Merge branch 'for-linus-update' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers in
147  * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148  * futex type.
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264         atomic_inc(&key->private.mm->mm_count);
265         /*
266          * Ensure futex_get_mm() implies a full barrier such that
267          * get_futex_key() implies a full barrier. This is relied upon
268          * as full barrier (B), see the ordering comment above.
269          */
270         smp_mb__after_atomic();
271 }
272
273 /*
274  * Reflects a new waiter being added to the waitqueue.
275  */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279         atomic_inc(&hb->waiters);
280         /*
281          * Full barrier (A), see the ordering comment above.
282          */
283         smp_mb__after_atomic();
284 #endif
285 }
286
287 /*
288  * Reflects a waiter being removed from the waitqueue by wakeup
289  * paths.
290  */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294         atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301         return atomic_read(&hb->waiters);
302 #else
303         return 1;
304 #endif
305 }
306
307 /*
308  * We hash on the keys returned from get_futex_key (see below).
309  */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312         u32 hash = jhash2((u32*)&key->both.word,
313                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314                           key->both.offset);
315         return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319  * Return 1 if two futex_keys are equal, 0 otherwise.
320  */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323         return (key1 && key2
324                 && key1->both.word == key2->both.word
325                 && key1->both.ptr == key2->both.ptr
326                 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330  * Take a reference to the resource addressed by a key.
331  * Can be called while holding spinlocks.
332  *
333  */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336         if (!key->both.ptr)
337                 return;
338
339         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340         case FUT_OFF_INODE:
341                 ihold(key->shared.inode); /* implies MB (B) */
342                 break;
343         case FUT_OFF_MMSHARED:
344                 futex_get_mm(key); /* implies MB (B) */
345                 break;
346         default:
347                 smp_mb(); /* explicit MB (B) */
348         }
349 }
350
351 /*
352  * Drop a reference to the resource addressed by a key.
353  * The hash bucket spinlock must not be held.
354  */
355 static void drop_futex_key_refs(union futex_key *key)
356 {
357         if (!key->both.ptr) {
358                 /* If we're here then we tried to put a key we failed to get */
359                 WARN_ON_ONCE(1);
360                 return;
361         }
362
363         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
364         case FUT_OFF_INODE:
365                 iput(key->shared.inode);
366                 break;
367         case FUT_OFF_MMSHARED:
368                 mmdrop(key->private.mm);
369                 break;
370         }
371 }
372
373 /**
374  * get_futex_key() - Get parameters which are the keys for a futex
375  * @uaddr:      virtual address of the futex
376  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
377  * @key:        address where result is stored.
378  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
379  *              VERIFY_WRITE)
380  *
381  * Return: a negative error code or 0
382  *
383  * The key words are stored in *key on success.
384  *
385  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
386  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
387  * We can usually work out the index without swapping in the page.
388  *
389  * lock_page() might sleep, the caller should not hold a spinlock.
390  */
391 static int
392 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
393 {
394         unsigned long address = (unsigned long)uaddr;
395         struct mm_struct *mm = current->mm;
396         struct page *page, *page_head;
397         int err, ro = 0;
398
399         /*
400          * The futex address must be "naturally" aligned.
401          */
402         key->both.offset = address % PAGE_SIZE;
403         if (unlikely((address % sizeof(u32)) != 0))
404                 return -EINVAL;
405         address -= key->both.offset;
406
407         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
408                 return -EFAULT;
409
410         /*
411          * PROCESS_PRIVATE futexes are fast.
412          * As the mm cannot disappear under us and the 'key' only needs
413          * virtual address, we dont even have to find the underlying vma.
414          * Note : We do have to check 'uaddr' is a valid user address,
415          *        but access_ok() should be faster than find_vma()
416          */
417         if (!fshared) {
418                 key->private.mm = mm;
419                 key->private.address = address;
420                 get_futex_key_refs(key);  /* implies MB (B) */
421                 return 0;
422         }
423
424 again:
425         err = get_user_pages_fast(address, 1, 1, &page);
426         /*
427          * If write access is not required (eg. FUTEX_WAIT), try
428          * and get read-only access.
429          */
430         if (err == -EFAULT && rw == VERIFY_READ) {
431                 err = get_user_pages_fast(address, 1, 0, &page);
432                 ro = 1;
433         }
434         if (err < 0)
435                 return err;
436         else
437                 err = 0;
438
439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
440         page_head = page;
441         if (unlikely(PageTail(page))) {
442                 put_page(page);
443                 /* serialize against __split_huge_page_splitting() */
444                 local_irq_disable();
445                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
446                         page_head = compound_head(page);
447                         /*
448                          * page_head is valid pointer but we must pin
449                          * it before taking the PG_lock and/or
450                          * PG_compound_lock. The moment we re-enable
451                          * irqs __split_huge_page_splitting() can
452                          * return and the head page can be freed from
453                          * under us. We can't take the PG_lock and/or
454                          * PG_compound_lock on a page that could be
455                          * freed from under us.
456                          */
457                         if (page != page_head) {
458                                 get_page(page_head);
459                                 put_page(page);
460                         }
461                         local_irq_enable();
462                 } else {
463                         local_irq_enable();
464                         goto again;
465                 }
466         }
467 #else
468         page_head = compound_head(page);
469         if (page != page_head) {
470                 get_page(page_head);
471                 put_page(page);
472         }
473 #endif
474
475         lock_page(page_head);
476
477         /*
478          * If page_head->mapping is NULL, then it cannot be a PageAnon
479          * page; but it might be the ZERO_PAGE or in the gate area or
480          * in a special mapping (all cases which we are happy to fail);
481          * or it may have been a good file page when get_user_pages_fast
482          * found it, but truncated or holepunched or subjected to
483          * invalidate_complete_page2 before we got the page lock (also
484          * cases which we are happy to fail).  And we hold a reference,
485          * so refcount care in invalidate_complete_page's remove_mapping
486          * prevents drop_caches from setting mapping to NULL beneath us.
487          *
488          * The case we do have to guard against is when memory pressure made
489          * shmem_writepage move it from filecache to swapcache beneath us:
490          * an unlikely race, but we do need to retry for page_head->mapping.
491          */
492         if (!page_head->mapping) {
493                 int shmem_swizzled = PageSwapCache(page_head);
494                 unlock_page(page_head);
495                 put_page(page_head);
496                 if (shmem_swizzled)
497                         goto again;
498                 return -EFAULT;
499         }
500
501         /*
502          * Private mappings are handled in a simple way.
503          *
504          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
505          * it's a read-only handle, it's expected that futexes attach to
506          * the object not the particular process.
507          */
508         if (PageAnon(page_head)) {
509                 /*
510                  * A RO anonymous page will never change and thus doesn't make
511                  * sense for futex operations.
512                  */
513                 if (ro) {
514                         err = -EFAULT;
515                         goto out;
516                 }
517
518                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
519                 key->private.mm = mm;
520                 key->private.address = address;
521         } else {
522                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
523                 key->shared.inode = page_head->mapping->host;
524                 key->shared.pgoff = basepage_index(page);
525         }
526
527         get_futex_key_refs(key); /* implies MB (B) */
528
529 out:
530         unlock_page(page_head);
531         put_page(page_head);
532         return err;
533 }
534
535 static inline void put_futex_key(union futex_key *key)
536 {
537         drop_futex_key_refs(key);
538 }
539
540 /**
541  * fault_in_user_writeable() - Fault in user address and verify RW access
542  * @uaddr:      pointer to faulting user space address
543  *
544  * Slow path to fixup the fault we just took in the atomic write
545  * access to @uaddr.
546  *
547  * We have no generic implementation of a non-destructive write to the
548  * user address. We know that we faulted in the atomic pagefault
549  * disabled section so we can as well avoid the #PF overhead by
550  * calling get_user_pages() right away.
551  */
552 static int fault_in_user_writeable(u32 __user *uaddr)
553 {
554         struct mm_struct *mm = current->mm;
555         int ret;
556
557         down_read(&mm->mmap_sem);
558         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
559                                FAULT_FLAG_WRITE);
560         up_read(&mm->mmap_sem);
561
562         return ret < 0 ? ret : 0;
563 }
564
565 /**
566  * futex_top_waiter() - Return the highest priority waiter on a futex
567  * @hb:         the hash bucket the futex_q's reside in
568  * @key:        the futex key (to distinguish it from other futex futex_q's)
569  *
570  * Must be called with the hb lock held.
571  */
572 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
573                                         union futex_key *key)
574 {
575         struct futex_q *this;
576
577         plist_for_each_entry(this, &hb->chain, list) {
578                 if (match_futex(&this->key, key))
579                         return this;
580         }
581         return NULL;
582 }
583
584 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
585                                       u32 uval, u32 newval)
586 {
587         int ret;
588
589         pagefault_disable();
590         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
591         pagefault_enable();
592
593         return ret;
594 }
595
596 static int get_futex_value_locked(u32 *dest, u32 __user *from)
597 {
598         int ret;
599
600         pagefault_disable();
601         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
602         pagefault_enable();
603
604         return ret ? -EFAULT : 0;
605 }
606
607
608 /*
609  * PI code:
610  */
611 static int refill_pi_state_cache(void)
612 {
613         struct futex_pi_state *pi_state;
614
615         if (likely(current->pi_state_cache))
616                 return 0;
617
618         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
619
620         if (!pi_state)
621                 return -ENOMEM;
622
623         INIT_LIST_HEAD(&pi_state->list);
624         /* pi_mutex gets initialized later */
625         pi_state->owner = NULL;
626         atomic_set(&pi_state->refcount, 1);
627         pi_state->key = FUTEX_KEY_INIT;
628
629         current->pi_state_cache = pi_state;
630
631         return 0;
632 }
633
634 static struct futex_pi_state * alloc_pi_state(void)
635 {
636         struct futex_pi_state *pi_state = current->pi_state_cache;
637
638         WARN_ON(!pi_state);
639         current->pi_state_cache = NULL;
640
641         return pi_state;
642 }
643
644 static void free_pi_state(struct futex_pi_state *pi_state)
645 {
646         if (!atomic_dec_and_test(&pi_state->refcount))
647                 return;
648
649         /*
650          * If pi_state->owner is NULL, the owner is most probably dying
651          * and has cleaned up the pi_state already
652          */
653         if (pi_state->owner) {
654                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
655                 list_del_init(&pi_state->list);
656                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
657
658                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
659         }
660
661         if (current->pi_state_cache)
662                 kfree(pi_state);
663         else {
664                 /*
665                  * pi_state->list is already empty.
666                  * clear pi_state->owner.
667                  * refcount is at 0 - put it back to 1.
668                  */
669                 pi_state->owner = NULL;
670                 atomic_set(&pi_state->refcount, 1);
671                 current->pi_state_cache = pi_state;
672         }
673 }
674
675 /*
676  * Look up the task based on what TID userspace gave us.
677  * We dont trust it.
678  */
679 static struct task_struct * futex_find_get_task(pid_t pid)
680 {
681         struct task_struct *p;
682
683         rcu_read_lock();
684         p = find_task_by_vpid(pid);
685         if (p)
686                 get_task_struct(p);
687
688         rcu_read_unlock();
689
690         return p;
691 }
692
693 /*
694  * This task is holding PI mutexes at exit time => bad.
695  * Kernel cleans up PI-state, but userspace is likely hosed.
696  * (Robust-futex cleanup is separate and might save the day for userspace.)
697  */
698 void exit_pi_state_list(struct task_struct *curr)
699 {
700         struct list_head *next, *head = &curr->pi_state_list;
701         struct futex_pi_state *pi_state;
702         struct futex_hash_bucket *hb;
703         union futex_key key = FUTEX_KEY_INIT;
704
705         if (!futex_cmpxchg_enabled)
706                 return;
707         /*
708          * We are a ZOMBIE and nobody can enqueue itself on
709          * pi_state_list anymore, but we have to be careful
710          * versus waiters unqueueing themselves:
711          */
712         raw_spin_lock_irq(&curr->pi_lock);
713         while (!list_empty(head)) {
714
715                 next = head->next;
716                 pi_state = list_entry(next, struct futex_pi_state, list);
717                 key = pi_state->key;
718                 hb = hash_futex(&key);
719                 raw_spin_unlock_irq(&curr->pi_lock);
720
721                 spin_lock(&hb->lock);
722
723                 raw_spin_lock_irq(&curr->pi_lock);
724                 /*
725                  * We dropped the pi-lock, so re-check whether this
726                  * task still owns the PI-state:
727                  */
728                 if (head->next != next) {
729                         spin_unlock(&hb->lock);
730                         continue;
731                 }
732
733                 WARN_ON(pi_state->owner != curr);
734                 WARN_ON(list_empty(&pi_state->list));
735                 list_del_init(&pi_state->list);
736                 pi_state->owner = NULL;
737                 raw_spin_unlock_irq(&curr->pi_lock);
738
739                 rt_mutex_unlock(&pi_state->pi_mutex);
740
741                 spin_unlock(&hb->lock);
742
743                 raw_spin_lock_irq(&curr->pi_lock);
744         }
745         raw_spin_unlock_irq(&curr->pi_lock);
746 }
747
748 /*
749  * We need to check the following states:
750  *
751  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
752  *
753  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
754  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
755  *
756  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
757  *
758  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
759  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
760  *
761  * [6]  Found  | Found    | task      | 0         | 1      | Valid
762  *
763  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
764  *
765  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
766  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
767  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
768  *
769  * [1]  Indicates that the kernel can acquire the futex atomically. We
770  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
771  *
772  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
773  *      thread is found then it indicates that the owner TID has died.
774  *
775  * [3]  Invalid. The waiter is queued on a non PI futex
776  *
777  * [4]  Valid state after exit_robust_list(), which sets the user space
778  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
779  *
780  * [5]  The user space value got manipulated between exit_robust_list()
781  *      and exit_pi_state_list()
782  *
783  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
784  *      the pi_state but cannot access the user space value.
785  *
786  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
787  *
788  * [8]  Owner and user space value match
789  *
790  * [9]  There is no transient state which sets the user space TID to 0
791  *      except exit_robust_list(), but this is indicated by the
792  *      FUTEX_OWNER_DIED bit. See [4]
793  *
794  * [10] There is no transient state which leaves owner and user space
795  *      TID out of sync.
796  */
797
798 /*
799  * Validate that the existing waiter has a pi_state and sanity check
800  * the pi_state against the user space value. If correct, attach to
801  * it.
802  */
803 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
804                               struct futex_pi_state **ps)
805 {
806         pid_t pid = uval & FUTEX_TID_MASK;
807
808         /*
809          * Userspace might have messed up non-PI and PI futexes [3]
810          */
811         if (unlikely(!pi_state))
812                 return -EINVAL;
813
814         WARN_ON(!atomic_read(&pi_state->refcount));
815
816         /*
817          * Handle the owner died case:
818          */
819         if (uval & FUTEX_OWNER_DIED) {
820                 /*
821                  * exit_pi_state_list sets owner to NULL and wakes the
822                  * topmost waiter. The task which acquires the
823                  * pi_state->rt_mutex will fixup owner.
824                  */
825                 if (!pi_state->owner) {
826                         /*
827                          * No pi state owner, but the user space TID
828                          * is not 0. Inconsistent state. [5]
829                          */
830                         if (pid)
831                                 return -EINVAL;
832                         /*
833                          * Take a ref on the state and return success. [4]
834                          */
835                         goto out_state;
836                 }
837
838                 /*
839                  * If TID is 0, then either the dying owner has not
840                  * yet executed exit_pi_state_list() or some waiter
841                  * acquired the rtmutex in the pi state, but did not
842                  * yet fixup the TID in user space.
843                  *
844                  * Take a ref on the state and return success. [6]
845                  */
846                 if (!pid)
847                         goto out_state;
848         } else {
849                 /*
850                  * If the owner died bit is not set, then the pi_state
851                  * must have an owner. [7]
852                  */
853                 if (!pi_state->owner)
854                         return -EINVAL;
855         }
856
857         /*
858          * Bail out if user space manipulated the futex value. If pi
859          * state exists then the owner TID must be the same as the
860          * user space TID. [9/10]
861          */
862         if (pid != task_pid_vnr(pi_state->owner))
863                 return -EINVAL;
864 out_state:
865         atomic_inc(&pi_state->refcount);
866         *ps = pi_state;
867         return 0;
868 }
869
870 /*
871  * Lookup the task for the TID provided from user space and attach to
872  * it after doing proper sanity checks.
873  */
874 static int attach_to_pi_owner(u32 uval, union futex_key *key,
875                               struct futex_pi_state **ps)
876 {
877         pid_t pid = uval & FUTEX_TID_MASK;
878         struct futex_pi_state *pi_state;
879         struct task_struct *p;
880
881         /*
882          * We are the first waiter - try to look up the real owner and attach
883          * the new pi_state to it, but bail out when TID = 0 [1]
884          */
885         if (!pid)
886                 return -ESRCH;
887         p = futex_find_get_task(pid);
888         if (!p)
889                 return -ESRCH;
890
891         if (!p->mm) {
892                 put_task_struct(p);
893                 return -EPERM;
894         }
895
896         /*
897          * We need to look at the task state flags to figure out,
898          * whether the task is exiting. To protect against the do_exit
899          * change of the task flags, we do this protected by
900          * p->pi_lock:
901          */
902         raw_spin_lock_irq(&p->pi_lock);
903         if (unlikely(p->flags & PF_EXITING)) {
904                 /*
905                  * The task is on the way out. When PF_EXITPIDONE is
906                  * set, we know that the task has finished the
907                  * cleanup:
908                  */
909                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
910
911                 raw_spin_unlock_irq(&p->pi_lock);
912                 put_task_struct(p);
913                 return ret;
914         }
915
916         /*
917          * No existing pi state. First waiter. [2]
918          */
919         pi_state = alloc_pi_state();
920
921         /*
922          * Initialize the pi_mutex in locked state and make @p
923          * the owner of it:
924          */
925         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
926
927         /* Store the key for possible exit cleanups: */
928         pi_state->key = *key;
929
930         WARN_ON(!list_empty(&pi_state->list));
931         list_add(&pi_state->list, &p->pi_state_list);
932         pi_state->owner = p;
933         raw_spin_unlock_irq(&p->pi_lock);
934
935         put_task_struct(p);
936
937         *ps = pi_state;
938
939         return 0;
940 }
941
942 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
943                            union futex_key *key, struct futex_pi_state **ps)
944 {
945         struct futex_q *match = futex_top_waiter(hb, key);
946
947         /*
948          * If there is a waiter on that futex, validate it and
949          * attach to the pi_state when the validation succeeds.
950          */
951         if (match)
952                 return attach_to_pi_state(uval, match->pi_state, ps);
953
954         /*
955          * We are the first waiter - try to look up the owner based on
956          * @uval and attach to it.
957          */
958         return attach_to_pi_owner(uval, key, ps);
959 }
960
961 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
962 {
963         u32 uninitialized_var(curval);
964
965         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
966                 return -EFAULT;
967
968         /*If user space value changed, let the caller retry */
969         return curval != uval ? -EAGAIN : 0;
970 }
971
972 /**
973  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
974  * @uaddr:              the pi futex user address
975  * @hb:                 the pi futex hash bucket
976  * @key:                the futex key associated with uaddr and hb
977  * @ps:                 the pi_state pointer where we store the result of the
978  *                      lookup
979  * @task:               the task to perform the atomic lock work for.  This will
980  *                      be "current" except in the case of requeue pi.
981  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
982  *
983  * Return:
984  *  0 - ready to wait;
985  *  1 - acquired the lock;
986  * <0 - error
987  *
988  * The hb->lock and futex_key refs shall be held by the caller.
989  */
990 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
991                                 union futex_key *key,
992                                 struct futex_pi_state **ps,
993                                 struct task_struct *task, int set_waiters)
994 {
995         u32 uval, newval, vpid = task_pid_vnr(task);
996         struct futex_q *match;
997         int ret;
998
999         /*
1000          * Read the user space value first so we can validate a few
1001          * things before proceeding further.
1002          */
1003         if (get_futex_value_locked(&uval, uaddr))
1004                 return -EFAULT;
1005
1006         /*
1007          * Detect deadlocks.
1008          */
1009         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1010                 return -EDEADLK;
1011
1012         /*
1013          * Lookup existing state first. If it exists, try to attach to
1014          * its pi_state.
1015          */
1016         match = futex_top_waiter(hb, key);
1017         if (match)
1018                 return attach_to_pi_state(uval, match->pi_state, ps);
1019
1020         /*
1021          * No waiter and user TID is 0. We are here because the
1022          * waiters or the owner died bit is set or called from
1023          * requeue_cmp_pi or for whatever reason something took the
1024          * syscall.
1025          */
1026         if (!(uval & FUTEX_TID_MASK)) {
1027                 /*
1028                  * We take over the futex. No other waiters and the user space
1029                  * TID is 0. We preserve the owner died bit.
1030                  */
1031                 newval = uval & FUTEX_OWNER_DIED;
1032                 newval |= vpid;
1033
1034                 /* The futex requeue_pi code can enforce the waiters bit */
1035                 if (set_waiters)
1036                         newval |= FUTEX_WAITERS;
1037
1038                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1039                 /* If the take over worked, return 1 */
1040                 return ret < 0 ? ret : 1;
1041         }
1042
1043         /*
1044          * First waiter. Set the waiters bit before attaching ourself to
1045          * the owner. If owner tries to unlock, it will be forced into
1046          * the kernel and blocked on hb->lock.
1047          */
1048         newval = uval | FUTEX_WAITERS;
1049         ret = lock_pi_update_atomic(uaddr, uval, newval);
1050         if (ret)
1051                 return ret;
1052         /*
1053          * If the update of the user space value succeeded, we try to
1054          * attach to the owner. If that fails, no harm done, we only
1055          * set the FUTEX_WAITERS bit in the user space variable.
1056          */
1057         return attach_to_pi_owner(uval, key, ps);
1058 }
1059
1060 /**
1061  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1062  * @q:  The futex_q to unqueue
1063  *
1064  * The q->lock_ptr must not be NULL and must be held by the caller.
1065  */
1066 static void __unqueue_futex(struct futex_q *q)
1067 {
1068         struct futex_hash_bucket *hb;
1069
1070         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1071             || WARN_ON(plist_node_empty(&q->list)))
1072                 return;
1073
1074         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1075         plist_del(&q->list, &hb->chain);
1076         hb_waiters_dec(hb);
1077 }
1078
1079 /*
1080  * The hash bucket lock must be held when this is called.
1081  * Afterwards, the futex_q must not be accessed.
1082  */
1083 static void wake_futex(struct futex_q *q)
1084 {
1085         struct task_struct *p = q->task;
1086
1087         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1088                 return;
1089
1090         /*
1091          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1092          * a non-futex wake up happens on another CPU then the task
1093          * might exit and p would dereference a non-existing task
1094          * struct. Prevent this by holding a reference on p across the
1095          * wake up.
1096          */
1097         get_task_struct(p);
1098
1099         __unqueue_futex(q);
1100         /*
1101          * The waiting task can free the futex_q as soon as
1102          * q->lock_ptr = NULL is written, without taking any locks. A
1103          * memory barrier is required here to prevent the following
1104          * store to lock_ptr from getting ahead of the plist_del.
1105          */
1106         smp_wmb();
1107         q->lock_ptr = NULL;
1108
1109         wake_up_state(p, TASK_NORMAL);
1110         put_task_struct(p);
1111 }
1112
1113 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1114 {
1115         struct task_struct *new_owner;
1116         struct futex_pi_state *pi_state = this->pi_state;
1117         u32 uninitialized_var(curval), newval;
1118         int ret = 0;
1119
1120         if (!pi_state)
1121                 return -EINVAL;
1122
1123         /*
1124          * If current does not own the pi_state then the futex is
1125          * inconsistent and user space fiddled with the futex value.
1126          */
1127         if (pi_state->owner != current)
1128                 return -EINVAL;
1129
1130         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1131         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1132
1133         /*
1134          * It is possible that the next waiter (the one that brought
1135          * this owner to the kernel) timed out and is no longer
1136          * waiting on the lock.
1137          */
1138         if (!new_owner)
1139                 new_owner = this->task;
1140
1141         /*
1142          * We pass it to the next owner. The WAITERS bit is always
1143          * kept enabled while there is PI state around. We cleanup the
1144          * owner died bit, because we are the owner.
1145          */
1146         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1147
1148         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1149                 ret = -EFAULT;
1150         else if (curval != uval)
1151                 ret = -EINVAL;
1152         if (ret) {
1153                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1154                 return ret;
1155         }
1156
1157         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1158         WARN_ON(list_empty(&pi_state->list));
1159         list_del_init(&pi_state->list);
1160         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1161
1162         raw_spin_lock_irq(&new_owner->pi_lock);
1163         WARN_ON(!list_empty(&pi_state->list));
1164         list_add(&pi_state->list, &new_owner->pi_state_list);
1165         pi_state->owner = new_owner;
1166         raw_spin_unlock_irq(&new_owner->pi_lock);
1167
1168         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1169         rt_mutex_unlock(&pi_state->pi_mutex);
1170
1171         return 0;
1172 }
1173
1174 /*
1175  * Express the locking dependencies for lockdep:
1176  */
1177 static inline void
1178 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1179 {
1180         if (hb1 <= hb2) {
1181                 spin_lock(&hb1->lock);
1182                 if (hb1 < hb2)
1183                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1184         } else { /* hb1 > hb2 */
1185                 spin_lock(&hb2->lock);
1186                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1187         }
1188 }
1189
1190 static inline void
1191 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1192 {
1193         spin_unlock(&hb1->lock);
1194         if (hb1 != hb2)
1195                 spin_unlock(&hb2->lock);
1196 }
1197
1198 /*
1199  * Wake up waiters matching bitset queued on this futex (uaddr).
1200  */
1201 static int
1202 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1203 {
1204         struct futex_hash_bucket *hb;
1205         struct futex_q *this, *next;
1206         union futex_key key = FUTEX_KEY_INIT;
1207         int ret;
1208
1209         if (!bitset)
1210                 return -EINVAL;
1211
1212         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1213         if (unlikely(ret != 0))
1214                 goto out;
1215
1216         hb = hash_futex(&key);
1217
1218         /* Make sure we really have tasks to wakeup */
1219         if (!hb_waiters_pending(hb))
1220                 goto out_put_key;
1221
1222         spin_lock(&hb->lock);
1223
1224         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1225                 if (match_futex (&this->key, &key)) {
1226                         if (this->pi_state || this->rt_waiter) {
1227                                 ret = -EINVAL;
1228                                 break;
1229                         }
1230
1231                         /* Check if one of the bits is set in both bitsets */
1232                         if (!(this->bitset & bitset))
1233                                 continue;
1234
1235                         wake_futex(this);
1236                         if (++ret >= nr_wake)
1237                                 break;
1238                 }
1239         }
1240
1241         spin_unlock(&hb->lock);
1242 out_put_key:
1243         put_futex_key(&key);
1244 out:
1245         return ret;
1246 }
1247
1248 /*
1249  * Wake up all waiters hashed on the physical page that is mapped
1250  * to this virtual address:
1251  */
1252 static int
1253 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1254               int nr_wake, int nr_wake2, int op)
1255 {
1256         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1257         struct futex_hash_bucket *hb1, *hb2;
1258         struct futex_q *this, *next;
1259         int ret, op_ret;
1260
1261 retry:
1262         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1263         if (unlikely(ret != 0))
1264                 goto out;
1265         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1266         if (unlikely(ret != 0))
1267                 goto out_put_key1;
1268
1269         hb1 = hash_futex(&key1);
1270         hb2 = hash_futex(&key2);
1271
1272 retry_private:
1273         double_lock_hb(hb1, hb2);
1274         op_ret = futex_atomic_op_inuser(op, uaddr2);
1275         if (unlikely(op_ret < 0)) {
1276
1277                 double_unlock_hb(hb1, hb2);
1278
1279 #ifndef CONFIG_MMU
1280                 /*
1281                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1282                  * but we might get them from range checking
1283                  */
1284                 ret = op_ret;
1285                 goto out_put_keys;
1286 #endif
1287
1288                 if (unlikely(op_ret != -EFAULT)) {
1289                         ret = op_ret;
1290                         goto out_put_keys;
1291                 }
1292
1293                 ret = fault_in_user_writeable(uaddr2);
1294                 if (ret)
1295                         goto out_put_keys;
1296
1297                 if (!(flags & FLAGS_SHARED))
1298                         goto retry_private;
1299
1300                 put_futex_key(&key2);
1301                 put_futex_key(&key1);
1302                 goto retry;
1303         }
1304
1305         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1306                 if (match_futex (&this->key, &key1)) {
1307                         if (this->pi_state || this->rt_waiter) {
1308                                 ret = -EINVAL;
1309                                 goto out_unlock;
1310                         }
1311                         wake_futex(this);
1312                         if (++ret >= nr_wake)
1313                                 break;
1314                 }
1315         }
1316
1317         if (op_ret > 0) {
1318                 op_ret = 0;
1319                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1320                         if (match_futex (&this->key, &key2)) {
1321                                 if (this->pi_state || this->rt_waiter) {
1322                                         ret = -EINVAL;
1323                                         goto out_unlock;
1324                                 }
1325                                 wake_futex(this);
1326                                 if (++op_ret >= nr_wake2)
1327                                         break;
1328                         }
1329                 }
1330                 ret += op_ret;
1331         }
1332
1333 out_unlock:
1334         double_unlock_hb(hb1, hb2);
1335 out_put_keys:
1336         put_futex_key(&key2);
1337 out_put_key1:
1338         put_futex_key(&key1);
1339 out:
1340         return ret;
1341 }
1342
1343 /**
1344  * requeue_futex() - Requeue a futex_q from one hb to another
1345  * @q:          the futex_q to requeue
1346  * @hb1:        the source hash_bucket
1347  * @hb2:        the target hash_bucket
1348  * @key2:       the new key for the requeued futex_q
1349  */
1350 static inline
1351 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1352                    struct futex_hash_bucket *hb2, union futex_key *key2)
1353 {
1354
1355         /*
1356          * If key1 and key2 hash to the same bucket, no need to
1357          * requeue.
1358          */
1359         if (likely(&hb1->chain != &hb2->chain)) {
1360                 plist_del(&q->list, &hb1->chain);
1361                 hb_waiters_dec(hb1);
1362                 plist_add(&q->list, &hb2->chain);
1363                 hb_waiters_inc(hb2);
1364                 q->lock_ptr = &hb2->lock;
1365         }
1366         get_futex_key_refs(key2);
1367         q->key = *key2;
1368 }
1369
1370 /**
1371  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1372  * @q:          the futex_q
1373  * @key:        the key of the requeue target futex
1374  * @hb:         the hash_bucket of the requeue target futex
1375  *
1376  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1377  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1378  * to the requeue target futex so the waiter can detect the wakeup on the right
1379  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1380  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1381  * to protect access to the pi_state to fixup the owner later.  Must be called
1382  * with both q->lock_ptr and hb->lock held.
1383  */
1384 static inline
1385 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1386                            struct futex_hash_bucket *hb)
1387 {
1388         get_futex_key_refs(key);
1389         q->key = *key;
1390
1391         __unqueue_futex(q);
1392
1393         WARN_ON(!q->rt_waiter);
1394         q->rt_waiter = NULL;
1395
1396         q->lock_ptr = &hb->lock;
1397
1398         wake_up_state(q->task, TASK_NORMAL);
1399 }
1400
1401 /**
1402  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1403  * @pifutex:            the user address of the to futex
1404  * @hb1:                the from futex hash bucket, must be locked by the caller
1405  * @hb2:                the to futex hash bucket, must be locked by the caller
1406  * @key1:               the from futex key
1407  * @key2:               the to futex key
1408  * @ps:                 address to store the pi_state pointer
1409  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1410  *
1411  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1412  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1413  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1414  * hb1 and hb2 must be held by the caller.
1415  *
1416  * Return:
1417  *  0 - failed to acquire the lock atomically;
1418  * >0 - acquired the lock, return value is vpid of the top_waiter
1419  * <0 - error
1420  */
1421 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1422                                  struct futex_hash_bucket *hb1,
1423                                  struct futex_hash_bucket *hb2,
1424                                  union futex_key *key1, union futex_key *key2,
1425                                  struct futex_pi_state **ps, int set_waiters)
1426 {
1427         struct futex_q *top_waiter = NULL;
1428         u32 curval;
1429         int ret, vpid;
1430
1431         if (get_futex_value_locked(&curval, pifutex))
1432                 return -EFAULT;
1433
1434         /*
1435          * Find the top_waiter and determine if there are additional waiters.
1436          * If the caller intends to requeue more than 1 waiter to pifutex,
1437          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1438          * as we have means to handle the possible fault.  If not, don't set
1439          * the bit unecessarily as it will force the subsequent unlock to enter
1440          * the kernel.
1441          */
1442         top_waiter = futex_top_waiter(hb1, key1);
1443
1444         /* There are no waiters, nothing for us to do. */
1445         if (!top_waiter)
1446                 return 0;
1447
1448         /* Ensure we requeue to the expected futex. */
1449         if (!match_futex(top_waiter->requeue_pi_key, key2))
1450                 return -EINVAL;
1451
1452         /*
1453          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1454          * the contended case or if set_waiters is 1.  The pi_state is returned
1455          * in ps in contended cases.
1456          */
1457         vpid = task_pid_vnr(top_waiter->task);
1458         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1459                                    set_waiters);
1460         if (ret == 1) {
1461                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1462                 return vpid;
1463         }
1464         return ret;
1465 }
1466
1467 /**
1468  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1469  * @uaddr1:     source futex user address
1470  * @flags:      futex flags (FLAGS_SHARED, etc.)
1471  * @uaddr2:     target futex user address
1472  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1473  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1474  * @cmpval:     @uaddr1 expected value (or %NULL)
1475  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1476  *              pi futex (pi to pi requeue is not supported)
1477  *
1478  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1479  * uaddr2 atomically on behalf of the top waiter.
1480  *
1481  * Return:
1482  * >=0 - on success, the number of tasks requeued or woken;
1483  *  <0 - on error
1484  */
1485 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1486                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1487                          u32 *cmpval, int requeue_pi)
1488 {
1489         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1490         int drop_count = 0, task_count = 0, ret;
1491         struct futex_pi_state *pi_state = NULL;
1492         struct futex_hash_bucket *hb1, *hb2;
1493         struct futex_q *this, *next;
1494
1495         if (requeue_pi) {
1496                 /*
1497                  * Requeue PI only works on two distinct uaddrs. This
1498                  * check is only valid for private futexes. See below.
1499                  */
1500                 if (uaddr1 == uaddr2)
1501                         return -EINVAL;
1502
1503                 /*
1504                  * requeue_pi requires a pi_state, try to allocate it now
1505                  * without any locks in case it fails.
1506                  */
1507                 if (refill_pi_state_cache())
1508                         return -ENOMEM;
1509                 /*
1510                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1511                  * + nr_requeue, since it acquires the rt_mutex prior to
1512                  * returning to userspace, so as to not leave the rt_mutex with
1513                  * waiters and no owner.  However, second and third wake-ups
1514                  * cannot be predicted as they involve race conditions with the
1515                  * first wake and a fault while looking up the pi_state.  Both
1516                  * pthread_cond_signal() and pthread_cond_broadcast() should
1517                  * use nr_wake=1.
1518                  */
1519                 if (nr_wake != 1)
1520                         return -EINVAL;
1521         }
1522
1523 retry:
1524         if (pi_state != NULL) {
1525                 /*
1526                  * We will have to lookup the pi_state again, so free this one
1527                  * to keep the accounting correct.
1528                  */
1529                 free_pi_state(pi_state);
1530                 pi_state = NULL;
1531         }
1532
1533         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1534         if (unlikely(ret != 0))
1535                 goto out;
1536         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1537                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1538         if (unlikely(ret != 0))
1539                 goto out_put_key1;
1540
1541         /*
1542          * The check above which compares uaddrs is not sufficient for
1543          * shared futexes. We need to compare the keys:
1544          */
1545         if (requeue_pi && match_futex(&key1, &key2)) {
1546                 ret = -EINVAL;
1547                 goto out_put_keys;
1548         }
1549
1550         hb1 = hash_futex(&key1);
1551         hb2 = hash_futex(&key2);
1552
1553 retry_private:
1554         hb_waiters_inc(hb2);
1555         double_lock_hb(hb1, hb2);
1556
1557         if (likely(cmpval != NULL)) {
1558                 u32 curval;
1559
1560                 ret = get_futex_value_locked(&curval, uaddr1);
1561
1562                 if (unlikely(ret)) {
1563                         double_unlock_hb(hb1, hb2);
1564                         hb_waiters_dec(hb2);
1565
1566                         ret = get_user(curval, uaddr1);
1567                         if (ret)
1568                                 goto out_put_keys;
1569
1570                         if (!(flags & FLAGS_SHARED))
1571                                 goto retry_private;
1572
1573                         put_futex_key(&key2);
1574                         put_futex_key(&key1);
1575                         goto retry;
1576                 }
1577                 if (curval != *cmpval) {
1578                         ret = -EAGAIN;
1579                         goto out_unlock;
1580                 }
1581         }
1582
1583         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1584                 /*
1585                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1586                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1587                  * bit.  We force this here where we are able to easily handle
1588                  * faults rather in the requeue loop below.
1589                  */
1590                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1591                                                  &key2, &pi_state, nr_requeue);
1592
1593                 /*
1594                  * At this point the top_waiter has either taken uaddr2 or is
1595                  * waiting on it.  If the former, then the pi_state will not
1596                  * exist yet, look it up one more time to ensure we have a
1597                  * reference to it. If the lock was taken, ret contains the
1598                  * vpid of the top waiter task.
1599                  */
1600                 if (ret > 0) {
1601                         WARN_ON(pi_state);
1602                         drop_count++;
1603                         task_count++;
1604                         /*
1605                          * If we acquired the lock, then the user
1606                          * space value of uaddr2 should be vpid. It
1607                          * cannot be changed by the top waiter as it
1608                          * is blocked on hb2 lock if it tries to do
1609                          * so. If something fiddled with it behind our
1610                          * back the pi state lookup might unearth
1611                          * it. So we rather use the known value than
1612                          * rereading and handing potential crap to
1613                          * lookup_pi_state.
1614                          */
1615                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1616                 }
1617
1618                 switch (ret) {
1619                 case 0:
1620                         break;
1621                 case -EFAULT:
1622                         double_unlock_hb(hb1, hb2);
1623                         hb_waiters_dec(hb2);
1624                         put_futex_key(&key2);
1625                         put_futex_key(&key1);
1626                         ret = fault_in_user_writeable(uaddr2);
1627                         if (!ret)
1628                                 goto retry;
1629                         goto out;
1630                 case -EAGAIN:
1631                         /*
1632                          * Two reasons for this:
1633                          * - Owner is exiting and we just wait for the
1634                          *   exit to complete.
1635                          * - The user space value changed.
1636                          */
1637                         double_unlock_hb(hb1, hb2);
1638                         hb_waiters_dec(hb2);
1639                         put_futex_key(&key2);
1640                         put_futex_key(&key1);
1641                         cond_resched();
1642                         goto retry;
1643                 default:
1644                         goto out_unlock;
1645                 }
1646         }
1647
1648         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1649                 if (task_count - nr_wake >= nr_requeue)
1650                         break;
1651
1652                 if (!match_futex(&this->key, &key1))
1653                         continue;
1654
1655                 /*
1656                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1657                  * be paired with each other and no other futex ops.
1658                  *
1659                  * We should never be requeueing a futex_q with a pi_state,
1660                  * which is awaiting a futex_unlock_pi().
1661                  */
1662                 if ((requeue_pi && !this->rt_waiter) ||
1663                     (!requeue_pi && this->rt_waiter) ||
1664                     this->pi_state) {
1665                         ret = -EINVAL;
1666                         break;
1667                 }
1668
1669                 /*
1670                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1671                  * lock, we already woke the top_waiter.  If not, it will be
1672                  * woken by futex_unlock_pi().
1673                  */
1674                 if (++task_count <= nr_wake && !requeue_pi) {
1675                         wake_futex(this);
1676                         continue;
1677                 }
1678
1679                 /* Ensure we requeue to the expected futex for requeue_pi. */
1680                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1681                         ret = -EINVAL;
1682                         break;
1683                 }
1684
1685                 /*
1686                  * Requeue nr_requeue waiters and possibly one more in the case
1687                  * of requeue_pi if we couldn't acquire the lock atomically.
1688                  */
1689                 if (requeue_pi) {
1690                         /* Prepare the waiter to take the rt_mutex. */
1691                         atomic_inc(&pi_state->refcount);
1692                         this->pi_state = pi_state;
1693                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1694                                                         this->rt_waiter,
1695                                                         this->task);
1696                         if (ret == 1) {
1697                                 /* We got the lock. */
1698                                 requeue_pi_wake_futex(this, &key2, hb2);
1699                                 drop_count++;
1700                                 continue;
1701                         } else if (ret) {
1702                                 /* -EDEADLK */
1703                                 this->pi_state = NULL;
1704                                 free_pi_state(pi_state);
1705                                 goto out_unlock;
1706                         }
1707                 }
1708                 requeue_futex(this, hb1, hb2, &key2);
1709                 drop_count++;
1710         }
1711
1712 out_unlock:
1713         double_unlock_hb(hb1, hb2);
1714         hb_waiters_dec(hb2);
1715
1716         /*
1717          * drop_futex_key_refs() must be called outside the spinlocks. During
1718          * the requeue we moved futex_q's from the hash bucket at key1 to the
1719          * one at key2 and updated their key pointer.  We no longer need to
1720          * hold the references to key1.
1721          */
1722         while (--drop_count >= 0)
1723                 drop_futex_key_refs(&key1);
1724
1725 out_put_keys:
1726         put_futex_key(&key2);
1727 out_put_key1:
1728         put_futex_key(&key1);
1729 out:
1730         if (pi_state != NULL)
1731                 free_pi_state(pi_state);
1732         return ret ? ret : task_count;
1733 }
1734
1735 /* The key must be already stored in q->key. */
1736 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1737         __acquires(&hb->lock)
1738 {
1739         struct futex_hash_bucket *hb;
1740
1741         hb = hash_futex(&q->key);
1742
1743         /*
1744          * Increment the counter before taking the lock so that
1745          * a potential waker won't miss a to-be-slept task that is
1746          * waiting for the spinlock. This is safe as all queue_lock()
1747          * users end up calling queue_me(). Similarly, for housekeeping,
1748          * decrement the counter at queue_unlock() when some error has
1749          * occurred and we don't end up adding the task to the list.
1750          */
1751         hb_waiters_inc(hb);
1752
1753         q->lock_ptr = &hb->lock;
1754
1755         spin_lock(&hb->lock); /* implies MB (A) */
1756         return hb;
1757 }
1758
1759 static inline void
1760 queue_unlock(struct futex_hash_bucket *hb)
1761         __releases(&hb->lock)
1762 {
1763         spin_unlock(&hb->lock);
1764         hb_waiters_dec(hb);
1765 }
1766
1767 /**
1768  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1769  * @q:  The futex_q to enqueue
1770  * @hb: The destination hash bucket
1771  *
1772  * The hb->lock must be held by the caller, and is released here. A call to
1773  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1774  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1775  * or nothing if the unqueue is done as part of the wake process and the unqueue
1776  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1777  * an example).
1778  */
1779 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1780         __releases(&hb->lock)
1781 {
1782         int prio;
1783
1784         /*
1785          * The priority used to register this element is
1786          * - either the real thread-priority for the real-time threads
1787          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1788          * - or MAX_RT_PRIO for non-RT threads.
1789          * Thus, all RT-threads are woken first in priority order, and
1790          * the others are woken last, in FIFO order.
1791          */
1792         prio = min(current->normal_prio, MAX_RT_PRIO);
1793
1794         plist_node_init(&q->list, prio);
1795         plist_add(&q->list, &hb->chain);
1796         q->task = current;
1797         spin_unlock(&hb->lock);
1798 }
1799
1800 /**
1801  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1802  * @q:  The futex_q to unqueue
1803  *
1804  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1805  * be paired with exactly one earlier call to queue_me().
1806  *
1807  * Return:
1808  *   1 - if the futex_q was still queued (and we removed unqueued it);
1809  *   0 - if the futex_q was already removed by the waking thread
1810  */
1811 static int unqueue_me(struct futex_q *q)
1812 {
1813         spinlock_t *lock_ptr;
1814         int ret = 0;
1815
1816         /* In the common case we don't take the spinlock, which is nice. */
1817 retry:
1818         lock_ptr = q->lock_ptr;
1819         barrier();
1820         if (lock_ptr != NULL) {
1821                 spin_lock(lock_ptr);
1822                 /*
1823                  * q->lock_ptr can change between reading it and
1824                  * spin_lock(), causing us to take the wrong lock.  This
1825                  * corrects the race condition.
1826                  *
1827                  * Reasoning goes like this: if we have the wrong lock,
1828                  * q->lock_ptr must have changed (maybe several times)
1829                  * between reading it and the spin_lock().  It can
1830                  * change again after the spin_lock() but only if it was
1831                  * already changed before the spin_lock().  It cannot,
1832                  * however, change back to the original value.  Therefore
1833                  * we can detect whether we acquired the correct lock.
1834                  */
1835                 if (unlikely(lock_ptr != q->lock_ptr)) {
1836                         spin_unlock(lock_ptr);
1837                         goto retry;
1838                 }
1839                 __unqueue_futex(q);
1840
1841                 BUG_ON(q->pi_state);
1842
1843                 spin_unlock(lock_ptr);
1844                 ret = 1;
1845         }
1846
1847         drop_futex_key_refs(&q->key);
1848         return ret;
1849 }
1850
1851 /*
1852  * PI futexes can not be requeued and must remove themself from the
1853  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1854  * and dropped here.
1855  */
1856 static void unqueue_me_pi(struct futex_q *q)
1857         __releases(q->lock_ptr)
1858 {
1859         __unqueue_futex(q);
1860
1861         BUG_ON(!q->pi_state);
1862         free_pi_state(q->pi_state);
1863         q->pi_state = NULL;
1864
1865         spin_unlock(q->lock_ptr);
1866 }
1867
1868 /*
1869  * Fixup the pi_state owner with the new owner.
1870  *
1871  * Must be called with hash bucket lock held and mm->sem held for non
1872  * private futexes.
1873  */
1874 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1875                                 struct task_struct *newowner)
1876 {
1877         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1878         struct futex_pi_state *pi_state = q->pi_state;
1879         struct task_struct *oldowner = pi_state->owner;
1880         u32 uval, uninitialized_var(curval), newval;
1881         int ret;
1882
1883         /* Owner died? */
1884         if (!pi_state->owner)
1885                 newtid |= FUTEX_OWNER_DIED;
1886
1887         /*
1888          * We are here either because we stole the rtmutex from the
1889          * previous highest priority waiter or we are the highest priority
1890          * waiter but failed to get the rtmutex the first time.
1891          * We have to replace the newowner TID in the user space variable.
1892          * This must be atomic as we have to preserve the owner died bit here.
1893          *
1894          * Note: We write the user space value _before_ changing the pi_state
1895          * because we can fault here. Imagine swapped out pages or a fork
1896          * that marked all the anonymous memory readonly for cow.
1897          *
1898          * Modifying pi_state _before_ the user space value would
1899          * leave the pi_state in an inconsistent state when we fault
1900          * here, because we need to drop the hash bucket lock to
1901          * handle the fault. This might be observed in the PID check
1902          * in lookup_pi_state.
1903          */
1904 retry:
1905         if (get_futex_value_locked(&uval, uaddr))
1906                 goto handle_fault;
1907
1908         while (1) {
1909                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1910
1911                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1912                         goto handle_fault;
1913                 if (curval == uval)
1914                         break;
1915                 uval = curval;
1916         }
1917
1918         /*
1919          * We fixed up user space. Now we need to fix the pi_state
1920          * itself.
1921          */
1922         if (pi_state->owner != NULL) {
1923                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1924                 WARN_ON(list_empty(&pi_state->list));
1925                 list_del_init(&pi_state->list);
1926                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1927         }
1928
1929         pi_state->owner = newowner;
1930
1931         raw_spin_lock_irq(&newowner->pi_lock);
1932         WARN_ON(!list_empty(&pi_state->list));
1933         list_add(&pi_state->list, &newowner->pi_state_list);
1934         raw_spin_unlock_irq(&newowner->pi_lock);
1935         return 0;
1936
1937         /*
1938          * To handle the page fault we need to drop the hash bucket
1939          * lock here. That gives the other task (either the highest priority
1940          * waiter itself or the task which stole the rtmutex) the
1941          * chance to try the fixup of the pi_state. So once we are
1942          * back from handling the fault we need to check the pi_state
1943          * after reacquiring the hash bucket lock and before trying to
1944          * do another fixup. When the fixup has been done already we
1945          * simply return.
1946          */
1947 handle_fault:
1948         spin_unlock(q->lock_ptr);
1949
1950         ret = fault_in_user_writeable(uaddr);
1951
1952         spin_lock(q->lock_ptr);
1953
1954         /*
1955          * Check if someone else fixed it for us:
1956          */
1957         if (pi_state->owner != oldowner)
1958                 return 0;
1959
1960         if (ret)
1961                 return ret;
1962
1963         goto retry;
1964 }
1965
1966 static long futex_wait_restart(struct restart_block *restart);
1967
1968 /**
1969  * fixup_owner() - Post lock pi_state and corner case management
1970  * @uaddr:      user address of the futex
1971  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1972  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1973  *
1974  * After attempting to lock an rt_mutex, this function is called to cleanup
1975  * the pi_state owner as well as handle race conditions that may allow us to
1976  * acquire the lock. Must be called with the hb lock held.
1977  *
1978  * Return:
1979  *  1 - success, lock taken;
1980  *  0 - success, lock not taken;
1981  * <0 - on error (-EFAULT)
1982  */
1983 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1984 {
1985         struct task_struct *owner;
1986         int ret = 0;
1987
1988         if (locked) {
1989                 /*
1990                  * Got the lock. We might not be the anticipated owner if we
1991                  * did a lock-steal - fix up the PI-state in that case:
1992                  */
1993                 if (q->pi_state->owner != current)
1994                         ret = fixup_pi_state_owner(uaddr, q, current);
1995                 goto out;
1996         }
1997
1998         /*
1999          * Catch the rare case, where the lock was released when we were on the
2000          * way back before we locked the hash bucket.
2001          */
2002         if (q->pi_state->owner == current) {
2003                 /*
2004                  * Try to get the rt_mutex now. This might fail as some other
2005                  * task acquired the rt_mutex after we removed ourself from the
2006                  * rt_mutex waiters list.
2007                  */
2008                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2009                         locked = 1;
2010                         goto out;
2011                 }
2012
2013                 /*
2014                  * pi_state is incorrect, some other task did a lock steal and
2015                  * we returned due to timeout or signal without taking the
2016                  * rt_mutex. Too late.
2017                  */
2018                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2019                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2020                 if (!owner)
2021                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2022                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2023                 ret = fixup_pi_state_owner(uaddr, q, owner);
2024                 goto out;
2025         }
2026
2027         /*
2028          * Paranoia check. If we did not take the lock, then we should not be
2029          * the owner of the rt_mutex.
2030          */
2031         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2032                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2033                                 "pi-state %p\n", ret,
2034                                 q->pi_state->pi_mutex.owner,
2035                                 q->pi_state->owner);
2036
2037 out:
2038         return ret ? ret : locked;
2039 }
2040
2041 /**
2042  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2043  * @hb:         the futex hash bucket, must be locked by the caller
2044  * @q:          the futex_q to queue up on
2045  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2046  */
2047 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2048                                 struct hrtimer_sleeper *timeout)
2049 {
2050         /*
2051          * The task state is guaranteed to be set before another task can
2052          * wake it. set_current_state() is implemented using set_mb() and
2053          * queue_me() calls spin_unlock() upon completion, both serializing
2054          * access to the hash list and forcing another memory barrier.
2055          */
2056         set_current_state(TASK_INTERRUPTIBLE);
2057         queue_me(q, hb);
2058
2059         /* Arm the timer */
2060         if (timeout) {
2061                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2062                 if (!hrtimer_active(&timeout->timer))
2063                         timeout->task = NULL;
2064         }
2065
2066         /*
2067          * If we have been removed from the hash list, then another task
2068          * has tried to wake us, and we can skip the call to schedule().
2069          */
2070         if (likely(!plist_node_empty(&q->list))) {
2071                 /*
2072                  * If the timer has already expired, current will already be
2073                  * flagged for rescheduling. Only call schedule if there
2074                  * is no timeout, or if it has yet to expire.
2075                  */
2076                 if (!timeout || timeout->task)
2077                         freezable_schedule();
2078         }
2079         __set_current_state(TASK_RUNNING);
2080 }
2081
2082 /**
2083  * futex_wait_setup() - Prepare to wait on a futex
2084  * @uaddr:      the futex userspace address
2085  * @val:        the expected value
2086  * @flags:      futex flags (FLAGS_SHARED, etc.)
2087  * @q:          the associated futex_q
2088  * @hb:         storage for hash_bucket pointer to be returned to caller
2089  *
2090  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2091  * compare it with the expected value.  Handle atomic faults internally.
2092  * Return with the hb lock held and a q.key reference on success, and unlocked
2093  * with no q.key reference on failure.
2094  *
2095  * Return:
2096  *  0 - uaddr contains val and hb has been locked;
2097  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2098  */
2099 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2100                            struct futex_q *q, struct futex_hash_bucket **hb)
2101 {
2102         u32 uval;
2103         int ret;
2104
2105         /*
2106          * Access the page AFTER the hash-bucket is locked.
2107          * Order is important:
2108          *
2109          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2110          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2111          *
2112          * The basic logical guarantee of a futex is that it blocks ONLY
2113          * if cond(var) is known to be true at the time of blocking, for
2114          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2115          * would open a race condition where we could block indefinitely with
2116          * cond(var) false, which would violate the guarantee.
2117          *
2118          * On the other hand, we insert q and release the hash-bucket only
2119          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2120          * absorb a wakeup if *uaddr does not match the desired values
2121          * while the syscall executes.
2122          */
2123 retry:
2124         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2125         if (unlikely(ret != 0))
2126                 return ret;
2127
2128 retry_private:
2129         *hb = queue_lock(q);
2130
2131         ret = get_futex_value_locked(&uval, uaddr);
2132
2133         if (ret) {
2134                 queue_unlock(*hb);
2135
2136                 ret = get_user(uval, uaddr);
2137                 if (ret)
2138                         goto out;
2139
2140                 if (!(flags & FLAGS_SHARED))
2141                         goto retry_private;
2142
2143                 put_futex_key(&q->key);
2144                 goto retry;
2145         }
2146
2147         if (uval != val) {
2148                 queue_unlock(*hb);
2149                 ret = -EWOULDBLOCK;
2150         }
2151
2152 out:
2153         if (ret)
2154                 put_futex_key(&q->key);
2155         return ret;
2156 }
2157
2158 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2159                       ktime_t *abs_time, u32 bitset)
2160 {
2161         struct hrtimer_sleeper timeout, *to = NULL;
2162         struct restart_block *restart;
2163         struct futex_hash_bucket *hb;
2164         struct futex_q q = futex_q_init;
2165         int ret;
2166
2167         if (!bitset)
2168                 return -EINVAL;
2169         q.bitset = bitset;
2170
2171         if (abs_time) {
2172                 to = &timeout;
2173
2174                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2175                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2176                                       HRTIMER_MODE_ABS);
2177                 hrtimer_init_sleeper(to, current);
2178                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2179                                              current->timer_slack_ns);
2180         }
2181
2182 retry:
2183         /*
2184          * Prepare to wait on uaddr. On success, holds hb lock and increments
2185          * q.key refs.
2186          */
2187         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2188         if (ret)
2189                 goto out;
2190
2191         /* queue_me and wait for wakeup, timeout, or a signal. */
2192         futex_wait_queue_me(hb, &q, to);
2193
2194         /* If we were woken (and unqueued), we succeeded, whatever. */
2195         ret = 0;
2196         /* unqueue_me() drops q.key ref */
2197         if (!unqueue_me(&q))
2198                 goto out;
2199         ret = -ETIMEDOUT;
2200         if (to && !to->task)
2201                 goto out;
2202
2203         /*
2204          * We expect signal_pending(current), but we might be the
2205          * victim of a spurious wakeup as well.
2206          */
2207         if (!signal_pending(current))
2208                 goto retry;
2209
2210         ret = -ERESTARTSYS;
2211         if (!abs_time)
2212                 goto out;
2213
2214         restart = &current_thread_info()->restart_block;
2215         restart->fn = futex_wait_restart;
2216         restart->futex.uaddr = uaddr;
2217         restart->futex.val = val;
2218         restart->futex.time = abs_time->tv64;
2219         restart->futex.bitset = bitset;
2220         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2221
2222         ret = -ERESTART_RESTARTBLOCK;
2223
2224 out:
2225         if (to) {
2226                 hrtimer_cancel(&to->timer);
2227                 destroy_hrtimer_on_stack(&to->timer);
2228         }
2229         return ret;
2230 }
2231
2232
2233 static long futex_wait_restart(struct restart_block *restart)
2234 {
2235         u32 __user *uaddr = restart->futex.uaddr;
2236         ktime_t t, *tp = NULL;
2237
2238         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2239                 t.tv64 = restart->futex.time;
2240                 tp = &t;
2241         }
2242         restart->fn = do_no_restart_syscall;
2243
2244         return (long)futex_wait(uaddr, restart->futex.flags,
2245                                 restart->futex.val, tp, restart->futex.bitset);
2246 }
2247
2248
2249 /*
2250  * Userspace tried a 0 -> TID atomic transition of the futex value
2251  * and failed. The kernel side here does the whole locking operation:
2252  * if there are waiters then it will block, it does PI, etc. (Due to
2253  * races the kernel might see a 0 value of the futex too.)
2254  */
2255 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2256                          ktime_t *time, int trylock)
2257 {
2258         struct hrtimer_sleeper timeout, *to = NULL;
2259         struct futex_hash_bucket *hb;
2260         struct futex_q q = futex_q_init;
2261         int res, ret;
2262
2263         if (refill_pi_state_cache())
2264                 return -ENOMEM;
2265
2266         if (time) {
2267                 to = &timeout;
2268                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2269                                       HRTIMER_MODE_ABS);
2270                 hrtimer_init_sleeper(to, current);
2271                 hrtimer_set_expires(&to->timer, *time);
2272         }
2273
2274 retry:
2275         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2276         if (unlikely(ret != 0))
2277                 goto out;
2278
2279 retry_private:
2280         hb = queue_lock(&q);
2281
2282         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2283         if (unlikely(ret)) {
2284                 switch (ret) {
2285                 case 1:
2286                         /* We got the lock. */
2287                         ret = 0;
2288                         goto out_unlock_put_key;
2289                 case -EFAULT:
2290                         goto uaddr_faulted;
2291                 case -EAGAIN:
2292                         /*
2293                          * Two reasons for this:
2294                          * - Task is exiting and we just wait for the
2295                          *   exit to complete.
2296                          * - The user space value changed.
2297                          */
2298                         queue_unlock(hb);
2299                         put_futex_key(&q.key);
2300                         cond_resched();
2301                         goto retry;
2302                 default:
2303                         goto out_unlock_put_key;
2304                 }
2305         }
2306
2307         /*
2308          * Only actually queue now that the atomic ops are done:
2309          */
2310         queue_me(&q, hb);
2311
2312         WARN_ON(!q.pi_state);
2313         /*
2314          * Block on the PI mutex:
2315          */
2316         if (!trylock) {
2317                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2318         } else {
2319                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2320                 /* Fixup the trylock return value: */
2321                 ret = ret ? 0 : -EWOULDBLOCK;
2322         }
2323
2324         spin_lock(q.lock_ptr);
2325         /*
2326          * Fixup the pi_state owner and possibly acquire the lock if we
2327          * haven't already.
2328          */
2329         res = fixup_owner(uaddr, &q, !ret);
2330         /*
2331          * If fixup_owner() returned an error, proprogate that.  If it acquired
2332          * the lock, clear our -ETIMEDOUT or -EINTR.
2333          */
2334         if (res)
2335                 ret = (res < 0) ? res : 0;
2336
2337         /*
2338          * If fixup_owner() faulted and was unable to handle the fault, unlock
2339          * it and return the fault to userspace.
2340          */
2341         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2342                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2343
2344         /* Unqueue and drop the lock */
2345         unqueue_me_pi(&q);
2346
2347         goto out_put_key;
2348
2349 out_unlock_put_key:
2350         queue_unlock(hb);
2351
2352 out_put_key:
2353         put_futex_key(&q.key);
2354 out:
2355         if (to)
2356                 destroy_hrtimer_on_stack(&to->timer);
2357         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2358
2359 uaddr_faulted:
2360         queue_unlock(hb);
2361
2362         ret = fault_in_user_writeable(uaddr);
2363         if (ret)
2364                 goto out_put_key;
2365
2366         if (!(flags & FLAGS_SHARED))
2367                 goto retry_private;
2368
2369         put_futex_key(&q.key);
2370         goto retry;
2371 }
2372
2373 /*
2374  * Userspace attempted a TID -> 0 atomic transition, and failed.
2375  * This is the in-kernel slowpath: we look up the PI state (if any),
2376  * and do the rt-mutex unlock.
2377  */
2378 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2379 {
2380         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2381         union futex_key key = FUTEX_KEY_INIT;
2382         struct futex_hash_bucket *hb;
2383         struct futex_q *match;
2384         int ret;
2385
2386 retry:
2387         if (get_user(uval, uaddr))
2388                 return -EFAULT;
2389         /*
2390          * We release only a lock we actually own:
2391          */
2392         if ((uval & FUTEX_TID_MASK) != vpid)
2393                 return -EPERM;
2394
2395         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2396         if (ret)
2397                 return ret;
2398
2399         hb = hash_futex(&key);
2400         spin_lock(&hb->lock);
2401
2402         /*
2403          * Check waiters first. We do not trust user space values at
2404          * all and we at least want to know if user space fiddled
2405          * with the futex value instead of blindly unlocking.
2406          */
2407         match = futex_top_waiter(hb, &key);
2408         if (match) {
2409                 ret = wake_futex_pi(uaddr, uval, match);
2410                 /*
2411                  * The atomic access to the futex value generated a
2412                  * pagefault, so retry the user-access and the wakeup:
2413                  */
2414                 if (ret == -EFAULT)
2415                         goto pi_faulted;
2416                 goto out_unlock;
2417         }
2418
2419         /*
2420          * We have no kernel internal state, i.e. no waiters in the
2421          * kernel. Waiters which are about to queue themselves are stuck
2422          * on hb->lock. So we can safely ignore them. We do neither
2423          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2424          * owner.
2425          */
2426         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2427                 goto pi_faulted;
2428
2429         /*
2430          * If uval has changed, let user space handle it.
2431          */
2432         ret = (curval == uval) ? 0 : -EAGAIN;
2433
2434 out_unlock:
2435         spin_unlock(&hb->lock);
2436         put_futex_key(&key);
2437         return ret;
2438
2439 pi_faulted:
2440         spin_unlock(&hb->lock);
2441         put_futex_key(&key);
2442
2443         ret = fault_in_user_writeable(uaddr);
2444         if (!ret)
2445                 goto retry;
2446
2447         return ret;
2448 }
2449
2450 /**
2451  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2452  * @hb:         the hash_bucket futex_q was original enqueued on
2453  * @q:          the futex_q woken while waiting to be requeued
2454  * @key2:       the futex_key of the requeue target futex
2455  * @timeout:    the timeout associated with the wait (NULL if none)
2456  *
2457  * Detect if the task was woken on the initial futex as opposed to the requeue
2458  * target futex.  If so, determine if it was a timeout or a signal that caused
2459  * the wakeup and return the appropriate error code to the caller.  Must be
2460  * called with the hb lock held.
2461  *
2462  * Return:
2463  *  0 = no early wakeup detected;
2464  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2465  */
2466 static inline
2467 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2468                                    struct futex_q *q, union futex_key *key2,
2469                                    struct hrtimer_sleeper *timeout)
2470 {
2471         int ret = 0;
2472
2473         /*
2474          * With the hb lock held, we avoid races while we process the wakeup.
2475          * We only need to hold hb (and not hb2) to ensure atomicity as the
2476          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2477          * It can't be requeued from uaddr2 to something else since we don't
2478          * support a PI aware source futex for requeue.
2479          */
2480         if (!match_futex(&q->key, key2)) {
2481                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2482                 /*
2483                  * We were woken prior to requeue by a timeout or a signal.
2484                  * Unqueue the futex_q and determine which it was.
2485                  */
2486                 plist_del(&q->list, &hb->chain);
2487                 hb_waiters_dec(hb);
2488
2489                 /* Handle spurious wakeups gracefully */
2490                 ret = -EWOULDBLOCK;
2491                 if (timeout && !timeout->task)
2492                         ret = -ETIMEDOUT;
2493                 else if (signal_pending(current))
2494                         ret = -ERESTARTNOINTR;
2495         }
2496         return ret;
2497 }
2498
2499 /**
2500  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2501  * @uaddr:      the futex we initially wait on (non-pi)
2502  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2503  *              the same type, no requeueing from private to shared, etc.
2504  * @val:        the expected value of uaddr
2505  * @abs_time:   absolute timeout
2506  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2507  * @uaddr2:     the pi futex we will take prior to returning to user-space
2508  *
2509  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2510  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2511  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2512  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2513  * without one, the pi logic would not know which task to boost/deboost, if
2514  * there was a need to.
2515  *
2516  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2517  * via the following--
2518  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2519  * 2) wakeup on uaddr2 after a requeue
2520  * 3) signal
2521  * 4) timeout
2522  *
2523  * If 3, cleanup and return -ERESTARTNOINTR.
2524  *
2525  * If 2, we may then block on trying to take the rt_mutex and return via:
2526  * 5) successful lock
2527  * 6) signal
2528  * 7) timeout
2529  * 8) other lock acquisition failure
2530  *
2531  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2532  *
2533  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2534  *
2535  * Return:
2536  *  0 - On success;
2537  * <0 - On error
2538  */
2539 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2540                                  u32 val, ktime_t *abs_time, u32 bitset,
2541                                  u32 __user *uaddr2)
2542 {
2543         struct hrtimer_sleeper timeout, *to = NULL;
2544         struct rt_mutex_waiter rt_waiter;
2545         struct rt_mutex *pi_mutex = NULL;
2546         struct futex_hash_bucket *hb;
2547         union futex_key key2 = FUTEX_KEY_INIT;
2548         struct futex_q q = futex_q_init;
2549         int res, ret;
2550
2551         if (uaddr == uaddr2)
2552                 return -EINVAL;
2553
2554         if (!bitset)
2555                 return -EINVAL;
2556
2557         if (abs_time) {
2558                 to = &timeout;
2559                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2560                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2561                                       HRTIMER_MODE_ABS);
2562                 hrtimer_init_sleeper(to, current);
2563                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2564                                              current->timer_slack_ns);
2565         }
2566
2567         /*
2568          * The waiter is allocated on our stack, manipulated by the requeue
2569          * code while we sleep on uaddr.
2570          */
2571         debug_rt_mutex_init_waiter(&rt_waiter);
2572         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2573         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2574         rt_waiter.task = NULL;
2575
2576         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2577         if (unlikely(ret != 0))
2578                 goto out;
2579
2580         q.bitset = bitset;
2581         q.rt_waiter = &rt_waiter;
2582         q.requeue_pi_key = &key2;
2583
2584         /*
2585          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2586          * count.
2587          */
2588         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2589         if (ret)
2590                 goto out_key2;
2591
2592         /*
2593          * The check above which compares uaddrs is not sufficient for
2594          * shared futexes. We need to compare the keys:
2595          */
2596         if (match_futex(&q.key, &key2)) {
2597                 queue_unlock(hb);
2598                 ret = -EINVAL;
2599                 goto out_put_keys;
2600         }
2601
2602         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2603         futex_wait_queue_me(hb, &q, to);
2604
2605         spin_lock(&hb->lock);
2606         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2607         spin_unlock(&hb->lock);
2608         if (ret)
2609                 goto out_put_keys;
2610
2611         /*
2612          * In order for us to be here, we know our q.key == key2, and since
2613          * we took the hb->lock above, we also know that futex_requeue() has
2614          * completed and we no longer have to concern ourselves with a wakeup
2615          * race with the atomic proxy lock acquisition by the requeue code. The
2616          * futex_requeue dropped our key1 reference and incremented our key2
2617          * reference count.
2618          */
2619
2620         /* Check if the requeue code acquired the second futex for us. */
2621         if (!q.rt_waiter) {
2622                 /*
2623                  * Got the lock. We might not be the anticipated owner if we
2624                  * did a lock-steal - fix up the PI-state in that case.
2625                  */
2626                 if (q.pi_state && (q.pi_state->owner != current)) {
2627                         spin_lock(q.lock_ptr);
2628                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2629                         spin_unlock(q.lock_ptr);
2630                 }
2631         } else {
2632                 /*
2633                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2634                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2635                  * the pi_state.
2636                  */
2637                 WARN_ON(!q.pi_state);
2638                 pi_mutex = &q.pi_state->pi_mutex;
2639                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2640                 debug_rt_mutex_free_waiter(&rt_waiter);
2641
2642                 spin_lock(q.lock_ptr);
2643                 /*
2644                  * Fixup the pi_state owner and possibly acquire the lock if we
2645                  * haven't already.
2646                  */
2647                 res = fixup_owner(uaddr2, &q, !ret);
2648                 /*
2649                  * If fixup_owner() returned an error, proprogate that.  If it
2650                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2651                  */
2652                 if (res)
2653                         ret = (res < 0) ? res : 0;
2654
2655                 /* Unqueue and drop the lock. */
2656                 unqueue_me_pi(&q);
2657         }
2658
2659         /*
2660          * If fixup_pi_state_owner() faulted and was unable to handle the
2661          * fault, unlock the rt_mutex and return the fault to userspace.
2662          */
2663         if (ret == -EFAULT) {
2664                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2665                         rt_mutex_unlock(pi_mutex);
2666         } else if (ret == -EINTR) {
2667                 /*
2668                  * We've already been requeued, but cannot restart by calling
2669                  * futex_lock_pi() directly. We could restart this syscall, but
2670                  * it would detect that the user space "val" changed and return
2671                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2672                  * -EWOULDBLOCK directly.
2673                  */
2674                 ret = -EWOULDBLOCK;
2675         }
2676
2677 out_put_keys:
2678         put_futex_key(&q.key);
2679 out_key2:
2680         put_futex_key(&key2);
2681
2682 out:
2683         if (to) {
2684                 hrtimer_cancel(&to->timer);
2685                 destroy_hrtimer_on_stack(&to->timer);
2686         }
2687         return ret;
2688 }
2689
2690 /*
2691  * Support for robust futexes: the kernel cleans up held futexes at
2692  * thread exit time.
2693  *
2694  * Implementation: user-space maintains a per-thread list of locks it
2695  * is holding. Upon do_exit(), the kernel carefully walks this list,
2696  * and marks all locks that are owned by this thread with the
2697  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2698  * always manipulated with the lock held, so the list is private and
2699  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2700  * field, to allow the kernel to clean up if the thread dies after
2701  * acquiring the lock, but just before it could have added itself to
2702  * the list. There can only be one such pending lock.
2703  */
2704
2705 /**
2706  * sys_set_robust_list() - Set the robust-futex list head of a task
2707  * @head:       pointer to the list-head
2708  * @len:        length of the list-head, as userspace expects
2709  */
2710 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2711                 size_t, len)
2712 {
2713         if (!futex_cmpxchg_enabled)
2714                 return -ENOSYS;
2715         /*
2716          * The kernel knows only one size for now:
2717          */
2718         if (unlikely(len != sizeof(*head)))
2719                 return -EINVAL;
2720
2721         current->robust_list = head;
2722
2723         return 0;
2724 }
2725
2726 /**
2727  * sys_get_robust_list() - Get the robust-futex list head of a task
2728  * @pid:        pid of the process [zero for current task]
2729  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2730  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2731  */
2732 SYSCALL_DEFINE3(get_robust_list, int, pid,
2733                 struct robust_list_head __user * __user *, head_ptr,
2734                 size_t __user *, len_ptr)
2735 {
2736         struct robust_list_head __user *head;
2737         unsigned long ret;
2738         struct task_struct *p;
2739
2740         if (!futex_cmpxchg_enabled)
2741                 return -ENOSYS;
2742
2743         rcu_read_lock();
2744
2745         ret = -ESRCH;
2746         if (!pid)
2747                 p = current;
2748         else {
2749                 p = find_task_by_vpid(pid);
2750                 if (!p)
2751                         goto err_unlock;
2752         }
2753
2754         ret = -EPERM;
2755         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2756                 goto err_unlock;
2757
2758         head = p->robust_list;
2759         rcu_read_unlock();
2760
2761         if (put_user(sizeof(*head), len_ptr))
2762                 return -EFAULT;
2763         return put_user(head, head_ptr);
2764
2765 err_unlock:
2766         rcu_read_unlock();
2767
2768         return ret;
2769 }
2770
2771 /*
2772  * Process a futex-list entry, check whether it's owned by the
2773  * dying task, and do notification if so:
2774  */
2775 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2776 {
2777         u32 uval, uninitialized_var(nval), mval;
2778
2779 retry:
2780         if (get_user(uval, uaddr))
2781                 return -1;
2782
2783         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2784                 /*
2785                  * Ok, this dying thread is truly holding a futex
2786                  * of interest. Set the OWNER_DIED bit atomically
2787                  * via cmpxchg, and if the value had FUTEX_WAITERS
2788                  * set, wake up a waiter (if any). (We have to do a
2789                  * futex_wake() even if OWNER_DIED is already set -
2790                  * to handle the rare but possible case of recursive
2791                  * thread-death.) The rest of the cleanup is done in
2792                  * userspace.
2793                  */
2794                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2795                 /*
2796                  * We are not holding a lock here, but we want to have
2797                  * the pagefault_disable/enable() protection because
2798                  * we want to handle the fault gracefully. If the
2799                  * access fails we try to fault in the futex with R/W
2800                  * verification via get_user_pages. get_user() above
2801                  * does not guarantee R/W access. If that fails we
2802                  * give up and leave the futex locked.
2803                  */
2804                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2805                         if (fault_in_user_writeable(uaddr))
2806                                 return -1;
2807                         goto retry;
2808                 }
2809                 if (nval != uval)
2810                         goto retry;
2811
2812                 /*
2813                  * Wake robust non-PI futexes here. The wakeup of
2814                  * PI futexes happens in exit_pi_state():
2815                  */
2816                 if (!pi && (uval & FUTEX_WAITERS))
2817                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2818         }
2819         return 0;
2820 }
2821
2822 /*
2823  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2824  */
2825 static inline int fetch_robust_entry(struct robust_list __user **entry,
2826                                      struct robust_list __user * __user *head,
2827                                      unsigned int *pi)
2828 {
2829         unsigned long uentry;
2830
2831         if (get_user(uentry, (unsigned long __user *)head))
2832                 return -EFAULT;
2833
2834         *entry = (void __user *)(uentry & ~1UL);
2835         *pi = uentry & 1;
2836
2837         return 0;
2838 }
2839
2840 /*
2841  * Walk curr->robust_list (very carefully, it's a userspace list!)
2842  * and mark any locks found there dead, and notify any waiters.
2843  *
2844  * We silently return on any sign of list-walking problem.
2845  */
2846 void exit_robust_list(struct task_struct *curr)
2847 {
2848         struct robust_list_head __user *head = curr->robust_list;
2849         struct robust_list __user *entry, *next_entry, *pending;
2850         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2851         unsigned int uninitialized_var(next_pi);
2852         unsigned long futex_offset;
2853         int rc;
2854
2855         if (!futex_cmpxchg_enabled)
2856                 return;
2857
2858         /*
2859          * Fetch the list head (which was registered earlier, via
2860          * sys_set_robust_list()):
2861          */
2862         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2863                 return;
2864         /*
2865          * Fetch the relative futex offset:
2866          */
2867         if (get_user(futex_offset, &head->futex_offset))
2868                 return;
2869         /*
2870          * Fetch any possibly pending lock-add first, and handle it
2871          * if it exists:
2872          */
2873         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2874                 return;
2875
2876         next_entry = NULL;      /* avoid warning with gcc */
2877         while (entry != &head->list) {
2878                 /*
2879                  * Fetch the next entry in the list before calling
2880                  * handle_futex_death:
2881                  */
2882                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2883                 /*
2884                  * A pending lock might already be on the list, so
2885                  * don't process it twice:
2886                  */
2887                 if (entry != pending)
2888                         if (handle_futex_death((void __user *)entry + futex_offset,
2889                                                 curr, pi))
2890                                 return;
2891                 if (rc)
2892                         return;
2893                 entry = next_entry;
2894                 pi = next_pi;
2895                 /*
2896                  * Avoid excessively long or circular lists:
2897                  */
2898                 if (!--limit)
2899                         break;
2900
2901                 cond_resched();
2902         }
2903
2904         if (pending)
2905                 handle_futex_death((void __user *)pending + futex_offset,
2906                                    curr, pip);
2907 }
2908
2909 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2910                 u32 __user *uaddr2, u32 val2, u32 val3)
2911 {
2912         int cmd = op & FUTEX_CMD_MASK;
2913         unsigned int flags = 0;
2914
2915         if (!(op & FUTEX_PRIVATE_FLAG))
2916                 flags |= FLAGS_SHARED;
2917
2918         if (op & FUTEX_CLOCK_REALTIME) {
2919                 flags |= FLAGS_CLOCKRT;
2920                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2921                         return -ENOSYS;
2922         }
2923
2924         switch (cmd) {
2925         case FUTEX_LOCK_PI:
2926         case FUTEX_UNLOCK_PI:
2927         case FUTEX_TRYLOCK_PI:
2928         case FUTEX_WAIT_REQUEUE_PI:
2929         case FUTEX_CMP_REQUEUE_PI:
2930                 if (!futex_cmpxchg_enabled)
2931                         return -ENOSYS;
2932         }
2933
2934         switch (cmd) {
2935         case FUTEX_WAIT:
2936                 val3 = FUTEX_BITSET_MATCH_ANY;
2937         case FUTEX_WAIT_BITSET:
2938                 return futex_wait(uaddr, flags, val, timeout, val3);
2939         case FUTEX_WAKE:
2940                 val3 = FUTEX_BITSET_MATCH_ANY;
2941         case FUTEX_WAKE_BITSET:
2942                 return futex_wake(uaddr, flags, val, val3);
2943         case FUTEX_REQUEUE:
2944                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2945         case FUTEX_CMP_REQUEUE:
2946                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2947         case FUTEX_WAKE_OP:
2948                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2949         case FUTEX_LOCK_PI:
2950                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2951         case FUTEX_UNLOCK_PI:
2952                 return futex_unlock_pi(uaddr, flags);
2953         case FUTEX_TRYLOCK_PI:
2954                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2955         case FUTEX_WAIT_REQUEUE_PI:
2956                 val3 = FUTEX_BITSET_MATCH_ANY;
2957                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2958                                              uaddr2);
2959         case FUTEX_CMP_REQUEUE_PI:
2960                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2961         }
2962         return -ENOSYS;
2963 }
2964
2965
2966 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2967                 struct timespec __user *, utime, u32 __user *, uaddr2,
2968                 u32, val3)
2969 {
2970         struct timespec ts;
2971         ktime_t t, *tp = NULL;
2972         u32 val2 = 0;
2973         int cmd = op & FUTEX_CMD_MASK;
2974
2975         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2976                       cmd == FUTEX_WAIT_BITSET ||
2977                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2978                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2979                         return -EFAULT;
2980                 if (!timespec_valid(&ts))
2981                         return -EINVAL;
2982
2983                 t = timespec_to_ktime(ts);
2984                 if (cmd == FUTEX_WAIT)
2985                         t = ktime_add_safe(ktime_get(), t);
2986                 tp = &t;
2987         }
2988         /*
2989          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2990          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2991          */
2992         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2993             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2994                 val2 = (u32) (unsigned long) utime;
2995
2996         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2997 }
2998
2999 static void __init futex_detect_cmpxchg(void)
3000 {
3001 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3002         u32 curval;
3003
3004         /*
3005          * This will fail and we want it. Some arch implementations do
3006          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3007          * functionality. We want to know that before we call in any
3008          * of the complex code paths. Also we want to prevent
3009          * registration of robust lists in that case. NULL is
3010          * guaranteed to fault and we get -EFAULT on functional
3011          * implementation, the non-functional ones will return
3012          * -ENOSYS.
3013          */
3014         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3015                 futex_cmpxchg_enabled = 1;
3016 #endif
3017 }
3018
3019 static int __init futex_init(void)
3020 {
3021         unsigned int futex_shift;
3022         unsigned long i;
3023
3024 #if CONFIG_BASE_SMALL
3025         futex_hashsize = 16;
3026 #else
3027         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3028 #endif
3029
3030         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3031                                                futex_hashsize, 0,
3032                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3033                                                &futex_shift, NULL,
3034                                                futex_hashsize, futex_hashsize);
3035         futex_hashsize = 1UL << futex_shift;
3036
3037         futex_detect_cmpxchg();
3038
3039         for (i = 0; i < futex_hashsize; i++) {
3040                 atomic_set(&futex_queues[i].waiters, 0);
3041                 plist_head_init(&futex_queues[i].chain);
3042                 spin_lock_init(&futex_queues[i].lock);
3043         }
3044
3045         return 0;
3046 }
3047 __initcall(futex_init);