Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / kernel / locking / qspinlock.c
1 /*
2  * Queued spinlock
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15  * (C) Copyright 2013-2014 Red Hat, Inc.
16  * (C) Copyright 2015 Intel Corp.
17  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18  *
19  * Authors: Waiman Long <waiman.long@hpe.com>
20  *          Peter Zijlstra <peterz@infradead.org>
21  */
22
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <asm/byteorder.h>
32 #include <asm/qspinlock.h>
33
34 /*
35  * The basic principle of a queue-based spinlock can best be understood
36  * by studying a classic queue-based spinlock implementation called the
37  * MCS lock. The paper below provides a good description for this kind
38  * of lock.
39  *
40  * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
41  *
42  * This queued spinlock implementation is based on the MCS lock, however to make
43  * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
44  * API, we must modify it somehow.
45  *
46  * In particular; where the traditional MCS lock consists of a tail pointer
47  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
48  * unlock the next pending (next->locked), we compress both these: {tail,
49  * next->locked} into a single u32 value.
50  *
51  * Since a spinlock disables recursion of its own context and there is a limit
52  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
53  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
54  * we can encode the tail by combining the 2-bit nesting level with the cpu
55  * number. With one byte for the lock value and 3 bytes for the tail, only a
56  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
57  * we extend it to a full byte to achieve better performance for architectures
58  * that support atomic byte write.
59  *
60  * We also change the first spinner to spin on the lock bit instead of its
61  * node; whereby avoiding the need to carry a node from lock to unlock, and
62  * preserving existing lock API. This also makes the unlock code simpler and
63  * faster.
64  *
65  * N.B. The current implementation only supports architectures that allow
66  *      atomic operations on smaller 8-bit and 16-bit data types.
67  *
68  */
69
70 #include "mcs_spinlock.h"
71
72 #ifdef CONFIG_PARAVIRT_SPINLOCKS
73 #define MAX_NODES       8
74 #else
75 #define MAX_NODES       4
76 #endif
77
78 /*
79  * Per-CPU queue node structures; we can never have more than 4 nested
80  * contexts: task, softirq, hardirq, nmi.
81  *
82  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
83  *
84  * PV doubles the storage and uses the second cacheline for PV state.
85  */
86 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
87
88 /*
89  * We must be able to distinguish between no-tail and the tail at 0:0,
90  * therefore increment the cpu number by one.
91  */
92
93 static inline __pure u32 encode_tail(int cpu, int idx)
94 {
95         u32 tail;
96
97 #ifdef CONFIG_DEBUG_SPINLOCK
98         BUG_ON(idx > 3);
99 #endif
100         tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
101         tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
102
103         return tail;
104 }
105
106 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
107 {
108         int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
109         int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
110
111         return per_cpu_ptr(&mcs_nodes[idx], cpu);
112 }
113
114 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
115
116 /*
117  * By using the whole 2nd least significant byte for the pending bit, we
118  * can allow better optimization of the lock acquisition for the pending
119  * bit holder.
120  *
121  * This internal structure is also used by the set_locked function which
122  * is not restricted to _Q_PENDING_BITS == 8.
123  */
124 struct __qspinlock {
125         union {
126                 atomic_t val;
127 #ifdef __LITTLE_ENDIAN
128                 struct {
129                         u8      locked;
130                         u8      pending;
131                 };
132                 struct {
133                         u16     locked_pending;
134                         u16     tail;
135                 };
136 #else
137                 struct {
138                         u16     tail;
139                         u16     locked_pending;
140                 };
141                 struct {
142                         u8      reserved[2];
143                         u8      pending;
144                         u8      locked;
145                 };
146 #endif
147         };
148 };
149
150 #if _Q_PENDING_BITS == 8
151 /**
152  * clear_pending_set_locked - take ownership and clear the pending bit.
153  * @lock: Pointer to queued spinlock structure
154  *
155  * *,1,0 -> *,0,1
156  *
157  * Lock stealing is not allowed if this function is used.
158  */
159 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
160 {
161         struct __qspinlock *l = (void *)lock;
162
163         WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
164 }
165
166 /*
167  * xchg_tail - Put in the new queue tail code word & retrieve previous one
168  * @lock : Pointer to queued spinlock structure
169  * @tail : The new queue tail code word
170  * Return: The previous queue tail code word
171  *
172  * xchg(lock, tail)
173  *
174  * p,*,* -> n,*,* ; prev = xchg(lock, node)
175  */
176 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 {
178         struct __qspinlock *l = (void *)lock;
179
180         /*
181          * Use release semantics to make sure that the MCS node is properly
182          * initialized before changing the tail code.
183          */
184         return (u32)xchg_release(&l->tail,
185                                  tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
186 }
187
188 #else /* _Q_PENDING_BITS == 8 */
189
190 /**
191  * clear_pending_set_locked - take ownership and clear the pending bit.
192  * @lock: Pointer to queued spinlock structure
193  *
194  * *,1,0 -> *,0,1
195  */
196 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
197 {
198         atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
199 }
200
201 /**
202  * xchg_tail - Put in the new queue tail code word & retrieve previous one
203  * @lock : Pointer to queued spinlock structure
204  * @tail : The new queue tail code word
205  * Return: The previous queue tail code word
206  *
207  * xchg(lock, tail)
208  *
209  * p,*,* -> n,*,* ; prev = xchg(lock, node)
210  */
211 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
212 {
213         u32 old, new, val = atomic_read(&lock->val);
214
215         for (;;) {
216                 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
217                 /*
218                  * Use release semantics to make sure that the MCS node is
219                  * properly initialized before changing the tail code.
220                  */
221                 old = atomic_cmpxchg_release(&lock->val, val, new);
222                 if (old == val)
223                         break;
224
225                 val = old;
226         }
227         return old;
228 }
229 #endif /* _Q_PENDING_BITS == 8 */
230
231 /**
232  * set_locked - Set the lock bit and own the lock
233  * @lock: Pointer to queued spinlock structure
234  *
235  * *,*,0 -> *,0,1
236  */
237 static __always_inline void set_locked(struct qspinlock *lock)
238 {
239         struct __qspinlock *l = (void *)lock;
240
241         WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
242 }
243
244
245 /*
246  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
247  * all the PV callbacks.
248  */
249
250 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
251 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
252                                            struct mcs_spinlock *prev) { }
253 static __always_inline void __pv_kick_node(struct qspinlock *lock,
254                                            struct mcs_spinlock *node) { }
255 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
256                                                    struct mcs_spinlock *node)
257                                                    { return 0; }
258
259 #define pv_enabled()            false
260
261 #define pv_init_node            __pv_init_node
262 #define pv_wait_node            __pv_wait_node
263 #define pv_kick_node            __pv_kick_node
264 #define pv_wait_head_or_lock    __pv_wait_head_or_lock
265
266 #ifdef CONFIG_PARAVIRT_SPINLOCKS
267 #define queued_spin_lock_slowpath       native_queued_spin_lock_slowpath
268 #endif
269
270 /*
271  * Various notes on spin_is_locked() and spin_unlock_wait(), which are
272  * 'interesting' functions:
273  *
274  * PROBLEM: some architectures have an interesting issue with atomic ACQUIRE
275  * operations in that the ACQUIRE applies to the LOAD _not_ the STORE (ARM64,
276  * PPC). Also qspinlock has a similar issue per construction, the setting of
277  * the locked byte can be unordered acquiring the lock proper.
278  *
279  * This gets to be 'interesting' in the following cases, where the /should/s
280  * end up false because of this issue.
281  *
282  *
283  * CASE 1:
284  *
285  * So the spin_is_locked() correctness issue comes from something like:
286  *
287  *   CPU0                               CPU1
288  *
289  *   global_lock();                     local_lock(i)
290  *     spin_lock(&G)                      spin_lock(&L[i])
291  *     for (i)                            if (!spin_is_locked(&G)) {
292  *       spin_unlock_wait(&L[i]);           smp_acquire__after_ctrl_dep();
293  *                                          return;
294  *                                        }
295  *                                        // deal with fail
296  *
297  * Where it is important CPU1 sees G locked or CPU0 sees L[i] locked such
298  * that there is exclusion between the two critical sections.
299  *
300  * The load from spin_is_locked(&G) /should/ be constrained by the ACQUIRE from
301  * spin_lock(&L[i]), and similarly the load(s) from spin_unlock_wait(&L[i])
302  * /should/ be constrained by the ACQUIRE from spin_lock(&G).
303  *
304  * Similarly, later stuff is constrained by the ACQUIRE from CTRL+RMB.
305  *
306  *
307  * CASE 2:
308  *
309  * For spin_unlock_wait() there is a second correctness issue, namely:
310  *
311  *   CPU0                               CPU1
312  *
313  *   flag = set;
314  *   smp_mb();                          spin_lock(&l)
315  *   spin_unlock_wait(&l);              if (!flag)
316  *                                        // add to lockless list
317  *                                      spin_unlock(&l);
318  *   // iterate lockless list
319  *
320  * Which wants to ensure that CPU1 will stop adding bits to the list and CPU0
321  * will observe the last entry on the list (if spin_unlock_wait() had ACQUIRE
322  * semantics etc..)
323  *
324  * Where flag /should/ be ordered against the locked store of l.
325  */
326
327 /*
328  * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
329  * issuing an _unordered_ store to set _Q_LOCKED_VAL.
330  *
331  * This means that the store can be delayed, but no later than the
332  * store-release from the unlock. This means that simply observing
333  * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
334  *
335  * There are two paths that can issue the unordered store:
336  *
337  *  (1) clear_pending_set_locked():     *,1,0 -> *,0,1
338  *
339  *  (2) set_locked():                   t,0,0 -> t,0,1 ; t != 0
340  *      atomic_cmpxchg_relaxed():       t,0,0 -> 0,0,1
341  *
342  * However, in both cases we have other !0 state we've set before to queue
343  * ourseves:
344  *
345  * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
346  * load is constrained by that ACQUIRE to not pass before that, and thus must
347  * observe the store.
348  *
349  * For (2) we have a more intersting scenario. We enqueue ourselves using
350  * xchg_tail(), which ends up being a RELEASE. This in itself is not
351  * sufficient, however that is followed by an smp_cond_acquire() on the same
352  * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
353  * guarantees we must observe that store.
354  *
355  * Therefore both cases have other !0 state that is observable before the
356  * unordered locked byte store comes through. This means we can use that to
357  * wait for the lock store, and then wait for an unlock.
358  */
359 #ifndef queued_spin_unlock_wait
360 void queued_spin_unlock_wait(struct qspinlock *lock)
361 {
362         u32 val;
363
364         for (;;) {
365                 val = atomic_read(&lock->val);
366
367                 if (!val) /* not locked, we're done */
368                         goto done;
369
370                 if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
371                         break;
372
373                 /* not locked, but pending, wait until we observe the lock */
374                 cpu_relax();
375         }
376
377         /* any unlock is good */
378         while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
379                 cpu_relax();
380
381 done:
382         smp_acquire__after_ctrl_dep();
383 }
384 EXPORT_SYMBOL(queued_spin_unlock_wait);
385 #endif
386
387 #endif /* _GEN_PV_LOCK_SLOWPATH */
388
389 /**
390  * queued_spin_lock_slowpath - acquire the queued spinlock
391  * @lock: Pointer to queued spinlock structure
392  * @val: Current value of the queued spinlock 32-bit word
393  *
394  * (queue tail, pending bit, lock value)
395  *
396  *              fast     :    slow                                  :    unlock
397  *                       :                                          :
398  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
399  *                       :       | ^--------.------.             /  :
400  *                       :       v           \      \            |  :
401  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
402  *                       :       | ^--'              |           |  :
403  *                       :       v                   |           |  :
404  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
405  *   queue               :       | ^--'                          |  :
406  *                       :       v                               |  :
407  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
408  *   queue               :         ^--'                             :
409  */
410 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
411 {
412         struct mcs_spinlock *prev, *next, *node;
413         u32 new, old, tail;
414         int idx;
415
416         BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
417
418         if (pv_enabled())
419                 goto queue;
420
421         if (virt_spin_lock(lock))
422                 return;
423
424         /*
425          * wait for in-progress pending->locked hand-overs
426          *
427          * 0,1,0 -> 0,0,1
428          */
429         if (val == _Q_PENDING_VAL) {
430                 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
431                         cpu_relax();
432         }
433
434         /*
435          * trylock || pending
436          *
437          * 0,0,0 -> 0,0,1 ; trylock
438          * 0,0,1 -> 0,1,1 ; pending
439          */
440         for (;;) {
441                 /*
442                  * If we observe any contention; queue.
443                  */
444                 if (val & ~_Q_LOCKED_MASK)
445                         goto queue;
446
447                 new = _Q_LOCKED_VAL;
448                 if (val == new)
449                         new |= _Q_PENDING_VAL;
450
451                 /*
452                  * Acquire semantic is required here as the function may
453                  * return immediately if the lock was free.
454                  */
455                 old = atomic_cmpxchg_acquire(&lock->val, val, new);
456                 if (old == val)
457                         break;
458
459                 val = old;
460         }
461
462         /*
463          * we won the trylock
464          */
465         if (new == _Q_LOCKED_VAL)
466                 return;
467
468         /*
469          * we're pending, wait for the owner to go away.
470          *
471          * *,1,1 -> *,1,0
472          *
473          * this wait loop must be a load-acquire such that we match the
474          * store-release that clears the locked bit and create lock
475          * sequentiality; this is because not all clear_pending_set_locked()
476          * implementations imply full barriers.
477          */
478         smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
479
480         /*
481          * take ownership and clear the pending bit.
482          *
483          * *,1,0 -> *,0,1
484          */
485         clear_pending_set_locked(lock);
486         return;
487
488         /*
489          * End of pending bit optimistic spinning and beginning of MCS
490          * queuing.
491          */
492 queue:
493         node = this_cpu_ptr(&mcs_nodes[0]);
494         idx = node->count++;
495         tail = encode_tail(smp_processor_id(), idx);
496
497         node += idx;
498         node->locked = 0;
499         node->next = NULL;
500         pv_init_node(node);
501
502         /*
503          * We touched a (possibly) cold cacheline in the per-cpu queue node;
504          * attempt the trylock once more in the hope someone let go while we
505          * weren't watching.
506          */
507         if (queued_spin_trylock(lock))
508                 goto release;
509
510         /*
511          * We have already touched the queueing cacheline; don't bother with
512          * pending stuff.
513          *
514          * p,*,* -> n,*,*
515          *
516          * RELEASE, such that the stores to @node must be complete.
517          */
518         old = xchg_tail(lock, tail);
519         next = NULL;
520
521         /*
522          * if there was a previous node; link it and wait until reaching the
523          * head of the waitqueue.
524          */
525         if (old & _Q_TAIL_MASK) {
526                 prev = decode_tail(old);
527                 /*
528                  * The above xchg_tail() is also a load of @lock which generates,
529                  * through decode_tail(), a pointer.
530                  *
531                  * The address dependency matches the RELEASE of xchg_tail()
532                  * such that the access to @prev must happen after.
533                  */
534                 smp_read_barrier_depends();
535
536                 WRITE_ONCE(prev->next, node);
537
538                 pv_wait_node(node, prev);
539                 arch_mcs_spin_lock_contended(&node->locked);
540
541                 /*
542                  * While waiting for the MCS lock, the next pointer may have
543                  * been set by another lock waiter. We optimistically load
544                  * the next pointer & prefetch the cacheline for writing
545                  * to reduce latency in the upcoming MCS unlock operation.
546                  */
547                 next = READ_ONCE(node->next);
548                 if (next)
549                         prefetchw(next);
550         }
551
552         /*
553          * we're at the head of the waitqueue, wait for the owner & pending to
554          * go away.
555          *
556          * *,x,y -> *,0,0
557          *
558          * this wait loop must use a load-acquire such that we match the
559          * store-release that clears the locked bit and create lock
560          * sequentiality; this is because the set_locked() function below
561          * does not imply a full barrier.
562          *
563          * The PV pv_wait_head_or_lock function, if active, will acquire
564          * the lock and return a non-zero value. So we have to skip the
565          * smp_cond_load_acquire() call. As the next PV queue head hasn't been
566          * designated yet, there is no way for the locked value to become
567          * _Q_SLOW_VAL. So both the set_locked() and the
568          * atomic_cmpxchg_relaxed() calls will be safe.
569          *
570          * If PV isn't active, 0 will be returned instead.
571          *
572          */
573         if ((val = pv_wait_head_or_lock(lock, node)))
574                 goto locked;
575
576         val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
577
578 locked:
579         /*
580          * claim the lock:
581          *
582          * n,0,0 -> 0,0,1 : lock, uncontended
583          * *,0,0 -> *,0,1 : lock, contended
584          *
585          * If the queue head is the only one in the queue (lock value == tail),
586          * clear the tail code and grab the lock. Otherwise, we only need
587          * to grab the lock.
588          */
589         for (;;) {
590                 /* In the PV case we might already have _Q_LOCKED_VAL set */
591                 if ((val & _Q_TAIL_MASK) != tail) {
592                         set_locked(lock);
593                         break;
594                 }
595                 /*
596                  * The smp_cond_load_acquire() call above has provided the
597                  * necessary acquire semantics required for locking. At most
598                  * two iterations of this loop may be ran.
599                  */
600                 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
601                 if (old == val)
602                         goto release;   /* No contention */
603
604                 val = old;
605         }
606
607         /*
608          * contended path; wait for next if not observed yet, release.
609          */
610         if (!next) {
611                 while (!(next = READ_ONCE(node->next)))
612                         cpu_relax();
613         }
614
615         arch_mcs_spin_unlock_contended(&next->locked);
616         pv_kick_node(lock, next);
617
618 release:
619         /*
620          * release the node
621          */
622         __this_cpu_dec(mcs_nodes[0].count);
623 }
624 EXPORT_SYMBOL(queued_spin_lock_slowpath);
625
626 /*
627  * Generate the paravirt code for queued_spin_unlock_slowpath().
628  */
629 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
630 #define _GEN_PV_LOCK_SLOWPATH
631
632 #undef  pv_enabled
633 #define pv_enabled()    true
634
635 #undef pv_init_node
636 #undef pv_wait_node
637 #undef pv_kick_node
638 #undef pv_wait_head_or_lock
639
640 #undef  queued_spin_lock_slowpath
641 #define queued_spin_lock_slowpath       __pv_queued_spin_lock_slowpath
642
643 #include "qspinlock_paravirt.h"
644 #include "qspinlock.c"
645
646 #endif