Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;      /* Handle normal Linux uptimes. */
94 int nr_threads;                 /* The idle threads do not count.. */
95
96 int max_threads;                /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105         return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112         int cpu;
113         int total = 0;
114
115         for_each_possible_cpu(cpu)
116                 total += per_cpu(process_counts, cpu);
117
118         return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135         kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151                                                   int node)
152 {
153         struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154                                                   THREAD_SIZE_ORDER);
155
156         return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161         free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167                                                   int node)
168 {
169         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174         kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180                                               THREAD_SIZE, 0, NULL);
181         BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206         struct zone *zone = page_zone(virt_to_page(ti));
207
208         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213         account_kernel_stack(tsk->stack, -1);
214         arch_release_thread_info(tsk->stack);
215         free_thread_info(tsk->stack);
216         rt_mutex_debug_task_free(tsk);
217         ftrace_graph_exit_task(tsk);
218         put_seccomp_filter(tsk);
219         arch_release_task_struct(tsk);
220         free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226         taskstats_tgid_free(sig);
227         sched_autogroup_exit(sig);
228         kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233         if (atomic_dec_and_test(&sig->sigcnt))
234                 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239         WARN_ON(!tsk->exit_state);
240         WARN_ON(atomic_read(&tsk->usage));
241         WARN_ON(tsk == current);
242
243         task_numa_free(tsk);
244         security_task_free(tsk);
245         exit_creds(tsk);
246         delayacct_tsk_free(tsk);
247         put_signal_struct(tsk->signal);
248
249         if (!profile_handoff_task(tsk))
250                 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
261 #endif
262         /* create a slab on which task_structs can be allocated */
263         task_struct_cachep =
264                 kmem_cache_create("task_struct", sizeof(struct task_struct),
265                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268         /* do the arch specific task caches init */
269         arch_task_cache_init();
270
271         /*
272          * The default maximum number of threads is set to a safe
273          * value: the thread structures can take up at most half
274          * of memory.
275          */
276         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278         /*
279          * we need to allow at least 20 threads to boot a system
280          */
281         if (max_threads < 20)
282                 max_threads = 20;
283
284         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286         init_task.signal->rlim[RLIMIT_SIGPENDING] =
287                 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291                                                struct task_struct *src)
292 {
293         *dst = *src;
294         return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299         struct task_struct *tsk;
300         struct thread_info *ti;
301         unsigned long *stackend;
302         int node = tsk_fork_get_node(orig);
303         int err;
304
305         tsk = alloc_task_struct_node(node);
306         if (!tsk)
307                 return NULL;
308
309         ti = alloc_thread_info_node(tsk, node);
310         if (!ti)
311                 goto free_tsk;
312
313         err = arch_dup_task_struct(tsk, orig);
314         if (err)
315                 goto free_ti;
316
317         tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319         /*
320          * We must handle setting up seccomp filters once we're under
321          * the sighand lock in case orig has changed between now and
322          * then. Until then, filter must be NULL to avoid messing up
323          * the usage counts on the error path calling free_task.
324          */
325         tsk->seccomp.filter = NULL;
326 #endif
327
328         setup_thread_stack(tsk, orig);
329         clear_user_return_notifier(tsk);
330         clear_tsk_need_resched(tsk);
331         stackend = end_of_stack(tsk);
332         *stackend = STACK_END_MAGIC;    /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335         tsk->stack_canary = get_random_int();
336 #endif
337
338         /*
339          * One for us, one for whoever does the "release_task()" (usually
340          * parent)
341          */
342         atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344         tsk->btrace_seq = 0;
345 #endif
346         tsk->splice_pipe = NULL;
347         tsk->task_frag.page = NULL;
348
349         account_kernel_stack(ti, 1);
350
351         return tsk;
352
353 free_ti:
354         free_thread_info(ti);
355 free_tsk:
356         free_task_struct(tsk);
357         return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364         struct rb_node **rb_link, *rb_parent;
365         int retval;
366         unsigned long charge;
367
368         uprobe_start_dup_mmap();
369         down_write(&oldmm->mmap_sem);
370         flush_cache_dup_mm(oldmm);
371         uprobe_dup_mmap(oldmm, mm);
372         /*
373          * Not linked in yet - no deadlock potential:
374          */
375         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377         mm->locked_vm = 0;
378         mm->mmap = NULL;
379         mm->vmacache_seqnum = 0;
380         mm->map_count = 0;
381         cpumask_clear(mm_cpumask(mm));
382         mm->mm_rb = RB_ROOT;
383         rb_link = &mm->mm_rb.rb_node;
384         rb_parent = NULL;
385         pprev = &mm->mmap;
386         retval = ksm_fork(mm, oldmm);
387         if (retval)
388                 goto out;
389         retval = khugepaged_fork(mm, oldmm);
390         if (retval)
391                 goto out;
392
393         prev = NULL;
394         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
395                 struct file *file;
396
397                 if (mpnt->vm_flags & VM_DONTCOPY) {
398                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
399                                                         -vma_pages(mpnt));
400                         continue;
401                 }
402                 charge = 0;
403                 if (mpnt->vm_flags & VM_ACCOUNT) {
404                         unsigned long len = vma_pages(mpnt);
405
406                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
407                                 goto fail_nomem;
408                         charge = len;
409                 }
410                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
411                 if (!tmp)
412                         goto fail_nomem;
413                 *tmp = *mpnt;
414                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
415                 retval = vma_dup_policy(mpnt, tmp);
416                 if (retval)
417                         goto fail_nomem_policy;
418                 tmp->vm_mm = mm;
419                 if (anon_vma_fork(tmp, mpnt))
420                         goto fail_nomem_anon_vma_fork;
421                 tmp->vm_flags &= ~VM_LOCKED;
422                 tmp->vm_next = tmp->vm_prev = NULL;
423                 file = tmp->vm_file;
424                 if (file) {
425                         struct inode *inode = file_inode(file);
426                         struct address_space *mapping = file->f_mapping;
427
428                         get_file(file);
429                         if (tmp->vm_flags & VM_DENYWRITE)
430                                 atomic_dec(&inode->i_writecount);
431                         mutex_lock(&mapping->i_mmap_mutex);
432                         if (tmp->vm_flags & VM_SHARED)
433                                 mapping->i_mmap_writable++;
434                         flush_dcache_mmap_lock(mapping);
435                         /* insert tmp into the share list, just after mpnt */
436                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
437                                 vma_nonlinear_insert(tmp,
438                                                 &mapping->i_mmap_nonlinear);
439                         else
440                                 vma_interval_tree_insert_after(tmp, mpnt,
441                                                         &mapping->i_mmap);
442                         flush_dcache_mmap_unlock(mapping);
443                         mutex_unlock(&mapping->i_mmap_mutex);
444                 }
445
446                 /*
447                  * Clear hugetlb-related page reserves for children. This only
448                  * affects MAP_PRIVATE mappings. Faults generated by the child
449                  * are not guaranteed to succeed, even if read-only
450                  */
451                 if (is_vm_hugetlb_page(tmp))
452                         reset_vma_resv_huge_pages(tmp);
453
454                 /*
455                  * Link in the new vma and copy the page table entries.
456                  */
457                 *pprev = tmp;
458                 pprev = &tmp->vm_next;
459                 tmp->vm_prev = prev;
460                 prev = tmp;
461
462                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
463                 rb_link = &tmp->vm_rb.rb_right;
464                 rb_parent = &tmp->vm_rb;
465
466                 mm->map_count++;
467                 retval = copy_page_range(mm, oldmm, mpnt);
468
469                 if (tmp->vm_ops && tmp->vm_ops->open)
470                         tmp->vm_ops->open(tmp);
471
472                 if (retval)
473                         goto out;
474         }
475         /* a new mm has just been created */
476         arch_dup_mmap(oldmm, mm);
477         retval = 0;
478 out:
479         up_write(&mm->mmap_sem);
480         flush_tlb_mm(oldmm);
481         up_write(&oldmm->mmap_sem);
482         uprobe_end_dup_mmap();
483         return retval;
484 fail_nomem_anon_vma_fork:
485         mpol_put(vma_policy(tmp));
486 fail_nomem_policy:
487         kmem_cache_free(vm_area_cachep, tmp);
488 fail_nomem:
489         retval = -ENOMEM;
490         vm_unacct_memory(charge);
491         goto out;
492 }
493
494 static inline int mm_alloc_pgd(struct mm_struct *mm)
495 {
496         mm->pgd = pgd_alloc(mm);
497         if (unlikely(!mm->pgd))
498                 return -ENOMEM;
499         return 0;
500 }
501
502 static inline void mm_free_pgd(struct mm_struct *mm)
503 {
504         pgd_free(mm, mm->pgd);
505 }
506 #else
507 #define dup_mmap(mm, oldmm)     (0)
508 #define mm_alloc_pgd(mm)        (0)
509 #define mm_free_pgd(mm)
510 #endif /* CONFIG_MMU */
511
512 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
513
514 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
515 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
516
517 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
518
519 static int __init coredump_filter_setup(char *s)
520 {
521         default_dump_filter =
522                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
523                 MMF_DUMP_FILTER_MASK;
524         return 1;
525 }
526
527 __setup("coredump_filter=", coredump_filter_setup);
528
529 #include <linux/init_task.h>
530
531 static void mm_init_aio(struct mm_struct *mm)
532 {
533 #ifdef CONFIG_AIO
534         spin_lock_init(&mm->ioctx_lock);
535         mm->ioctx_table = NULL;
536 #endif
537 }
538
539 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
540 {
541         atomic_set(&mm->mm_users, 1);
542         atomic_set(&mm->mm_count, 1);
543         init_rwsem(&mm->mmap_sem);
544         INIT_LIST_HEAD(&mm->mmlist);
545         mm->core_state = NULL;
546         atomic_long_set(&mm->nr_ptes, 0);
547         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
548         spin_lock_init(&mm->page_table_lock);
549         mm_init_aio(mm);
550         mm_init_owner(mm, p);
551         clear_tlb_flush_pending(mm);
552
553         if (current->mm) {
554                 mm->flags = current->mm->flags & MMF_INIT_MASK;
555                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
556         } else {
557                 mm->flags = default_dump_filter;
558                 mm->def_flags = 0;
559         }
560
561         if (likely(!mm_alloc_pgd(mm))) {
562                 mmu_notifier_mm_init(mm);
563                 return mm;
564         }
565
566         free_mm(mm);
567         return NULL;
568 }
569
570 static void check_mm(struct mm_struct *mm)
571 {
572         int i;
573
574         for (i = 0; i < NR_MM_COUNTERS; i++) {
575                 long x = atomic_long_read(&mm->rss_stat.count[i]);
576
577                 if (unlikely(x))
578                         printk(KERN_ALERT "BUG: Bad rss-counter state "
579                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
580         }
581
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583         VM_BUG_ON(mm->pmd_huge_pte);
584 #endif
585 }
586
587 /*
588  * Allocate and initialize an mm_struct.
589  */
590 struct mm_struct *mm_alloc(void)
591 {
592         struct mm_struct *mm;
593
594         mm = allocate_mm();
595         if (!mm)
596                 return NULL;
597
598         memset(mm, 0, sizeof(*mm));
599         mm_init_cpumask(mm);
600         return mm_init(mm, current);
601 }
602
603 /*
604  * Called when the last reference to the mm
605  * is dropped: either by a lazy thread or by
606  * mmput. Free the page directory and the mm.
607  */
608 void __mmdrop(struct mm_struct *mm)
609 {
610         BUG_ON(mm == &init_mm);
611         mm_free_pgd(mm);
612         destroy_context(mm);
613         mmu_notifier_mm_destroy(mm);
614         check_mm(mm);
615         free_mm(mm);
616 }
617 EXPORT_SYMBOL_GPL(__mmdrop);
618
619 /*
620  * Decrement the use count and release all resources for an mm.
621  */
622 void mmput(struct mm_struct *mm)
623 {
624         might_sleep();
625
626         if (atomic_dec_and_test(&mm->mm_users)) {
627                 uprobe_clear_state(mm);
628                 exit_aio(mm);
629                 ksm_exit(mm);
630                 khugepaged_exit(mm); /* must run before exit_mmap */
631                 exit_mmap(mm);
632                 set_mm_exe_file(mm, NULL);
633                 if (!list_empty(&mm->mmlist)) {
634                         spin_lock(&mmlist_lock);
635                         list_del(&mm->mmlist);
636                         spin_unlock(&mmlist_lock);
637                 }
638                 if (mm->binfmt)
639                         module_put(mm->binfmt->module);
640                 mmdrop(mm);
641         }
642 }
643 EXPORT_SYMBOL_GPL(mmput);
644
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647         if (new_exe_file)
648                 get_file(new_exe_file);
649         if (mm->exe_file)
650                 fput(mm->exe_file);
651         mm->exe_file = new_exe_file;
652 }
653
654 struct file *get_mm_exe_file(struct mm_struct *mm)
655 {
656         struct file *exe_file;
657
658         /* We need mmap_sem to protect against races with removal of exe_file */
659         down_read(&mm->mmap_sem);
660         exe_file = mm->exe_file;
661         if (exe_file)
662                 get_file(exe_file);
663         up_read(&mm->mmap_sem);
664         return exe_file;
665 }
666
667 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
668 {
669         /* It's safe to write the exe_file pointer without exe_file_lock because
670          * this is called during fork when the task is not yet in /proc */
671         newmm->exe_file = get_mm_exe_file(oldmm);
672 }
673
674 /**
675  * get_task_mm - acquire a reference to the task's mm
676  *
677  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
678  * this kernel workthread has transiently adopted a user mm with use_mm,
679  * to do its AIO) is not set and if so returns a reference to it, after
680  * bumping up the use count.  User must release the mm via mmput()
681  * after use.  Typically used by /proc and ptrace.
682  */
683 struct mm_struct *get_task_mm(struct task_struct *task)
684 {
685         struct mm_struct *mm;
686
687         task_lock(task);
688         mm = task->mm;
689         if (mm) {
690                 if (task->flags & PF_KTHREAD)
691                         mm = NULL;
692                 else
693                         atomic_inc(&mm->mm_users);
694         }
695         task_unlock(task);
696         return mm;
697 }
698 EXPORT_SYMBOL_GPL(get_task_mm);
699
700 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
701 {
702         struct mm_struct *mm;
703         int err;
704
705         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
706         if (err)
707                 return ERR_PTR(err);
708
709         mm = get_task_mm(task);
710         if (mm && mm != current->mm &&
711                         !ptrace_may_access(task, mode)) {
712                 mmput(mm);
713                 mm = ERR_PTR(-EACCES);
714         }
715         mutex_unlock(&task->signal->cred_guard_mutex);
716
717         return mm;
718 }
719
720 static void complete_vfork_done(struct task_struct *tsk)
721 {
722         struct completion *vfork;
723
724         task_lock(tsk);
725         vfork = tsk->vfork_done;
726         if (likely(vfork)) {
727                 tsk->vfork_done = NULL;
728                 complete(vfork);
729         }
730         task_unlock(tsk);
731 }
732
733 static int wait_for_vfork_done(struct task_struct *child,
734                                 struct completion *vfork)
735 {
736         int killed;
737
738         freezer_do_not_count();
739         killed = wait_for_completion_killable(vfork);
740         freezer_count();
741
742         if (killed) {
743                 task_lock(child);
744                 child->vfork_done = NULL;
745                 task_unlock(child);
746         }
747
748         put_task_struct(child);
749         return killed;
750 }
751
752 /* Please note the differences between mmput and mm_release.
753  * mmput is called whenever we stop holding onto a mm_struct,
754  * error success whatever.
755  *
756  * mm_release is called after a mm_struct has been removed
757  * from the current process.
758  *
759  * This difference is important for error handling, when we
760  * only half set up a mm_struct for a new process and need to restore
761  * the old one.  Because we mmput the new mm_struct before
762  * restoring the old one. . .
763  * Eric Biederman 10 January 1998
764  */
765 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
766 {
767         /* Get rid of any futexes when releasing the mm */
768 #ifdef CONFIG_FUTEX
769         if (unlikely(tsk->robust_list)) {
770                 exit_robust_list(tsk);
771                 tsk->robust_list = NULL;
772         }
773 #ifdef CONFIG_COMPAT
774         if (unlikely(tsk->compat_robust_list)) {
775                 compat_exit_robust_list(tsk);
776                 tsk->compat_robust_list = NULL;
777         }
778 #endif
779         if (unlikely(!list_empty(&tsk->pi_state_list)))
780                 exit_pi_state_list(tsk);
781 #endif
782
783         uprobe_free_utask(tsk);
784
785         /* Get rid of any cached register state */
786         deactivate_mm(tsk, mm);
787
788         /*
789          * If we're exiting normally, clear a user-space tid field if
790          * requested.  We leave this alone when dying by signal, to leave
791          * the value intact in a core dump, and to save the unnecessary
792          * trouble, say, a killed vfork parent shouldn't touch this mm.
793          * Userland only wants this done for a sys_exit.
794          */
795         if (tsk->clear_child_tid) {
796                 if (!(tsk->flags & PF_SIGNALED) &&
797                     atomic_read(&mm->mm_users) > 1) {
798                         /*
799                          * We don't check the error code - if userspace has
800                          * not set up a proper pointer then tough luck.
801                          */
802                         put_user(0, tsk->clear_child_tid);
803                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
804                                         1, NULL, NULL, 0);
805                 }
806                 tsk->clear_child_tid = NULL;
807         }
808
809         /*
810          * All done, finally we can wake up parent and return this mm to him.
811          * Also kthread_stop() uses this completion for synchronization.
812          */
813         if (tsk->vfork_done)
814                 complete_vfork_done(tsk);
815 }
816
817 /*
818  * Allocate a new mm structure and copy contents from the
819  * mm structure of the passed in task structure.
820  */
821 static struct mm_struct *dup_mm(struct task_struct *tsk)
822 {
823         struct mm_struct *mm, *oldmm = current->mm;
824         int err;
825
826         mm = allocate_mm();
827         if (!mm)
828                 goto fail_nomem;
829
830         memcpy(mm, oldmm, sizeof(*mm));
831         mm_init_cpumask(mm);
832
833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
834         mm->pmd_huge_pte = NULL;
835 #endif
836         if (!mm_init(mm, tsk))
837                 goto fail_nomem;
838
839         if (init_new_context(tsk, mm))
840                 goto fail_nocontext;
841
842         dup_mm_exe_file(oldmm, mm);
843
844         err = dup_mmap(mm, oldmm);
845         if (err)
846                 goto free_pt;
847
848         mm->hiwater_rss = get_mm_rss(mm);
849         mm->hiwater_vm = mm->total_vm;
850
851         if (mm->binfmt && !try_module_get(mm->binfmt->module))
852                 goto free_pt;
853
854         return mm;
855
856 free_pt:
857         /* don't put binfmt in mmput, we haven't got module yet */
858         mm->binfmt = NULL;
859         mmput(mm);
860
861 fail_nomem:
862         return NULL;
863
864 fail_nocontext:
865         /*
866          * If init_new_context() failed, we cannot use mmput() to free the mm
867          * because it calls destroy_context()
868          */
869         mm_free_pgd(mm);
870         free_mm(mm);
871         return NULL;
872 }
873
874 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
875 {
876         struct mm_struct *mm, *oldmm;
877         int retval;
878
879         tsk->min_flt = tsk->maj_flt = 0;
880         tsk->nvcsw = tsk->nivcsw = 0;
881 #ifdef CONFIG_DETECT_HUNG_TASK
882         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
883 #endif
884
885         tsk->mm = NULL;
886         tsk->active_mm = NULL;
887
888         /*
889          * Are we cloning a kernel thread?
890          *
891          * We need to steal a active VM for that..
892          */
893         oldmm = current->mm;
894         if (!oldmm)
895                 return 0;
896
897         /* initialize the new vmacache entries */
898         vmacache_flush(tsk);
899
900         if (clone_flags & CLONE_VM) {
901                 atomic_inc(&oldmm->mm_users);
902                 mm = oldmm;
903                 goto good_mm;
904         }
905
906         retval = -ENOMEM;
907         mm = dup_mm(tsk);
908         if (!mm)
909                 goto fail_nomem;
910
911 good_mm:
912         tsk->mm = mm;
913         tsk->active_mm = mm;
914         return 0;
915
916 fail_nomem:
917         return retval;
918 }
919
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
921 {
922         struct fs_struct *fs = current->fs;
923         if (clone_flags & CLONE_FS) {
924                 /* tsk->fs is already what we want */
925                 spin_lock(&fs->lock);
926                 if (fs->in_exec) {
927                         spin_unlock(&fs->lock);
928                         return -EAGAIN;
929                 }
930                 fs->users++;
931                 spin_unlock(&fs->lock);
932                 return 0;
933         }
934         tsk->fs = copy_fs_struct(fs);
935         if (!tsk->fs)
936                 return -ENOMEM;
937         return 0;
938 }
939
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
941 {
942         struct files_struct *oldf, *newf;
943         int error = 0;
944
945         /*
946          * A background process may not have any files ...
947          */
948         oldf = current->files;
949         if (!oldf)
950                 goto out;
951
952         if (clone_flags & CLONE_FILES) {
953                 atomic_inc(&oldf->count);
954                 goto out;
955         }
956
957         newf = dup_fd(oldf, &error);
958         if (!newf)
959                 goto out;
960
961         tsk->files = newf;
962         error = 0;
963 out:
964         return error;
965 }
966
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
968 {
969 #ifdef CONFIG_BLOCK
970         struct io_context *ioc = current->io_context;
971         struct io_context *new_ioc;
972
973         if (!ioc)
974                 return 0;
975         /*
976          * Share io context with parent, if CLONE_IO is set
977          */
978         if (clone_flags & CLONE_IO) {
979                 ioc_task_link(ioc);
980                 tsk->io_context = ioc;
981         } else if (ioprio_valid(ioc->ioprio)) {
982                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
983                 if (unlikely(!new_ioc))
984                         return -ENOMEM;
985
986                 new_ioc->ioprio = ioc->ioprio;
987                 put_io_context(new_ioc);
988         }
989 #endif
990         return 0;
991 }
992
993 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
994 {
995         struct sighand_struct *sig;
996
997         if (clone_flags & CLONE_SIGHAND) {
998                 atomic_inc(&current->sighand->count);
999                 return 0;
1000         }
1001         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002         rcu_assign_pointer(tsk->sighand, sig);
1003         if (!sig)
1004                 return -ENOMEM;
1005         atomic_set(&sig->count, 1);
1006         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1007         return 0;
1008 }
1009
1010 void __cleanup_sighand(struct sighand_struct *sighand)
1011 {
1012         if (atomic_dec_and_test(&sighand->count)) {
1013                 signalfd_cleanup(sighand);
1014                 kmem_cache_free(sighand_cachep, sighand);
1015         }
1016 }
1017
1018
1019 /*
1020  * Initialize POSIX timer handling for a thread group.
1021  */
1022 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1023 {
1024         unsigned long cpu_limit;
1025
1026         /* Thread group counters. */
1027         thread_group_cputime_init(sig);
1028
1029         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1030         if (cpu_limit != RLIM_INFINITY) {
1031                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1032                 sig->cputimer.running = 1;
1033         }
1034
1035         /* The timer lists. */
1036         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1037         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1038         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1039 }
1040
1041 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1042 {
1043         struct signal_struct *sig;
1044
1045         if (clone_flags & CLONE_THREAD)
1046                 return 0;
1047
1048         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1049         tsk->signal = sig;
1050         if (!sig)
1051                 return -ENOMEM;
1052
1053         sig->nr_threads = 1;
1054         atomic_set(&sig->live, 1);
1055         atomic_set(&sig->sigcnt, 1);
1056
1057         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1058         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1059         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1060
1061         init_waitqueue_head(&sig->wait_chldexit);
1062         sig->curr_target = tsk;
1063         init_sigpending(&sig->shared_pending);
1064         INIT_LIST_HEAD(&sig->posix_timers);
1065
1066         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067         sig->real_timer.function = it_real_fn;
1068
1069         task_lock(current->group_leader);
1070         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1071         task_unlock(current->group_leader);
1072
1073         posix_cpu_timers_init_group(sig);
1074
1075         tty_audit_fork(sig);
1076         sched_autogroup_fork(sig);
1077
1078 #ifdef CONFIG_CGROUPS
1079         init_rwsem(&sig->group_rwsem);
1080 #endif
1081
1082         sig->oom_score_adj = current->signal->oom_score_adj;
1083         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084
1085         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1086                                    current->signal->is_child_subreaper;
1087
1088         mutex_init(&sig->cred_guard_mutex);
1089
1090         return 0;
1091 }
1092
1093 static void copy_seccomp(struct task_struct *p)
1094 {
1095 #ifdef CONFIG_SECCOMP
1096         /*
1097          * Must be called with sighand->lock held, which is common to
1098          * all threads in the group. Holding cred_guard_mutex is not
1099          * needed because this new task is not yet running and cannot
1100          * be racing exec.
1101          */
1102         BUG_ON(!spin_is_locked(&current->sighand->siglock));
1103
1104         /* Ref-count the new filter user, and assign it. */
1105         get_seccomp_filter(current);
1106         p->seccomp = current->seccomp;
1107
1108         /*
1109          * Explicitly enable no_new_privs here in case it got set
1110          * between the task_struct being duplicated and holding the
1111          * sighand lock. The seccomp state and nnp must be in sync.
1112          */
1113         if (task_no_new_privs(current))
1114                 task_set_no_new_privs(p);
1115
1116         /*
1117          * If the parent gained a seccomp mode after copying thread
1118          * flags and between before we held the sighand lock, we have
1119          * to manually enable the seccomp thread flag here.
1120          */
1121         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1122                 set_tsk_thread_flag(p, TIF_SECCOMP);
1123 #endif
1124 }
1125
1126 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1127 {
1128         current->clear_child_tid = tidptr;
1129
1130         return task_pid_vnr(current);
1131 }
1132
1133 static void rt_mutex_init_task(struct task_struct *p)
1134 {
1135         raw_spin_lock_init(&p->pi_lock);
1136 #ifdef CONFIG_RT_MUTEXES
1137         p->pi_waiters = RB_ROOT;
1138         p->pi_waiters_leftmost = NULL;
1139         p->pi_blocked_on = NULL;
1140 #endif
1141 }
1142
1143 #ifdef CONFIG_MEMCG
1144 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1145 {
1146         mm->owner = p;
1147 }
1148 #endif /* CONFIG_MEMCG */
1149
1150 /*
1151  * Initialize POSIX timer handling for a single task.
1152  */
1153 static void posix_cpu_timers_init(struct task_struct *tsk)
1154 {
1155         tsk->cputime_expires.prof_exp = 0;
1156         tsk->cputime_expires.virt_exp = 0;
1157         tsk->cputime_expires.sched_exp = 0;
1158         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1159         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1160         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1161 }
1162
1163 static inline void
1164 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1165 {
1166          task->pids[type].pid = pid;
1167 }
1168
1169 /*
1170  * This creates a new process as a copy of the old one,
1171  * but does not actually start it yet.
1172  *
1173  * It copies the registers, and all the appropriate
1174  * parts of the process environment (as per the clone
1175  * flags). The actual kick-off is left to the caller.
1176  */
1177 static struct task_struct *copy_process(unsigned long clone_flags,
1178                                         unsigned long stack_start,
1179                                         unsigned long stack_size,
1180                                         int __user *child_tidptr,
1181                                         struct pid *pid,
1182                                         int trace)
1183 {
1184         int retval;
1185         struct task_struct *p;
1186
1187         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1188                 return ERR_PTR(-EINVAL);
1189
1190         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1191                 return ERR_PTR(-EINVAL);
1192
1193         /*
1194          * Thread groups must share signals as well, and detached threads
1195          * can only be started up within the thread group.
1196          */
1197         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1198                 return ERR_PTR(-EINVAL);
1199
1200         /*
1201          * Shared signal handlers imply shared VM. By way of the above,
1202          * thread groups also imply shared VM. Blocking this case allows
1203          * for various simplifications in other code.
1204          */
1205         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1206                 return ERR_PTR(-EINVAL);
1207
1208         /*
1209          * Siblings of global init remain as zombies on exit since they are
1210          * not reaped by their parent (swapper). To solve this and to avoid
1211          * multi-rooted process trees, prevent global and container-inits
1212          * from creating siblings.
1213          */
1214         if ((clone_flags & CLONE_PARENT) &&
1215                                 current->signal->flags & SIGNAL_UNKILLABLE)
1216                 return ERR_PTR(-EINVAL);
1217
1218         /*
1219          * If the new process will be in a different pid or user namespace
1220          * do not allow it to share a thread group or signal handlers or
1221          * parent with the forking task.
1222          */
1223         if (clone_flags & CLONE_SIGHAND) {
1224                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1225                     (task_active_pid_ns(current) !=
1226                                 current->nsproxy->pid_ns_for_children))
1227                         return ERR_PTR(-EINVAL);
1228         }
1229
1230         retval = security_task_create(clone_flags);
1231         if (retval)
1232                 goto fork_out;
1233
1234         retval = -ENOMEM;
1235         p = dup_task_struct(current);
1236         if (!p)
1237                 goto fork_out;
1238
1239         ftrace_graph_init_task(p);
1240
1241         rt_mutex_init_task(p);
1242
1243 #ifdef CONFIG_PROVE_LOCKING
1244         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1245         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1246 #endif
1247         retval = -EAGAIN;
1248         if (atomic_read(&p->real_cred->user->processes) >=
1249                         task_rlimit(p, RLIMIT_NPROC)) {
1250                 if (p->real_cred->user != INIT_USER &&
1251                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1252                         goto bad_fork_free;
1253         }
1254         current->flags &= ~PF_NPROC_EXCEEDED;
1255
1256         retval = copy_creds(p, clone_flags);
1257         if (retval < 0)
1258                 goto bad_fork_free;
1259
1260         /*
1261          * If multiple threads are within copy_process(), then this check
1262          * triggers too late. This doesn't hurt, the check is only there
1263          * to stop root fork bombs.
1264          */
1265         retval = -EAGAIN;
1266         if (nr_threads >= max_threads)
1267                 goto bad_fork_cleanup_count;
1268
1269         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1270                 goto bad_fork_cleanup_count;
1271
1272         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1273         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1274         p->flags |= PF_FORKNOEXEC;
1275         INIT_LIST_HEAD(&p->children);
1276         INIT_LIST_HEAD(&p->sibling);
1277         rcu_copy_process(p);
1278         p->vfork_done = NULL;
1279         spin_lock_init(&p->alloc_lock);
1280
1281         init_sigpending(&p->pending);
1282
1283         p->utime = p->stime = p->gtime = 0;
1284         p->utimescaled = p->stimescaled = 0;
1285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1286         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1287 #endif
1288 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1289         seqlock_init(&p->vtime_seqlock);
1290         p->vtime_snap = 0;
1291         p->vtime_snap_whence = VTIME_SLEEPING;
1292 #endif
1293
1294 #if defined(SPLIT_RSS_COUNTING)
1295         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1296 #endif
1297
1298         p->default_timer_slack_ns = current->timer_slack_ns;
1299
1300         task_io_accounting_init(&p->ioac);
1301         acct_clear_integrals(p);
1302
1303         posix_cpu_timers_init(p);
1304
1305         p->start_time = ktime_get_ns();
1306         p->real_start_time = ktime_get_boot_ns();
1307         p->io_context = NULL;
1308         p->audit_context = NULL;
1309         if (clone_flags & CLONE_THREAD)
1310                 threadgroup_change_begin(current);
1311         cgroup_fork(p);
1312 #ifdef CONFIG_NUMA
1313         p->mempolicy = mpol_dup(p->mempolicy);
1314         if (IS_ERR(p->mempolicy)) {
1315                 retval = PTR_ERR(p->mempolicy);
1316                 p->mempolicy = NULL;
1317                 goto bad_fork_cleanup_threadgroup_lock;
1318         }
1319 #endif
1320 #ifdef CONFIG_CPUSETS
1321         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1322         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1323         seqcount_init(&p->mems_allowed_seq);
1324 #endif
1325 #ifdef CONFIG_TRACE_IRQFLAGS
1326         p->irq_events = 0;
1327         p->hardirqs_enabled = 0;
1328         p->hardirq_enable_ip = 0;
1329         p->hardirq_enable_event = 0;
1330         p->hardirq_disable_ip = _THIS_IP_;
1331         p->hardirq_disable_event = 0;
1332         p->softirqs_enabled = 1;
1333         p->softirq_enable_ip = _THIS_IP_;
1334         p->softirq_enable_event = 0;
1335         p->softirq_disable_ip = 0;
1336         p->softirq_disable_event = 0;
1337         p->hardirq_context = 0;
1338         p->softirq_context = 0;
1339 #endif
1340 #ifdef CONFIG_LOCKDEP
1341         p->lockdep_depth = 0; /* no locks held yet */
1342         p->curr_chain_key = 0;
1343         p->lockdep_recursion = 0;
1344 #endif
1345
1346 #ifdef CONFIG_DEBUG_MUTEXES
1347         p->blocked_on = NULL; /* not blocked yet */
1348 #endif
1349 #ifdef CONFIG_MEMCG
1350         p->memcg_batch.do_batch = 0;
1351         p->memcg_batch.memcg = NULL;
1352 #endif
1353 #ifdef CONFIG_BCACHE
1354         p->sequential_io        = 0;
1355         p->sequential_io_avg    = 0;
1356 #endif
1357
1358         /* Perform scheduler related setup. Assign this task to a CPU. */
1359         retval = sched_fork(clone_flags, p);
1360         if (retval)
1361                 goto bad_fork_cleanup_policy;
1362
1363         retval = perf_event_init_task(p);
1364         if (retval)
1365                 goto bad_fork_cleanup_policy;
1366         retval = audit_alloc(p);
1367         if (retval)
1368                 goto bad_fork_cleanup_policy;
1369         /* copy all the process information */
1370         retval = copy_semundo(clone_flags, p);
1371         if (retval)
1372                 goto bad_fork_cleanup_audit;
1373         retval = copy_files(clone_flags, p);
1374         if (retval)
1375                 goto bad_fork_cleanup_semundo;
1376         retval = copy_fs(clone_flags, p);
1377         if (retval)
1378                 goto bad_fork_cleanup_files;
1379         retval = copy_sighand(clone_flags, p);
1380         if (retval)
1381                 goto bad_fork_cleanup_fs;
1382         retval = copy_signal(clone_flags, p);
1383         if (retval)
1384                 goto bad_fork_cleanup_sighand;
1385         retval = copy_mm(clone_flags, p);
1386         if (retval)
1387                 goto bad_fork_cleanup_signal;
1388         retval = copy_namespaces(clone_flags, p);
1389         if (retval)
1390                 goto bad_fork_cleanup_mm;
1391         retval = copy_io(clone_flags, p);
1392         if (retval)
1393                 goto bad_fork_cleanup_namespaces;
1394         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1395         if (retval)
1396                 goto bad_fork_cleanup_io;
1397
1398         if (pid != &init_struct_pid) {
1399                 retval = -ENOMEM;
1400                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1401                 if (!pid)
1402                         goto bad_fork_cleanup_io;
1403         }
1404
1405         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1406         /*
1407          * Clear TID on mm_release()?
1408          */
1409         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1410 #ifdef CONFIG_BLOCK
1411         p->plug = NULL;
1412 #endif
1413 #ifdef CONFIG_FUTEX
1414         p->robust_list = NULL;
1415 #ifdef CONFIG_COMPAT
1416         p->compat_robust_list = NULL;
1417 #endif
1418         INIT_LIST_HEAD(&p->pi_state_list);
1419         p->pi_state_cache = NULL;
1420 #endif
1421         /*
1422          * sigaltstack should be cleared when sharing the same VM
1423          */
1424         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1425                 p->sas_ss_sp = p->sas_ss_size = 0;
1426
1427         /*
1428          * Syscall tracing and stepping should be turned off in the
1429          * child regardless of CLONE_PTRACE.
1430          */
1431         user_disable_single_step(p);
1432         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1433 #ifdef TIF_SYSCALL_EMU
1434         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1435 #endif
1436         clear_all_latency_tracing(p);
1437
1438         /* ok, now we should be set up.. */
1439         p->pid = pid_nr(pid);
1440         if (clone_flags & CLONE_THREAD) {
1441                 p->exit_signal = -1;
1442                 p->group_leader = current->group_leader;
1443                 p->tgid = current->tgid;
1444         } else {
1445                 if (clone_flags & CLONE_PARENT)
1446                         p->exit_signal = current->group_leader->exit_signal;
1447                 else
1448                         p->exit_signal = (clone_flags & CSIGNAL);
1449                 p->group_leader = p;
1450                 p->tgid = p->pid;
1451         }
1452
1453         p->nr_dirtied = 0;
1454         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1455         p->dirty_paused_when = 0;
1456
1457         p->pdeath_signal = 0;
1458         INIT_LIST_HEAD(&p->thread_group);
1459         p->task_works = NULL;
1460
1461         /*
1462          * Make it visible to the rest of the system, but dont wake it up yet.
1463          * Need tasklist lock for parent etc handling!
1464          */
1465         write_lock_irq(&tasklist_lock);
1466
1467         /* CLONE_PARENT re-uses the old parent */
1468         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1469                 p->real_parent = current->real_parent;
1470                 p->parent_exec_id = current->parent_exec_id;
1471         } else {
1472                 p->real_parent = current;
1473                 p->parent_exec_id = current->self_exec_id;
1474         }
1475
1476         spin_lock(&current->sighand->siglock);
1477
1478         /*
1479          * Copy seccomp details explicitly here, in case they were changed
1480          * before holding sighand lock.
1481          */
1482         copy_seccomp(p);
1483
1484         /*
1485          * Process group and session signals need to be delivered to just the
1486          * parent before the fork or both the parent and the child after the
1487          * fork. Restart if a signal comes in before we add the new process to
1488          * it's process group.
1489          * A fatal signal pending means that current will exit, so the new
1490          * thread can't slip out of an OOM kill (or normal SIGKILL).
1491         */
1492         recalc_sigpending();
1493         if (signal_pending(current)) {
1494                 spin_unlock(&current->sighand->siglock);
1495                 write_unlock_irq(&tasklist_lock);
1496                 retval = -ERESTARTNOINTR;
1497                 goto bad_fork_free_pid;
1498         }
1499
1500         if (likely(p->pid)) {
1501                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1502
1503                 init_task_pid(p, PIDTYPE_PID, pid);
1504                 if (thread_group_leader(p)) {
1505                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1506                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1507
1508                         if (is_child_reaper(pid)) {
1509                                 ns_of_pid(pid)->child_reaper = p;
1510                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1511                         }
1512
1513                         p->signal->leader_pid = pid;
1514                         p->signal->tty = tty_kref_get(current->signal->tty);
1515                         list_add_tail(&p->sibling, &p->real_parent->children);
1516                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1517                         attach_pid(p, PIDTYPE_PGID);
1518                         attach_pid(p, PIDTYPE_SID);
1519                         __this_cpu_inc(process_counts);
1520                 } else {
1521                         current->signal->nr_threads++;
1522                         atomic_inc(&current->signal->live);
1523                         atomic_inc(&current->signal->sigcnt);
1524                         list_add_tail_rcu(&p->thread_group,
1525                                           &p->group_leader->thread_group);
1526                         list_add_tail_rcu(&p->thread_node,
1527                                           &p->signal->thread_head);
1528                 }
1529                 attach_pid(p, PIDTYPE_PID);
1530                 nr_threads++;
1531         }
1532
1533         total_forks++;
1534         spin_unlock(&current->sighand->siglock);
1535         syscall_tracepoint_update(p);
1536         write_unlock_irq(&tasklist_lock);
1537
1538         proc_fork_connector(p);
1539         cgroup_post_fork(p);
1540         if (clone_flags & CLONE_THREAD)
1541                 threadgroup_change_end(current);
1542         perf_event_fork(p);
1543
1544         trace_task_newtask(p, clone_flags);
1545         uprobe_copy_process(p, clone_flags);
1546
1547         return p;
1548
1549 bad_fork_free_pid:
1550         if (pid != &init_struct_pid)
1551                 free_pid(pid);
1552 bad_fork_cleanup_io:
1553         if (p->io_context)
1554                 exit_io_context(p);
1555 bad_fork_cleanup_namespaces:
1556         exit_task_namespaces(p);
1557 bad_fork_cleanup_mm:
1558         if (p->mm)
1559                 mmput(p->mm);
1560 bad_fork_cleanup_signal:
1561         if (!(clone_flags & CLONE_THREAD))
1562                 free_signal_struct(p->signal);
1563 bad_fork_cleanup_sighand:
1564         __cleanup_sighand(p->sighand);
1565 bad_fork_cleanup_fs:
1566         exit_fs(p); /* blocking */
1567 bad_fork_cleanup_files:
1568         exit_files(p); /* blocking */
1569 bad_fork_cleanup_semundo:
1570         exit_sem(p);
1571 bad_fork_cleanup_audit:
1572         audit_free(p);
1573 bad_fork_cleanup_policy:
1574         perf_event_free_task(p);
1575 #ifdef CONFIG_NUMA
1576         mpol_put(p->mempolicy);
1577 bad_fork_cleanup_threadgroup_lock:
1578 #endif
1579         if (clone_flags & CLONE_THREAD)
1580                 threadgroup_change_end(current);
1581         delayacct_tsk_free(p);
1582         module_put(task_thread_info(p)->exec_domain->module);
1583 bad_fork_cleanup_count:
1584         atomic_dec(&p->cred->user->processes);
1585         exit_creds(p);
1586 bad_fork_free:
1587         free_task(p);
1588 fork_out:
1589         return ERR_PTR(retval);
1590 }
1591
1592 static inline void init_idle_pids(struct pid_link *links)
1593 {
1594         enum pid_type type;
1595
1596         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1597                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1598                 links[type].pid = &init_struct_pid;
1599         }
1600 }
1601
1602 struct task_struct *fork_idle(int cpu)
1603 {
1604         struct task_struct *task;
1605         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1606         if (!IS_ERR(task)) {
1607                 init_idle_pids(task->pids);
1608                 init_idle(task, cpu);
1609         }
1610
1611         return task;
1612 }
1613
1614 /*
1615  *  Ok, this is the main fork-routine.
1616  *
1617  * It copies the process, and if successful kick-starts
1618  * it and waits for it to finish using the VM if required.
1619  */
1620 long do_fork(unsigned long clone_flags,
1621               unsigned long stack_start,
1622               unsigned long stack_size,
1623               int __user *parent_tidptr,
1624               int __user *child_tidptr)
1625 {
1626         struct task_struct *p;
1627         int trace = 0;
1628         long nr;
1629
1630         /*
1631          * Determine whether and which event to report to ptracer.  When
1632          * called from kernel_thread or CLONE_UNTRACED is explicitly
1633          * requested, no event is reported; otherwise, report if the event
1634          * for the type of forking is enabled.
1635          */
1636         if (!(clone_flags & CLONE_UNTRACED)) {
1637                 if (clone_flags & CLONE_VFORK)
1638                         trace = PTRACE_EVENT_VFORK;
1639                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1640                         trace = PTRACE_EVENT_CLONE;
1641                 else
1642                         trace = PTRACE_EVENT_FORK;
1643
1644                 if (likely(!ptrace_event_enabled(current, trace)))
1645                         trace = 0;
1646         }
1647
1648         p = copy_process(clone_flags, stack_start, stack_size,
1649                          child_tidptr, NULL, trace);
1650         /*
1651          * Do this prior waking up the new thread - the thread pointer
1652          * might get invalid after that point, if the thread exits quickly.
1653          */
1654         if (!IS_ERR(p)) {
1655                 struct completion vfork;
1656                 struct pid *pid;
1657
1658                 trace_sched_process_fork(current, p);
1659
1660                 pid = get_task_pid(p, PIDTYPE_PID);
1661                 nr = pid_vnr(pid);
1662
1663                 if (clone_flags & CLONE_PARENT_SETTID)
1664                         put_user(nr, parent_tidptr);
1665
1666                 if (clone_flags & CLONE_VFORK) {
1667                         p->vfork_done = &vfork;
1668                         init_completion(&vfork);
1669                         get_task_struct(p);
1670                 }
1671
1672                 wake_up_new_task(p);
1673
1674                 /* forking complete and child started to run, tell ptracer */
1675                 if (unlikely(trace))
1676                         ptrace_event_pid(trace, pid);
1677
1678                 if (clone_flags & CLONE_VFORK) {
1679                         if (!wait_for_vfork_done(p, &vfork))
1680                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1681                 }
1682
1683                 put_pid(pid);
1684         } else {
1685                 nr = PTR_ERR(p);
1686         }
1687         return nr;
1688 }
1689
1690 /*
1691  * Create a kernel thread.
1692  */
1693 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1694 {
1695         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1696                 (unsigned long)arg, NULL, NULL);
1697 }
1698
1699 #ifdef __ARCH_WANT_SYS_FORK
1700 SYSCALL_DEFINE0(fork)
1701 {
1702 #ifdef CONFIG_MMU
1703         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1704 #else
1705         /* can not support in nommu mode */
1706         return -EINVAL;
1707 #endif
1708 }
1709 #endif
1710
1711 #ifdef __ARCH_WANT_SYS_VFORK
1712 SYSCALL_DEFINE0(vfork)
1713 {
1714         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1715                         0, NULL, NULL);
1716 }
1717 #endif
1718
1719 #ifdef __ARCH_WANT_SYS_CLONE
1720 #ifdef CONFIG_CLONE_BACKWARDS
1721 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1722                  int __user *, parent_tidptr,
1723                  int, tls_val,
1724                  int __user *, child_tidptr)
1725 #elif defined(CONFIG_CLONE_BACKWARDS2)
1726 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1727                  int __user *, parent_tidptr,
1728                  int __user *, child_tidptr,
1729                  int, tls_val)
1730 #elif defined(CONFIG_CLONE_BACKWARDS3)
1731 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1732                 int, stack_size,
1733                 int __user *, parent_tidptr,
1734                 int __user *, child_tidptr,
1735                 int, tls_val)
1736 #else
1737 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1738                  int __user *, parent_tidptr,
1739                  int __user *, child_tidptr,
1740                  int, tls_val)
1741 #endif
1742 {
1743         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1744 }
1745 #endif
1746
1747 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1748 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1749 #endif
1750
1751 static void sighand_ctor(void *data)
1752 {
1753         struct sighand_struct *sighand = data;
1754
1755         spin_lock_init(&sighand->siglock);
1756         init_waitqueue_head(&sighand->signalfd_wqh);
1757 }
1758
1759 void __init proc_caches_init(void)
1760 {
1761         sighand_cachep = kmem_cache_create("sighand_cache",
1762                         sizeof(struct sighand_struct), 0,
1763                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1764                         SLAB_NOTRACK, sighand_ctor);
1765         signal_cachep = kmem_cache_create("signal_cache",
1766                         sizeof(struct signal_struct), 0,
1767                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1768         files_cachep = kmem_cache_create("files_cache",
1769                         sizeof(struct files_struct), 0,
1770                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1771         fs_cachep = kmem_cache_create("fs_cache",
1772                         sizeof(struct fs_struct), 0,
1773                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774         /*
1775          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1776          * whole struct cpumask for the OFFSTACK case. We could change
1777          * this to *only* allocate as much of it as required by the
1778          * maximum number of CPU's we can ever have.  The cpumask_allocation
1779          * is at the end of the structure, exactly for that reason.
1780          */
1781         mm_cachep = kmem_cache_create("mm_struct",
1782                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1783                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1784         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1785         mmap_init();
1786         nsproxy_cache_init();
1787 }
1788
1789 /*
1790  * Check constraints on flags passed to the unshare system call.
1791  */
1792 static int check_unshare_flags(unsigned long unshare_flags)
1793 {
1794         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1795                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1796                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1797                                 CLONE_NEWUSER|CLONE_NEWPID))
1798                 return -EINVAL;
1799         /*
1800          * Not implemented, but pretend it works if there is nothing to
1801          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1802          * needs to unshare vm.
1803          */
1804         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1805                 /* FIXME: get_task_mm() increments ->mm_users */
1806                 if (atomic_read(&current->mm->mm_users) > 1)
1807                         return -EINVAL;
1808         }
1809
1810         return 0;
1811 }
1812
1813 /*
1814  * Unshare the filesystem structure if it is being shared
1815  */
1816 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1817 {
1818         struct fs_struct *fs = current->fs;
1819
1820         if (!(unshare_flags & CLONE_FS) || !fs)
1821                 return 0;
1822
1823         /* don't need lock here; in the worst case we'll do useless copy */
1824         if (fs->users == 1)
1825                 return 0;
1826
1827         *new_fsp = copy_fs_struct(fs);
1828         if (!*new_fsp)
1829                 return -ENOMEM;
1830
1831         return 0;
1832 }
1833
1834 /*
1835  * Unshare file descriptor table if it is being shared
1836  */
1837 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1838 {
1839         struct files_struct *fd = current->files;
1840         int error = 0;
1841
1842         if ((unshare_flags & CLONE_FILES) &&
1843             (fd && atomic_read(&fd->count) > 1)) {
1844                 *new_fdp = dup_fd(fd, &error);
1845                 if (!*new_fdp)
1846                         return error;
1847         }
1848
1849         return 0;
1850 }
1851
1852 /*
1853  * unshare allows a process to 'unshare' part of the process
1854  * context which was originally shared using clone.  copy_*
1855  * functions used by do_fork() cannot be used here directly
1856  * because they modify an inactive task_struct that is being
1857  * constructed. Here we are modifying the current, active,
1858  * task_struct.
1859  */
1860 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1861 {
1862         struct fs_struct *fs, *new_fs = NULL;
1863         struct files_struct *fd, *new_fd = NULL;
1864         struct cred *new_cred = NULL;
1865         struct nsproxy *new_nsproxy = NULL;
1866         int do_sysvsem = 0;
1867         int err;
1868
1869         /*
1870          * If unsharing a user namespace must also unshare the thread.
1871          */
1872         if (unshare_flags & CLONE_NEWUSER)
1873                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1874         /*
1875          * If unsharing a thread from a thread group, must also unshare vm.
1876          */
1877         if (unshare_flags & CLONE_THREAD)
1878                 unshare_flags |= CLONE_VM;
1879         /*
1880          * If unsharing vm, must also unshare signal handlers.
1881          */
1882         if (unshare_flags & CLONE_VM)
1883                 unshare_flags |= CLONE_SIGHAND;
1884         /*
1885          * If unsharing namespace, must also unshare filesystem information.
1886          */
1887         if (unshare_flags & CLONE_NEWNS)
1888                 unshare_flags |= CLONE_FS;
1889
1890         err = check_unshare_flags(unshare_flags);
1891         if (err)
1892                 goto bad_unshare_out;
1893         /*
1894          * CLONE_NEWIPC must also detach from the undolist: after switching
1895          * to a new ipc namespace, the semaphore arrays from the old
1896          * namespace are unreachable.
1897          */
1898         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1899                 do_sysvsem = 1;
1900         err = unshare_fs(unshare_flags, &new_fs);
1901         if (err)
1902                 goto bad_unshare_out;
1903         err = unshare_fd(unshare_flags, &new_fd);
1904         if (err)
1905                 goto bad_unshare_cleanup_fs;
1906         err = unshare_userns(unshare_flags, &new_cred);
1907         if (err)
1908                 goto bad_unshare_cleanup_fd;
1909         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1910                                          new_cred, new_fs);
1911         if (err)
1912                 goto bad_unshare_cleanup_cred;
1913
1914         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1915                 if (do_sysvsem) {
1916                         /*
1917                          * CLONE_SYSVSEM is equivalent to sys_exit().
1918                          */
1919                         exit_sem(current);
1920                 }
1921
1922                 if (new_nsproxy)
1923                         switch_task_namespaces(current, new_nsproxy);
1924
1925                 task_lock(current);
1926
1927                 if (new_fs) {
1928                         fs = current->fs;
1929                         spin_lock(&fs->lock);
1930                         current->fs = new_fs;
1931                         if (--fs->users)
1932                                 new_fs = NULL;
1933                         else
1934                                 new_fs = fs;
1935                         spin_unlock(&fs->lock);
1936                 }
1937
1938                 if (new_fd) {
1939                         fd = current->files;
1940                         current->files = new_fd;
1941                         new_fd = fd;
1942                 }
1943
1944                 task_unlock(current);
1945
1946                 if (new_cred) {
1947                         /* Install the new user namespace */
1948                         commit_creds(new_cred);
1949                         new_cred = NULL;
1950                 }
1951         }
1952
1953 bad_unshare_cleanup_cred:
1954         if (new_cred)
1955                 put_cred(new_cred);
1956 bad_unshare_cleanup_fd:
1957         if (new_fd)
1958                 put_files_struct(new_fd);
1959
1960 bad_unshare_cleanup_fs:
1961         if (new_fs)
1962                 free_fs_struct(new_fs);
1963
1964 bad_unshare_out:
1965         return err;
1966 }
1967
1968 /*
1969  *      Helper to unshare the files of the current task.
1970  *      We don't want to expose copy_files internals to
1971  *      the exec layer of the kernel.
1972  */
1973
1974 int unshare_files(struct files_struct **displaced)
1975 {
1976         struct task_struct *task = current;
1977         struct files_struct *copy = NULL;
1978         int error;
1979
1980         error = unshare_fd(CLONE_FILES, &copy);
1981         if (error || !copy) {
1982                 *displaced = NULL;
1983                 return error;
1984         }
1985         *displaced = task->files;
1986         task_lock(task);
1987         task->files = copy;
1988         task_unlock(task);
1989         return 0;
1990 }