Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[cascardo/linux.git] / kernel / locking / qspinlock_paravirt.h
1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
4
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
7 #include <linux/debug_locks.h>
8
9 /*
10  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11  * of spinning them.
12  *
13  * This relies on the architecture to provide two paravirt hypercalls:
14  *
15  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16  *   pv_kick(cpu)             -- wakes a suspended vcpu
17  *
18  * Using these we implement __pv_queued_spin_lock_slowpath() and
19  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20  * native_queued_spin_unlock().
21  */
22
23 #define _Q_SLOW_VAL     (3U << _Q_LOCKED_OFFSET)
24
25 /*
26  * Queue Node Adaptive Spinning
27  *
28  * A queue node vCPU will stop spinning if the vCPU in the previous node is
29  * not running. The one lock stealing attempt allowed at slowpath entry
30  * mitigates the slight slowdown for non-overcommitted guest with this
31  * aggressive wait-early mechanism.
32  *
33  * The status of the previous node will be checked at fixed interval
34  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
35  * pound on the cacheline of the previous node too heavily.
36  */
37 #define PV_PREV_CHECK_MASK      0xff
38
39 /*
40  * Queue node uses: vcpu_running & vcpu_halted.
41  * Queue head uses: vcpu_running & vcpu_hashed.
42  */
43 enum vcpu_state {
44         vcpu_running = 0,
45         vcpu_halted,            /* Used only in pv_wait_node */
46         vcpu_hashed,            /* = pv_hash'ed + vcpu_halted */
47 };
48
49 struct pv_node {
50         struct mcs_spinlock     mcs;
51         struct mcs_spinlock     __res[3];
52
53         int                     cpu;
54         u8                      state;
55 };
56
57 /*
58  * Include queued spinlock statistics code
59  */
60 #include "qspinlock_stat.h"
61
62 /*
63  * By replacing the regular queued_spin_trylock() with the function below,
64  * it will be called once when a lock waiter enter the PV slowpath before
65  * being queued. By allowing one lock stealing attempt here when the pending
66  * bit is off, it helps to reduce the performance impact of lock waiter
67  * preemption without the drawback of lock starvation.
68  */
69 #define queued_spin_trylock(l)  pv_queued_spin_steal_lock(l)
70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
71 {
72         struct __qspinlock *l = (void *)lock;
73         int ret = !(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
74                    (cmpxchg(&l->locked, 0, _Q_LOCKED_VAL) == 0);
75
76         qstat_inc(qstat_pv_lock_stealing, ret);
77         return ret;
78 }
79
80 /*
81  * The pending bit is used by the queue head vCPU to indicate that it
82  * is actively spinning on the lock and no lock stealing is allowed.
83  */
84 #if _Q_PENDING_BITS == 8
85 static __always_inline void set_pending(struct qspinlock *lock)
86 {
87         struct __qspinlock *l = (void *)lock;
88
89         WRITE_ONCE(l->pending, 1);
90 }
91
92 static __always_inline void clear_pending(struct qspinlock *lock)
93 {
94         struct __qspinlock *l = (void *)lock;
95
96         WRITE_ONCE(l->pending, 0);
97 }
98
99 /*
100  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
101  * barrier. Therefore, an atomic cmpxchg() is used to acquire the lock
102  * just to be sure that it will get it.
103  */
104 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
105 {
106         struct __qspinlock *l = (void *)lock;
107
108         return !READ_ONCE(l->locked) &&
109                (cmpxchg(&l->locked_pending, _Q_PENDING_VAL, _Q_LOCKED_VAL)
110                         == _Q_PENDING_VAL);
111 }
112 #else /* _Q_PENDING_BITS == 8 */
113 static __always_inline void set_pending(struct qspinlock *lock)
114 {
115         atomic_or(_Q_PENDING_VAL, &lock->val);
116 }
117
118 static __always_inline void clear_pending(struct qspinlock *lock)
119 {
120         atomic_andnot(_Q_PENDING_VAL, &lock->val);
121 }
122
123 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
124 {
125         int val = atomic_read(&lock->val);
126
127         for (;;) {
128                 int old, new;
129
130                 if (val  & _Q_LOCKED_MASK)
131                         break;
132
133                 /*
134                  * Try to clear pending bit & set locked bit
135                  */
136                 old = val;
137                 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
138                 val = atomic_cmpxchg(&lock->val, old, new);
139
140                 if (val == old)
141                         return 1;
142         }
143         return 0;
144 }
145 #endif /* _Q_PENDING_BITS == 8 */
146
147 /*
148  * Lock and MCS node addresses hash table for fast lookup
149  *
150  * Hashing is done on a per-cacheline basis to minimize the need to access
151  * more than one cacheline.
152  *
153  * Dynamically allocate a hash table big enough to hold at least 4X the
154  * number of possible cpus in the system. Allocation is done on page
155  * granularity. So the minimum number of hash buckets should be at least
156  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
157  *
158  * Since we should not be holding locks from NMI context (very rare indeed) the
159  * max load factor is 0.75, which is around the point where open addressing
160  * breaks down.
161  *
162  */
163 struct pv_hash_entry {
164         struct qspinlock *lock;
165         struct pv_node   *node;
166 };
167
168 #define PV_HE_PER_LINE  (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
169 #define PV_HE_MIN       (PAGE_SIZE / sizeof(struct pv_hash_entry))
170
171 static struct pv_hash_entry *pv_lock_hash;
172 static unsigned int pv_lock_hash_bits __read_mostly;
173
174 /*
175  * Allocate memory for the PV qspinlock hash buckets
176  *
177  * This function should be called from the paravirt spinlock initialization
178  * routine.
179  */
180 void __init __pv_init_lock_hash(void)
181 {
182         int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
183
184         if (pv_hash_size < PV_HE_MIN)
185                 pv_hash_size = PV_HE_MIN;
186
187         /*
188          * Allocate space from bootmem which should be page-size aligned
189          * and hence cacheline aligned.
190          */
191         pv_lock_hash = alloc_large_system_hash("PV qspinlock",
192                                                sizeof(struct pv_hash_entry),
193                                                pv_hash_size, 0, HASH_EARLY,
194                                                &pv_lock_hash_bits, NULL,
195                                                pv_hash_size, pv_hash_size);
196 }
197
198 #define for_each_hash_entry(he, offset, hash)                                           \
199         for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;       \
200              offset < (1 << pv_lock_hash_bits);                                         \
201              offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
202
203 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
204 {
205         unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
206         struct pv_hash_entry *he;
207         int hopcnt = 0;
208
209         for_each_hash_entry(he, offset, hash) {
210                 hopcnt++;
211                 if (!cmpxchg(&he->lock, NULL, lock)) {
212                         WRITE_ONCE(he->node, node);
213                         qstat_hop(hopcnt);
214                         return &he->lock;
215                 }
216         }
217         /*
218          * Hard assume there is a free entry for us.
219          *
220          * This is guaranteed by ensuring every blocked lock only ever consumes
221          * a single entry, and since we only have 4 nesting levels per CPU
222          * and allocated 4*nr_possible_cpus(), this must be so.
223          *
224          * The single entry is guaranteed by having the lock owner unhash
225          * before it releases.
226          */
227         BUG();
228 }
229
230 static struct pv_node *pv_unhash(struct qspinlock *lock)
231 {
232         unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
233         struct pv_hash_entry *he;
234         struct pv_node *node;
235
236         for_each_hash_entry(he, offset, hash) {
237                 if (READ_ONCE(he->lock) == lock) {
238                         node = READ_ONCE(he->node);
239                         WRITE_ONCE(he->lock, NULL);
240                         return node;
241                 }
242         }
243         /*
244          * Hard assume we'll find an entry.
245          *
246          * This guarantees a limited lookup time and is itself guaranteed by
247          * having the lock owner do the unhash -- IFF the unlock sees the
248          * SLOW flag, there MUST be a hash entry.
249          */
250         BUG();
251 }
252
253 /*
254  * Return true if when it is time to check the previous node which is not
255  * in a running state.
256  */
257 static inline bool
258 pv_wait_early(struct pv_node *prev, int loop)
259 {
260
261         if ((loop & PV_PREV_CHECK_MASK) != 0)
262                 return false;
263
264         return READ_ONCE(prev->state) != vcpu_running;
265 }
266
267 /*
268  * Initialize the PV part of the mcs_spinlock node.
269  */
270 static void pv_init_node(struct mcs_spinlock *node)
271 {
272         struct pv_node *pn = (struct pv_node *)node;
273
274         BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
275
276         pn->cpu = smp_processor_id();
277         pn->state = vcpu_running;
278 }
279
280 /*
281  * Wait for node->locked to become true, halt the vcpu after a short spin.
282  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
283  * behalf.
284  */
285 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
286 {
287         struct pv_node *pn = (struct pv_node *)node;
288         struct pv_node *pp = (struct pv_node *)prev;
289         int waitcnt = 0;
290         int loop;
291         bool wait_early;
292
293         /* waitcnt processing will be compiled out if !QUEUED_LOCK_STAT */
294         for (;; waitcnt++) {
295                 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
296                         if (READ_ONCE(node->locked))
297                                 return;
298                         if (pv_wait_early(pp, loop)) {
299                                 wait_early = true;
300                                 break;
301                         }
302                         cpu_relax();
303                 }
304
305                 /*
306                  * Order pn->state vs pn->locked thusly:
307                  *
308                  * [S] pn->state = vcpu_halted    [S] next->locked = 1
309                  *     MB                             MB
310                  * [L] pn->locked               [RmW] pn->state = vcpu_hashed
311                  *
312                  * Matches the cmpxchg() from pv_kick_node().
313                  */
314                 smp_store_mb(pn->state, vcpu_halted);
315
316                 if (!READ_ONCE(node->locked)) {
317                         qstat_inc(qstat_pv_wait_node, true);
318                         qstat_inc(qstat_pv_wait_again, waitcnt);
319                         qstat_inc(qstat_pv_wait_early, wait_early);
320                         pv_wait(&pn->state, vcpu_halted);
321                 }
322
323                 /*
324                  * If pv_kick_node() changed us to vcpu_hashed, retain that
325                  * value so that pv_wait_head_or_lock() knows to not also try
326                  * to hash this lock.
327                  */
328                 cmpxchg(&pn->state, vcpu_halted, vcpu_running);
329
330                 /*
331                  * If the locked flag is still not set after wakeup, it is a
332                  * spurious wakeup and the vCPU should wait again. However,
333                  * there is a pretty high overhead for CPU halting and kicking.
334                  * So it is better to spin for a while in the hope that the
335                  * MCS lock will be released soon.
336                  */
337                 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
338         }
339
340         /*
341          * By now our node->locked should be 1 and our caller will not actually
342          * spin-wait for it. We do however rely on our caller to do a
343          * load-acquire for us.
344          */
345 }
346
347 /*
348  * Called after setting next->locked = 1 when we're the lock owner.
349  *
350  * Instead of waking the waiters stuck in pv_wait_node() advance their state
351  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
352  * wake/sleep cycle.
353  */
354 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
355 {
356         struct pv_node *pn = (struct pv_node *)node;
357         struct __qspinlock *l = (void *)lock;
358
359         /*
360          * If the vCPU is indeed halted, advance its state to match that of
361          * pv_wait_node(). If OTOH this fails, the vCPU was running and will
362          * observe its next->locked value and advance itself.
363          *
364          * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
365          */
366         if (cmpxchg(&pn->state, vcpu_halted, vcpu_hashed) != vcpu_halted)
367                 return;
368
369         /*
370          * Put the lock into the hash table and set the _Q_SLOW_VAL.
371          *
372          * As this is the same vCPU that will check the _Q_SLOW_VAL value and
373          * the hash table later on at unlock time, no atomic instruction is
374          * needed.
375          */
376         WRITE_ONCE(l->locked, _Q_SLOW_VAL);
377         (void)pv_hash(lock, pn);
378 }
379
380 /*
381  * Wait for l->locked to become clear and acquire the lock;
382  * halt the vcpu after a short spin.
383  * __pv_queued_spin_unlock() will wake us.
384  *
385  * The current value of the lock will be returned for additional processing.
386  */
387 static u32
388 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
389 {
390         struct pv_node *pn = (struct pv_node *)node;
391         struct __qspinlock *l = (void *)lock;
392         struct qspinlock **lp = NULL;
393         int waitcnt = 0;
394         int loop;
395
396         /*
397          * If pv_kick_node() already advanced our state, we don't need to
398          * insert ourselves into the hash table anymore.
399          */
400         if (READ_ONCE(pn->state) == vcpu_hashed)
401                 lp = (struct qspinlock **)1;
402
403         /*
404          * Tracking # of slowpath locking operations
405          */
406         qstat_inc(qstat_pv_lock_slowpath, true);
407
408         for (;; waitcnt++) {
409                 /*
410                  * Set correct vCPU state to be used by queue node wait-early
411                  * mechanism.
412                  */
413                 WRITE_ONCE(pn->state, vcpu_running);
414
415                 /*
416                  * Set the pending bit in the active lock spinning loop to
417                  * disable lock stealing before attempting to acquire the lock.
418                  */
419                 set_pending(lock);
420                 for (loop = SPIN_THRESHOLD; loop; loop--) {
421                         if (trylock_clear_pending(lock))
422                                 goto gotlock;
423                         cpu_relax();
424                 }
425                 clear_pending(lock);
426
427
428                 if (!lp) { /* ONCE */
429                         lp = pv_hash(lock, pn);
430
431                         /*
432                          * We must hash before setting _Q_SLOW_VAL, such that
433                          * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
434                          * we'll be sure to be able to observe our hash entry.
435                          *
436                          *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
437                          *       MB                           RMB
438                          * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
439                          *
440                          * Matches the smp_rmb() in __pv_queued_spin_unlock().
441                          */
442                         if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
443                                 /*
444                                  * The lock was free and now we own the lock.
445                                  * Change the lock value back to _Q_LOCKED_VAL
446                                  * and unhash the table.
447                                  */
448                                 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
449                                 WRITE_ONCE(*lp, NULL);
450                                 goto gotlock;
451                         }
452                 }
453                 WRITE_ONCE(pn->state, vcpu_hashed);
454                 qstat_inc(qstat_pv_wait_head, true);
455                 qstat_inc(qstat_pv_wait_again, waitcnt);
456                 pv_wait(&l->locked, _Q_SLOW_VAL);
457
458                 /*
459                  * The unlocker should have freed the lock before kicking the
460                  * CPU. So if the lock is still not free, it is a spurious
461                  * wakeup or another vCPU has stolen the lock. The current
462                  * vCPU should spin again.
463                  */
464                 qstat_inc(qstat_pv_spurious_wakeup, READ_ONCE(l->locked));
465         }
466
467         /*
468          * The cmpxchg() or xchg() call before coming here provides the
469          * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
470          * here is to indicate to the compiler that the value will always
471          * be nozero to enable better code optimization.
472          */
473 gotlock:
474         return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
475 }
476
477 /*
478  * PV versions of the unlock fastpath and slowpath functions to be used
479  * instead of queued_spin_unlock().
480  */
481 __visible void
482 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
483 {
484         struct __qspinlock *l = (void *)lock;
485         struct pv_node *node;
486
487         if (unlikely(locked != _Q_SLOW_VAL)) {
488                 WARN(!debug_locks_silent,
489                      "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
490                      (unsigned long)lock, atomic_read(&lock->val));
491                 return;
492         }
493
494         /*
495          * A failed cmpxchg doesn't provide any memory-ordering guarantees,
496          * so we need a barrier to order the read of the node data in
497          * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
498          *
499          * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
500          */
501         smp_rmb();
502
503         /*
504          * Since the above failed to release, this must be the SLOW path.
505          * Therefore start by looking up the blocked node and unhashing it.
506          */
507         node = pv_unhash(lock);
508
509         /*
510          * Now that we have a reference to the (likely) blocked pv_node,
511          * release the lock.
512          */
513         smp_store_release(&l->locked, 0);
514
515         /*
516          * At this point the memory pointed at by lock can be freed/reused,
517          * however we can still use the pv_node to kick the CPU.
518          * The other vCPU may not really be halted, but kicking an active
519          * vCPU is harmless other than the additional latency in completing
520          * the unlock.
521          */
522         qstat_inc(qstat_pv_kick_unlock, true);
523         pv_kick(node->cpu);
524 }
525
526 /*
527  * Include the architecture specific callee-save thunk of the
528  * __pv_queued_spin_unlock(). This thunk is put together with
529  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
530  * function close to each other sharing consecutive instruction cachelines.
531  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
532  * can be defined.
533  */
534 #include <asm/qspinlock_paravirt.h>
535
536 #ifndef __pv_queued_spin_unlock
537 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
538 {
539         struct __qspinlock *l = (void *)lock;
540         u8 locked;
541
542         /*
543          * We must not unlock if SLOW, because in that case we must first
544          * unhash. Otherwise it would be possible to have multiple @lock
545          * entries, which would be BAD.
546          */
547         locked = cmpxchg(&l->locked, _Q_LOCKED_VAL, 0);
548         if (likely(locked == _Q_LOCKED_VAL))
549                 return;
550
551         __pv_queued_spin_unlock_slowpath(lock, locked);
552 }
553 #endif /* __pv_queued_spin_unlock */