && !(flags & CLONE_VFORK))
1496                 return;
1497
1498         if (dup_utask(t, utask))
1499                 return uprobe_warn(t, "dup ret instances");
1500
1501         /* The task can fork() after dup_xol_work() fails */
1502         area = mm->uprobes_state.xol_area;
1503         if (!area)
1504                 return uprobe_warn(t, "dup xol area");
1505
1506         if (mm == t->mm)
1507                 return;
1508
1509         t->utask->dup_xol_addr = area->vaddr;
1510         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1511         task_work_add(t, &t->utask->dup_xol_work, true);
1512 }
1513
1514 /*
1515  * Current area->vaddr notion assume the trampoline address is always
1516  * equal area->vaddr.
1517  *
1518  * Returns -1 in case the xol_area is not allocated.
1519  */
1520 static unsigned long get_trampoline_vaddr(void)
1521 {
1522         struct xol_area *area;
1523         unsigned long trampoline_vaddr = -1;
1524
1525         area = current->mm->uprobes_state.xol_area;
1526         smp_read_barrier_depends();
1527         if (area)
1528                 trampoline_vaddr = area->vaddr;
1529
1530         return trampoline_vaddr;
1531 }
1532
1533 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1534                                         struct pt_regs *regs)
1535 {
1536         struct return_instance *ri = utask->return_instances;
1537         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1538
1539         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1540                 ri = free_ret_instance(ri);
1541                 utask->depth--;
1542         }
1543         utask->return_instances = ri;
1544 }
1545
1546 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1547 {
1548         struct return_instance *ri;
1549         struct uprobe_task *utask;
1550         unsigned long orig_ret_vaddr, trampoline_vaddr;
1551         bool chained;
1552
1553         if (!get_xol_area())
1554                 return;
1555
1556         utask = get_utask();
1557         if (!utask)
1558                 return;
1559
1560         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1561                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1562                                 " nestedness limit pid/tgid=%d/%d\n",
1563                                 current->pid, current->tgid);
1564                 return;
1565         }
1566
1567         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1568         if (!ri)
1569                 return;
1570
1571         trampoline_vaddr = get_trampoline_vaddr();
1572         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1573         if (orig_ret_vaddr == -1)
1574                 goto fail;
1575
1576         /* drop the entries invalidated by longjmp() */
1577         chained = (orig_ret_vaddr == trampoline_vaddr);
1578         cleanup_return_instances(utask, chained, regs);
1579
1580         /*
1581          * We don't want to keep trampoline address in stack, rather keep the
1582          * original return address of first caller thru all the consequent
1583          * instances. This also makes breakpoint unwrapping easier.
1584          */
1585         if (chained) {
1586                 if (!utask->return_instances) {
1587                         /*
1588                          * This situation is not possible. Likely we have an
1589                          * attack from user-space.
1590                          */
1591                         uprobe_warn(current, "handle tail call");
1592                         goto fail;
1593                 }
1594                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1595         }
1596
1597         ri->uprobe = get_uprobe(uprobe);
1598         ri->func = instruction_pointer(regs);
1599         ri->stack = user_stack_pointer(regs);
1600         ri->orig_ret_vaddr = orig_ret_vaddr;
1601         ri->chained = chained;
1602
1603         utask->depth++;
1604         ri->next = utask->return_instances;
1605         utask->return_instances = ri;
1606
1607         return;
1608  fail:
1609         kfree(ri);
1610 }
1611
1612 /* Prepare to single-step probed instruction out of line. */
1613 static int
1614 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1615 {
1616         struct uprobe_task *utask;
1617         unsigned long xol_vaddr;
1618         int err;
1619
1620         utask = get_utask();
1621         if (!utask)
1622                 return -ENOMEM;
1623
1624         xol_vaddr = xol_get_insn_slot(uprobe);
1625         if (!xol_vaddr)
1626                 return -ENOMEM;
1627
1628         utask->xol_vaddr = xol_vaddr;
1629         utask->vaddr = bp_vaddr;
1630
1631         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1632         if (unlikely(err)) {
1633                 xol_free_insn_slot(current);
1634                 return err;
1635         }
1636
1637         utask->active_uprobe = uprobe;
1638         utask->state = UTASK_SSTEP;
1639         return 0;
1640 }
1641
1642 /*
1643  * If we are singlestepping, then ensure this thread is not connected to
1644  * non-fatal signals until completion of singlestep.  When xol insn itself
1645  * triggers the signal,  restart the original insn even if the task is
1646  * already SIGKILL'ed (since coredump should report the correct ip).  This
1647  * is even more important if the task has a handler for SIGSEGV/etc, The
1648  * _same_ instruction should be repeated again after return from the signal
1649  * handler, and SSTEP can never finish in this case.
1650  */
1651 bool uprobe_deny_signal(void)
1652 {
1653         struct task_struct *t = current;
1654         struct uprobe_task *utask = t->utask;
1655
1656         if (likely(!utask || !utask->active_uprobe))
1657                 return false;
1658
1659         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1660
1661         if (signal_pending(t)) {
1662                 spin_lock_irq(&t->sighand->siglock);
1663                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1664                 spin_unlock_irq(&t->sighand->siglock);
1665
1666                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1667                         utask->state = UTASK_SSTEP_TRAPPED;
1668                         set_tsk_thread_flag(t, TIF_UPROBE);
1669                 }
1670         }
1671
1672         return true;
1673 }
1674
1675 static void mmf_recalc_uprobes(struct mm_struct *mm)
1676 {
1677         struct vm_area_struct *vma;
1678
1679         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1680                 if (!valid_vma(vma, false))
1681                         continue;
1682                 /*
1683                  * This is not strictly accurate, we can race with
1684                  * uprobe_unregister() and see the already removed
1685                  * uprobe if delete_uprobe() was not yet called.
1686                  * Or this uprobe can be filtered out.
1687                  */
1688                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1689                         return;
1690         }
1691
1692         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1693 }
1694
1695 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1696 {
1697         struct page *page;
1698         uprobe_opcode_t opcode;
1699         int result;
1700
1701         pagefault_disable();
1702         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1703         pagefault_enable();
1704
1705         if (likely(result == 0))
1706                 goto out;
1707
1708         /*
1709          * The NULL 'tsk' here ensures that any faults that occur here
1710          * will not be accounted to the task.  'mm' *is* current->mm,
1711          * but we treat this as a 'remote' access since it is
1712          * essentially a kernel access to the memory.
1713          */
1714         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1715                         NULL);
1716         if (result < 0)
1717                 return result;
1718
1719         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1720         put_page(page);
1721  out:
1722         /* This needs to return true for any variant of the trap insn */
1723         return is_trap_insn(&opcode);
1724 }
1725
1726 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1727 {
1728         struct mm_struct *mm = current->mm;
1729         struct uprobe *uprobe = NULL;
1730         struct vm_area_struct *vma;
1731
1732         down_read(&mm->mmap_sem);
1733         vma = find_vma(mm, bp_vaddr);
1734         if (vma && vma->vm_start <= bp_vaddr) {
1735                 if (valid_vma(vma, false)) {
1736                         struct inode *inode = file_inode(vma->vm_file);
1737                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1738
1739                         uprobe = find_uprobe(inode, offset);
1740                 }
1741
1742                 if (!uprobe)
1743                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1744         } else {
1745                 *is_swbp = -EFAULT;
1746         }
1747
1748         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1749                 mmf_recalc_uprobes(mm);
1750         up_read(&mm->mmap_sem);
1751
1752         return uprobe;
1753 }
1754
1755 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1756 {
1757         struct uprobe_consumer *uc;
1758         int remove = UPROBE_HANDLER_REMOVE;
1759         bool need_prep = false; /* prepare return uprobe, when needed */
1760
1761         down_read(&uprobe->register_rwsem);
1762         for (uc = uprobe->consumers; uc; uc = uc->next) {
1763                 int rc = 0;
1764
1765                 if (uc->handler) {
1766                         rc = uc->handler(uc, regs);
1767                         WARN(rc & ~UPROBE_HANDLER_MASK,
1768                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1769                 }
1770
1771                 if (uc->ret_handler)
1772                         need_prep = true;
1773
1774                 remove &= rc;
1775         }
1776
1777         if (need_prep && !remove)
1778                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1779
1780         if (remove && uprobe->consumers) {
1781                 WARN_ON(!uprobe_is_active(uprobe));
1782                 unapply_uprobe(uprobe, current->mm);
1783         }
1784         up_read(&uprobe->register_rwsem);
1785 }
1786
1787 static void
1788 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1789 {
1790         struct uprobe *uprobe = ri->uprobe;
1791         struct uprobe_consumer *uc;
1792
1793         down_read(&uprobe->register_rwsem);
1794         for (uc = uprobe->consumers; uc; uc = uc->next) {
1795                 if (uc->ret_handler)
1796                         uc->ret_handler(uc, ri->func, regs);
1797         }
1798         up_read(&uprobe->register_rwsem);
1799 }
1800
1801 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1802 {
1803         bool chained;
1804
1805         do {
1806                 chained = ri->chained;
1807                 ri = ri->next;  /* can't be NULL if chained */
1808         } while (chained);
1809
1810         return ri;
1811 }
1812
1813 static void handle_trampoline(struct pt_regs *regs)
1814 {
1815         struct uprobe_task *utask;
1816         struct return_instance *ri, *next;
1817         bool valid;
1818
1819         utask = current->utask;
1820         if (!utask)
1821                 goto sigill;
1822
1823         ri = utask->return_instances;
1824         if (!ri)
1825                 goto sigill;
1826
1827         do {
1828                 /*
1829                  * We should throw out the frames invalidated by longjmp().
1830                  * If this chain is valid, then the next one should be alive
1831                  * or NULL; the latter case means that nobody but ri->func
1832                  * could hit this trampoline on return. TODO: sigaltstack().
1833                  */
1834                 next = find_next_ret_chain(ri);
1835                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1836
1837                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1838                 do {
1839                         if (valid)
1840                                 handle_uretprobe_chain(ri, regs);
1841                         ri = free_ret_instance(ri);
1842                         utask->depth--;
1843                 } while (ri != next);
1844         } while (!valid);
1845
1846         utask->return_instances = ri;
1847         return;
1848
1849  sigill:
1850         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1851         force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1852
1853 }
1854
1855 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1856 {
1857         return false;
1858 }
1859
1860 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1861                                         struct pt_regs *regs)
1862 {
1863         return true;
1864 }
1865
1866 /*
1867  * Run handler and ask thread to singlestep.
1868  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1869  */
1870 static void handle_swbp(struct pt_regs *regs)
1871 {
1872         struct uprobe *uprobe;
1873         unsigned long bp_vaddr;
1874         int uninitialized_var(is_swbp);
1875
1876         bp_vaddr = uprobe_get_swbp_addr(regs);
1877         if (bp_vaddr == get_trampoline_vaddr())
1878                 return handle_trampoline(regs);
1879
1880         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1881         if (!uprobe) {
1882                 if (is_swbp > 0) {
1883                         /* No matching uprobe; signal SIGTRAP. */
1884                         send_sig(SIGTRAP, current, 0);
1885                 } else {
1886                         /*
1887                          * Either we raced with uprobe_unregister() or we can't
1888                          * access this memory. The latter is only possible if
1889                          * another thread plays with our ->mm. In both cases
1890                          * we can simply restart. If this vma was unmapped we
1891                          * can pretend this insn was not executed yet and get
1892                          * the (correct) SIGSEGV after restart.
1893                          */
1894                         instruction_pointer_set(regs, bp_vaddr);
1895                 }
1896                 return;
1897         }
1898
1899         /* change it in advance for ->handler() and restart */
1900         instruction_pointer_set(regs, bp_vaddr);
1901
1902         /*
1903          * TODO: move copy_insn/etc into _register and remove this hack.
1904          * After we hit the bp, _unregister + _register can install the
1905          * new and not-yet-analyzed uprobe at the same address, restart.
1906          */
1907         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1908         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1909                 goto out;
1910
1911         /* Tracing handlers use ->utask to communicate with fetch methods */
1912         if (!get_utask())
1913                 goto out;
1914
1915         if (arch_uprobe_ignore(&uprobe->arch, regs))
1916                 goto out;
1917
1918         handler_chain(uprobe, regs);
1919
1920         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1921                 goto out;
1922
1923         if (!pre_ssout(uprobe, regs, bp_vaddr))
1924                 return;
1925
1926         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1927 out:
1928         put_uprobe(uprobe);
1929 }
1930
1931 /*
1932  * Perform required fix-ups and disable singlestep.
1933  * Allow pending signals to take effect.
1934  */
1935 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1936 {
1937         struct uprobe *uprobe;
1938         int err = 0;
1939
1940         uprobe = utask->active_uprobe;
1941         if (utask->state == UTASK_SSTEP_ACK)
1942                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1943         else if (utask->state == UTASK_SSTEP_TRAPPED)
1944                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1945         else
1946                 WARN_ON_ONCE(1);
1947
1948         put_uprobe(uprobe);
1949         utask->active_uprobe = NULL;
1950         utask->state = UTASK_RUNNING;
1951         xol_free_insn_slot(current);
1952
1953         spin_lock_irq(&current->sighand->siglock);
1954         recalc_sigpending(); /* see uprobe_deny_signal() */
1955         spin_unlock_irq(&current->sighand->siglock);
1956
1957         if (unlikely(err)) {
1958                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1959                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1960         }
1961 }
1962
1963 /*
1964  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1965  * allows the thread to return from interrupt. After that handle_swbp()
1966  * sets utask->active_uprobe.
1967  *
1968  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1969  * and allows the thread to return from interrupt.
1970  *
1971  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1972  * uprobe_notify_resume().
1973  */
1974 void uprobe_notify_resume(struct pt_regs *regs)
1975 {
1976         struct uprobe_task *utask;
1977
1978         clear_thread_flag(TIF_UPROBE);
1979
1980         utask = current->utask;
1981         if (utask && utask->active_uprobe)
1982                 handle_singlestep(utask, regs);
1983         else
1984                 handle_swbp(regs);
1985 }
1986
1987 /*
1988  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1989  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1990  */
1991 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1992 {
1993         if (!current->mm)
1994                 return 0;
1995
1996         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1997             (!current->utask || !current->utask->return_instances))
1998                 return 0;
1999
2000         set_thread_flag(TIF_UPROBE);
2001         return 1;
2002 }
2003
2004 /*
2005  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2006  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2007  */
2008 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2009 {
2010         struct uprobe_task *utask = current->utask;
2011
2012         if (!current->mm || !utask || !utask->active_uprobe)
2013                 /* task is currently not uprobed */
2014                 return 0;
2015
2016         utask->state = UTASK_SSTEP_ACK;
2017         set_thread_flag(TIF_UPROBE);
2018         return 1;
2019 }
2020
2021 static struct notifier_block uprobe_exception_nb = {
2022         .notifier_call          = arch_uprobe_exception_notify,
2023         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2024 };
2025
2026 static int __init init_uprobes(void)
2027 {
2028         int i;
2029
2030         for (i = 0; i < UPROBES_HASH_SZ; i++)
2031                 mutex_init(&uprobes_mmap_mutex[i]);
2032
2033         if (percpu_init_rwsem(&dup_mmap_sem))
2034                 return -ENOMEM;
2035
2036         return register_die_notifier(&uprobe_exception_nb);
2037 }
2038 __initcall(init_uprobes);