latent_entropy: Mark functions with __latent_entropy
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;      /* Handle normal Linux uptimes. */
106 int nr_threads;                 /* The idle threads do not count.. */
107
108 int max_threads;                /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117         return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124         int cpu;
125         int total = 0;
126
127         for_each_possible_cpu(cpu)
128                 total += per_cpu(process_counts, cpu);
129
130         return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147         kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163                                                   int node)
164 {
165         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166                                              THREAD_SIZE_ORDER);
167
168         return page ? page_address(page) : NULL;
169 }
170
171 static inline void free_thread_stack(unsigned long *stack)
172 {
173         __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
174 }
175 # else
176 static struct kmem_cache *thread_stack_cache;
177
178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
179                                                   int node)
180 {
181         return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
182 }
183
184 static void free_thread_stack(unsigned long *stack)
185 {
186         kmem_cache_free(thread_stack_cache, stack);
187 }
188
189 void thread_stack_cache_init(void)
190 {
191         thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
192                                               THREAD_SIZE, 0, NULL);
193         BUG_ON(thread_stack_cache == NULL);
194 }
195 # endif
196 #endif
197
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache *signal_cachep;
200
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache *sighand_cachep;
203
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache *files_cachep;
206
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache *fs_cachep;
209
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache *vm_area_cachep;
212
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache *mm_cachep;
215
216 static void account_kernel_stack(unsigned long *stack, int account)
217 {
218         /* All stack pages are in the same zone and belong to the same memcg. */
219         struct page *first_page = virt_to_page(stack);
220
221         mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
222                             THREAD_SIZE / 1024 * account);
223
224         memcg_kmem_update_page_stat(
225                 first_page, MEMCG_KERNEL_STACK_KB,
226                 account * (THREAD_SIZE / 1024));
227 }
228
229 void free_task(struct task_struct *tsk)
230 {
231         account_kernel_stack(tsk->stack, -1);
232         arch_release_thread_stack(tsk->stack);
233         free_thread_stack(tsk->stack);
234         rt_mutex_debug_task_free(tsk);
235         ftrace_graph_exit_task(tsk);
236         put_seccomp_filter(tsk);
237         arch_release_task_struct(tsk);
238         free_task_struct(tsk);
239 }
240 EXPORT_SYMBOL(free_task);
241
242 static inline void free_signal_struct(struct signal_struct *sig)
243 {
244         taskstats_tgid_free(sig);
245         sched_autogroup_exit(sig);
246         kmem_cache_free(signal_cachep, sig);
247 }
248
249 static inline void put_signal_struct(struct signal_struct *sig)
250 {
251         if (atomic_dec_and_test(&sig->sigcnt))
252                 free_signal_struct(sig);
253 }
254
255 void __put_task_struct(struct task_struct *tsk)
256 {
257         WARN_ON(!tsk->exit_state);
258         WARN_ON(atomic_read(&tsk->usage));
259         WARN_ON(tsk == current);
260
261         cgroup_free(tsk);
262         task_numa_free(tsk);
263         security_task_free(tsk);
264         exit_creds(tsk);
265         delayacct_tsk_free(tsk);
266         put_signal_struct(tsk->signal);
267
268         if (!profile_handoff_task(tsk))
269                 free_task(tsk);
270 }
271 EXPORT_SYMBOL_GPL(__put_task_struct);
272
273 void __init __weak arch_task_cache_init(void) { }
274
275 /*
276  * set_max_threads
277  */
278 static void set_max_threads(unsigned int max_threads_suggested)
279 {
280         u64 threads;
281
282         /*
283          * The number of threads shall be limited such that the thread
284          * structures may only consume a small part of the available memory.
285          */
286         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
287                 threads = MAX_THREADS;
288         else
289                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
290                                     (u64) THREAD_SIZE * 8UL);
291
292         if (threads > max_threads_suggested)
293                 threads = max_threads_suggested;
294
295         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
296 }
297
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly;
301 #endif
302
303 void __init fork_init(void)
304 {
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
308 #endif
309         /* create a slab on which task_structs can be allocated */
310         task_struct_cachep = kmem_cache_create("task_struct",
311                         arch_task_struct_size, ARCH_MIN_TASKALIGN,
312                         SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
313 #endif
314
315         /* do the arch specific task caches init */
316         arch_task_cache_init();
317
318         set_max_threads(MAX_THREADS);
319
320         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
321         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
322         init_task.signal->rlim[RLIMIT_SIGPENDING] =
323                 init_task.signal->rlim[RLIMIT_NPROC];
324 }
325
326 int __weak arch_dup_task_struct(struct task_struct *dst,
327                                                struct task_struct *src)
328 {
329         *dst = *src;
330         return 0;
331 }
332
333 void set_task_stack_end_magic(struct task_struct *tsk)
334 {
335         unsigned long *stackend;
336
337         stackend = end_of_stack(tsk);
338         *stackend = STACK_END_MAGIC;    /* for overflow detection */
339 }
340
341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
342 {
343         struct task_struct *tsk;
344         unsigned long *stack;
345         int err;
346
347         if (node == NUMA_NO_NODE)
348                 node = tsk_fork_get_node(orig);
349         tsk = alloc_task_struct_node(node);
350         if (!tsk)
351                 return NULL;
352
353         stack = alloc_thread_stack_node(tsk, node);
354         if (!stack)
355                 goto free_tsk;
356
357         err = arch_dup_task_struct(tsk, orig);
358         if (err)
359                 goto free_stack;
360
361         tsk->stack = stack;
362 #ifdef CONFIG_SECCOMP
363         /*
364          * We must handle setting up seccomp filters once we're under
365          * the sighand lock in case orig has changed between now and
366          * then. Until then, filter must be NULL to avoid messing up
367          * the usage counts on the error path calling free_task.
368          */
369         tsk->seccomp.filter = NULL;
370 #endif
371
372         setup_thread_stack(tsk, orig);
373         clear_user_return_notifier(tsk);
374         clear_tsk_need_resched(tsk);
375         set_task_stack_end_magic(tsk);
376
377 #ifdef CONFIG_CC_STACKPROTECTOR
378         tsk->stack_canary = get_random_int();
379 #endif
380
381         /*
382          * One for us, one for whoever does the "release_task()" (usually
383          * parent)
384          */
385         atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387         tsk->btrace_seq = 0;
388 #endif
389         tsk->splice_pipe = NULL;
390         tsk->task_frag.page = NULL;
391         tsk->wake_q.next = NULL;
392
393         account_kernel_stack(stack, 1);
394
395         kcov_task_init(tsk);
396
397         return tsk;
398
399 free_stack:
400         free_thread_stack(stack);
401 free_tsk:
402         free_task_struct(tsk);
403         return NULL;
404 }
405
406 #ifdef CONFIG_MMU
407 static __latent_entropy int dup_mmap(struct mm_struct *mm,
408                                         struct mm_struct *oldmm)
409 {
410         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411         struct rb_node **rb_link, *rb_parent;
412         int retval;
413         unsigned long charge;
414
415         uprobe_start_dup_mmap();
416         if (down_write_killable(&oldmm->mmap_sem)) {
417                 retval = -EINTR;
418                 goto fail_uprobe_end;
419         }
420         flush_cache_dup_mm(oldmm);
421         uprobe_dup_mmap(oldmm, mm);
422         /*
423          * Not linked in yet - no deadlock potential:
424          */
425         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
426
427         /* No ordering required: file already has been exposed. */
428         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
429
430         mm->total_vm = oldmm->total_vm;
431         mm->data_vm = oldmm->data_vm;
432         mm->exec_vm = oldmm->exec_vm;
433         mm->stack_vm = oldmm->stack_vm;
434
435         rb_link = &mm->mm_rb.rb_node;
436         rb_parent = NULL;
437         pprev = &mm->mmap;
438         retval = ksm_fork(mm, oldmm);
439         if (retval)
440                 goto out;
441         retval = khugepaged_fork(mm, oldmm);
442         if (retval)
443                 goto out;
444
445         prev = NULL;
446         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
447                 struct file *file;
448
449                 if (mpnt->vm_flags & VM_DONTCOPY) {
450                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
451                         continue;
452                 }
453                 charge = 0;
454                 if (mpnt->vm_flags & VM_ACCOUNT) {
455                         unsigned long len = vma_pages(mpnt);
456
457                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
458                                 goto fail_nomem;
459                         charge = len;
460                 }
461                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
462                 if (!tmp)
463                         goto fail_nomem;
464                 *tmp = *mpnt;
465                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
466                 retval = vma_dup_policy(mpnt, tmp);
467                 if (retval)
468                         goto fail_nomem_policy;
469                 tmp->vm_mm = mm;
470                 if (anon_vma_fork(tmp, mpnt))
471                         goto fail_nomem_anon_vma_fork;
472                 tmp->vm_flags &=
473                         ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
474                 tmp->vm_next = tmp->vm_prev = NULL;
475                 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
476                 file = tmp->vm_file;
477                 if (file) {
478                         struct inode *inode = file_inode(file);
479                         struct address_space *mapping = file->f_mapping;
480
481                         get_file(file);
482                         if (tmp->vm_flags & VM_DENYWRITE)
483                                 atomic_dec(&inode->i_writecount);
484                         i_mmap_lock_write(mapping);
485                         if (tmp->vm_flags & VM_SHARED)
486                                 atomic_inc(&mapping->i_mmap_writable);
487                         flush_dcache_mmap_lock(mapping);
488                         /* insert tmp into the share list, just after mpnt */
489                         vma_interval_tree_insert_after(tmp, mpnt,
490                                         &mapping->i_mmap);
491                         flush_dcache_mmap_unlock(mapping);
492                         i_mmap_unlock_write(mapping);
493                 }
494
495                 /*
496                  * Clear hugetlb-related page reserves for children. This only
497                  * affects MAP_PRIVATE mappings. Faults generated by the child
498                  * are not guaranteed to succeed, even if read-only
499                  */
500                 if (is_vm_hugetlb_page(tmp))
501                         reset_vma_resv_huge_pages(tmp);
502
503                 /*
504                  * Link in the new vma and copy the page table entries.
505                  */
506                 *pprev = tmp;
507                 pprev = &tmp->vm_next;
508                 tmp->vm_prev = prev;
509                 prev = tmp;
510
511                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
512                 rb_link = &tmp->vm_rb.rb_right;
513                 rb_parent = &tmp->vm_rb;
514
515                 mm->map_count++;
516                 retval = copy_page_range(mm, oldmm, mpnt);
517
518                 if (tmp->vm_ops && tmp->vm_ops->open)
519                         tmp->vm_ops->open(tmp);
520
521                 if (retval)
522                         goto out;
523         }
524         /* a new mm has just been created */
525         arch_dup_mmap(oldmm, mm);
526         retval = 0;
527 out:
528         up_write(&mm->mmap_sem);
529         flush_tlb_mm(oldmm);
530         up_write(&oldmm->mmap_sem);
531 fail_uprobe_end:
532         uprobe_end_dup_mmap();
533         return retval;
534 fail_nomem_anon_vma_fork:
535         mpol_put(vma_policy(tmp));
536 fail_nomem_policy:
537         kmem_cache_free(vm_area_cachep, tmp);
538 fail_nomem:
539         retval = -ENOMEM;
540         vm_unacct_memory(charge);
541         goto out;
542 }
543
544 static inline int mm_alloc_pgd(struct mm_struct *mm)
545 {
546         mm->pgd = pgd_alloc(mm);
547         if (unlikely(!mm->pgd))
548                 return -ENOMEM;
549         return 0;
550 }
551
552 static inline void mm_free_pgd(struct mm_struct *mm)
553 {
554         pgd_free(mm, mm->pgd);
555 }
556 #else
557 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
558 {
559         down_write(&oldmm->mmap_sem);
560         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
561         up_write(&oldmm->mmap_sem);
562         return 0;
563 }
564 #define mm_alloc_pgd(mm)        (0)
565 #define mm_free_pgd(mm)
566 #endif /* CONFIG_MMU */
567
568 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
569
570 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
571 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
572
573 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
574
575 static int __init coredump_filter_setup(char *s)
576 {
577         default_dump_filter =
578                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
579                 MMF_DUMP_FILTER_MASK;
580         return 1;
581 }
582
583 __setup("coredump_filter=", coredump_filter_setup);
584
585 #include <linux/init_task.h>
586
587 static void mm_init_aio(struct mm_struct *mm)
588 {
589 #ifdef CONFIG_AIO
590         spin_lock_init(&mm->ioctx_lock);
591         mm->ioctx_table = NULL;
592 #endif
593 }
594
595 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
596 {
597 #ifdef CONFIG_MEMCG
598         mm->owner = p;
599 #endif
600 }
601
602 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
603 {
604         mm->mmap = NULL;
605         mm->mm_rb = RB_ROOT;
606         mm->vmacache_seqnum = 0;
607         atomic_set(&mm->mm_users, 1);
608         atomic_set(&mm->mm_count, 1);
609         init_rwsem(&mm->mmap_sem);
610         INIT_LIST_HEAD(&mm->mmlist);
611         mm->core_state = NULL;
612         atomic_long_set(&mm->nr_ptes, 0);
613         mm_nr_pmds_init(mm);
614         mm->map_count = 0;
615         mm->locked_vm = 0;
616         mm->pinned_vm = 0;
617         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
618         spin_lock_init(&mm->page_table_lock);
619         mm_init_cpumask(mm);
620         mm_init_aio(mm);
621         mm_init_owner(mm, p);
622         mmu_notifier_mm_init(mm);
623         clear_tlb_flush_pending(mm);
624 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
625         mm->pmd_huge_pte = NULL;
626 #endif
627
628         if (current->mm) {
629                 mm->flags = current->mm->flags & MMF_INIT_MASK;
630                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
631         } else {
632                 mm->flags = default_dump_filter;
633                 mm->def_flags = 0;
634         }
635
636         if (mm_alloc_pgd(mm))
637                 goto fail_nopgd;
638
639         if (init_new_context(p, mm))
640                 goto fail_nocontext;
641
642         return mm;
643
644 fail_nocontext:
645         mm_free_pgd(mm);
646 fail_nopgd:
647         free_mm(mm);
648         return NULL;
649 }
650
651 static void check_mm(struct mm_struct *mm)
652 {
653         int i;
654
655         for (i = 0; i < NR_MM_COUNTERS; i++) {
656                 long x = atomic_long_read(&mm->rss_stat.count[i]);
657
658                 if (unlikely(x))
659                         printk(KERN_ALERT "BUG: Bad rss-counter state "
660                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
661         }
662
663         if (atomic_long_read(&mm->nr_ptes))
664                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
665                                 atomic_long_read(&mm->nr_ptes));
666         if (mm_nr_pmds(mm))
667                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
668                                 mm_nr_pmds(mm));
669
670 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
671         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
672 #endif
673 }
674
675 /*
676  * Allocate and initialize an mm_struct.
677  */
678 struct mm_struct *mm_alloc(void)
679 {
680         struct mm_struct *mm;
681
682         mm = allocate_mm();
683         if (!mm)
684                 return NULL;
685
686         memset(mm, 0, sizeof(*mm));
687         return mm_init(mm, current);
688 }
689
690 /*
691  * Called when the last reference to the mm
692  * is dropped: either by a lazy thread or by
693  * mmput. Free the page directory and the mm.
694  */
695 void __mmdrop(struct mm_struct *mm)
696 {
697         BUG_ON(mm == &init_mm);
698         mm_free_pgd(mm);
699         destroy_context(mm);
700         mmu_notifier_mm_destroy(mm);
701         check_mm(mm);
702         free_mm(mm);
703 }
704 EXPORT_SYMBOL_GPL(__mmdrop);
705
706 static inline void __mmput(struct mm_struct *mm)
707 {
708         VM_BUG_ON(atomic_read(&mm->mm_users));
709
710         uprobe_clear_state(mm);
711         exit_aio(mm);
712         ksm_exit(mm);
713         khugepaged_exit(mm); /* must run before exit_mmap */
714         exit_mmap(mm);
715         set_mm_exe_file(mm, NULL);
716         if (!list_empty(&mm->mmlist)) {
717                 spin_lock(&mmlist_lock);
718                 list_del(&mm->mmlist);
719                 spin_unlock(&mmlist_lock);
720         }
721         if (mm->binfmt)
722                 module_put(mm->binfmt->module);
723         mmdrop(mm);
724 }
725
726 /*
727  * Decrement the use count and release all resources for an mm.
728  */
729 void mmput(struct mm_struct *mm)
730 {
731         might_sleep();
732
733         if (atomic_dec_and_test(&mm->mm_users))
734                 __mmput(mm);
735 }
736 EXPORT_SYMBOL_GPL(mmput);
737
738 #ifdef CONFIG_MMU
739 static void mmput_async_fn(struct work_struct *work)
740 {
741         struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
742         __mmput(mm);
743 }
744
745 void mmput_async(struct mm_struct *mm)
746 {
747         if (atomic_dec_and_test(&mm->mm_users)) {
748                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
749                 schedule_work(&mm->async_put_work);
750         }
751 }
752 #endif
753
754 /**
755  * set_mm_exe_file - change a reference to the mm's executable file
756  *
757  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
758  *
759  * Main users are mmput() and sys_execve(). Callers prevent concurrent
760  * invocations: in mmput() nobody alive left, in execve task is single
761  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
762  * mm->exe_file, but does so without using set_mm_exe_file() in order
763  * to do avoid the need for any locks.
764  */
765 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
766 {
767         struct file *old_exe_file;
768
769         /*
770          * It is safe to dereference the exe_file without RCU as
771          * this function is only called if nobody else can access
772          * this mm -- see comment above for justification.
773          */
774         old_exe_file = rcu_dereference_raw(mm->exe_file);
775
776         if (new_exe_file)
777                 get_file(new_exe_file);
778         rcu_assign_pointer(mm->exe_file, new_exe_file);
779         if (old_exe_file)
780                 fput(old_exe_file);
781 }
782
783 /**
784  * get_mm_exe_file - acquire a reference to the mm's executable file
785  *
786  * Returns %NULL if mm has no associated executable file.
787  * User must release file via fput().
788  */
789 struct file *get_mm_exe_file(struct mm_struct *mm)
790 {
791         struct file *exe_file;
792
793         rcu_read_lock();
794         exe_file = rcu_dereference(mm->exe_file);
795         if (exe_file && !get_file_rcu(exe_file))
796                 exe_file = NULL;
797         rcu_read_unlock();
798         return exe_file;
799 }
800 EXPORT_SYMBOL(get_mm_exe_file);
801
802 /**
803  * get_task_exe_file - acquire a reference to the task's executable file
804  *
805  * Returns %NULL if task's mm (if any) has no associated executable file or
806  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
807  * User must release file via fput().
808  */
809 struct file *get_task_exe_file(struct task_struct *task)
810 {
811         struct file *exe_file = NULL;
812         struct mm_struct *mm;
813
814         task_lock(task);
815         mm = task->mm;
816         if (mm) {
817                 if (!(task->flags & PF_KTHREAD))
818                         exe_file = get_mm_exe_file(mm);
819         }
820         task_unlock(task);
821         return exe_file;
822 }
823 EXPORT_SYMBOL(get_task_exe_file);
824
825 /**
826  * get_task_mm - acquire a reference to the task's mm
827  *
828  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
829  * this kernel workthread has transiently adopted a user mm with use_mm,
830  * to do its AIO) is not set and if so returns a reference to it, after
831  * bumping up the use count.  User must release the mm via mmput()
832  * after use.  Typically used by /proc and ptrace.
833  */
834 struct mm_struct *get_task_mm(struct task_struct *task)
835 {
836         struct mm_struct *mm;
837
838         task_lock(task);
839         mm = task->mm;
840         if (mm) {
841                 if (task->flags & PF_KTHREAD)
842                         mm = NULL;
843                 else
844                         atomic_inc(&mm->mm_users);
845         }
846         task_unlock(task);
847         return mm;
848 }
849 EXPORT_SYMBOL_GPL(get_task_mm);
850
851 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
852 {
853         struct mm_struct *mm;
854         int err;
855
856         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
857         if (err)
858                 return ERR_PTR(err);
859
860         mm = get_task_mm(task);
861         if (mm && mm != current->mm &&
862                         !ptrace_may_access(task, mode)) {
863                 mmput(mm);
864                 mm = ERR_PTR(-EACCES);
865         }
866         mutex_unlock(&task->signal->cred_guard_mutex);
867
868         return mm;
869 }
870
871 static void complete_vfork_done(struct task_struct *tsk)
872 {
873         struct completion *vfork;
874
875         task_lock(tsk);
876         vfork = tsk->vfork_done;
877         if (likely(vfork)) {
878                 tsk->vfork_done = NULL;
879                 complete(vfork);
880         }
881         task_unlock(tsk);
882 }
883
884 static int wait_for_vfork_done(struct task_struct *child,
885                                 struct completion *vfork)
886 {
887         int killed;
888
889         freezer_do_not_count();
890         killed = wait_for_completion_killable(vfork);
891         freezer_count();
892
893         if (killed) {
894                 task_lock(child);
895                 child->vfork_done = NULL;
896                 task_unlock(child);
897         }
898
899         put_task_struct(child);
900         return killed;
901 }
902
903 /* Please note the differences between mmput and mm_release.
904  * mmput is called whenever we stop holding onto a mm_struct,
905  * error success whatever.
906  *
907  * mm_release is called after a mm_struct has been removed
908  * from the current process.
909  *
910  * This difference is important for error handling, when we
911  * only half set up a mm_struct for a new process and need to restore
912  * the old one.  Because we mmput the new mm_struct before
913  * restoring the old one. . .
914  * Eric Biederman 10 January 1998
915  */
916 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
917 {
918         /* Get rid of any futexes when releasing the mm */
919 #ifdef CONFIG_FUTEX
920         if (unlikely(tsk->robust_list)) {
921                 exit_robust_list(tsk);
922                 tsk->robust_list = NULL;
923         }
924 #ifdef CONFIG_COMPAT
925         if (unlikely(tsk->compat_robust_list)) {
926                 compat_exit_robust_list(tsk);
927                 tsk->compat_robust_list = NULL;
928         }
929 #endif
930         if (unlikely(!list_empty(&tsk->pi_state_list)))
931                 exit_pi_state_list(tsk);
932 #endif
933
934         uprobe_free_utask(tsk);
935
936         /* Get rid of any cached register state */
937         deactivate_mm(tsk, mm);
938
939         /*
940          * Signal userspace if we're not exiting with a core dump
941          * because we want to leave the value intact for debugging
942          * purposes.
943          */
944         if (tsk->clear_child_tid) {
945                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
946                     atomic_read(&mm->mm_users) > 1) {
947                         /*
948                          * We don't check the error code - if userspace has
949                          * not set up a proper pointer then tough luck.
950                          */
951                         put_user(0, tsk->clear_child_tid);
952                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
953                                         1, NULL, NULL, 0);
954                 }
955                 tsk->clear_child_tid = NULL;
956         }
957
958         /*
959          * All done, finally we can wake up parent and return this mm to him.
960          * Also kthread_stop() uses this completion for synchronization.
961          */
962         if (tsk->vfork_done)
963                 complete_vfork_done(tsk);
964 }
965
966 /*
967  * Allocate a new mm structure and copy contents from the
968  * mm structure of the passed in task structure.
969  */
970 static struct mm_struct *dup_mm(struct task_struct *tsk)
971 {
972         struct mm_struct *mm, *oldmm = current->mm;
973         int err;
974
975         mm = allocate_mm();
976         if (!mm)
977                 goto fail_nomem;
978
979         memcpy(mm, oldmm, sizeof(*mm));
980
981         if (!mm_init(mm, tsk))
982                 goto fail_nomem;
983
984         err = dup_mmap(mm, oldmm);
985         if (err)
986                 goto free_pt;
987
988         mm->hiwater_rss = get_mm_rss(mm);
989         mm->hiwater_vm = mm->total_vm;
990
991         if (mm->binfmt && !try_module_get(mm->binfmt->module))
992                 goto free_pt;
993
994         return mm;
995
996 free_pt:
997         /* don't put binfmt in mmput, we haven't got module yet */
998         mm->binfmt = NULL;
999         mmput(mm);
1000
1001 fail_nomem:
1002         return NULL;
1003 }
1004
1005 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007         struct mm_struct *mm, *oldmm;
1008         int retval;
1009
1010         tsk->min_flt = tsk->maj_flt = 0;
1011         tsk->nvcsw = tsk->nivcsw = 0;
1012 #ifdef CONFIG_DETECT_HUNG_TASK
1013         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1014 #endif
1015
1016         tsk->mm = NULL;
1017         tsk->active_mm = NULL;
1018
1019         /*
1020          * Are we cloning a kernel thread?
1021          *
1022          * We need to steal a active VM for that..
1023          */
1024         oldmm = current->mm;
1025         if (!oldmm)
1026                 return 0;
1027
1028         /* initialize the new vmacache entries */
1029         vmacache_flush(tsk);
1030
1031         if (clone_flags & CLONE_VM) {
1032                 atomic_inc(&oldmm->mm_users);
1033                 mm = oldmm;
1034                 goto good_mm;
1035         }
1036
1037         retval = -ENOMEM;
1038         mm = dup_mm(tsk);
1039         if (!mm)
1040                 goto fail_nomem;
1041
1042 good_mm:
1043         tsk->mm = mm;
1044         tsk->active_mm = mm;
1045         return 0;
1046
1047 fail_nomem:
1048         return retval;
1049 }
1050
1051 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1052 {
1053         struct fs_struct *fs = current->fs;
1054         if (clone_flags & CLONE_FS) {
1055                 /* tsk->fs is already what we want */
1056                 spin_lock(&fs->lock);
1057                 if (fs->in_exec) {
1058                         spin_unlock(&fs->lock);
1059                         return -EAGAIN;
1060                 }
1061                 fs->users++;
1062                 spin_unlock(&fs->lock);
1063                 return 0;
1064         }
1065         tsk->fs = copy_fs_struct(fs);
1066         if (!tsk->fs)
1067                 return -ENOMEM;
1068         return 0;
1069 }
1070
1071 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1072 {
1073         struct files_struct *oldf, *newf;
1074         int error = 0;
1075
1076         /*
1077          * A background process may not have any files ...
1078          */
1079         oldf = current->files;
1080         if (!oldf)
1081                 goto out;
1082
1083         if (clone_flags & CLONE_FILES) {
1084                 atomic_inc(&oldf->count);
1085                 goto out;
1086         }
1087
1088         newf = dup_fd(oldf, &error);
1089         if (!newf)
1090                 goto out;
1091
1092         tsk->files = newf;
1093         error = 0;
1094 out:
1095         return error;
1096 }
1097
1098 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1099 {
1100 #ifdef CONFIG_BLOCK
1101         struct io_context *ioc = current->io_context;
1102         struct io_context *new_ioc;
1103
1104         if (!ioc)
1105                 return 0;
1106         /*
1107          * Share io context with parent, if CLONE_IO is set
1108          */
1109         if (clone_flags & CLONE_IO) {
1110                 ioc_task_link(ioc);
1111                 tsk->io_context = ioc;
1112         } else if (ioprio_valid(ioc->ioprio)) {
1113                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1114                 if (unlikely(!new_ioc))
1115                         return -ENOMEM;
1116
1117                 new_ioc->ioprio = ioc->ioprio;
1118                 put_io_context(new_ioc);
1119         }
1120 #endif
1121         return 0;
1122 }
1123
1124 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1125 {
1126         struct sighand_struct *sig;
1127
1128         if (clone_flags & CLONE_SIGHAND) {
1129                 atomic_inc(&current->sighand->count);
1130                 return 0;
1131         }
1132         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1133         rcu_assign_pointer(tsk->sighand, sig);
1134         if (!sig)
1135                 return -ENOMEM;
1136
1137         atomic_set(&sig->count, 1);
1138         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1139         return 0;
1140 }
1141
1142 void __cleanup_sighand(struct sighand_struct *sighand)
1143 {
1144         if (atomic_dec_and_test(&sighand->count)) {
1145                 signalfd_cleanup(sighand);
1146                 /*
1147                  * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1148                  * without an RCU grace period, see __lock_task_sighand().
1149                  */
1150                 kmem_cache_free(sighand_cachep, sighand);
1151         }
1152 }
1153
1154 /*
1155  * Initialize POSIX timer handling for a thread group.
1156  */
1157 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1158 {
1159         unsigned long cpu_limit;
1160
1161         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1162         if (cpu_limit != RLIM_INFINITY) {
1163                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1164                 sig->cputimer.running = true;
1165         }
1166
1167         /* The timer lists. */
1168         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1169         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1170         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1171 }
1172
1173 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1174 {
1175         struct signal_struct *sig;
1176
1177         if (clone_flags & CLONE_THREAD)
1178                 return 0;
1179
1180         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1181         tsk->signal = sig;
1182         if (!sig)
1183                 return -ENOMEM;
1184
1185         sig->nr_threads = 1;
1186         atomic_set(&sig->live, 1);
1187         atomic_set(&sig->sigcnt, 1);
1188
1189         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1190         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1191         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1192
1193         init_waitqueue_head(&sig->wait_chldexit);
1194         sig->curr_target = tsk;
1195         init_sigpending(&sig->shared_pending);
1196         INIT_LIST_HEAD(&sig->posix_timers);
1197         seqlock_init(&sig->stats_lock);
1198         prev_cputime_init(&sig->prev_cputime);
1199
1200         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1201         sig->real_timer.function = it_real_fn;
1202
1203         task_lock(current->group_leader);
1204         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1205         task_unlock(current->group_leader);
1206
1207         posix_cpu_timers_init_group(sig);
1208
1209         tty_audit_fork(sig);
1210         sched_autogroup_fork(sig);
1211
1212         sig->oom_score_adj = current->signal->oom_score_adj;
1213         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1214
1215         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1216                                    current->signal->is_child_subreaper;
1217
1218         mutex_init(&sig->cred_guard_mutex);
1219
1220         return 0;
1221 }
1222
1223 static void copy_seccomp(struct task_struct *p)
1224 {
1225 #ifdef CONFIG_SECCOMP
1226         /*
1227          * Must be called with sighand->lock held, which is common to
1228          * all threads in the group. Holding cred_guard_mutex is not
1229          * needed because this new task is not yet running and cannot
1230          * be racing exec.
1231          */
1232         assert_spin_locked(&current->sighand->siglock);
1233
1234         /* Ref-count the new filter user, and assign it. */
1235         get_seccomp_filter(current);
1236         p->seccomp = current->seccomp;
1237
1238         /*
1239          * Explicitly enable no_new_privs here in case it got set
1240          * between the task_struct being duplicated and holding the
1241          * sighand lock. The seccomp state and nnp must be in sync.
1242          */
1243         if (task_no_new_privs(current))
1244                 task_set_no_new_privs(p);
1245
1246         /*
1247          * If the parent gained a seccomp mode after copying thread
1248          * flags and between before we held the sighand lock, we have
1249          * to manually enable the seccomp thread flag here.
1250          */
1251         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1252                 set_tsk_thread_flag(p, TIF_SECCOMP);
1253 #endif
1254 }
1255
1256 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1257 {
1258         current->clear_child_tid = tidptr;
1259
1260         return task_pid_vnr(current);
1261 }
1262
1263 static void rt_mutex_init_task(struct task_struct *p)
1264 {
1265         raw_spin_lock_init(&p->pi_lock);
1266 #ifdef CONFIG_RT_MUTEXES
1267         p->pi_waiters = RB_ROOT;
1268         p->pi_waiters_leftmost = NULL;
1269         p->pi_blocked_on = NULL;
1270 #endif
1271 }
1272
1273 /*
1274  * Initialize POSIX timer handling for a single task.
1275  */
1276 static void posix_cpu_timers_init(struct task_struct *tsk)
1277 {
1278         tsk->cputime_expires.prof_exp = 0;
1279         tsk->cputime_expires.virt_exp = 0;
1280         tsk->cputime_expires.sched_exp = 0;
1281         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1282         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1283         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1284 }
1285
1286 static inline void
1287 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1288 {
1289          task->pids[type].pid = pid;
1290 }
1291
1292 /*
1293  * This creates a new process as a copy of the old one,
1294  * but does not actually start it yet.
1295  *
1296  * It copies the registers, and all the appropriate
1297  * parts of the process environment (as per the clone
1298  * flags). The actual kick-off is left to the caller.
1299  */
1300 static __latent_entropy struct task_struct *copy_process(
1301                                         unsigned long clone_flags,
1302                                         unsigned long stack_start,
1303                                         unsigned long stack_size,
1304                                         int __user *child_tidptr,
1305                                         struct pid *pid,
1306                                         int trace,
1307                                         unsigned long tls,
1308                                         int node)
1309 {
1310         int retval;
1311         struct task_struct *p;
1312
1313         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1314                 return ERR_PTR(-EINVAL);
1315
1316         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1317                 return ERR_PTR(-EINVAL);
1318
1319         /*
1320          * Thread groups must share signals as well, and detached threads
1321          * can only be started up within the thread group.
1322          */
1323         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1324                 return ERR_PTR(-EINVAL);
1325
1326         /*
1327          * Shared signal handlers imply shared VM. By way of the above,
1328          * thread groups also imply shared VM. Blocking this case allows
1329          * for various simplifications in other code.
1330          */
1331         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1332                 return ERR_PTR(-EINVAL);
1333
1334         /*
1335          * Siblings of global init remain as zombies on exit since they are
1336          * not reaped by their parent (swapper). To solve this and to avoid
1337          * multi-rooted process trees, prevent global and container-inits
1338          * from creating siblings.
1339          */
1340         if ((clone_flags & CLONE_PARENT) &&
1341                                 current->signal->flags & SIGNAL_UNKILLABLE)
1342                 return ERR_PTR(-EINVAL);
1343
1344         /*
1345          * If the new process will be in a different pid or user namespace
1346          * do not allow it to share a thread group with the forking task.
1347          */
1348         if (clone_flags & CLONE_THREAD) {
1349                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1350                     (task_active_pid_ns(current) !=
1351                                 current->nsproxy->pid_ns_for_children))
1352                         return ERR_PTR(-EINVAL);
1353         }
1354
1355         retval = security_task_create(clone_flags);
1356         if (retval)
1357                 goto fork_out;
1358
1359         retval = -ENOMEM;
1360         p = dup_task_struct(current, node);
1361         if (!p)
1362                 goto fork_out;
1363
1364         ftrace_graph_init_task(p);
1365
1366         rt_mutex_init_task(p);
1367
1368 #ifdef CONFIG_PROVE_LOCKING
1369         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1370         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1371 #endif
1372         retval = -EAGAIN;
1373         if (atomic_read(&p->real_cred->user->processes) >=
1374                         task_rlimit(p, RLIMIT_NPROC)) {
1375                 if (p->real_cred->user != INIT_USER &&
1376                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1377                         goto bad_fork_free;
1378         }
1379         current->flags &= ~PF_NPROC_EXCEEDED;
1380
1381         retval = copy_creds(p, clone_flags);
1382         if (retval < 0)
1383                 goto bad_fork_free;
1384
1385         /*
1386          * If multiple threads are within copy_process(), then this check
1387          * triggers too late. This doesn't hurt, the check is only there
1388          * to stop root fork bombs.
1389          */
1390         retval = -EAGAIN;
1391         if (nr_threads >= max_threads)
1392                 goto bad_fork_cleanup_count;
1393
1394         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1395         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1396         p->flags |= PF_FORKNOEXEC;
1397         INIT_LIST_HEAD(&p->children);
1398         INIT_LIST_HEAD(&p->sibling);
1399         rcu_copy_process(p);
1400         p->vfork_done = NULL;
1401         spin_lock_init(&p->alloc_lock);
1402
1403         init_sigpending(&p->pending);
1404
1405         p->utime = p->stime = p->gtime = 0;
1406         p->utimescaled = p->stimescaled = 0;
1407         prev_cputime_init(&p->prev_cputime);
1408
1409 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1410         seqcount_init(&p->vtime_seqcount);
1411         p->vtime_snap = 0;
1412         p->vtime_snap_whence = VTIME_INACTIVE;
1413 #endif
1414
1415 #if defined(SPLIT_RSS_COUNTING)
1416         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1417 #endif
1418
1419         p->default_timer_slack_ns = current->timer_slack_ns;
1420
1421         task_io_accounting_init(&p->ioac);
1422         acct_clear_integrals(p);
1423
1424         posix_cpu_timers_init(p);
1425
1426         p->start_time = ktime_get_ns();
1427         p->real_start_time = ktime_get_boot_ns();
1428         p->io_context = NULL;
1429         p->audit_context = NULL;
1430         cgroup_fork(p);
1431 #ifdef CONFIG_NUMA
1432         p->mempolicy = mpol_dup(p->mempolicy);
1433         if (IS_ERR(p->mempolicy)) {
1434                 retval = PTR_ERR(p->mempolicy);
1435                 p->mempolicy = NULL;
1436                 goto bad_fork_cleanup_threadgroup_lock;
1437         }
1438 #endif
1439 #ifdef CONFIG_CPUSETS
1440         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1441         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1442         seqcount_init(&p->mems_allowed_seq);
1443 #endif
1444 #ifdef CONFIG_TRACE_IRQFLAGS
1445         p->irq_events = 0;
1446         p->hardirqs_enabled = 0;
1447         p->hardirq_enable_ip = 0;
1448         p->hardirq_enable_event = 0;
1449         p->hardirq_disable_ip = _THIS_IP_;
1450         p->hardirq_disable_event = 0;
1451         p->softirqs_enabled = 1;
1452         p->softirq_enable_ip = _THIS_IP_;
1453         p->softirq_enable_event = 0;
1454         p->softirq_disable_ip = 0;
1455         p->softirq_disable_event = 0;
1456         p->hardirq_context = 0;
1457         p->softirq_context = 0;
1458 #endif
1459
1460         p->pagefault_disabled = 0;
1461
1462 #ifdef CONFIG_LOCKDEP
1463         p->lockdep_depth = 0; /* no locks held yet */
1464         p->curr_chain_key = 0;
1465         p->lockdep_recursion = 0;
1466 #endif
1467
1468 #ifdef CONFIG_DEBUG_MUTEXES
1469         p->blocked_on = NULL; /* not blocked yet */
1470 #endif
1471 #ifdef CONFIG_BCACHE
1472         p->sequential_io        = 0;
1473         p->sequential_io_avg    = 0;
1474 #endif
1475
1476         /* Perform scheduler related setup. Assign this task to a CPU. */
1477         retval = sched_fork(clone_flags, p);
1478         if (retval)
1479                 goto bad_fork_cleanup_policy;
1480
1481         retval = perf_event_init_task(p);
1482         if (retval)
1483                 goto bad_fork_cleanup_policy;
1484         retval = audit_alloc(p);
1485         if (retval)
1486                 goto bad_fork_cleanup_perf;
1487         /* copy all the process information */
1488         shm_init_task(p);
1489         retval = copy_semundo(clone_flags, p);
1490         if (retval)
1491                 goto bad_fork_cleanup_audit;
1492         retval = copy_files(clone_flags, p);
1493         if (retval)
1494                 goto bad_fork_cleanup_semundo;
1495         retval = copy_fs(clone_flags, p);
1496         if (retval)
1497                 goto bad_fork_cleanup_files;
1498         retval = copy_sighand(clone_flags, p);
1499         if (retval)
1500                 goto bad_fork_cleanup_fs;
1501         retval = copy_signal(clone_flags, p);
1502         if (retval)
1503                 goto bad_fork_cleanup_sighand;
1504         retval = copy_mm(clone_flags, p);
1505         if (retval)
1506                 goto bad_fork_cleanup_signal;
1507         retval = copy_namespaces(clone_flags, p);
1508         if (retval)
1509                 goto bad_fork_cleanup_mm;
1510         retval = copy_io(clone_flags, p);
1511         if (retval)
1512                 goto bad_fork_cleanup_namespaces;
1513         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1514         if (retval)
1515                 goto bad_fork_cleanup_io;
1516
1517         if (pid != &init_struct_pid) {
1518                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1519                 if (IS_ERR(pid)) {
1520                         retval = PTR_ERR(pid);
1521                         goto bad_fork_cleanup_thread;
1522                 }
1523         }
1524
1525         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1526         /*
1527          * Clear TID on mm_release()?
1528          */
1529         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1530 #ifdef CONFIG_BLOCK
1531         p->plug = NULL;
1532 #endif
1533 #ifdef CONFIG_FUTEX
1534         p->robust_list = NULL;
1535 #ifdef CONFIG_COMPAT
1536         p->compat_robust_list = NULL;
1537 #endif
1538         INIT_LIST_HEAD(&p->pi_state_list);
1539         p->pi_state_cache = NULL;
1540 #endif
1541         /*
1542          * sigaltstack should be cleared when sharing the same VM
1543          */
1544         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1545                 sas_ss_reset(p);
1546
1547         /*
1548          * Syscall tracing and stepping should be turned off in the
1549          * child regardless of CLONE_PTRACE.
1550          */
1551         user_disable_single_step(p);
1552         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1553 #ifdef TIF_SYSCALL_EMU
1554         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1555 #endif
1556         clear_all_latency_tracing(p);
1557
1558         /* ok, now we should be set up.. */
1559         p->pid = pid_nr(pid);
1560         if (clone_flags & CLONE_THREAD) {
1561                 p->exit_signal = -1;
1562                 p->group_leader = current->group_leader;
1563                 p->tgid = current->tgid;
1564         } else {
1565                 if (clone_flags & CLONE_PARENT)
1566                         p->exit_signal = current->group_leader->exit_signal;
1567                 else
1568                         p->exit_signal = (clone_flags & CSIGNAL);
1569                 p->group_leader = p;
1570                 p->tgid = p->pid;
1571         }
1572
1573         p->nr_dirtied = 0;
1574         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1575         p->dirty_paused_when = 0;
1576
1577         p->pdeath_signal = 0;
1578         INIT_LIST_HEAD(&p->thread_group);
1579         p->task_works = NULL;
1580
1581         threadgroup_change_begin(current);
1582         /*
1583          * Ensure that the cgroup subsystem policies allow the new process to be
1584          * forked. It should be noted the the new process's css_set can be changed
1585          * between here and cgroup_post_fork() if an organisation operation is in
1586          * progress.
1587          */
1588         retval = cgroup_can_fork(p);
1589         if (retval)
1590                 goto bad_fork_free_pid;
1591
1592         /*
1593          * Make it visible to the rest of the system, but dont wake it up yet.
1594          * Need tasklist lock for parent etc handling!
1595          */
1596         write_lock_irq(&tasklist_lock);
1597
1598         /* CLONE_PARENT re-uses the old parent */
1599         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1600                 p->real_parent = current->real_parent;
1601                 p->parent_exec_id = current->parent_exec_id;
1602         } else {
1603                 p->real_parent = current;
1604                 p->parent_exec_id = current->self_exec_id;
1605         }
1606
1607         spin_lock(&current->sighand->siglock);
1608
1609         /*
1610          * Copy seccomp details explicitly here, in case they were changed
1611          * before holding sighand lock.
1612          */
1613         copy_seccomp(p);
1614
1615         /*
1616          * Process group and session signals need to be delivered to just the
1617          * parent before the fork or both the parent and the child after the
1618          * fork. Restart if a signal comes in before we add the new process to
1619          * it's process group.
1620          * A fatal signal pending means that current will exit, so the new
1621          * thread can't slip out of an OOM kill (or normal SIGKILL).
1622         */
1623         recalc_sigpending();
1624         if (signal_pending(current)) {
1625                 spin_unlock(&current->sighand->siglock);
1626                 write_unlock_irq(&tasklist_lock);
1627                 retval = -ERESTARTNOINTR;
1628                 goto bad_fork_cancel_cgroup;
1629         }
1630
1631         if (likely(p->pid)) {
1632                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1633
1634                 init_task_pid(p, PIDTYPE_PID, pid);
1635                 if (thread_group_leader(p)) {
1636                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1637                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1638
1639                         if (is_child_reaper(pid)) {
1640                                 ns_of_pid(pid)->child_reaper = p;
1641                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1642                         }
1643
1644                         p->signal->leader_pid = pid;
1645                         p->signal->tty = tty_kref_get(current->signal->tty);
1646                         list_add_tail(&p->sibling, &p->real_parent->children);
1647                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1648                         attach_pid(p, PIDTYPE_PGID);
1649                         attach_pid(p, PIDTYPE_SID);
1650                         __this_cpu_inc(process_counts);
1651                 } else {
1652                         current->signal->nr_threads++;
1653                         atomic_inc(&current->signal->live);
1654                         atomic_inc(&current->signal->sigcnt);
1655                         list_add_tail_rcu(&p->thread_group,
1656                                           &p->group_leader->thread_group);
1657                         list_add_tail_rcu(&p->thread_node,
1658                                           &p->signal->thread_head);
1659                 }
1660                 attach_pid(p, PIDTYPE_PID);
1661                 nr_threads++;
1662         }
1663
1664         total_forks++;
1665         spin_unlock(&current->sighand->siglock);
1666         syscall_tracepoint_update(p);
1667         write_unlock_irq(&tasklist_lock);
1668
1669         proc_fork_connector(p);
1670         cgroup_post_fork(p);
1671         threadgroup_change_end(current);
1672         perf_event_fork(p);
1673
1674         trace_task_newtask(p, clone_flags);
1675         uprobe_copy_process(p, clone_flags);
1676
1677         return p;
1678
1679 bad_fork_cancel_cgroup:
1680         cgroup_cancel_fork(p);
1681 bad_fork_free_pid:
1682         threadgroup_change_end(current);
1683         if (pid != &init_struct_pid)
1684                 free_pid(pid);
1685 bad_fork_cleanup_thread:
1686         exit_thread(p);
1687 bad_fork_cleanup_io:
1688         if (p->io_context)
1689                 exit_io_context(p);
1690 bad_fork_cleanup_namespaces:
1691         exit_task_namespaces(p);
1692 bad_fork_cleanup_mm:
1693         if (p->mm)
1694                 mmput(p->mm);
1695 bad_fork_cleanup_signal:
1696         if (!(clone_flags & CLONE_THREAD))
1697                 free_signal_struct(p->signal);
1698 bad_fork_cleanup_sighand:
1699         __cleanup_sighand(p->sighand);
1700 bad_fork_cleanup_fs:
1701         exit_fs(p); /* blocking */
1702 bad_fork_cleanup_files:
1703         exit_files(p); /* blocking */
1704 bad_fork_cleanup_semundo:
1705         exit_sem(p);
1706 bad_fork_cleanup_audit:
1707         audit_free(p);
1708 bad_fork_cleanup_perf:
1709         perf_event_free_task(p);
1710 bad_fork_cleanup_policy:
1711 #ifdef CONFIG_NUMA
1712         mpol_put(p->mempolicy);
1713 bad_fork_cleanup_threadgroup_lock:
1714 #endif
1715         delayacct_tsk_free(p);
1716 bad_fork_cleanup_count:
1717         atomic_dec(&p->cred->user->processes);
1718         exit_creds(p);
1719 bad_fork_free:
1720         free_task(p);
1721 fork_out:
1722         return ERR_PTR(retval);
1723 }
1724
1725 static inline void init_idle_pids(struct pid_link *links)
1726 {
1727         enum pid_type type;
1728
1729         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1730                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1731                 links[type].pid = &init_struct_pid;
1732         }
1733 }
1734
1735 struct task_struct *fork_idle(int cpu)
1736 {
1737         struct task_struct *task;
1738         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1739                             cpu_to_node(cpu));
1740         if (!IS_ERR(task)) {
1741                 init_idle_pids(task->pids);
1742                 init_idle(task, cpu);
1743         }
1744
1745         return task;
1746 }
1747
1748 /*
1749  *  Ok, this is the main fork-routine.
1750  *
1751  * It copies the process, and if successful kick-starts
1752  * it and waits for it to finish using the VM if required.
1753  */
1754 long _do_fork(unsigned long clone_flags,
1755               unsigned long stack_start,
1756               unsigned long stack_size,
1757               int __user *parent_tidptr,
1758               int __user *child_tidptr,
1759               unsigned long tls)
1760 {
1761         struct task_struct *p;
1762         int trace = 0;
1763         long nr;
1764
1765         /*
1766          * Determine whether and which event to report to ptracer.  When
1767          * called from kernel_thread or CLONE_UNTRACED is explicitly
1768          * requested, no event is reported; otherwise, report if the event
1769          * for the type of forking is enabled.
1770          */
1771         if (!(clone_flags & CLONE_UNTRACED)) {
1772                 if (clone_flags & CLONE_VFORK)
1773                         trace = PTRACE_EVENT_VFORK;
1774                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1775                         trace = PTRACE_EVENT_CLONE;
1776                 else
1777                         trace = PTRACE_EVENT_FORK;
1778
1779                 if (likely(!ptrace_event_enabled(current, trace)))
1780                         trace = 0;
1781         }
1782
1783         p = copy_process(clone_flags, stack_start, stack_size,
1784                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1785         add_latent_entropy();
1786         /*
1787          * Do this prior waking up the new thread - the thread pointer
1788          * might get invalid after that point, if the thread exits quickly.
1789          */
1790         if (!IS_ERR(p)) {
1791                 struct completion vfork;
1792                 struct pid *pid;
1793
1794                 trace_sched_process_fork(current, p);
1795
1796                 pid = get_task_pid(p, PIDTYPE_PID);
1797                 nr = pid_vnr(pid);
1798
1799                 if (clone_flags & CLONE_PARENT_SETTID)
1800                         put_user(nr, parent_tidptr);
1801
1802                 if (clone_flags & CLONE_VFORK) {
1803                         p->vfork_done = &vfork;
1804                         init_completion(&vfork);
1805                         get_task_struct(p);
1806                 }
1807
1808                 wake_up_new_task(p);
1809
1810                 /* forking complete and child started to run, tell ptracer */
1811                 if (unlikely(trace))
1812                         ptrace_event_pid(trace, pid);
1813
1814                 if (clone_flags & CLONE_VFORK) {
1815                         if (!wait_for_vfork_done(p, &vfork))
1816                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1817                 }
1818
1819                 put_pid(pid);
1820         } else {
1821                 nr = PTR_ERR(p);
1822         }
1823         return nr;
1824 }
1825
1826 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1827 /* For compatibility with architectures that call do_fork directly rather than
1828  * using the syscall entry points below. */
1829 long do_fork(unsigned long clone_flags,
1830               unsigned long stack_start,
1831               unsigned long stack_size,
1832               int __user *parent_tidptr,
1833               int __user *child_tidptr)
1834 {
1835         return _do_fork(clone_flags, stack_start, stack_size,
1836                         parent_tidptr, child_tidptr, 0);
1837 }
1838 #endif
1839
1840 /*
1841  * Create a kernel thread.
1842  */
1843 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1844 {
1845         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1846                 (unsigned long)arg, NULL, NULL, 0);
1847 }
1848
1849 #ifdef __ARCH_WANT_SYS_FORK
1850 SYSCALL_DEFINE0(fork)
1851 {
1852 #ifdef CONFIG_MMU
1853         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1854 #else
1855         /* can not support in nommu mode */
1856         return -EINVAL;
1857 #endif
1858 }
1859 #endif
1860
1861 #ifdef __ARCH_WANT_SYS_VFORK
1862 SYSCALL_DEFINE0(vfork)
1863 {
1864         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1865                         0, NULL, NULL, 0);
1866 }
1867 #endif
1868
1869 #ifdef __ARCH_WANT_SYS_CLONE
1870 #ifdef CONFIG_CLONE_BACKWARDS
1871 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1872                  int __user *, parent_tidptr,
1873                  unsigned long, tls,
1874                  int __user *, child_tidptr)
1875 #elif defined(CONFIG_CLONE_BACKWARDS2)
1876 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1877                  int __user *, parent_tidptr,
1878                  int __user *, child_tidptr,
1879                  unsigned long, tls)
1880 #elif defined(CONFIG_CLONE_BACKWARDS3)
1881 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1882                 int, stack_size,
1883                 int __user *, parent_tidptr,
1884                 int __user *, child_tidptr,
1885                 unsigned long, tls)
1886 #else
1887 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1888                  int __user *, parent_tidptr,
1889                  int __user *, child_tidptr,
1890                  unsigned long, tls)
1891 #endif
1892 {
1893         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1894 }
1895 #endif
1896
1897 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1898 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1899 #endif
1900
1901 static void sighand_ctor(void *data)
1902 {
1903         struct sighand_struct *sighand = data;
1904
1905         spin_lock_init(&sighand->siglock);
1906         init_waitqueue_head(&sighand->signalfd_wqh);
1907 }
1908
1909 void __init proc_caches_init(void)
1910 {
1911         sighand_cachep = kmem_cache_create("sighand_cache",
1912                         sizeof(struct sighand_struct), 0,
1913                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1914                         SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1915         signal_cachep = kmem_cache_create("signal_cache",
1916                         sizeof(struct signal_struct), 0,
1917                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1918                         NULL);
1919         files_cachep = kmem_cache_create("files_cache",
1920                         sizeof(struct files_struct), 0,
1921                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1922                         NULL);
1923         fs_cachep = kmem_cache_create("fs_cache",
1924                         sizeof(struct fs_struct), 0,
1925                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1926                         NULL);
1927         /*
1928          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1929          * whole struct cpumask for the OFFSTACK case. We could change
1930          * this to *only* allocate as much of it as required by the
1931          * maximum number of CPU's we can ever have.  The cpumask_allocation
1932          * is at the end of the structure, exactly for that reason.
1933          */
1934         mm_cachep = kmem_cache_create("mm_struct",
1935                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1936                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1937                         NULL);
1938         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1939         mmap_init();
1940         nsproxy_cache_init();
1941 }
1942
1943 /*
1944  * Check constraints on flags passed to the unshare system call.
1945  */
1946 static int check_unshare_flags(unsigned long unshare_flags)
1947 {
1948         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1949                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1950                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1951                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1952                 return -EINVAL;
1953         /*
1954          * Not implemented, but pretend it works if there is nothing
1955          * to unshare.  Note that unsharing the address space or the
1956          * signal handlers also need to unshare the signal queues (aka
1957          * CLONE_THREAD).
1958          */
1959         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1960                 if (!thread_group_empty(current))
1961                         return -EINVAL;
1962         }
1963         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1964                 if (atomic_read(&current->sighand->count) > 1)
1965                         return -EINVAL;
1966         }
1967         if (unshare_flags & CLONE_VM) {
1968                 if (!current_is_single_threaded())
1969                         return -EINVAL;
1970         }
1971
1972         return 0;
1973 }
1974
1975 /*
1976  * Unshare the filesystem structure if it is being shared
1977  */
1978 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1979 {
1980         struct fs_struct *fs = current->fs;
1981
1982         if (!(unshare_flags & CLONE_FS) || !fs)
1983                 return 0;
1984
1985         /* don't need lock here; in the worst case we'll do useless copy */
1986         if (fs->users == 1)
1987                 return 0;
1988
1989         *new_fsp = copy_fs_struct(fs);
1990         if (!*new_fsp)
1991                 return -ENOMEM;
1992
1993         return 0;
1994 }
1995
1996 /*
1997  * Unshare file descriptor table if it is being shared
1998  */
1999 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2000 {
2001         struct files_struct *fd = current->files;
2002         int error = 0;
2003
2004         if ((unshare_flags & CLONE_FILES) &&
2005             (fd && atomic_read(&fd->count) > 1)) {
2006                 *new_fdp = dup_fd(fd, &error);
2007                 if (!*new_fdp)
2008                         return error;
2009         }
2010
2011         return 0;
2012 }
2013
2014 /*
2015  * unshare allows a process to 'unshare' part of the process
2016  * context which was originally shared using clone.  copy_*
2017  * functions used by do_fork() cannot be used here directly
2018  * because they modify an inactive task_struct that is being
2019  * constructed. Here we are modifying the current, active,
2020  * task_struct.
2021  */
2022 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2023 {
2024         struct fs_struct *fs, *new_fs = NULL;
2025         struct files_struct *fd, *new_fd = NULL;
2026         struct cred *new_cred = NULL;
2027         struct nsproxy *new_nsproxy = NULL;
2028         int do_sysvsem = 0;
2029         int err;
2030
2031         /*
2032          * If unsharing a user namespace must also unshare the thread group
2033          * and unshare the filesystem root and working directories.
2034          */
2035         if (unshare_flags & CLONE_NEWUSER)
2036                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2037         /*
2038          * If unsharing vm, must also unshare signal handlers.
2039          */
2040         if (unshare_flags & CLONE_VM)
2041                 unshare_flags |= CLONE_SIGHAND;
2042         /*
2043          * If unsharing a signal handlers, must also unshare the signal queues.
2044          */
2045         if (unshare_flags & CLONE_SIGHAND)
2046                 unshare_flags |= CLONE_THREAD;
2047         /*
2048          * If unsharing namespace, must also unshare filesystem information.
2049          */
2050         if (unshare_flags & CLONE_NEWNS)
2051                 unshare_flags |= CLONE_FS;
2052
2053         err = check_unshare_flags(unshare_flags);
2054         if (err)
2055                 goto bad_unshare_out;
2056         /*
2057          * CLONE_NEWIPC must also detach from the undolist: after switching
2058          * to a new ipc namespace, the semaphore arrays from the old
2059          * namespace are unreachable.
2060          */
2061         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2062                 do_sysvsem = 1;
2063         err = unshare_fs(unshare_flags, &new_fs);
2064         if (err)
2065                 goto bad_unshare_out;
2066         err = unshare_fd(unshare_flags, &new_fd);
2067         if (err)
2068                 goto bad_unshare_cleanup_fs;
2069         err = unshare_userns(unshare_flags, &new_cred);
2070         if (err)
2071                 goto bad_unshare_cleanup_fd;
2072         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2073                                          new_cred, new_fs);
2074         if (err)
2075                 goto bad_unshare_cleanup_cred;
2076
2077         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2078                 if (do_sysvsem) {
2079                         /*
2080                          * CLONE_SYSVSEM is equivalent to sys_exit().
2081                          */
2082                         exit_sem(current);
2083                 }
2084                 if (unshare_flags & CLONE_NEWIPC) {
2085                         /* Orphan segments in old ns (see sem above). */
2086                         exit_shm(current);
2087                         shm_init_task(current);
2088                 }
2089
2090                 if (new_nsproxy)
2091                         switch_task_namespaces(current, new_nsproxy);
2092
2093                 task_lock(current);
2094
2095                 if (new_fs) {
2096                         fs = current->fs;
2097                         spin_lock(&fs->lock);
2098                         current->fs = new_fs;
2099                         if (--fs->users)
2100                                 new_fs = NULL;
2101                         else
2102                                 new_fs = fs;
2103                         spin_unlock(&fs->lock);
2104                 }
2105
2106                 if (new_fd) {
2107                         fd = current->files;
2108                         current->files = new_fd;
2109                         new_fd = fd;
2110                 }
2111
2112                 task_unlock(current);
2113
2114                 if (new_cred) {
2115                         /* Install the new user namespace */
2116                         commit_creds(new_cred);
2117                         new_cred = NULL;
2118                 }
2119         }
2120
2121 bad_unshare_cleanup_cred:
2122         if (new_cred)
2123                 put_cred(new_cred);
2124 bad_unshare_cleanup_fd:
2125         if (new_fd)
2126                 put_files_struct(new_fd);
2127
2128 bad_unshare_cleanup_fs:
2129         if (new_fs)
2130                 free_fs_struct(new_fs);
2131
2132 bad_unshare_out:
2133         return err;
2134 }
2135
2136 /*
2137  *      Helper to unshare the files of the current task.
2138  *      We don't want to expose copy_files internals to
2139  *      the exec layer of the kernel.
2140  */
2141
2142 int unshare_files(struct files_struct **displaced)
2143 {
2144         struct task_struct *task = current;
2145         struct files_struct *copy = NULL;
2146         int error;
2147
2148         error = unshare_fd(CLONE_FILES, &copy);
2149         if (error || !copy) {
2150                 *displaced = NULL;
2151                 return error;
2152         }
2153         *displaced = task->files;
2154         task_lock(task);
2155         task->files = copy;
2156         task_unlock(task);
2157         return 0;
2158 }
2159
2160 int sysctl_max_threads(struct ctl_table *table, int write,
2161                        void __user *buffer, size_t *lenp, loff_t *ppos)
2162 {
2163         struct ctl_table t;
2164         int ret;
2165         int threads = max_threads;
2166         int min = MIN_THREADS;
2167         int max = MAX_THREADS;
2168
2169         t = *table;
2170         t.data = &threads;
2171         t.extra1 = &min;
2172         t.extra2 = &max;
2173
2174         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2175         if (ret || !write)
2176                 return ret;
2177
2178         set_max_threads(threads);
2179
2180         return 0;
2181 }