ARM: mvebu: Netgear RN104: Use Hardware BCH ECC
[cascardo/linux.git] / kernel / kexec.c
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66
67 static int kexec_calculate_store_digests(struct kimage *image);
68
69 /* Location of the reserved area for the crash kernel */
70 struct resource crashk_res = {
71         .name  = "Crash kernel",
72         .start = 0,
73         .end   = 0,
74         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
75 };
76 struct resource crashk_low_res = {
77         .name  = "Crash kernel",
78         .start = 0,
79         .end   = 0,
80         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
81 };
82
83 int kexec_should_crash(struct task_struct *p)
84 {
85         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86                 return 1;
87         return 0;
88 }
89
90 /*
91  * When kexec transitions to the new kernel there is a one-to-one
92  * mapping between physical and virtual addresses.  On processors
93  * where you can disable the MMU this is trivial, and easy.  For
94  * others it is still a simple predictable page table to setup.
95  *
96  * In that environment kexec copies the new kernel to its final
97  * resting place.  This means I can only support memory whose
98  * physical address can fit in an unsigned long.  In particular
99  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
100  * If the assembly stub has more restrictive requirements
101  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
102  * defined more restrictively in <asm/kexec.h>.
103  *
104  * The code for the transition from the current kernel to the
105  * the new kernel is placed in the control_code_buffer, whose size
106  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
107  * page of memory is necessary, but some architectures require more.
108  * Because this memory must be identity mapped in the transition from
109  * virtual to physical addresses it must live in the range
110  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
111  * modifiable.
112  *
113  * The assembly stub in the control code buffer is passed a linked list
114  * of descriptor pages detailing the source pages of the new kernel,
115  * and the destination addresses of those source pages.  As this data
116  * structure is not used in the context of the current OS, it must
117  * be self-contained.
118  *
119  * The code has been made to work with highmem pages and will use a
120  * destination page in its final resting place (if it happens
121  * to allocate it).  The end product of this is that most of the
122  * physical address space, and most of RAM can be used.
123  *
124  * Future directions include:
125  *  - allocating a page table with the control code buffer identity
126  *    mapped, to simplify machine_kexec and make kexec_on_panic more
127  *    reliable.
128  */
129
130 /*
131  * KIMAGE_NO_DEST is an impossible destination address..., for
132  * allocating pages whose destination address we do not care about.
133  */
134 #define KIMAGE_NO_DEST (-1UL)
135
136 static int kimage_is_destination_range(struct kimage *image,
137                                        unsigned long start, unsigned long end);
138 static struct page *kimage_alloc_page(struct kimage *image,
139                                        gfp_t gfp_mask,
140                                        unsigned long dest);
141
142 static int copy_user_segment_list(struct kimage *image,
143                                   unsigned long nr_segments,
144                                   struct kexec_segment __user *segments)
145 {
146         int ret;
147         size_t segment_bytes;
148
149         /* Read in the segments */
150         image->nr_segments = nr_segments;
151         segment_bytes = nr_segments * sizeof(*segments);
152         ret = copy_from_user(image->segment, segments, segment_bytes);
153         if (ret)
154                 ret = -EFAULT;
155
156         return ret;
157 }
158
159 static int sanity_check_segment_list(struct kimage *image)
160 {
161         int result, i;
162         unsigned long nr_segments = image->nr_segments;
163
164         /*
165          * Verify we have good destination addresses.  The caller is
166          * responsible for making certain we don't attempt to load
167          * the new image into invalid or reserved areas of RAM.  This
168          * just verifies it is an address we can use.
169          *
170          * Since the kernel does everything in page size chunks ensure
171          * the destination addresses are page aligned.  Too many
172          * special cases crop of when we don't do this.  The most
173          * insidious is getting overlapping destination addresses
174          * simply because addresses are changed to page size
175          * granularity.
176          */
177         result = -EADDRNOTAVAIL;
178         for (i = 0; i < nr_segments; i++) {
179                 unsigned long mstart, mend;
180
181                 mstart = image->segment[i].mem;
182                 mend   = mstart + image->segment[i].memsz;
183                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
184                         return result;
185                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
186                         return result;
187         }
188
189         /* Verify our destination addresses do not overlap.
190          * If we alloed overlapping destination addresses
191          * through very weird things can happen with no
192          * easy explanation as one segment stops on another.
193          */
194         result = -EINVAL;
195         for (i = 0; i < nr_segments; i++) {
196                 unsigned long mstart, mend;
197                 unsigned long j;
198
199                 mstart = image->segment[i].mem;
200                 mend   = mstart + image->segment[i].memsz;
201                 for (j = 0; j < i; j++) {
202                         unsigned long pstart, pend;
203                         pstart = image->segment[j].mem;
204                         pend   = pstart + image->segment[j].memsz;
205                         /* Do the segments overlap ? */
206                         if ((mend > pstart) && (mstart < pend))
207                                 return result;
208                 }
209         }
210
211         /* Ensure our buffer sizes are strictly less than
212          * our memory sizes.  This should always be the case,
213          * and it is easier to check up front than to be surprised
214          * later on.
215          */
216         result = -EINVAL;
217         for (i = 0; i < nr_segments; i++) {
218                 if (image->segment[i].bufsz > image->segment[i].memsz)
219                         return result;
220         }
221
222         /*
223          * Verify we have good destination addresses.  Normally
224          * the caller is responsible for making certain we don't
225          * attempt to load the new image into invalid or reserved
226          * areas of RAM.  But crash kernels are preloaded into a
227          * reserved area of ram.  We must ensure the addresses
228          * are in the reserved area otherwise preloading the
229          * kernel could corrupt things.
230          */
231
232         if (image->type == KEXEC_TYPE_CRASH) {
233                 result = -EADDRNOTAVAIL;
234                 for (i = 0; i < nr_segments; i++) {
235                         unsigned long mstart, mend;
236
237                         mstart = image->segment[i].mem;
238                         mend = mstart + image->segment[i].memsz - 1;
239                         /* Ensure we are within the crash kernel limits */
240                         if ((mstart < crashk_res.start) ||
241                             (mend > crashk_res.end))
242                                 return result;
243                 }
244         }
245
246         return 0;
247 }
248
249 static struct kimage *do_kimage_alloc_init(void)
250 {
251         struct kimage *image;
252
253         /* Allocate a controlling structure */
254         image = kzalloc(sizeof(*image), GFP_KERNEL);
255         if (!image)
256                 return NULL;
257
258         image->head = 0;
259         image->entry = &image->head;
260         image->last_entry = &image->head;
261         image->control_page = ~0; /* By default this does not apply */
262         image->type = KEXEC_TYPE_DEFAULT;
263
264         /* Initialize the list of control pages */
265         INIT_LIST_HEAD(&image->control_pages);
266
267         /* Initialize the list of destination pages */
268         INIT_LIST_HEAD(&image->dest_pages);
269
270         /* Initialize the list of unusable pages */
271         INIT_LIST_HEAD(&image->unusable_pages);
272
273         return image;
274 }
275
276 static void kimage_free_page_list(struct list_head *list);
277
278 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
279                              unsigned long nr_segments,
280                              struct kexec_segment __user *segments,
281                              unsigned long flags)
282 {
283         int ret;
284         struct kimage *image;
285         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
286
287         if (kexec_on_panic) {
288                 /* Verify we have a valid entry point */
289                 if ((entry < crashk_res.start) || (entry > crashk_res.end))
290                         return -EADDRNOTAVAIL;
291         }
292
293         /* Allocate and initialize a controlling structure */
294         image = do_kimage_alloc_init();
295         if (!image)
296                 return -ENOMEM;
297
298         image->start = entry;
299
300         ret = copy_user_segment_list(image, nr_segments, segments);
301         if (ret)
302                 goto out_free_image;
303
304         ret = sanity_check_segment_list(image);
305         if (ret)
306                 goto out_free_image;
307
308          /* Enable the special crash kernel control page allocation policy. */
309         if (kexec_on_panic) {
310                 image->control_page = crashk_res.start;
311                 image->type = KEXEC_TYPE_CRASH;
312         }
313
314         /*
315          * Find a location for the control code buffer, and add it
316          * the vector of segments so that it's pages will also be
317          * counted as destination pages.
318          */
319         ret = -ENOMEM;
320         image->control_code_page = kimage_alloc_control_pages(image,
321                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
322         if (!image->control_code_page) {
323                 pr_err("Could not allocate control_code_buffer\n");
324                 goto out_free_image;
325         }
326
327         if (!kexec_on_panic) {
328                 image->swap_page = kimage_alloc_control_pages(image, 0);
329                 if (!image->swap_page) {
330                         pr_err("Could not allocate swap buffer\n");
331                         goto out_free_control_pages;
332                 }
333         }
334
335         *rimage = image;
336         return 0;
337 out_free_control_pages:
338         kimage_free_page_list(&image->control_pages);
339 out_free_image:
340         kfree(image);
341         return ret;
342 }
343
344 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
345 {
346         struct fd f = fdget(fd);
347         int ret;
348         struct kstat stat;
349         loff_t pos;
350         ssize_t bytes = 0;
351
352         if (!f.file)
353                 return -EBADF;
354
355         ret = vfs_getattr(&f.file->f_path, &stat);
356         if (ret)
357                 goto out;
358
359         if (stat.size > INT_MAX) {
360                 ret = -EFBIG;
361                 goto out;
362         }
363
364         /* Don't hand 0 to vmalloc, it whines. */
365         if (stat.size == 0) {
366                 ret = -EINVAL;
367                 goto out;
368         }
369
370         *buf = vmalloc(stat.size);
371         if (!*buf) {
372                 ret = -ENOMEM;
373                 goto out;
374         }
375
376         pos = 0;
377         while (pos < stat.size) {
378                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
379                                     stat.size - pos);
380                 if (bytes < 0) {
381                         vfree(*buf);
382                         ret = bytes;
383                         goto out;
384                 }
385
386                 if (bytes == 0)
387                         break;
388                 pos += bytes;
389         }
390
391         if (pos != stat.size) {
392                 ret = -EBADF;
393                 vfree(*buf);
394                 goto out;
395         }
396
397         *buf_len = pos;
398 out:
399         fdput(f);
400         return ret;
401 }
402
403 /* Architectures can provide this probe function */
404 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
405                                          unsigned long buf_len)
406 {
407         return -ENOEXEC;
408 }
409
410 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
411 {
412         return ERR_PTR(-ENOEXEC);
413 }
414
415 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
416 {
417 }
418
419 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
420                                         unsigned long buf_len)
421 {
422         return -EKEYREJECTED;
423 }
424
425 /* Apply relocations of type RELA */
426 int __weak
427 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
428                                  unsigned int relsec)
429 {
430         pr_err("RELA relocation unsupported.\n");
431         return -ENOEXEC;
432 }
433
434 /* Apply relocations of type REL */
435 int __weak
436 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
437                              unsigned int relsec)
438 {
439         pr_err("REL relocation unsupported.\n");
440         return -ENOEXEC;
441 }
442
443 /*
444  * Free up memory used by kernel, initrd, and comand line. This is temporary
445  * memory allocation which is not needed any more after these buffers have
446  * been loaded into separate segments and have been copied elsewhere.
447  */
448 static void kimage_file_post_load_cleanup(struct kimage *image)
449 {
450         struct purgatory_info *pi = &image->purgatory_info;
451
452         vfree(image->kernel_buf);
453         image->kernel_buf = NULL;
454
455         vfree(image->initrd_buf);
456         image->initrd_buf = NULL;
457
458         kfree(image->cmdline_buf);
459         image->cmdline_buf = NULL;
460
461         vfree(pi->purgatory_buf);
462         pi->purgatory_buf = NULL;
463
464         vfree(pi->sechdrs);
465         pi->sechdrs = NULL;
466
467         /* See if architecture has anything to cleanup post load */
468         arch_kimage_file_post_load_cleanup(image);
469
470         /*
471          * Above call should have called into bootloader to free up
472          * any data stored in kimage->image_loader_data. It should
473          * be ok now to free it up.
474          */
475         kfree(image->image_loader_data);
476         image->image_loader_data = NULL;
477 }
478
479 /*
480  * In file mode list of segments is prepared by kernel. Copy relevant
481  * data from user space, do error checking, prepare segment list
482  */
483 static int
484 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
485                              const char __user *cmdline_ptr,
486                              unsigned long cmdline_len, unsigned flags)
487 {
488         int ret = 0;
489         void *ldata;
490
491         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
492                                 &image->kernel_buf_len);
493         if (ret)
494                 return ret;
495
496         /* Call arch image probe handlers */
497         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
498                                             image->kernel_buf_len);
499
500         if (ret)
501                 goto out;
502
503 #ifdef CONFIG_KEXEC_VERIFY_SIG
504         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
505                                            image->kernel_buf_len);
506         if (ret) {
507                 pr_debug("kernel signature verification failed.\n");
508                 goto out;
509         }
510         pr_debug("kernel signature verification successful.\n");
511 #endif
512         /* It is possible that there no initramfs is being loaded */
513         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
514                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
515                                         &image->initrd_buf_len);
516                 if (ret)
517                         goto out;
518         }
519
520         if (cmdline_len) {
521                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
522                 if (!image->cmdline_buf) {
523                         ret = -ENOMEM;
524                         goto out;
525                 }
526
527                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
528                                      cmdline_len);
529                 if (ret) {
530                         ret = -EFAULT;
531                         goto out;
532                 }
533
534                 image->cmdline_buf_len = cmdline_len;
535
536                 /* command line should be a string with last byte null */
537                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
538                         ret = -EINVAL;
539                         goto out;
540                 }
541         }
542
543         /* Call arch image load handlers */
544         ldata = arch_kexec_kernel_image_load(image);
545
546         if (IS_ERR(ldata)) {
547                 ret = PTR_ERR(ldata);
548                 goto out;
549         }
550
551         image->image_loader_data = ldata;
552 out:
553         /* In case of error, free up all allocated memory in this function */
554         if (ret)
555                 kimage_file_post_load_cleanup(image);
556         return ret;
557 }
558
559 static int
560 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
561                        int initrd_fd, const char __user *cmdline_ptr,
562                        unsigned long cmdline_len, unsigned long flags)
563 {
564         int ret;
565         struct kimage *image;
566         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
567
568         image = do_kimage_alloc_init();
569         if (!image)
570                 return -ENOMEM;
571
572         image->file_mode = 1;
573
574         if (kexec_on_panic) {
575                 /* Enable special crash kernel control page alloc policy. */
576                 image->control_page = crashk_res.start;
577                 image->type = KEXEC_TYPE_CRASH;
578         }
579
580         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
581                                            cmdline_ptr, cmdline_len, flags);
582         if (ret)
583                 goto out_free_image;
584
585         ret = sanity_check_segment_list(image);
586         if (ret)
587                 goto out_free_post_load_bufs;
588
589         ret = -ENOMEM;
590         image->control_code_page = kimage_alloc_control_pages(image,
591                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
592         if (!image->control_code_page) {
593                 pr_err("Could not allocate control_code_buffer\n");
594                 goto out_free_post_load_bufs;
595         }
596
597         if (!kexec_on_panic) {
598                 image->swap_page = kimage_alloc_control_pages(image, 0);
599                 if (!image->swap_page) {
600                         pr_err(KERN_ERR "Could not allocate swap buffer\n");
601                         goto out_free_control_pages;
602                 }
603         }
604
605         *rimage = image;
606         return 0;
607 out_free_control_pages:
608         kimage_free_page_list(&image->control_pages);
609 out_free_post_load_bufs:
610         kimage_file_post_load_cleanup(image);
611 out_free_image:
612         kfree(image);
613         return ret;
614 }
615
616 static int kimage_is_destination_range(struct kimage *image,
617                                         unsigned long start,
618                                         unsigned long end)
619 {
620         unsigned long i;
621
622         for (i = 0; i < image->nr_segments; i++) {
623                 unsigned long mstart, mend;
624
625                 mstart = image->segment[i].mem;
626                 mend = mstart + image->segment[i].memsz;
627                 if ((end > mstart) && (start < mend))
628                         return 1;
629         }
630
631         return 0;
632 }
633
634 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
635 {
636         struct page *pages;
637
638         pages = alloc_pages(gfp_mask, order);
639         if (pages) {
640                 unsigned int count, i;
641                 pages->mapping = NULL;
642                 set_page_private(pages, order);
643                 count = 1 << order;
644                 for (i = 0; i < count; i++)
645                         SetPageReserved(pages + i);
646         }
647
648         return pages;
649 }
650
651 static void kimage_free_pages(struct page *page)
652 {
653         unsigned int order, count, i;
654
655         order = page_private(page);
656         count = 1 << order;
657         for (i = 0; i < count; i++)
658                 ClearPageReserved(page + i);
659         __free_pages(page, order);
660 }
661
662 static void kimage_free_page_list(struct list_head *list)
663 {
664         struct list_head *pos, *next;
665
666         list_for_each_safe(pos, next, list) {
667                 struct page *page;
668
669                 page = list_entry(pos, struct page, lru);
670                 list_del(&page->lru);
671                 kimage_free_pages(page);
672         }
673 }
674
675 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
676                                                         unsigned int order)
677 {
678         /* Control pages are special, they are the intermediaries
679          * that are needed while we copy the rest of the pages
680          * to their final resting place.  As such they must
681          * not conflict with either the destination addresses
682          * or memory the kernel is already using.
683          *
684          * The only case where we really need more than one of
685          * these are for architectures where we cannot disable
686          * the MMU and must instead generate an identity mapped
687          * page table for all of the memory.
688          *
689          * At worst this runs in O(N) of the image size.
690          */
691         struct list_head extra_pages;
692         struct page *pages;
693         unsigned int count;
694
695         count = 1 << order;
696         INIT_LIST_HEAD(&extra_pages);
697
698         /* Loop while I can allocate a page and the page allocated
699          * is a destination page.
700          */
701         do {
702                 unsigned long pfn, epfn, addr, eaddr;
703
704                 pages = kimage_alloc_pages(GFP_KERNEL, order);
705                 if (!pages)
706                         break;
707                 pfn   = page_to_pfn(pages);
708                 epfn  = pfn + count;
709                 addr  = pfn << PAGE_SHIFT;
710                 eaddr = epfn << PAGE_SHIFT;
711                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
712                               kimage_is_destination_range(image, addr, eaddr)) {
713                         list_add(&pages->lru, &extra_pages);
714                         pages = NULL;
715                 }
716         } while (!pages);
717
718         if (pages) {
719                 /* Remember the allocated page... */
720                 list_add(&pages->lru, &image->control_pages);
721
722                 /* Because the page is already in it's destination
723                  * location we will never allocate another page at
724                  * that address.  Therefore kimage_alloc_pages
725                  * will not return it (again) and we don't need
726                  * to give it an entry in image->segment[].
727                  */
728         }
729         /* Deal with the destination pages I have inadvertently allocated.
730          *
731          * Ideally I would convert multi-page allocations into single
732          * page allocations, and add everything to image->dest_pages.
733          *
734          * For now it is simpler to just free the pages.
735          */
736         kimage_free_page_list(&extra_pages);
737
738         return pages;
739 }
740
741 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
742                                                       unsigned int order)
743 {
744         /* Control pages are special, they are the intermediaries
745          * that are needed while we copy the rest of the pages
746          * to their final resting place.  As such they must
747          * not conflict with either the destination addresses
748          * or memory the kernel is already using.
749          *
750          * Control pages are also the only pags we must allocate
751          * when loading a crash kernel.  All of the other pages
752          * are specified by the segments and we just memcpy
753          * into them directly.
754          *
755          * The only case where we really need more than one of
756          * these are for architectures where we cannot disable
757          * the MMU and must instead generate an identity mapped
758          * page table for all of the memory.
759          *
760          * Given the low demand this implements a very simple
761          * allocator that finds the first hole of the appropriate
762          * size in the reserved memory region, and allocates all
763          * of the memory up to and including the hole.
764          */
765         unsigned long hole_start, hole_end, size;
766         struct page *pages;
767
768         pages = NULL;
769         size = (1 << order) << PAGE_SHIFT;
770         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
771         hole_end   = hole_start + size - 1;
772         while (hole_end <= crashk_res.end) {
773                 unsigned long i;
774
775                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
776                         break;
777                 /* See if I overlap any of the segments */
778                 for (i = 0; i < image->nr_segments; i++) {
779                         unsigned long mstart, mend;
780
781                         mstart = image->segment[i].mem;
782                         mend   = mstart + image->segment[i].memsz - 1;
783                         if ((hole_end >= mstart) && (hole_start <= mend)) {
784                                 /* Advance the hole to the end of the segment */
785                                 hole_start = (mend + (size - 1)) & ~(size - 1);
786                                 hole_end   = hole_start + size - 1;
787                                 break;
788                         }
789                 }
790                 /* If I don't overlap any segments I have found my hole! */
791                 if (i == image->nr_segments) {
792                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
793                         break;
794                 }
795         }
796         if (pages)
797                 image->control_page = hole_end;
798
799         return pages;
800 }
801
802
803 struct page *kimage_alloc_control_pages(struct kimage *image,
804                                          unsigned int order)
805 {
806         struct page *pages = NULL;
807
808         switch (image->type) {
809         case KEXEC_TYPE_DEFAULT:
810                 pages = kimage_alloc_normal_control_pages(image, order);
811                 break;
812         case KEXEC_TYPE_CRASH:
813                 pages = kimage_alloc_crash_control_pages(image, order);
814                 break;
815         }
816
817         return pages;
818 }
819
820 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
821 {
822         if (*image->entry != 0)
823                 image->entry++;
824
825         if (image->entry == image->last_entry) {
826                 kimage_entry_t *ind_page;
827                 struct page *page;
828
829                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
830                 if (!page)
831                         return -ENOMEM;
832
833                 ind_page = page_address(page);
834                 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
835                 image->entry = ind_page;
836                 image->last_entry = ind_page +
837                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
838         }
839         *image->entry = entry;
840         image->entry++;
841         *image->entry = 0;
842
843         return 0;
844 }
845
846 static int kimage_set_destination(struct kimage *image,
847                                    unsigned long destination)
848 {
849         int result;
850
851         destination &= PAGE_MASK;
852         result = kimage_add_entry(image, destination | IND_DESTINATION);
853         if (result == 0)
854                 image->destination = destination;
855
856         return result;
857 }
858
859
860 static int kimage_add_page(struct kimage *image, unsigned long page)
861 {
862         int result;
863
864         page &= PAGE_MASK;
865         result = kimage_add_entry(image, page | IND_SOURCE);
866         if (result == 0)
867                 image->destination += PAGE_SIZE;
868
869         return result;
870 }
871
872
873 static void kimage_free_extra_pages(struct kimage *image)
874 {
875         /* Walk through and free any extra destination pages I may have */
876         kimage_free_page_list(&image->dest_pages);
877
878         /* Walk through and free any unusable pages I have cached */
879         kimage_free_page_list(&image->unusable_pages);
880
881 }
882 static void kimage_terminate(struct kimage *image)
883 {
884         if (*image->entry != 0)
885                 image->entry++;
886
887         *image->entry = IND_DONE;
888 }
889
890 #define for_each_kimage_entry(image, ptr, entry) \
891         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
892                 ptr = (entry & IND_INDIRECTION) ? \
893                         phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
894
895 static void kimage_free_entry(kimage_entry_t entry)
896 {
897         struct page *page;
898
899         page = pfn_to_page(entry >> PAGE_SHIFT);
900         kimage_free_pages(page);
901 }
902
903 static void kimage_free(struct kimage *image)
904 {
905         kimage_entry_t *ptr, entry;
906         kimage_entry_t ind = 0;
907
908         if (!image)
909                 return;
910
911         kimage_free_extra_pages(image);
912         for_each_kimage_entry(image, ptr, entry) {
913                 if (entry & IND_INDIRECTION) {
914                         /* Free the previous indirection page */
915                         if (ind & IND_INDIRECTION)
916                                 kimage_free_entry(ind);
917                         /* Save this indirection page until we are
918                          * done with it.
919                          */
920                         ind = entry;
921                 } else if (entry & IND_SOURCE)
922                         kimage_free_entry(entry);
923         }
924         /* Free the final indirection page */
925         if (ind & IND_INDIRECTION)
926                 kimage_free_entry(ind);
927
928         /* Handle any machine specific cleanup */
929         machine_kexec_cleanup(image);
930
931         /* Free the kexec control pages... */
932         kimage_free_page_list(&image->control_pages);
933
934         /*
935          * Free up any temporary buffers allocated. This might hit if
936          * error occurred much later after buffer allocation.
937          */
938         if (image->file_mode)
939                 kimage_file_post_load_cleanup(image);
940
941         kfree(image);
942 }
943
944 static kimage_entry_t *kimage_dst_used(struct kimage *image,
945                                         unsigned long page)
946 {
947         kimage_entry_t *ptr, entry;
948         unsigned long destination = 0;
949
950         for_each_kimage_entry(image, ptr, entry) {
951                 if (entry & IND_DESTINATION)
952                         destination = entry & PAGE_MASK;
953                 else if (entry & IND_SOURCE) {
954                         if (page == destination)
955                                 return ptr;
956                         destination += PAGE_SIZE;
957                 }
958         }
959
960         return NULL;
961 }
962
963 static struct page *kimage_alloc_page(struct kimage *image,
964                                         gfp_t gfp_mask,
965                                         unsigned long destination)
966 {
967         /*
968          * Here we implement safeguards to ensure that a source page
969          * is not copied to its destination page before the data on
970          * the destination page is no longer useful.
971          *
972          * To do this we maintain the invariant that a source page is
973          * either its own destination page, or it is not a
974          * destination page at all.
975          *
976          * That is slightly stronger than required, but the proof
977          * that no problems will not occur is trivial, and the
978          * implementation is simply to verify.
979          *
980          * When allocating all pages normally this algorithm will run
981          * in O(N) time, but in the worst case it will run in O(N^2)
982          * time.   If the runtime is a problem the data structures can
983          * be fixed.
984          */
985         struct page *page;
986         unsigned long addr;
987
988         /*
989          * Walk through the list of destination pages, and see if I
990          * have a match.
991          */
992         list_for_each_entry(page, &image->dest_pages, lru) {
993                 addr = page_to_pfn(page) << PAGE_SHIFT;
994                 if (addr == destination) {
995                         list_del(&page->lru);
996                         return page;
997                 }
998         }
999         page = NULL;
1000         while (1) {
1001                 kimage_entry_t *old;
1002
1003                 /* Allocate a page, if we run out of memory give up */
1004                 page = kimage_alloc_pages(gfp_mask, 0);
1005                 if (!page)
1006                         return NULL;
1007                 /* If the page cannot be used file it away */
1008                 if (page_to_pfn(page) >
1009                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1010                         list_add(&page->lru, &image->unusable_pages);
1011                         continue;
1012                 }
1013                 addr = page_to_pfn(page) << PAGE_SHIFT;
1014
1015                 /* If it is the destination page we want use it */
1016                 if (addr == destination)
1017                         break;
1018
1019                 /* If the page is not a destination page use it */
1020                 if (!kimage_is_destination_range(image, addr,
1021                                                   addr + PAGE_SIZE))
1022                         break;
1023
1024                 /*
1025                  * I know that the page is someones destination page.
1026                  * See if there is already a source page for this
1027                  * destination page.  And if so swap the source pages.
1028                  */
1029                 old = kimage_dst_used(image, addr);
1030                 if (old) {
1031                         /* If so move it */
1032                         unsigned long old_addr;
1033                         struct page *old_page;
1034
1035                         old_addr = *old & PAGE_MASK;
1036                         old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1037                         copy_highpage(page, old_page);
1038                         *old = addr | (*old & ~PAGE_MASK);
1039
1040                         /* The old page I have found cannot be a
1041                          * destination page, so return it if it's
1042                          * gfp_flags honor the ones passed in.
1043                          */
1044                         if (!(gfp_mask & __GFP_HIGHMEM) &&
1045                             PageHighMem(old_page)) {
1046                                 kimage_free_pages(old_page);
1047                                 continue;
1048                         }
1049                         addr = old_addr;
1050                         page = old_page;
1051                         break;
1052                 } else {
1053                         /* Place the page on the destination list I
1054                          * will use it later.
1055                          */
1056                         list_add(&page->lru, &image->dest_pages);
1057                 }
1058         }
1059
1060         return page;
1061 }
1062
1063 static int kimage_load_normal_segment(struct kimage *image,
1064                                          struct kexec_segment *segment)
1065 {
1066         unsigned long maddr;
1067         size_t ubytes, mbytes;
1068         int result;
1069         unsigned char __user *buf = NULL;
1070         unsigned char *kbuf = NULL;
1071
1072         result = 0;
1073         if (image->file_mode)
1074                 kbuf = segment->kbuf;
1075         else
1076                 buf = segment->buf;
1077         ubytes = segment->bufsz;
1078         mbytes = segment->memsz;
1079         maddr = segment->mem;
1080
1081         result = kimage_set_destination(image, maddr);
1082         if (result < 0)
1083                 goto out;
1084
1085         while (mbytes) {
1086                 struct page *page;
1087                 char *ptr;
1088                 size_t uchunk, mchunk;
1089
1090                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1091                 if (!page) {
1092                         result  = -ENOMEM;
1093                         goto out;
1094                 }
1095                 result = kimage_add_page(image, page_to_pfn(page)
1096                                                                 << PAGE_SHIFT);
1097                 if (result < 0)
1098                         goto out;
1099
1100                 ptr = kmap(page);
1101                 /* Start with a clear page */
1102                 clear_page(ptr);
1103                 ptr += maddr & ~PAGE_MASK;
1104                 mchunk = min_t(size_t, mbytes,
1105                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1106                 uchunk = min(ubytes, mchunk);
1107
1108                 /* For file based kexec, source pages are in kernel memory */
1109                 if (image->file_mode)
1110                         memcpy(ptr, kbuf, uchunk);
1111                 else
1112                         result = copy_from_user(ptr, buf, uchunk);
1113                 kunmap(page);
1114                 if (result) {
1115                         result = -EFAULT;
1116                         goto out;
1117                 }
1118                 ubytes -= uchunk;
1119                 maddr  += mchunk;
1120                 if (image->file_mode)
1121                         kbuf += mchunk;
1122                 else
1123                         buf += mchunk;
1124                 mbytes -= mchunk;
1125         }
1126 out:
1127         return result;
1128 }
1129
1130 static int kimage_load_crash_segment(struct kimage *image,
1131                                         struct kexec_segment *segment)
1132 {
1133         /* For crash dumps kernels we simply copy the data from
1134          * user space to it's destination.
1135          * We do things a page at a time for the sake of kmap.
1136          */
1137         unsigned long maddr;
1138         size_t ubytes, mbytes;
1139         int result;
1140         unsigned char __user *buf = NULL;
1141         unsigned char *kbuf = NULL;
1142
1143         result = 0;
1144         if (image->file_mode)
1145                 kbuf = segment->kbuf;
1146         else
1147                 buf = segment->buf;
1148         ubytes = segment->bufsz;
1149         mbytes = segment->memsz;
1150         maddr = segment->mem;
1151         while (mbytes) {
1152                 struct page *page;
1153                 char *ptr;
1154                 size_t uchunk, mchunk;
1155
1156                 page = pfn_to_page(maddr >> PAGE_SHIFT);
1157                 if (!page) {
1158                         result  = -ENOMEM;
1159                         goto out;
1160                 }
1161                 ptr = kmap(page);
1162                 ptr += maddr & ~PAGE_MASK;
1163                 mchunk = min_t(size_t, mbytes,
1164                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1165                 uchunk = min(ubytes, mchunk);
1166                 if (mchunk > uchunk) {
1167                         /* Zero the trailing part of the page */
1168                         memset(ptr + uchunk, 0, mchunk - uchunk);
1169                 }
1170
1171                 /* For file based kexec, source pages are in kernel memory */
1172                 if (image->file_mode)
1173                         memcpy(ptr, kbuf, uchunk);
1174                 else
1175                         result = copy_from_user(ptr, buf, uchunk);
1176                 kexec_flush_icache_page(page);
1177                 kunmap(page);
1178                 if (result) {
1179                         result = -EFAULT;
1180                         goto out;
1181                 }
1182                 ubytes -= uchunk;
1183                 maddr  += mchunk;
1184                 if (image->file_mode)
1185                         kbuf += mchunk;
1186                 else
1187                         buf += mchunk;
1188                 mbytes -= mchunk;
1189         }
1190 out:
1191         return result;
1192 }
1193
1194 static int kimage_load_segment(struct kimage *image,
1195                                 struct kexec_segment *segment)
1196 {
1197         int result = -ENOMEM;
1198
1199         switch (image->type) {
1200         case KEXEC_TYPE_DEFAULT:
1201                 result = kimage_load_normal_segment(image, segment);
1202                 break;
1203         case KEXEC_TYPE_CRASH:
1204                 result = kimage_load_crash_segment(image, segment);
1205                 break;
1206         }
1207
1208         return result;
1209 }
1210
1211 /*
1212  * Exec Kernel system call: for obvious reasons only root may call it.
1213  *
1214  * This call breaks up into three pieces.
1215  * - A generic part which loads the new kernel from the current
1216  *   address space, and very carefully places the data in the
1217  *   allocated pages.
1218  *
1219  * - A generic part that interacts with the kernel and tells all of
1220  *   the devices to shut down.  Preventing on-going dmas, and placing
1221  *   the devices in a consistent state so a later kernel can
1222  *   reinitialize them.
1223  *
1224  * - A machine specific part that includes the syscall number
1225  *   and then copies the image to it's final destination.  And
1226  *   jumps into the image at entry.
1227  *
1228  * kexec does not sync, or unmount filesystems so if you need
1229  * that to happen you need to do that yourself.
1230  */
1231 struct kimage *kexec_image;
1232 struct kimage *kexec_crash_image;
1233 int kexec_load_disabled;
1234
1235 static DEFINE_MUTEX(kexec_mutex);
1236
1237 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1238                 struct kexec_segment __user *, segments, unsigned long, flags)
1239 {
1240         struct kimage **dest_image, *image;
1241         int result;
1242
1243         /* We only trust the superuser with rebooting the system. */
1244         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1245                 return -EPERM;
1246
1247         /*
1248          * Verify we have a legal set of flags
1249          * This leaves us room for future extensions.
1250          */
1251         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1252                 return -EINVAL;
1253
1254         /* Verify we are on the appropriate architecture */
1255         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1256                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1257                 return -EINVAL;
1258
1259         /* Put an artificial cap on the number
1260          * of segments passed to kexec_load.
1261          */
1262         if (nr_segments > KEXEC_SEGMENT_MAX)
1263                 return -EINVAL;
1264
1265         image = NULL;
1266         result = 0;
1267
1268         /* Because we write directly to the reserved memory
1269          * region when loading crash kernels we need a mutex here to
1270          * prevent multiple crash  kernels from attempting to load
1271          * simultaneously, and to prevent a crash kernel from loading
1272          * over the top of a in use crash kernel.
1273          *
1274          * KISS: always take the mutex.
1275          */
1276         if (!mutex_trylock(&kexec_mutex))
1277                 return -EBUSY;
1278
1279         dest_image = &kexec_image;
1280         if (flags & KEXEC_ON_CRASH)
1281                 dest_image = &kexec_crash_image;
1282         if (nr_segments > 0) {
1283                 unsigned long i;
1284
1285                 /* Loading another kernel to reboot into */
1286                 if ((flags & KEXEC_ON_CRASH) == 0)
1287                         result = kimage_alloc_init(&image, entry, nr_segments,
1288                                                    segments, flags);
1289                 /* Loading another kernel to switch to if this one crashes */
1290                 else if (flags & KEXEC_ON_CRASH) {
1291                         /* Free any current crash dump kernel before
1292                          * we corrupt it.
1293                          */
1294                         kimage_free(xchg(&kexec_crash_image, NULL));
1295                         result = kimage_alloc_init(&image, entry, nr_segments,
1296                                                    segments, flags);
1297                         crash_map_reserved_pages();
1298                 }
1299                 if (result)
1300                         goto out;
1301
1302                 if (flags & KEXEC_PRESERVE_CONTEXT)
1303                         image->preserve_context = 1;
1304                 result = machine_kexec_prepare(image);
1305                 if (result)
1306                         goto out;
1307
1308                 for (i = 0; i < nr_segments; i++) {
1309                         result = kimage_load_segment(image, &image->segment[i]);
1310                         if (result)
1311                                 goto out;
1312                 }
1313                 kimage_terminate(image);
1314                 if (flags & KEXEC_ON_CRASH)
1315                         crash_unmap_reserved_pages();
1316         }
1317         /* Install the new kernel, and  Uninstall the old */
1318         image = xchg(dest_image, image);
1319
1320 out:
1321         mutex_unlock(&kexec_mutex);
1322         kimage_free(image);
1323
1324         return result;
1325 }
1326
1327 /*
1328  * Add and remove page tables for crashkernel memory
1329  *
1330  * Provide an empty default implementation here -- architecture
1331  * code may override this
1332  */
1333 void __weak crash_map_reserved_pages(void)
1334 {}
1335
1336 void __weak crash_unmap_reserved_pages(void)
1337 {}
1338
1339 #ifdef CONFIG_COMPAT
1340 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1341                        compat_ulong_t, nr_segments,
1342                        struct compat_kexec_segment __user *, segments,
1343                        compat_ulong_t, flags)
1344 {
1345         struct compat_kexec_segment in;
1346         struct kexec_segment out, __user *ksegments;
1347         unsigned long i, result;
1348
1349         /* Don't allow clients that don't understand the native
1350          * architecture to do anything.
1351          */
1352         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1353                 return -EINVAL;
1354
1355         if (nr_segments > KEXEC_SEGMENT_MAX)
1356                 return -EINVAL;
1357
1358         ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1359         for (i = 0; i < nr_segments; i++) {
1360                 result = copy_from_user(&in, &segments[i], sizeof(in));
1361                 if (result)
1362                         return -EFAULT;
1363
1364                 out.buf   = compat_ptr(in.buf);
1365                 out.bufsz = in.bufsz;
1366                 out.mem   = in.mem;
1367                 out.memsz = in.memsz;
1368
1369                 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1370                 if (result)
1371                         return -EFAULT;
1372         }
1373
1374         return sys_kexec_load(entry, nr_segments, ksegments, flags);
1375 }
1376 #endif
1377
1378 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1379                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1380                 unsigned long, flags)
1381 {
1382         int ret = 0, i;
1383         struct kimage **dest_image, *image;
1384
1385         /* We only trust the superuser with rebooting the system. */
1386         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1387                 return -EPERM;
1388
1389         /* Make sure we have a legal set of flags */
1390         if (flags != (flags & KEXEC_FILE_FLAGS))
1391                 return -EINVAL;
1392
1393         image = NULL;
1394
1395         if (!mutex_trylock(&kexec_mutex))
1396                 return -EBUSY;
1397
1398         dest_image = &kexec_image;
1399         if (flags & KEXEC_FILE_ON_CRASH)
1400                 dest_image = &kexec_crash_image;
1401
1402         if (flags & KEXEC_FILE_UNLOAD)
1403                 goto exchange;
1404
1405         /*
1406          * In case of crash, new kernel gets loaded in reserved region. It is
1407          * same memory where old crash kernel might be loaded. Free any
1408          * current crash dump kernel before we corrupt it.
1409          */
1410         if (flags & KEXEC_FILE_ON_CRASH)
1411                 kimage_free(xchg(&kexec_crash_image, NULL));
1412
1413         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1414                                      cmdline_len, flags);
1415         if (ret)
1416                 goto out;
1417
1418         ret = machine_kexec_prepare(image);
1419         if (ret)
1420                 goto out;
1421
1422         ret = kexec_calculate_store_digests(image);
1423         if (ret)
1424                 goto out;
1425
1426         for (i = 0; i < image->nr_segments; i++) {
1427                 struct kexec_segment *ksegment;
1428
1429                 ksegment = &image->segment[i];
1430                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1431                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1432                          ksegment->memsz);
1433
1434                 ret = kimage_load_segment(image, &image->segment[i]);
1435                 if (ret)
1436                         goto out;
1437         }
1438
1439         kimage_terminate(image);
1440
1441         /*
1442          * Free up any temporary buffers allocated which are not needed
1443          * after image has been loaded
1444          */
1445         kimage_file_post_load_cleanup(image);
1446 exchange:
1447         image = xchg(dest_image, image);
1448 out:
1449         mutex_unlock(&kexec_mutex);
1450         kimage_free(image);
1451         return ret;
1452 }
1453
1454 void crash_kexec(struct pt_regs *regs)
1455 {
1456         /* Take the kexec_mutex here to prevent sys_kexec_load
1457          * running on one cpu from replacing the crash kernel
1458          * we are using after a panic on a different cpu.
1459          *
1460          * If the crash kernel was not located in a fixed area
1461          * of memory the xchg(&kexec_crash_image) would be
1462          * sufficient.  But since I reuse the memory...
1463          */
1464         if (mutex_trylock(&kexec_mutex)) {
1465                 if (kexec_crash_image) {
1466                         struct pt_regs fixed_regs;
1467
1468                         crash_setup_regs(&fixed_regs, regs);
1469                         crash_save_vmcoreinfo();
1470                         machine_crash_shutdown(&fixed_regs);
1471                         machine_kexec(kexec_crash_image);
1472                 }
1473                 mutex_unlock(&kexec_mutex);
1474         }
1475 }
1476
1477 size_t crash_get_memory_size(void)
1478 {
1479         size_t size = 0;
1480         mutex_lock(&kexec_mutex);
1481         if (crashk_res.end != crashk_res.start)
1482                 size = resource_size(&crashk_res);
1483         mutex_unlock(&kexec_mutex);
1484         return size;
1485 }
1486
1487 void __weak crash_free_reserved_phys_range(unsigned long begin,
1488                                            unsigned long end)
1489 {
1490         unsigned long addr;
1491
1492         for (addr = begin; addr < end; addr += PAGE_SIZE)
1493                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1494 }
1495
1496 int crash_shrink_memory(unsigned long new_size)
1497 {
1498         int ret = 0;
1499         unsigned long start, end;
1500         unsigned long old_size;
1501         struct resource *ram_res;
1502
1503         mutex_lock(&kexec_mutex);
1504
1505         if (kexec_crash_image) {
1506                 ret = -ENOENT;
1507                 goto unlock;
1508         }
1509         start = crashk_res.start;
1510         end = crashk_res.end;
1511         old_size = (end == 0) ? 0 : end - start + 1;
1512         if (new_size >= old_size) {
1513                 ret = (new_size == old_size) ? 0 : -EINVAL;
1514                 goto unlock;
1515         }
1516
1517         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1518         if (!ram_res) {
1519                 ret = -ENOMEM;
1520                 goto unlock;
1521         }
1522
1523         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1524         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1525
1526         crash_map_reserved_pages();
1527         crash_free_reserved_phys_range(end, crashk_res.end);
1528
1529         if ((start == end) && (crashk_res.parent != NULL))
1530                 release_resource(&crashk_res);
1531
1532         ram_res->start = end;
1533         ram_res->end = crashk_res.end;
1534         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1535         ram_res->name = "System RAM";
1536
1537         crashk_res.end = end - 1;
1538
1539         insert_resource(&iomem_resource, ram_res);
1540         crash_unmap_reserved_pages();
1541
1542 unlock:
1543         mutex_unlock(&kexec_mutex);
1544         return ret;
1545 }
1546
1547 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1548                             size_t data_len)
1549 {
1550         struct elf_note note;
1551
1552         note.n_namesz = strlen(name) + 1;
1553         note.n_descsz = data_len;
1554         note.n_type   = type;
1555         memcpy(buf, &note, sizeof(note));
1556         buf += (sizeof(note) + 3)/4;
1557         memcpy(buf, name, note.n_namesz);
1558         buf += (note.n_namesz + 3)/4;
1559         memcpy(buf, data, note.n_descsz);
1560         buf += (note.n_descsz + 3)/4;
1561
1562         return buf;
1563 }
1564
1565 static void final_note(u32 *buf)
1566 {
1567         struct elf_note note;
1568
1569         note.n_namesz = 0;
1570         note.n_descsz = 0;
1571         note.n_type   = 0;
1572         memcpy(buf, &note, sizeof(note));
1573 }
1574
1575 void crash_save_cpu(struct pt_regs *regs, int cpu)
1576 {
1577         struct elf_prstatus prstatus;
1578         u32 *buf;
1579
1580         if ((cpu < 0) || (cpu >= nr_cpu_ids))
1581                 return;
1582
1583         /* Using ELF notes here is opportunistic.
1584          * I need a well defined structure format
1585          * for the data I pass, and I need tags
1586          * on the data to indicate what information I have
1587          * squirrelled away.  ELF notes happen to provide
1588          * all of that, so there is no need to invent something new.
1589          */
1590         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1591         if (!buf)
1592                 return;
1593         memset(&prstatus, 0, sizeof(prstatus));
1594         prstatus.pr_pid = current->pid;
1595         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1596         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1597                               &prstatus, sizeof(prstatus));
1598         final_note(buf);
1599 }
1600
1601 static int __init crash_notes_memory_init(void)
1602 {
1603         /* Allocate memory for saving cpu registers. */
1604         crash_notes = alloc_percpu(note_buf_t);
1605         if (!crash_notes) {
1606                 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1607                 return -ENOMEM;
1608         }
1609         return 0;
1610 }
1611 subsys_initcall(crash_notes_memory_init);
1612
1613
1614 /*
1615  * parsing the "crashkernel" commandline
1616  *
1617  * this code is intended to be called from architecture specific code
1618  */
1619
1620
1621 /*
1622  * This function parses command lines in the format
1623  *
1624  *   crashkernel=ramsize-range:size[,...][@offset]
1625  *
1626  * The function returns 0 on success and -EINVAL on failure.
1627  */
1628 static int __init parse_crashkernel_mem(char *cmdline,
1629                                         unsigned long long system_ram,
1630                                         unsigned long long *crash_size,
1631                                         unsigned long long *crash_base)
1632 {
1633         char *cur = cmdline, *tmp;
1634
1635         /* for each entry of the comma-separated list */
1636         do {
1637                 unsigned long long start, end = ULLONG_MAX, size;
1638
1639                 /* get the start of the range */
1640                 start = memparse(cur, &tmp);
1641                 if (cur == tmp) {
1642                         pr_warn("crashkernel: Memory value expected\n");
1643                         return -EINVAL;
1644                 }
1645                 cur = tmp;
1646                 if (*cur != '-') {
1647                         pr_warn("crashkernel: '-' expected\n");
1648                         return -EINVAL;
1649                 }
1650                 cur++;
1651
1652                 /* if no ':' is here, than we read the end */
1653                 if (*cur != ':') {
1654                         end = memparse(cur, &tmp);
1655                         if (cur == tmp) {
1656                                 pr_warn("crashkernel: Memory value expected\n");
1657                                 return -EINVAL;
1658                         }
1659                         cur = tmp;
1660                         if (end <= start) {
1661                                 pr_warn("crashkernel: end <= start\n");
1662                                 return -EINVAL;
1663                         }
1664                 }
1665
1666                 if (*cur != ':') {
1667                         pr_warn("crashkernel: ':' expected\n");
1668                         return -EINVAL;
1669                 }
1670                 cur++;
1671
1672                 size = memparse(cur, &tmp);
1673                 if (cur == tmp) {
1674                         pr_warn("Memory value expected\n");
1675                         return -EINVAL;
1676                 }
1677                 cur = tmp;
1678                 if (size >= system_ram) {
1679                         pr_warn("crashkernel: invalid size\n");
1680                         return -EINVAL;
1681                 }
1682
1683                 /* match ? */
1684                 if (system_ram >= start && system_ram < end) {
1685                         *crash_size = size;
1686                         break;
1687                 }
1688         } while (*cur++ == ',');
1689
1690         if (*crash_size > 0) {
1691                 while (*cur && *cur != ' ' && *cur != '@')
1692                         cur++;
1693                 if (*cur == '@') {
1694                         cur++;
1695                         *crash_base = memparse(cur, &tmp);
1696                         if (cur == tmp) {
1697                                 pr_warn("Memory value expected after '@'\n");
1698                                 return -EINVAL;
1699                         }
1700                 }
1701         }
1702
1703         return 0;
1704 }
1705
1706 /*
1707  * That function parses "simple" (old) crashkernel command lines like
1708  *
1709  *      crashkernel=size[@offset]
1710  *
1711  * It returns 0 on success and -EINVAL on failure.
1712  */
1713 static int __init parse_crashkernel_simple(char *cmdline,
1714                                            unsigned long long *crash_size,
1715                                            unsigned long long *crash_base)
1716 {
1717         char *cur = cmdline;
1718
1719         *crash_size = memparse(cmdline, &cur);
1720         if (cmdline == cur) {
1721                 pr_warn("crashkernel: memory value expected\n");
1722                 return -EINVAL;
1723         }
1724
1725         if (*cur == '@')
1726                 *crash_base = memparse(cur+1, &cur);
1727         else if (*cur != ' ' && *cur != '\0') {
1728                 pr_warn("crashkernel: unrecognized char\n");
1729                 return -EINVAL;
1730         }
1731
1732         return 0;
1733 }
1734
1735 #define SUFFIX_HIGH 0
1736 #define SUFFIX_LOW  1
1737 #define SUFFIX_NULL 2
1738 static __initdata char *suffix_tbl[] = {
1739         [SUFFIX_HIGH] = ",high",
1740         [SUFFIX_LOW]  = ",low",
1741         [SUFFIX_NULL] = NULL,
1742 };
1743
1744 /*
1745  * That function parses "suffix"  crashkernel command lines like
1746  *
1747  *      crashkernel=size,[high|low]
1748  *
1749  * It returns 0 on success and -EINVAL on failure.
1750  */
1751 static int __init parse_crashkernel_suffix(char *cmdline,
1752                                            unsigned long long   *crash_size,
1753                                            unsigned long long   *crash_base,
1754                                            const char *suffix)
1755 {
1756         char *cur = cmdline;
1757
1758         *crash_size = memparse(cmdline, &cur);
1759         if (cmdline == cur) {
1760                 pr_warn("crashkernel: memory value expected\n");
1761                 return -EINVAL;
1762         }
1763
1764         /* check with suffix */
1765         if (strncmp(cur, suffix, strlen(suffix))) {
1766                 pr_warn("crashkernel: unrecognized char\n");
1767                 return -EINVAL;
1768         }
1769         cur += strlen(suffix);
1770         if (*cur != ' ' && *cur != '\0') {
1771                 pr_warn("crashkernel: unrecognized char\n");
1772                 return -EINVAL;
1773         }
1774
1775         return 0;
1776 }
1777
1778 static __init char *get_last_crashkernel(char *cmdline,
1779                              const char *name,
1780                              const char *suffix)
1781 {
1782         char *p = cmdline, *ck_cmdline = NULL;
1783
1784         /* find crashkernel and use the last one if there are more */
1785         p = strstr(p, name);
1786         while (p) {
1787                 char *end_p = strchr(p, ' ');
1788                 char *q;
1789
1790                 if (!end_p)
1791                         end_p = p + strlen(p);
1792
1793                 if (!suffix) {
1794                         int i;
1795
1796                         /* skip the one with any known suffix */
1797                         for (i = 0; suffix_tbl[i]; i++) {
1798                                 q = end_p - strlen(suffix_tbl[i]);
1799                                 if (!strncmp(q, suffix_tbl[i],
1800                                              strlen(suffix_tbl[i])))
1801                                         goto next;
1802                         }
1803                         ck_cmdline = p;
1804                 } else {
1805                         q = end_p - strlen(suffix);
1806                         if (!strncmp(q, suffix, strlen(suffix)))
1807                                 ck_cmdline = p;
1808                 }
1809 next:
1810                 p = strstr(p+1, name);
1811         }
1812
1813         if (!ck_cmdline)
1814                 return NULL;
1815
1816         return ck_cmdline;
1817 }
1818
1819 static int __init __parse_crashkernel(char *cmdline,
1820                              unsigned long long system_ram,
1821                              unsigned long long *crash_size,
1822                              unsigned long long *crash_base,
1823                              const char *name,
1824                              const char *suffix)
1825 {
1826         char    *first_colon, *first_space;
1827         char    *ck_cmdline;
1828
1829         BUG_ON(!crash_size || !crash_base);
1830         *crash_size = 0;
1831         *crash_base = 0;
1832
1833         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1834
1835         if (!ck_cmdline)
1836                 return -EINVAL;
1837
1838         ck_cmdline += strlen(name);
1839
1840         if (suffix)
1841                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1842                                 crash_base, suffix);
1843         /*
1844          * if the commandline contains a ':', then that's the extended
1845          * syntax -- if not, it must be the classic syntax
1846          */
1847         first_colon = strchr(ck_cmdline, ':');
1848         first_space = strchr(ck_cmdline, ' ');
1849         if (first_colon && (!first_space || first_colon < first_space))
1850                 return parse_crashkernel_mem(ck_cmdline, system_ram,
1851                                 crash_size, crash_base);
1852
1853         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1854 }
1855
1856 /*
1857  * That function is the entry point for command line parsing and should be
1858  * called from the arch-specific code.
1859  */
1860 int __init parse_crashkernel(char *cmdline,
1861                              unsigned long long system_ram,
1862                              unsigned long long *crash_size,
1863                              unsigned long long *crash_base)
1864 {
1865         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1866                                         "crashkernel=", NULL);
1867 }
1868
1869 int __init parse_crashkernel_high(char *cmdline,
1870                              unsigned long long system_ram,
1871                              unsigned long long *crash_size,
1872                              unsigned long long *crash_base)
1873 {
1874         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1875                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1876 }
1877
1878 int __init parse_crashkernel_low(char *cmdline,
1879                              unsigned long long system_ram,
1880                              unsigned long long *crash_size,
1881                              unsigned long long *crash_base)
1882 {
1883         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1884                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1885 }
1886
1887 static void update_vmcoreinfo_note(void)
1888 {
1889         u32 *buf = vmcoreinfo_note;
1890
1891         if (!vmcoreinfo_size)
1892                 return;
1893         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1894                               vmcoreinfo_size);
1895         final_note(buf);
1896 }
1897
1898 void crash_save_vmcoreinfo(void)
1899 {
1900         vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1901         update_vmcoreinfo_note();
1902 }
1903
1904 void vmcoreinfo_append_str(const char *fmt, ...)
1905 {
1906         va_list args;
1907         char buf[0x50];
1908         size_t r;
1909
1910         va_start(args, fmt);
1911         r = vscnprintf(buf, sizeof(buf), fmt, args);
1912         va_end(args);
1913
1914         r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1915
1916         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1917
1918         vmcoreinfo_size += r;
1919 }
1920
1921 /*
1922  * provide an empty default implementation here -- architecture
1923  * code may override this
1924  */
1925 void __weak arch_crash_save_vmcoreinfo(void)
1926 {}
1927
1928 unsigned long __weak paddr_vmcoreinfo_note(void)
1929 {
1930         return __pa((unsigned long)(char *)&vmcoreinfo_note);
1931 }
1932
1933 static int __init crash_save_vmcoreinfo_init(void)
1934 {
1935         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1936         VMCOREINFO_PAGESIZE(PAGE_SIZE);
1937
1938         VMCOREINFO_SYMBOL(init_uts_ns);
1939         VMCOREINFO_SYMBOL(node_online_map);
1940 #ifdef CONFIG_MMU
1941         VMCOREINFO_SYMBOL(swapper_pg_dir);
1942 #endif
1943         VMCOREINFO_SYMBOL(_stext);
1944         VMCOREINFO_SYMBOL(vmap_area_list);
1945
1946 #ifndef CONFIG_NEED_MULTIPLE_NODES
1947         VMCOREINFO_SYMBOL(mem_map);
1948         VMCOREINFO_SYMBOL(contig_page_data);
1949 #endif
1950 #ifdef CONFIG_SPARSEMEM
1951         VMCOREINFO_SYMBOL(mem_section);
1952         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1953         VMCOREINFO_STRUCT_SIZE(mem_section);
1954         VMCOREINFO_OFFSET(mem_section, section_mem_map);
1955 #endif
1956         VMCOREINFO_STRUCT_SIZE(page);
1957         VMCOREINFO_STRUCT_SIZE(pglist_data);
1958         VMCOREINFO_STRUCT_SIZE(zone);
1959         VMCOREINFO_STRUCT_SIZE(free_area);
1960         VMCOREINFO_STRUCT_SIZE(list_head);
1961         VMCOREINFO_SIZE(nodemask_t);
1962         VMCOREINFO_OFFSET(page, flags);
1963         VMCOREINFO_OFFSET(page, _count);
1964         VMCOREINFO_OFFSET(page, mapping);
1965         VMCOREINFO_OFFSET(page, lru);
1966         VMCOREINFO_OFFSET(page, _mapcount);
1967         VMCOREINFO_OFFSET(page, private);
1968         VMCOREINFO_OFFSET(pglist_data, node_zones);
1969         VMCOREINFO_OFFSET(pglist_data, nr_zones);
1970 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1971         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1972 #endif
1973         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1974         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1975         VMCOREINFO_OFFSET(pglist_data, node_id);
1976         VMCOREINFO_OFFSET(zone, free_area);
1977         VMCOREINFO_OFFSET(zone, vm_stat);
1978         VMCOREINFO_OFFSET(zone, spanned_pages);
1979         VMCOREINFO_OFFSET(free_area, free_list);
1980         VMCOREINFO_OFFSET(list_head, next);
1981         VMCOREINFO_OFFSET(list_head, prev);
1982         VMCOREINFO_OFFSET(vmap_area, va_start);
1983         VMCOREINFO_OFFSET(vmap_area, list);
1984         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1985         log_buf_kexec_setup();
1986         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1987         VMCOREINFO_NUMBER(NR_FREE_PAGES);
1988         VMCOREINFO_NUMBER(PG_lru);
1989         VMCOREINFO_NUMBER(PG_private);
1990         VMCOREINFO_NUMBER(PG_swapcache);
1991         VMCOREINFO_NUMBER(PG_slab);
1992 #ifdef CONFIG_MEMORY_FAILURE
1993         VMCOREINFO_NUMBER(PG_hwpoison);
1994 #endif
1995         VMCOREINFO_NUMBER(PG_head_mask);
1996         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1997 #ifdef CONFIG_HUGETLBFS
1998         VMCOREINFO_SYMBOL(free_huge_page);
1999 #endif
2000
2001         arch_crash_save_vmcoreinfo();
2002         update_vmcoreinfo_note();
2003
2004         return 0;
2005 }
2006
2007 subsys_initcall(crash_save_vmcoreinfo_init);
2008
2009 static int __kexec_add_segment(struct kimage *image, char *buf,
2010                                unsigned long bufsz, unsigned long mem,
2011                                unsigned long memsz)
2012 {
2013         struct kexec_segment *ksegment;
2014
2015         ksegment = &image->segment[image->nr_segments];
2016         ksegment->kbuf = buf;
2017         ksegment->bufsz = bufsz;
2018         ksegment->mem = mem;
2019         ksegment->memsz = memsz;
2020         image->nr_segments++;
2021
2022         return 0;
2023 }
2024
2025 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2026                                     struct kexec_buf *kbuf)
2027 {
2028         struct kimage *image = kbuf->image;
2029         unsigned long temp_start, temp_end;
2030
2031         temp_end = min(end, kbuf->buf_max);
2032         temp_start = temp_end - kbuf->memsz;
2033
2034         do {
2035                 /* align down start */
2036                 temp_start = temp_start & (~(kbuf->buf_align - 1));
2037
2038                 if (temp_start < start || temp_start < kbuf->buf_min)
2039                         return 0;
2040
2041                 temp_end = temp_start + kbuf->memsz - 1;
2042
2043                 /*
2044                  * Make sure this does not conflict with any of existing
2045                  * segments
2046                  */
2047                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2048                         temp_start = temp_start - PAGE_SIZE;
2049                         continue;
2050                 }
2051
2052                 /* We found a suitable memory range */
2053                 break;
2054         } while (1);
2055
2056         /* If we are here, we found a suitable memory range */
2057         __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2058                             kbuf->memsz);
2059
2060         /* Success, stop navigating through remaining System RAM ranges */
2061         return 1;
2062 }
2063
2064 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2065                                      struct kexec_buf *kbuf)
2066 {
2067         struct kimage *image = kbuf->image;
2068         unsigned long temp_start, temp_end;
2069
2070         temp_start = max(start, kbuf->buf_min);
2071
2072         do {
2073                 temp_start = ALIGN(temp_start, kbuf->buf_align);
2074                 temp_end = temp_start + kbuf->memsz - 1;
2075
2076                 if (temp_end > end || temp_end > kbuf->buf_max)
2077                         return 0;
2078                 /*
2079                  * Make sure this does not conflict with any of existing
2080                  * segments
2081                  */
2082                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2083                         temp_start = temp_start + PAGE_SIZE;
2084                         continue;
2085                 }
2086
2087                 /* We found a suitable memory range */
2088                 break;
2089         } while (1);
2090
2091         /* If we are here, we found a suitable memory range */
2092         __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2093                             kbuf->memsz);
2094
2095         /* Success, stop navigating through remaining System RAM ranges */
2096         return 1;
2097 }
2098
2099 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2100 {
2101         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2102         unsigned long sz = end - start + 1;
2103
2104         /* Returning 0 will take to next memory range */
2105         if (sz < kbuf->memsz)
2106                 return 0;
2107
2108         if (end < kbuf->buf_min || start > kbuf->buf_max)
2109                 return 0;
2110
2111         /*
2112          * Allocate memory top down with-in ram range. Otherwise bottom up
2113          * allocation.
2114          */
2115         if (kbuf->top_down)
2116                 return locate_mem_hole_top_down(start, end, kbuf);
2117         return locate_mem_hole_bottom_up(start, end, kbuf);
2118 }
2119
2120 /*
2121  * Helper function for placing a buffer in a kexec segment. This assumes
2122  * that kexec_mutex is held.
2123  */
2124 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2125                      unsigned long memsz, unsigned long buf_align,
2126                      unsigned long buf_min, unsigned long buf_max,
2127                      bool top_down, unsigned long *load_addr)
2128 {
2129
2130         struct kexec_segment *ksegment;
2131         struct kexec_buf buf, *kbuf;
2132         int ret;
2133
2134         /* Currently adding segment this way is allowed only in file mode */
2135         if (!image->file_mode)
2136                 return -EINVAL;
2137
2138         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2139                 return -EINVAL;
2140
2141         /*
2142          * Make sure we are not trying to add buffer after allocating
2143          * control pages. All segments need to be placed first before
2144          * any control pages are allocated. As control page allocation
2145          * logic goes through list of segments to make sure there are
2146          * no destination overlaps.
2147          */
2148         if (!list_empty(&image->control_pages)) {
2149                 WARN_ON(1);
2150                 return -EINVAL;
2151         }
2152
2153         memset(&buf, 0, sizeof(struct kexec_buf));
2154         kbuf = &buf;
2155         kbuf->image = image;
2156         kbuf->buffer = buffer;
2157         kbuf->bufsz = bufsz;
2158
2159         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2160         kbuf->buf_align = max(buf_align, PAGE_SIZE);
2161         kbuf->buf_min = buf_min;
2162         kbuf->buf_max = buf_max;
2163         kbuf->top_down = top_down;
2164
2165         /* Walk the RAM ranges and allocate a suitable range for the buffer */
2166         if (image->type == KEXEC_TYPE_CRASH)
2167                 ret = walk_iomem_res("Crash kernel",
2168                                      IORESOURCE_MEM | IORESOURCE_BUSY,
2169                                      crashk_res.start, crashk_res.end, kbuf,
2170                                      locate_mem_hole_callback);
2171         else
2172                 ret = walk_system_ram_res(0, -1, kbuf,
2173                                           locate_mem_hole_callback);
2174         if (ret != 1) {
2175                 /* A suitable memory range could not be found for buffer */
2176                 return -EADDRNOTAVAIL;
2177         }
2178
2179         /* Found a suitable memory range */
2180         ksegment = &image->segment[image->nr_segments - 1];
2181         *load_addr = ksegment->mem;
2182         return 0;
2183 }
2184
2185 /* Calculate and store the digest of segments */
2186 static int kexec_calculate_store_digests(struct kimage *image)
2187 {
2188         struct crypto_shash *tfm;
2189         struct shash_desc *desc;
2190         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2191         size_t desc_size, nullsz;
2192         char *digest;
2193         void *zero_buf;
2194         struct kexec_sha_region *sha_regions;
2195         struct purgatory_info *pi = &image->purgatory_info;
2196
2197         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2198         zero_buf_sz = PAGE_SIZE;
2199
2200         tfm = crypto_alloc_shash("sha256", 0, 0);
2201         if (IS_ERR(tfm)) {
2202                 ret = PTR_ERR(tfm);
2203                 goto out;
2204         }
2205
2206         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2207         desc = kzalloc(desc_size, GFP_KERNEL);
2208         if (!desc) {
2209                 ret = -ENOMEM;
2210                 goto out_free_tfm;
2211         }
2212
2213         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2214         sha_regions = vzalloc(sha_region_sz);
2215         if (!sha_regions)
2216                 goto out_free_desc;
2217
2218         desc->tfm   = tfm;
2219         desc->flags = 0;
2220
2221         ret = crypto_shash_init(desc);
2222         if (ret < 0)
2223                 goto out_free_sha_regions;
2224
2225         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2226         if (!digest) {
2227                 ret = -ENOMEM;
2228                 goto out_free_sha_regions;
2229         }
2230
2231         for (j = i = 0; i < image->nr_segments; i++) {
2232                 struct kexec_segment *ksegment;
2233
2234                 ksegment = &image->segment[i];
2235                 /*
2236                  * Skip purgatory as it will be modified once we put digest
2237                  * info in purgatory.
2238                  */
2239                 if (ksegment->kbuf == pi->purgatory_buf)
2240                         continue;
2241
2242                 ret = crypto_shash_update(desc, ksegment->kbuf,
2243                                           ksegment->bufsz);
2244                 if (ret)
2245                         break;
2246
2247                 /*
2248                  * Assume rest of the buffer is filled with zero and
2249                  * update digest accordingly.
2250                  */
2251                 nullsz = ksegment->memsz - ksegment->bufsz;
2252                 while (nullsz) {
2253                         unsigned long bytes = nullsz;
2254
2255                         if (bytes > zero_buf_sz)
2256                                 bytes = zero_buf_sz;
2257                         ret = crypto_shash_update(desc, zero_buf, bytes);
2258                         if (ret)
2259                                 break;
2260                         nullsz -= bytes;
2261                 }
2262
2263                 if (ret)
2264                         break;
2265
2266                 sha_regions[j].start = ksegment->mem;
2267                 sha_regions[j].len = ksegment->memsz;
2268                 j++;
2269         }
2270
2271         if (!ret) {
2272                 ret = crypto_shash_final(desc, digest);
2273                 if (ret)
2274                         goto out_free_digest;
2275                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2276                                                 sha_regions, sha_region_sz, 0);
2277                 if (ret)
2278                         goto out_free_digest;
2279
2280                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2281                                                 digest, SHA256_DIGEST_SIZE, 0);
2282                 if (ret)
2283                         goto out_free_digest;
2284         }
2285
2286 out_free_digest:
2287         kfree(digest);
2288 out_free_sha_regions:
2289         vfree(sha_regions);
2290 out_free_desc:
2291         kfree(desc);
2292 out_free_tfm:
2293         kfree(tfm);
2294 out:
2295         return ret;
2296 }
2297
2298 /* Actually load purgatory. Lot of code taken from kexec-tools */
2299 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2300                                   unsigned long max, int top_down)
2301 {
2302         struct purgatory_info *pi = &image->purgatory_info;
2303         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2304         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2305         unsigned char *buf_addr, *src;
2306         int i, ret = 0, entry_sidx = -1;
2307         const Elf_Shdr *sechdrs_c;
2308         Elf_Shdr *sechdrs = NULL;
2309         void *purgatory_buf = NULL;
2310
2311         /*
2312          * sechdrs_c points to section headers in purgatory and are read
2313          * only. No modifications allowed.
2314          */
2315         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2316
2317         /*
2318          * We can not modify sechdrs_c[] and its fields. It is read only.
2319          * Copy it over to a local copy where one can store some temporary
2320          * data and free it at the end. We need to modify ->sh_addr and
2321          * ->sh_offset fields to keep track of permanent and temporary
2322          * locations of sections.
2323          */
2324         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2325         if (!sechdrs)
2326                 return -ENOMEM;
2327
2328         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2329
2330         /*
2331          * We seem to have multiple copies of sections. First copy is which
2332          * is embedded in kernel in read only section. Some of these sections
2333          * will be copied to a temporary buffer and relocated. And these
2334          * sections will finally be copied to their final destination at
2335          * segment load time.
2336          *
2337          * Use ->sh_offset to reflect section address in memory. It will
2338          * point to original read only copy if section is not allocatable.
2339          * Otherwise it will point to temporary copy which will be relocated.
2340          *
2341          * Use ->sh_addr to contain final address of the section where it
2342          * will go during execution time.
2343          */
2344         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2345                 if (sechdrs[i].sh_type == SHT_NOBITS)
2346                         continue;
2347
2348                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2349                                                 sechdrs[i].sh_offset;
2350         }
2351
2352         /*
2353          * Identify entry point section and make entry relative to section
2354          * start.
2355          */
2356         entry = pi->ehdr->e_entry;
2357         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2358                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2359                         continue;
2360
2361                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2362                         continue;
2363
2364                 /* Make entry section relative */
2365                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2366                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2367                      pi->ehdr->e_entry)) {
2368                         entry_sidx = i;
2369                         entry -= sechdrs[i].sh_addr;
2370                         break;
2371                 }
2372         }
2373
2374         /* Determine how much memory is needed to load relocatable object. */
2375         buf_align = 1;
2376         bss_align = 1;
2377         buf_sz = 0;
2378         bss_sz = 0;
2379
2380         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2381                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2382                         continue;
2383
2384                 align = sechdrs[i].sh_addralign;
2385                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2386                         if (buf_align < align)
2387                                 buf_align = align;
2388                         buf_sz = ALIGN(buf_sz, align);
2389                         buf_sz += sechdrs[i].sh_size;
2390                 } else {
2391                         /* bss section */
2392                         if (bss_align < align)
2393                                 bss_align = align;
2394                         bss_sz = ALIGN(bss_sz, align);
2395                         bss_sz += sechdrs[i].sh_size;
2396                 }
2397         }
2398
2399         /* Determine the bss padding required to align bss properly */
2400         bss_pad = 0;
2401         if (buf_sz & (bss_align - 1))
2402                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2403
2404         memsz = buf_sz + bss_pad + bss_sz;
2405
2406         /* Allocate buffer for purgatory */
2407         purgatory_buf = vzalloc(buf_sz);
2408         if (!purgatory_buf) {
2409                 ret = -ENOMEM;
2410                 goto out;
2411         }
2412
2413         if (buf_align < bss_align)
2414                 buf_align = bss_align;
2415
2416         /* Add buffer to segment list */
2417         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2418                                 buf_align, min, max, top_down,
2419                                 &pi->purgatory_load_addr);
2420         if (ret)
2421                 goto out;
2422
2423         /* Load SHF_ALLOC sections */
2424         buf_addr = purgatory_buf;
2425         load_addr = curr_load_addr = pi->purgatory_load_addr;
2426         bss_addr = load_addr + buf_sz + bss_pad;
2427
2428         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2429                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2430                         continue;
2431
2432                 align = sechdrs[i].sh_addralign;
2433                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2434                         curr_load_addr = ALIGN(curr_load_addr, align);
2435                         offset = curr_load_addr - load_addr;
2436                         /* We already modifed ->sh_offset to keep src addr */
2437                         src = (char *) sechdrs[i].sh_offset;
2438                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2439
2440                         /* Store load address and source address of section */
2441                         sechdrs[i].sh_addr = curr_load_addr;
2442
2443                         /*
2444                          * This section got copied to temporary buffer. Update
2445                          * ->sh_offset accordingly.
2446                          */
2447                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2448
2449                         /* Advance to the next address */
2450                         curr_load_addr += sechdrs[i].sh_size;
2451                 } else {
2452                         bss_addr = ALIGN(bss_addr, align);
2453                         sechdrs[i].sh_addr = bss_addr;
2454                         bss_addr += sechdrs[i].sh_size;
2455                 }
2456         }
2457
2458         /* Update entry point based on load address of text section */
2459         if (entry_sidx >= 0)
2460                 entry += sechdrs[entry_sidx].sh_addr;
2461
2462         /* Make kernel jump to purgatory after shutdown */
2463         image->start = entry;
2464
2465         /* Used later to get/set symbol values */
2466         pi->sechdrs = sechdrs;
2467
2468         /*
2469          * Used later to identify which section is purgatory and skip it
2470          * from checksumming.
2471          */
2472         pi->purgatory_buf = purgatory_buf;
2473         return ret;
2474 out:
2475         vfree(sechdrs);
2476         vfree(purgatory_buf);
2477         return ret;
2478 }
2479
2480 static int kexec_apply_relocations(struct kimage *image)
2481 {
2482         int i, ret;
2483         struct purgatory_info *pi = &image->purgatory_info;
2484         Elf_Shdr *sechdrs = pi->sechdrs;
2485
2486         /* Apply relocations */
2487         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2488                 Elf_Shdr *section, *symtab;
2489
2490                 if (sechdrs[i].sh_type != SHT_RELA &&
2491                     sechdrs[i].sh_type != SHT_REL)
2492                         continue;
2493
2494                 /*
2495                  * For section of type SHT_RELA/SHT_REL,
2496                  * ->sh_link contains section header index of associated
2497                  * symbol table. And ->sh_info contains section header
2498                  * index of section to which relocations apply.
2499                  */
2500                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2501                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2502                         return -ENOEXEC;
2503
2504                 section = &sechdrs[sechdrs[i].sh_info];
2505                 symtab = &sechdrs[sechdrs[i].sh_link];
2506
2507                 if (!(section->sh_flags & SHF_ALLOC))
2508                         continue;
2509
2510                 /*
2511                  * symtab->sh_link contain section header index of associated
2512                  * string table.
2513                  */
2514                 if (symtab->sh_link >= pi->ehdr->e_shnum)
2515                         /* Invalid section number? */
2516                         continue;
2517
2518                 /*
2519                  * Respective archicture needs to provide support for applying
2520                  * relocations of type SHT_RELA/SHT_REL.
2521                  */
2522                 if (sechdrs[i].sh_type == SHT_RELA)
2523                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
2524                                                                sechdrs, i);
2525                 else if (sechdrs[i].sh_type == SHT_REL)
2526                         ret = arch_kexec_apply_relocations(pi->ehdr,
2527                                                            sechdrs, i);
2528                 if (ret)
2529                         return ret;
2530         }
2531
2532         return 0;
2533 }
2534
2535 /* Load relocatable purgatory object and relocate it appropriately */
2536 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2537                          unsigned long max, int top_down,
2538                          unsigned long *load_addr)
2539 {
2540         struct purgatory_info *pi = &image->purgatory_info;
2541         int ret;
2542
2543         if (kexec_purgatory_size <= 0)
2544                 return -EINVAL;
2545
2546         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2547                 return -ENOEXEC;
2548
2549         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2550
2551         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2552             || pi->ehdr->e_type != ET_REL
2553             || !elf_check_arch(pi->ehdr)
2554             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2555                 return -ENOEXEC;
2556
2557         if (pi->ehdr->e_shoff >= kexec_purgatory_size
2558             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2559             kexec_purgatory_size - pi->ehdr->e_shoff))
2560                 return -ENOEXEC;
2561
2562         ret = __kexec_load_purgatory(image, min, max, top_down);
2563         if (ret)
2564                 return ret;
2565
2566         ret = kexec_apply_relocations(image);
2567         if (ret)
2568                 goto out;
2569
2570         *load_addr = pi->purgatory_load_addr;
2571         return 0;
2572 out:
2573         vfree(pi->sechdrs);
2574         vfree(pi->purgatory_buf);
2575         return ret;
2576 }
2577
2578 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2579                                             const char *name)
2580 {
2581         Elf_Sym *syms;
2582         Elf_Shdr *sechdrs;
2583         Elf_Ehdr *ehdr;
2584         int i, k;
2585         const char *strtab;
2586
2587         if (!pi->sechdrs || !pi->ehdr)
2588                 return NULL;
2589
2590         sechdrs = pi->sechdrs;
2591         ehdr = pi->ehdr;
2592
2593         for (i = 0; i < ehdr->e_shnum; i++) {
2594                 if (sechdrs[i].sh_type != SHT_SYMTAB)
2595                         continue;
2596
2597                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2598                         /* Invalid strtab section number */
2599                         continue;
2600                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2601                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2602
2603                 /* Go through symbols for a match */
2604                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2605                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2606                                 continue;
2607
2608                         if (strcmp(strtab + syms[k].st_name, name) != 0)
2609                                 continue;
2610
2611                         if (syms[k].st_shndx == SHN_UNDEF ||
2612                             syms[k].st_shndx >= ehdr->e_shnum) {
2613                                 pr_debug("Symbol: %s has bad section index %d.\n",
2614                                                 name, syms[k].st_shndx);
2615                                 return NULL;
2616                         }
2617
2618                         /* Found the symbol we are looking for */
2619                         return &syms[k];
2620                 }
2621         }
2622
2623         return NULL;
2624 }
2625
2626 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2627 {
2628         struct purgatory_info *pi = &image->purgatory_info;
2629         Elf_Sym *sym;
2630         Elf_Shdr *sechdr;
2631
2632         sym = kexec_purgatory_find_symbol(pi, name);
2633         if (!sym)
2634                 return ERR_PTR(-EINVAL);
2635
2636         sechdr = &pi->sechdrs[sym->st_shndx];
2637
2638         /*
2639          * Returns the address where symbol will finally be loaded after
2640          * kexec_load_segment()
2641          */
2642         return (void *)(sechdr->sh_addr + sym->st_value);
2643 }
2644
2645 /*
2646  * Get or set value of a symbol. If "get_value" is true, symbol value is
2647  * returned in buf otherwise symbol value is set based on value in buf.
2648  */
2649 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2650                                    void *buf, unsigned int size, bool get_value)
2651 {
2652         Elf_Sym *sym;
2653         Elf_Shdr *sechdrs;
2654         struct purgatory_info *pi = &image->purgatory_info;
2655         char *sym_buf;
2656
2657         sym = kexec_purgatory_find_symbol(pi, name);
2658         if (!sym)
2659                 return -EINVAL;
2660
2661         if (sym->st_size != size) {
2662                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2663                        name, (unsigned long)sym->st_size, size);
2664                 return -EINVAL;
2665         }
2666
2667         sechdrs = pi->sechdrs;
2668
2669         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2670                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2671                        get_value ? "get" : "set");
2672                 return -EINVAL;
2673         }
2674
2675         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2676                                         sym->st_value;
2677
2678         if (get_value)
2679                 memcpy((void *)buf, sym_buf, size);
2680         else
2681                 memcpy((void *)sym_buf, buf, size);
2682
2683         return 0;
2684 }
2685
2686 /*
2687  * Move into place and start executing a preloaded standalone
2688  * executable.  If nothing was preloaded return an error.
2689  */
2690 int kernel_kexec(void)
2691 {
2692         int error = 0;
2693
2694         if (!mutex_trylock(&kexec_mutex))
2695                 return -EBUSY;
2696         if (!kexec_image) {
2697                 error = -EINVAL;
2698                 goto Unlock;
2699         }
2700
2701 #ifdef CONFIG_KEXEC_JUMP
2702         if (kexec_image->preserve_context) {
2703                 lock_system_sleep();
2704                 pm_prepare_console();
2705                 error = freeze_processes();
2706                 if (error) {
2707                         error = -EBUSY;
2708                         goto Restore_console;
2709                 }
2710                 suspend_console();
2711                 error = dpm_suspend_start(PMSG_FREEZE);
2712                 if (error)
2713                         goto Resume_console;
2714                 /* At this point, dpm_suspend_start() has been called,
2715                  * but *not* dpm_suspend_end(). We *must* call
2716                  * dpm_suspend_end() now.  Otherwise, drivers for
2717                  * some devices (e.g. interrupt controllers) become
2718                  * desynchronized with the actual state of the
2719                  * hardware at resume time, and evil weirdness ensues.
2720                  */
2721                 error = dpm_suspend_end(PMSG_FREEZE);
2722                 if (error)
2723                         goto Resume_devices;
2724                 error = disable_nonboot_cpus();
2725                 if (error)
2726                         goto Enable_cpus;
2727                 local_irq_disable();
2728                 error = syscore_suspend();
2729                 if (error)
2730                         goto Enable_irqs;
2731         } else
2732 #endif
2733         {
2734                 kexec_in_progress = true;
2735                 kernel_restart_prepare(NULL);
2736                 migrate_to_reboot_cpu();
2737
2738                 /*
2739                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2740                  * no further code needs to use CPU hotplug (which is true in
2741                  * the reboot case). However, the kexec path depends on using
2742                  * CPU hotplug again; so re-enable it here.
2743                  */
2744                 cpu_hotplug_enable();
2745                 pr_emerg("Starting new kernel\n");
2746                 machine_shutdown();
2747         }
2748
2749         machine_kexec(kexec_image);
2750
2751 #ifdef CONFIG_KEXEC_JUMP
2752         if (kexec_image->preserve_context) {
2753                 syscore_resume();
2754  Enable_irqs:
2755                 local_irq_enable();
2756  Enable_cpus:
2757                 enable_nonboot_cpus();
2758                 dpm_resume_start(PMSG_RESTORE);
2759  Resume_devices:
2760                 dpm_resume_end(PMSG_RESTORE);
2761  Resume_console:
2762                 resume_console();
2763                 thaw_processes();
2764  Restore_console:
2765                 pm_restore_console();
2766                 unlock_system_sleep();
2767         }
2768 #endif
2769
2770  Unlock:
2771         mutex_unlock(&kexec_mutex);
2772         return error;
2773 }