ath10k: convert ath10k_pci_reg_read/write32() to take struct ath10k
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203         struct zone *zone = page_zone(virt_to_page(ti));
204
205         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210         account_kernel_stack(tsk->stack, -1);
211         arch_release_thread_info(tsk->stack);
212         free_thread_info(tsk->stack);
213         rt_mutex_debug_task_free(tsk);
214         ftrace_graph_exit_task(tsk);
215         put_seccomp_filter(tsk);
216         arch_release_task_struct(tsk);
217         free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223         taskstats_tgid_free(sig);
224         sched_autogroup_exit(sig);
225         kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230         if (atomic_dec_and_test(&sig->sigcnt))
231                 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236         WARN_ON(!tsk->exit_state);
237         WARN_ON(atomic_read(&tsk->usage));
238         WARN_ON(tsk == current);
239
240         security_task_free(tsk);
241         exit_creds(tsk);
242         delayacct_tsk_free(tsk);
243         put_signal_struct(tsk->signal);
244
245         if (!profile_handoff_task(tsk))
246                 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
257 #endif
258         /* create a slab on which task_structs can be allocated */
259         task_struct_cachep =
260                 kmem_cache_create("task_struct", sizeof(struct task_struct),
261                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264         /* do the arch specific task caches init */
265         arch_task_cache_init();
266
267         /*
268          * The default maximum number of threads is set to a safe
269          * value: the thread structures can take up at most half
270          * of memory.
271          */
272         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274         /*
275          * we need to allow at least 20 threads to boot a system
276          */
277         if (max_threads < 20)
278                 max_threads = 20;
279
280         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282         init_task.signal->rlim[RLIMIT_SIGPENDING] =
283                 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287                                                struct task_struct *src)
288 {
289         *dst = *src;
290         return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295         struct task_struct *tsk;
296         struct thread_info *ti;
297         unsigned long *stackend;
298         int node = tsk_fork_get_node(orig);
299         int err;
300
301         tsk = alloc_task_struct_node(node);
302         if (!tsk)
303                 return NULL;
304
305         ti = alloc_thread_info_node(tsk, node);
306         if (!ti)
307                 goto free_tsk;
308
309         err = arch_dup_task_struct(tsk, orig);
310         if (err)
311                 goto free_ti;
312
313         tsk->stack = ti;
314
315         setup_thread_stack(tsk, orig);
316         clear_user_return_notifier(tsk);
317         clear_tsk_need_resched(tsk);
318         stackend = end_of_stack(tsk);
319         *stackend = STACK_END_MAGIC;    /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322         tsk->stack_canary = get_random_int();
323 #endif
324
325         /*
326          * One for us, one for whoever does the "release_task()" (usually
327          * parent)
328          */
329         atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331         tsk->btrace_seq = 0;
332 #endif
333         tsk->splice_pipe = NULL;
334         tsk->task_frag.page = NULL;
335
336         account_kernel_stack(ti, 1);
337
338         return tsk;
339
340 free_ti:
341         free_thread_info(ti);
342 free_tsk:
343         free_task_struct(tsk);
344         return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351         struct rb_node **rb_link, *rb_parent;
352         int retval;
353         unsigned long charge;
354         struct mempolicy *pol;
355
356         uprobe_start_dup_mmap();
357         down_write(&oldmm->mmap_sem);
358         flush_cache_dup_mm(oldmm);
359         uprobe_dup_mmap(oldmm, mm);
360         /*
361          * Not linked in yet - no deadlock potential:
362          */
363         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365         mm->locked_vm = 0;
366         mm->mmap = NULL;
367         mm->mmap_cache = NULL;
368         mm->map_count = 0;
369         cpumask_clear(mm_cpumask(mm));
370         mm->mm_rb = RB_ROOT;
371         rb_link = &mm->mm_rb.rb_node;
372         rb_parent = NULL;
373         pprev = &mm->mmap;
374         retval = ksm_fork(mm, oldmm);
375         if (retval)
376                 goto out;
377         retval = khugepaged_fork(mm, oldmm);
378         if (retval)
379                 goto out;
380
381         prev = NULL;
382         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383                 struct file *file;
384
385                 if (mpnt->vm_flags & VM_DONTCOPY) {
386                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387                                                         -vma_pages(mpnt));
388                         continue;
389                 }
390                 charge = 0;
391                 if (mpnt->vm_flags & VM_ACCOUNT) {
392                         unsigned long len = vma_pages(mpnt);
393
394                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395                                 goto fail_nomem;
396                         charge = len;
397                 }
398                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399                 if (!tmp)
400                         goto fail_nomem;
401                 *tmp = *mpnt;
402                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403                 pol = mpol_dup(vma_policy(mpnt));
404                 retval = PTR_ERR(pol);
405                 if (IS_ERR(pol))
406                         goto fail_nomem_policy;
407                 vma_set_policy(tmp, pol);
408                 tmp->vm_mm = mm;
409                 if (anon_vma_fork(tmp, mpnt))
410                         goto fail_nomem_anon_vma_fork;
411                 tmp->vm_flags &= ~VM_LOCKED;
412                 tmp->vm_next = tmp->vm_prev = NULL;
413                 file = tmp->vm_file;
414                 if (file) {
415                         struct inode *inode = file_inode(file);
416                         struct address_space *mapping = file->f_mapping;
417
418                         get_file(file);
419                         if (tmp->vm_flags & VM_DENYWRITE)
420                                 atomic_dec(&inode->i_writecount);
421                         mutex_lock(&mapping->i_mmap_mutex);
422                         if (tmp->vm_flags & VM_SHARED)
423                                 mapping->i_mmap_writable++;
424                         flush_dcache_mmap_lock(mapping);
425                         /* insert tmp into the share list, just after mpnt */
426                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427                                 vma_nonlinear_insert(tmp,
428                                                 &mapping->i_mmap_nonlinear);
429                         else
430                                 vma_interval_tree_insert_after(tmp, mpnt,
431                                                         &mapping->i_mmap);
432                         flush_dcache_mmap_unlock(mapping);
433                         mutex_unlock(&mapping->i_mmap_mutex);
434                 }
435
436                 /*
437                  * Clear hugetlb-related page reserves for children. This only
438                  * affects MAP_PRIVATE mappings. Faults generated by the child
439                  * are not guaranteed to succeed, even if read-only
440                  */
441                 if (is_vm_hugetlb_page(tmp))
442                         reset_vma_resv_huge_pages(tmp);
443
444                 /*
445                  * Link in the new vma and copy the page table entries.
446                  */
447                 *pprev = tmp;
448                 pprev = &tmp->vm_next;
449                 tmp->vm_prev = prev;
450                 prev = tmp;
451
452                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
453                 rb_link = &tmp->vm_rb.rb_right;
454                 rb_parent = &tmp->vm_rb;
455
456                 mm->map_count++;
457                 retval = copy_page_range(mm, oldmm, mpnt);
458
459                 if (tmp->vm_ops && tmp->vm_ops->open)
460                         tmp->vm_ops->open(tmp);
461
462                 if (retval)
463                         goto out;
464         }
465         /* a new mm has just been created */
466         arch_dup_mmap(oldmm, mm);
467         retval = 0;
468 out:
469         up_write(&mm->mmap_sem);
470         flush_tlb_mm(oldmm);
471         up_write(&oldmm->mmap_sem);
472         uprobe_end_dup_mmap();
473         return retval;
474 fail_nomem_anon_vma_fork:
475         mpol_put(pol);
476 fail_nomem_policy:
477         kmem_cache_free(vm_area_cachep, tmp);
478 fail_nomem:
479         retval = -ENOMEM;
480         vm_unacct_memory(charge);
481         goto out;
482 }
483
484 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 {
486         mm->pgd = pgd_alloc(mm);
487         if (unlikely(!mm->pgd))
488                 return -ENOMEM;
489         return 0;
490 }
491
492 static inline void mm_free_pgd(struct mm_struct *mm)
493 {
494         pgd_free(mm, mm->pgd);
495 }
496 #else
497 #define dup_mmap(mm, oldmm)     (0)
498 #define mm_alloc_pgd(mm)        (0)
499 #define mm_free_pgd(mm)
500 #endif /* CONFIG_MMU */
501
502 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503
504 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
505 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
506
507 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508
509 static int __init coredump_filter_setup(char *s)
510 {
511         default_dump_filter =
512                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
513                 MMF_DUMP_FILTER_MASK;
514         return 1;
515 }
516
517 __setup("coredump_filter=", coredump_filter_setup);
518
519 #include <linux/init_task.h>
520
521 static void mm_init_aio(struct mm_struct *mm)
522 {
523 #ifdef CONFIG_AIO
524         spin_lock_init(&mm->ioctx_lock);
525         INIT_HLIST_HEAD(&mm->ioctx_list);
526 #endif
527 }
528
529 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 {
531         atomic_set(&mm->mm_users, 1);
532         atomic_set(&mm->mm_count, 1);
533         init_rwsem(&mm->mmap_sem);
534         INIT_LIST_HEAD(&mm->mmlist);
535         mm->flags = (current->mm) ?
536                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
537         mm->core_state = NULL;
538         mm->nr_ptes = 0;
539         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
540         spin_lock_init(&mm->page_table_lock);
541         mm_init_aio(mm);
542         mm_init_owner(mm, p);
543
544         if (likely(!mm_alloc_pgd(mm))) {
545                 mm->def_flags = 0;
546                 mmu_notifier_mm_init(mm);
547                 return mm;
548         }
549
550         free_mm(mm);
551         return NULL;
552 }
553
554 static void check_mm(struct mm_struct *mm)
555 {
556         int i;
557
558         for (i = 0; i < NR_MM_COUNTERS; i++) {
559                 long x = atomic_long_read(&mm->rss_stat.count[i]);
560
561                 if (unlikely(x))
562                         printk(KERN_ALERT "BUG: Bad rss-counter state "
563                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
564         }
565
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567         VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
569 }
570
571 /*
572  * Allocate and initialize an mm_struct.
573  */
574 struct mm_struct *mm_alloc(void)
575 {
576         struct mm_struct *mm;
577
578         mm = allocate_mm();
579         if (!mm)
580                 return NULL;
581
582         memset(mm, 0, sizeof(*mm));
583         mm_init_cpumask(mm);
584         return mm_init(mm, current);
585 }
586
587 /*
588  * Called when the last reference to the mm
589  * is dropped: either by a lazy thread or by
590  * mmput. Free the page directory and the mm.
591  */
592 void __mmdrop(struct mm_struct *mm)
593 {
594         BUG_ON(mm == &init_mm);
595         mm_free_pgd(mm);
596         destroy_context(mm);
597         mmu_notifier_mm_destroy(mm);
598         check_mm(mm);
599         free_mm(mm);
600 }
601 EXPORT_SYMBOL_GPL(__mmdrop);
602
603 /*
604  * Decrement the use count and release all resources for an mm.
605  */
606 void mmput(struct mm_struct *mm)
607 {
608         might_sleep();
609
610         if (atomic_dec_and_test(&mm->mm_users)) {
611                 uprobe_clear_state(mm);
612                 exit_aio(mm);
613                 ksm_exit(mm);
614                 khugepaged_exit(mm); /* must run before exit_mmap */
615                 exit_mmap(mm);
616                 set_mm_exe_file(mm, NULL);
617                 if (!list_empty(&mm->mmlist)) {
618                         spin_lock(&mmlist_lock);
619                         list_del(&mm->mmlist);
620                         spin_unlock(&mmlist_lock);
621                 }
622                 if (mm->binfmt)
623                         module_put(mm->binfmt->module);
624                 mmdrop(mm);
625         }
626 }
627 EXPORT_SYMBOL_GPL(mmput);
628
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
630 {
631         if (new_exe_file)
632                 get_file(new_exe_file);
633         if (mm->exe_file)
634                 fput(mm->exe_file);
635         mm->exe_file = new_exe_file;
636 }
637
638 struct file *get_mm_exe_file(struct mm_struct *mm)
639 {
640         struct file *exe_file;
641
642         /* We need mmap_sem to protect against races with removal of exe_file */
643         down_read(&mm->mmap_sem);
644         exe_file = mm->exe_file;
645         if (exe_file)
646                 get_file(exe_file);
647         up_read(&mm->mmap_sem);
648         return exe_file;
649 }
650
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
652 {
653         /* It's safe to write the exe_file pointer without exe_file_lock because
654          * this is called during fork when the task is not yet in /proc */
655         newmm->exe_file = get_mm_exe_file(oldmm);
656 }
657
658 /**
659  * get_task_mm - acquire a reference to the task's mm
660  *
661  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
662  * this kernel workthread has transiently adopted a user mm with use_mm,
663  * to do its AIO) is not set and if so returns a reference to it, after
664  * bumping up the use count.  User must release the mm via mmput()
665  * after use.  Typically used by /proc and ptrace.
666  */
667 struct mm_struct *get_task_mm(struct task_struct *task)
668 {
669         struct mm_struct *mm;
670
671         task_lock(task);
672         mm = task->mm;
673         if (mm) {
674                 if (task->flags & PF_KTHREAD)
675                         mm = NULL;
676                 else
677                         atomic_inc(&mm->mm_users);
678         }
679         task_unlock(task);
680         return mm;
681 }
682 EXPORT_SYMBOL_GPL(get_task_mm);
683
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
685 {
686         struct mm_struct *mm;
687         int err;
688
689         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
690         if (err)
691                 return ERR_PTR(err);
692
693         mm = get_task_mm(task);
694         if (mm && mm != current->mm &&
695                         !ptrace_may_access(task, mode)) {
696                 mmput(mm);
697                 mm = ERR_PTR(-EACCES);
698         }
699         mutex_unlock(&task->signal->cred_guard_mutex);
700
701         return mm;
702 }
703
704 static void complete_vfork_done(struct task_struct *tsk)
705 {
706         struct completion *vfork;
707
708         task_lock(tsk);
709         vfork = tsk->vfork_done;
710         if (likely(vfork)) {
711                 tsk->vfork_done = NULL;
712                 complete(vfork);
713         }
714         task_unlock(tsk);
715 }
716
717 static int wait_for_vfork_done(struct task_struct *child,
718                                 struct completion *vfork)
719 {
720         int killed;
721
722         freezer_do_not_count();
723         killed = wait_for_completion_killable(vfork);
724         freezer_count();
725
726         if (killed) {
727                 task_lock(child);
728                 child->vfork_done = NULL;
729                 task_unlock(child);
730         }
731
732         put_task_struct(child);
733         return killed;
734 }
735
736 /* Please note the differences between mmput and mm_release.
737  * mmput is called whenever we stop holding onto a mm_struct,
738  * error success whatever.
739  *
740  * mm_release is called after a mm_struct has been removed
741  * from the current process.
742  *
743  * This difference is important for error handling, when we
744  * only half set up a mm_struct for a new process and need to restore
745  * the old one.  Because we mmput the new mm_struct before
746  * restoring the old one. . .
747  * Eric Biederman 10 January 1998
748  */
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
750 {
751         /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753         if (unlikely(tsk->robust_list)) {
754                 exit_robust_list(tsk);
755                 tsk->robust_list = NULL;
756         }
757 #ifdef CONFIG_COMPAT
758         if (unlikely(tsk->compat_robust_list)) {
759                 compat_exit_robust_list(tsk);
760                 tsk->compat_robust_list = NULL;
761         }
762 #endif
763         if (unlikely(!list_empty(&tsk->pi_state_list)))
764                 exit_pi_state_list(tsk);
765 #endif
766
767         uprobe_free_utask(tsk);
768
769         /* Get rid of any cached register state */
770         deactivate_mm(tsk, mm);
771
772         /*
773          * If we're exiting normally, clear a user-space tid field if
774          * requested.  We leave this alone when dying by signal, to leave
775          * the value intact in a core dump, and to save the unnecessary
776          * trouble, say, a killed vfork parent shouldn't touch this mm.
777          * Userland only wants this done for a sys_exit.
778          */
779         if (tsk->clear_child_tid) {
780                 if (!(tsk->flags & PF_SIGNALED) &&
781                     atomic_read(&mm->mm_users) > 1) {
782                         /*
783                          * We don't check the error code - if userspace has
784                          * not set up a proper pointer then tough luck.
785                          */
786                         put_user(0, tsk->clear_child_tid);
787                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788                                         1, NULL, NULL, 0);
789                 }
790                 tsk->clear_child_tid = NULL;
791         }
792
793         /*
794          * All done, finally we can wake up parent and return this mm to him.
795          * Also kthread_stop() uses this completion for synchronization.
796          */
797         if (tsk->vfork_done)
798                 complete_vfork_done(tsk);
799 }
800
801 /*
802  * Allocate a new mm structure and copy contents from the
803  * mm structure of the passed in task structure.
804  */
805 struct mm_struct *dup_mm(struct task_struct *tsk)
806 {
807         struct mm_struct *mm, *oldmm = current->mm;
808         int err;
809
810         if (!oldmm)
811                 return NULL;
812
813         mm = allocate_mm();
814         if (!mm)
815                 goto fail_nomem;
816
817         memcpy(mm, oldmm, sizeof(*mm));
818         mm_init_cpumask(mm);
819
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821         mm->pmd_huge_pte = NULL;
822 #endif
823 #ifdef CONFIG_NUMA_BALANCING
824         mm->first_nid = NUMA_PTE_SCAN_INIT;
825 #endif
826         if (!mm_init(mm, tsk))
827                 goto fail_nomem;
828
829         if (init_new_context(tsk, mm))
830                 goto fail_nocontext;
831
832         dup_mm_exe_file(oldmm, mm);
833
834         err = dup_mmap(mm, oldmm);
835         if (err)
836                 goto free_pt;
837
838         mm->hiwater_rss = get_mm_rss(mm);
839         mm->hiwater_vm = mm->total_vm;
840
841         if (mm->binfmt && !try_module_get(mm->binfmt->module))
842                 goto free_pt;
843
844         return mm;
845
846 free_pt:
847         /* don't put binfmt in mmput, we haven't got module yet */
848         mm->binfmt = NULL;
849         mmput(mm);
850
851 fail_nomem:
852         return NULL;
853
854 fail_nocontext:
855         /*
856          * If init_new_context() failed, we cannot use mmput() to free the mm
857          * because it calls destroy_context()
858          */
859         mm_free_pgd(mm);
860         free_mm(mm);
861         return NULL;
862 }
863
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
865 {
866         struct mm_struct *mm, *oldmm;
867         int retval;
868
869         tsk->min_flt = tsk->maj_flt = 0;
870         tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
874
875         tsk->mm = NULL;
876         tsk->active_mm = NULL;
877
878         /*
879          * Are we cloning a kernel thread?
880          *
881          * We need to steal a active VM for that..
882          */
883         oldmm = current->mm;
884         if (!oldmm)
885                 return 0;
886
887         if (clone_flags & CLONE_VM) {
888                 atomic_inc(&oldmm->mm_users);
889                 mm = oldmm;
890                 goto good_mm;
891         }
892
893         retval = -ENOMEM;
894         mm = dup_mm(tsk);
895         if (!mm)
896                 goto fail_nomem;
897
898 good_mm:
899         tsk->mm = mm;
900         tsk->active_mm = mm;
901         return 0;
902
903 fail_nomem:
904         return retval;
905 }
906
907 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
908 {
909         struct fs_struct *fs = current->fs;
910         if (clone_flags & CLONE_FS) {
911                 /* tsk->fs is already what we want */
912                 spin_lock(&fs->lock);
913                 if (fs->in_exec) {
914                         spin_unlock(&fs->lock);
915                         return -EAGAIN;
916                 }
917                 fs->users++;
918                 spin_unlock(&fs->lock);
919                 return 0;
920         }
921         tsk->fs = copy_fs_struct(fs);
922         if (!tsk->fs)
923                 return -ENOMEM;
924         return 0;
925 }
926
927 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
928 {
929         struct files_struct *oldf, *newf;
930         int error = 0;
931
932         /*
933          * A background process may not have any files ...
934          */
935         oldf = current->files;
936         if (!oldf)
937                 goto out;
938
939         if (clone_flags & CLONE_FILES) {
940                 atomic_inc(&oldf->count);
941                 goto out;
942         }
943
944         newf = dup_fd(oldf, &error);
945         if (!newf)
946                 goto out;
947
948         tsk->files = newf;
949         error = 0;
950 out:
951         return error;
952 }
953
954 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
955 {
956 #ifdef CONFIG_BLOCK
957         struct io_context *ioc = current->io_context;
958         struct io_context *new_ioc;
959
960         if (!ioc)
961                 return 0;
962         /*
963          * Share io context with parent, if CLONE_IO is set
964          */
965         if (clone_flags & CLONE_IO) {
966                 ioc_task_link(ioc);
967                 tsk->io_context = ioc;
968         } else if (ioprio_valid(ioc->ioprio)) {
969                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
970                 if (unlikely(!new_ioc))
971                         return -ENOMEM;
972
973                 new_ioc->ioprio = ioc->ioprio;
974                 put_io_context(new_ioc);
975         }
976 #endif
977         return 0;
978 }
979
980 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
981 {
982         struct sighand_struct *sig;
983
984         if (clone_flags & CLONE_SIGHAND) {
985                 atomic_inc(&current->sighand->count);
986                 return 0;
987         }
988         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989         rcu_assign_pointer(tsk->sighand, sig);
990         if (!sig)
991                 return -ENOMEM;
992         atomic_set(&sig->count, 1);
993         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
994         return 0;
995 }
996
997 void __cleanup_sighand(struct sighand_struct *sighand)
998 {
999         if (atomic_dec_and_test(&sighand->count)) {
1000                 signalfd_cleanup(sighand);
1001                 kmem_cache_free(sighand_cachep, sighand);
1002         }
1003 }
1004
1005
1006 /*
1007  * Initialize POSIX timer handling for a thread group.
1008  */
1009 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1010 {
1011         unsigned long cpu_limit;
1012
1013         /* Thread group counters. */
1014         thread_group_cputime_init(sig);
1015
1016         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1017         if (cpu_limit != RLIM_INFINITY) {
1018                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1019                 sig->cputimer.running = 1;
1020         }
1021
1022         /* The timer lists. */
1023         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1024         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1025         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1026 }
1027
1028 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1029 {
1030         struct signal_struct *sig;
1031
1032         if (clone_flags & CLONE_THREAD)
1033                 return 0;
1034
1035         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1036         tsk->signal = sig;
1037         if (!sig)
1038                 return -ENOMEM;
1039
1040         sig->nr_threads = 1;
1041         atomic_set(&sig->live, 1);
1042         atomic_set(&sig->sigcnt, 1);
1043         init_waitqueue_head(&sig->wait_chldexit);
1044         sig->curr_target = tsk;
1045         init_sigpending(&sig->shared_pending);
1046         INIT_LIST_HEAD(&sig->posix_timers);
1047
1048         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049         sig->real_timer.function = it_real_fn;
1050
1051         task_lock(current->group_leader);
1052         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053         task_unlock(current->group_leader);
1054
1055         posix_cpu_timers_init_group(sig);
1056
1057         tty_audit_fork(sig);
1058         sched_autogroup_fork(sig);
1059
1060 #ifdef CONFIG_CGROUPS
1061         init_rwsem(&sig->group_rwsem);
1062 #endif
1063
1064         sig->oom_score_adj = current->signal->oom_score_adj;
1065         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066
1067         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068                                    current->signal->is_child_subreaper;
1069
1070         mutex_init(&sig->cred_guard_mutex);
1071
1072         return 0;
1073 }
1074
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077         unsigned long new_flags = p->flags;
1078
1079         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080         new_flags |= PF_FORKNOEXEC;
1081         p->flags = new_flags;
1082 }
1083
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086         current->clear_child_tid = tidptr;
1087
1088         return task_pid_vnr(current);
1089 }
1090
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093         raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095         plist_head_init(&p->pi_waiters);
1096         p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103         mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106
1107 /*
1108  * Initialize POSIX timer handling for a single task.
1109  */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112         tsk->cputime_expires.prof_exp = 0;
1113         tsk->cputime_expires.virt_exp = 0;
1114         tsk->cputime_expires.sched_exp = 0;
1115         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119
1120 static inline void
1121 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1122 {
1123          task->pids[type].pid = pid;
1124 }
1125
1126 /*
1127  * This creates a new process as a copy of the old one,
1128  * but does not actually start it yet.
1129  *
1130  * It copies the registers, and all the appropriate
1131  * parts of the process environment (as per the clone
1132  * flags). The actual kick-off is left to the caller.
1133  */
1134 static struct task_struct *copy_process(unsigned long clone_flags,
1135                                         unsigned long stack_start,
1136                                         unsigned long stack_size,
1137                                         int __user *child_tidptr,
1138                                         struct pid *pid,
1139                                         int trace)
1140 {
1141         int retval;
1142         struct task_struct *p;
1143
1144         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1145                 return ERR_PTR(-EINVAL);
1146
1147         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1148                 return ERR_PTR(-EINVAL);
1149
1150         /*
1151          * Thread groups must share signals as well, and detached threads
1152          * can only be started up within the thread group.
1153          */
1154         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1155                 return ERR_PTR(-EINVAL);
1156
1157         /*
1158          * Shared signal handlers imply shared VM. By way of the above,
1159          * thread groups also imply shared VM. Blocking this case allows
1160          * for various simplifications in other code.
1161          */
1162         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1163                 return ERR_PTR(-EINVAL);
1164
1165         /*
1166          * Siblings of global init remain as zombies on exit since they are
1167          * not reaped by their parent (swapper). To solve this and to avoid
1168          * multi-rooted process trees, prevent global and container-inits
1169          * from creating siblings.
1170          */
1171         if ((clone_flags & CLONE_PARENT) &&
1172                                 current->signal->flags & SIGNAL_UNKILLABLE)
1173                 return ERR_PTR(-EINVAL);
1174
1175         /*
1176          * If the new process will be in a different pid namespace
1177          * don't allow the creation of threads.
1178          */
1179         if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1180             (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1181                 return ERR_PTR(-EINVAL);
1182
1183         retval = security_task_create(clone_flags);
1184         if (retval)
1185                 goto fork_out;
1186
1187         retval = -ENOMEM;
1188         p = dup_task_struct(current);
1189         if (!p)
1190                 goto fork_out;
1191
1192         ftrace_graph_init_task(p);
1193         get_seccomp_filter(p);
1194
1195         rt_mutex_init_task(p);
1196
1197 #ifdef CONFIG_PROVE_LOCKING
1198         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1199         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1200 #endif
1201         retval = -EAGAIN;
1202         if (atomic_read(&p->real_cred->user->processes) >=
1203                         task_rlimit(p, RLIMIT_NPROC)) {
1204                 if (p->real_cred->user != INIT_USER &&
1205                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1206                         goto bad_fork_free;
1207         }
1208         current->flags &= ~PF_NPROC_EXCEEDED;
1209
1210         retval = copy_creds(p, clone_flags);
1211         if (retval < 0)
1212                 goto bad_fork_free;
1213
1214         /*
1215          * If multiple threads are within copy_process(), then this check
1216          * triggers too late. This doesn't hurt, the check is only there
1217          * to stop root fork bombs.
1218          */
1219         retval = -EAGAIN;
1220         if (nr_threads >= max_threads)
1221                 goto bad_fork_cleanup_count;
1222
1223         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1224                 goto bad_fork_cleanup_count;
1225
1226         p->did_exec = 0;
1227         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1228         copy_flags(clone_flags, p);
1229         INIT_LIST_HEAD(&p->children);
1230         INIT_LIST_HEAD(&p->sibling);
1231         rcu_copy_process(p);
1232         p->vfork_done = NULL;
1233         spin_lock_init(&p->alloc_lock);
1234
1235         init_sigpending(&p->pending);
1236
1237         p->utime = p->stime = p->gtime = 0;
1238         p->utimescaled = p->stimescaled = 0;
1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1240         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1241 #endif
1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1243         seqlock_init(&p->vtime_seqlock);
1244         p->vtime_snap = 0;
1245         p->vtime_snap_whence = VTIME_SLEEPING;
1246 #endif
1247
1248 #if defined(SPLIT_RSS_COUNTING)
1249         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251
1252         p->default_timer_slack_ns = current->timer_slack_ns;
1253
1254         task_io_accounting_init(&p->ioac);
1255         acct_clear_integrals(p);
1256
1257         posix_cpu_timers_init(p);
1258
1259         do_posix_clock_monotonic_gettime(&p->start_time);
1260         p->real_start_time = p->start_time;
1261         monotonic_to_bootbased(&p->real_start_time);
1262         p->io_context = NULL;
1263         p->audit_context = NULL;
1264         if (clone_flags & CLONE_THREAD)
1265                 threadgroup_change_begin(current);
1266         cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268         p->mempolicy = mpol_dup(p->mempolicy);
1269         if (IS_ERR(p->mempolicy)) {
1270                 retval = PTR_ERR(p->mempolicy);
1271                 p->mempolicy = NULL;
1272                 goto bad_fork_cleanup_cgroup;
1273         }
1274         mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279         seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282         p->irq_events = 0;
1283         p->hardirqs_enabled = 0;
1284         p->hardirq_enable_ip = 0;
1285         p->hardirq_enable_event = 0;
1286         p->hardirq_disable_ip = _THIS_IP_;
1287         p->hardirq_disable_event = 0;
1288         p->softirqs_enabled = 1;
1289         p->softirq_enable_ip = _THIS_IP_;
1290         p->softirq_enable_event = 0;
1291         p->softirq_disable_ip = 0;
1292         p->softirq_disable_event = 0;
1293         p->hardirq_context = 0;
1294         p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297         p->lockdep_depth = 0; /* no locks held yet */
1298         p->curr_chain_key = 0;
1299         p->lockdep_recursion = 0;
1300 #endif
1301
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303         p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_MEMCG
1306         p->memcg_batch.do_batch = 0;
1307         p->memcg_batch.memcg = NULL;
1308 #endif
1309 #ifdef CONFIG_BCACHE
1310         p->sequential_io        = 0;
1311         p->sequential_io_avg    = 0;
1312 #endif
1313
1314         /* Perform scheduler related setup. Assign this task to a CPU. */
1315         sched_fork(p);
1316
1317         retval = perf_event_init_task(p);
1318         if (retval)
1319                 goto bad_fork_cleanup_policy;
1320         retval = audit_alloc(p);
1321         if (retval)
1322                 goto bad_fork_cleanup_policy;
1323         /* copy all the process information */
1324         retval = copy_semundo(clone_flags, p);
1325         if (retval)
1326                 goto bad_fork_cleanup_audit;
1327         retval = copy_files(clone_flags, p);
1328         if (retval)
1329                 goto bad_fork_cleanup_semundo;
1330         retval = copy_fs(clone_flags, p);
1331         if (retval)
1332                 goto bad_fork_cleanup_files;
1333         retval = copy_sighand(clone_flags, p);
1334         if (retval)
1335                 goto bad_fork_cleanup_fs;
1336         retval = copy_signal(clone_flags, p);
1337         if (retval)
1338                 goto bad_fork_cleanup_sighand;
1339         retval = copy_mm(clone_flags, p);
1340         if (retval)
1341                 goto bad_fork_cleanup_signal;
1342         retval = copy_namespaces(clone_flags, p);
1343         if (retval)
1344                 goto bad_fork_cleanup_mm;
1345         retval = copy_io(clone_flags, p);
1346         if (retval)
1347                 goto bad_fork_cleanup_namespaces;
1348         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1349         if (retval)
1350                 goto bad_fork_cleanup_io;
1351
1352         if (pid != &init_struct_pid) {
1353                 retval = -ENOMEM;
1354                 pid = alloc_pid(p->nsproxy->pid_ns);
1355                 if (!pid)
1356                         goto bad_fork_cleanup_io;
1357         }
1358
1359         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1360         /*
1361          * Clear TID on mm_release()?
1362          */
1363         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1364 #ifdef CONFIG_BLOCK
1365         p->plug = NULL;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368         p->robust_list = NULL;
1369 #ifdef CONFIG_COMPAT
1370         p->compat_robust_list = NULL;
1371 #endif
1372         INIT_LIST_HEAD(&p->pi_state_list);
1373         p->pi_state_cache = NULL;
1374 #endif
1375         uprobe_copy_process(p);
1376         /*
1377          * sigaltstack should be cleared when sharing the same VM
1378          */
1379         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1380                 p->sas_ss_sp = p->sas_ss_size = 0;
1381
1382         /*
1383          * Syscall tracing and stepping should be turned off in the
1384          * child regardless of CLONE_PTRACE.
1385          */
1386         user_disable_single_step(p);
1387         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1388 #ifdef TIF_SYSCALL_EMU
1389         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1390 #endif
1391         clear_all_latency_tracing(p);
1392
1393         /* ok, now we should be set up.. */
1394         p->pid = pid_nr(pid);
1395         if (clone_flags & CLONE_THREAD) {
1396                 p->exit_signal = -1;
1397                 p->group_leader = current->group_leader;
1398                 p->tgid = current->tgid;
1399         } else {
1400                 if (clone_flags & CLONE_PARENT)
1401                         p->exit_signal = current->group_leader->exit_signal;
1402                 else
1403                         p->exit_signal = (clone_flags & CSIGNAL);
1404                 p->group_leader = p;
1405                 p->tgid = p->pid;
1406         }
1407
1408         p->pdeath_signal = 0;
1409         p->exit_state = 0;
1410
1411         p->nr_dirtied = 0;
1412         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1413         p->dirty_paused_when = 0;
1414
1415         INIT_LIST_HEAD(&p->thread_group);
1416         p->task_works = NULL;
1417
1418         /*
1419          * Make it visible to the rest of the system, but dont wake it up yet.
1420          * Need tasklist lock for parent etc handling!
1421          */
1422         write_lock_irq(&tasklist_lock);
1423
1424         /* CLONE_PARENT re-uses the old parent */
1425         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426                 p->real_parent = current->real_parent;
1427                 p->parent_exec_id = current->parent_exec_id;
1428         } else {
1429                 p->real_parent = current;
1430                 p->parent_exec_id = current->self_exec_id;
1431         }
1432
1433         spin_lock(&current->sighand->siglock);
1434
1435         /*
1436          * Process group and session signals need to be delivered to just the
1437          * parent before the fork or both the parent and the child after the
1438          * fork. Restart if a signal comes in before we add the new process to
1439          * it's process group.
1440          * A fatal signal pending means that current will exit, so the new
1441          * thread can't slip out of an OOM kill (or normal SIGKILL).
1442         */
1443         recalc_sigpending();
1444         if (signal_pending(current)) {
1445                 spin_unlock(&current->sighand->siglock);
1446                 write_unlock_irq(&tasklist_lock);
1447                 retval = -ERESTARTNOINTR;
1448                 goto bad_fork_free_pid;
1449         }
1450
1451         if (likely(p->pid)) {
1452                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1453
1454                 init_task_pid(p, PIDTYPE_PID, pid);
1455                 if (thread_group_leader(p)) {
1456                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1457                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1458
1459                         if (is_child_reaper(pid)) {
1460                                 ns_of_pid(pid)->child_reaper = p;
1461                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1462                         }
1463
1464                         p->signal->leader_pid = pid;
1465                         p->signal->tty = tty_kref_get(current->signal->tty);
1466                         list_add_tail(&p->sibling, &p->real_parent->children);
1467                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1468                         attach_pid(p, PIDTYPE_PGID);
1469                         attach_pid(p, PIDTYPE_SID);
1470                         __this_cpu_inc(process_counts);
1471                 } else {
1472                         current->signal->nr_threads++;
1473                         atomic_inc(&current->signal->live);
1474                         atomic_inc(&current->signal->sigcnt);
1475                         list_add_tail_rcu(&p->thread_group,
1476                                           &p->group_leader->thread_group);
1477                 }
1478                 attach_pid(p, PIDTYPE_PID);
1479                 nr_threads++;
1480         }
1481
1482         total_forks++;
1483         spin_unlock(&current->sighand->siglock);
1484         write_unlock_irq(&tasklist_lock);
1485         proc_fork_connector(p);
1486         cgroup_post_fork(p);
1487         if (clone_flags & CLONE_THREAD)
1488                 threadgroup_change_end(current);
1489         perf_event_fork(p);
1490
1491         trace_task_newtask(p, clone_flags);
1492
1493         return p;
1494
1495 bad_fork_free_pid:
1496         if (pid != &init_struct_pid)
1497                 free_pid(pid);
1498 bad_fork_cleanup_io:
1499         if (p->io_context)
1500                 exit_io_context(p);
1501 bad_fork_cleanup_namespaces:
1502         exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504         if (p->mm)
1505                 mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507         if (!(clone_flags & CLONE_THREAD))
1508                 free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510         __cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512         exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514         exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516         exit_sem(p);
1517 bad_fork_cleanup_audit:
1518         audit_free(p);
1519 bad_fork_cleanup_policy:
1520         perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522         mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525         if (clone_flags & CLONE_THREAD)
1526                 threadgroup_change_end(current);
1527         cgroup_exit(p, 0);
1528         delayacct_tsk_free(p);
1529         module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531         atomic_dec(&p->cred->user->processes);
1532         exit_creds(p);
1533 bad_fork_free:
1534         free_task(p);
1535 fork_out:
1536         return ERR_PTR(retval);
1537 }
1538
1539 static inline void init_idle_pids(struct pid_link *links)
1540 {
1541         enum pid_type type;
1542
1543         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1544                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1545                 links[type].pid = &init_struct_pid;
1546         }
1547 }
1548
1549 struct task_struct * __cpuinit fork_idle(int cpu)
1550 {
1551         struct task_struct *task;
1552         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1553         if (!IS_ERR(task)) {
1554                 init_idle_pids(task->pids);
1555                 init_idle(task, cpu);
1556         }
1557
1558         return task;
1559 }
1560
1561 /*
1562  *  Ok, this is the main fork-routine.
1563  *
1564  * It copies the process, and if successful kick-starts
1565  * it and waits for it to finish using the VM if required.
1566  */
1567 long do_fork(unsigned long clone_flags,
1568               unsigned long stack_start,
1569               unsigned long stack_size,
1570               int __user *parent_tidptr,
1571               int __user *child_tidptr)
1572 {
1573         struct task_struct *p;
1574         int trace = 0;
1575         long nr;
1576
1577         /*
1578          * Do some preliminary argument and permissions checking before we
1579          * actually start allocating stuff
1580          */
1581         if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1582                 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1583                         return -EINVAL;
1584         }
1585
1586         /*
1587          * Determine whether and which event to report to ptracer.  When
1588          * called from kernel_thread or CLONE_UNTRACED is explicitly
1589          * requested, no event is reported; otherwise, report if the event
1590          * for the type of forking is enabled.
1591          */
1592         if (!(clone_flags & CLONE_UNTRACED)) {
1593                 if (clone_flags & CLONE_VFORK)
1594                         trace = PTRACE_EVENT_VFORK;
1595                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1596                         trace = PTRACE_EVENT_CLONE;
1597                 else
1598                         trace = PTRACE_EVENT_FORK;
1599
1600                 if (likely(!ptrace_event_enabled(current, trace)))
1601                         trace = 0;
1602         }
1603
1604         p = copy_process(clone_flags, stack_start, stack_size,
1605                          child_tidptr, NULL, trace);
1606         /*
1607          * Do this prior waking up the new thread - the thread pointer
1608          * might get invalid after that point, if the thread exits quickly.
1609          */
1610         if (!IS_ERR(p)) {
1611                 struct completion vfork;
1612
1613                 trace_sched_process_fork(current, p);
1614
1615                 nr = task_pid_vnr(p);
1616
1617                 if (clone_flags & CLONE_PARENT_SETTID)
1618                         put_user(nr, parent_tidptr);
1619
1620                 if (clone_flags & CLONE_VFORK) {
1621                         p->vfork_done = &vfork;
1622                         init_completion(&vfork);
1623                         get_task_struct(p);
1624                 }
1625
1626                 wake_up_new_task(p);
1627
1628                 /* forking complete and child started to run, tell ptracer */
1629                 if (unlikely(trace))
1630                         ptrace_event(trace, nr);
1631
1632                 if (clone_flags & CLONE_VFORK) {
1633                         if (!wait_for_vfork_done(p, &vfork))
1634                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1635                 }
1636         } else {
1637                 nr = PTR_ERR(p);
1638         }
1639         return nr;
1640 }
1641
1642 /*
1643  * Create a kernel thread.
1644  */
1645 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1646 {
1647         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1648                 (unsigned long)arg, NULL, NULL);
1649 }
1650
1651 #ifdef __ARCH_WANT_SYS_FORK
1652 SYSCALL_DEFINE0(fork)
1653 {
1654 #ifdef CONFIG_MMU
1655         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1656 #else
1657         /* can not support in nommu mode */
1658         return(-EINVAL);
1659 #endif
1660 }
1661 #endif
1662
1663 #ifdef __ARCH_WANT_SYS_VFORK
1664 SYSCALL_DEFINE0(vfork)
1665 {
1666         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1667                         0, NULL, NULL);
1668 }
1669 #endif
1670
1671 #ifdef __ARCH_WANT_SYS_CLONE
1672 #ifdef CONFIG_CLONE_BACKWARDS
1673 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1674                  int __user *, parent_tidptr,
1675                  int, tls_val,
1676                  int __user *, child_tidptr)
1677 #elif defined(CONFIG_CLONE_BACKWARDS2)
1678 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1679                  int __user *, parent_tidptr,
1680                  int __user *, child_tidptr,
1681                  int, tls_val)
1682 #else
1683 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1684                  int __user *, parent_tidptr,
1685                  int __user *, child_tidptr,
1686                  int, tls_val)
1687 #endif
1688 {
1689         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1690 }
1691 #endif
1692
1693 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1694 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1695 #endif
1696
1697 static void sighand_ctor(void *data)
1698 {
1699         struct sighand_struct *sighand = data;
1700
1701         spin_lock_init(&sighand->siglock);
1702         init_waitqueue_head(&sighand->signalfd_wqh);
1703 }
1704
1705 void __init proc_caches_init(void)
1706 {
1707         sighand_cachep = kmem_cache_create("sighand_cache",
1708                         sizeof(struct sighand_struct), 0,
1709                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1710                         SLAB_NOTRACK, sighand_ctor);
1711         signal_cachep = kmem_cache_create("signal_cache",
1712                         sizeof(struct signal_struct), 0,
1713                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1714         files_cachep = kmem_cache_create("files_cache",
1715                         sizeof(struct files_struct), 0,
1716                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717         fs_cachep = kmem_cache_create("fs_cache",
1718                         sizeof(struct fs_struct), 0,
1719                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1720         /*
1721          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1722          * whole struct cpumask for the OFFSTACK case. We could change
1723          * this to *only* allocate as much of it as required by the
1724          * maximum number of CPU's we can ever have.  The cpumask_allocation
1725          * is at the end of the structure, exactly for that reason.
1726          */
1727         mm_cachep = kmem_cache_create("mm_struct",
1728                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1729                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1730         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1731         mmap_init();
1732         nsproxy_cache_init();
1733 }
1734
1735 /*
1736  * Check constraints on flags passed to the unshare system call.
1737  */
1738 static int check_unshare_flags(unsigned long unshare_flags)
1739 {
1740         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1741                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1742                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1743                                 CLONE_NEWUSER|CLONE_NEWPID))
1744                 return -EINVAL;
1745         /*
1746          * Not implemented, but pretend it works if there is nothing to
1747          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1748          * needs to unshare vm.
1749          */
1750         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1751                 /* FIXME: get_task_mm() increments ->mm_users */
1752                 if (atomic_read(&current->mm->mm_users) > 1)
1753                         return -EINVAL;
1754         }
1755
1756         return 0;
1757 }
1758
1759 /*
1760  * Unshare the filesystem structure if it is being shared
1761  */
1762 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1763 {
1764         struct fs_struct *fs = current->fs;
1765
1766         if (!(unshare_flags & CLONE_FS) || !fs)
1767                 return 0;
1768
1769         /* don't need lock here; in the worst case we'll do useless copy */
1770         if (fs->users == 1)
1771                 return 0;
1772
1773         *new_fsp = copy_fs_struct(fs);
1774         if (!*new_fsp)
1775                 return -ENOMEM;
1776
1777         return 0;
1778 }
1779
1780 /*
1781  * Unshare file descriptor table if it is being shared
1782  */
1783 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1784 {
1785         struct files_struct *fd = current->files;
1786         int error = 0;
1787
1788         if ((unshare_flags & CLONE_FILES) &&
1789             (fd && atomic_read(&fd->count) > 1)) {
1790                 *new_fdp = dup_fd(fd, &error);
1791                 if (!*new_fdp)
1792                         return error;
1793         }
1794
1795         return 0;
1796 }
1797
1798 /*
1799  * unshare allows a process to 'unshare' part of the process
1800  * context which was originally shared using clone.  copy_*
1801  * functions used by do_fork() cannot be used here directly
1802  * because they modify an inactive task_struct that is being
1803  * constructed. Here we are modifying the current, active,
1804  * task_struct.
1805  */
1806 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1807 {
1808         struct fs_struct *fs, *new_fs = NULL;
1809         struct files_struct *fd, *new_fd = NULL;
1810         struct cred *new_cred = NULL;
1811         struct nsproxy *new_nsproxy = NULL;
1812         int do_sysvsem = 0;
1813         int err;
1814
1815         /*
1816          * If unsharing a user namespace must also unshare the thread.
1817          */
1818         if (unshare_flags & CLONE_NEWUSER)
1819                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1820         /*
1821          * If unsharing a pid namespace must also unshare the thread.
1822          */
1823         if (unshare_flags & CLONE_NEWPID)
1824                 unshare_flags |= CLONE_THREAD;
1825         /*
1826          * If unsharing a thread from a thread group, must also unshare vm.
1827          */
1828         if (unshare_flags & CLONE_THREAD)
1829                 unshare_flags |= CLONE_VM;
1830         /*
1831          * If unsharing vm, must also unshare signal handlers.
1832          */
1833         if (unshare_flags & CLONE_VM)
1834                 unshare_flags |= CLONE_SIGHAND;
1835         /*
1836          * If unsharing namespace, must also unshare filesystem information.
1837          */
1838         if (unshare_flags & CLONE_NEWNS)
1839                 unshare_flags |= CLONE_FS;
1840
1841         err = check_unshare_flags(unshare_flags);
1842         if (err)
1843                 goto bad_unshare_out;
1844         /*
1845          * CLONE_NEWIPC must also detach from the undolist: after switching
1846          * to a new ipc namespace, the semaphore arrays from the old
1847          * namespace are unreachable.
1848          */
1849         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1850                 do_sysvsem = 1;
1851         err = unshare_fs(unshare_flags, &new_fs);
1852         if (err)
1853                 goto bad_unshare_out;
1854         err = unshare_fd(unshare_flags, &new_fd);
1855         if (err)
1856                 goto bad_unshare_cleanup_fs;
1857         err = unshare_userns(unshare_flags, &new_cred);
1858         if (err)
1859                 goto bad_unshare_cleanup_fd;
1860         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1861                                          new_cred, new_fs);
1862         if (err)
1863                 goto bad_unshare_cleanup_cred;
1864
1865         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1866                 if (do_sysvsem) {
1867                         /*
1868                          * CLONE_SYSVSEM is equivalent to sys_exit().
1869                          */
1870                         exit_sem(current);
1871                 }
1872
1873                 if (new_nsproxy)
1874                         switch_task_namespaces(current, new_nsproxy);
1875
1876                 task_lock(current);
1877
1878                 if (new_fs) {
1879                         fs = current->fs;
1880                         spin_lock(&fs->lock);
1881                         current->fs = new_fs;
1882                         if (--fs->users)
1883                                 new_fs = NULL;
1884                         else
1885                                 new_fs = fs;
1886                         spin_unlock(&fs->lock);
1887                 }
1888
1889                 if (new_fd) {
1890                         fd = current->files;
1891                         current->files = new_fd;
1892                         new_fd = fd;
1893                 }
1894
1895                 task_unlock(current);
1896
1897                 if (new_cred) {
1898                         /* Install the new user namespace */
1899                         commit_creds(new_cred);
1900                         new_cred = NULL;
1901                 }
1902         }
1903
1904 bad_unshare_cleanup_cred:
1905         if (new_cred)
1906                 put_cred(new_cred);
1907 bad_unshare_cleanup_fd:
1908         if (new_fd)
1909                 put_files_struct(new_fd);
1910
1911 bad_unshare_cleanup_fs:
1912         if (new_fs)
1913                 free_fs_struct(new_fs);
1914
1915 bad_unshare_out:
1916         return err;
1917 }
1918
1919 /*
1920  *      Helper to unshare the files of the current task.
1921  *      We don't want to expose copy_files internals to
1922  *      the exec layer of the kernel.
1923  */
1924
1925 int unshare_files(struct files_struct **displaced)
1926 {
1927         struct task_struct *task = current;
1928         struct files_struct *copy = NULL;
1929         int error;
1930
1931         error = unshare_fd(CLONE_FILES, &copy);
1932         if (error || !copy) {
1933                 *displaced = NULL;
1934                 return error;
1935         }
1936         *displaced = task->files;
1937         task_lock(task);
1938         task->files = copy;
1939         task_unlock(task);
1940         return 0;
1941 }