ath10k: add trace event for WMI_DEBUG_MESG_EVENTID
[cascardo/linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone_end_pfn(zone);
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646                 (unsigned long long) start_pfn << PAGE_SHIFT,
647                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663
664 void swsusp_set_page_free(struct page *page)
665 {
666         if (free_pages_map)
667                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669
670 static int swsusp_page_is_free(struct page *page)
671 {
672         return free_pages_map ?
673                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 void swsusp_unset_page_free(struct page *page)
677 {
678         if (free_pages_map)
679                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684         if (forbidden_pages_map)
685                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690         return forbidden_pages_map ?
691                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696         if (forbidden_pages_map)
697                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699
700 /**
701  *      mark_nosave_pages - set bits corresponding to the page frames the
702  *      contents of which should not be saved in a given bitmap.
703  */
704
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707         struct nosave_region *region;
708
709         if (list_empty(&nosave_regions))
710                 return;
711
712         list_for_each_entry(region, &nosave_regions, list) {
713                 unsigned long pfn;
714
715                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
717                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718                                 - 1);
719
720                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721                         if (pfn_valid(pfn)) {
722                                 /*
723                                  * It is safe to ignore the result of
724                                  * mem_bm_set_bit_check() here, since we won't
725                                  * touch the PFNs for which the error is
726                                  * returned anyway.
727                                  */
728                                 mem_bm_set_bit_check(bm, pfn);
729                         }
730         }
731 }
732
733 /**
734  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *      frames that should not be saved and free page frames.  The pointers
736  *      forbidden_pages_map and free_pages_map are only modified if everything
737  *      goes well, because we don't want the bits to be used before both bitmaps
738  *      are set up.
739  */
740
741 int create_basic_memory_bitmaps(void)
742 {
743         struct memory_bitmap *bm1, *bm2;
744         int error = 0;
745
746         if (forbidden_pages_map && free_pages_map)
747                 return 0;
748         else
749                 BUG_ON(forbidden_pages_map || free_pages_map);
750
751         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
752         if (!bm1)
753                 return -ENOMEM;
754
755         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
756         if (error)
757                 goto Free_first_object;
758
759         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760         if (!bm2)
761                 goto Free_first_bitmap;
762
763         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
764         if (error)
765                 goto Free_second_object;
766
767         forbidden_pages_map = bm1;
768         free_pages_map = bm2;
769         mark_nosave_pages(forbidden_pages_map);
770
771         pr_debug("PM: Basic memory bitmaps created\n");
772
773         return 0;
774
775  Free_second_object:
776         kfree(bm2);
777  Free_first_bitmap:
778         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779  Free_first_object:
780         kfree(bm1);
781         return -ENOMEM;
782 }
783
784 /**
785  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
786  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
787  *      so that the bitmaps themselves are not referred to while they are being
788  *      freed.
789  */
790
791 void free_basic_memory_bitmaps(void)
792 {
793         struct memory_bitmap *bm1, *bm2;
794
795         BUG_ON(!(forbidden_pages_map && free_pages_map));
796
797         bm1 = forbidden_pages_map;
798         bm2 = free_pages_map;
799         forbidden_pages_map = NULL;
800         free_pages_map = NULL;
801         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
802         kfree(bm1);
803         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
804         kfree(bm2);
805
806         pr_debug("PM: Basic memory bitmaps freed\n");
807 }
808
809 /**
810  *      snapshot_additional_pages - estimate the number of additional pages
811  *      be needed for setting up the suspend image data structures for given
812  *      zone (usually the returned value is greater than the exact number)
813  */
814
815 unsigned int snapshot_additional_pages(struct zone *zone)
816 {
817         unsigned int res;
818
819         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
820         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
821                             LINKED_PAGE_DATA_SIZE);
822         return 2 * res;
823 }
824
825 #ifdef CONFIG_HIGHMEM
826 /**
827  *      count_free_highmem_pages - compute the total number of free highmem
828  *      pages, system-wide.
829  */
830
831 static unsigned int count_free_highmem_pages(void)
832 {
833         struct zone *zone;
834         unsigned int cnt = 0;
835
836         for_each_populated_zone(zone)
837                 if (is_highmem(zone))
838                         cnt += zone_page_state(zone, NR_FREE_PAGES);
839
840         return cnt;
841 }
842
843 /**
844  *      saveable_highmem_page - Determine whether a highmem page should be
845  *      included in the suspend image.
846  *
847  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
848  *      and it isn't a part of a free chunk of pages.
849  */
850 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
851 {
852         struct page *page;
853
854         if (!pfn_valid(pfn))
855                 return NULL;
856
857         page = pfn_to_page(pfn);
858         if (page_zone(page) != zone)
859                 return NULL;
860
861         BUG_ON(!PageHighMem(page));
862
863         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
864             PageReserved(page))
865                 return NULL;
866
867         if (page_is_guard(page))
868                 return NULL;
869
870         return page;
871 }
872
873 /**
874  *      count_highmem_pages - compute the total number of saveable highmem
875  *      pages.
876  */
877
878 static unsigned int count_highmem_pages(void)
879 {
880         struct zone *zone;
881         unsigned int n = 0;
882
883         for_each_populated_zone(zone) {
884                 unsigned long pfn, max_zone_pfn;
885
886                 if (!is_highmem(zone))
887                         continue;
888
889                 mark_free_pages(zone);
890                 max_zone_pfn = zone_end_pfn(zone);
891                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
892                         if (saveable_highmem_page(zone, pfn))
893                                 n++;
894         }
895         return n;
896 }
897 #else
898 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
899 {
900         return NULL;
901 }
902 #endif /* CONFIG_HIGHMEM */
903
904 /**
905  *      saveable_page - Determine whether a non-highmem page should be included
906  *      in the suspend image.
907  *
908  *      We should save the page if it isn't Nosave, and is not in the range
909  *      of pages statically defined as 'unsaveable', and it isn't a part of
910  *      a free chunk of pages.
911  */
912 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
913 {
914         struct page *page;
915
916         if (!pfn_valid(pfn))
917                 return NULL;
918
919         page = pfn_to_page(pfn);
920         if (page_zone(page) != zone)
921                 return NULL;
922
923         BUG_ON(PageHighMem(page));
924
925         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
926                 return NULL;
927
928         if (PageReserved(page)
929             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
930                 return NULL;
931
932         if (page_is_guard(page))
933                 return NULL;
934
935         return page;
936 }
937
938 /**
939  *      count_data_pages - compute the total number of saveable non-highmem
940  *      pages.
941  */
942
943 static unsigned int count_data_pages(void)
944 {
945         struct zone *zone;
946         unsigned long pfn, max_zone_pfn;
947         unsigned int n = 0;
948
949         for_each_populated_zone(zone) {
950                 if (is_highmem(zone))
951                         continue;
952
953                 mark_free_pages(zone);
954                 max_zone_pfn = zone_end_pfn(zone);
955                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
956                         if (saveable_page(zone, pfn))
957                                 n++;
958         }
959         return n;
960 }
961
962 /* This is needed, because copy_page and memcpy are not usable for copying
963  * task structs.
964  */
965 static inline void do_copy_page(long *dst, long *src)
966 {
967         int n;
968
969         for (n = PAGE_SIZE / sizeof(long); n; n--)
970                 *dst++ = *src++;
971 }
972
973
974 /**
975  *      safe_copy_page - check if the page we are going to copy is marked as
976  *              present in the kernel page tables (this always is the case if
977  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
978  *              kernel_page_present() always returns 'true').
979  */
980 static void safe_copy_page(void *dst, struct page *s_page)
981 {
982         if (kernel_page_present(s_page)) {
983                 do_copy_page(dst, page_address(s_page));
984         } else {
985                 kernel_map_pages(s_page, 1, 1);
986                 do_copy_page(dst, page_address(s_page));
987                 kernel_map_pages(s_page, 1, 0);
988         }
989 }
990
991
992 #ifdef CONFIG_HIGHMEM
993 static inline struct page *
994 page_is_saveable(struct zone *zone, unsigned long pfn)
995 {
996         return is_highmem(zone) ?
997                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
998 }
999
1000 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002         struct page *s_page, *d_page;
1003         void *src, *dst;
1004
1005         s_page = pfn_to_page(src_pfn);
1006         d_page = pfn_to_page(dst_pfn);
1007         if (PageHighMem(s_page)) {
1008                 src = kmap_atomic(s_page);
1009                 dst = kmap_atomic(d_page);
1010                 do_copy_page(dst, src);
1011                 kunmap_atomic(dst);
1012                 kunmap_atomic(src);
1013         } else {
1014                 if (PageHighMem(d_page)) {
1015                         /* Page pointed to by src may contain some kernel
1016                          * data modified by kmap_atomic()
1017                          */
1018                         safe_copy_page(buffer, s_page);
1019                         dst = kmap_atomic(d_page);
1020                         copy_page(dst, buffer);
1021                         kunmap_atomic(dst);
1022                 } else {
1023                         safe_copy_page(page_address(d_page), s_page);
1024                 }
1025         }
1026 }
1027 #else
1028 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1029
1030 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1031 {
1032         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1033                                 pfn_to_page(src_pfn));
1034 }
1035 #endif /* CONFIG_HIGHMEM */
1036
1037 static void
1038 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1039 {
1040         struct zone *zone;
1041         unsigned long pfn;
1042
1043         for_each_populated_zone(zone) {
1044                 unsigned long max_zone_pfn;
1045
1046                 mark_free_pages(zone);
1047                 max_zone_pfn = zone_end_pfn(zone);
1048                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1049                         if (page_is_saveable(zone, pfn))
1050                                 memory_bm_set_bit(orig_bm, pfn);
1051         }
1052         memory_bm_position_reset(orig_bm);
1053         memory_bm_position_reset(copy_bm);
1054         for(;;) {
1055                 pfn = memory_bm_next_pfn(orig_bm);
1056                 if (unlikely(pfn == BM_END_OF_MAP))
1057                         break;
1058                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1059         }
1060 }
1061
1062 /* Total number of image pages */
1063 static unsigned int nr_copy_pages;
1064 /* Number of pages needed for saving the original pfns of the image pages */
1065 static unsigned int nr_meta_pages;
1066 /*
1067  * Numbers of normal and highmem page frames allocated for hibernation image
1068  * before suspending devices.
1069  */
1070 unsigned int alloc_normal, alloc_highmem;
1071 /*
1072  * Memory bitmap used for marking saveable pages (during hibernation) or
1073  * hibernation image pages (during restore)
1074  */
1075 static struct memory_bitmap orig_bm;
1076 /*
1077  * Memory bitmap used during hibernation for marking allocated page frames that
1078  * will contain copies of saveable pages.  During restore it is initially used
1079  * for marking hibernation image pages, but then the set bits from it are
1080  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1081  * used for marking "safe" highmem pages, but it has to be reinitialized for
1082  * this purpose.
1083  */
1084 static struct memory_bitmap copy_bm;
1085
1086 /**
1087  *      swsusp_free - free pages allocated for the suspend.
1088  *
1089  *      Suspend pages are alocated before the atomic copy is made, so we
1090  *      need to release them after the resume.
1091  */
1092
1093 void swsusp_free(void)
1094 {
1095         struct zone *zone;
1096         unsigned long pfn, max_zone_pfn;
1097
1098         for_each_populated_zone(zone) {
1099                 max_zone_pfn = zone_end_pfn(zone);
1100                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1101                         if (pfn_valid(pfn)) {
1102                                 struct page *page = pfn_to_page(pfn);
1103
1104                                 if (swsusp_page_is_forbidden(page) &&
1105                                     swsusp_page_is_free(page)) {
1106                                         swsusp_unset_page_forbidden(page);
1107                                         swsusp_unset_page_free(page);
1108                                         __free_page(page);
1109                                 }
1110                         }
1111         }
1112         nr_copy_pages = 0;
1113         nr_meta_pages = 0;
1114         restore_pblist = NULL;
1115         buffer = NULL;
1116         alloc_normal = 0;
1117         alloc_highmem = 0;
1118 }
1119
1120 /* Helper functions used for the shrinking of memory. */
1121
1122 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1123
1124 /**
1125  * preallocate_image_pages - Allocate a number of pages for hibernation image
1126  * @nr_pages: Number of page frames to allocate.
1127  * @mask: GFP flags to use for the allocation.
1128  *
1129  * Return value: Number of page frames actually allocated
1130  */
1131 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1132 {
1133         unsigned long nr_alloc = 0;
1134
1135         while (nr_pages > 0) {
1136                 struct page *page;
1137
1138                 page = alloc_image_page(mask);
1139                 if (!page)
1140                         break;
1141                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1142                 if (PageHighMem(page))
1143                         alloc_highmem++;
1144                 else
1145                         alloc_normal++;
1146                 nr_pages--;
1147                 nr_alloc++;
1148         }
1149
1150         return nr_alloc;
1151 }
1152
1153 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1154                                               unsigned long avail_normal)
1155 {
1156         unsigned long alloc;
1157
1158         if (avail_normal <= alloc_normal)
1159                 return 0;
1160
1161         alloc = avail_normal - alloc_normal;
1162         if (nr_pages < alloc)
1163                 alloc = nr_pages;
1164
1165         return preallocate_image_pages(alloc, GFP_IMAGE);
1166 }
1167
1168 #ifdef CONFIG_HIGHMEM
1169 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170 {
1171         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1172 }
1173
1174 /**
1175  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1176  */
1177 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1178 {
1179         x *= multiplier;
1180         do_div(x, base);
1181         return (unsigned long)x;
1182 }
1183
1184 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1185                                                 unsigned long highmem,
1186                                                 unsigned long total)
1187 {
1188         unsigned long alloc = __fraction(nr_pages, highmem, total);
1189
1190         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1191 }
1192 #else /* CONFIG_HIGHMEM */
1193 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1194 {
1195         return 0;
1196 }
1197
1198 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1199                                                 unsigned long highmem,
1200                                                 unsigned long total)
1201 {
1202         return 0;
1203 }
1204 #endif /* CONFIG_HIGHMEM */
1205
1206 /**
1207  * free_unnecessary_pages - Release preallocated pages not needed for the image
1208  */
1209 static void free_unnecessary_pages(void)
1210 {
1211         unsigned long save, to_free_normal, to_free_highmem;
1212
1213         save = count_data_pages();
1214         if (alloc_normal >= save) {
1215                 to_free_normal = alloc_normal - save;
1216                 save = 0;
1217         } else {
1218                 to_free_normal = 0;
1219                 save -= alloc_normal;
1220         }
1221         save += count_highmem_pages();
1222         if (alloc_highmem >= save) {
1223                 to_free_highmem = alloc_highmem - save;
1224         } else {
1225                 to_free_highmem = 0;
1226                 save -= alloc_highmem;
1227                 if (to_free_normal > save)
1228                         to_free_normal -= save;
1229                 else
1230                         to_free_normal = 0;
1231         }
1232
1233         memory_bm_position_reset(&copy_bm);
1234
1235         while (to_free_normal > 0 || to_free_highmem > 0) {
1236                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1237                 struct page *page = pfn_to_page(pfn);
1238
1239                 if (PageHighMem(page)) {
1240                         if (!to_free_highmem)
1241                                 continue;
1242                         to_free_highmem--;
1243                         alloc_highmem--;
1244                 } else {
1245                         if (!to_free_normal)
1246                                 continue;
1247                         to_free_normal--;
1248                         alloc_normal--;
1249                 }
1250                 memory_bm_clear_bit(&copy_bm, pfn);
1251                 swsusp_unset_page_forbidden(page);
1252                 swsusp_unset_page_free(page);
1253                 __free_page(page);
1254         }
1255 }
1256
1257 /**
1258  * minimum_image_size - Estimate the minimum acceptable size of an image
1259  * @saveable: Number of saveable pages in the system.
1260  *
1261  * We want to avoid attempting to free too much memory too hard, so estimate the
1262  * minimum acceptable size of a hibernation image to use as the lower limit for
1263  * preallocating memory.
1264  *
1265  * We assume that the minimum image size should be proportional to
1266  *
1267  * [number of saveable pages] - [number of pages that can be freed in theory]
1268  *
1269  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1270  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1271  * minus mapped file pages.
1272  */
1273 static unsigned long minimum_image_size(unsigned long saveable)
1274 {
1275         unsigned long size;
1276
1277         size = global_page_state(NR_SLAB_RECLAIMABLE)
1278                 + global_page_state(NR_ACTIVE_ANON)
1279                 + global_page_state(NR_INACTIVE_ANON)
1280                 + global_page_state(NR_ACTIVE_FILE)
1281                 + global_page_state(NR_INACTIVE_FILE)
1282                 - global_page_state(NR_FILE_MAPPED);
1283
1284         return saveable <= size ? 0 : saveable - size;
1285 }
1286
1287 /**
1288  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1289  *
1290  * To create a hibernation image it is necessary to make a copy of every page
1291  * frame in use.  We also need a number of page frames to be free during
1292  * hibernation for allocations made while saving the image and for device
1293  * drivers, in case they need to allocate memory from their hibernation
1294  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1295  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1296  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1297  * total number of available page frames and allocate at least
1298  *
1299  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1300  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1301  *
1302  * of them, which corresponds to the maximum size of a hibernation image.
1303  *
1304  * If image_size is set below the number following from the above formula,
1305  * the preallocation of memory is continued until the total number of saveable
1306  * pages in the system is below the requested image size or the minimum
1307  * acceptable image size returned by minimum_image_size(), whichever is greater.
1308  */
1309 int hibernate_preallocate_memory(void)
1310 {
1311         struct zone *zone;
1312         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1313         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1314         struct timeval start, stop;
1315         int error;
1316
1317         printk(KERN_INFO "PM: Preallocating image memory... ");
1318         do_gettimeofday(&start);
1319
1320         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1321         if (error)
1322                 goto err_out;
1323
1324         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1325         if (error)
1326                 goto err_out;
1327
1328         alloc_normal = 0;
1329         alloc_highmem = 0;
1330
1331         /* Count the number of saveable data pages. */
1332         save_highmem = count_highmem_pages();
1333         saveable = count_data_pages();
1334
1335         /*
1336          * Compute the total number of page frames we can use (count) and the
1337          * number of pages needed for image metadata (size).
1338          */
1339         count = saveable;
1340         saveable += save_highmem;
1341         highmem = save_highmem;
1342         size = 0;
1343         for_each_populated_zone(zone) {
1344                 size += snapshot_additional_pages(zone);
1345                 if (is_highmem(zone))
1346                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1347                 else
1348                         count += zone_page_state(zone, NR_FREE_PAGES);
1349         }
1350         avail_normal = count;
1351         count += highmem;
1352         count -= totalreserve_pages;
1353
1354         /* Add number of pages required for page keys (s390 only). */
1355         size += page_key_additional_pages(saveable);
1356
1357         /* Compute the maximum number of saveable pages to leave in memory. */
1358         max_size = (count - (size + PAGES_FOR_IO)) / 2
1359                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1360         /* Compute the desired number of image pages specified by image_size. */
1361         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1362         if (size > max_size)
1363                 size = max_size;
1364         /*
1365          * If the desired number of image pages is at least as large as the
1366          * current number of saveable pages in memory, allocate page frames for
1367          * the image and we're done.
1368          */
1369         if (size >= saveable) {
1370                 pages = preallocate_image_highmem(save_highmem);
1371                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1372                 goto out;
1373         }
1374
1375         /* Estimate the minimum size of the image. */
1376         pages = minimum_image_size(saveable);
1377         /*
1378          * To avoid excessive pressure on the normal zone, leave room in it to
1379          * accommodate an image of the minimum size (unless it's already too
1380          * small, in which case don't preallocate pages from it at all).
1381          */
1382         if (avail_normal > pages)
1383                 avail_normal -= pages;
1384         else
1385                 avail_normal = 0;
1386         if (size < pages)
1387                 size = min_t(unsigned long, pages, max_size);
1388
1389         /*
1390          * Let the memory management subsystem know that we're going to need a
1391          * large number of page frames to allocate and make it free some memory.
1392          * NOTE: If this is not done, performance will be hurt badly in some
1393          * test cases.
1394          */
1395         shrink_all_memory(saveable - size);
1396
1397         /*
1398          * The number of saveable pages in memory was too high, so apply some
1399          * pressure to decrease it.  First, make room for the largest possible
1400          * image and fail if that doesn't work.  Next, try to decrease the size
1401          * of the image as much as indicated by 'size' using allocations from
1402          * highmem and non-highmem zones separately.
1403          */
1404         pages_highmem = preallocate_image_highmem(highmem / 2);
1405         alloc = count - max_size;
1406         if (alloc > pages_highmem)
1407                 alloc -= pages_highmem;
1408         else
1409                 alloc = 0;
1410         pages = preallocate_image_memory(alloc, avail_normal);
1411         if (pages < alloc) {
1412                 /* We have exhausted non-highmem pages, try highmem. */
1413                 alloc -= pages;
1414                 pages += pages_highmem;
1415                 pages_highmem = preallocate_image_highmem(alloc);
1416                 if (pages_highmem < alloc)
1417                         goto err_out;
1418                 pages += pages_highmem;
1419                 /*
1420                  * size is the desired number of saveable pages to leave in
1421                  * memory, so try to preallocate (all memory - size) pages.
1422                  */
1423                 alloc = (count - pages) - size;
1424                 pages += preallocate_image_highmem(alloc);
1425         } else {
1426                 /*
1427                  * There are approximately max_size saveable pages at this point
1428                  * and we want to reduce this number down to size.
1429                  */
1430                 alloc = max_size - size;
1431                 size = preallocate_highmem_fraction(alloc, highmem, count);
1432                 pages_highmem += size;
1433                 alloc -= size;
1434                 size = preallocate_image_memory(alloc, avail_normal);
1435                 pages_highmem += preallocate_image_highmem(alloc - size);
1436                 pages += pages_highmem + size;
1437         }
1438
1439         /*
1440          * We only need as many page frames for the image as there are saveable
1441          * pages in memory, but we have allocated more.  Release the excessive
1442          * ones now.
1443          */
1444         free_unnecessary_pages();
1445
1446  out:
1447         do_gettimeofday(&stop);
1448         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1449         swsusp_show_speed(&start, &stop, pages, "Allocated");
1450
1451         return 0;
1452
1453  err_out:
1454         printk(KERN_CONT "\n");
1455         swsusp_free();
1456         return -ENOMEM;
1457 }
1458
1459 #ifdef CONFIG_HIGHMEM
1460 /**
1461   *     count_pages_for_highmem - compute the number of non-highmem pages
1462   *     that will be necessary for creating copies of highmem pages.
1463   */
1464
1465 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1466 {
1467         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1468
1469         if (free_highmem >= nr_highmem)
1470                 nr_highmem = 0;
1471         else
1472                 nr_highmem -= free_highmem;
1473
1474         return nr_highmem;
1475 }
1476 #else
1477 static unsigned int
1478 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1479 #endif /* CONFIG_HIGHMEM */
1480
1481 /**
1482  *      enough_free_mem - Make sure we have enough free memory for the
1483  *      snapshot image.
1484  */
1485
1486 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1487 {
1488         struct zone *zone;
1489         unsigned int free = alloc_normal;
1490
1491         for_each_populated_zone(zone)
1492                 if (!is_highmem(zone))
1493                         free += zone_page_state(zone, NR_FREE_PAGES);
1494
1495         nr_pages += count_pages_for_highmem(nr_highmem);
1496         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1497                 nr_pages, PAGES_FOR_IO, free);
1498
1499         return free > nr_pages + PAGES_FOR_IO;
1500 }
1501
1502 #ifdef CONFIG_HIGHMEM
1503 /**
1504  *      get_highmem_buffer - if there are some highmem pages in the suspend
1505  *      image, we may need the buffer to copy them and/or load their data.
1506  */
1507
1508 static inline int get_highmem_buffer(int safe_needed)
1509 {
1510         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1511         return buffer ? 0 : -ENOMEM;
1512 }
1513
1514 /**
1515  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1516  *      Try to allocate as many pages as needed, but if the number of free
1517  *      highmem pages is lesser than that, allocate them all.
1518  */
1519
1520 static inline unsigned int
1521 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1522 {
1523         unsigned int to_alloc = count_free_highmem_pages();
1524
1525         if (to_alloc > nr_highmem)
1526                 to_alloc = nr_highmem;
1527
1528         nr_highmem -= to_alloc;
1529         while (to_alloc-- > 0) {
1530                 struct page *page;
1531
1532                 page = alloc_image_page(__GFP_HIGHMEM);
1533                 memory_bm_set_bit(bm, page_to_pfn(page));
1534         }
1535         return nr_highmem;
1536 }
1537 #else
1538 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1539
1540 static inline unsigned int
1541 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1542 #endif /* CONFIG_HIGHMEM */
1543
1544 /**
1545  *      swsusp_alloc - allocate memory for the suspend image
1546  *
1547  *      We first try to allocate as many highmem pages as there are
1548  *      saveable highmem pages in the system.  If that fails, we allocate
1549  *      non-highmem pages for the copies of the remaining highmem ones.
1550  *
1551  *      In this approach it is likely that the copies of highmem pages will
1552  *      also be located in the high memory, because of the way in which
1553  *      copy_data_pages() works.
1554  */
1555
1556 static int
1557 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1558                 unsigned int nr_pages, unsigned int nr_highmem)
1559 {
1560         if (nr_highmem > 0) {
1561                 if (get_highmem_buffer(PG_ANY))
1562                         goto err_out;
1563                 if (nr_highmem > alloc_highmem) {
1564                         nr_highmem -= alloc_highmem;
1565                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1566                 }
1567         }
1568         if (nr_pages > alloc_normal) {
1569                 nr_pages -= alloc_normal;
1570                 while (nr_pages-- > 0) {
1571                         struct page *page;
1572
1573                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1574                         if (!page)
1575                                 goto err_out;
1576                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1577                 }
1578         }
1579
1580         return 0;
1581
1582  err_out:
1583         swsusp_free();
1584         return -ENOMEM;
1585 }
1586
1587 asmlinkage int swsusp_save(void)
1588 {
1589         unsigned int nr_pages, nr_highmem;
1590
1591         printk(KERN_INFO "PM: Creating hibernation image:\n");
1592
1593         drain_local_pages(NULL);
1594         nr_pages = count_data_pages();
1595         nr_highmem = count_highmem_pages();
1596         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1597
1598         if (!enough_free_mem(nr_pages, nr_highmem)) {
1599                 printk(KERN_ERR "PM: Not enough free memory\n");
1600                 return -ENOMEM;
1601         }
1602
1603         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1604                 printk(KERN_ERR "PM: Memory allocation failed\n");
1605                 return -ENOMEM;
1606         }
1607
1608         /* During allocating of suspend pagedir, new cold pages may appear.
1609          * Kill them.
1610          */
1611         drain_local_pages(NULL);
1612         copy_data_pages(&copy_bm, &orig_bm);
1613
1614         /*
1615          * End of critical section. From now on, we can write to memory,
1616          * but we should not touch disk. This specially means we must _not_
1617          * touch swap space! Except we must write out our image of course.
1618          */
1619
1620         nr_pages += nr_highmem;
1621         nr_copy_pages = nr_pages;
1622         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1623
1624         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1625                 nr_pages);
1626
1627         return 0;
1628 }
1629
1630 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1631 static int init_header_complete(struct swsusp_info *info)
1632 {
1633         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1634         info->version_code = LINUX_VERSION_CODE;
1635         return 0;
1636 }
1637
1638 static char *check_image_kernel(struct swsusp_info *info)
1639 {
1640         if (info->version_code != LINUX_VERSION_CODE)
1641                 return "kernel version";
1642         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1643                 return "system type";
1644         if (strcmp(info->uts.release,init_utsname()->release))
1645                 return "kernel release";
1646         if (strcmp(info->uts.version,init_utsname()->version))
1647                 return "version";
1648         if (strcmp(info->uts.machine,init_utsname()->machine))
1649                 return "machine";
1650         return NULL;
1651 }
1652 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1653
1654 unsigned long snapshot_get_image_size(void)
1655 {
1656         return nr_copy_pages + nr_meta_pages + 1;
1657 }
1658
1659 static int init_header(struct swsusp_info *info)
1660 {
1661         memset(info, 0, sizeof(struct swsusp_info));
1662         info->num_physpages = get_num_physpages();
1663         info->image_pages = nr_copy_pages;
1664         info->pages = snapshot_get_image_size();
1665         info->size = info->pages;
1666         info->size <<= PAGE_SHIFT;
1667         return init_header_complete(info);
1668 }
1669
1670 /**
1671  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1672  *      are stored in the array @buf[] (1 page at a time)
1673  */
1674
1675 static inline void
1676 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1677 {
1678         int j;
1679
1680         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1681                 buf[j] = memory_bm_next_pfn(bm);
1682                 if (unlikely(buf[j] == BM_END_OF_MAP))
1683                         break;
1684                 /* Save page key for data page (s390 only). */
1685                 page_key_read(buf + j);
1686         }
1687 }
1688
1689 /**
1690  *      snapshot_read_next - used for reading the system memory snapshot.
1691  *
1692  *      On the first call to it @handle should point to a zeroed
1693  *      snapshot_handle structure.  The structure gets updated and a pointer
1694  *      to it should be passed to this function every next time.
1695  *
1696  *      On success the function returns a positive number.  Then, the caller
1697  *      is allowed to read up to the returned number of bytes from the memory
1698  *      location computed by the data_of() macro.
1699  *
1700  *      The function returns 0 to indicate the end of data stream condition,
1701  *      and a negative number is returned on error.  In such cases the
1702  *      structure pointed to by @handle is not updated and should not be used
1703  *      any more.
1704  */
1705
1706 int snapshot_read_next(struct snapshot_handle *handle)
1707 {
1708         if (handle->cur > nr_meta_pages + nr_copy_pages)
1709                 return 0;
1710
1711         if (!buffer) {
1712                 /* This makes the buffer be freed by swsusp_free() */
1713                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1714                 if (!buffer)
1715                         return -ENOMEM;
1716         }
1717         if (!handle->cur) {
1718                 int error;
1719
1720                 error = init_header((struct swsusp_info *)buffer);
1721                 if (error)
1722                         return error;
1723                 handle->buffer = buffer;
1724                 memory_bm_position_reset(&orig_bm);
1725                 memory_bm_position_reset(&copy_bm);
1726         } else if (handle->cur <= nr_meta_pages) {
1727                 clear_page(buffer);
1728                 pack_pfns(buffer, &orig_bm);
1729         } else {
1730                 struct page *page;
1731
1732                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1733                 if (PageHighMem(page)) {
1734                         /* Highmem pages are copied to the buffer,
1735                          * because we can't return with a kmapped
1736                          * highmem page (we may not be called again).
1737                          */
1738                         void *kaddr;
1739
1740                         kaddr = kmap_atomic(page);
1741                         copy_page(buffer, kaddr);
1742                         kunmap_atomic(kaddr);
1743                         handle->buffer = buffer;
1744                 } else {
1745                         handle->buffer = page_address(page);
1746                 }
1747         }
1748         handle->cur++;
1749         return PAGE_SIZE;
1750 }
1751
1752 /**
1753  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1754  *      the image during resume, because they conflict with the pages that
1755  *      had been used before suspend
1756  */
1757
1758 static int mark_unsafe_pages(struct memory_bitmap *bm)
1759 {
1760         struct zone *zone;
1761         unsigned long pfn, max_zone_pfn;
1762
1763         /* Clear page flags */
1764         for_each_populated_zone(zone) {
1765                 max_zone_pfn = zone_end_pfn(zone);
1766                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1767                         if (pfn_valid(pfn))
1768                                 swsusp_unset_page_free(pfn_to_page(pfn));
1769         }
1770
1771         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1772         memory_bm_position_reset(bm);
1773         do {
1774                 pfn = memory_bm_next_pfn(bm);
1775                 if (likely(pfn != BM_END_OF_MAP)) {
1776                         if (likely(pfn_valid(pfn)))
1777                                 swsusp_set_page_free(pfn_to_page(pfn));
1778                         else
1779                                 return -EFAULT;
1780                 }
1781         } while (pfn != BM_END_OF_MAP);
1782
1783         allocated_unsafe_pages = 0;
1784
1785         return 0;
1786 }
1787
1788 static void
1789 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1790 {
1791         unsigned long pfn;
1792
1793         memory_bm_position_reset(src);
1794         pfn = memory_bm_next_pfn(src);
1795         while (pfn != BM_END_OF_MAP) {
1796                 memory_bm_set_bit(dst, pfn);
1797                 pfn = memory_bm_next_pfn(src);
1798         }
1799 }
1800
1801 static int check_header(struct swsusp_info *info)
1802 {
1803         char *reason;
1804
1805         reason = check_image_kernel(info);
1806         if (!reason && info->num_physpages != get_num_physpages())
1807                 reason = "memory size";
1808         if (reason) {
1809                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1810                 return -EPERM;
1811         }
1812         return 0;
1813 }
1814
1815 /**
1816  *      load header - check the image header and copy data from it
1817  */
1818
1819 static int
1820 load_header(struct swsusp_info *info)
1821 {
1822         int error;
1823
1824         restore_pblist = NULL;
1825         error = check_header(info);
1826         if (!error) {
1827                 nr_copy_pages = info->image_pages;
1828                 nr_meta_pages = info->pages - info->image_pages - 1;
1829         }
1830         return error;
1831 }
1832
1833 /**
1834  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1835  *      the corresponding bit in the memory bitmap @bm
1836  */
1837 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1838 {
1839         int j;
1840
1841         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1842                 if (unlikely(buf[j] == BM_END_OF_MAP))
1843                         break;
1844
1845                 /* Extract and buffer page key for data page (s390 only). */
1846                 page_key_memorize(buf + j);
1847
1848                 if (memory_bm_pfn_present(bm, buf[j]))
1849                         memory_bm_set_bit(bm, buf[j]);
1850                 else
1851                         return -EFAULT;
1852         }
1853
1854         return 0;
1855 }
1856
1857 /* List of "safe" pages that may be used to store data loaded from the suspend
1858  * image
1859  */
1860 static struct linked_page *safe_pages_list;
1861
1862 #ifdef CONFIG_HIGHMEM
1863 /* struct highmem_pbe is used for creating the list of highmem pages that
1864  * should be restored atomically during the resume from disk, because the page
1865  * frames they have occupied before the suspend are in use.
1866  */
1867 struct highmem_pbe {
1868         struct page *copy_page; /* data is here now */
1869         struct page *orig_page; /* data was here before the suspend */
1870         struct highmem_pbe *next;
1871 };
1872
1873 /* List of highmem PBEs needed for restoring the highmem pages that were
1874  * allocated before the suspend and included in the suspend image, but have
1875  * also been allocated by the "resume" kernel, so their contents cannot be
1876  * written directly to their "original" page frames.
1877  */
1878 static struct highmem_pbe *highmem_pblist;
1879
1880 /**
1881  *      count_highmem_image_pages - compute the number of highmem pages in the
1882  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1883  *      image pages are assumed to be set.
1884  */
1885
1886 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1887 {
1888         unsigned long pfn;
1889         unsigned int cnt = 0;
1890
1891         memory_bm_position_reset(bm);
1892         pfn = memory_bm_next_pfn(bm);
1893         while (pfn != BM_END_OF_MAP) {
1894                 if (PageHighMem(pfn_to_page(pfn)))
1895                         cnt++;
1896
1897                 pfn = memory_bm_next_pfn(bm);
1898         }
1899         return cnt;
1900 }
1901
1902 /**
1903  *      prepare_highmem_image - try to allocate as many highmem pages as
1904  *      there are highmem image pages (@nr_highmem_p points to the variable
1905  *      containing the number of highmem image pages).  The pages that are
1906  *      "safe" (ie. will not be overwritten when the suspend image is
1907  *      restored) have the corresponding bits set in @bm (it must be
1908  *      unitialized).
1909  *
1910  *      NOTE: This function should not be called if there are no highmem
1911  *      image pages.
1912  */
1913
1914 static unsigned int safe_highmem_pages;
1915
1916 static struct memory_bitmap *safe_highmem_bm;
1917
1918 static int
1919 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1920 {
1921         unsigned int to_alloc;
1922
1923         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1924                 return -ENOMEM;
1925
1926         if (get_highmem_buffer(PG_SAFE))
1927                 return -ENOMEM;
1928
1929         to_alloc = count_free_highmem_pages();
1930         if (to_alloc > *nr_highmem_p)
1931                 to_alloc = *nr_highmem_p;
1932         else
1933                 *nr_highmem_p = to_alloc;
1934
1935         safe_highmem_pages = 0;
1936         while (to_alloc-- > 0) {
1937                 struct page *page;
1938
1939                 page = alloc_page(__GFP_HIGHMEM);
1940                 if (!swsusp_page_is_free(page)) {
1941                         /* The page is "safe", set its bit the bitmap */
1942                         memory_bm_set_bit(bm, page_to_pfn(page));
1943                         safe_highmem_pages++;
1944                 }
1945                 /* Mark the page as allocated */
1946                 swsusp_set_page_forbidden(page);
1947                 swsusp_set_page_free(page);
1948         }
1949         memory_bm_position_reset(bm);
1950         safe_highmem_bm = bm;
1951         return 0;
1952 }
1953
1954 /**
1955  *      get_highmem_page_buffer - for given highmem image page find the buffer
1956  *      that suspend_write_next() should set for its caller to write to.
1957  *
1958  *      If the page is to be saved to its "original" page frame or a copy of
1959  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1960  *      the copy of the page is to be made in normal memory, so the address of
1961  *      the copy is returned.
1962  *
1963  *      If @buffer is returned, the caller of suspend_write_next() will write
1964  *      the page's contents to @buffer, so they will have to be copied to the
1965  *      right location on the next call to suspend_write_next() and it is done
1966  *      with the help of copy_last_highmem_page().  For this purpose, if
1967  *      @buffer is returned, @last_highmem page is set to the page to which
1968  *      the data will have to be copied from @buffer.
1969  */
1970
1971 static struct page *last_highmem_page;
1972
1973 static void *
1974 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1975 {
1976         struct highmem_pbe *pbe;
1977         void *kaddr;
1978
1979         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1980                 /* We have allocated the "original" page frame and we can
1981                  * use it directly to store the loaded page.
1982                  */
1983                 last_highmem_page = page;
1984                 return buffer;
1985         }
1986         /* The "original" page frame has not been allocated and we have to
1987          * use a "safe" page frame to store the loaded page.
1988          */
1989         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1990         if (!pbe) {
1991                 swsusp_free();
1992                 return ERR_PTR(-ENOMEM);
1993         }
1994         pbe->orig_page = page;
1995         if (safe_highmem_pages > 0) {
1996                 struct page *tmp;
1997
1998                 /* Copy of the page will be stored in high memory */
1999                 kaddr = buffer;
2000                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2001                 safe_highmem_pages--;
2002                 last_highmem_page = tmp;
2003                 pbe->copy_page = tmp;
2004         } else {
2005                 /* Copy of the page will be stored in normal memory */
2006                 kaddr = safe_pages_list;
2007                 safe_pages_list = safe_pages_list->next;
2008                 pbe->copy_page = virt_to_page(kaddr);
2009         }
2010         pbe->next = highmem_pblist;
2011         highmem_pblist = pbe;
2012         return kaddr;
2013 }
2014
2015 /**
2016  *      copy_last_highmem_page - copy the contents of a highmem image from
2017  *      @buffer, where the caller of snapshot_write_next() has place them,
2018  *      to the right location represented by @last_highmem_page .
2019  */
2020
2021 static void copy_last_highmem_page(void)
2022 {
2023         if (last_highmem_page) {
2024                 void *dst;
2025
2026                 dst = kmap_atomic(last_highmem_page);
2027                 copy_page(dst, buffer);
2028                 kunmap_atomic(dst);
2029                 last_highmem_page = NULL;
2030         }
2031 }
2032
2033 static inline int last_highmem_page_copied(void)
2034 {
2035         return !last_highmem_page;
2036 }
2037
2038 static inline void free_highmem_data(void)
2039 {
2040         if (safe_highmem_bm)
2041                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2042
2043         if (buffer)
2044                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2045 }
2046 #else
2047 static inline int get_safe_write_buffer(void) { return 0; }
2048
2049 static unsigned int
2050 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2051
2052 static inline int
2053 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2054 {
2055         return 0;
2056 }
2057
2058 static inline void *
2059 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2060 {
2061         return ERR_PTR(-EINVAL);
2062 }
2063
2064 static inline void copy_last_highmem_page(void) {}
2065 static inline int last_highmem_page_copied(void) { return 1; }
2066 static inline void free_highmem_data(void) {}
2067 #endif /* CONFIG_HIGHMEM */
2068
2069 /**
2070  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2071  *      be overwritten in the process of restoring the system memory state
2072  *      from the suspend image ("unsafe" pages) and allocate memory for the
2073  *      image.
2074  *
2075  *      The idea is to allocate a new memory bitmap first and then allocate
2076  *      as many pages as needed for the image data, but not to assign these
2077  *      pages to specific tasks initially.  Instead, we just mark them as
2078  *      allocated and create a lists of "safe" pages that will be used
2079  *      later.  On systems with high memory a list of "safe" highmem pages is
2080  *      also created.
2081  */
2082
2083 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2084
2085 static int
2086 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2087 {
2088         unsigned int nr_pages, nr_highmem;
2089         struct linked_page *sp_list, *lp;
2090         int error;
2091
2092         /* If there is no highmem, the buffer will not be necessary */
2093         free_image_page(buffer, PG_UNSAFE_CLEAR);
2094         buffer = NULL;
2095
2096         nr_highmem = count_highmem_image_pages(bm);
2097         error = mark_unsafe_pages(bm);
2098         if (error)
2099                 goto Free;
2100
2101         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2102         if (error)
2103                 goto Free;
2104
2105         duplicate_memory_bitmap(new_bm, bm);
2106         memory_bm_free(bm, PG_UNSAFE_KEEP);
2107         if (nr_highmem > 0) {
2108                 error = prepare_highmem_image(bm, &nr_highmem);
2109                 if (error)
2110                         goto Free;
2111         }
2112         /* Reserve some safe pages for potential later use.
2113          *
2114          * NOTE: This way we make sure there will be enough safe pages for the
2115          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2116          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2117          */
2118         sp_list = NULL;
2119         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2120         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2121         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2122         while (nr_pages > 0) {
2123                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2124                 if (!lp) {
2125                         error = -ENOMEM;
2126                         goto Free;
2127                 }
2128                 lp->next = sp_list;
2129                 sp_list = lp;
2130                 nr_pages--;
2131         }
2132         /* Preallocate memory for the image */
2133         safe_pages_list = NULL;
2134         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2135         while (nr_pages > 0) {
2136                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2137                 if (!lp) {
2138                         error = -ENOMEM;
2139                         goto Free;
2140                 }
2141                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2142                         /* The page is "safe", add it to the list */
2143                         lp->next = safe_pages_list;
2144                         safe_pages_list = lp;
2145                 }
2146                 /* Mark the page as allocated */
2147                 swsusp_set_page_forbidden(virt_to_page(lp));
2148                 swsusp_set_page_free(virt_to_page(lp));
2149                 nr_pages--;
2150         }
2151         /* Free the reserved safe pages so that chain_alloc() can use them */
2152         while (sp_list) {
2153                 lp = sp_list->next;
2154                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2155                 sp_list = lp;
2156         }
2157         return 0;
2158
2159  Free:
2160         swsusp_free();
2161         return error;
2162 }
2163
2164 /**
2165  *      get_buffer - compute the address that snapshot_write_next() should
2166  *      set for its caller to write to.
2167  */
2168
2169 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2170 {
2171         struct pbe *pbe;
2172         struct page *page;
2173         unsigned long pfn = memory_bm_next_pfn(bm);
2174
2175         if (pfn == BM_END_OF_MAP)
2176                 return ERR_PTR(-EFAULT);
2177
2178         page = pfn_to_page(pfn);
2179         if (PageHighMem(page))
2180                 return get_highmem_page_buffer(page, ca);
2181
2182         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2183                 /* We have allocated the "original" page frame and we can
2184                  * use it directly to store the loaded page.
2185                  */
2186                 return page_address(page);
2187
2188         /* The "original" page frame has not been allocated and we have to
2189          * use a "safe" page frame to store the loaded page.
2190          */
2191         pbe = chain_alloc(ca, sizeof(struct pbe));
2192         if (!pbe) {
2193                 swsusp_free();
2194                 return ERR_PTR(-ENOMEM);
2195         }
2196         pbe->orig_address = page_address(page);
2197         pbe->address = safe_pages_list;
2198         safe_pages_list = safe_pages_list->next;
2199         pbe->next = restore_pblist;
2200         restore_pblist = pbe;
2201         return pbe->address;
2202 }
2203
2204 /**
2205  *      snapshot_write_next - used for writing the system memory snapshot.
2206  *
2207  *      On the first call to it @handle should point to a zeroed
2208  *      snapshot_handle structure.  The structure gets updated and a pointer
2209  *      to it should be passed to this function every next time.
2210  *
2211  *      On success the function returns a positive number.  Then, the caller
2212  *      is allowed to write up to the returned number of bytes to the memory
2213  *      location computed by the data_of() macro.
2214  *
2215  *      The function returns 0 to indicate the "end of file" condition,
2216  *      and a negative number is returned on error.  In such cases the
2217  *      structure pointed to by @handle is not updated and should not be used
2218  *      any more.
2219  */
2220
2221 int snapshot_write_next(struct snapshot_handle *handle)
2222 {
2223         static struct chain_allocator ca;
2224         int error = 0;
2225
2226         /* Check if we have already loaded the entire image */
2227         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2228                 return 0;
2229
2230         handle->sync_read = 1;
2231
2232         if (!handle->cur) {
2233                 if (!buffer)
2234                         /* This makes the buffer be freed by swsusp_free() */
2235                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2236
2237                 if (!buffer)
2238                         return -ENOMEM;
2239
2240                 handle->buffer = buffer;
2241         } else if (handle->cur == 1) {
2242                 error = load_header(buffer);
2243                 if (error)
2244                         return error;
2245
2246                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2247                 if (error)
2248                         return error;
2249
2250                 /* Allocate buffer for page keys. */
2251                 error = page_key_alloc(nr_copy_pages);
2252                 if (error)
2253                         return error;
2254
2255         } else if (handle->cur <= nr_meta_pages + 1) {
2256                 error = unpack_orig_pfns(buffer, &copy_bm);
2257                 if (error)
2258                         return error;
2259
2260                 if (handle->cur == nr_meta_pages + 1) {
2261                         error = prepare_image(&orig_bm, &copy_bm);
2262                         if (error)
2263                                 return error;
2264
2265                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2266                         memory_bm_position_reset(&orig_bm);
2267                         restore_pblist = NULL;
2268                         handle->buffer = get_buffer(&orig_bm, &ca);
2269                         handle->sync_read = 0;
2270                         if (IS_ERR(handle->buffer))
2271                                 return PTR_ERR(handle->buffer);
2272                 }
2273         } else {
2274                 copy_last_highmem_page();
2275                 /* Restore page key for data page (s390 only). */
2276                 page_key_write(handle->buffer);
2277                 handle->buffer = get_buffer(&orig_bm, &ca);
2278                 if (IS_ERR(handle->buffer))
2279                         return PTR_ERR(handle->buffer);
2280                 if (handle->buffer != buffer)
2281                         handle->sync_read = 0;
2282         }
2283         handle->cur++;
2284         return PAGE_SIZE;
2285 }
2286
2287 /**
2288  *      snapshot_write_finalize - must be called after the last call to
2289  *      snapshot_write_next() in case the last page in the image happens
2290  *      to be a highmem page and its contents should be stored in the
2291  *      highmem.  Additionally, it releases the memory that will not be
2292  *      used any more.
2293  */
2294
2295 void snapshot_write_finalize(struct snapshot_handle *handle)
2296 {
2297         copy_last_highmem_page();
2298         /* Restore page key for data page (s390 only). */
2299         page_key_write(handle->buffer);
2300         page_key_free();
2301         /* Free only if we have loaded the image entirely */
2302         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2303                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2304                 free_highmem_data();
2305         }
2306 }
2307
2308 int snapshot_image_loaded(struct snapshot_handle *handle)
2309 {
2310         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2311                         handle->cur <= nr_meta_pages + nr_copy_pages);
2312 }
2313
2314 #ifdef CONFIG_HIGHMEM
2315 /* Assumes that @buf is ready and points to a "safe" page */
2316 static inline void
2317 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2318 {
2319         void *kaddr1, *kaddr2;
2320
2321         kaddr1 = kmap_atomic(p1);
2322         kaddr2 = kmap_atomic(p2);
2323         copy_page(buf, kaddr1);
2324         copy_page(kaddr1, kaddr2);
2325         copy_page(kaddr2, buf);
2326         kunmap_atomic(kaddr2);
2327         kunmap_atomic(kaddr1);
2328 }
2329
2330 /**
2331  *      restore_highmem - for each highmem page that was allocated before
2332  *      the suspend and included in the suspend image, and also has been
2333  *      allocated by the "resume" kernel swap its current (ie. "before
2334  *      resume") contents with the previous (ie. "before suspend") one.
2335  *
2336  *      If the resume eventually fails, we can call this function once
2337  *      again and restore the "before resume" highmem state.
2338  */
2339
2340 int restore_highmem(void)
2341 {
2342         struct highmem_pbe *pbe = highmem_pblist;
2343         void *buf;
2344
2345         if (!pbe)
2346                 return 0;
2347
2348         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2349         if (!buf)
2350                 return -ENOMEM;
2351
2352         while (pbe) {
2353                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2354                 pbe = pbe->next;
2355         }
2356         free_image_page(buf, PG_UNSAFE_CLEAR);
2357         return 0;
2358 }
2359 #endif /* CONFIG_HIGHMEM */